

E8aエミュレータ ユーザーズマニュアル別冊(接続時の注意事項)

対象デバイス R8Cファミリ / R8C/Mxシリーズ R8C/M11A, R8C/M12A, R8C/M13Bグループ

本資料に記載の全ての情報は本資料発行時点のものであり、ルネサス エレクトロニクスは、 予告なしに、本資料に記載した製品または仕様を変更することがあります。 ルネサス エレクトロニクスのホームページなどにより公開される最新情報をご確認ください。

ご注意書き

- 1. 本資料に記載されている内容は本資料発行時点のものであり、予告なく変更することがあります。当社製品のご購入およびご使用にあたりましては、事前に当社営業窓口で最新の情報をご確認いただきますとともに、当社ホームページなどを通じて公開される情報に常にご注意ください。
- 2. 本資料に記載された当社製品および技術情報の使用に関連し発生した第三者の特許権、著作権その他の知的 財産権の侵害等に関し、当社は、一切その責任を負いません。当社は、本資料に基づき当社または第三者の 特許権、著作権その他の知的財産権を何ら許諾するものではありません。
- 3. 当社製品を改造、改変、複製等しないでください。
- 4. 本資料に記載された回路、ソフトウェアおよびこれらに関連する情報は、半導体製品の動作例、応用例を説明するものです。お客様の機器の設計において、回路、ソフトウェアおよびこれらに関連する情報を使用する場合には、お客様の責任において行ってください。これらの使用に起因しお客様または第三者に生じた損害に関し、当社は、一切その責任を負いません。
- 5. 輸出に際しては、「外国為替及び外国貿易法」その他輸出関連法令を遵守し、かかる法令の定めるところにより必要な手続を行ってください。本資料に記載されている当社製品および技術を大量破壊兵器の開発等の目的、軍事利用の目的その他軍事用途の目的で使用しないでください。また、当社製品および技術を国内外の法令および規則により製造・使用・販売を禁止されている機器に使用することができません。
- 6. 本資料に記載されている情報は、正確を期すため慎重に作成したものですが、誤りがないことを保証するものではありません。万一、本資料に記載されている情報の誤りに起因する損害がお客様に生じた場合においても、当社は、一切その責任を負いません。
- 7. 当社は、当社製品の品質水準を「標準水準」、「高品質水準」および「特定水準」に分類しております。また、各品質水準は、以下に示す用途に製品が使われることを意図しておりますので、当社製品の品質水準をご確認ください。お客様は、当社の文書による事前の承諾を得ることなく、「特定水準」に分類された用途に当社製品を使用することができません。また、お客様は、当社の文書による事前の承諾を得ることなく、意図されていない用途に当社製品を使用することができません。当社の文書による事前の承諾を得ることなく、「特定水準」に分類された用途または意図されていない用途に当社製品を使用したことによりお客様または第三者に生じた損害等に関し、当社は、一切その責任を負いません。なお、当社製品のデータ・シート、データ・ブック等の資料で特に品質水準の表示がない場合は、標準水準製品であることを表します。

標準水準: コンピュータ、OA 機器、通信機器、計測機器、AV 機器、家電、工作機械、パーソナル機器、 産業用ロボット

高品質水準:輸送機器(自動車、電車、船舶等)、交通用信号機器、防災・防犯装置、各種安全装置、生命維持を目的として設計されていない医療機器(厚生労働省定義の管理医療機器に相当)

特定水準: 航空機器、航空宇宙機器、海底中継機器、原子力制御システム、生命維持のための医療機器(生命維持装置、人体に埋め込み使用するもの、治療行為(患部切り出し等)を行うもの、その他直接人命に影響を与えるもの)(厚生労働省定義の高度管理医療機器に相当)またはシステム等

- 8. 本資料に記載された当社製品のご使用につき、特に、最大定格、動作電源電圧範囲、放熱特性、実装条件その他諸条件につきましては、当社保証範囲内でご使用ください。当社保証範囲を超えて当社製品をご使用された場合の故障および事故につきましては、当社は、一切その責任を負いません。
- 9. 当社は、当社製品の品質および信頼性の向上に努めておりますが、半導体製品はある確率で故障が発生したり、使用条件によっては誤動作したりする場合があります。また、当社製品は耐放射線設計については行っておりません。当社製品の故障または誤動作が生じた場合も、人身事故、火災事故、社会的損害などを生じさせないようお客様の責任において冗長設計、延焼対策設計、誤動作防止設計等の安全設計およびエージング処理等、機器またはシステムとしての出荷保証をお願いいたします。特に、マイコンソフトウェアは、単独での検証は困難なため、お客様が製造された最終の機器・システムとしての安全検証をお願いいたします。
- 10. 当社製品の環境適合性等、詳細につきましては製品個別に必ず当社営業窓口までお問合せください。ご使用に際しては、特定の物質の含有・使用を規制する RoHS 指令等、適用される環境関連法令を十分調査のうえ、かかる法令に適合するようご使用ください。お客様がかかる法令を遵守しないことにより生じた損害に関して、当社は、一切その責任を負いません。
- 11. 本資料の全部または一部を当社の文書による事前の承諾を得ることなく転載または複製することを固くお 断りいたします。
- 12. 本資料に関する詳細についてのお問い合わせその他お気付きの点等がございましたら当社営業窓口までご 照会ください。
- 注 1. 本資料において使用されている「当社」とは、ルネサス エレクトロニクス株式会社およびルネサス エレクトロニクス株式会社がその総株主の議決権の過半数を直接または間接に保有する会社をいいます。
- 注 2. 本資料において使用されている「当社製品」とは、注 1 において定義された当社の開発、製造製品をいいます。

目 次

	ページ
1. E8aエミュレータマニュアル構成	4
2. E8aエミュレータ仕様	5
2.1 対応マイコン	5
2.2 エミュレータ仕様一覧	5
2.3 対応ツールチェーンおよびサードパーティツール	6
3. E8aエミュレータとユーザシステムの接続	8
3.1 E8aエミュレータとユーザシステムとの接続コネクタ	8
4. E8a接続時の端子処理例	10
4.1 E8a接続時の端子処理例	
4.2 E8aエミュレータ内インタフェース回路	12
5. エミュレータデバッガの設定	13
5.1 [エミュレータ設定]ダイアログボックス	13
5.2 エミュレータモードタブ	
5.3 ファームウェア配置タブ	16
5.4 MCU設定タブ	
5.5 通信ボーレートタブ	18
6. E8aエミュレータ機能(E8aユーザーズマニュアル補足)	19
6.1 エミュレータ機能	
6.2 イベントポイントウィンドウEventconditionタブ	20
6.3 イベント設定ダイアログ	
6.4 トレースウィンドウの表示内容	
6.5 アクセスブレークおよびトレース機能のイベント設定に関する注意事項	24
7. E8aエミュレータ使用上の注意事項	
7.1 占有するマイコン資源	
7.2 内部ROM領域(フラッシュメモリ)	
7.2.1 CPU書き換えモードのデバッグに関する注意事項	28
7. 2. 2 E8aエミュレータからのフラッシュメモリ書き換え中の注意事項	
7.2.3 ユーザプログラム実行中のフラッシュメモリ	
7.2.4 デバッグに使用したマイコン	
7.2.5 フラッシュメモリのIDコード	
7.3 電源供給に関して	
7.4 ユーザプログラム停止中の動作	
7.5 デバッグ機能	31

1. E8aエミュレータマニュアル構成

E8aエミュレータのマニュアルは、E8aユーザーズマニュアルとE8aユーザーズマニュアル 別冊(本マニュアル)の2部で構成されています。

E8aエミュレータご使用にあたり、両方のユーザーズマニュアルを必ずお読みになってください。 なお本書では、"L"アクティブの信号を表記するため信号名の末尾に"#"を付加しています(例:RESET#)。

(1) E8aエミュレータユーザーズマニュアル

E8aエミュレータユーザーズマニュアルには、ハードウェア仕様やエミュレータデバッガの操作方法が記載されています。

- ●E8aエミュレータのハードウェア仕様
- E8aエミュレータとホストコンピュータおよびユーザシステムとの接続
- E8aエミュレータデバッガの操作方法
- E8aエミュレータデバッガの起動からデバッグ作業までのチュートリアル 等
- (2) E8aエミュレータユーザーズマニュアル 別冊

E8aエミュレータユーザーズマニュアル 別冊には、マイコンに依存する内容や注意事項が記載されています。

- ●E8aエミュレータが使用するマイコンの資源
- ハードウェア設計時に必要なE8aエミュレータとの接続例やインタフェース回路
- E8aエミュレータ使用時の注意事項
- E8aエミュレータデバッガ起動時の設定 等

【留意事項】

FDT (別売) の仕様および対応MCU等に関しては、弊社Webサイト (http://japan.renesas.com/tools) のフラッシュ開発ツールキットページにてご確認ください。

FDTはフラッシュ開発ツールキット(Flash Development Toolkit)を示します。

商標

Microsoft, MS-DOS, Visual SourceSafe, Windows および Windows Vista は、米国 Microsoft Corporation の米国およびその他の国における登録商標または商標です。 その他すべての会社名および製品名は、各社の登録商標または商標です。

2. E8aエミュレータ仕様

2.1 対応マイコン

本マニュアルでの対応マイコンを表2.1に示します。

表2.1 対応マイコン一覧

項目	内容
対応マイコン	R8CファミリR8C/Mxシリーズ
┃ 対応動作モード	R8C/M11A, M12A, M13Bグループ シングルチップモード

2.2 エミュレータ仕様一覧

表2. 2にR8C E8aエミュレータデバッガでのエミュレータ仕様、表2. 3にR8C E8aエミュレータデバッガの仕様一覧を示します。

表2.2 エミュレータ仕様

項目	内容				
エミュレータ用電源	不要(USBバス	パワードのため、	ホス	トマシンよりイ	共給)
対応エミュレータデバッガ	R8C E8aエミ.	ュレータデバッガ\	/1. 05.	00 以降	
使用環境条件	温度	動作時	:	10 ~ 35℃	
		非動作時	:	-10 ~ 50°C	
	湿度	動作時	:	35∼80%RH	結露なし
		非動作時	:	35∼80%RH	結露なし
	振動	動作時	:	最大2.45m/s	2
		非動作時	:	最大4.9m/s ²	
		梱包輸送時	:	最大14.7m/s	2
	周囲ガス	腐食性ガスのなし	ハこと		

表2.3 対応MCU使用時のE8aエミュレータ仕様一覧

項目	内容
動作電圧	1.8~5.5[V]
	詳細は使用されるMCUのハードウェアマニュアルをご参照ください。
ブレーク機能	・アドレス一致ブレーク4点
	・データアクセスブレーク1点
	Event A: アドレス/データのマスク付き比較、アクセス条件(R, W, R/W)設定可
	・PCブレークポイント(最大255点)
	・強制ブレーク
トレース機能	3分岐(分岐元先PC)、または6分岐(分岐元PC)、
	指定データサイクル最大6サイクル
フラッシュメモリ	あり("フラッシュメモリデータの書込み"モード指定)
プログラミング機能	
ユーザインタフェース	1線式クロック非同期形シリアル(MODE端子で通信)
占有するマイコンの資源	・スタック8バイト
	・アドレス一致割り込み
ホストマシンとの	USB (USB1.1、フルスピード)*
インタフェース	* USB2.0対応のホストコンピュータにも接続可能
	* USBインタフェースは、すべてのホストコンピュータ、USBデバイス、
	USBハブの組合せでの動作を保障するものではありません。
電源供給機能	ユーザシステムに3.3Vまたは5.0V供給可能(最大300mA) 【注1】

- 【注1】 量産工程でのフラッシュ書き込み機として使用する場合は、エミュレータからの電源供給機能は使用せずにマイコン仕様に合致した電源を別途ユーザシステムから供給してください。なお、量産工程などでの書き込みを行う場合は、FDTを使用してください。 E8aエミュレータからの供給電圧はホストマシンのUSB電源性能に依存するため、精度の保証が出来ません。
- 2.3 対応ツールチェーンおよびサードパーティツール 表2.4に示すツールチェーンおよびサードパーティツールで作成したモジュールのデバッグが可能です。

表2.4 対応ツールチェーンとサードパーティツール

ツールチェーン	M3T-NC30WA V.5.20 Release 01以降
サードパーティツール	TASKING M16C C/C++/EC++コンパイラ V. 2. 3r1以降 【注1】
	IAR EWM16C V. 2. 12以降

【注1】ELF/DWARF2フォーマットで作成したロードモジュールのデバッグに関する注意事項

TASKING M16C C/C++/EC++コンパイラ V3.0r1を使用してELF/DWARF2フォーマットのロードモジュール を作成した場合、ウォッチウィンドウで基底クラスのメンバ変数を表示する際に以下の注意事項があります。

〈注意事項〉

基底クラスを持つクラスオブジェクトを定義した場合、

- ケース1: クラスオブジェクトから基底クラスのメンバ変数を直接参照することができません(*1)。
 - =>クラスオブジェクトからの間接参照により基底クラスのメンバ変数を参照してください (*2)(*3)。
- ケース2: PC値が派生クラスのメンバ関数内にある場合、基底クラスのメンバ変数を直接参照することができません(*4)。
 - =>thisポインタからの間接参照により基底クラスのメンバ変数を参照してください (*5)(*6)。
- 図2.1に記述例、図2.2にウォッチウィンドウへの登録例を示します。

```
*. h
    class BaseClass
    public:
       int m_iBase;
    public:
       BaseClass() {
           m_iBase = 0;
       void BaseFunc(void);
    };
    {\tt class\ DerivedClass\ :\ public\ BaseClass}
    public:
       int m_iDerive;
    public:
       DerivedClass() {
          m_iDerive = 0;
       void DerivedFunc(void);
    };
 *. cpp
    main()
       class DerivedClass ClassObj;
       ClassObj.DerivedFunc();
       return;
    void BaseClass::BaseFunc(void)
       m_iBase = 0x1234;
    void DerivedClass∷DerivedFunc(void)
       BaseFunc();
       m_iDerive = 0x1234;
```

図2.1 記述例

```
ケース1: PC値がmain()関数内にある場合
   (1)"ClassObj.m_iBase"
                                                     :参照不可(*1)
   (2) "ClassObj. __b_BaseClass.m_iBase"
                                                     :参照可(*2)
   (3) "ClassObj'
         - "__b_BaseClass"
- "m_iBase"
                                                     :参照可(*3)
          - "m_iDerive"
                               - : 展開記号
 ケース2: PC値がDerivedClass::DerivedFunc()関数内にある場合
   (1) "m_iBase"
(2) "this->_b_BaseClass.m_iBase"
(3) "_b_BaseClass.m_iBase"
(4) "this"
                                                      :参照不可(*4)
                                                      :参照可(*5)
                                                      :参照可(*5)
             - "__b_BaseClass"
- "m_iBase"
                                                      :参照可(*6)
             - "m_iDerive"
   (5) "__b_BaseClass"
          - "m_iBase"
                                                      :参照可(*6)
```

図2.2 ウォッチウィンドウへの登録例

3. E8aエミュレータとユーザシステムの接続

3.1 E8aエミュレータとユーザシステムとの接続コネクタ

E8aエミュレータを接続するためには、ユーザシステム上にユーザインタフェースケーブル接続用のコネクタを実装する必要があります。

E8aエミュレータが推奨するE8a接続コネクタを表3.1、E8a接続コネクタのピン配置を図3.2に示します。

ユーザシステム設計の際には、「図3.2 E8a接続コネクタのピン配置」および3章「E8aエミュレータとユーザシステムの接続」を参考にしてください。

また、ユーザシステム設計の際には、E8aエミュレータユーザーズマニュアルおよび関連デバイスのハードウェアマニュアルを必ずお読みになってください。

表3.1 推奨コネクタ

	型名	メーカ	仕様
14ピンコネクタ	7614-6002	住友スリーエム株式会社	14ピンストレートタイプ(日本国内推奨)
	2514-6002	3M Limited	14ピンストレートタイプ(日本国外推奨)

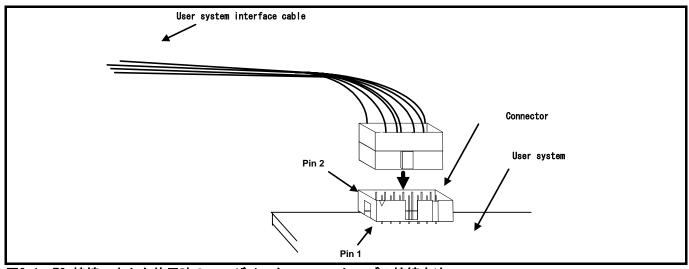


図3.1 E8a接続コネクタ使用時のユーザインタフェースケーブル接続方法

【留意事項】

- E8a接続コネクタの周囲3mm四方に他の部品を実装しないでください。
- E8aをプログラマとして使用するときも接続方法は同じです。
- E8a接続コネクタの2, 4, 6, 10, 12, 14ピンはユーザシステム基板上でしっかりとGNDに接続してください。電気的なGNDとして使用する他、E8aエミュレータがユーザシステムコネクタの接続を監視するためにも使用しています。
- ●ユーザインタフェースケーブルをエミュレータ、ユーザシステムのコネクタから抜き差しする時は、必ず ケーブル先端のコネクタカバーをつかんで抜き差しを行ってください。コネクタカバーをつかまずにケー ブル部分をつかんで抜き差しを行うと、ケーブル断線の原因となります。

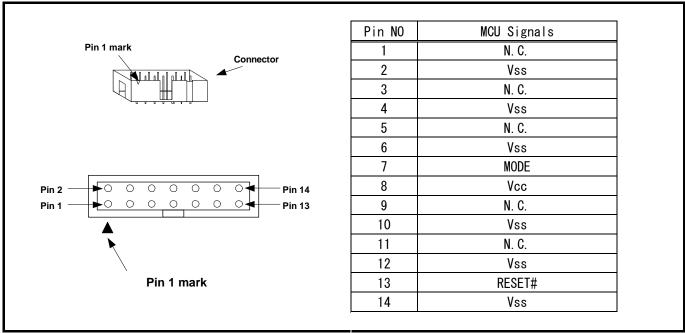


図3.2 E8a接続コネクタのピン配置

【留意事項】

- 14番ピンはE8aとユーザシステムの接続確認に使用されており、E8a内部では直接Vssに接続されていません。Vssとしては14番ピンのほかに必ず2,4,6,10,12番ピンも接続してください。
- ●ユーザシステムコネクタのピン配置には注意してください。
- N. C. は何も接続しないでください。

4. E8a接続時の端子処理例

4.1 E8a接続時の端子処理例

図4.1にE8a接続時の端子処理例を示します。

E8aをプログラマとして使用するときもE8aとマイコンの接続仕様は図4.1のとおりです。

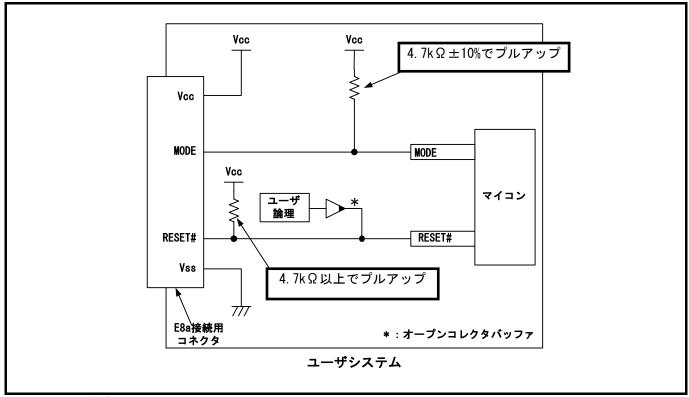


図4.1 E8aの接続例

【留意事項】

- ●プルアップに連抵抗を使用する場合、他の端子によるノイズの影響を受ける可能性がありますのでMODE端子の抵抗は他端子の抵抗と分けてください。
- ●エミュレータ接続コネクタとマイコン間のパターン長はできるだけ短く(推奨50mm以内)してください。また、基板上でエミュレータ接続コネクタとマイコン間以外への信号線の引き回しは行わないでください。
- ●E8aエミュレータを使用しない場合の端子処理については、関連するマイコンのハードウェアマニュアルを参照してください。

(1) MODE端子

MODE端子は、E8aエミュレータがマイコン制御および強制ブレークコントロールに使用します。 E8aエミュレータとマイコン端子をプルアップして、E8aエミュレータと接続してください。 本端子にはコンデンサ等を接続しないでください。

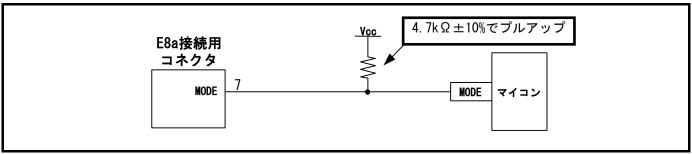


図4.2 E8aエミュレータとMODE端子の接続

(2) RESET#端子

RESET#端子はE8aエミュレータが使用します。そのため、ユーザシステムのリセット回路はオープンコレクタ出力またはCRによるリセット回路をご使用ください。プルアップ抵抗の推奨値は $4.7k\Omega$ 以上です。

E8aエミュレータから"L"を出力することにより、マイコンをリセットしています。"H"を出力するタイプのリセットICでは、ユーザシステム上のリセット回路を"L"にすることができないため、正常にE8aエミュレータを動作させることができません。

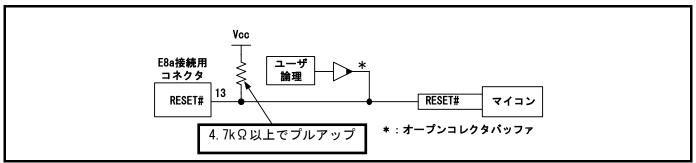


図4.3 E8aエミュレータとRESET#端子の接続

(3) その他端子

- ●VssはマイコンのVss端子に、VccはマイコンのVcc端子に接続してください。
- Vcc端子への入力可能電圧は、マイコンの保証範囲内です。
- 14番ピンはE8aとユーザシステムの接続確認に、4,6,10番ピンは内部回路に接続されており、E8a内部では 直接Vssに接続されていません。
- ◆ Vssとしては4, 6, 10, 14番ピンのほかに必ず2, 12番ピンも接続してください。
- ●N.C.は何も接続しないでください。

警告

ユーザシステムの電源回路に関して:

電源供給をする時、ユーザシステムの電源回路がショートしていないか確認をしてください。 エミュレータ接続コネクタのピンの並びに問題がないかを確認した上で、E8aエミュレータを接続して ください。誤って接続した場合、ホストマシン、E8aエミュレータとユーザシステムの発煙発火の可能 性があります。

4.2 E8aエミュレータ内インタフェース回路

図4.4にE8aエミュレータ内インタフェース回路を示します。プルアップ抵抗の値などを決定するときに参考にしてください。

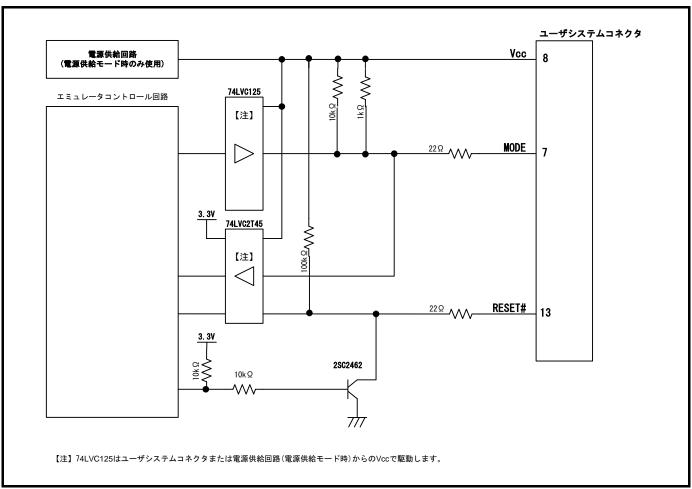


図4.4 E8aエミュレータ内インタフェース回路(参考)

5. エミュレータデバッガの設定

5.1 [エミュレータ設定]ダイアログボックス

[エミュレータ設定] ダイアログボックスは、デバッガ起動時に必要な項目を設定するためのダイアログボックスです。電源供給以外の設定は、次回起動時も有効です。

新規プロジェクトワークスペース作成後、初めてデバッガを起動する場合は、[エミュレータ設定]ダイアログボックスをウィザード形式で表示します。

なお、ここで設定した内容は、エミュレータ起動後に変更することができません。[エミュレータ設定] ダイアログボックスでの設定内容を変更する場合、一度エミュレータの起動を解除し、再起動させる必要があります。

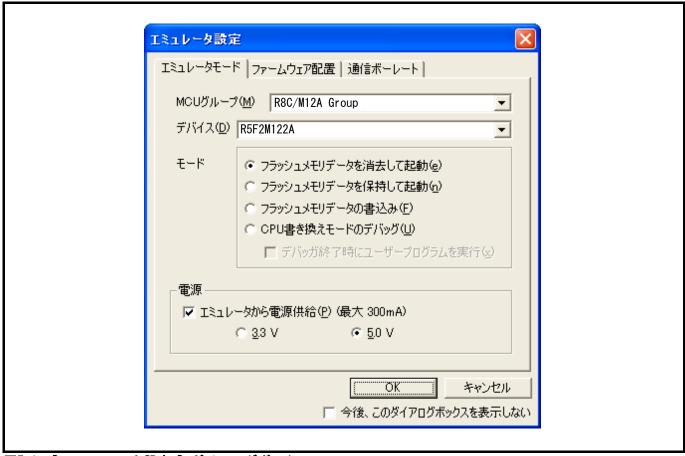


図5.1 [エミュレータ設定] ダイアログボックス

ダイアログボックス下部の[今後、このダイアログボックスを表示しない]チェックボックスをチェックすると、次回デバッガ起動時にこの[エミュレータ設定]ダイアログボックスをオープンしないようにすることができます。

[エミュレータ設定]ダイアログは、以下のいずれかの方法で再表示できます。

- デバッガ起動後、メニュー[基本設定]→[エミュレータ]→[エミュレータ設定(E)...]を選択する。
- Ctrlキーを押しながらデバッガを起動する。

なお、[今後、このダイアログボックスを表示しない]チェックボックスが選択されているときは、E8aからユーザシステムへの電源供給は行いません。

【留意事項】

選択したMCUの種類によっては、未サポートのオプション部分はグレー表示となる場合があります。

5.2 エミュレータモードタブ

エミュレータモードタブでは、デバイスの選択、モードの指定、電源供給の設定を行います。

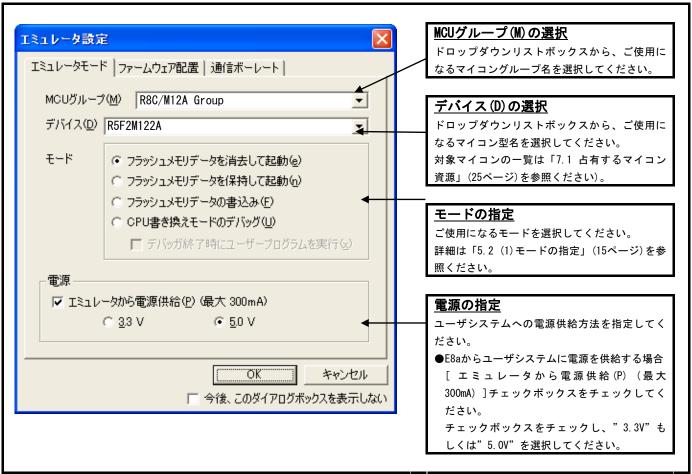


図5.2 [エミュレータ設定] ダイアログボックス

(1)モードの指定

表5.1 モードの指定

モード指定	用途	説明
		マイコンのフラッシュメモリデータを消去してデバッガを起動します。
フラッシュメモリデータを		この時、E8aエミュレータプログラム用の領域、E8aエミュレータが使用するベクタ領域も書
消去して起動【注2】	-	き込まれます。
	デバッグ	また、0FS, 0FS2領域、IDコード領域をE8aエミュレータが書き変えて使用します。
	専用 【注1】	マイコンのフラッシュメモリデータを保持してデバッガを起動します。
フラッシュメモリデータを	[/ 王]	但し、E8aエミュレータプログラム用の領域およびE8aエミュレータが使用するベクタ領域を
保持して起動【注2】		変更します。
		また、OFS, OFS2領域、IDコード領域をE8aエミュレータが書き変えて使用します。
		ダウンロード時にはユーザプログラムのみを書き込みます
		(E8aエミュレータ用プログラムは書き込まれません)。
		このため、このモードではプログラムのダウンロードのみを行い、Fillコマンドなどによる
		メモリの変更はできません。
フラッシュメモリ	簡易	
データの書込み【注2】	プログラマ	RESET/PAO端子をPAO端子として使用する場合、[デバッガ終了時にユーザプログラムを実行]
		チェックボックスをチェックした場合、
		エミュレータをユーザシステムに接続した状態でデバッガ終了と同時にユーザプログラムを
		実行します。本チェックボックスの設定は[フラッシュメモリデータの書き込み]モードを選
		択しているときのみ設定可能です。
		CPU書き換えを行うプログラムをデバッグする際は、必ず選択してください。
		本モードでは、フラッシュメモリの書き換えを伴う以下のデバッグ操作は行えません。
		- PCブレークポイントの設定
CPU書き換えモードの	デバッグ	ー フラッシュメモリ領域のメモリ内容変更
デバッグ	専用	
【注2】【注3】	【注1】	なお、本モードではマイコンのフラッシュメモリデータを消去してデバッガを起動します。
		この時、E8aエミュレータプログラム用の領域、E8aエミュレータが使用するベクタ領域も書
		き込まれます。
		また、OFS, OFS2領域、IDコード領域をE8aエミュレータが書き変えて使用します。

- 【注1】 これらのモードでユーザプログラムをダウンロードすると、ベクタ領域にE8aエミュレータ用アドレスが設定されているため、E8aエミュレータを取り外してユーザシステム単体で動作させることはできません(MCU単体で動作させることはできません)。
 - MCU単体で動作させる場合は、「フラッシュメモリデータの書込み」モードを使用してください。
- 【注2】 これらのモードでの起動時、フラッシュメモリの全ブロックのロックビットは、アンロック状態になります。また、ユーザプログラムダウンロード後、ダウンロードしたブロックのロックビットはアンロック状態になります。
- 【注3】 CPU書換えモードのデバッグでメモリ内容の参照や変更機能は使用可能ですが、下記の場合はこれらの 機能を使用しないでください。
 - 連続書き込みが必要なレジスタへの書き込み命令実行中(例:FMR13ビット)

命令の途中でメモリ内容の参照変更処理が入るため、MCUが連続的な書き込みと判定されません。

5.3 ファームウェア配置タブ ファームウェア配置タブでは、ファームウェアの配置アドレス指定等を行います。

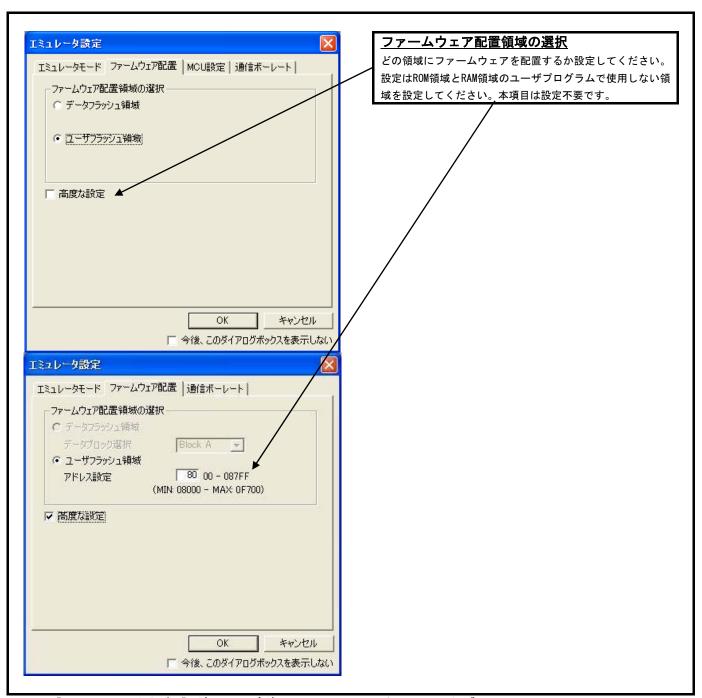
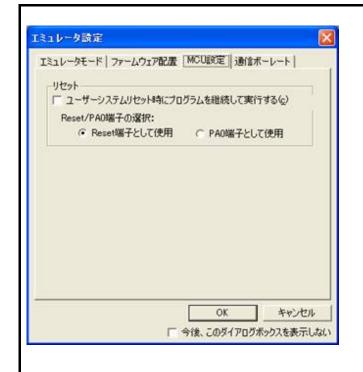



図5.3 [エミュレータ設定] ダイアログボックスのファームウェア配置タブ

5.4 MCU設定タブ

リセット動作の選択

E8aエミュレータでのリセット時の動作について設定します。

- ●ユーザシステムリセット時にプログラムを継続して実行する。 ユーザプログラム実行中にマイコンをリセット(ハードウエア リセット)した場合、下記の2つの動作が選択できます。
 - a) チェックボックス未チェック時 ユーザプログラムは停止し、E8aエミュレータ用プログラム に移行します。
 - b) チェックボックスチェック時 ユーザプログラムは停止せずに、継続して実行されます。但 し、この場合ユーザプログラムの停止/実行時に若干時間を 要する場合があります。これはリセットベクタアドレスを ユーザプログラム実行中はユーザプログラムでのリセットベ クタアドレス、ユーザプログラム停止中はE8aエミュレータ 用のリセットベクタアドレスに書き換えているからです。
- ●Reset/PAO端子の選択:

R8C/M11A, R8C/M12A, R8C/M13Bは、Reset/PAO端子が兼用端子のため、ユーザプログラムで設定する端子設定を選択してください。【注1】

図5.4 MCU設定タブ

- 【注1】 (1)下記①および②の場合ユーザシステムは必ず一旦電源供給を落としてから再接続してください。 デバッガ起動時、E8aエミュレータはマイコンにリセットするためReset/PAO端子に"L"出力します が、マイコンのPAO端子状態によって正しくリセットできない場合や、信号衝突(E8aから"L"、マイコンはPAO設定で"H"出力)の恐れがありますのでご注意ください。
 - ①E8aエミュレータ上の制限事項等で誤ってE8aエミュレータからの制御が不能となった場合
 - ②以下の条件で使用する場合
 - E8aから電源供給せず、ユーザシステムからマイコンへ電源供給する場合
 - ユーザプログラムでReset/PAO端子をポートPAOとしてマイコンを動作させた後に、デバッガおよびフラッシュ開発ツールキット(Flash Development Toolkit)を接続する場合
 - (2) Reset/PAO端子の選択で「Reset端子として使用」を選択した場合、デバッガ終了時Reset/PAO端子にはマイコンをリセットするためE8aから"L"出力します。また、「PAO端子として使用」を選択した場合は、デバッガ終了時E8aはReset/PAO端子に対して出力しません。
 - (3) Reset/PAO端子の選択で「PA端子として使用」を選択した場合、ユーザシステムからのリセットは使用しないでください。E8aエミュレータから制御が不能となります。

5.5 通信ボーレートタブ

E8aエミュレータとマイコン間の通信ボーレートを選択します。 通常は、500000bps(デフォルト)を選択してください。【注1】【注2】

図5.5 通信ボーレートタブ

- 【注1】 ユーザシステム上でのMODE信号の配線長や配線方法によっては、選択した通信ボーレートで通信ができない場合があります。このボーレートを下げることによって、通信が出来るようになる場合があります。また、ここで設定した通信情報は、エミュレータデバッガ起動後に変更することができません。通信ボーレートの変更は、一度MCUとの接続を解除し、再接続させる必要があります。
- 【注2】 57600bps以下の通信ボーレートは、E8aエミュレータとの接続異常があった場合の確認用です。これら低い通信ボーレートでは、ターゲットマイコンのフラッシュメモリ書き込みに大変時間が掛かり、エミュレータデバッガの応答がないような状態に見えることがあります。また、1024バイト以上のメモリ参照/メモリフィル等では、通信時間がかかるためタイムアウトエラーが発生したりする場合があります。

6. E8aエミュレータ機能(E8aユーザーズマニュアル補足)

6.1 エミュレータ機能

本マニュアルの対応マイコンは、デバイス内蔵の以下の機能を使用できます。

(1) ブレーク機能

●アドレス一致ブレーク

指定したアドレスの命令を実行する直前でブレークする機能です。MCUのアドレスー致割り込みを使用して実現しています。最大4点のアドレスー致ブレークポイントを使用できます。

アドレス一致ブレークポイントの設定は、イベントポイントウィンドウの Break conditionシートで行います。または、エディタウィンドウのEventカラムをダブルクリックすることによっても設定できます。 設定方法の詳細については「E8aエミュレータユーザーズマニュアル」を参照下さい。

● データアクセスブレーク

指定イベントの成立時にブレークする機能です。1点のデータアクセスイベントを組み合わせて指定できます。

●トレースフルブレーク

トレースバッファが一杯になったときにブレークする機能です。

(2)トレース機能

●分岐トレース

分岐元、および、分岐先のアドレスとニーモニック、ソース行を表示します。

●データトレース

データアクセスイベントが成立したときのデータアクセスを表示します。

データアクセスイベントやトレース条件の設定は、イベントポイントウィンドウの Event conditionシートで行います。

6.2 イベントポイントウィンドウEventconditionタブ データアクセスイベントの内容や、ブレーク条件、トレース条件を設定します。

本ウィンドウで各項目をダブルクリックすると、イベント設定ダイアログが開き条件を変更することができます。表6.1にシート内に表示する項目に示します。

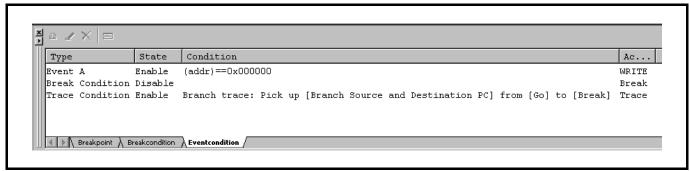


図6.1 イベントポイントウィンドウ Eventconditionタブ

表6.1 Eventconditionタブ表示内容

項目	内容
Туре	イベントの種類を表示します。
	Event A: イベントA
	Break Condition: ブレーク条件
	Trace Condition: トレース条件
State	該当イベントの有効/無効を示します。
	Enable∶有効
	Disable: 無効
Condition	設定されている条件を表示します。
Action	EventAの場合は、アクセス種別を表示します。
	R/W: リード/ライト
	READ: リード
	WRITE: ライト
	Break Condition, Trace Conditionは、常にBreak/Traceを表示します。

6.3 イベント設定ダイアログ

イベント設定ダイアログではEvent condition の条件を設定します。

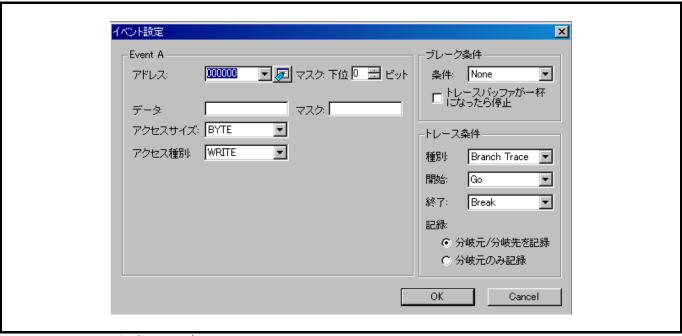


図6.2 イベント設定ダイアログ

(1) Event A

イベントAの内容を設定します。

イベントAにはマスク指定付アドレス比較、および、マスク指定付のデータ比較条件を設定できます。

表6.2 Event A内容

オプション	説明
アドレス	データアクセスを検出するアドレスを指定します。
*	
(マスク指定付)	アドレスマスクはビット数の指定で行います。
	指定アドレスの下位ビットを指定されたビット数だけマスクします。
データ	データ比較も行う場合、データとデータマスクを指定します。
(マスク指定付)	アクセスサイズ(BYTE指定時): FFh(Max)
	アクセスサイズ(WORD指定時): FFFFh(Max)
	データ比較を行わない場合、データを空欄にするかマスクを0としてください。
	データマスク不要な場合は、マスクを空欄にしてください。
アクセスサイズ	アクセスサイズはBYTE, WORD、Not specifyから選択します。
	指定したアクセスサイズに一致しないデータアクセスが発生した場合、イベントは成立
	しません。
	また、アクセスサイズにWORDを指定する場合、アドレスには偶数アドレスを指定してく
	ださい。
アクセス種別	アクセス種別が選択できます。
	R/W: リードまたはライト
	READ: リードのみ
	WRITE: ライトのみ

(2) ブレーク条件ブレーク条件を設定します。

表6.3 ブレーク条件

オプション	説明
条件	ブレーク条件を選択します。
	None : 指定なし (イベントによるブレークなし)
	Event A : イベントAが成立したらブレーク
トレースバッファが	チェックすると、トレースバッファが一杯になったときにブレークします。
一杯になったら停止	イベントによるブレーク条件と同時に設定できます。

(3)トレース条件トレース条件を設定します。

表6.4 トレース条件

オプション	説明
種別	トレース種別を選択します。
	Branch Trace : 分岐トレース
	Data Trace : データトレース
開始	トレース計測の開始条件を選択します。
	Go : ターゲット実行開始時に計測開始
	Event A: イベントAが成立したら計測開始
終了	トレース計測の終了条件を選択します。
	Break : ターゲット実行停止時に計測終了
	Trace FULL: トレースデータが一杯になったら計測終了
	Event A: イベントAが成立したら計測終了
記録	データトレース時に記録するイベントを選択します。
	分岐元/分岐先を記録 : イベントAの条件に該当するデータアクセスのみ記録する。
	(分岐元/分岐先情報を記録する)
	分岐元のみ記録 : イベントAの条件に該当するデータアクセスのみ記録する。
	(分岐先情報は記録しない)

6.4 トレースウィンドウの表示内容

トレース結果を表示するには、トレースウィンドウを開きます。

ポップアップメニューの各機能については、「E8aエミュレータユーザーズマニュアル」を参照ください。 表6.5に表示する項目を示します。

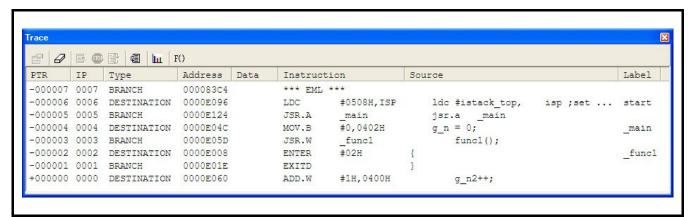


図6.3 トレースウィンドウ

表6.5 トレース表示

+ = =	4.0
項目	内容
PTR	トレースバッファ内ポインタ番号を表示します。トレース停止位置を0として昇順に表示しま
	す。
IP	命令ポインタを表示します。
Type	トレース情報の種別を表示します。
	分岐トレース時はBRANCH/DESTINATIONを、データトレース時はREAD/WRITEを表示します。
Address	分岐トレース時は分岐元/分岐先命令のアドレスを表示します。
	データトレース時は成立したイベントに設定したアドレスあるいはアドレス範囲を表示しま
	す。
Data	データトレース時はアクセスされた値を表示します。分岐トレース時は何も表示しません。
Instruction	分岐トレース時は該当するアドレスのニーモニックを表示します。
	データトレース時は何も表示しません。
	Instructionに"*** EML ***"と表示されることがあります。
	これはブレーク等の制御のためにエミュレータ使用領域にアクセスしたことを示し、異常では
	ありません。
Source	Instructionに対応するソース行情報がある場合は、対応するソース行を表示します。
	データトレース時は何も表示しません。
Label	Instructionのアドレスに対応するラベルがある場合は、対応するラベルを表示します。
	データトレース時は何も表示しません。

6.5 アクセスブレークおよびトレース機能のイベント設定に関する注意事項

アクセスブレークおよびトレース機能にて、Event AまたはEvent Bを設定する場合、アドレス、アクセスサイズおよびアクセス種別は表6.6に従って設定してください。

表6.6 イベント設定可否一覧表

イベント設定条件	イベント設定可否	イベント設定ダイアログの設定例
偶数アドレスへのバイトリード	0	アドレス : 400h アクセスサイズ : BYTE アクセス種別 : READまたはR/W
偶数アドレスへのバイトライト	0	アドレス : 400h アクセスサイズ : BYTE アクセス種別 : WRITEまたはR/W
偶数アドレスへのワードリード	0	アドレス : 400h アクセスサイズ : WORD アクセス種別 : READまたはR/W
偶数アドレスへのワードライト	0	アドレス : 400h アクセスサイズ: WORD アクセス種別 : WRITEまたはR/W
奇数アドレスへのバイトリード	0	アドレス : 401h アクセスサイズ : BYTE アクセス種別 : READまたはR/W
奇数アドレスへのバイトライト	0	アドレス : 401h アクセスサイズ : BYTE アクセス種別 : WRITEまたはR/W
奇数アドレスへのワードリード	0	アドレス : 401h アクセスサイズ : BYTE【注1】 アクセス種別 : READまたはR/W
奇数アドレスへのワードライト	0	アドレス : 401h アクセスサイズ: BYTE【注1】 アクセス種別 : WRITEまたはR/W

- 【注1】 アクセスサイズは"BYTE"を指定してください。
 - なお、本条件において、比較可能なデータは、下位1バイト分となります。
- 【注2】 トレース開始条件に関する注意事項
 - トレース開始条件にイベント("Go"以外)を設定した場合、イベント成立時のデータはトレースデータに記録されず、次に成立したイベントのデータが記録されます。
- 【注3】 トレース終了条件に関する注意事項
 - トレース開始条件と終了条件が同時に発生した場合、トレース終了条件が無効になります。
 - トレース終了条件に"Break"以外を設定した場合、トレース終了条件が成立した後でもユーザプログラムが停止するまでは、トレースウィンドウの表示内容は更新されません。
- 【注4】 Event A設定に関する注意事項
 - Event Aにおいてイベントを設定する場合、アドレスのマスク指定とデータのマスク指定を同時に設定できません。同時に設定した場合、イベントが成立しません。
- 【注5】 イベント設定に関する注意事項
 - イベントに以下に示すアドレスを設定しないでください。これらのアドレスを設定した場合、不正なブレークが発生することがあります。
 - ・割り込みベクタテーブル内のアドレス
 - ・割り込みベクタテーブルに設定されているアドレス(割り込みルーチン先頭アドレス)
 - 分岐命令の分岐先アドレス

上記の割り込みベクタテーブルには、固定ベクタテーブル、可変ベクタテーブルとも該当します。

7. E8aエミュレータ使用上の注意事項

7.1 占有するマイコン資源

(1) E8aエミュレータ用プログラム占有領域

E8aエミュレータ用プログラムが占有する領域を、表7.1に示します。

E8aエミュレータ用プログラム占有領域の内容は変更しないでください。変更した場合、E8aエミュレータでの制御ができなくなりますので、デバッガを切断後に再度接続してください。

表7.1 E8aエミュレータ用プログラム占有領域

グループ	型名	ROM容量		E8aエミュレータプログラム占有領域	
		Program ROM	Data Flash	ベクタ領域	ROM領域
	R5F2M110A	2KB		FFE4h~FFE7h, FFE8h~FFEBh, FFECh~FFEFh,	_
R8C/M11A	R5F2M111A	4KB			_
	R5F2M112A	8KB			_
	R5F2M120A	2KB	1KB		_
R8C/M12A	R5F2M121A	4KB	×2 Block		_
	R5F2M122A	8KB	X Z DTOOK	FFF4h~FFF7h,	_
	R5F2M131B	4KB		FFFCh~FFFEh	_
R8C/M13B	R5F2M132B	8KB			_
	R5F2M134B	16KB			_

(2) E8aエミュレータ用占有端子

E8aエミュレータは以下の端子を使用してマイコンを制御します。

- デバッグ時/プログラム時:RESET#端子、MODE端子
- (3) E8aエミュレータでのレジスタ初期化

E8aエミュレータは、システム起動時に汎用レジスタやフラグレジスタの一部を初期化していますので注意してください。表7.2にE8aエミュレータで初期化しているレジスタ名と設定値を示します。

表7.2 E8aエミュレータでのレジスタ初期値

双ルと LOGエマエレ アでの	レンハブの別に	
状態	レジスタ名	初期値
E8aエミュレータ起動時	PC	ベクタアドレステーブル中のリセットベクタ値
(POWER ON)	R0~R3(バンク0,1)	0000h
	AO、A1 (バンク0, 1)	0000h
	FB(バンク0, 1)	0000h
	INTB	00000h
	USP	0000h
	ISP	05FFh(MCU仕様との差異)
	SB	0000h
	FLG	0000h

(4) E8aエミュレータ用使用SFR

表7.3に示すSFRはユーザプログラムでご使用になれますが、E8aエミュレータ用プログラムでも使用します。

- ●メモリウィンドウなど、ユーザプログラム以外で値を変更しないでください。
- ユーザプログラム実行中に変更は可能ですが、ブレーク時に読み出しても変更した値は読むことができません。
- 表 7.4に示すSFRは、E8aエミュレータ用プログラムで使用しユーザプログラムではご使用になれません。
- ●これらのSFRは値を変更しないでください。変更した場合、E8aエミュレータでの制御ができなくなります。
- また、表7.3、表7.4に示すSFRは、[デバッグ] \rightarrow [CPUのリセット] およびRESETコマンドでは初期化されません。これらのSFRの内容を参照した場合、E8aエミュレータ用プログラムで設定した値を読み出します。

表7.3 E8aエミュレータ用プログラムが使用するSFR(1)

番地	レジスタ	シンボル	該当ビット
0013h	プロテクトレジスタ	PRCR	ビット0

表 7.4 E8aエミュレータ用プログラムが使用するSFR(2)

番地	レジスタ	シンボル	該当ビット	E8aエミュレータ 使用時の注意事項
01C0h~01C2h	アドレス一致割り込みレジスタ0	ATADROL	全ビット	【注】
		AIADROM	全ビット	【注】
		ATADROH	全ビット	【注】
01C3h	アドレス一致割り込み許可レジスタ0	AIENO	全ビット	【注】
01C4h~01C6h	アドレス一致割り込みレジスタ1	A I ADR1L	全ビット	【注】
		AIADR1M	全ビット	【注】
		ATADR1H	全ビット	【注】
01C7h	アドレスー致割り込み許可レジスタ1	A I EN1	全ビット	【注】

[【]注】本レジスタの値を変更しないでください。

(5) E8aエミュレータ用使用スタック領域

E8aエミュレータでは、ユーザプログラムブレーク時にスタックポインタ(ISP)を最大8バイト分使用します。 したがって、スタックエリアには8バイト分の余裕を確保してください。

(6) リセット

リセットベクタはE8aエミュレータ用プログラムで使用します。ユーザプログラム実行中にマイコンをリセット(ハードウェアリセット、ソフトウェアリセット、ウォッチドッグタイマリセット)した場合の動作はデバッガ起動時のMCU設定タブで設定した内容によって異なります。詳細は「5.4 項MCU設定タブ」(17ページ)を参照ください。なお、その他のリセットは使用しないでください。いずれのリセットも実行すると、E8aエミュレータが制御不能となります。【注1】

また、メモリウィンドウやウォッチウィンドウの自動更新機能を有効にした状態では、マイコンをハードウェアリセットしないでください。実行した場合、E8aエミュレータが制御不能となります。

【注1】ユーザシステムのリセット回路にウォッチドッグタイマ機能がある場合は、エミュレータ使用時はウォッチドッグタイマ機能を禁止してください。

(7) E8aエミュレータ使用の割り込み機能(使用不可)

BRK命令割り込み、アドレス一致割り込み、シングルステップ割り込みおよびアドレスブレーク割込みは、E8aエミュレータ用プログラムで使用します。したがって、ユーザプログラムでこれらの割り込みを使用しないでください。また、E8aエミュレータはこれら割り込みのベクタ値をエミュレータが使用する値に書き換えますので、ユーザプログラム中に割り込みベクタ値が書かれていてもかまいません。

(8) マイコンの予約領域

MCUのハードウェアマニュアルに定義されていないアドレスは、予約領域です。予約領域の内容は変更しないでください。変更した場合、E8aエミュレータでの制御ができなくなります。

- この領域は、メモリウィンドウで参照時、"不定値"が表示されます。
- ■この領域は、メモリウィンドウの検索、比較、コピー機能が正常に動作しません。

(9) ウォッチドッグタイマ起動選択ビット

E8aエミュレータでのデバッグ時、ユーザプログラム実行中にリセットした場合、ウォッチドッグタイマ起動選択ビット(WDTON)の値に関わらず、リセット解除後ウォッチドッグタイマは自動起動しません。

(10) 高速オンチップオシレータ

E8aエミュレータでのデバッグ時、高速オンチップオシレータ発振許可ビットの設定は可能ですが高速オンチップオシレータは停止しません。また、カウントソースにfHOCOが設定されたタイマは、以下の場合でも高速オンチップオシレータが常時発振しているためタイマが停止しません。

- ウェイトモード時
- ストップモード時
- 高速オンチップオシレータ停止時 0COCRレジスタのBit0(HOCOE)が"0"(0:高速オンチップオシレータ停止)

高速オンチップオシレータを停止させての消費電力低減等の確認は、ユーザプログラムのみをMCUに書き込み、E8aエミュレータを外した状態の最終形態で確認ください。

なお、「フラッシュメモリデータの書き込み」モードでユーザプログラムのみをMCUに書き込み、デバッガ終了後と同時にユーザプログラムを実行させることで同等の確認が可能です。

これはデバッガ起動時のエミュレータ設定ダイアログのモードで「フラッシュメモリデータの書き込み」 を選択し、「デバッガ終了後にユーザプログラムを実行」にチェックすることで実施できます。

(11) オプション機能選択レジスタ(OFS) に関して

E8aエミュレータでは、電圧検出0リセット機能はデバッグできません。

このためOFSのビット6(LVDAS: 電圧検出0回路起動ビット)を"0"(リセット後、電圧監視0リセット有効)に設定しても下記ビットは変化しません(リセット時の値がLVDAS="1"の時と同じ)。

- ●電圧検出レジスタ2 (VCA2)のビット5 : VCOE 電圧検出0許可ビット
- 電圧監視0回路制御レジスタ(VWOC)のビット0: VWOCO(電圧監視0リセット許可ビット)

7.2 内部ROM領域(フラッシュメモリ)

- 7.2.1 CPU書き換えモードのデバッグに関する注意事項
 - (1) CPU書き換えモードでの書換え不可の領域

下記領域を含むフラッシュメモリブロックに対して、CPU書換えをしないでください。書き換えた場合、E8aエミュレータでの制御ができなくなります。CPU書き換えは、データ領域に対してのみ実行できます。

● 固定割込みベクタ領域

(2) CPU書き換えモード中の動作

● CPU書き換えモードのデバッグでは、CPU書換えモード有効状態およびイレーズサスペンド状態の間ユーザ プログラムを停止させないでください。また、CPU書換えモード有効状態およびイレーズサスペンド状態 になる命令をステップ実行させないでください。

停止させた場合、E8aエミュレータでの制御ができなくなる場合があります。また、予めウォッチウィンドウでは自動更新を無効化にし、メモリウィンドウでは表示固定にするなど、ユーザプログラム実行中のメモリアクセスが発生しないようにしてください。

● CPU書き換え実行後のデータは、CPU書き換えモードを解除した後でプログラムを停止させ、メモリウィンドウなどで参照してください。

また、データ領域に対してCPU書き換えを行い、かつイレーズ処理がサスペンドされる可能性がある場合、ソフトウェアブレークを使用しないでください。

● プログラム領域のフラッシュメモリを書き換える場合は、High-performanceEmbedded Workshopの[基本設定]→[エミュレータ]→[システム...]メニューを選択しオープンする[Configuration]ダイアログにて、[Flash memorysynchronization]の設定を[Flash memory to PC]に変更して、デバッガのキャッシュをオフにしてください。なお、この設定を行うと、ブレークするたびにフラッシュメモリのリードが行われますので、時間を要します。CPU書き換えモードのデバッグを行う場合以外は[Disable]にしてご使用ください。

ただし「CPU書き換えモードのデバッグ」モードで起動している場合はこの設定は必要ありません。

7.2.2 E8aエミュレータからのフラッシュメモリ書き換え中の注意事項

(1) E8aエミュレータで内部ROM(フラッシュメモリ)書き換え中に、マイコンへのリセットおよびデバッグ操作 をしないでください。

フラッシュメモリ書き換えは、High-performance Embedded Workshopのアウトプットウィンドウ上で、

"Flash memory write end"が表示された時点で終了します。

フラッシュメモリ書き換え中のマイコンへのリセットおよびデバッグ操作は、ユーザプログラムまたはE8a エミュレータ用プログラムが破壊される可能性があります。

フラッシュメモリ書き換えが発生するケースは以下の通りです。

- ●ユーザプログラムダウンロード時
- フラッシュメモリ上にPCブレークを設定し、ユーザプログラム実行した後
- フラッシュメモリ上に設定したPCブレークを解除し、ユーザプログラム実行した後
- ●メモリウィンドウでフラッシュメモリの値を書き換え、ユーザプログラム実行した後

7.2.3 ユーザプログラム実行中のフラッシュメモリ

ユーザプログラム実行中に、ユーザプログラム以外(メモリウィンドウ等)で内部ROM領域(プログラムROM)の変更は、E8aエミュレータ内のキャッシュに対して実施します。実際のフラッシュメモリへのアクセスは、ユーザプログラム再開前およびユーザプログラム停止直後に実施します。

7.2.4 デバッグに使用したマイコン

デバッグ中はE8aエミュレータによりフラッシュメモリの書き換えを頻繁に行います。したがって、デバッグで使用したマイコンを製品に使用しないでください。

また、デバッグ中のマイコンにはE8aエミュレータ用プログラムが書き込まれますので、デバッグで使用したマイコンのフラッシュメモリの内容を保存し、製品用ROMデータとして使用しないでください。

7.2.5 フラッシュメモリのIDコード

フラッシュメモリを第三者に読み出されないようにするためのマイコンの機能です。

マイコンのフラッシュメモリに書き込まれたIDコード(表7.5) とデバッガ起動時に表示される[IDコード確認]ダイアログ(図7.1)で入力したIDコードが一致しなければデバッガを起動することができません。

ただし、フラッシュメモリに書かれているIDコードがFFh, FFh, FFh,

IDコード領域へ書き込む値はモードにより下記の通り異なります。

- [フラッシュメモリデータの書き込み]モード【注1】 : ユーザプログラムの内容
- ●[フラッシュメモリデータの書き込み]以外のモード【注2】: FFh, FFh, FFh, FFh, FFh, FFh, FFh (ダウンロードするユーザプログラム内容に関係無)

表7.5 IDコード格納領域

番地	内容
FFDFh	IDコード 1バイト目
FFE3h	IDコード 2バイト目
FFEBh	IDコード 3バイト目
FFEFh	IDコード 4バイト目
FFF3h	IDコード 5バイト目
FFF7h	IDコード 6バイト目
FFFBh	IDコード 7バイト目

【注1】 [フラッシュライタモード]での注意事項

Imc30の -IDオプションでIDコードを設定している場合は、MOTファイルまたはHEXファイルをダウンロードしてください。X30ファイルをダウンロードした場合、IDコードは反映されません。

X30ファイルをダウンロードする場合は、アセンブラ指示命令".BYTE"などを使用してIDコードを記述してください。

また、アセンブラ指示命令".ID"で指定したIDコードが出力されるファイルは、アセンブラのバージョンによって異なります。詳細は、ご使用のアセンブラのユーザーズマニュアルをご覧ください。

7.3 電源供給に関して

(1)消費電流

E8aからユーザシステムに電源を供給しない場合、E8aエミュレータはユーザシステム電源を数mA~十数mA 消費します。これは、ユーザシステム電源電圧に通信信号レベルを合わせるため、ユーザ電源で74LVC125、 74LVC1T45および74LVC2T45を駆動しているためです。

(2) E8a電源供給機能に関する注意事項

E8aを使用して量産工程などでの信頼性を要求する書き込みを行う場合は、E8aからの電源供給機能は使用せず、別途、マイコンの書き込み電圧に合致した電源をユーザシステムに供給してください。

E8aからの供給電圧はPCのUSB電源性能に依存するため、精度の保証ができません。

7.4 ユーザプログラム停止中の動作

(1) ユーザプログラム停止中の動作クロック

ユーザプログラム停止中は、マイコン内蔵高速オンチップオシレータにCPUクロックを変更して動作します。なお、周辺機能は、ユーザプログラムで設定したクロックで動作します。

(2) ユーザプログラム停止中の周辺1/0

ユーザプログラム停止中、E8aエミュレータで割込みを禁止しているため、マスカブル割り込みの要求が発生しても受け付けられません。しかし、周辺I/Oは動作し続けているため、この割り込み要求は、ユーザプログラムの実行を開始した直後に受け付けられます。

例えば、タイマを動作させた後にブレークでユーザプログラムを停止させたとき、タイマはカウントし続けますが、タイマ割り込みは受け付けられません。

(3) SFR領域アクセス時の注意事項

SFR領域の内容は[メモリ]ウィンドウまたは[I/0]ウィンドウから、参照および設定することができますが、以下のことを注意してご使用ください。

①特殊レジスタヘアクセスする場合

ユーザプログラム停止中、以下の特殊レジスタは、正常アクセスできない場合があります。【注1】

- ●アクセス禁止アドレス
- ●アクセス順序が、上位バイト→下位バイトに指定されているレジスタ
- 特定命令でのみアクセス可能なレジスタ
- ●バス幅指定が[メモリ]ウィンドウの設定バス幅と一致していないレジスタ
- ●レジスタアクセスに条件(f000-FがCPUより早いクロックでアクセスが必要等)があるレジスタ等

【注1】SFR領域へのアクセスは、ターゲットマイコンのハードウェアマニュアルに従ってください。

7.5 デバッグ機能

(1) PCブレークポイントに関する注意事項

ユーザプログラムを変更後ダウンロードする場合、変更内容によっては設定されているPCブレークの設定アドレスが正常に補正されない場合があります。このため、設定したPCブレークの命令以外にブレークポイントがずれる場合があります。

ユーザプログラムダウンロード後は、イベントポイントウィンドウでPCブレークの設定内容を確認、再設 定してください。

(2)「カーソル位置まで実行」機能

「カーソル位置まで実行」機能はアドレス一致ブレークを使用して実現しています。このため、「カーソル位置まで実行」を行った際、設定しているアドレス一致ブレークはすべて無効になります。ただし、PCブレークはすべて有効のままです。

(3) ストップモードのデバッグ

ストップモード、ウェイトモードのデバッグをする際は、ストップモード、ウェイトモード解除後に実行される処理部にブレークポイントを設定するなどして、ブレークポイントで止まるまで画面の操作をしないでください。

また、プログラムを実行する前に予めメモリウィンドウ、ウォッチウィンドウの自動更新無効化にし、メモリウィンドウでは表示固定に設定、プログラム実行中にはリフレッシュはしない等、ユーザプログラム実行中のメモリアクセスが発生しないようにしてください。

ストップモード、ウェイトモード中に、プログラムを強制停止させた場合およびメモリ内容の参照・変更を 行った場合、ストップモード、ウェイトモードが解除されます。この時のメモリ内容の参照・変更は正常に 動作しない場合があります。

なお、高速オンチップオシレータの周波数変更後、すぐにストップモードに移行するプログラムのデバッグでは、通信エラーが発生する場合があります。この場合、下記のいずれかの対策が必要となります。

①ストップモードに移行する直前でブレークさせる方法

ユーザプログラムで高速オンチップオシレータの周波数変更後、発振安定時間経過後でかつストップモードに移行する前にいったんブレークさせてください。なおこの時、実行後ブレークを使用する場合は、 ストップモードに移行する命令が実行されないようにブレークポイントを設定してください。

②ストップモードに移行するまでの時間を変更する方法

ユーザプログラムで高速オンチップオシレータの周波数変更後、ストップモードに移行するまでに約2秒以上、間を開けてください。

(4) CPUクロックに関する注意事項

CPUクロックは15.6kHz(低速0C0の8分周)未満で使用しないでください。

(5) 低消費電流リードモード

「低消費電流リードモード」、「フラッシュメモリの停止」のデバッグをする際は、それぞれが解除後に 実行される処理部にブレークポイントを設定するなどして、ブレークポイントで止まるまで画面の操作をし ないでください。

(6) 例外的なステップ

① ソフトウェア割り込み命令

ソフトウェア割り込みを発生させる命令(未定義命令、オーバフロー命令、BRK命令、INT命令)の内部処理を連続してステップ実行はできません(図7.2参照)。

```
NOP
NOP
INT #3
STEP実行するとすり抜けてしまう
NOP
JMP MAIN
INT_3:

NOP ◆ 本来止まるべきアドレス
NOP
NOP
REIT
```

図7.2 ソフトウェア割り込みの例

② INT命令

INT命令を用いたプログラムのデバッグは、INT命令内部処理にPCブレークを設定し、GOコマンドと共に使用してください(図7.3参照)。

図7.3 INT命令の場合

③ その他フラグ操作命令

下記命令のシングルステップは、E8aエミュレータ内でのフラグ操作のみ実施するためMCU動作を伴いません。このため本命令実行時にはStart/Stop機能は動作しませんのでご注意ください。

LDC src, FLG STC FLG, dest LDINTB src

(7)メモリ自動更新機能に関する注意事項

メモリウィンドウやウォッチウィンドウの自動更新機能を有効にした状態で、ステップアウト実行や連続 ステップ実行を行わないでください。メモリ更新のため時間を要し、動作が遅くなります。

(8) 内部電源の消費電力低減に関する注意事項

E8aエミュレータでは、電圧検出レジスタ2(VCA2)のビット0は必ず"0:低消費電力禁止"で使用してください。"1"にするとE8aエミュレータでの制御が出来なくなります。

E8aエミュレータ ユーザーズマニュアル(別冊)

発行年月日 2011年12月01日 Rev. 2.02

光行 ルネサス エレクトロニクス株式会社

〒211-8668 神奈川県川崎市中原区下沼部1753

編集 株式会社ルネサス ソリューションズ

ルネサスエレクトロニクス株式会社

■営業お問合せ窓口

http://www.renesas.com

※営業お問合せ窓口の住所・電話番号は変更になることがあります。最新情報につきましては、弊社ホームページをご覧ください。

ルネサス エレクトロニクス販売株式会社 〒100-0004 千代田区大手町2-6-2 (日本ビル)

■技術的なお問合せおよび資料のご請求は下記へどうぞ。

(03)5201-5307

総合お問合せ窓口: http://japan.renesas.com/inquiry

E8aエミュレータ ユーザーズマニュアル(別冊)

