To our customers,

Old Company Name in Catalogs and Other Documents

On April 1!, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Note that the following URLs in this document are not available:
http://www.necel.com/
http://www2.renesas.com/

Please refer to the following instead:
Development Tools | http://www.renesas.com/tools
Download | http://www.renesas.com/tool_download

For any inquiries or feedback, please contact your region.
http://www.renesas.com/inquiry

LENESAS

Note that the following URLs in this document are not available:
http://www.necel.com/
http://www2.renesas.com/

Please refer to the following instead:
Development Tools | http://www.renesas.com/tools
Download | http://www.renesas.com/tool_download

For any inquiries or feedback, please contact your region.
http://www.renesas.com/inquiry

8.

10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,

especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

LENESANS
User’s Manual

CA850 Ver. 3.20

C Compiler Package

Operation

Target Device
V850 Series

Document No. U18512EJ1VOUMOO (1st edition)
Date Published May 2007 CP(K)
© NEC Electronics Corporation 2007

Printed in Japan

[MEMO]

2 User’'s Manual U18512EJ1VOUM

Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States
and/or other countries.

User's Manual U18512EJ1VOUM 3

e The information in this document is current as of May, 2007. The information is subject to change
without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or
data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all
products and/or types are available in every country. Please check with an NEC Electronics sales
representative for availability and additional information.

e No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may
appear in this document.

e NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from the use of NEC Electronics products listed in this document
or any other liability arising from the use of such products. No license, express, implied or otherwise, is
granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.

e Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of a customer's equipment shall be done under the full
responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by
customers or third parties arising from the use of these circuits, software and information.

e While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products,
customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To
minimize risks of damage to property or injury (including death) to persons arising from defects in NEC
Electronics products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment and anti-failure features.

e NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and
"Specific".

The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-
designated "quality assurance program" for a specific application. The recommended applications of an NEC

Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of

each NEC Electronics product before using it in a particular application.

"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio
and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots.

"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support).

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC
Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications
not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to
determine NEC Electronics' willingness to support a given application.

(Note)

(1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its
majority-owned subsidiaries.

(2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as
defined above).

M8E 02.11-1

User’'s Manual U18512EJ1VOUM

[MEMO]

User's Manual U18512EJ1VOUM

Target Devices

Readers

Purpose

Organization

INTRODUCTION

The CA850 is a C compiler package used to create object codes for NEC
Electronics’s V850 Series of RISC microcontrollers.
This manual explains the features and functions of the CA850 C Compiler Package.

This manual is intended for user engineers who wish to develop application systems
using the V850 Series C Compiler Package.

This manual explains how to operate each command, such as the C compiler and
assembler included in each package on Windows™.

PM+ (Windows version only) is provided with this C compiler package. However, for
how to operate PM+ as an integrated development environment, refer to the PM+
user's manual.

For the Windows operations, refer to the function guides provided with the Windows
OsS.

This manual is organized into the following sections.
¢ Overview of the CA850

¢ Using the CA850 from the command line

¢ Using the CA850 from Project Manager

e Command functions, options, and output messages

Commands Included in This Package

C compiler (ca850)

Assembler (as850)

Linker (1d850)

ROMization processor (romp850)
Hexadecimal converter (hx850)
Archiver (ar850)

Section file generator (sf850)
Dump command (dump850)
Disassembler (dis850)

Cross reference tool (cxref)
Memory layout visualization tool (rammap)
Stack estimation tool (stk850)

How to Read This Manual e The name of each program in the C compiler package is referred to as follows in

this manual.
C compiler package — CA850
Assembler — as850
C compiler — ca850

User’'s Manual U18512EJ1VOUM

Related Documents

Read this manual together with the following documents.

The related documents indicated in this publication may include preliminary

versions. However, preliminary versions are not marked as such.

Documents related to development tools (user’s manuals)

Document Name Document No.
CA850 Ver. 3.20 C Compiler Package Operation This manual
C Language U18513E
Assembly Language U18514E
Link Directives U18515E
PM+ Ver. 6.30 Project Manager U18416E
ID850 Ver. 3.00 Integrated Debugger Operation U17358E
ID850NW Ver. 3.10 Integrated Debugger Operation U17369E
ID850QB Ver. 3.20 Integrated Debugger Operation U17964E
SM+ System Simulator Operation U17246E
User Open Interface U18212E
SMB850 Ver. 2.50 System Simulator Operation U16218E
SMB850 Ver. 2.00 or Later System Simulator External Part User Open Interface Specifications U14873E
RX850 Ver. 3.20 or Later Real-Time OS Basics U13430E
Installation U17419E
Technical U13431E
Task Debugger U17420E
RX850 Pro Ver. 3.21 Real-Time OS Basics U18165E
Internal Structure U18164E
Task Debugger U17422E
RX850V4 Ver. 4.22 Real-Time OS Functionalities U16643E
Internal Structure U16644E
Task Debugger U16811E
AZ850 Ver. 3.30 System Performance Analyzer U17423E
AZ850V4 Ver. 4.10 System Performance Analyzer U17093E
TW850 Ver. 2.00 Performance Analysis Tuning Tool U17241E

User's Manual U18512EJ1VOUM 7

[MEMO]

8 User’'s Manual U18512EJ1VOUM

CONTENTS

CHAPTER 1 OVERVIEW ... 20
1.1 Features of Compiler Package ... 20

1.2 Operating Environments ... 22

CHAPTER 2 INSTALLATION ... 23
2.1 Installation ... 23

2.2 Folder Organization ... 24
2.2.1 Folder organization of stack usage tracer ... 25

2.3 Uninstallation ... 26

CHAPTER 3 C COMPILER ... 27
3.1 Flow of Operation ... 27
3.2 Input/Output Files ... 29
3.3 Executable Object ... 30

3.4 Operation Method ... 32
3.4.1 Command input method ... 32
3.4.2 Method using PM+ ... 32

3.5 Types and Features of Options ... 33
3.5.1 Version/help display/operation status ... 34
3.5.2 Output file specification ... 35
3.5.3 Controlling source debugger ... 37
3.5.4 Control of compile driver ... 38
3.5.5 Optimization ... 44
3.5.6 Generation code control ... 49
3.5.7 Library specification ... 59
3.5.8 Warning message control ... 60
3.5.9 Other ... 62
3.5.10 Option to each module ... 64

3.6 Settings Made via PM+ ... 68
3.6.1 [Compiler Common Options] dialog box ... 69
[File] ... 70
[Startup] ... 72
[Link Directive] ... 73

[ROM] ... 74
[Flash] ... 75
[Device] ... 76

[ROM] (library) ... 78
[Flash] (library) ... 79
3.6.2 [Compiler Options] dialog box ... 80
[General] ... 81
[Input File] ... 84
[Preprocessor] ... 86
[C Language] ... 88
[Optimization and Debug Information] ... 90
[Detail of Optimization] ... 92
[External Register] ... 96
[Output File] ... 98
[Output Code] ... 100
[Message] ... 105
[Assembler] ... 107
[Others] ... 109
[Difference] ... 111

User's Manual U18512EJ1VOUM

3.6.3 [Edit Option] dialog box ... 113

3.7 Cautions ... 115
3.7.1 Specifying multiple options ... 115
3.7.2 Command file ... 116
3.7.3 Efficient use of optimization ... 117
3.7 .4 Effects of optimization on debugging ... 122

CHAPTER 4 ASSEMBLER ... 124
4.1 Flow of Operation ... 124
4.2 Input/Output Files ... 125

4.3 Operation Method ... 126
4.3.1 Command input method ... 126
4.3.2 Method using PM+ ... 126

4.4 Types and Features of Options ... 127
4.4 .1 File ... 128
4.4.2 Option ... 129
4.4.3 Device ... 131
4.4 .4 Other ... 133

4.5 Settings Made via PM+ ... 135
4.5.1 [Assembler Options] dialog box ... 136
[Option] ... 137
[Difference] ... 141

4.6 Assembile List ... 143
4.6.1 Output method ... 143
4.6.2 Output example ... 144

4.7 Cautions ... 146
4.7.1 Magic number ... 146
4.7.2 Options for avoiding CPU faults ... 148

CHAPTER 5 LINKER ... 153

5.1 Flow of Operation ... 153
5.1.1 Link procedure ... 155

5.2 Operation Method ... 157
5.2.1 Command input method ... 157
5.2.2 Method using PM+ ... 157

5.3 Types and Features of Options ... 158
5.3.1 Input file ... 159
5.3.2 Qutpuit file ... 160
5.3.3 Library ... 161
5.3.4 Flash ROM ... 162
5.3.5 Device ... 164
5.3.6 Option ... 165
5.3.7 Other ... 168

5.4 Settings Made via PM+ ... 170
5.4.1 [Linker Options] dialog box ... 170
[File] ... 171
[Library] ... 172
[Option] ... 174
[Others] ... 177

5.5 Link Map ... 178
5.5.1 When starting the 1d850 from the command line ... 178
5.5.2 When starting from PM+ ... 178
5.5.3 Link map output example ... 178

5.6 Flash Memory/External ROM Relink Function ... 181
5.6.1 Relink function ... 181
5.6.2 Image of relink function ... 182

10 User's Manual U18512EJ1VOUM

5.6.3 Realizing relink function ... 185

5.7 Supplementary Information ... 194
5.7.1 Using -A option ... 194
5.7.2 Archive files ... 197
5.7.3 Reserved symbols ... 198
5.7.4 May not be allocated to the expected sections ... 199
5.7.5 V850 core and V850Ex core ... 199
5.7.6 V850 core and V850E2 core ... 199
5.7.7 Mathematics library ... 199
5.7.8 main function ... 199
5.7.9 Prologue/epilogue runtime library ... 200
5.7.10 Linking for ROMization ... 201
5.7.11 Programmable peripheral I/O register ... 202
5.7.12 Option byte ... 203

CHAPTER 6 ROMIZATION PROCESSOR ... 204
6.1 Flow of Operation ... 204
6.2 Input/Output Files ... 207

6.3 rompsec Section ... 208
6.3.1 Types of sections to be packed ... 208
6.3.2 Size of rompsec section ... 209
6.3.3 rompsec section and link directive ... 210

6.4 Creating Object for ROMization ... 212
6.4.1 Creating procedure (default) ... 212
6.4.2 Creating procedure (customize) ... 215

6.5 Copy Functions ... 218
6.5.1 Copy routine ... 218

_rcopy ... 219

_rcopy1 ... 220
_rcopy?2 ... 221
_rcopy4 ... 222

6.5.2 Example ... 223

6.6 Operation Method ... 225
6.6.1 Command input method ... 225
6.6.2 Method using PM+ ... 225

6.7 Types and Features of Options ... 226
6.7.1 File ... 227
6.7.2 Options ... 228
6.7.3 Other ... 230

6.8 Settings Made via PM+ ... 231
6.8.1 [ROM Processor Options] dialog box ... 231
[File] ... 232
[Section] ... 233
[Option] ... 235
[Others] ... 237

CHAPTER 7 HEXADECIMAL CONVERTER ... 238
7.1 Flow of Operation ... 238

7.2 Input/Output Files ... 239

7.3 Operation Method ... 240
7.3.1 Command input method ... 240
7.3.2 Method using PM+ ... 240

7.4 Types and Features of Options ... 241
7.4.1 File ... 242
7.4.2 Format ... 243
7.4.3 Other ... 246

User's Manual U18512EJ1VOUM

11

7.5 Settings Made via PM+ ... 247
7.5.1 [Hexa Converter Options] dialog box ... 247
[File] ... 248
[Option] ... 249
[Others] ... 252

7.6 Output File Formats ... 253
7.6.1 Intel expanded ... 253
7.6.2 Motorola S type ... 257
7.6.3 Expanded Tek ... 259

CHAPTER 8 ARCHIVER ... 263
8.1 Archiver ... 263

8.2 Operation Method ... 264
8.2.1 Command input method ... 264
8.2.2 Method using PM+ ... 264

8.3 Types and Features of Keys and Options ... 265
8.3.1 Types and features of keys ... 266
8.3.2 Types and features of options ... 268

8.4 Settings Made via PM+ ... 269
8.4.1 [Archiver Options] dialog box ... 269
[Option] ... 270

CHAPTER 9 SECTION FILE GENERATOR ... 272
9.1 Section Files ... 272
9.2 Section File Format ... 275

9.3 Operation Method ... 280
9.3.1 Command input method ... 280
9.3.2 Method using PM+ ... 280
9.3.3 Use from command line ... 281
9.3.4 Use via PM+ ... 282

9.4 Types and Features of Options ... 283
9.4.1 Options ... 284

9.5 Settings Made via PM+ ... 287
9.5.1 [Section File Generator Options] dialog box ... 287
[File] ... 288
[Option] ... 289
[Others] ... 292

CHAPTER 10 DUMP COMMAND ... 293

10.1 Dump Command ... 293

10.2 Operation Method ... 294
10.2.1 Command input method ... 294
10.2.2 Method using PM+ ... 294

10.3 Types and Features of Options ... 295

10.4 Settings Made via PM+ ... 297
10.4.1 [Object Analysis Tool] dialog box ... 297
[Dump] ... 298
10.4.2 [Output Index] dialog box ... 302
10.4.3 [Archive File Options] dialog box ... 303

10.5 Dump List ... 304
10.5.1 Dump list display contents ... 304
10.5.2 Element values and meanings ... 310

CHAPTER 11 DISASSEMBLER ... 313
11.1 Disassembler ... 313

12 User's Manual U18512EJ1VOUM

11.2 Operation Method ... 314
11.2.1 Command input method ... 314
11.2.2 Method using PM+ ... 314

11.3 Types and Features of Options ... 315

11.4 Settings Made via PM+ ... 317
11.4.1 [Object Analysis Tool] dialog box ... 317
[Disassembler] ... 318

11.5 Cautions ... 321
11.6 Output Format ... 322

CHAPTER 12 CROSS REFERENCE TOOL ... 323
12.1 Cross Reference Tool ... 323

12.2 Input/Output ... 324
12.2.1 Input file ... 324
12.2.2 Output information ... 325

12.3 Operation Method ... 326
12.3.1 Command input method ... 326
12.3.2 Method using PM+ ... 326

12.4 Types and Features of Options ... 327
12.4.1 Common options ... 328
12.4.2 Cross reference ... 331
12.4.3 Tag information ... 332
12.4.4 Call tree ... 333
12.4.5 Function metrics ... 334
12.4.6 Call database ... 335

12.5 Settings Made via PM+ ... 336

12.5.1 [Static performance analyzer] dialog box ... 336
[Cross reference] ... 337

12.5.2 [Cross reference Option] dialog box ... 340
[Common option] ... 341
[Cross reference list] ... 344
[Tag information] ... 345
[Call graph] ... 346
[Function measure] ... 349
[Call database] ... 351

12.6 Output Files ... 353
12.6.1 Cross reference ... 353
12.6.2 Tag information ... 355
12.6.3 Call tree ... 357
12.6.4 Function metrics ... 360
12.6.5 Call database ... 363

CHAPTER 13 MEMORY LAYOUT VISUALIZATION TOOL ... 366
13.1 Memory Layout Visualization Tool ... 366

13.2 Input/Output ... 367
13.2.1 Input file ... 367
13.2.2 Output information ... 367

13.3 Operation Method ... 368
13.3.1 Command input method ... 368
13.3.2 Method using PM+ ... 368

13.4 Types and Features of Options ... 369

13.5 Settings Made via PM+ ... 372
13.5.1 [Static performance analyzer] dialog box ... 372
[RAM map] ... 373
13.5.2 [RAM map option] dialog box ... 375
[Common option] ... 376

User's Manual U18512EJ1VOUM

13

13.5.3 [Object Analysis Tool] dialog box ... 378
[RAM map] ... 379

13.6 Output Files ... 381
13.6.1 Memory map table ... 381

CHAPTER 14 STACK USAGE TRACER ... 383

14.1 Flow of Operation ... 383

14.2 Input/Output Files ... 384
14.2.1 Input files ... 384
14.2.2 Output file ... 384

14.3 Operation Method ... 385

14.4 Window Reference ... 386
Main window ... 388
[Adjust Stack Size] dialog box ... 392

[Stack Size Unknown / Adjusted Function Lists] dialog box ...

[About stk850] dialog box ... 396

14.5 Cautions ... 397
14.5.1 Quantitative limit of the stk850 ... 397

14.6 Output File Formats ... 399
14.6.1 Output result files ... 399
14.6.2 Stack size specification file ... 402
14.6.3 stk system file ... 405

APPENDIX A FORMAT OF OBJECT FILE ... 406

A.1 Structure of Object File ... 406
A.2 ELF Header ... 407
A.3 Program Header Table ... 408

A.4 Section Header Table ... 409
A.4.1 Section types ... 410

A.4.2 Constituent elements (link/info) dependent on section type ...

A.5 Sections ... 411
A.5.1 Symbol table ... 411
A.5.2 String table ... 412
A.5.3 Reserved sections ... 413

APPENDIX B MESSAGE ... 415

14

B.1 Output Message ... 415
B.1.1 Message format ... 415
B.1.2 Compiler ... 416
B.1.3 Assembiler ... 442
B.1.4 Linker ... 450
B.1.5 ROMization process ... 468
B.1.6 Hexadecimal converter ... 471
B.1.7 Archiver ... 477
B.1.8 Section file generator ... 479
B.1.9 Dump command ... 480
B.1.10 Disassembler ... 481
B.1.11 Cross reference tool ... 482
B.1.12 Memory layout visualization tool ... 484

B.2 Messages from PM+ ... 486
B.2.1 Format of message ... 486
B.2.2 Messages common to compiler ... 486
B.2.3 Compiler ... 487
B.2.4 Assembler ... 488
B.2.5 Linker ... 488
B.2.6 ROMization processor ... 489

User's Manual U18512EJ1VOUM

394

410

B.2.7 Hexadecimal converter ... 489

B.2.8 Archiver ... 490

B.2.9 Section file generator ... 490

B.2.10 Cross reference tool and memory layout visualization tool ... 491

B.3 Messages from stk850 ... 493
B.3.1 Message formats ... 493
B.3.2 Messages ... 493

APPENDIX C INDEX ... 498

User's Manual U18512EJ1VOUM

15

LIST OF FIGURES

Figure No. Title Page

1
S, 2 OO NOOOAORWN=_2N-A -

]
- a
A wWON-22O

WDWWWWWWWWWWWWWNN -
1

w
1

1
2, 2 OO NOAPRWN-_OOORWN-=

1
- A
A WN-2O0

oo D
1

5-15
5-16
5-17
5-18
5-19
5-20

16

Package Configuration ... 21

Folder Organization ... 24

Folder Organization of Stack Usage Tracer ... 25

Operation Flow of ca850 ... 28

[Compiler Common Options] Dialog Box ([File] Tab) ... 70
Checking Creation of Folder ... 71

[Compiler Common Options] Dialog Box ([Startup] Tab) ... 72
[Compiler Common Options] Dialog Box ([Link Directive] Tab) ... 73
[Compiler Common Options] Dialog Box ([ROM] Tab) ... 74
[Compiler Common Options] Dialog Box ([Flash] Tab) ... 75
[Compiler Common Options] Dialog Box ([Device] Tab) ... 76
[Compiler Common Options] Dialog Box ([ROM] Tab (library)) ... 78
[Compiler Common Options] Dialog Box ([Flash] Tab (library)) ... 79
[Compiler Options] Dialog Box ([General] Tab) ... 81

[Compiler Options] Dialog Box ([Input File] Tab) ... 84

[Compiler Options] Dialog Box ([Preprocessor] Tab) ... 86
[Compiler Options] Dialog Box ([C Language] Tab) ... 88

[Compiler Options] Dialog Box ([Optimization and Debug Information] Tab) ...

[Compiler Options] Dialog Box ([Detail of Optimization] Tab) ... 92
Output Example (Function Name func) ... 93

[Compiler Options] Dialog Box ([External Register] Tab) ... 96
[Compiler Options] Dialog Box ([Output File] Tab) ... 98
[Compiler Options] Dialog Box ([Output Code] Tab) ... 100
[Compiler Options] Dialog Box ([Message] Tab) ... 105
[Compiler Options] Dialog Box ([Assembler] Tab) ... 107
[Compiler Options] Dialog Box ([Others] Tab) ... 109
[Compiler Options] Dialog Box ([Difference] Tab) ... 111

[Edit Option] Dialog Box ... 113

[Add Option] Dialog Box ... 113

Optimization Processing and Parameters ... 117

Operation Flow of as850 ... 124

[Assembler Options] Dialog Box ([Option] Tab) ... 137
[Assembler Options] Dialog Box ([Difference] Tab) ... 141
Example of Output Assemble List ... 144

Image of Creating Common Object with as850 ... 146

Example of as850 CPU Core Compatibility (V850Ex Core and V850 Core) ...

Operation Flow of Id850 ... 153

Id850 Operation Image (Example) ... 154

Batch Processing ... 154

Modular Processing ... 154

Creation of Output Section ... 155

Allocation to Memory Space ... 155

[Linker Options] Dialog Box ... 170

[Linker Options] Dialog Box ([File] Tab) ... 171
[Linker Options] Dialog Box ([Library] Tab) ... 172
[Library List] Dialog Box ... 173

[Linker Options] Dialog Box ([Option] Tab) ... 174
[Linker Options] Dialog Box ([Others] Tab) ... 177
Link Map Output Example ... 179

In Fixed ROM ... 182

In Flash Memory ... 182

From Fixed ROM to Flash Memory ... 183

From Flash Memory to Fixed ROM ... 184

Compiler Common Options for Flash Memory ... 191
Compiler Common Options for Fixed ROM ... 191
Memory Allocation Image of gp Offset Reference Section ... 194

User's Manual U18512EJ1VOUM

90

147

LT T T T T T S T T SR B | L T T T T T N TR T S B N SR B |
A WON-2O0O N =

2 OO OOWOWOWOMONNNNNNNOOODIDOODOODDHIOODOO IO OO OO 01,
1

-
o o,]
l'\)'O’U‘I#wl\)—\l\J—\\IO')(N-POOI\J—‘—\—\—\—\—\(OW\ICDU'I-POON—\NI\J

—_

10-3
10-4
11-1
1-2
12-1
12-2
12-3
12-4
12-5
12-6
12-7
12-8
12-9
12-10
12-11
12-12
12-13
12-14
12-15
12-16
13-1
13-2
13-3
13-4
13-5
13-6
14 -1
14 -2
14 -3
14 -4

Example of Output Information on Executable Object File ... 195
Example of Output Information on Relocatable Object File ... 196
Creation of Object for ROMization ... 204

Image of Processing Immediately After _rcopy Function Call ... 205
Link Directive Taking ROMization Processing into Consideration ... 210

Link Directive Taking ROMization Processing into Consideration (Size Considered) ...

Example of Using Copy Function _rcopy 1 ... 212

ROMization Image 1 ... 214

Example of rompack.s ... 215

Example of Using Copy Function _rcopy 2 ... 215

Link Directive Specification Example ... 216

ROMization Image 2 ... 217

[ROM Processor Options] Dialog Box ([File] Tab) ... 232

[ROM Processor Options] Dialog Box ([Section] Tab) ... 233
[ROM Processor Options] Dialog Box ([Option] Tab) ... 235

[ROM Processor Options] Dialog Box ([Others] Tab) ... 237
Operation Flow in hx850 ... 238

[Hexa Converter Options] Dialog Box ([File] Tab) ... 248

[Hexa Converter Options] Dialog Box ([Option] Tab) ... 249

[Hexa Converter Options] Dialog Box ([Others] Tab) ... 252

File Configuration in Intel Expanded Hex Format ... 253

File Configuration of Motorola S Type Hex Format ... 257

File Configuration of Expanded Tek Hex Format ... 259

The ar850’s Operation Flow ... 263

[Archiver Options] Dialog Box ([Option] Tab) ... 270

Image of Compilation Using Section File Specifications ... 273
Example of Section File Output by sf850 ... 275

Example of Section File Output by sf850 Using -O Option ... 276
[Section File Generator Options] Dialog Box ([File] Tab) ... 288
[Section File Generator Options] Dialog Box ([Option] Tab) ... 289
[Section File Generator Options] Dialog Box ([Others] Tab) ... 292
Operation Flow of dump850 ... 293

[Object Analysis Tool] Dialog Box ([Dump] Tab) ... 298

[Output Index] Dialog Box ... 302

[Archive File Options] Dialog Box ... 303

Operation Flow of dis850 Command ... 313

[Object Analysis Tool] Dialog Box ([Disassembler] Tab) ... 318
Flow of Operation in cxref ... 323

[Static performance analyzer] Dialog Box (Cross reference) ... 337
[Cross reference option] Dialog Box ([Common option] Tab) ... 341
[Cross reference option] Dialog Box ([Cross reference list] Tab) ... 344
[Cross reference option] Dialog Box ([Tag information] Tab) ... 345
[Cross reference option] Dialog Box ([Call graph] Tab) ... 346
[Cross reference option] Dialog Box ([Function measure] Tab) ... 349
[Cross reference option] Dialog Box ([Call database] Tab) ... 351
Cross Reference Output Example (cxref) ... 353

Tag Information Output Example (cxref) ... 355

Call Tree Text-Format Output Example (cxref) ... 357

Call Tree CSV-Format Output Example (cxref) ... 358

Function Metrics Text-Format Output Example (cxref) ... 360
Function Metrics CSV-Format Output Example (cxref) ... 361

Call Database Text-Format Output Example (cxref) ... 363

Call Database CSV-Format Output Example (cxref) ... 364

Flow of Operation in rammap ... 366

[Static performance analyzer] Dialog Box ([RAM map] Tab) ... 373
[RAM map option] Dialog Box ([Common option] Tab) ... 376
[Object Analysis Tool] Dialog Box ([RAM map] Tab) ... 379
Memory Map Table Text-Format Output Example (rammap) ... 381
Memory Map Table CSV-Format Output Example (rammap) ... 382
Estimation Flow in stk850 ... 383

Main Window of st850 ... 388

[Adjust Stack Size] Dialog Box ... 392

[Stack Size Unknown / Adjusted Function Lists] Dialog Box ... 394

User's Manual U18512EJ1VOUM

211

17

14 -5 [About stk850] Dialog Box ... 396
A-1 Object File Structures ... 406
B-1 Example of Message Dialog Box ... 486

18 User's Manual U18512EJ1VOUM

LIST OF TABLES

Table No. Title Page

1
A OWON-_2="2WON_2ON_2N_20O0PRON_20NOOORON -

2 OO OOWONNNOODOOODUOOBRPRARDRERROWWLWLOWWLWWWWW
1

o
1
N

[I
N0~ wWN-=

WW>>>>>>>>

Register Mode ... 49

Correspondence Between CPU Core and -Xv850patch Option for This Bug ... 63
[Compiler Common Options] Dialog Box ... 69

[Compiler Common Options] Dialog Box (library) ... 69

[Compiler Options] Dialog Box ... 80

[Compiler Options] Dialog Box (Individual Source) ... 80

Message Numbers of Messages That Can Be Specified ... 106
Optimization Processing and Items ... 117

[Assembler Options] Dialog Box ... 136

[Assembler Options] Dialog Box (Individual Source) ... 136

Section Attributes and Their Meanings ... 145

Correspondence Between CPU Core and -p Option ... 149
Correspondence Between Created Objects and -p Options ... 152
Reserved Section ... 198

Special Symbols in Ordinary Object File ... 198

Reserved Sections Packed by romp850 ... 208

Copy Routines ... 218

[ROM Processor Options] Dialog Box ... 231

HEX Format Block/Record ... 243

[Hexa Converter Options] Dialog Box ... 247

HEX Format Block/Record ... 251

[Archiver Options] Dialog Box ... 269

Variable Types and Displays ... 275

Variable Displays and Their Meanings ... 276

Types of Sections Specifiable by ca850 ... 277

[Section File Generator Options] Dialog Box ... 287

[Object Analysis Tool] Dialog Box (dump850) ... 297

[Object Analysis Tool] Dialog Box (dis850) ... 317

[Static performance analyzer] Dialog Box (cxref) ... 336

[Cross reference Option] Dialog Box ... 340

[Static performance analyzer] Dialog Box (rammap) ... 372

[RAM map option] Dialog Box ... 375

[Object Analysis Tool] Dialog Box (rammap) ... 378

Windows and Dialog Boxes of stk850 ... 386

Function Icons for stk850 ... 390

Project File Related Upper Limit Values ... 397

Intermediate Assembly Language File Related Upper Limit Values ... 397
Stack Size Specification File Related Upper Limit Values ... 397

Output File Related Upper Limit Values ... 398

Stack Size Related Limit ... 398

Upper Limit Values in Message Display Area ... 398

Description for Each Parameter ... 399

Output Format and Content of Adjustment Information ... 400

Description for Each Parameter ... 402

Constituent Elements of ELF Header and Their Meanings ... 407
Constituent Elements of Program Header Table Entries and Their Meanings ... 408
Constituent Elements of Section Header Table Entries and Their Meanings ... 409
Section Types and Their Meanings ... 410

Meanings of Link and Info ... 410

Constituent Elements of Symbol Table Entries and Their Meanings ... 411
Relationship Between Indexes and Character Strings in String Table ... 412
Reserved Sections ... 413

Formats of Messages Output by stk850 ... 493

[Do you want to stop reading?] Dialog Box ... 494

User's Manual U18512EJ1VOUM

19

CHAPTER 1 OVERVIEW

1.1 Features of Compiler Package

The C compiler package for the V850 microcontrollers contains the following programs.

-

C COMPILER (ca850)

ASSEMBLER (as850)

LINKER (Id850)

ROMIZATION PROCESSOR (romp850)
HEXADECIMAL CONVERTER (hx850)
ARCHIVER (ar850)

SECTION FILE GENERATOR (sf850)
DUMP COMMAND (dump850)
DISASSEMBLER (dis850)

CROSS REFERENCE TOOL (cxref)

© ©®© N o o0 &~ e D

—
e

11. MEMORY LAYOUT VISUALIZATION TOOL (rammap)
12. STACK USAGE TRACER (stk850)
13. LINK DIRECTIVE GENERATOR (LDG)

These programs can be activated in either of the following ways.

(1) Activating from integrated development environment "PM+"
"PM+" is included in the C compiler package.
For details of PM+, refer to PM+ User’s Manual.
(2) Activating from command line
Activate the C compiler package by inputting a command in response to the command prompt.
To generate a load module file by using a batch file or make file, describe the module in the command
input format. Ultilities 8 to 11 above can also be activated by inputting a command.

For details on command input methods, refer to the section "Operation Method" for the respective tool.

20 User's Manual U18512EJ1VOUM

CHAPTER 1 OVERVIEW

The package configuration is as shown below when PM+ is used.

Figure 1 - 1 Package Configuration

CA850 package command

C compiler
Assembler
Linker Dump command
ROMization processor
Hexadecimal converter
Archiver

Section file generator
Cross-reference tool

Memory layout visualization tool

Dissassembler

Command prompt

Stack usage tracer
Link directive generator

PM+

\. J

Specify the options of the C compiler, assembler, linker, and so on that are included in the "CA850 package
commands" above on the relevant windows from PM+. PM+ automatically activates these commands and

creates a load module file.

To use the CA850, a device file that has device information is necessary. Obtain the device file corresponding

to the device to be used.

User's Manual U18512EJ1VOUM 21

CHAPTER 1 OVERVIEW

1.2 Operating Environments

22

The Windows version C compiler package operates under the following environments.

(1) Host machine
- CPU: Pentium 1™ 400MHz or higher
- Memory: 128 M bytes or more
- OS: Windows® 2000, Windows XP Professional, Windows XP Home Edition

Caution Regardless of which OS is used, higher and the latest Service Pack must be installed.

(2) Related development tools

- Integrated debugger
ID850 (Ver.3.10 or later), ID850NW (Ver.3.10 or later), or ID850QB (Ver.3.10 or later)

- System simulator
SMB850 (Ver.3.00 or later), or SM+ for V850 (Ver.2.00 or later)

- Performance analysis tuning tool
TW850 (Ver.2.10 or later)
- Real-time OS
RX850 (Ver.3.20 or later), RX850 Pro (Ver.3.20 or later)

- Task debugger

RD850 (Ver.3.20 or later), RD850 Pro (Ver.3.20 or later)
- System performance analyzer

AZ850 (Ver.3.30 or later)
- Device file installer

DFINST (Ver.3.10 or later)

Caution To use the CA850, a device file which includes the device information is required.

Download the device file of target device to be used from the following web site:

http://www.necel.com/micro/ods/eng/index.html

User's Manual U18512EJ1VOUM

http://www.necel.com/micro/ods/eng/index.html

CHAPTER 2 INSTALLATION

This chapter describes the installation and uninstallation of the CA850.

2.1 Installation

To use the CA850, both the CA850 itself and the related device files must be installed.

To use PM+, PM+ must also be installed.

Install the CA850 as follows.
The supply medium is one CD-ROM.

(1) Start Windows.

(2) Insert the CD-ROM into the CD-ROM drive.
The setup program starts up automatically. If the setup program does not start, start Windows Explorer,
and double-click "Install.exe" in the CD-ROM drive.

(3) Select the tool to be installed (CA850, PM+, STK850, LDG, etc.), and specify the folder in which the tool

is to be installed. Then, click the [Install] button
(4) Execute installation in compliance with the messages displayed on the screen.

Note Install the device file in compliance with the device file installer (DFINST) that has been installed.

User’'s Manual U18512EJ1VOUM 23

CHAPTER 2 INSTALLATION

2.2 Folder Organization

Figure 2 - 1 shows the organization of the file folder that is read from the supply medium when the CA850 is
installed.
Below is the CA850’s standard folder (default).

C:\Program Files\NEC Electronics Tools\CA850\Vx.xx

In the CA850 package, the 1ib850 folder shown in Figure 2 - 1 is called the standard folder for the library, and
the inc850 folder is called the standard folder for include files.

Below is the standard folder for the device files (default).

C:\Program Files\NEC Electronics Tools\DEV

Figure 2 - 1 Folder Organization

—1 bin ——————— Command group

— inc850 [Include file group

— lib — Module group internally called by C compiler
22 | Library (for 22-register mode)

startup module

26 | Library (for 26-register mode)
startup module

— 1ib850

132 Library (for 32-register mode)
startup module

Library (for 32-register mode
Install Folder r32msk |—— with mask register support)
startup module

— smp850 ca850 —— Link directive sample
— hip —— — Online help
| doc | Online manual

24 User's Manual U18512EJ1VOUM

CHAPTER 2 INSTALLATION

221 Folder organization of stack usage tracer

Figure 2 - 2 shows the organization of the file folder that is read from the supply medium when the stack usage

tracer is installed.

Below is the standard folder for the stack usage tracer (default).

C:\Program Files\NEC Electronics Tools\STK850\Vx.xx

bin

Install Folder

dat850

Figure 2 - 2 Folder Organization of Stack Usage Tracer

Command group

Stack size specification file
for standard library functions

User’'s Manual U18512EJ1VOUM 25

CHAPTER 2 INSTALLATION

2.3 Uninstallation

This section describes the method for uninstallation of the CA850.
(1) Start Windows.

(2) Start "Add or Remove Programs" ("Add/Remove Programs" in Windows other than Windows XP) on the

Control Panel of Windows

(3) Select the following items.
- NEC EL CA850 Vx.xx
- NEC EL CA850 Vx.xx Documents

Remark Other tools (PM+, STK850, LDG, etc.) and documents can be uninstalled in a similar way.

26 User's Manual U18512EJ1VOUM

CHAPTER 3 C COMPILER

This chapter provides an overview and explains the operation and output messages of the C compiler (ca850).

3.1

Flow of Operation

The ca850 creates relocatable object files and object files executable on the target system from C language

source programs described in C language source files.

The ca850 acts as the driver of the modules included in the package and performs operations such as macro

expansion, comment processing, merging of intermediate-language files, optimization, creation/conversion from

assembly-language source programs to machine language instructions, and linking of object files.

The ca850 performs processing in the following sequenc:eNOte (refer to Figure 3-1).

Note

(1

()

©)

®)
(6)

()

As is shown in Figure 3 - 1, the processing flow varies slightly depending on the specified optimization

level.

The front end (cafe) performs macro expansion and comment processing of a C language source program
and then converts the program into an intermediate-language OPTIC program.

The pre-optimizer (popt) rearranges the functions in the intermediate-language OPTIC program.

If this command is activated from the command line, and if "File merging option (-Om)" is specified, two or
more intermediate-language OPTIC programs are merged into one. If "Level 2 Advanced option (Exec.
Speed)" is specified, inline expansion is performed for the functions in the intermediate-language OPTIC
program.

The global optimization module (opt) optimizes the intermediate-language OPTIC program.

The code generation module (cgen) converts the intermediate-language OPTIC program into an assembly-
language source program.

The machine-dependent optimization module (impr) optimizes the assembly-language source program.
The assembler (as850) converts the assembly-language source program into machine language
instructions and creates a relocatable object file.

The linker (1d850) links the relocatable object file, and creates an executable object file.

The machine-dependent optimization module are called only when the optimization option is specified
(refer to Figure 3 - 1). It is assumed that the modules of (1) front end (cafe) through (5) machine-
dependent optimization module (impr) are started from the ca850. Consequently, operation is not

guaranteed if any of these modules is started alone.

User’'s Manual U18512EJ1VOUM 27

CHAPTER 3 C COMPILER

28

Figure 3 - 1 Operation Flow of ca850

'

Front end

'

-Om specified

Input file
processing
completed

NO

YES

-Om not specified

I

—

Pre-optimizer

'

Global optimization module

f

Code generation module

-O/-0s/-0t specified

'

Machine-dependent
optimization module

'

o

Assembler

-Om not specified

'
=

\ -Om specified

Input file

User's Manual U18512EJ1VOUM

processing
completed

—

YES

Linker

¢

-0Od/-Og/Default(-Ob)
specified

CHAPTER 3 C COMPILER

3.2 Input/Output Files

The ca850 can specify the following files as input files or output files.

file.c C language source file called the .cfile
file.ic OPTIC file called the .ic file
file.s assembly language source file called the s file
file.o object file called the .o file
file.a archive file called the .a file

- The .s file is passed to the as850 (assembler) without modification (a source program directly coded in
assembly language does not go through the machine-dependent optimization module).

- All the files other than .c, .ic, and .s files, such as .a and .o files, are all passed as is to the 1d850

Caution The input file names supported by Windows can be specified, but "@" cannot be used at the head of a
file name because it is regarded as a command option. If the Kanji code of the file is EUC, a file name,

folder name, or folder name in Japanese cannot be used.

User’'s Manual U18512EJ1VOUM 29

CHAPTER 3 C COMPILER

3.3 Executable Object

The ca850 can read a C language source file and create an executable object file at the same time since it
starts both the as850 and the 1d850.

In addition, processing can be stopped before the as850 and the 1d850 are started by specifying the (-S)
command line option and or by specifying single source compilation via PM+. Either of these methods can be
used to output a compiler code or to create a relocatable object file (refer to "3.4 Operation Method" for details of
these methods).

Examples of starting commands from command line are shown below (refer to "3.5 Types and Features of

Options" for details of the command line options).

(1) When executing everything from the ca850

> caB850 -cpu 3201 file.c obj.o

This specifies "-cpu 3201" (V850ES/SA2) as the device and reads file.c and obj.o to create an executable
object file a.out. At this time, crtE.o is linked as the startup module and the standard libraries libc.a and libm.a

are referenced.

> ca850 -cpu 3201 -R org crt.o file.c obj.o

This reads file.c and obj.o to create an executable object file a.out. At this time, org_crt.o is linked as the

startup module and the standard libraries libc.a and libm.a are referenced.

(2) When starting from the ca850 to the as850, and starting the 1d850 alone

> caB850 -cpu 3201 -c file.c asm.s

This reads file.c and asm.s to create the relocatable object files file.o and asm.o.

> 1d850 -cpu 3201 org crt.o file.o asm.o obj.o -lc

This links org_crt.o, file.o, asm.o, and obj.o to create the executable object file a.out. At this time, libc.a is

referenced.

30 User's Manual U18512EJ1VOUM

CHAPTER 3 C COMPILER

(3) When starting the ca850, the as850, and the 1d850 by themselves

> caB850 -cpu 3201 -c file.c

This reads file.c to create the relocatable object file file.o.

> as850 -cpu 3201 asm.s

This reads asm.s to create the relocatable object file asm.o.

> 1d850 org crt.o file.o asm.o -lc

This links org_crt.o, file.o, and asm.o to create the executable object file a.out. At this time, libc.a is

referenced.

User’'s Manual U18512EJ1VOUM 31

CHAPTER 3 C COMPILER

3.4 Operation Method

This section explains how to operate the ca850.

3.41 Command input method

Enter the following from the command prompt.

ca850 [option] ... file name [file name or option]
[1] : Can be omitted

: Pattern in proceeding [] can be repeated.

3.4.2 Method using PM+

The [Compiler Options] dialog box that is used to set compiler options for the C language source files can be

displayed via either of the following methods once a project has been established under PM+.

- Set for all C language source files of the target project

(1) Select [Tool] - [Compiler Options...].

- Set for a specific C language source file

(1) Select the name of the source file to be set a option in the [Project] window on the PM+.

(2) Select [Individual Compiler Options...] item that is displayed by clicking the right mouse button.

32 User's Manual U18512EJ1VOUM

CHAPTER 3 C COMPILER

3.5 Types and Features of Options

The following table lists the ca850 options.

When starting from the command line, if an option that is not listed in the following table is given, that option is

regarded as an 1d850 option and is passed to the 1d850 without modification.

Some options listed below are not included in the PM+'s option dialog box. When one of these options must

be specified, activate the ca850 from the command line.

[Symbols used in option list]

[V850E2] Option dedicated to V850E2 core

[V850E] Option dedicated to V850Ex core

[PM+] Option exists as specification item under the PM+.
[78K-compatible] Option compatible with 78K microcontrollers C compiler CC78Kx

User’'s Manual U18512EJ1VOUM

33

CHAPTER 3 C COMPILER

3.

34

51 Version/help display/operation status
Version/help display/operation status options are shown below.

-V

This option outputs ca850’s version information to standard error output. It does not execute compilation.

-help

This option outputs an option description to standard error output.

-v
[PM+]

This option outputs the execution status of the ca850 to the standard error output in detail.

User's Manual U18512EJ1VOUM

CHAPTER 3 C COMPILER

3.5.2 Output file specification
This section describes the options that specify an output file.

-Fic[=outfile]

This option specifies where an OPTIC file generated during compilation is to be saved.

(a) If the file name is specified as outfile
Saves the ouffile to the current folder under the specified file name.
The extension of ouffile is restricted to ".ic"
(b) If the folder is specified as ouftfile
Saves the ouftfile under a file name with extension .c replaced by .ic to the specified folder.
(c) If =ouffile is omitted
Saves the outfile under a file name with extension .c replaced by .ic to the current folder.
(d) If two or more files are output
Creates a folder specified for outfile, and saves the OPTIC file under a file name with extension .c

replaced by .ic.

-Fo[=outfile]

This option specifies where an object file generated in the middle of compiling is to be saved.

(a) If the file name is specified as outfile
Saves the oulffile to the current folder under the specified file name.
(b) If the folder is specified as outfile
Saves the ouftfile under a file name with extension .c or .s replaced by .o to the specified folder.
(c) If =ouftfile is omitted
Saves the ouffile under a file name with extension .c or .s replaced by .o to the current folder.
(d) If two or more files are output
Creates a folder specified as outfile, and saves the object file under a file name with extension .c or .s

replaced by .o.

-Fs[=outfile]
[PM+]

This option specifies where an assembly language file generated in the middle of compiling is to be saved.

(a) If the file name is specified as outfile
Saves the ouffile to the current folder under the specified file name.
(b) If the folder is specified as ouftfile
Saves the outfile under a file name with extension .c replaced by .s to the specified folder.
(c) If =ouffile is omitted
Saves the outfile under a file name with extension .c replaced by .s to the current folder.
(d) If two or more files are output (this cannot be specified with PM+)
Creates a folder specified as outfile, and saves the object file under a file name with extension .c

replaced by .s.

User’'s Manual U18512EJ1VOUM 35

CHAPTER 3 C COMPILER

-Fv([=outfile]
[PM+]

This option specifies whether an assemble list generated in the middle of compiling is to be saved.

(@) If the file name is specified as outfile
Saves the ouftfile to the current folder under the specified file name.
(b) If the folder is specified as ouffile
Saves the ouftfile under a file name with extension .c or .s replaced by .v to the specified folder.
(c) If =ouftfile is omitted
Saves the object file under a file name with extension .c or .s replaced by .v to the current folder.
(d) If two or more files are output (this cannot be specified with PM+)
Creates a folder specified as ouftfile, and saves the outfile under a file name with extension .c or .s

replaced by .v.
If this option and the -a option are not specified, an assemble list will not be generated.

-o outfile
This option specifies an output file as ouffile. It is valid even if compiling is stopped midway by specifying

the compiler control option -S, -c, or -m.

(a) If this option is specified with the -S option
An assembiler file (.s) is specified.

(b) If this option is specified with the -c option
A relocatable object file (.0) is specified.

(c) If this option is specified with the -m option
A front-end output file (.ic) is specified.

(d) Other than above
An executable object file (.out) is specified.

(e) The default assumption is a.out.

An error occurs.

-temp=dir
[PM+]

This option specifies the work folder for creating temporary files that are used internally. If this option is
omitted, temporary files are generated in a folder specified by environmental variable TEMP or a root folder in
the current drive.

If the capacity of the hard disk runs short and a temporary file cannot be generated, an error occurs. This

error can be avoided by using this option.

36 User's Manual U18512EJ1VOUM

CHAPTER 3 C COMPILER

3.5.3 Controlling source debugger

The following options are used to control the source debugger.

-Xno word bitop
[PM+]

This option prohibits replacing the Id.w/ld.h and st.w/st.h instructions with 1-bit manipulation instructions
(set1, clr1, tst1, and not1). If a read/write event of a variable is set during debugging, an event may not be
generated if these instructions are replaced by 1-bit manipulation instructions. If this option is specified in such
a case, the Id.w/ld.h and st.w/st.h instructions are not replaced by 1-bit manipulation instructions, making
debugging easy.

-9
[PM+]

This option outputs symbol information for the source debugger. When the as850 is started via the ca850,

specification of this option is regarded as the same as specifying the as850's "-g" option. As a result,

assembly language source debugging is performed by the debugger.

User’'s Manual U18512EJ1VOUM 37

CHAPTER 3 C COMPILER

3.5.4 Control of compile driver

Control of compile driver options are shown below.

(1) Options related to device specification

-X256M

[V850E] [PM+]

This option treats the memory space as 256 M bytes. |If this option is not specified, address resolution is
performed, assuming that the memory space is 64 M bytes. Set this option in accordance with the chipset to
be used.

The physical address space of the V850Ex core has 256 M bytes in many cases. When creating an

application that uses a space between 64 M bytes and 256 M bytes, specify this option.

-Xbpc=num

38

[PM+]
This option sets the higher address of the programmable peripheral 1/O register. In num, specify only the
part of address from which the highest bit of the BPC register is removed.

If the target device has programmable peripheral 1/O register functions (such as V850E/IA1), the value must
be determined when compiling (assembling) the application to set the variable address portion (= value set in
BPC register). Thus, specifying this option compiles (assembles) using the specified value.

When specifying this option, be sure to specify a value. A binary, octal, decimal, or hexadecimal number
can be used for the value. If an invalid value is specified, or if a value outside the range that can be set in the

BPC register is specified, a warning message is output and this option is ignored.

Example

-Xbpc=0x1234

In the above case, if the target device is the V850E/IA1, the start address of the programmable peripheral I/
O register area is treated as this value shifted 14 bits to the left, or 0x48d0000.

One value is set for an entire application. If you specify "-Xbpc" or "-bpc" when setting options by file, make
the values the same between files. However, this option need not be specified for files that do not use the
programmable peripheral I/O register.

If this option is specified for a target device that does not have programmable peripheral 1/O register
functions or when assembling as a common for V850 core/V850Ex core/V850E2 core, a warning message is
output and this option is ignored.

This option is for determining the address of the programmable peripheral /O register when compiling
(assembling) and does not actually cause a value to be reflected in the BPC register. For operation, it is
necessary to set a value in the BPC register separately using a startup module or the like. A sample appears

(commented out) in the startup module included in the package.

User's Manual U18512EJ1VOUM

CHAPTER 3 C COMPILER

Example
For the V850E/IA1, specify the following descriptions in the startup module to make the variable portion of
the start address of the programmable peripheral 1/O register "0x1234" and set the flag 0x8000 that enables

the use of this function.

mov0x9234, rl0 - - 0x1234 | 0x8000 = 0x9234
st.hrl0, BPC

The as850 outputs a .bpc section in the special reserved sections when the programmable peripheral I/O
register is referenced, regardless of whether this option is specified or omitted. This section is used for
checking when linking. The .bpc section is a special reserved section for information and is never loaded into

memory. Therefore, it need not be specified in a link directive like a normal section.

-cn
This option embeds the magic number of common to V850 core into the object to be generated.

For further description of magic numbers, refer to "4.7.1 Magic number".

-cnv850e

[V850E]

This option embeds the magic number of common to V850Ex core into the object to be generated.

-cnv850e2
[V850E2]

This option embeds the magic number of common to V850E2 core into the object to be generated.

-cpu devicename

This option specifies the target deviceNo®. When using PM+, this is equivalent to specifying the device on
the [Project Information] of the [Project Settings] wizard. If this option is omitted and nothing has been

specified by the -cn option, -cnv850e option, -cnv850e2 option or #pragma directive, compilation is stopped.

Note This has the same function as "#pragma cpu devicename". There are two methods: specification by
the -cpu option or specification by the #pragma directive. If both are specified but have different

contents, the specification by the -cpu option has priority.

-devpath=dir
This option searches a device file from the folder dir. Only the standard folders are searched if this option is
omitted. When using PM+, the device file's installation folder is automatically set, so there is no need to be

aware of this option.

User’'s Manual U18512EJ1VOUM 39

CHAPTER 3 C COMPILER

(2) Compiler control specification options

-S
This option outputs the generated assembly language source program without executing any modules
under the as850. The output file uses .s as the extension instead of .c. If this option is omitted, modules
following the as850 are also executed. However, modules under the as850 are also executed if this option

has been specified via PM+. To avoid executing those modules, compile source files one at a time.

-a

This option outputs an assemble list to a file whose extension .c is changed to .v (refer to "4.6 Assemble

List"). When the -Og, -O, -Os, or -Ot option is specified, a part of the assemble list may be incorrectly output
due to instruction rearrangement for optimization by the as850.

By using this option (-Fv option) with PM+, a file name on the assemble list can be specified.

This option outputs the object file without starting the 1d850. The file name extension is .o instead of .c or .s.
The 1d850 is started if this option is omitted. When PM+ is used, this option is automatically specified for all

compilation.
-m
This option simply executes the front end, generates an .ic file, then terminates processing. If this option is

omitted, modules after the front end are also executed.
(3) ROMization control option

-Xr
[PM+]
This option is necessary when creating an object for ROMization, and starts up the ROMization processor
after link processing. The created object file (default name: romp.out) is the file with the ROMization
information.

The compiler processing is as follows.

(a) The label of the first argument for _rcopy specifies the first address (aligned according to the four-byte
alignment condition) that exceeds the end of the .text section in the object.

(b) Consequently, this specifies the area securing code for the rompsec section (default name: rompcrt.o)
and the libr.a file to be linked by the linker (1d850).

Refer to "6.4 Creating Object for ROMization" for details of ROMization object creation methods.

40 User's Manual U18512EJ1VOUM

CHAPTER 3 C COMPILER

(4) Preprocessor processing setting options

-C
[PM+]
The -C option includes source program comments in a C language source program’s preprocessing output.

This option is valid only when either the -E option or the -P option has been specified.

-Dname [=def]
[PM+]
When this option is specified, it is assumed that #define name def is entered before the C language source
program. If the =def specification is omitted, the def value is regarded as 1. Up to 256 of this options can be

specified.

-E
This option executes preprocessing only for a C language source program and outputs the results to

standard output. The results include the line numbers and file name of the source program.

-Idir
[PM+]

This option searches the folder dir and the standard folder, in that order, for the header file of a C language
source program. Up to 100 of this option can be specified. If this option is omitted, only the standard folder is
searched.

The standard folder is the install folder \inc850 folder. If #include "header file name" is described, the folder

where the source file is stored is searched first.

-P
This option executes preprocessing only for a C language source program and outputs the results to a file
whose name is the C language source file name plus .i as the extension instead of .c.

The source program’s line numbers and file name are not output.

-Uname
[PM+]
When this option is specified, it is assumed that #undef name is coded before the C language source

program. Up to 256 of this options can be specified.

-Wa, -Dname [=num]
[PM+]
When this option is specified, it is assumed that .set name, num is entered before the assemble source.

If the =num specification is omitted, the num value is regarded as 1.
-Wa,-I,dir
[PM+]
This option searches the folder dir and the standard folder, in that order, for the header file of an assembly

language file. If this option is omitted, only the standard folder is searched.

User’'s Manual U18512EJ1VOUM 41

CHAPTER 3 C COMPILER

-Xcxxcom
[PM+]
In addition to ordinary comments, this interprets all characters that appear after "//" and before the end of the

line as comments (C++ comment style).

-Xd
This option outputs a warning message in response to initialization of a pointer type external variable which

uses a variable address that is not an automatic variable or which uses a function address.

-Xmnum
[PM+]
This option specifies an upper limit for the number of macro identifiers. A decimal value up to 32767 can be
specified as num. A default value of 2047 is used if this option is omitted.
This option increases the size of the buffer used by the preprocessor. However, this option cannot be used

to set a specific value for buffer size in terms of the number of characters the buffer can contain.

-t
[PM+]
This option replaces a trigraph sequence.
This option specifies a three-character (trigraph) string to be replaced by a single character defined by the

ANSI standard. For details, refer to the documents related to the ANSI standard.
(5) Options to save memory during compilation

-Wp, -D
[PM+]
This option reduces memory in pre-optimizer phase during compiling.
Specify this option if compiling is not completed correctly because the memory of the machine runs short.

The compilation speed drops when this option is specified.

-Wi, -D
[PM+]
This option reduces the memory capacity used in the machine dependent optimization phase during
compiling. Specify this option if compiling is not completed correctly.

The compilation speed drops when this option is specified.

42 User's Manual U18512EJ1VOUM

CHAPTER 3 C COMPILER

(6) Error output specification options

+err file=file
This option adds and saves error messages to the file file. With PM+, specifying a file name as "Error File"

on the [File] in the [Compiler Common Options] dialog box is equivalent to specifying this option.

-err_file=file
This option overwrites and saves error messages to the file file.
-err limit=num
[PM+]
This option specifies the maximum number of error message to be output, num.

Specify 15 to 50 in decimal numbers as num. If this option is omitted, 15 is assumed.
(7) Expansion function specification option

-cc78k
[78K-compatible] [PM+]

This option enables the expansion functions compatible with the 78K microcontrollers C compiler CC78KXx.

User’'s Manual U18512EJ1VOUM 43

CHAPTER 3 C COMPILER

3.5.5 Optimization

"Optimization" is processing used to increase the execution speed of an application or to decrease the ROM
capacity to be used. How optimization is performed differs depending on the level of optimization. If a high level
of optimization is selected, the compilation speed may slow down and the probability of allocating C language
source lines to be deleted or changed and variables to registers increases. In the latter case, phenomena such

as being unable to set breakpoints with the debugger may occur, and the debugging efficiency may be affected.

For details of optimization, refer to "3.7.3 Efficient use of optimization".

(1) Optimization options

-0d
[PM+]
Optimize for Debugging option
This option generates codes emphasizing logic debugging, without putting stress on the ROM capacity and

execution speed. Its function is equivalent to the default optimization of CA850 Ver. 2.41 or earlier.

-0b
[PM+]
Default Optimization option
This option generates codes emphasizing logic debugging. It executes optimization within a range where

logic debugging is not affected

-0g
[PM+]
Standard Optimization option
This option executes appropriate optimization. It executes optimization that allows debugging of the C lan-
guage source in most cases. Because external variables are assigned to registers, both the execution speed

and code size are improved from those of the default option.

-0
[PM+]
Level 1 Advanced Optimization option

This option executes optimization emphasizing the ROM capacity.

-0s
[PM+]
Level 2 Advanced (Object Size) option

This option executes the maximum optimization placing the utmost emphasis on the ROM capacity.

-0t
[PM+]
Level 2 Advanced (Exec. Speed) option
This option executes the maximum optimization placing the utmost emphasis on the execution speed rather

than on the ROM capacity.

44 User's Manual U18512EJ1VOUM

CHAPTER 3 C COMPILER

(2) Target code optimization options

-Wi, -04
[PM+]
This option strictly analyzes the data flow and executes the most advanced optimization. Specify this
option, in addition to the optimization option -O, -Os, or -Ot, to execute more advanced optimization.

Specifically, this option executes optimization as follows.

- Optimization of registers extending over a branch instruction
- Optimization of absolute value operations
- Optimization of a cmp instruction extending over a branch instruction

- Optimization of a return instruction extending over a branch instruction

Depending on the source, the result may be the same as that of -Os or -Ot. The compiling time is longer

than that of -Os or -Ot.

-Wi,-P

[PM+]
This option prevents optimization that allows branch destination labels to be aligned. This option can
reduce the size of the execution code. It is useful when the Level 2 Advanced option (Exec. Speed) -Ot is

specified.
(3) File merging option

-Om
When two or more files are specified at the same time, this option merges the files. The compiling speed
will drop, but the optimization application range of such as optimization between functions can be expanded by
specifying this option together with the optimization option -O, -Os or -Ot.

However, source debugging will become difficult.
(4) Inline expansion optimization control options

-Wp, -Gnum
[PM+]
This option limits the stack size of a function in an intermediate language subject to inline expansion to size
num, and does not execute inline expansion of a function larger than num. For num, refer to the description of

the -Wp,-I[=file] option below. If this option is not specified, it is assumed that -Wp,-G32 is specified.

-Wp, -Nnum
[PM+]
Restricts the intermediate language size for a function subject to inline expansion by the num value
specification so that inline expansion is not performed for any value larger than the num value.
Refer to the -Wp,-I[=file] option’s description below with regard to the range of num values.
-Wp,-N128 is assumed as the specification if this option is omitted and Level 2 Advanced option (Exec.

Speed) is specified, otherwise -Wp,-N24 is assumed as the specification.

User’'s Manual U18512EJ1VOUM 45

CHAPTER 3 C COMPILER

-Wp, -S
[PM+]

This option unconditionally executes inline expansion of a static function that is referenced only once.

-Wp,-1l[=file]
[PM+]
This option outputs function information to standard output or additional output to the file. It serves as a
guide to the value to be specified by the -Wp,-Gnhum and -Wp,-Nnum options above.
For example, a function called is expanded inline if the function requires stack size equal to or less than the
value specified by -Wp,-Nnum. If the function has code size equal to or less than the value specified
by -Wp,-Nnum, it is expanded inline.
Note that the stack size output by this option is the size in intermediate language output by the pre-optimizer

and is different from the stack size actually used by the function.

-Wp, -inline
[PM+]
This option executes inline expansion of only a function for which #pragma inline is specified. When -Ot is
specified, the compiler automatically identifies the function and executes inline expansion. Specify this option

to expand only the function specified by the user.

-Wp,-no_inline
[PM+]
This option suppresses inline expansion of all functions, including the function for which #pragma inline is

specified. It is useful for suppressing all inline expansion functions when -Ot is specified.

-Wp, -r [funcname]

This option deletes unnecessary functions from the functions called from an entry function, funcname, after
expansion. Specify funcname by prefixing ’_’ to a function described in C. If funcname is not specified, it is
assumed that "_main" is specified.

The function that is called only by an assembler statement is deleted as an unnecessary function because
the calling is not recognized. Interrupt functions and real-time OS tasks are not included as functions subject

to deletion.

For the relationship between inline expansion and option, refer to CA850 for C Language User’s Manual.

46 User's Manual U18512EJ1VOUM

CHAPTER 3 C COMPILER

(5) Loop expansion optimization control options

-Wo, -01 [num]

[PM+]

This option expands a loop num times using for and while. This option can be specified only for "Level 2

Advanced option (Exec. Speed)".

The loop is converted into execution of a loop that is executed N times (N is a constant) and execution of a

loop that includes a code expanded num times. If the code size after expansion is too great or if the number of

times of execution of the loop is too few, the number of times of expansion may decrease, or the loop may not

be expanded at all. In addition, a loop having a complicated structure, such as having inner loops, may not be

expanded. If 0 or 1 is specified as num, expansion is suppressedee. If num is not specified, it is assumed

that 4 is specified. Specify num in decimal numbers.

Example
To expand a loop that is executed 10 times four times
i=0; i = 0;
while (i < 10) { /* Processing */
/* Processing */ i=1;
++1; /* Processing */
} i = 2;
while(i < 10) {
/* Processing */
++1;
/* Processing */
++1;
/* Processing */
++1;
/* Processing */
++1;
}
Note This option is useful when loop expansion does not need to be performed with "Level 2 Advanced
option (Exec. Speed)" specified.
-Wo, -X1lo
[PM+]

This option expands a loop by fixing the number of times of expanding the loop to the value specified

by -Wo,-Olnum.

User’'s Manual U18512EJ1VOUM

47

CHAPTER 3 C COMPILER

(6)

strcpy, strcemp expansion option

-Xi

[PM+]

This option sets a four-byte alignment condition for arrays (including character strings) and structures and
expands strcpy() or stremp() function calls to inline. This speeds up the object's execution but it also increases
the code size. This option executes conversion only when the second argument of strcpy() or strcmp() is a
character string. In addition, the program requires four-byte alignment of the first argument (the ca850 aligns
the second argument since it is a character string).

This option must not be specified together with the -Xpack option.

(7) External variable sort options

-Wo, -Op[=file]

[PM+]

This option rearranges external variables allocated to a section other than const/sconst sequentially, starting
from the largest alignment size. If the intermediate file file is specified, the definition and temporary definition
of variables in the source file allocated to a section other than const/sconst having external linkage are moved
to file. After being moved, the definition and temporary definition of the source file are treated in the same

manner as declaration. An error does not occur even if file does not exist at the beginning.

(8) Branch instruction control option

-Wo, -XFo

48

[PM+]
This option arranges and outputs branch instructions, giving priority to the code size. However, it makes
source debugging difficult. This option is valid when the -Og, -O, -Os, or -Ot option is specified. If this option

is omitted, a code giving priority to debug information is output for a branch instruction.

User's Manual U18512EJ1VOUM

CHAPTER 3 C COMPILER

3.5.6 Generation code control

Generation code control options are shown below.

(1) Register use control options

-rnum=sym
[PM+]
By using the -rnum option, an external variable can be allocated to a register. Specify a register other than
the mask register that is vacated by specifying the -reg option. Specify an external variable using a symbol

name, excluding "_".

The following external variables must not be specified.

volatile variable

- Variable using address operator "&"
- Structure

- Array

- Internally coupled variable (static)

- Peripheral I/O register
The definition (temporary definition) and declaration of the specified external variable are deleted.

To use the default value of an external variable (if initialization is not executed at the beginning of program

execution), assign a default value to a register using the startup file.

-regn
[PM+]
This option limits the number of registers used by the ca850 as n registers (n = register mode).

The specifiable range of values for n are:

Table 3 - 1 Register Mode

Register Mode (n) Working Registers Registers for Register Variables
22 r10 -r14 r25-r29
26 r10 -r16 r23 - r29
32 r10-r19 r20 - r29

This option cannot be set independently for each source file, and is always used for all files. Since the
settings by this option are also recognized by the linker, a library of the appropriate mode is referenced.
32 (32-register mode) is specified if this option is omitted.

By specifying this option, the register mode of the software register bank function can be changed.

User’'s Manual U18512EJ1VOUM 49

CHAPTER 3 C COMPILER

-Xmask reg

[PM+]

This option specifies use of the mask register function.

When this function is used, the ca850 outputs codes, assuming that an 8-bit mask value, Oxff, is set to r20
and a 16-bit mask value, 0xffff, is set to r21. Mask values must be set to the mask registers (r20 and r21) by a
user program such as the startup routine.

With the V850 microcontrollers, byte data and halfword data are sign-extended to word length, depending
on the value of the most significant bit, when they are loaded from memory to registers. Consequently, the
mask code of the higher bits may be generated when an operation on unsigned char or unsigned short type
data is performed. When the result of an operation is stored in a register variable, a mask code is generated
for unsigned byte data and unsigned halfword data to clear the higher bits. In both the cases, generation of the
mask code can be avoided if word data is used. If word data cannot be used and a mask code is generated,
the code size can be reduced by using the mask register function.

To decide whether the mask register function is to be used or not, the following points must be thoroughly

considered.

- Is it a program that outputs many mask codes?

- Two register variable registers are used as mask registers: Does this have any effect?

If an object that uses a mask register and an object that does not use a mask register exist together when
this option is specified, the 1d850 outputs an error.

In the 32 register mode, -mask_reg is passed to the 1d850. As a result, the standard library is searched by
the linker first in the mask register folder (lib850/r32mak) and then the standard folder.

For the mask register function, refer to CA850 for C Language User’s Manual.

(2) Prologue/epilogue runtime option

50

-Xpro_epi_runtime[=on|=0ff]

[PM+]

This option specifies whether or not to perform prologue/epilogue processing based on runtime library
function calls. If this option is on, prologue/epilogue processing of the function is performed based on run-time
library function calls. If neither [=on] or [=0ff] is specified, specification of [=on] is assumed. This option is set to
on if an optimization option other than the "Level 2 Advanced option (Exec. Speed) [-Ot]" is specified as the
optimization type of the "Optimization and Debug Information" option, or by default, and is set to off if [=off] is

specified or the -Ot option is specified.

User's Manual U18512EJ1VOUM

CHAPTER 3 C COMPILER

(3) Variable placement control options

-Gnum
[PM+]
Data that is less than num bytes is allocated to the .sdata section or the .sbss section.
If this option is omitted, all data is allocated to the .sdata section or the .sbss section.
However, any data that is specified for an .sdata or .sbss section in a #pragma section directive or a section
file (refer to "9.1 Section Files") is allocated to the .sdata or .sbss section regardless of the data size. Specify
a decimal number as the num value. The range of values that can be specified as num is output by the 1d850’s

"-A" option. For details of the #pragma section directive, refer to CA850 for C Language User’s Manual .

-Xsconst [=num]
[PM+]

This option allocates const attribute data and character string literal to the .sconst section.

If num has been specified, data whose size is num bytes or less is allocated to the .sconst section and if
num has been omitted, allocation is performed regardless of the data size. Specify a decimal number as the
num value. If a different option is specified for each file, a code of a different method of placing and referencing
variables may be generated and an error or warning may be output during linking (a different option cannot be

specified for each file with PM+).

-Xcre sec_datal[=outfile]
[PM+]

This option outputs a variable frequency data file used by the section file generator.

(a) If the file name is specified as outfile

Saves the oulffile to the current folder under the specified file name.
(b) If the folder is specified as ouftfile

Saves ouffile to a specified folder, with extension .c replaced by .sec.
(c) If =ouftfile is omitted

Saves the file to the current folder, with extension .c replaced by .sec.

(d) If two or more files are output

Creates a folder specified as outfile, and saves the files with extension .c replaced by .sec.

When several C language source files exist, and a frequency data file is to be created with a file name
specified for each file, PM+ opens the option dialog box for each C language source file from the source file list
and then specifies a file name when the frequency data file is created. When using command line input, it
specifies this option with =ouffile for each C language source file. The C language source files are specified
one at a time (with -c specified). The variable frequency data file outputs information how often the 1d850 or st
instruction accesses variables in the C language source file. Nothing is performed on the assembly language
source file. When this option and the -Xcre_sec_data_only option are simultaneously specified, the -

Xcre_sec_data_only option takes priority.

User’'s Manual U18512EJ1VOUM 51

CHAPTER 3 C COMPILER

52

-Xcre sec data onlyl[=outfile]
This option outputs the variable frequency data file used by the section file generator. However, unlike the
-Xcre_sec_data, this option outputs only the variable frequency data file and does not perform object

generation. This is used when outputting only the frequency data file.

(a) If the file name is specified as outfile
Saves the ouffile to the current folder under the specified file name.
(b) If the folder is specified as outfile
Saves the outfile under a file name with extension .c replaced by .sec to the specified folder.
(c) If =ouftfile is omitted
Saves the ouftfile under a file name with extension .c replaced by .sec to the current folder.
(d) If two or more files are output
Creates a folder specified as outfile, and saves the object file under a file name with extension .c

replaced by .sec.

When several C language source files exist, and a frequency data file is to be created with a file name
specified for each file, PM+ opens the option dialog box for each C language source file from the source file list
and then specifies a file name when the frequency data file is created. When using command line input, it
specifies this option with =ouffile for each C language source file. The C language source files are specified
one at a time (with -c specified). The variable frequency data file outputs information how often the 1d850 or st
instruction accesses variables in the C language source file. Nothing is performed on the assembly language

source file.

-Xsec file=file
[PM+]
This option specifies the name of the section file (refer to "9.1 Section Files") that is used to specify section
allocation of data when the C language compiler is activated.Be sure to specify this file name.

This option can be specified several times and several section files can be input.

User's Manual U18512EJ1VOUM

CHAPTER 3 C COMPILER

(4) Signed/unsigned control option

-Xbitfield=string
[PM+]
This option specifies whether specifications in int type bit fields that do not indicate the type specifier (signed
or unsigned) are regarded as signed or unsigned specifications.

The following can be specified as string.

s Handled as signed
signed Handled as signed
u Handled as unsigned
unsigned Handled as unsigned

A warning message is output when the specification is handled as unsigned. The specification is handled as

signed if this option is omitted.

-Xchar=string
[PM+]
This option specifies whether char type specifications that do not indicate the type specifier (signed or
unsigned) are regarded as signed or unsigned specifications.

The following can be specified as string.

S Handled as signed
signed Handled as signed
u Handled as unsigned
unsigned Handled as unsigned

The specification is handled as signed if this option is omitted.

-Xenum type=string
[PM+]
This option specifies which integer type the enumeration type matches.

The following can be specified as string.

char Treated as char
uchar Treated as unsigned char
short Treated as short
ushort Treated as unsigned short

If this option is omitted, the enumeration type is treated as signed int.

User’'s Manual U18512EJ1VOUM 53

CHAPTER 3 C COMPILER

(5) Switch-case statement output code control options

-Xcase=string
[PM+]
This option specifies a mode in which the code of a switch statement is to be output. As string, the following

can be specified.

ifelse Outputs the code in the same format as the if-else statement along a string of case
statements. If the case statements are written in the order of frequency or if only a
few labels are used, select this option. Because the case statements are compared
starting from the top, unnecessary comparison can be reduced and the execution
speed can be increased if the case statement that most often matches is written first.

binary Outputs the code in the binary search format. Searches for a matching case
statement by using a binary search algorithm. If this option is selected when many
labels are used, any case statement can be found at almost the same speed.

table Outputs the code in a table jump format. A table indexed based on the value of a
case statement is referenced and a case label is selected depending on the value of
the switch statement. Execution branches to any case statement at almost the same
speed. If case values are not used in succession, an unnecessary area is created.

If this option is omitted, the compiler automatically selects the optimum format.

-Xword switch
[PM+]
This option creates one four-byte branch table per case label in a switch statement. Specify this option to
prevent compile errors that would otherwise occur when the switch statement is long.

Two-byte branch tables are generated if this option is omitted.

54 User's Manual U18512EJ1VOUM

CHAPTER 3 C COMPILER

(6) Structure packing control options

-Xbyte
[PM+]
This option specifies indirect address access to a structure in byte units.

Use this option if a limit is exceeded when the structure packing function is used.

-Xpack=num
[PM+]
By using this option, the specified alignment can be used without aligning structure members in accordance
with the type of each member. The data size can be reduced but the code size increases.

1, 2, 4, or 8 can be specified as num.

The default value is 8Nt

If this option is specified if structure packing is specified by the #pragma directive in the C language source,
the value specified by this option is applied to all structures until the first #pragma directive appears. After that,
the value of the #pragma directive is applied. Even after the #pragma directive has appeared, however, the
value specified by the option is applied if the default value is specified. This option must not be specified with -

Xi option. Note the following when using this option.

(a) If -Xpack option is specified when structure packing is specified by the #pragma directive in the C lan-
guage source, the value specified by the option is applied to all structures until the first #pragma pack
directive appears. After that, the value of the #pragma directive is applied. Even after the #pragma
directive has appeared, however, the value specified by the option is applied if the default value is

specified.

This option has following restrictions, when using the V850 core/V850Ex core/V850E2 core that is set to

disable misalign access. These restrictions are the same as for #pragma pack.

(@) The address of a structure member cannot be obtained correctly.

(b) Accessing a bit field also accesses a data field because the type of the member is read. If the width of
the bit field is less than the type of the member, the outside of the object is accessed because the type
of the member is read. Usually, no problem with execution occurs, but an illegal access may be made

if 1/0 is mapped.
For details of structure packing, refer to CA850 for C Language User’s Manual.

Note With this version, the operation when the value of num is "4" is the same as that when it is "8".

User’'s Manual U18512EJ1VOUM 55

CHAPTER 3 C COMPILER

(7) Far jump output control options

-Xfar jump=file
-Xfar jump file
[PM+]

The jmp directive is used to branch (jump) to the function specified in file.

The 1d850 outputs an error if the function is in a range that cannot be branched to by the jarl or jr directive, in
which case this option is used to recompile. The file name space cannot be left blank. A extension is
necessary for a file name. The extension ".fip" is recommended.

This option must not be specified to call a function at the flash side from the boot side by using the Flash/

external ROM re-link function. For details, refer to "5.6 Flash Memory/External ROM Relink Function".

_xj
[PM+]

This option uses the jmp instruction to perform a branch for an ordinary interrupt function defined in C
language. If the number of functions is in the range that cannot be branched by the jr directive and the 1d850
outputs an error, this option can be used to recompile. The jr instruction is used if this option is omitted.

This option must not be specified to call a function at the flash side from the boot side by using the Flash/

external ROM re-link function. For details, refer to "5.6 Flash Memory/External ROM Relink Function" .
(8) Comment output option

-Xc

[PM+]

This option outputs C language source programs as comments to the assembly language source file to be
output. However, the output comments are for reference only and may not correspond exactly to the code. For
instance, comments concerning global variables, local variables, function declarations, etc., may be output to
incorrect positions. If the code is deleted on the optimization, only the extracted comment may remain.

To use this option, -S, -a, -Fs, or -Fv must be specified.

56 User's Manual U18512EJ1VOUM

CHAPTER 3 C COMPILER

(9) ANSI standard options

-Xe

[PM+]

This option specifies that runtime library ___mul/___mulu or ___div/___divu will be used instead of the
mulh and divh directives for integers corresponding to data that is 16 bits or less.

This option slows the processing speed but strictly complies with the multiplication and division processing
under the ANSI standard.

The mulh and divh directives are used if this option is omitted.

The runtime library of the CA850 is prepared as the standard library of CA850 so that the instructions not
provided to the architecture of the V850 microcontrollers satisfy the ANSI standard. For the runtime library,

refer to CA850 for C Language User’s Manual .

-Xdefvar
[PM+]

This option handles tentative definition as definition.

-ansi
[PM+]
This option makes ca850 processing comply with the ANSI standard and outputs an error or warning for a
specification that violates the standard. Extended description other than in _asm format is recognized.
Specifying this option defines the macro name __STDC_ _. If this option is omitted, compatibility with the
conventional C language specifications is conferred and processing continues after warning message is
output.

Processing when compiling in strict adherence to the language specification is as follows.

(1) Trigraph sequences
Replaces trigraphs. They are not replaced if this option is not specified.
(2) Bitfields
Itis an error if a type other than an int type is specified in a bit field. If this option is not specified, a warning
may be output and the specification is permitted.
(8) Scope of variables
If an automatic variable of the same name as a function argument is declared, it is a duplicate definition
error. If this option is not specified, a warning may be output and the automatic variable is made valid.

(4) Pointer assignment

(a) Itis an error if a pointer type numeric value is assigned to a general integer type variable. If this option
is not specified, a warning may be output and the pointer is assigned by casting.
(b) Itis an error to assign pointers that point to different types. If this option is not specified, a warning may
be output and the assignment is permitted.
(5) Type conversion
It is an error to convert a non-left side value array to a pointer. If this option is not specified, a warning may
be output and the conversion is permitted.
(6) Comparison operators
Comparison of a pointer to an arithmetic type variable is an error. If this option is not specified, a warning

may be output and the comparison is permitted.

User’'s Manual U18512EJ1VOUM 57

CHAPTER 3 C COMPILER

58

(7) Conditional operators
It is an error if the second and third expressions are not both general integer types, the same structure,
the same common, or pointer types to the same type of target. If this option is not specified, a warning may
be output and the operator is assigned by casting.
(8) #line-number
This is an error. If this option is not specified, #line-number is treated the same way as "#line line-
number".
(9) "#" character within a line
This is an error. If this option is not specified, a warning may be output and the "#" character is permitted.
(10) _asm
A warning may be output and -asm is treated as a function call. However, __asm is valid. If this option is
not specified, -asm is treated as an assembler insert.
(11) __STDC__
A macro with a value of 1 is defined. If this option is not specified, the macro name is not defined as a
macro.
(12) Binary constant
Unusabile. If this option is not specified, a string that consists of "0b" or "0B" followed by one or more "0" or

"1" is handled as a binary constant.

User's Manual U18512EJ1VOUM

CHAPTER 3 C COMPILER

3.5.7 Library specification
Library specification options are shown below.

-Ldir
This option searches libraries starting in the folder dir, then in the standard folder.
Only the standard folder is searched if this option is omitted.
The standard folder is the install folder \lib850 folder and install folder \lib850\r32 folder. If the register mode
is specified, however, r22 or r26 folder is searched instead of r32 folder.

Refer to the description of the -L option of the 1d850.

-R file
When startup goes as far as the 1d850, the startup module to be used is indicated to the Id850 as file.
For details of the startup module, refer to CA850 for C Language User’'s Manual .
If this option is omitted, crtN.o in the standard folder is used as the startup module. The standard folder is

the install folder \lib850\r32 (r26 or r22).

-lstring
This option specifies the archive file that is referenced by the 1d850.
Nothing is referenced if this option is omitted. When activating the 1d850 from the ca850, however, the
ca850 automatically passes the link specification of the standard library (-Ic) and mathematical library (-lm) to
the 1d850.

For how to specify an archive file, refer to the description of the Id850 library specification option (-I).

User’'s Manual U18512EJ1VOUM 59

CHAPTER 3 C COMPILER

3.5.8 Warning message control

Warning message control options are shown below.

-wnum

[PM+]

This option specifies the level of warning messages.

The following numbers can be specified as nhum.

0 Suppresses message
1 Outputs ordinary warning message
2 Outputs detailed warning message

The -w0 specification is assumed if nhum is omitted. The -w1 specification is assumed if this option is

omitted.

-wstring+

-wstring-

This option specifies outputting or suppressing a warning message for each parameter regardless of the

level. A warning message is output when "+" has been specified or is suppressed when "-" has been

specified.

The following character strings can be specified as string.

bitfield_align When bit field members have exceeded the boundary set by the alignment condition
and have been allocated starting from the next boundary

bitfield_type When a type that cannot be specified in the ANSI specification is specified for the bit
field

callnodecl When calling an undeclared function

nopic When using a variable address that is not an automatic variable or a function
address to initialize a pointer type external variable

pragma When a non-executable #pragma description appears

sharp When a sharp symbol (#) appears in a source line

An error occurs if neither "+" nor "-" has been specified. The specification is according to the -wnum level if

this option is omitted.

-won=numl[,num] ...

-won=numl-num2 [, num3-num4] ...

[PM+]

This option outputs a warning message of the number specified by num. A warning message in the 2000s

can be specified as num. If num1-num2 is specified, the warning messages from num1 to num?2 are specified.

The num must not be omitted. If a warning number not provided in the CA850 is specified, a warning message

is output.

60

User's Manual U18512EJ1VOUM

CHAPTER 3 C COMPILER

-woff=numl[,num]...
-woff=numl-num2[, num3-num4] ...
[PM+]
This option suppresses a warning message of the number specified by num. A warning message in the
2000s can be specified as num. If num1-num2 is specified, the warning messages from num1 to num2 are

specified. The num must not be omitted. If a warning number not provided in the CA850 is specified, a

warning message is output.

User’'s Manual U18512EJ1VOUM 61

CHAPTER 3 C COMPILER

3.5.9 Other

Other options are shown below.

(1) Command file specification option

@cfile
This option handles cfile as a command file (refer to "3.7.2 Command file"). Consequently, there is no need
to be cognizant of restrictions concerning the option character string length.
For command files, arguments to be specified can be described divided into several lines, but do not divide
options, file names, and the like across two lines.

If this option is omitted, it is assumed that no command file has been specified.
(2) CPU bug patch option

-Xv850patch [=num]

This option specifies the -p[num] option for as850 according to the num specification for an assembly
language source file output by the ca850 to output a code corresponding to a CPU fault (refer to "4.7.2
Options for avoiding CPU faults").

The specifiable values for num are 1, 2, 3, 4, 4a, 5,6, 7, 8,9, 10, and 11.

If =num has been omitted, "1, 2, 3, 5, 6, 7, 8, 9, 10" is assumed as the num specification.

This option is to avoid faults of the CPU. Whether a fault that has occurred is of the CPU used, refer to the

documents supplied with the CPU.

Note that only the -Xv850patch=11 option is processed by the ca850. If the -Xv850patch=11 option is

specified, the following instructions are not output.

- set1, clr1, and not1

- Misalign access of V850Ex core/V850E2 core (during structure packing)

If these instructions are used in an asm statement and an assembly language source file, they are output as
is because asm statements and assembly language source files are not checked.

Also, when having specified the -Xv850patch=11 option and describing bit access to the peripheral 1/0
register in the program, access to the peripheral I/O register is in word (4-byte) units. Change descriptions to
byte/half-word unit operation, not bit access.

CPU core and patch option related to this bug are as follows (for the newest version uPD70(F)3xxx, not
including maintenance or obsolete products).

To check whether or not the failure affects the CPU used, refer to the CPU’s documentation.

62 User's Manual U18512EJ1VOUM

CHAPTER 3 C COMPILER

Table 3 - 2 Correspondence Between CPU Core and -Xv850patch Option for This Bug

CPU Core -Xv850patch=11

V850 core —

V850E/MS1

V850E1 core

V850ES core

Remark A: Affected

OK': Corrected (for the newest version uPD70(F)3xxx, not including maintenance or obsolete
products)
---: Not affected

User’'s Manual U18512EJ1VOUM 63

CHAPTER 3 C COMPILER

3.5.10 Option to each module
The ca850 can pass options to each module.

-Wx,option
This option passes option as an option for module x. If option includes a comma, the option is assigned as

multiple options, each delimited by a comma. The following modules can be specified as module x.

p Pre-optimizer (popt)

o Global optimization (opt)

i Machine-dependent optimization (impr)

a Assembler (as850)

I Linker (Id850)

64 User's Manual U18512EJ1VOUM

CHAPTER 3 C COMPILER

(1) Pre-optimizer (popt)

-Wp, -D

Enables reduction of memory usage at compile time.

-Wp, -Gnum
Restricts the stack size for a function subject to inline expansion by num size specification in intermediate
language so that inline expansion is not performed for any value larger than the num value.
Refer to the -Wp,-I[=file] option’s description below with regard to the range of num values. -Wp,-G32 is

assumed as the specification if this option is omitted.

-Wp, -Nnum
Restricts the intermediate language size for a function subject to inline expansion by the num value
specification so that inline expansion is not performed for any value larger than the num value.
Refer to the -Wp,-I[=file] option’s description below with regard to the range of num values.
-Wp,-N128 is assumed as the specification if this option is omitted and Level 2 Advanced option (Exec.

Speed) is specified, otherwise -Wp,-N24 is assumed as the specification.

-Wp, -S

Unconditionally performs inline expansion for static functions that have been referenced only once.

-Wp,-1l[=file]

Outputs function information to standard output or additional output to the file. The displayed information
includes a range of values to be specified for the -Wp,-Gnum and -Wp,-Nnum options described above. For
example, in the case of stack size, inline expansion is performed if the called function’s value is not greater
than the value specified for -Wp,-Nnum. Note that the stack size output using this option is different from the
stack size actually used by functions because it is the size in the intermediate language output by the pre-

optimizer.

-Wp, -r[_funcname]
Given the "funcname" function as the entry function, this deletes the functions called by this function that are

no longer needed after expansion. Enter a

at the start of the function name specified in funcname.
If funcname is omitted, "_main" is assumed as the specification. Functions that are called only by assembly-
language programs are not recognized as called functions and are instead deleted as unnecessary functions.

However, interrupt functions and real-time OS tasks are not included as functions subject to deletion.

-Wp, -inline

Executes inline expansion of only the function for which #pragma inline is specified.

-Wp,-no_inline

Suppresses inline expansion of all functions including the function for which #pragma inline is specified.

User’'s Manual U18512EJ1VOUM 65

CHAPTER 3 C COMPILER

(2) Global optimization (opt)

-Wo, -01 [num]

66

This option expands a loop num times using for and while. This option can be specified only for "Level 2
Advanced option (Exec. Speed)".

The loop is converted into execution of a loop that is executed N times (N is a constant) and execution of a
loop that includes a code expanded num times. If the code size after expansion is too great or if the number of
times of execution of the loop is too few, the number of times of expansion may decrease, or the loop may not

be expanded at all. In addition, a loop having a complicated structure, such as having inner loops, may not be

expanded. If 0 or 1 is specified as num, expansion is suppressedNOte. If num is not specified, it is assumed

that 4 is specified. Specify num in decimal numbers.

Example
To expand a loop that is executed 10 times four times
i=0; i=0;
while(i < 10) { /* Processing */
/* Processing */ i=1;
+41; /* Processing */
} i=2;
while (i < 10) {
/* Processing */
++1;
/* Processing */
++1;
/* Processing */
++1;
/* Processing */
++1;
}
Note This option is useful when loop expansion does not need to be performed with "Level 2 Advanced

option (Exec. Speed)" specified.

-Wo,-Op[=file]

[PM+]

This option rearranges external variables allocated to a section other than const/sconst sequentially, starting
from the largest alignment size. If the intermediate file file is specified, the definition and temporary definition
of variables in the source file allocated to a section other than const/sconst having external linkage are moved
to file. After being moved, the definition and temporary definition of the source file is treated in the same

manner as declaration. An error does not occur even if file does not exist at the beginning.

User's Manual U18512EJ1VOUM

CHAPTER 3 C COMPILER

-Wo, -XFo
[PM+]
Outputs code giving priority to the code size when a branch occurs. However, the debug information will be
affected. This option is valid when -Og, -O, -Os, or -Ot is specified. If this option is omitted, a code giving

priority to debug information is output when a branch occurs.

-Wo, -X1lo

Expands a loop under the condition of the version CA850 Ver. 2.02 or earlier.
(3) Machine-dependent optimization (impr)

-Wi,-D
The amount of memory used at compile time can be reduced.
Note that this may slow down the compilation speed. This is specified if too much memory is used so that

the compiler is unable to operate normally.
-Wi, -04

[PM+]
Strictly analyzes the data flow and executes the following optimization.
(@) Optimization of register straddling over branch instruction
(b) Optimization of absolute value operation
(c) Optimization of cmp instruction straddling over branch instruction
(d) Optimization of restore instruction straddling over branch instruction
Note that this may slow down the compilation speed. Specify this option if you want data flow analysis
anyhow when -O, -Os or -Ot has also been specified.
-Wi,-P
[PM+]

Suppresses optimization that aligns labels. As a result, a smaller code size is enabled.

(4) Assembler (as850)
Refer to "4.4 Types and Features of Options".

(5) Linker (1d850)
Refer to "5.3 Types and Features of Options".

User’'s Manual U18512EJ1VOUM 67

CHAPTER 3 C COMPILER

3.6 Settings Made via PM+

This section describes the dialog boxes that are used to set the command options of the ca850 for the target

project's C language source files.
The [Compiler Common Options] dialog box is used to set the command options commonly used by
compilers. It is opened by the following method.
(1) Select [Tool] - [Compiler Common Options]
The [Compiler Options] dialog box is used to set the ca850 command options for the target project's C source
files. After setting the project via the [Project] menu, use either of the following methods to open this dialog box.
- Set for all C language source files of the target project

(1) Select [Tool] - [Compiler Options].

- Set for a specific C language source file

(1) Select the name of the source file to be set a option in the [Project] window on the PM+.

(2) Select [Individual Compiler Options...] item that is displayed by clicking the right mouse button.

When a specific setting has been performed, the general option settings become invalid for that file. For a file
for which specific options have been set, the icon at the head of the file name of the source file in the [Project]
window changes to green.

To make specific option settings invalid and have general option settings take effect, click the [Individual
Compiler Option Release] item that is displayed by clicking the right mouse button, or click the [Delete Source

Option] button added to the "[General]", "[Others]" and "[Difference]" tabs in the [Compiler Options] dialog box.

The option name displayed in "[]" in each option in the option settings dialog box is the option name for
starting from the command prompt. There also are options that can be specified only when starting from the

command prompt, such as when an output object name is specified.

To set a mode in which debug information is output, select the "Generate Debug Information[-g]" check box on

the [Optimization and Debug Information] tab in the [Compiler Options] dialog box.

When the path of an include file is set or changed, select [Build] - [Update Dependencies], and then select
[Project] - [Export Makefile].

68 User's Manual U18512EJ1VOUM

CHAPTER 3 C COMPILER

3.6.1 [Compiler Common Options] dialog box

At the upper part of this dialog box, the following six tabs are displayed.

The contents of this dialog box depend on selecting the following tab.

Table 3 - 3 [Compiler Common Options] Dialog Box

Tab Description
[File] Settings related to output files
[Startup] Settings related to startup file

[Link Directive]

Settings related to link directives

[ROM] Settings related to ROMization
[Flash] Settings related to flash memory
[Device] Setting of options related to device

The following four tabs are displayed for a library creation project.

Table 3 - 4 [Compiler Common Options] Dialog Box (library)

Tab

Description

[File]

Settings related to output files

[ROM] (library)

Settings related to ROMization when library is created

[Flash] (library)

Settings related to flash memory when library is created

[Device]

Setting of options related to device

User’'s Manual U18512EJ1VOUM

69

CHAPTER 3 C COMPILER

[File]

This tab is used to make settings related to output files.

Figure 3 - 2 [Compiler Common Options] Dialog Box ([File] Tab)

Compiler Common Options

File lStartup] Link Directive | ROM | Flash | Device |

Interrmediate Output Directony:

[Browse...

Final Output Directony:

| Browse. ..

Enar File:

| Browse. .

Thig edit box can be specified a directory which object files, azzembler source files,
azzemble list files. freguency information filez and external wariable file are output,
Azzembler zource files, azzemble lizt files and frequency information files are output
there when directory name or file name is specified by the option.

E sternal variable file is output there when file name with path iz specified by the
optioh.

OF. | Cancel i Help

(1) Intermediate Output Directory
This edit box is used to set an intermediate output folder.
The intermediate output folder is a folder to which object files, assembly language source files, assemble list

files, frequency information files, and external variable files are output.

(2) Final Output Directory
This edit box is used to set a final output folder.
The final output folder is a folder to which executable object files, hex files, archive files, link map files, error
files, and section files are output.

However, if a file name with a path is specified for each option, these files are output there.

(3) Error File
This edit box is used to set a file to which error and warning messages are output.

When this edit box is set, the "+err_file" option is set for all the compiler tools.

70 User's Manual U18512EJ1VOUM

CHAPTER 3 C COMPILER

[Remark]
If the folder specified as the "Intermediate Output Directory" or "Final Output Directory" does not exist when

the [OK] or [Apply] button is clicked, the following message box is displayed to check if a folder is to be created.

Figure 3 - 3 Checking Creation of Folder

Compiler Common Options

::/ cilisample

Intermediate output directary is nok exist, make it?

If the [Yes] button is clicked in this message box, a folder can be created.

If no folder is created, options cannot be set.

User’'s Manual U18512EJ1VOUM 71

CHAPTER 3 C COMPILER

[Startup]

This tab is used to make settings related to the startup file.

Figure 3 - 4 [Compiler Common Options] Dialog Box ([Startup] Tab)

Compiler Common Options

Fie Staitup | Link Directive | ROM | Flash | Device |

Startup File:
[ﬁlowse...| Edit by Text Editar

& s

Thiz edit box can be specified an assembler source file or an object file.
wihen it izn't specified. The default startup file iz uzed.

By checking "Use Individual Option" check box. the aszembler option of the
startup file can be used,

The azsembler option of the startup file can be setup by "Set Option' button,

Ok | Cancel i Help

(1) Startup File
This edit box is used to set a startup file.
Set an assembly language source file or object file in this edit box. If a startup file is not set, the default startup
file (crtN.o or crtE.o) is used.
An assembly language source file can be edited by using the [Edit by Text Editor] button Note that a space can

be used in a folder name in this dialog box but a space cannot be used in a file name.

(2) Use Individual Option
If this check box is checked, the individual assembler options of a startup file are used.

The assembler options of the startup file can be set by using the [Set Options...] button

72 User's Manual U18512EJ1VOUM

CHAPTER 3 C COMPILER

[Link Directive]

This tab is used to make settings related to link directives.

Figure 3 - 5 [Compiler Common Options] Dialog Box ([Link Directive] Tab)

Compiler Common Options

Fie | Statup Link Directive | ROM | Flash | Devics |

Link. Dvirective File:
[Browse... | Edit by Text Editar

Compatibility of Link Directive:

|Defau|t ﬂ

Thig edit box can be specified a link directive file,
wihen it izn't specified. The default link, directive iz uzed.
when it iz zpecified, -0 option of the linker iz zet.

OF. | Cancel i Help

(1) Link Directive File
This edit box is used to set a link directive file.
When a link directive file is set, the -D option is passed to the linker.
The link directive file can be edited by using the [Edit by Text Editor] button
In this edit box, a space can be used in a folder name but not in a file name. If an extension ('.dir' is
recommended) is not used in a file name, a warning message indicating that build processing may not be

performed correctly is displayed.

(2) Compatibility of Link Directive
This edit box is used to specify compatibility of the link directive with that of a version earlier than CA850 Ver.

2.70.

The following four items can be specified in this edit box.

- Default

- V2.40 or earlier
- V2,50

- V2.60

If a previous version is specified, the "-Xolddir" option is passed to the linker.

Caution "V2.40 or earlier" includes Ver. 2.4x.

User’'s Manual U18512EJ1VOUM 73

CHAPTER 3 C COMPILER

[ROM]

This tab is used to make settings related to ROMization.

Figure 3 - 6 [Compiler Common Options] Dialog Box ([ROM] Tab)

Compiler Common Options

File] Startup] Link Directive ROM]Flash] Device]

By checking this check box, object files that uses ROM processor are created.
when it iz checked. << option of the compiler, -Ir option of the linker and rompert
file iz zet, and ROM proceszor iz uzed.

OF. | Cancel i Help

(1) Create Object for ROM
When this check box is checked, an object supported by the ROMization processor is generated.
When this check box is checked, the -Xr option is passed to the compiler, the -Ir option and rompcrt file are

passed to the linker, and the ROMization processor is used.

(2) ’rompcrt’ File
This edit box is used to specify the file name of the rompcrt file that is specified when ROMization is
performed. If no file name is specified, the default file name (rompcrt.o) is used.
An assembly language source file can be edited by using the [Edit by Text Editor] button Note that, in this edit

box, a space can be used in a folder name but not in a file name.

(3) Use Individual Option
When this check box is checked, an individual assembler option for the rompcrt file is used.

The assembler option of the rompcrt file can be set by using the [Set Option...] button

74 User's Manual U18512EJ1VOUM

CHAPTER 3 C COMPILER

[Flash]

This tab is used to make settings related to the flash area.

Figure 3 - 7 [Compiler Common Options] Dialog Box ([Flash] Tab)

Compiler Common Options

File I Staltup] Link. Directive1 ROM Flash lDevice]

By checking this check box, object files that uses re-linking function of the flash
area are created.
Check, iz neceszsary with both the flash area side and the boot area side.

OF. | Cancel i Help

(1) Create Flash Object
When this check box is checked, an object file with a function to relink a flash area is generated.
This option must be specified on the flash area side and boot area side.

For details of objects that support flash area, refer to "5.6 Flash Memory/External ROM Relink Function".

(2) Branch Table Address
Specify the address from which the branch table is to be allocated in hexadecimal numbers in C language.
The same addresses must be specified for both the flash area and boot area. When an address is specified,

the -ext_table option is specified for the linker.

(3) Boot Object File
This edit box is used to set a boot object file.
When a boot object file is specified, the -Wa,-zf option is passed to the compiler, the -zf option is passed to the
assembler, and the -zf option is passed to the linker.

Note that, in this edit box, a space can be used in a folder name but not in a file name.

User’'s Manual U18512EJ1VOUM 75

CHAPTER 3 C COMPILER

[Device]

This tab is used to set options related to the device.

Figure 3 - 8 [Compiler Common Options] Dialog Box ([Device] Tab)

Compiler Common Options

File | Statup | Link Directive | ROM | Flash Devics |

By checking this check box, 266ME mode iz available.
when it iz checked. <2560 option of the compiler, the aszembler and the linker iz
zet.

OF. | Cancel i Help

(1) 256M Byte Mode
When this check box is checked, the 256 M bytes mode is specified. When it is checked, the -X256M option is
passed to the compiler, assembler, and linker.
As a result, the memory space is treated as a 256 M bytes space. If this option is not specified, the memory
space is treated as a 64 M bytes space and addresses are resolved.
Set this option in accordance with the chipset to be used. With the V850Ex core, the physical address space
has 256 M bytes in many cases. Specify this option when an creating an application using a space between 64

M bytes and 256 M bytes.

(2) BPC Register

This box is used to specify the higher address of a programmable peripheral I/O register.

When an address is specified, the -Xbpc option is passed to the compiler and the -bpc option is passed to the
as850. If the target device (such as the V850E/IA1) has a programmable peripheral 1/O register function and if
an address that can be modified (= value to be set to the BPC register) is set, the value must be determined
when the application is compiled (assembled). If this option is used, the application is compiled (assembled)
with the specified value.

When specifying this option, be sure to specify a value. A value can be specified in binary, octal, decimal, or
hexadecimal numbers. If an illegal value is specified, or if a value exceeding the permissible range of the BPC

register is specified, a warning message is output and this option is ignored.

76 User's Manual U18512EJ1VOUM

CHAPTER 3 C COMPILER

[Example]

-Xbpc=0x1234

In the above case, if the target device is the V850E/IA1, the start address of the programmable peripheral I/

O register area is treated as 0x48d0000, which results from shifting this value 14 bits to the left.

Only one value can be set for the overall application. If "-Xbpc" and "-bpc" are specified as options of each file,
the value of the address must be the same among the files. However, this option does not have to be set for a
file that does not use a programmable peripheral /O register.lf a target device without a programmable
peripheral 1/O register function is used or if the application is assembled in common for the V850 core/V850Ex
core/V850E2 core, a warning message is output when this option is specified, and this option is ignored.

This option is used to determine the address of a programmable peripheral I/O register when an application is
compiled (assembled), and does not reflect the actual value on the BPC register. To execute an operation, a
value must be set to the BPC register separately by using the startup module.

Refer to CA850 for C Language User’s Manual for a sample of the startup routine. The startup module

included in the package also has a (commented) sample.

[Example]
If the part of the start address of the programmable peripheral I/O register that can be modified is
"0x1234" when the V850E/IA1 is used, and if the flag "0x8000" that enables use of this function is set, make

the following description in the startup module.

mov 0x9234,r10- - 0x1234 | 0x8000 = 0x9234
st.hrl0, BPC

The as850 outputs the reserved section .bpc if this option is specified or if a programmable peripheral I/O
register is actually referenced even if this option is omitted. This section is used for checking while the linker is
being executed. The .bpc section is a special section reserved for information, and is not loaded to memory.

Therefore, it does not have to be described in the link directive as is the case with a normal section.

(3) Security ID

This edit box is used to set the "security ID" of a flash memory device.

This box cannot be used if a device not supporting the security ID function is used.

Specify the ID in hexadecimal numbers of 10 bytes or less (including Ox at the start). If the specified value
runs short of 10 bytes, the higher bits are filled with 0. If 10 bytes are exceeded, an error is output. If an object
for a device not supporting the security ID function is specified when the linker is executed, a warning message
is output and the specified ID is ignored.

For example, to set the security code "0x112233445566778899aa", enter this value as is in the edit box.

User’'s Manual U18512EJ1VOUM 77

CHAPTER 3 C COMPILER

[ROM] (library)

This tab is used to make settings related to ROMization when a library is created.

Figure 3 - 9 [Compiler Common Options] Dialog Box ([ROM] Tab (library))

Compiler Common Options

Fie FOM |Flash | Devics|

By checking this check box, object files that use: ROM processor are created.
Wwhen it iz checked., 4 option of the compiler iz zet,

OF. | Cancel i Help

(1) Create Object for ROM
When this check box is checked, an object supported by the ROMization processor is generated.

When this check box is checked, the -Xr option is passed to the compiler.

78 User's Manual U18512EJ1VOUM

CHAPTER 3 C COMPILER

[Flash] (library)

This tab is used to make settings related to the flash memory when a library is created.

Figure 3 - 10 [Compiler Common Options] Dialog Box ([Flash] Tab (library))

Compiler Common Options @

Fie |ROM Flash | Device|

By checking this check box, object files of the flash zide that uzes re-inking
function of the flazh area are created.

Check, izn't neceszary with the boot area zide and the normal object.

Whhen it iz checked, AW a.-2f option of the compiler and -2f option of the azsembler
iz zet,

OF. | Cancel i Help

(1) Create Flash Side Archive File
When this check box is checked, an object file is generated on the flash area side of the flash area relink
function.
This check box does not have to be checked when an object is to be generated on the boot area side and
when a normal object is used.

For details of flash-supporting objects, refer to "5.6 Flash Memory/External ROM Relink Function".

User’'s Manual U18512EJ1VOUM 79

CHAPTER 3 C COMPILER

3.6.2

[Compiler Options] dialog box

The following 12 tabs are displayed in the upper part of the compiler options setting dialog box.

The contents of this dialog box depend on selecting the following tab.

Table 3 - 5 [Compiler Options] Dialog Box

Tab Description
[General] Setting of compiler options often used
[Input File] Setting of options related to input to compiler
[Preprocessor] Setting of options related to compiler preprocessing

[C Language]

Setting of options related to C language specifications

[Optimization and Debug
Information]

Setting of optimization level in source units and debug information

[Detail of Optimization]

Setting of options related to optimization in phase units

[External Register]

Settings related to external variable registers

[Output File]

Setting of options related to output files

[Output Code]

Setting of options related to output codes

[Message]

Setting of options related to messages

[Assembler]

Setting of options of assembler used when C language source is assembled

[Others]

Other settings

The following 11 tabs are displayed for an individual source option setting.

80

Table 3 - 6 [Compiler Options] Dialog Box (Individual Source)

Tab Description
[General] Setting of compiler options often used
[Preprocessor] Setting of options related to compiler preprocessing

[C Language]

Setting of options related to C language specifications

[Optimization and Debug
Information]

Setting of optimization level in source units and debug information

[Detail of Optimization]

Setting of options related to optimization in phase units

[Output File]

Setting of options related to output files

[Output Code]

Setting of options related to output codes

[Message]

Setting of options related to messages

[Assembler]

Setting of options of assembler used when C language source is assembled

[Others]

Other settings

[Difference]

Indication of differences between the compiler options for the overall C
language sources and the individual source options.

User's Manual U18512EJ1VOUM

CHAPTER 3 C COMPILER

[General]

This tab is used to set options that are often used for the compiler.

Figure 3 - 11 [Compiler Options] Dialog Box ([General] Tab)

Detail of Optimization] Esternal Regizter] Output File] Output Code] Mezzage] Azzembler] Dthers]
General l Input File] Preprocessar] C Language] Optimization and Debug Infarmation]

¥ LUze Comme ot Optic [~ Assembler Source[-Fa]: Brovse

DOptimization Level: |

[Assemble List[-Fv]: S aAET

v Generate Debug Information]-g] |

wharning Lewvel:

|Leve| 1 ﬂ

[Werbose Maode[-v]
Define Macro[-D]: Edit...

[~ Output Source Comment[-<c]

Command Line Option;

-cpu 3107 -g

0k | Cancel Apply Help

(1) Use Common Optimization Option
This check box is valid when "Individual source option" is set. It specifies whether optimization specified in
"Optimization Level" below this check box is used or not as optimization that is performed on individual sources.
If this check box is checked, optimization of the level specified by a global option is applied to the target

source. When "Set global option" is specified, this check box is dimmed and cannot be specified.

(2) Optimization Level
Select the optimization level to be used from the drop-down list.
This option is the same as the item set for "Optimization" on the [Optimization and Debug Information] tab.

The following types of optimization can be specified.

- Optimize for Debugging[-Od]
This option generates codes emphasizing logic debugging, without putting stress on the ROM capacity

and execution speed. lIts function is equivalent to the default optimization of CA850 Ver. 2.41 or earlier.

- Default Optimization
This option generates codes emphasizing logic debugging. It executes optimization within a range where

logic debugging is not affected

User's Manual U18512EJ1VOUM 81

CHAPTER 3 C COMPILER

- Standard Optimization[-Og]
This option executes appropriate optimization. It executes optimization that allows debugging of the C
language source in most cases. Because external variables are assigned to registers, both the execution

speed and code size are improved from those of the default option.

Level 1 Advanced Optimization[-O]

This option executes optimization emphasizing the ROM capacity.

Level 2 Advanced Opt. (Object Size)[-Os]

This option executes the maximum optimization placing the utmost emphasis on the ROM capacity.

- Level 2 Advanced Opt. (Exec. Speed)[-Ot]
This option executes the maximum optimization placing the utmost emphasis on the execution speed

rather than on the ROM capacity.
For details of optimization, refer to "3.7.3 Efficient use of optimization".

(3) Generate Debug Information[-g]
This check box is used to generate debug information. Check this box to debug a program, for example, when
a C language source is debugged with the debugger. When this box is checked, the -g option is passed to the

compiler.

(4) Warning Level
Select the level of the warning messages to be output from the drop-down list. This option is the same as the

item set for "Warning Level" on the [Message] tab. The following levels of warning messages can be selected.

Not output[-w] Warning messages suppressed
Level 1 Ordinary warning messages output (default).
Level 2[-w2] Detailed warning messages output.

(5) Verbose Mode[-v]
This check box is used to display the detailed execution status of the ca850 on the Output window. When this
box is checked, execution status in each internal phase of the compiler is displayed. This option is the same as

the item set for "Verbose Mode[-v]" on the [Message] tab.

(6) Assembler Source[-Fs]

This check box is used to specify whether an assembly language source resulting from compiling a C language
source is output or not. When it is checked, the edit box below this check box can be used to specify a folder name
or file name. If a folder name is specified in this edit box as "Setting of global options" and if the specified folder
does not exist, a message box asking you if a folder is to be created is displayed. If nothing is specified in the edit
box, an assembly language source is output to the project folder with the extension of the C language source file
name changed to .s. To specify another output destination, specify a folder name in the edit box.

If a file name is specified for "Setting of global options", an assembly language source for the source compiled
last is output because the same file name is overwritten. A file name can be specified when a file name is
specified for the individual source options setting. This option is the same as the item set for "Assembler

Source[-Fs]" on the [Output File] tab.

82 User's Manual U18512EJ1VOUM

CHAPTER 3 C COMPILER

(7) Assemble List[-Fv]

This check box is used to specify whether an assemble list resulting from compiling a C language source is
output. When it is checked, the edit box below can be used to specify a folder name or file name.

If a folder name is specified in this edit box as "Setting of global options" and if the specified folder does not
exist, a message box asking you if a folder is to be created is displayed.

If nothing is specified in the edit box, an assembile list is output to the project folder with the extension of the C
language source file name changed to .v. To specify another output destination, specify a folder name in the edit
box.

If a file name is specified for "Setting of global options”, an assembly language source for the source compiled
last is output because the same file name is overwritten. A file name can be specified when a file name is
specified for "individual source options".

This option is the same as the item set for "Assemble List[-Fv]" on the [Output File] tab.

(8) Output Source Comment[-Xc]
This check box is used to output a C language source program as a comment to the assembly language
source file and assemble list that are output. This option is the same as the item set for "Output Source

Comment[-Xc]" of the [Output Code] tab.

(9) Define Macro[-D]
This edit box is used to specify a macro name to be defined, in the form of "macro name = defined value def".

If = defined value def is omitted, def is assumed to be 1.

Example

test = 2 /* macro "test" is defined as "2" */

It is assumed that #define name def is described before a C language source program. To define two or more
macros, delimit each with ";" (semicolon). By selecting the [Edit...] button, the [Edit Option] dialog box can be
displayed and the defined macro can be edited in this dialog box. Blanks must not be used in a macro name.

This option is the same as the item set for "Define Macro[-D]" on the [Preprocessor] tab.

(10) Command Line Option
This area displays the options set in this dialog box by command line options.

This area is for reference and cannot be written to.

[Button]

(a) [Delete Source Option] button
This button can be selected when option settings for individual source files have been made, and is not
displayed (is dimmed) and cannot be selected when options for the overall project have been specified.
When selected, this button deletes any option specified for a particular source file and applies only global

options.

User’'s Manual U18512EJ1VOUM 83

CHAPTER 3 C COMPILER

[Input File]

This tab is used to set options related to input to the compiler.

Figure 3 - 12 [Compiler Options] Dialog Box ([Input File] Tab)

Compiler Options @

Dretail of Optimization] External Register] Output File] Output Code] Meszage] Agzembler] Elthers]
General Input File l Preprocessar] C Language] Dptimization and Debug Information]

Section File[-+zec_file]: Edit...
f

Far Jurip File[+=Far_jurp]: Edit...

Command Line Option:

-cpu 3107 g

QK. | Cancel Apply Help

(1) Section File[-Xsec_file]
This specifies a section file name (refer to "CHAPTER 9 SECTION FILE GENERATOR?"). A file name can be
set in the text box. A space can be used in a folder name but not in a file name.
Since a section file is divided into several files, use a semicolon (;) to delimit file names when specifying two or
more file names. Selecting the [Edit...] button displays the [Edit Option] dialog box, where the file name items

can be edited.

(2) Far Jump File[-Xfar_jump]

Use the -Xfar_jump option to specify the Far Jump file settings.

The Far Jump file outputs codes using the jmp instruction for the branch instruction of a function described in
the file. If the body of the function is in a range to which execution cannot branch by the jarl and jr instructions
resulting in an error being output by the 1d850, recompile by using this option.

The file name needs an extension. The recommended extension is ".fjp".

A space can be used in a folder name but not in a file name. Selecting the [Edit...] button displays the [Edit

Option] dialog box where files can be selected.

84 User's Manual U18512EJ1VOUM

CHAPTER 3 C COMPILER

(3) Command Line Option
This area displays the options set in this dialog box by command line options.

This area is for reference and cannot be written to.

User’'s Manual U18512EJ1VOUM

85

CHAPTER 3 C COMPILER

[Preprocessor]

This tab is used to set options related to the preprocessor.

Figure 3 - 13 [Compiler Options] Dialog Box ([Preprocessor] Tab)

Detail of Optimization] External Register] Output File] Output Code] Meszage] Agzembler] Elthers]
General] Input File Preprocessor] C Language] Optimization and Debug Infarmation]

Include Search Pathl-1]: Edit...
|

Drefine Macral-D]: Edit...

Undefine Macral-UT: Edit...
|

Limit of Mumber of Macra[<m]; [Preserve Preprocessor Comment[-C]
[~ Use Trigraph[-t]
I Use C++ Style Comment[+<cxxcom]

Command Line Option:

-cpu 3107 g

k. | Cancel Apply Help

(1) Include Search Path[-I]
This specifies the folders to be searched when searching for header files. The specified folders will be
searched before the standard folder is searched. When specifying several paths, use a semicolon ";" to delimit

the path specifications. Selecting the [Edit...] button displays the [Edit Option] dialog box, where path items can
be edited.

Example

.\include;C:\include

When this option is omitted, only the standard folderN°® 1 will be searchedN°®® 2. This option cannot be

set independently for each source file, and is always used for all files.

Notes 1 The standard folder is "install folder\inc850".

2 When using the coding format that encloses a file name with ("), the folder where the source file

exists is searched first.

86 User's Manual U18512EJ1VOUM

CHAPTER 3 C COMPILER

(2) Define Macro[-D]
This uses the "macro name name = definition value def' format to define macro names. If the "=definition

value def" specification is omitted, a value of 1 is assumed as def.

Example

test = 2 /* Macro "test" is defined as "2" */

It is assumed that "#define name def" is entered before a C language source program. When specifying
several macros, use semicolons ";" to delimit them.
Selecting the [Edit...] button displays the [Edit Option] dialog box, where define macro names can be edited.

Spaces cannot be used in the macro name.
(3) Undefine Macro[-U]

Use this to specify macro names to be rendered invalid. It is assumed that "#undef name" is entered before a
C language source program. When specifying several macros, use semicolons ";" to delimit them.

Selecting the [Edit...] button displays the [Edit Option] dialog box, where undefine macro names can be edited.

Example

__3201__ /* Macro"__3201__"is rendered invalid. */

Spaces cannot be used in the macro name.

(4) Limit of Number of Macro[-Xm]
This specifies a decimal number of up to 32767 as the upper limit of the number of macro identifiers. The
default value is 2047. This option is used to expand the size of the buffer used by the preprocessor. However, a

concrete value such as the number of characters secured for the buffer cannot be obtained.

(5) Preserve Preprocessor Comment[-C]
This check box is used to include the comments of the source program in the preprocessing output of a C
language source program. This box is valid only when the "Preprocessed Source" on [Output File] tab is

specified.

(6) Use Trigraph[-t]

This replaces the trigraph seriesNote.

Note The trigraph series replaced with a single character, as prescribed in the ANSI standard. Refer to

documents related to the ANSI standard.

(7) Use C++ Style Comment[-Xcxxcom]
In addition to ordinary comments, this allows any text from "//" to the end of the line to be handled as

comments (C++ comment style).

(8) Command Line Option
This area displays the options set in this dialog box by command line options.

This area is for reference and cannot be written to.

User’'s Manual U18512EJ1VOUM 87

CHAPTER 3 C COMPILER

[C Language]

This tab is used to set options related to C language specifications.

Figure 3 - 14 [Compiler Options] Dialog Box ([C Language] Tab)

Detail of Optimization] Euternal Register] Output File] Output Code] Meszage] Agzembler] Elthers]
General] Input File] Preprocessar C Language l Optimization and Debug Infarmation]

Sign of Bit figld ‘int';

Sign of 'char"

|Default[signed] ﬂ

Type aof 'enum”:

| Defaullint] -

[Strict AMSI C Rulel-ansi]
[™ Use Extension of CCF8K[-ccisk]
[Strict Integer Extension[-+<e]

[~ Treat Tentative Definition az Definition]-+defvar]

Command Line Option:

-cpu 3107 g

k. | Cancel Apply Help

(1) Sign of Bit field ’int’
This area is used to specify the signed or unsigned status of an integer type bit field for which the signed/
unsigned status has not been specified. The default setting is "signed".
(2) Sign of ‘char’
This area is used to specify the signed or unsigned status of simple char type for which the signed/ unsigned
status has not been specified. The default setting is "signed".
(3) Type of ’enum’
This edit box is used to specify which integer type an enumeration type matches. char, unsigned char, short,
unsigned short, and int can be selected. int is assumed by default.
(4) Strict ANSI C Rule[-ansi]

Check this box to compile strictly according to the language specification in the ANSI standards.

(5) Use Extention of CC78K[-cc78k]

This check box specifies whether the expanded language specification of the CC78Kx is valid.

If it is checked, the effect is the same as specifying the -cc78k option.

88 User's Manual U18512EJ1VOUM

CHAPTER 3 C COMPILER

(6) Strict Integer Extension[-Xe]

Note gre used

When this box is checked, __ _mul/___mulu and ___div/___divu from the runtime library
instead of mulh and divh directives for integers having data lengths of 16 bits or less.
Multiplication and division are performed strictly according to the ANSI standards, although this slows down

the processing speed. If this check box is not selected, the mulh and divh instructions are used.

Note The runtime library in the CA850 is provided as the ca850’s standard library in order to fulfill the ANSI
standards with regard to instructions that are not included in the V850 microcontrollers architecture.

For details of the runtime library, refer to CA850 for C Language User’s Manual.

(7) Treat Tentative Definition as Definition[-Xdefvar]

When this box is checked, tentative definitions are treated as definitions.

(8) Command Line Option
This area displays the options set in this dialog box by command line options.

This area is for reference and cannot be written to.

User’'s Manual U18512EJ1VOUM 89

CHAPTER 3 C COMPILER

[Optimization and Debug Information]

This tab is used to set optimization level in source units and debug information.

Figure 3 - 15 [Compiler Options] Dialog Box ([Optimization and Debug Information] Tab)

Detail of Optimization] Esternal Regizter] Output File] Output Code] Mezzage] Azzembler] Dthers]
General | InputFile | Preprocessor | CLanguage Optimization and Debug Information

Source Files: Optirnization

¥ Use

[g] main.c

" Dptimize for Debugaingl-0d]

* Default Optimization

" Standard Optimization[-0g]

™ Level 1 Advanced Optimization[-0]

" Level 2 Advanced Opt.[Object Size][-0z]
" Level 2 Advanced Opt. (Exec. Speed)[-0t]

W Generate Debug Information(-g]

Command Line Option;

-cpu 3107 -g

k. | Cancel Apply Help

(1) Source Files

This is a list of source files registered for the current project.

When a source file is selected from this list, the optimization options and debug information setting for that
specific C language source file are displayed. If you select [Common Option] from this list, the settings that apply
to all options are displayed. At that point, the "Use Common Optimization Option" check box becomes invalid.

In the optimization options that are displayed when a source file is selected from this list, the "Use Common
Optimization Option" check box is checked if the specified settings are the same as the default settings (which
apply to all options). If any of the specified settings differ from the default settings, the currently specified
optimization level is checked. The "Generate Debug Information[-g]" check box is checked if generation of

debug information has been specified.

90 User's Manual U18512EJ1VOUM

CHAPTER 3 C COMPILER

(2) Optimization

(@) Use Common Optimization Option
This option is checked when using settings that apply to all options without using the optimization levels

below this box. When this option is checked, the optimization level becomes invalid.

Optimize for Debugging[-Od]
This option generates codes emphasizing logic debugging, without putting stress on the ROM capacity

and execution speed. lIts function is equivalent to the default optimization of CA850 Ver. 2.41 or earlier.

Default Optimization
This option generates codes emphasizing logic debugging. It executes optimization within a range where
logic debugging is not affected.
- Standard Optimization[-Og]

This option executes appropriate optimization. It executes optimization that allows debugging of the C
language source in most cases. Because external variables are assigned to registers, both the execution
speed and code size are improved from those of the default option.

- Level 1 Advanced Optimization[-O]

This option executes optimization emphasizing the ROM capacity.

Level 2 Advanced Opt. (Object Size)[-Os]
This option executes the maximum optimization placing the utmost emphasis on the ROM capacity.

Level 2 Advanced Opt. (Exec. Speed)[-Ot]

This option executes the maximum optimization placing the utmost emphasis on the execution speed

rather than on the ROM capacity.

(3) Generate Debug Information[-g]
This check box is used to generate debug information. Check it to debug a program, such as when a C
language source is debugged with the debugger. It is also possible to specify whether or not debug information

will be output for each source.

(4) Command Line Option
This area displays the options set in this dialog box by command line options.

This area is for reference and cannot be written to.

User’'s Manual U18512EJ1VOUM 91

CHAPTER 3 C COMPILER

[Detail of Optimization]

This tab is used to set options related to optimization in phase units.

Figure 3 - 16 [Compiler Options] Dialog Box ([Detail of Optimization] Tab)

Compiler Options @

General l Input File I Freprocessor] C Language I Optimization and Debug Information]
Detail of Dptirnization] Extemal Register | Output File | Output Code | Message | Assembler | Others |
Inline Expansion [~ Sort External Variable[-wo.-0p]: 5 S

Cantral of Inling Espansion: |

Code Threzhold[wp,-M]: [~ Save Memony of Preoptimizer-wp,.-0]
Stack Threshald[*wp -G I~ se Hptes

r
[~ E=pand Static Function[-#p,-5] -

™ Output Function Report[*#p]: e

Loop Unrolling

—

-

Carrmand Line Option:

-cpu 3107 g

QK. | Cancel Apply Help

(1) Inline Expansion

(a) Control of Inline Expansion

This controls the overall inline expansion specified by the -inline and -no_inline option of the pre-optimizer.

(b) Code Threshold[-Wp,-N]
This limits the intermediate language size of a function subject to inline expansion to the specified number
of bytes and does not execute inline expansion of a function exceeding this number of bytes. For a code

size guideline, refer to "Output Function Report[-Wp,-I]" below. The default size is 128.

(c) Stack Threshold[-Wp,-G]
This limits the stack size in the intermediate language of a function subject to inline expansion to the
specified number of bytes and does not execute inline expansion of a function exceeding this number of

bytes. For a stack size guideline, refer to "Output Function Report[-Wp,-I]" below. The default size is 32.

(d) Expand Static Function[-Wp,-S]

This performs inline expansion of static functions that are referenced only once.

92 User's Manual U18512EJ1VOUM

CHAPTER 3 C COMPILER

(e) Output Function Report[-Wp,-I]
This displays information on functions. The displayed information serves as a guideline for specifying the
upper limits of "Code Threshold[-Wp,-N]" and "Stack Threshold[-Wp,-G]".
When nothing is specified to the edit box, output is to standard output.

When specifying a file name to the edit box, output is to the specified file.

Figure 3 - 17 Output Example (Function Name func)

function name code stack

Note that the stack size output by this option is the size in the intermediate language that the pre-optimizer

outputs. It therefore differs from the stack size the function actually uses.
(2) Loop Unrolling

(@) Number of Loop Unrolling[-Wo,-Ol]

This option unrolls a for, while, or other loop num times. It can be specified only when "Level 2 Advanced
option (Exec. Speed)". Execution of a loop to be executed N times (N is a constant) is transformed into
execution of a loop containing code unrolled num times. A loop may not be unrolled or the number of
unrolling may be small if the size of the unrolled code is great or the number of times to execute the loop is
small. Moreover, a loop that has a complicated structure, such as one containing an interior loop, may not
be unrolled.

If 0 or 1 is specified in num, unrolling is suppressed. Moreover, if num is not specified, 4 is taken to have
been specified. Specify num using a decimal number.

This is useful when "Level 2 Advanced option (Exec. Speed)" is specified and loop unrolling is not to be

performed.

(b) Constant Unrolling Number[-Wo,-Xlo]
Use this check box to specify whether or not loop unrolling specified by the global optimization option -Xlo
is performed in the same way as for previous versions (CA850 Ver. 2.02 or earlier).
This option can be specified only when "Level 2 Advanced option (Exec. Speed)" has been specified.
When this check box is checked, the result is the same as when the -Wo,-Xlo options have been

specified.

(3) Sort External Variable[-Wo,-Op]
This check box is used to specify whether the external variables specified by the -Op option of the wide-range
optimization block are sorted.When this box is checked, the external variables specified by the option are sorted.
If nothing is specified in the edit box below this check box, the variables are sorted in a file.If a file name is
specified in the edit box, an external variable file is used for sorting. All specified files are compiled and linked
after all sources have been compiled. In the edit box, a file name having the same base name as a source file
(file name excluding the extension) or a file name not having extension .ic must not be specified.

The -Wo,-Op option is not displayed as a command line option.

User’'s Manual U18512EJ1VOUM 93

CHAPTER 3 C COMPILER

(4) Optimize Size of Branch Code[-Wo,XFo]
This check box is used to specify whether the branch instruction specified by the -XFo option of the wide-
range optimization block is output, giving a priority to the code size. This check box can be used only when -Og,

-0, -Os, or -Ot is specified.

(5) Save Memory of Preoptimizer[-Wp,-D]
This check box is used to decrease the memory capacity used by the pre-optimizer during compiling.
Specify this option if the memory of the machine runs short and compiling is not correctly completed. When

this option is specified, the compiling speed drops.

(6) Save Memory of Improver[-Wi,-D]
This option is used to decrease the memory capacity used by the machine-dependent optimization block
during compiling. Specify this option if the memory of the machine runs short and compiling is not correctly

completed.

(7) Pack Alignment[-Wi,-P]
This option suppresses optimization that aligns branch destination labels. As a result, the size of the
execution code can be decreased. This option is valid when Level 1 Advanced Optimization or the Level 2
Advanced Optimization (Execution Speed) -Ot option is specified. When Level 2 Advanced Optimization (Object

Size) is specified, this option function is included and this option is dimmed and cannot be selected.

(8) Advanced Optimization[-Wi,-O4]
This option strictly analyzes the data flow and executes the most advanced optimization. Specify this option,

in addition to the optimization option -O, -Os, or -Ot, to execute more advanced optimization.

- Optimization of registers extending over a branch instruction
- Optimization of absolute value operations
- Optimization of a cmp instruction extending over a branch instruction

- Optimization of a return instruction extending over a branch instruction

Depending on the source, the result of optimization specified by this option may be the same as that of
optimization specified by the -Os or -Ot option. The compiling time when this option is specified is longer than

that when -Os or -Ot is specified.

(9) Command Line Option
This area displays the options set in this dialog box by command line options.

This area is for reference and cannot be written to.

94 User's Manual U18512EJ1VOUM

CHAPTER 3 C COMPILER

[Remark]

(@) Sort external variables
External variables can be rearranged, starting from the largest alignment size, by using the -Wo,-Op option.
However, the variables allocated to the const/sconst section are not rearranged. A file name can be specified
with this option, as -Wo,-Op=file.

If a file name is specified, the operation is as follows.

(i) The specified intermediate file file is read and a list of external variables is created. If the specified file
does not exist, a vacant list is created and the next processing is started.

(ii) If the definition or temporary definition of an external variable exists in the source file, processing moves
to the list created in (i). At this time, a temporary definition is changed to a definition. This means that a
definition (temporary definition) in a source file is replaced by a declaration. If a variable definition of the
same name already exists on the list, it is replaced by a definition of a source file. If any of the section,
size, alignment, or default values is changed during replacement, a warning message is output.

(i) The list of external variables is output to the intermediate language file file. All the files compiled last and
a file resulting from compiling file are linked. If the above file name is specified, the following points must
be noted.

- If all specific variables are temporarily defined in the file compiled by specifying an option and if a
definition exists in a file for which no option is specified, the files can be correctly linked if an option is
not specified. If an option is specified, however, a link error occurs because of duplicated definitions.

- If variables are defined in duplicate in a file compiled by specifying an option, a link error does not
occur but the definition of a file compiled later is valid.

- To delete a variable in the intermediate language file, delete the intermediate language file itself and

rebuild.

User’'s Manual U18512EJ1VOUM 95

CHAPTER 3 C COMPILER

[External Register]

This tab is used to make settings related to the external variable registers.

Figure 3 - 18 [Compiler Options] Dialog Box ([External Register] Tab)

General] Input Fil
Detail of Optimization |

r] C Language] Optimization and Debug Information]
l Output File] Output Code 1 Mezsage] Azzembler] Elthers]

Command Line Option;

-cpu 3107 -g

0k | Cancel Apply Help

(1) rnum Register[-rnum]
These text boxes are used to specify an external variable to be allocated to the register specified by the rnum
option. num may be 15 to 24. Therefore, there are 10 text boxes. If an external variable is specified, the effect

is the same as specifying the -rnum option.

(2) Command Line Option
This area displays the options set in this dialog box by command line options.

This area is for reference and cannot be written to.

96 User's Manual U18512EJ1VOUM

CHAPTER 3 C COMPILER

[Remark]

(a) External variable register
By using the -rnum option, an external variable can be allocated to a register. Specify a register other than

the mask register that is vacated by specifying the -reg option. Specify an external variable using a symbol

name, excluding

The following external variables must not be specified.

- volatile variable

- Variable using address operator "&"
- Structure

- Array

- Internally coupled variable (static)

- Peripheral I/O register
The definition (temporary definition) and declaration of the specified external variable are deleted.

To use the default value of an external variable (if initialization is not executed at the beginning of program

execution), assign a default value to a register using the startup file.

Example

int 1 = 1;

If "-reg26 -r19=i" is specified in a source file defined above, a default value is assigned to the register as

follows.

mov 1, rl9 -- set i

Caution Optimization debugging cannot be executed (Register window is used) because the debug

information of the specified external variable is also deleted.

User’'s Manual U18512EJ1VOUM 97

CHAPTER 3 C COMPILER

[Output File]

This tab is used to set options related to the output file.

Figure 3 - 19 [Compiler Options] Dialog Box ([Output File] Tab)

Compiler Options @

General I Input File I Freprocessor] C Language I Optimization and Debug Information]
Detail of Optimization] External Register Output File l Output Code 1 Message] Azsembler] Dthers]

| |

I Assemble List[-Fv]:

| Browse. |

[~ Freguency Infarmation File[+cre_sec_data):

[Preprocessed Source

Carrmand Line Option:

-cpu 3107 g

QK. | Cancel Apply Help

(1) Assembler Source[-Fs]

This check box specifies whether the assembly language source resulting from compiling a C language source
is to be output. When it is checked, a folder name or file name can be specified in the edit box below this button.
If a folder name is specified in this edit box as "Setting of global options" and if the specified folder does not exist,
a message asking you if a folder is to be created is displayed. If nothing is specified in the edit box, an assembly
language source is output to the project folder with the extension of the C language source file name changed to
.s. To specify another output destination, specify a folder name in the edit box.

If a file name is specified for "Setting of global options”, an assembly language source for the source compiled

last is output because the same file name is overwritten. A file name can be specified when a file name is

specified for "Individual Source Options Setting".

98

User's Manual U18512EJ1VOUM

CHAPTER 3 C COMPILER

(2) Assemble List[-Fv]

This check box specifies whether the assembile list resulting from compiling a C language source is to be
output. When it is checked, a folder name or file name can be specified in the edit box below this button. If a
folder name is specified in this edit box as "Setting of a global options" and if the specified folder does not exist,
a message asking you if a folder is to be created is displayed. If nothing is specified in the edit box, an assemble
list is output to the project folder with the extension of the C language source file name changed to .v. To specify
another output destination, specify a folder name in the edit box.

If a file name is specified for "Setting of global options", an assembiler list for the source compiled last is output
because the same file name is overwritten. A file name can be specified when a file name is specified for

"Individual Source Options Setting".

(3) Frequency Information File[-Xcre_sec_data]

This check box specifies whether an information file of how often the variables are used by the section file
generator is to be output. When this box is checked, a folder name or a file name can be specified in the edit box
below this button.

If a folder name is specified in this edit box as "Setting of a global option" and if the specified folder does not
exist, a message asking you if a folder is to be created is displayed. If nothing is specified in the edit box, a
frequency information file is output to the project folder with the extension of the C language source file name
changed to .sec. To specify another output destination, specify a folder name in the edit box.

If a file name is specified for "Setting of global options", an assembly language source for the source compiled
last is output because the same file name is overwritten. To specify a frequency information file name for
multiple C language source files, therefore, specify a file name using "Individual Source Options Setting". Note
that this option outputs a frequency information file of variables in a C language source file, but does not output a

frequency information file of an assembly language source file.
(4) Preprocessed Source

This check box is used to execute only preprocessing on a C language source program and to output the
result to a file whose file is the name of the C language source file with extension .c replaced by .i. The line

number and file name of the source program are not output.

(5) Command Line Option
This area displays the options set in this dialog box by command line options.

This area is for reference and cannot be written to.

User’'s Manual U18512EJ1VOUM 99

CHAPTER 3 C COMPILER

[Output Code]

This tab is used to set options related to the output code.

Figure 3 - 20 [Compiler Options] Dialog Box ([Output Code] Tab)

Compiler Options @

General I Input File I Freprocessor] C Language l Optimization and Debug Information]
Detail of Optimization] Esternal Register] Output File Output Code] Message] Azzembler] Dthers]

Size Threshold of sdata/shes ,— Packing OF Structs:
Section Allocation[-G]; |D i J
zconst Section Allocation staultlBhyre] l

™ Allocate Data[+4sconst] ™ Use Painter Bute Access[+<bute]
T l— [~ Output Source Comment[+<c]
I Inline Expanzion af stropy()[+4i]
Riegister Mode: I Chanage Jurp Code of Interption[-]
|32 Register Mode ﬂ I~ Use Mask Register+<mask_req]
I Mowaord Access bitl Opt[+no_word_bitop]
I Usze Word Switch Table[+ward_switch]

Prologue Epilogue Runtime:

| Defaultllse] LJ
Output Code of gwitch statement;
|Default[.-’-‘«ut-:- Selection] j

Carrmand Line Option:

-cpu 3107 g

QK. | Cancel Apply Help

(1) Size Threshold of sdata/sbss Section Allocation[-G]

Use this area to specify the upper limit of data allocated to the .sdata/sbss section. Data of the specified size
(bytes) or less is allocated to the .sdata or .sbss section. However, data for which the .sdata/.sbss section is
specified by the #pragma section directive or a section file is allocated to the .sdata/.sbss section regardless of
its size.

An integer of decimal values 0 to 32767 can be specified. The yardstick for the value to be specified in this
area is output for reference when "Output GP Information[-A]" on the [Option] tab that sets linker options is
specified.

Note that this option cannot be specified when an individual source is specified. Always specify this option as

a global option.

100 User's Manual U18512EJ1VOUM

CHAPTER 3 C COMPILER

(2) sconst Section Allocation
This area is used to specify allocation of const-attribute data or a character string literal, i.e., data or a

character string literal with a const type modifier, to the sconst section.

(a) Allocate Data[-Xsconst]
When this check box is checked, data or a character string literal with the const attribute is allocated to the

sconst section.

(b) Size Threshold
If the upper limit of a data length is input to this area, data of the specified size (bytes) or less is allocated to
the .sconst section. However, data for which the .sconst section is specified by the #pragam section directive
or a section file is allocated to the .sconst section regardless of its size. If nothing is input, data or a character
string literal with the const attribute is allocated to the .sconst section. An integer of decimals values in the
range of 0 to 32767 can be specified.

For details of the .sconst section and .const section, refer to CA850 for C Language User’s Manual.

Caution If a section is not specified by the #pragma section directive or a section file, and if
"Allocate Data[-Xsconst]" of "sconst Section Allocation" is not checked (default assumption),
all data and character string literals for which the const type modifier is specified are allocated

to the .const section.

(3) Register Mode
This area is used to specify a register mode. The following register modes can be specified. The default

register mode is the 32-register mode.

- 22-register mode
- 26-register mode

- 32-register mode

The setting of the register mode is also recognized by the linker. Therefore, a library in the appropriate register
mode is referenced when a library is linked.

For details of the register mode, refer to CA850 for C Language User’s Manual.

(4) Prologue Epilogue Runtime
This specifies whether or not a runtime library call will be used for prologue/epilogue processing of functions.
If "Use" is specified, the prologue/epilogue processing of functions uses run-time library calls. If "Default" is
selected and if "Level 2 Advanced option (Exec. Speed)" is specified as the optimization type by an option of the
[Optimization and Debug Information] tab, "No use" is assumed. If another type is specified, "Use" is assumed.
This setting can be made for each source file. If "Default" has been specified, the same setting is used globally.

For details of prologue/epilogue processing of functions, refer to CA850 for C Language User’s Manual.

User's Manual U18512EJ1VOUM 101

CHAPTER 3 C COMPILER

(5) Output Code of switch statement

This edit area is used to specify the method of outputting the code of a switch statement.

Default

The compiler automatically judges the format it considers the most appropriate.

if-else

The code of the switch statement is output in the same format as an if-else statement following the
arrangement of a case statement. Select this option when case statements are written in the order of
frequency or when the number of labels is few.

Because the case statements are sequentially compared starting from the top, the execution speed can
be improved if case statements that often match are described first because unnecessary comparison does
not have to be executed.

Binary Search

Outputs the code of the switch statement in the binary search format. If this option is selected when many

labels are used, any case statement can be found at almost the same speed.
Table Branch

Outputs the code of the switch statement in the table jump mode. A table indexed based on the value of a
case statement is referenced, a case label is selected by the value of the switch statement, and processing
is performed. Any case statement can be found at almost the same speed. However, unnecessary areas

may be created if the case values are not contiguous.

(6) Packing Of Structs

This area is used to set structure packing specified by the -Xpack=num option. By using this option, specified

alignment can be used, without structure members aligned in accordance with the types of the members. The

data size can be decreased but the code size increases.

The value that can be specified is "1 byte", "2 bytes", "4 bytes", or "8 bytes". The default value is "8 bytes

nNote

If this option is specified when structure packing is specified by the #pragma directive in a C language source

file, the value specified by the option is applied to all structures until the first #pragma directive emerges. After

that, the value of the #pragma directive is applied. Even after emergence of the #pragma directive, however, the

value specified by the option is applied if the default assumption is specified. This option must not be specified

together with the -Xi option. When using this option, the following points should be noted.

If this option is specified when structure packing is specified by the #pragma directive in a C language
source file, the value specified by the option is applied to all structures until the first #pragma pack directive
emerges. After that, the value of the #pragma directive is applied. Even after emergence of the #pragma

directive, however, the value specified by the option is applied if the default assumption is specified.

In addition, the following restrictions apply to this option. The same also applies to #pragma pack.

The address of a structure member cannot be obtained correctly.

When a bit field is accessed, a data area is also accessed because the type of the member is read.

If the width of the bit field is less than the type of the member, outside of the object is accessed because the

type of the member is read. This poses no problem in execution. If an I/O is mapped, however, an illegal access

may occur. For details of structure packing, refer to CA850 for C Language User’s Manual.

Note The operation of this version is the same regardless of whether 4 bytes or 8 bytes are specified.

102

User's Manual U18512EJ1VOUM

CHAPTER 3 C COMPILER

(7) Use Pointer Byte Access[-Xbyte]
This check box is used to access the indirect address of a structure in byte units. Use this box if a restriction is

applied to the structure packing function.

(8) Output Source Comment[-Xc]
This option outputs a C language source program to the assembly language source file to be output as
comments. However, the comments that are output are only for reference and may not strictly correspond to the
codes. For example, the output position of the global variables, local variables, and function declaration may be

shifted. In addition, due to optimization, the codes may be deleted and only comments may remain.

(9) Inline Expansion of strcpy[-Xi]

This check box is used to convert calling the function strcpy()/strcmp() into block transfer, setting the alignment
condition of arrays (including character strings) and structures to 4 bytes. The execution speed of objects will
increase but the code size will also increase.

This option executes conversion only if the second argument of strcpy()/strcmp() is a character string. The
first argument must be aligned to 4 bytes by the program (the ca850 aligns the second argument because it is a

character string). This option must not be specified together with the -Xpack option.

(10) Change Jump Code of Interruption[-Xj]
This check box is used to execute the jmp instruction only for a normal interrupt defined in C language.
If the body of a function is in a range to which the jr instruction cannot branch and if the Id850 outputs an error,
recompile by using this option. If this option is omitted, use the jr instruction. This option must not be specified
when a function on the flash side is called from the boot side by using the flash/external ROM relink function. For

details, refer to "5.6 Flash Memory/External ROM Relink Function".

(11) Use Mask Register[-Xmask_reg]

This option enables use of the mask register function. When this function is used, the ca850 outputs codes,
assuming that an 8-bit mask value, Oxff, is set to r20 and a 16-bit mask value, Oxffff, is set to r21. Mask values
must be set to the mask registers (r20 and r21) by a user program such as the startup routine. With the V850
microcontrollers, byte data and halfword data are sign-extended to a word length, depending on the value of the
most significant bit, when they are loaded from memory to registers. Consequently, the mask code of the higher
bits may be generated when an operation on unsigned char or unsigned short type data is performed. When the
result of an operation is stored in a register variable, a mask code is generated for unsigned byte data and
unsigned halfword data to clear the higher bits. In both the cases, generation of the mask code can be avoided
if word data is used. If word data cannot be used and a mask code is generated, the code size can be reduced
by using the mask register function. To decide whether the mask register function is to be used or not, the
following points must be thoroughly considered.

- Is it a program that outputs many mask codes?

- Two register variable registers are used as mask registers: Does this have any effect?

If an object that uses a mask register and an object that does not use a mask register exist together when this
option is specified, the Id850 outputs an error. In the 32-register mode, -mask_reg is passed to the 1d850. As a

result, the linker searches the mask register folder for the standard library, instead of the standard folder.

User’'s Manual U18512EJ1VOUM 103

CHAPTER 3 C COMPILER

For details of the mask register, refer to CA850 for C Language User’s Manual. Note that this option cannot be

selected when an individual source is specified. It is always set as a global option.

Caution "Use Mask Register[-Xmask_reg]" must be specified for both compiler options and assembler options
in an application that uses both a C language source file and an assembly language source file, and in

an application that uses only an assembly language source file.

(12) No Word Access bit1 Opt.[-Xno_word_bitop]
This check box prohibits an operation that replaces the Id.w/ld.h and st.w/st.h instructions with 1-bit memory
manipulation instructions (set1, clr1, tst1, and not1). If a read/write event of a variable is set for debugging, an
event may not occur if the above instructions are replaced by 1-bit manipulation instructions. In this case,

specify this option. The Id.w/ld.h and st.w/st.h instructions remain not replaced, making debugging easy.

(13) Use Word Switch Table[-Xword_switch]
This option creates a branch table for the case label in a switch statement using 4 bytes per label. Specify this
option if compile errors occur due to long switch statements. If this option is not specified, the branch table is

generated using 2 bytes.

(14) Command Line Option
This area displays the options set in this dialog box by command line options.

This area is for reference and cannot be written to.

104 User's Manual U18512EJ1VOUM

CHAPTER 3 C COMPILER

[Message]

This tab is used to set options related to messages.

Figure 3 - 21 [Compiler Options] Dialog Box ([Message] Tab)

Compiler Options |

Gerneral] Input File] Freproceszor] C Language] Optimization and Debug Information]
Detail of Optimization] E sternal Register] Output File] Output Code Message lAssembler] Dthers]

wlarning Level: Individual W arnings;

W2042: illegal argurent for _rcopy A

W2107: Man empty file iz expected to end in nesw,

[Werbose Mode-v] w2127 redefined macra name hame'

Limit of Mumber of Errar-em_limit] l— w2132 macra recursion 'name’. Macio iz expanc.
W2150 unerpected character(z) following directi
W2TE1: unexpected non-whitespace before prep
W21E62: unrecognized pragma directive 'Bpragms
W21E63: Digit zequence after 'Hline’ iz interpreted
W21E6: recognized pragma directive "Hpragma d
W2172: constant out of range

W217E: hesadecimal digit out of range

[]Ww2180: canmot convert code-typel code into co

[w2212 Declaration of name hides parameter.

[w2215 Undeclared function ‘function’ is called.
Help of Individual "W arming £ >

Command Line Option:

-cpu 3107 g

k. | Cancel Apply Help

(1) Warning Level

Use this area to set the level of warning messages to be output.

No Output[-w] Suppresses warning messages
Level 1 Outputs ordinary warning messages (default)
Level 2[-w2] Outputs detailed warning messages

(2) Verbose Mode[-v]
This option displays the execution status of the ca850 on the Output window during build. If it is checked, the

execution status of each internal phase of the compiler is displayed.

(3) Limit of Number of Error[-err_limit]

This option specifies the maximum number of error messages to be output. Specify a decimal number from 15

to 50. If this option is omitted, 15 is assumed.

User's Manual U18512EJ1VOUM 105

CHAPTER 3 C COMPILER

(4) Individual Warnings
This list view controls display of individual warning messages. If the icon on the left of each warning message
is "ON", the warning message is displayed (-won); if it is "OFF", the message is not displayed (-woff). The icon
changes from "ON" — "OFF" — " " when it is double-clicked or the space key is pressed. This option cannot be
set by setting a source option (it is always specified as a global option).

The following options are converted to the options of these messages when the project is read.

-wbitfield align W2306
-wbitfield type W2302
-wcallnodecl W2215
-Xd W2231
-wnopic W2231
-wpragma w2162
-wsharp W2161

The messages that can be specified are listed below.

Table 3 - 7 Message Numbers of Messages That Can Be Specified

W2042, W2017, W2127, W2132, W2150, W2161, W2162, W2163, W2166, W2172, W2176, W2180,
W2212, W2215, W2216, W2222, W2231, W2244, W2254, W2267, W2287, W2289, W2291, W2293,
W2302, W2306, W2373, W2380, W2416, W2520, W2521, W2525, W2527, W2554, W2555, W2606,
W2607, W2621, W2634, W2635, W2637, W2643, W2656, W2671, W2683, W2684, W2690, W2691,
W2699, W2700, W2703, W2704, W2710, W2711, W2730, W2731, W2740, W2741, W2742, W2743,
W2744, W2748, W2761, W2782

The [Help of Individual Warning] button can be used to display the online help of warning messages.

(5) Command Line Option
This area displays the options set in this dialog box by command line options.

This area is for reference and cannot be written to.

106 User's Manual U18512EJ1VOUM

CHAPTER 3 C COMPILER

[Assembler]

This tab box is used to set assembler options that are used when a C language source file is assembled.

Figure 3 - 22 [Compiler Options] Dialog Box ([Assembler] Tab)

Compiler Options @

Gerneral] Input File] Freproceszor] C Language] Optimization and Debug Information]
Detail of Optimization] E stemnal Fiegister] Output File] Output Code] Meszage Assembler l Dthers]

Ihclude Search Path[-wfa.-]: Edit...

Define Macro[-wa,-D): Edi...

[Generate Debug Information[-wa,-g]
[Do Optimization[-wa,-0]

[Yerbose Mode[\Wa,-]

[Suppress Warming[-Wa,-w]

[wamn Zero Register(i)[-\wa,wi0]

[wamn Beserved Registerr] |[wa,wil]
= : i |

Command Line Option:

-cpu 3107 g

k. | Cancel Apply Help

(1) Use of ’Assembler Options’
This check box specifies whether the options of [Assembler Options] dialog box, instead of the assembler
options on this page, are used when assembling a C language source file. When it is checked, the options of

[Assembler Options] dialog box are used.

(2) Include Search Path[-Wa,-1]
This edit box is used to specify the path of an include file. To specify two or more paths, delimit each with ";"
(semicolon). This option cannot be set for an individual source (it is always set as a global option).
Note that, in addition to the path set by this option, an option set for the system may be set as a command line

option. By selecting the [Edit...] button, the [Edit Option] dialog box can be displayed and the path can be edited
in this dialog box.

(3) Define Macro[-Wa,-D]
This edit box is used to set a defined macro. To specify two or more macros, delimit each with ;" (semicolon).

By selecting the [Edit...] button, the [Edit Option] dialog box can be displayed and the macro can be edited in this
dialog box.

User's Manual U18512EJ1VOUM 107

CHAPTER 3 C COMPILER

(4) Generate Debug Information[-Wa,-g]
This check box specifies whether debug information is to be generated. If it is checked, the effect is the same

as specifying the -Wa,-g option.

(5) Do Optimization[-Wa,-0]
This check box specifies whether optimization is to be executed. If it is checked, the effect is the same as

specifying the -Wa,-O option.

(6) Verbose Mode[-Wa,-v]
This check box sets whether the execution status is displayed. If it is checked, the effect is the same as

specifying the -Wa,-v option.

(7) Suppress Warning[-Wa,-w]
This check box specifies whether warning messages are displayed or not. If it is checked, the effect is the

same as specifying the -Wa,-w option.

(8) Warn Zero Register(r0)[-Wa,-wr0]
This check box specifies whether a warning message is displayed or not when register r0 is used as a
destination register. When it is checked, the effect is the same as specifying the -Wa,-wrO+ option. When this

check box is dimmed, the effect is the same as specifying the -Wa,-wr0- option.

(9) Warn Reserved Register(r1)[-Wa,-wr1]
This check box specifies whether a warning message is displayed or not when register r1 is used. When it is
checked, the effect is the same as specifying the -Wa,-wr1+ option. When this check box is dimmed, the effect is

the same as specifying the -Wa,-wr1- option.

(10) Command Line Option
This area displays the options set in this dialog box by command line options.

This area is for reference and cannot be written to.

108 User's Manual U18512EJ1VOUM

CHAPTER 3 C COMPILER

[Others]

This tab is used to set other options.

Figure 3 - 23 [Compiler Options] Dialog Box ([Others] Tab)

Gerneral] Input File] Freproceszor] C Language] Optimization and Debug Information]
Detail of Optimization] External Register] Output File] Output Code 1 Message] &szembler Others

Any Option:

Temparary Directory]-temp=]:

| Browse. .. j

[Use Command File

Command Line Option:

-cpu 3107 g

k. | Cancel Apply Help

(1) Any Option
This edit box is used to specify options that cannot be set by setting in "Compiler Options" described above.
Describe an option in this edit box in the same manner as on the command line.

At present, only this option can be specified as "Any Option".
- -Xv850patch
Other options can be specified but are not supported at present.

(2) Temporary Directory[-temp=]
This edit area is used to specify a work folder where a temporary file to be used internally is to be generated.
If this option is omitted, the temporary file is generated as the environmental variable TEMP or in the root folder
of current drive. An error that may occur because the capacity of the hard disk runs short and a temporary file
cannot be generated can be avoided by using this option. If the specified folder does not exist, a message

asking you if a folder is to be created is displayed.

User's Manual U18512EJ1VOUM 109

CHAPTER 3 C COMPILER

(3) Use Command File
In the Windows environment, the length of character strings used to specify options for the ca850 is restricted.
If this check box is selected, the option character string is output to a command file, which enables the operation
to be completed without observing the restriction on the character string length. Check this check box if many
options are set and not all of them can be recognized. Under the default setting, the check box is not checked.

For the details of command file, refer to "3.7.2 Command file".

(4) Command Line Option
This area displays the options set in this dialog box by command line options.

This area is for reference and cannot be written to.

[Button]

(a) [Delete Source Option] button
This button can be selected when option settings for individual source files have been made, and is not
displayed (is dimmed) and cannot be selected when options for the overall project have been specified.
When selected, this button deletes any option specified for a particular source file and applies only global

options.

110 User's Manual U18512EJ1VOUM

CHAPTER 3 C COMPILER

[Difference]

This tab is used to display the differences between the options for the overall project and individual source

options.

Figure 3 - 24 [Compiler Options] Dialog Box ([Difference] Tab)

Compiler. Options - sample.c @

General I Preprocessar I C Language I Optimization and D ebug Information]
Detail of Optimization] Dutput File 1 Output Code] Message] Azzembler 1 Others Difference

Same Option;

Project Whale Option Only:

Saource Individual Option Only:

Carrmand Line Option:

-cpu 320 -Fo=c:hzample -g

QK. | Cancel Help

(1) Same Option
Options set as options for the overall project and options for individual sources are displayed in the command

line format. This area is for reference and cannot be written to.

(2) Project Whole Option Only

Options specified as options for the overall project and not as options for individual sources are displayed in

the command line format. This area is for reference and cannot be written to.

(3) Source Individual Option Only

Options specified as options for individual sources and not as options for the overall project are displayed in

the command line format. This area is for reference and cannot be written to.

(4) Command Line Option
This area displays the options set in this dialog box by command line options.

This area is for reference and cannot be written to.

User's Manual U18512EJ1VOUM 111

CHAPTER 3 C COMPILER

[Button]

(a) [Delete Source Option] button
This button can be selected when option settings for individual source files have been made, and is not
displayed (is dimmed) and cannot be selected when options for the overall project have been specified.
When selected, this button deletes any option specified for a particular source file and applies only global

options.

112 User's Manual U18512EJ1VOUM

CHAPTER 3 C COMPILER

3.6.3 [Edit Option] dialog box

On the [Edit Option] dialog box, items can be selected from a list and edited.
Figure 3 - 25 [Edit Option] Dialog Box

Edit Option X

Lizt:

oK | Heln |

Cancel

(1) [Add..] button

This button adds items to the list. In the case of an item for which a file or folder is specified, a dialog box for

referencing files or folders is opened. In all other cases, a dialog box that is used to add options whose contents

are to be input is opened.

Figure 3 - 26 [Add Option] Dialog Box

Add Option

Ok | Cancel]

(2) [Delete] button

This button deletes the selected items on the list.

(3) [Up] button

This button moves up the selected item on the list.

(4) [Down] button

This button moves down the selected item on the list.

(5) [Edit by Text Editor] button

In the following cases, a subfolder can be added to the selected item on the list.
"Section File[-Xsec_file]" on [Input File] tab for setting [Compiler Options] dialog box

"Far Jump File[-Xfar_jump]" on [Input File] tab for setting [Compiler Options] dialog box

User’'s Manual U18512EJ1VOUM

113

CHAPTER 3 C COMPILER

(6) [Add Sub Directory] button

In the following cases, a subfolder can be added to the selected item on the list.

- "Include Search Path[-I]" on [Preprocessor] tab for setting [Compiler Options] dialog box

- "Include Search Path[-Wa,-I]" on [Assembler] tab for setting [Compiler Options] dialog box
- "Include Search Path[-I]" on [Option] tab for setting [Assembler Options] dialog box

- "Library Search Path[-L]" on [Library] tab for setting [Linker Options] dialog box

114 User's Manual U18512EJ1VOUM

CHAPTER 3 C COMPILER

3.7

3.71

Cautions

Specifying multiple options

Some options become invalid if they are specified at the same time as certain other options. Of the following

options, those on the right of the ">" symbol become invalid if they are specified with the options shown on the

left of the ">" symbol.

-E>-P

-Uu>-D

-E/P>-G/L/O/R/S/Wc/alc/l/m/o

Since execution is terminated during preprocessing, the options related to the modules following the front
end are invalid.

-S>-L/R/Wi[a|l))alc/l

Since execution is terminated at the code generation module or the machine-dependent optimization mod-
ule, the options related to the modules following the as850 are invalid.

-V / -help

Any option that is specified after this is invalid. Moreover, once this option is specified, all the other options
become invalid.

-c>-L/R/WI/I

Since execution is terminated at the as850, the options related to the modules following the 1d850 are
invalid.

-m>-G/L/O/R/S/Wc/alc/l

Since execution is terminated at the front end, the options related to the modules following the pre-opti-
mizer are invalid.

-Og/-0/-0Os/-0Ot>-a

If -Og, -0, -Os, or -Ot has been specified, an incorrect display may result.

-Od/-Ob/-O/-Og/-Os/-Ot

Any option that is specified after this is valid.

-w/ w[1|2]

Any option specified before this is invalid.

User's Manual U18512EJ1VOUM 115

CHAPTER 3 C COMPILER

3.7.2 Command file

Instead of specifying options and file names for commands as command-line arguments, they can be specified
in a command file. The ca850 treats the contents of a command file as if they were command-line arguments. In

the command file, the arguments to be specified can be coded over several lines. However, options and file

names must not be coded over more than one line. Command files cannot be nested.

In the command file, the following characters are treated as special characters.

" (double quotation mark)

The character string until the next " (double quotation mark) is treated
as a contiguous character string.

(sharp)

If specified at the beginning of a line, characters on that line until the
end of the line are treated as a comment.

A (circumflex)

The character immediately following this is not treated as a special
character.

The special characters themselves are not included in the command line of the ca850 for which a command

file is specified, but deleted.

Remark With the as850, ar850, hx850, dump850, dis850, and romp850, only " (double quotation mark) can be

used.

Example of command file

-Dtest ... Describes #define test
-0 object ... Specifies an object file name
a.c ... Specifies the file to be compiled

Example of command file specification

> type cfile

> ca850 @cfile

-cpu 3201 -c -Os file.c ... Contents of command file

Same operation as ca850 -cpu 3201 -c -Os file.c

116

User's Manual U18512EJ1VOUM

CHAPTER 3 C COMPILER

3.7.3 Efficient use of optimization

The main types of optimization that can be specified by the -O option are described below along with

instructions on the efficient use of optimization.

Figure 3 - 27 Optimization Processing and Parameters

Optimization | | evel 2 Advanced option
Strong (Exec. Speed) (-Ot)

Level 2 Advanced option
(Object Size) (-Os)

A

\/

Level 1 Advanced
Optimization (-O)

[

Standard
Optimization (-Og)

I
Default
Optimization (-Ob)

o Optimize
Optimization for Debugging (-Od)
Weak
Table 3 - 8 Optimization Processing and ltems
Option Effect
o . Code Execution | Compilatio
Optimization Function Debug Efficiency Speed A Time
-Od : Optimize for Debugging Level 4 Level 1 Level 1 Level 3
-Ob : Default Optimization Level 3 Level 2 Level 2 Level 3
-Og : Standard Optimization Level 3 Level 3 Level 3 Level 3
-O : Level 1 Advanced Optimization Level 2 Level 4 Level 4 Level 2
-Os : Level 2 Advanced option (Object Size) Level 1 Level 5 Level 4 Level 2
-Ot : Level 2 Advanced option (Exec. Speed) Level 1 Level 4 Level 5 Level 1
User's Manual U18512EJ1VOUM 117

CHAPTER 3 C COMPILER

The meanings of the expressions in this table are as follows.

As the level of optimization increases, optimization that deletes C language source lines
and concentrates the same processing on one location occurs, and there is a tendency
that the places where breakpoints can be set decrease. In addition, the probability of
Debug assigning a variable from memory to a register improves.
The level of optimization at which the tendency that many breakpoints can be set and the
probability of allocating variables to registers is small is called level 4, and the level at
which the tendency is the strongest is called level 1. Debugging can be executed even at
level 1.
Code The ROM size eff.ic.ier_mcy is classified.intc_) levels 1 t_o 5. _ o
Efficiency The option that minimizes the ROM size is -Os. This option takes a long compilation time.
Use the -Og or -O option if the ROM capacity has a wide margin.
Execution The execution speed is clqssified into I.evels 1to 5. . .
Speed To reduce the ROM capacity of the entire module and improve the effective speed of only
critical functions further, specify the -Ot option in file units.
Compilation The compilation time is classified into levels 1 to 3.
. Options -0, -Os, and -Ot execute powerful optimization and therefore take a longer
Time oo .
compilation time than the other options.

(1) -Od : Optimize for Debugging

Optimization is executed within a basic blockN°®®. This is optimization using information that can be grasped in
a basic block, and includes calculation of constants, deformation of expressions, recognition of common parts in
a basic block, and propagation of copy in a basic block. This optimization is executed by default when compila-
tion is executed.

For example, an operation expression of only constants is replaced by the constants of the operation result
during compilation.

The effect of this optimization is weakest with the CA850. This optimization is equivalent in level to the default

optimization of CA850 Ver. 2.4x.

Note The longest array of instructions whose first instruction is always executed first. A branch occurs only

from the last instruction of this array.

(2) -Ob : Default Optimization
Optimization in a basic block and allocation of automatic variables to coloring registers are performed.
- Automatic variables are allocated as registers.

This optimization does not affect debugging.

This is the default optimization of the CA850. It deletes more unnecessary codes than -Od because register

allocation is a high-level function.

118 User's Manual U18512EJ1VOUM

CHAPTER 3 C COMPILER

(3) -Og : Standard Optimization
In addition to optimization in a basic block and allocation of coloring registers, the following optimization is
performed by using the information that can be grasped in a function (only the representative operations are
described).

- An instruction string that finds common operations and processes them all at once is output.
Step execution and breakpoints may not be set as intended by the user.

- An assignment statement whose value does not change in a loop is moved out of the loop.
Step execution and breakpoints may not be set as intended by the user.

- Redundant assignment statements are deleted.

The breakpoint of a deleted line cannot be set.

(a) External variables are allocated to registers.
The read/write break to memory may not be correctly executed during debugging.
(b) Optimization that rearranges instructions by the as850 to avoid register/flag hazards is performed.

This optimization does not affect debugging.

This optimization is higher in compilation speed than the advanced optimization, and its code efficiency/
execution speed is intermediate in the optimization of the CA850. If the ROM capacity has a relatively wide

margin, setting this option is recommended.

(4) -O: Level 1 Advanced Optimization
In addition to the optimization performed by options up to -Og, the following optimization is performed (only the

representative operations are described).

- ltis judged that there is no reference to an argument of a function, and the assignment code of a value to
the argument is deleted.
This optimization does not affect debugging.
- Only a loop that is executed only once is unrolled to avoid the overhead of end condition judgment.
This optimization does not affect debugging.
- Label alignment and 4-byte alignment at the beginning of a function are suppressed.
This optimization does not affect debugging.
- Alabel not referenced is deleted.
A breakpoint cannot be set to a label that is to be deleted.
- Unnecessary instructions are deleted.
Breakpoints and step execution may not be set as intended by the user.
- Peep hole optimization (rearrangement of five or less instructions to an efficient instruction string) is
performed.

Breakpoints and step execution may not be set as intended by the user.

This optimization is equivalent to the object size priority option -Os of the CA850 Ver. 2.4x. This option does
not perform inline expansion of a static function that is referenced only once, which is performed with the CA850
Ver. 2.4x.

User's Manual U18512EJ1VOUM 119

CHAPTER 3 C COMPILER

(5) -Os : Level 2 Advanced option (Object Size)

An optimization module is executed until processing of -O can no longer be optimized.

This option executes optimization giving priority to object size and is the most powerful option for an
embedded system. It executes all optimization to not increase the code size of the optimization supported by the
CAB850 and reduces the size as much as possible.

Depending on the contents of the application, optimization can be reinforced by using the following options

and functions, in addition to the above option.

- Specifying -Wi,-O4
The data flow is analyzed and optimization is reinforced. However, the compilation time tends to increase
considerably.

- Using mask register
In the case of an application that often uses mask codes for operations of unsigned char and unsigned
short types, the mask register function can be used to reduce the code size.
However, this function decreases the usable number of registers for register variables by two.

- Using section file
If data is allocated to the internal memory or a section that is referenced by one instruction per gp/r0, the
code size can be reduced and the execution speed can be increased. If data is not allocated to a section
by program, it is allocated to [tidata.byte] [tidata.word] [sidata] [sedata] [sconst] [sdata] by a section file dur-

ing compilation (refer to "9.1 Section Files").

Of the optimization of the CA850 giving emphasis to the code size, this optimization minimizes the size. Itis
equivalent to the object size priority option -Os and optional optimization option -OI of the CA850 Ver. 2.4x. This
option does not perform inline expansion of a static function that is only referenced once, which is performed by

the CA850 Ver. 2.4x.

(6) -Ot: Level 2 Advanced option (Exec. Speed)

This option executes optimization, giving priority to the execution speed.

It is used to shorten the execution time, even at the expense of the size, in applications such as data
processing.

In addition to the optimization performed by options up to -O, this option executes optimization of suppressing
"4-byte alignment of label" and "4-byte alignment at the beginning of a function”. In addition, it also executes tail
recursion optimization, inline expansion, and loop expansion.

If a return statement at the end of a function calls the function itself, tail recursion optimization converts that
function into a loop and reduces the stack used for function calling.

Inline expansion expands the body of a function at the part calling the function, increasing the possibility of
optimization, and preventing the overhead for calling.

Loop expansion expands the loop body two or more times to increase the possibility of optimization and
prevent the overhead for conditional judgment and branch.

Inline expansion and loop expansion increase the object size and improve the execution speed.

When -Ot is specified and a function including an asm statement defining a label is used, the same label is
defined at the part of function definition and inline expansion. In this case, a label multiple definition error occurs.

The function specified by #pragma block_interrupt, #pragma interrupt, #pragma rtos_task, or #pragma text is

not subject to inline expansion. In this case, no message is output.

120 User's Manual U18512EJ1VOUM

CHAPTER 3 C COMPILER

If a function including an asm statement on which inline expansion is not expected to be executed is used,
such as manipulation of a stack frame, an execution error may occur because an illegal function frame

manipulation takes place.

Caution If the size is increased too much by the Level 2 Advanced option (Exec. Speed), adjust inline

expansion and loop expansion by using the options "-Wp, -Gnum" and "-Wo, -OI".

To execute inline expansion only on a specific function, regardless of the option, use #pragma inline. This can
give priority to the execution speed of only a specific function, while "size priority" is specified.

Depending on the contents of the application, optimization may be able to be reinforced by using a mask
register in the same manner as when -Os is specified. In addition, optimization giving priority to the execution

speed can be reinforced by using the following function.

- Expanding strcpy()
If the option -Xi, which executes "expansion of strcpy"” for an application that often uses the character string
copy function strcpy(), is specified, the execution time is shortened. The size increases, however.

- -Wp,-r option
An unnecessary function may be generated as a result of inline expansion that has merged source files. If
the "-Wp,-r" option is specified in this case, the unnecessary functions may be deleted, and the size may be

reduced.

Of the optimization of the CA850 giving emphasis to the execution speed, the execution speed of this option is
the highest. This option is equivalent to the execution speed priority option -Ot + optional optimization option -Ol
of the CA850 Ver. 2.4x.

As explained above, the CA850 has several levels and items of optimization. To specify optimization, the
following criteria must be noted.
- Giving priority to size

- Giving priority to the execution speed at the expense of size

Most optimization functions reduce the size and improve the execution speed at the same time. Whether
emphasis is given to the size or execution speed is determined depending on whether some functions are used

or not.

User's Manual U18512EJ1VOUM 121

CHAPTER 3 C COMPILER

3.7.4 Effects of optimization on debugging

Note with caution that optimization can have the following kinds of effects when using the source debugger.

(1)

)

®)

(4)
®)

As a result of deformation of an expression by optimization (propagation of copy and recognition of
common part expression), "variable reference" does not take place where the read/write event of a variable
appears in the source program, and the event may not occur as expected by the user.

When a statement has been made common, deleted, or rearranged, step execution or breakpoints may not
be set as intended by the user.

The live range of a variable (range in which the variable can be referenced in the program) and position of
a variable (position on a register or memory) may be changed.

Breakpoints cannot be set for statements that have been deleted.

Transfer, splitting, or merging of statements may have rearranged the sequence of executable

Note

instructions™“*®, so that lines between the lines which have been rearranged may be handled as a single

line for which break points and step execution can no longer be set.

Note The address of an executable instruction within a line of source code may be smaller than the

(6)

)

address of an executable instruction in a previous line or may be greater than the address of an
executable instruction in a subsequent line.
If the sequence of executable instructions for if-else statements has been rearranged or if loop unrolling
has caused a sequence of executable instructions to be rearranged, step execution may no longer be
possible, as in (2) above.
The entire function is regarded as the valid range (scope) for all automatic variables. However, if automatic
variables have been allocated to registers, they can be deleted or otherwise rendered invisible by
optimization even when they are within the scope. This can occur when the variables are being used as

"local variables" within the scope or have been assigned as local variables as a result of optimization.

Example

void f (void)

{
int a; /* Valid within function */
/* address 1 */

/* The a is used only within the range from address 1 to address 2. */

/* address 2 */

122

In the above example, the scope of "a" is the entire function f(). However, use of "a" is limited to section
between address 1 and address 2. In this case, if "a" is allocated to a register and optimization causes it to
be deleted from the stack frame, "a" will become invisible outside of the section between address 1 and
address 2. This phenomenon occurs in order to make more efficient use of registers by making the register
where "a" has been allocated (except for the section between address 1 and address 2) available for the

allocation of other variables.

User's Manual U18512EJ1VOUM

CHAPTER 3 C COMPILER

(8)

©)

(10)

(11)

At compile time, the processing of debugging information uses a large amount of memory and therefore
can cause an "out of memory" condition to occur.

Step execution cannot be performed when using sections that have been merged into one line during inline
expansion.

Step execution cannot be performed when using sections that have been merged into one main loop
section during loop unrolling. Also, the stop point for merging of loops into one main loop section is the
number of loops after expansion, not the number of loops before expansion.

If a register is allocated to an external variable, optimization debugging cannot be executed because the

debug information of the specified external variable is deleted.

User’'s Manual U18512EJ1VOUM 123

CHAPTER 4 ASSEMBLER

This chapter describes the outline, operation, assemble list, and output messages of the assembler (as850).

4.1 Flow of Operation

The as850 assembles an assembly language source program in a specified assembly language source file

and creates a relocatable object file (refer to Figure 4 - 1).

Figure 4 - 1 Operation Flow of as850

— as850 —

Assembly language Relocatable object file
source file

124 User's Manual U18512EJ1VOUM

CHAPTER 4 ASSEMBLER

4.2 Input/Output Files

With the as850, the following file can be specified as an input file.
+ file.s ... assembly language source file (called the ".s file")

The file name of the relocatable object file generated by the as850 has extension .o instead of.s. Any kind of
characters that can be recognized in Windows can be specified as a file name; however, "@" cannot be used for
the beginning of a file name because "@" is regarded as a command option. The name of a file, folder, or folder
that includes a space cannot be used. If the Kanji code of the file is EUC, a file name, folder name, or folder
name in Japanese cannot be used.

If the relocatable object file created by the as850 includes an unresolved external reference, its relocation
remains unresolved.

An executable object file resolving all relocations (called the "execution format") is created by linking the

relocatable object file via the linker (1d850).

User’'s Manual U18512EJ1VOUM 125

CHAPTER 4 ASSEMBLER

4.3 Operation Method

This section explains how to operate the as850.

431 Command input method

The as850 is started from the ca850 under the default settings, but it can also be started in the following
format.

Enter the following from the command prompt.

as850 [option] ... file name [option]
[1: Can be omitted

: Pattern in preceding [] can be repeated

4.3.2 Method using PM+

The [Assembler Options] dialog box that is used to set assembler options for assembly language source files

can be displayed via either of the following methods once a project has been established under PM+.
- Set for all assembly language source files of the target project
(1) Select [Tool] - [Assembler Options...]

- Set for a specific assembly language source files

(1) Select the name of the assembly language source file to be set a option in the [Project] window on the
PM+,
(2) Select [Individual Assembler Options...] item that is displayed by clicking the right mouse button.

126 User's Manual U18512EJ1VOUM

CHAPTER 4 ASSEMBLER

4.4 Types and Features of Options

The following table lists the options of the as850.

To pass the following options from the ca850 to the as850 without modification, "-Wa" must be specified with
the ca850 (refer to "3.5.10 Option to each module").

Some options listed below are not included in the PM+’s option settings dialog box. When one of these

options must be specified, activate as850 from the command line

[Symbols used in option list]

[V850E2] Option dedicated to V850E2 core
[V850E] Option dedicated to V850Ex core
[PM+] Option exists as specification item under the PM+.

User’'s Manual U18512EJ1VOUM 127

CHAPTER 4 ASSEMBLER

441 File
This specifies options of preprocessing for the assembly language source file.

-a
[PM+]
This option generates an assemble list.
However, if the -O option (optimization option) has also been specified, the instructions are rearranged and

the assemble list output may be incorrect in some parts.

+err file=file

This option adds and saves error messages to the file file.

-err file=file

This option overwrites and saves error messages to the file file.

-1 file
[PM+]
This option assigns file as the name of the file where the assemble list file is inserted after it is generated by
specification of the -a option.
This option is ignored if the -a option was not specified.
If the -a option was specified but this option was omitted, the generated assemble list is output via standard

output.

128 User's Manual U18512EJ1VOUM

CHAPTER 4 ASSEMBLER

4.4.2 Option
This specifies options of the as850 for the assembly language source file.

-Dname [=def]
[PM+]
This option specifies the macro name to be defined. If the =def specification is omitted, the def value is
regarded as 1.

It is assumed that .set name, def is entered before the assembly language source program.

-Gnum
[PM+]

This option generates a machine language instruction on the assumption that all data of the specified size
(num bytes) or smaller is allocated to sections with the "sdata" or "sbss" attribute in response to external label
access. An integer in the range of decimal values 0 to 32767 can be specified as the num value.

If this option is omitted, it is assumed that num = .

However, machine language is generated on the assumption that data is allocated to sections with the

"sdata" or "sbss" attribute based on the .option quasi directive.

-I dir
[PM+]
This option specifies the folder where the file specified by the file input quasi directive (.include/.binclude) is
searched prior to the folder where the source files are placed.
If the file was not found in the specified folder or if this option is omitted, the folder where the source file is

placed, the folder where the C language source file is placed, and the current folder are searched in that order.

-m
[PM+]
This option generates an object file that includes information noting use of the mask register function. When
this function is used, the as850 outputs codes on the assumption that an 8-bit mask value 0xff is set to r20 and
a 16-bit mask value Oxffff is set to r21. Mask values must be set to the mask registers (r20 and r21) by a user
program such as the startup routine. To decide whether the mask register function is to be used or not, the
following points must be thoroughly considered.

- Is it a program that outputs many mask codes?

- Two register variable registers are used as mask registers. Does this have any effect?

User’'s Manual U18512EJ1VOUM 129

CHAPTER 4 ASSEMBLER

-0

[PM+]

This option executes optimization, which rearranges instructions to avoid register and flag hazards (refer to
the -g option).

If this option is specified with the -g option, this option is ignored and the -g option is valid.

If this option is specified with the -p option when the target device of the V850 core is specified or when a
V850 core common object is created, this option is ignored and the -p option is valid.

If this option is specified with the -p option when the target device of the V850Ex core/V850E2 core is
specified or when a V850Ex core/V850E2 core common object is created, both this option and the -p option

are valid.

-v
[PM+]

This option displays the as850’s execution status to standard error output.

[PM+]

This option does not output a warning message in the following cases.

(1) If r1 has been specified as the source register or the destination register
(2) If rO has been specified as the destination register

(3) Ifr20 or r21 has been specified as the destination register when using the mask register function

-wstring+
-wstring-
[PM+]
This option specifies output or suppression of a warning message for each message, regardless of whether
the -w option is specified. If "+" is specified, the message is output. If "-" is specified, message output is
suppressed.

The following character string can be specified as string.

r0 If rO is specified as the destination register

r1 If r1 is specified as the source or destination

An error occurs if neither "+" nor "-" is specified.

-Xfar jump
[V850E2] [PM+]
When a V850E2 core is specified as the device type in the assembler, far jump is specified for branch
instructions (jarl, jr) that do not include 22/32. To change the setting in instruction units, explicitly describe
jarl22/jarl32 or jr22/jr32.

Also, the jmp instruction is not affected by this option.

130 User's Manual U18512EJ1VOUM

CHAPTER 4 ASSEMBLER

4.4.3 Device

This specifies options related to the device of the as850 for the assembly language source file.

-X256M

[PM+]
This option handles the memory space as a 256 M bytes space. If this option is not specified, the memory
space is handled as a 64 M bytes space and addresses are resolved. Set this option in accordance with the
chipset to be used. The physical address space of the V850Ex core has 256 M bytes in many cases. When

creating an application that uses a space between 64 M bytes and 256 M bytes, specify this option.

-bpc=num
[PM+]

This option sets the higher address of the programmable peripheral I/O register. In num, specify only the
part of address from which the highest bit of the BPC register is removed.

If the target device has programmable peripheral I/O register functions (such as V850E/IA1), the value must
be determined when compiling (assembling) the application to set the variable address portion (= value set in
BPC register). Thus, specifying this option compiles (assembles) using the specified value.

When specifying this option, be sure to specify a value. A binary, octal, decimal, or hexadecimal number
can be used for the value. If an invalid value is specified, or if a value outside the range that can be set in the

BPC register is specified, a warning message is output and this option is ignored.

Example

-Xbpc=0x1234

In the above case, if the target device is the V850E/IA1, the start address of the programmable peripheral I/
O register area is treated as this value shifted 14 bits to the left, or 0x48d0000.

One value is set for an entire application. If you specify "-Xbpc" or "-bpc" when setting options by file, make
the values the same between files. However, this option need not be specified for files that do not use the
programmable peripheral /O register.

If this option is specified for a target device that does not have programmable peripheral I/O register
functions or when assembling as a common to V850 core/V850Ex core/V850E2 core, a warning message is
output and this option is ignored.

This option is for determining the address of the programmable peripheral 1/O register when compiling
(assembling) and does not actually cause a value to be reflected in the BPC register. For operation, it is
necessary to set a value in the BPC register separately using a startup module or the like. A sample appears

(commented out) in the startup module included in the package.

Example
For the V850E/IA1, specify the following descriptions in the startup module to make the variable portion of
the start address of the programmable peripheral I/O register "0x1234" and set the flag 0x8000 that enables

the use of this function.

mov 0x9234, rl0 -- 0x1234 | 0x8000 = 0x9234
st.hrl0o, BPC

User's Manual U18512EJ1VOUM 131

CHAPTER 4 ASSEMBLER

The assembler outputs a .bpc section in the special reserved sections when the programmable peripheral I/
O register is referenced, regardless of whether this option is specified or omitted. This section is used for
checking when linking. The .bpc section is a special reserved section for information and is never loaded into

memory. Therefore, it need not be specified in a link directive like a normal section.

132 User's Manual U18512EJ1VOUM

CHAPTER 4 ASSEMBLER

44.4 Other
This sets the other options of the as850 for the assembly language source file.

-Ccn
The "common magic number" value common to V850 core is embedded in the generated object as the
magic number, which enables the object to be used as a common object within the V850 core. If this option is
omitted, a magic number defined by the specified target device is embedded. For further description of magic

numbers, refer to "4.7.1 Magic number".

-cnv850e
[V850E]
This option sets the "common magic number" common to the V850Ex core as the magic number of the
object to be generated. This will enable the object to be used within the V850Ex core.

If this option is omitted, a magic number defined for the specified target device is set.

-cnv850e2
[VB50E2]
This option sets the "common magic number" common to the V850E2 core as the magic number of the
object to be generated. This will enable the object to be used within the V850Ex core.

If this option is omitted, a magic number defined for the specified target device is set.

-cpu devicename
This option specifies the target device. This option takes precedence over the .option cpu quasi directive. If
a target device is specified by this option or the .option quasi directive and the -cn/-cnv850e/-cnv850e2 option
are specified, a core common object including information peculiar to the target device can be created.
If neither the .option cpu quasi directive nor -cn/-cnv850e/-cnv850e2 option is specified, and if this option is

omitted, assemble is stopped.

-F devpath
This option specifies the folder where the device files are stored. If this option is omitted, the standard folder

is specified.
The as850 handles folders from the as850’s installation folder to the folder at the ..\dev position as the

standard folders for device files.

-f
This option creates an object file having information "a new format of function calling". It is useful for using
the assembly language source file created with the ca850 of the previous version (Ver.1.xx).

The present version executes assemble, assuming that this option is specified by default.

-9
[PM+]

This option outputs symbol information for the source debugger. This means that, when this option is
specified, debugging can be executed at assembly language source level. When the optimization (-O) option
is specified simultaneously, this option is ignored if there are sections for debug information in the source file.
If sections for debug information do not exist, the optimization option is ignored and this option is valid. In

other words, this option takes precedence if there is no debug information.

User’'s Manual U18512EJ1VOUM 133

CHAPTER 4 ASSEMBLER

-o ofile
This option specifies ofile as the name of the created object file.

If this option is omitted, the object file name extension .s is replaced by .o.

-p [num]
This option outputs code that avoids CPU faults. Specify the type of code to output (1 to 10 or 4a) in num.
Types 1 to 4 and 4a are valid for the V850 core, and types 5 to 10 are valid only for the V850Ex core/V850E2

core. If num is omitted, the following types of code are output as determined from the device file.

(1) If the target device is a V850E2 core or if "Common to V850E2 core [-cnv850e2]" is specified in "Magic
Number" in the assembler options, output codes of types 5 to 10.

(2) If the target device is a V850Ex core or if "Common to V850Ex core [-cnv850e]" is specified in "Magic
Number" in the assembler options, output codes of types 5 to 10.

(3) If the target device is a V850 core, output codes of types 1 to 3.

(4) If"Common to V850 core [-cn]" is specified in "Magic Number" in the assembler options, output codes of
types 1 to 3 and 5 to 10.

For details of the code output due to this option, refer to "4.7.2 Options for avoiding CPU faults".

This option outputs the as850’s version number to standard error output and then terminates processing.

-zf

This options performs assembly processing on the Flash/External ROM side when the Flash/External ROM
relink function has been used for the assembly language source file.

If this option is omitted, assembly processing is performed on the Boot/internal ROM side when the Flash/
External ROM relink function has been used for the assembly language source file.

There is no need to specify this option for assembly language source files that cannot use the Flash/
External ROM relink function.

Warning messages are not output concerning this option.

For details of the flash memory/external ROM relink function, refer to "5.6 Flash Memory/External ROM

Relink Function".

@cfile
This option handles cfile as a command file. A command file specifies an option and a file name for a
command not as arguments on the command line but by describing them in a file. On Windows, the length of
a character string specified as an option of a command is limited. If many options are set and some of the
options cannot be recognized, create a command file and specify this option.

For details of the command file, refer to "3.7.2 Command file".

134 User's Manual U18512EJ1VOUM

CHAPTER 4 ASSEMBLER

4.5 Settings Made via PM+

This section describes dialog boxe that is used to set the command options of the as850 for the target project’s
source file.
After setting the project via the [Project] menu, use either of the following methods to open the [Assembler

Options] dialog box.
- Set for all assembly language source files of the target project
(1) Select [Tool] - [Assembler Options...]

- Set for a specific assembly language source file
(1) Select the name of the assembly language source file to be set a option in the [Project] window on the
PM+.
(2) Select [Individual Assembler Options...] item that is displayed by clicking the right mouse button.

When a specific setting has been performed, the general option settings become invalid for that file. For a file
for which specific options have been set, the icon at the head of the file name of the source file that is displayed

in the Project window changes to green.

To make specific option setup invalid and have general option setup take effect, click the [Individual Assembler
Option Release] item that is displayed by clicking with the right mouse button, or click the [Delete Source Option]

button that has been added to [Option] and [Difference] tabs in the [Assembler Options] dialog box.

The option name displayed in "[]" in each option of the option settings dialog box is the option name for
starting from the command prompt. On the other hand, to specify output object names, etc., there are options

that can be specified only at startup from the command line.

To use the flash area relink function, the "-zf" option of the as850 is necessary for generating an object in the
flash area. To set this option, use "Create Flash Object" or "Create Flash Side Archive File" check box on the

[Flash] tab in the [Compiler Common Options] dialog box.

User’'s Manual U18512EJ1VOUM 135

CHAPTER 4 ASSEMBLER

4.5.1 [Assembler Options] dialog box

At the upper part of this dialog box, the following one tab is displayed.

The contents of this dialog box depend on selecting the following tab.

Table 4 - 1 [Assembler Options] Dialog Box

Tab

Description

[Option]

Setting of assembler options

The following two tabs are displayed for a individual assembly language source file setting.

Table 4 - 2 [Assembler Options] Dialog Box (Individual Source)

Tab Description
[Option] Setting of assembler options
[Difference] Indication of differences between the assembler options for the overall assembly lan-
guage sources and the individual source options.
Note The option shown with "[]" in this dialog box is the option that is activated from the command line.

136

User's Manual U18512EJ1VOUM

CHAPTER 4 ASSEMBLER

[Option]

This tab is used to set assembler options.

Figure 4 - 2 [Assembler Options] Dialog Box ([Option] Tab)

Assembler Options @

Option]

Include Search Path[-]: Edit...
[

Define Macr[-D]: Edi...

I Aszsemble List[-a]: IS¢ v Generate Debug Information]-a]
| I Use Mask Register-m]

[Do Optirmization]-0]

™ werbose Mode[-v]

[Suppress Warning[-w]

Size Thieshold of sdata/sbss ,—
Section Allocation[-GL:

Any Option; I warn Zero Register(/0)[-w]
| I Warn Reserved Register(rl []
Fils . ; !

™ Use Command File
Command Line Options:

-cpu 3201 -g

0Ok | Cancel Yu]ul] Help

(1) Include Search Path[-I]

This option specifies the folder that is searched for the file specified by the file input quasi directive (.binclude/
.include) prior to the folder where the source file is placed. When specifying several paths, use a semicolon ";"
(semicolon) to delimit the path specifications.

Selecting the [Edit...] button displays the [Edit Option] dialog box, where path names can be edited. This
option cannot be set independently for each source file, and is always used for all files.

If this option is omitted and if the specified folder is not found, the following folders are sequentially searched.

(1) Folder where the assembly language source file is placed

(2) Folder where the original C language source file is placed if the assembly language source file has been
created from a C language source file (detected by the .file quasi directive)

(3) Project folder (current folder when a command is activated if the command is activated from the

command prompt)

User’'s Manual U18512EJ1VOUM 137

CHAPTER 4 ASSEMBLER

(2) Define Macro[-D]

This option specifies a macro name to be defined in the "Macro name = define value" format. If "= define
value" is omitted, the define value is regarded as 1. ".set macro name, define value" is assumed to be described
before the assembly language program. When defining several macros, use a semicolon ";" to delimit the macro
definitions. This edit box is used to set a defined macro.

To specify two or more macros, delimit each with ;" (semicolon). By selecting the [Edit...] button, the [Edit

Option] dialog box can be displayed and the macro can be edited in this dialog box.

(3) Assembile List[-a -I]

This check box specifies whether the assemble list resulting from assembling a assembly language source is
to be output. When it is checked, a directory name or file name can be specified in the edit box below this button.
If a folder name is specified in this edit box as "Setting of a global options" and if the specified folder does not
exist, a message asking you if a folder is to be created is displayed. If nothing is specified in the edit box, an
assemble list is output to the project folder with the extension of the assembly language source file name
changed to .v. To specify another output destination, specify a folder name in the edit box.

If a file name is specified for "Setting of global options", an assembiler list for the source compiled last is output
because the same file name is overwritten. A file name can be specified when a file name is specified for

"Individual Source Options Setting".

(4) Size Threshold of sdata/sbss Section Allocation[-G]

Use this area to specify the upper limit of data allocated to the .sdata/sbss section. Data of the specified size
(bytes) or less is allocated to the .sdata or .sbss section. However, data for which the .sdata/.sbss section is
specified by the #pragma section directive or a section file is allocated to the .sdata/.sbss section regardless of
its size. An integer of decimal values 0 to 32767 can be specified. The yardstick for the value to be specified in
this area is output for reference when "Output GP Information[-A]" on the "[Option]" tab that sets linker options is
specified. Note that this option cannot be specified when an individual source is specified. Always specify this
option as a global option.

The value specified in the assembler is set in "Size Threshold of sdata/sbss Section Allocation[-G]" of the
[Output Code] tab. This option cannot be set independently for each source file, and is always used for all files.

For the details of sdata/sbss section, refer to CA850 for C Language User’s Manual.

(5) Any Option
This edit box is used to specify an option other than those described above in the [Assembler Options] dialog
box. Describe an option in this edit box in the same manner as on the command line.

At present, only the following option can be specified as Any Option

- P
Other options than this can be specified but are not supported at present.

(6) Generate Debug Information[-g]

This option outputs debug information. Check this box to debug a program, for example, when an assembly
language source is debugged with the debugger. If the optimization option (-O) is specified at the same time and
if a section for debug information is in the source file, this option is ignored. If there is no section for debug
information, the optimization option (-O) is ignored, and this option is valid. In other words, this option takes

precedence if there is no debug information.

138 User's Manual U18512EJ1VOUM

CHAPTER 4 ASSEMBLER

(7) Use Mask Register[-m]
This option specifies use of the mask register function.
When this function is used, the ca850 outputs codes, assuming that an 8-bit mask value, 0xff, is set to r20
and a 16-bit mask value, Oxffff, is set to r21. Mask values must be set to the mask registers (r20 and r21) by a
user program such as the startup routine.
To decide whether the mask register function is to be used or not, the following points must be thoroughly

considered.

- Isit a program that outputs many mask codes?

- Two register variable registers are used as mask registers: Does this have any effect?

If an object that uses a mask register and an object that does not use a mask register exist together when

this option is specified, the 1d850 outputs an error.

(8) Do Optimization[-O]

This option executes optimization to rearrange instructions to avoid register and flag hazards. If this option is
specified together with the -g option (which outputs information for the debugger), this option is ignored, and the
-g option is valid.

This option is also ignored when it is specified together with the -p option (to avoid CPU bugs) when a V850
core target device is specified or when a V850 core common object is created, and the p option is valid. If this
option is specified together with the -p option when a V850Ex core/V850E2 core target device is specified or

when a V850Ex core/V850E2 core common object is created, both this option and the -p option are valid.

(9) Verbose Mode[-v]

This option displays the detailed execution status of the as850 on the Output window.

(10) Suppress Warning[-w]
This option specifies whether the warning message specified by the -w option is suppressed or not. If this

check box is checked, the effect is the same as specifying the -w option.

(11) Warn Zero Register(r0)[-wr0]
This option specifies whether a warning message is suppressed or not when the r0 register specified by the -
wr0 option is used as a destination register. If this check box is checked, the effect is the same as specifying the

-wr0+ option. When it is dimmed, the effect is the same as specifying the -wr0- option.

(12) Warn Reserved Register(r1)[-wr1]
-This option specifies whether a warning message is suppressed when the r1 register specified by the -wr1
option is used. If this check box is checked, the effect is the same as specifying the -wr1+ option. When it is

dimmed, the effect is the same as specifying the -wr1- option.

(13) Use 32bit Jump Inst[-Xfar_jump] [VB850E2]
When a V850E2 core is specified as the device type in the assembler, far jump is specified for branch
instructions (jarl, jr) that do not include 22/32. To change the setting in instruction units, explicitly describe jarl22/
jarl32 or jr22/jr32.

Also, the jmp instruction is not affected by this option.

User’'s Manual U18512EJ1VOUM 139

CHAPTER 4 ASSEMBLER

(14) Use Command File
In the Windows environment, the length of character strings used to specify options for the ca850 is restricted.
If this check box is selected, the option character string is output to a command file, which enables the operation
to be completed without observing the restriction on the character string length. Check this check box if many
options are set and not all of them can be recognized. Under the default setting, the check box is not checked.

For the details of command file, refer to "3.7.2 Command file".

(15) Command Line Options
This area displays the options set in this dialog box by command line options.

This area is for reference and cannot be written to.

[Button]

(a) [Delete Source Option] button
This button can be selected when option settings for individual source files have been made, and is not
displayed (is dimmed) and cannot be selected when options for the overall project have been specified.
When selected, this button deletes any option specified for a particular source file and applies only global

options.

140 User's Manual U18512EJ1VOUM

CHAPTER 4 ASSEMBLER

[Difference]

This tab is used to display the differences between the options for the overall project and individual source

options.

Figure 4 - 3 [Assembler Options] Dialog Box ([Difference] Tab)

Assembler Options - sample.s

Option Difference]

Same Option:

Project Whale Option Only:

Source Individual Option Only:

Command Line Option:

-cpu 3201 -g

0K | Cancel &ppl Help

(1) Same Option
Options set as options for the overall project and options for individual sources are displayed in the command

line format. This area is for reference and cannot be written to.

(2) Project Whole Option Only
Options specified as options for the overall project and not as options for individual sources are displayed in

the command line format. This area is for reference and cannot be written to.

(3) Source Individual Option Only
Options specified as options for individual sources and not as options for the overall project are displayed in

the command line format. This area is for reference and cannot be written to.

(4) Command Line Option
This area displays the options set in this dialog box by command line options.

This area is for reference and cannot be written to.

User's Manual U18512EJ1VOUM 141

CHAPTER 4 ASSEMBLER

[Remark]

(a) [Delete Source Option] button
This button can be selected when option settings for individual source files have been made, and is not
displayed (is dimmed) and cannot be selected when options for the overall project have been specified.
When selected, this button deletes any option specified for a particular source file and applies only global

options.

142 User's Manual U18512EJ1VOUM

CHAPTER 4 ASSEMBLER

4.6 Assemble List

This section describes the assemble list.

An assemble list is a list-formatted version of the code that is produced when the source has been compiled

and assembled. It can be used to check the code resulting from compilation and assembly.

4.6.1 Output method

The assembile list can be output as follows.

(1) Command input
When the -a option has been specified, the assemble list is output via standard output. If the -a option is
specified along with the -l option which specifies an output file name, the assemble list is output to the specified
file.
When using the CA850 to compile the C language source, if the "output assemble list" has been specified
along with "output source comment" (via the -Xc option), the C language source line that corresponds to the
code appears as comments in the assemble list. However, the code line and source line may not correspond if

optimization has been forced.

(2) PM+
Specify "Assemble List[-a -I]" via the [Assembler Options] dialog box. The list is output to a file, and the file
name extension is changed to ".v".
When compiling the C language source, if "Assemble List[-FVv]" has been specified via the [Compiler Options]
dialog box and "Output Source Comment[-Xc]" has also been specified, the C language source line that
corresponds to the code appears as comments in the assemble list. However, the code line and source line may

not correspond if optimization has been forced.

User’'s Manual U18512EJ1VOUM 143

CHAPTER 4 ASSEMBLER

4.6.2 Output example

An assembile list output example is shown below. In addition, Figure 4 - 4 shows an example of the assemble
list that is output by compiling the C language source program in the example and then assembling the output

assembly language source program.

[Source]

void main (void)

{

int a;

[Output assemble list example]

Figure 4 - 4 Example of Output Assemble List

A-X- 00000000 41 .file "c:\work\src\a.c"
A-X- 00000000 42 .align 4

A-X- 00000000 43 #@BF

A-X- 00000000 44 .frame _main, .S2
A-X- 00000000 45 .globl _main
A-X- 00000000 46 _main:

A-X- 00000000 47 #@B_PROLOGUE
A-X- 00000000 D505 48 jbr .L15

A-X- 00000002 49 .Ll6:

A-X- 00000002 50 .G17:

A-X- 00000002 51 .G18:

A-X- 00000002 52 .G9:

A-X- 00000002 53 .G11:

A-X- 00000002 54 .G19:

A-X- 00000002 55 #@B_EPILOGUE
A-X- 00000002 23FF0100 56 1d.w -4+ .F2[sp]l, 1lp
A-X- 00000006 441A 57 add .82, sp
A-X- 00000008 7F00 58 Jjmp [1p] --0
A-X- 0000000A 59 #@E_EPILOGUE
A-X- 0000000A 60 .L15:

A-X- 0000000A 5ClAa 61 add -.82, sp
A-X- 0000000C 63FF0100 62 st.w lp, -4+.F2[sp]
A-X- 00000010 63 #@E_PROLOGUE
A-X- 00000010 95F0 64 jbr .L16

A-X- 00000012 65 #@FUNC_ARG

A-X- 00000012 66 .G5:

A-X- 00000012 67 .set .52, 0x4
A-X- 00000012 68 .set .F2, 0x4
A-X- 00000012 69 .set A2, 0x0
A-X- 00000012 70 .set . T2, 0x0
A-X- 00000012 71 .set .P2, 0x0
A-X- 00000012 72 .set .R2, 0x0
A-X- 00000012 73 .set .X2, 0x0
(1)) 3) (4))

144 User's Manual U18512EJ1VOUM

CHAPTER 4 ASSEMBLER

The parts of the assembile list lines are described below.

(1) Section attribute
These are section attributes for sections stored in the corresponding line. Section attributes and their

meanings are described in the following table.

Table 4 - 3 Section Attributes and Their Meanings

Section Attribute Meaning
A Section occupying memory
w Section that can be written
X Executable section
G Section allocated to memory area that can be referenced by using global pointer
(gp) and 16-bit displacement

(2) Value of location counter
This is the location counter value for the beginning of the line of code.
(3) Code
This is the code, expressed as a two-digit hexadecimal number.
(4) Line number
This is the given line’s line number, expressed as a decimal number.
(5) Source program
This is the assembly language source program on a given line. If instruction expansion is executed for the
instruction on that line, the instruction string resulting from the instruction expansion is indicated following --.
The C language source program corresponding to that line’s assembly source program is also displayed in

this area.

User’'s Manual U18512EJ1VOUM 145

CHAPTER 4 ASSEMBLER

4.7 Cautions

4.7.1 Magic number

Information indicating the target device for an object is automatically embedded into an object created by the
as850. This information is called a "magic number". A model-specific magic number is embedded if only a
particular type of device is the target device; if an entire core can serve as target devices, a "common magic
number" is embedded.

An object that has been assembled by the as850 when the -cn option has been specified contains a common
magic number and therefore can be linked to other objects for which a different device type has been specified
as long as the specified device belongs to the same core (Id850 does not output an error when they are linked).
As a result, any object that is created after the -cn option has been specified can be used as an object common

to any device in the specified device’s core.

Figure 4 - 5 Image of Creating Common Object with as850

as850 -cn

Device specification A '\

Common magic number : Ox70FF Link —

- - Executable object file
Device specification B
Model-specific magic number : 0x7OD

Device specification C
Model-specific magic number : 0x70D1

146 User's Manual U18512EJ1VOUM

CHAPTER 4 ASSEMBLER

[Caution]

Magic numbers common to cores and model-specific magic numbers are defined for various device files to
establish associations among the device core. The as850 references the device files and embeds the
magic numbers.

Object files that operate device-specific peripheral function registers, etc., should not be used as common
files among cores.

If a target device is specified by the -cpu option or .option quasi directive and then the -cn/-cnv850e/-
cnv850e2 option is specified, a core common object including information peculiar to the target device can
be created. However, an object having device-specific information different from that of the target device
does not operate correctly. Check in advance that the device-specific information can be used with the
intended target device.

The V850EX core is upwardly compatible with the V850 core. Source files that are used with the V850 core
can be used with the V850Ex core.

In such cases, specify the "-cn" option or the "-cnv850e" option before creating an object.

The object common to V850 core that is created with "-cn" can be linked with a V850EXx core object.

Note that an object that is created with "-cnv850e" cannot be linked with a V850 core object.

The V850E2 core is upwardly compatible with the V850 core/V850Ex core. Source files that are used with
the V850 core/V850EXx core can be used with the V850E2 core.

In such cases, specify the "-cn" option, "-cnv850e" option or "-cnv850e2" option before creating an object.
The object common to V850 core/V850Ex core that is created with "-cn"/"-cnv850e can be linked with a
V850E2 core object.

Note that an object that is created with "-cnv850e2" cannot be linked with a V850 core/V850EXx core object.

Figure 4 - 6 Example of as850 CPU Core Compatibility (V850Ex Core and V850 Core)

as850 -cnv850e as850 -cn

<V850Ex core common > <V850core common>

as850 -cpu 3101 as850 -cpu 3002

G/SSOEX device specification> <V852 device specification>

User’'s Manual U18512EJ1VOUM 147

CHAPTER 4 ASSEMBLER

4.7.2

Options for avoiding CPU faults

The CA850 provides the -Xv850patch option for the ca850 and the -p option for the as850 to avoid faults from
the V850 core/V850Ex core/V850E2 core CPU. When starting the as850 from the ca850, if the -Xv850patch

option is specified in the ca850, the -p option having the same num value is automatically set by the as850 to the

assembly language source file output by the ca850.

Specify the type of the code to be output (1 to 10 and 4a) as num. 1 to 4 and 4a are valid for the V850 core,

and 5 to 10 are valid for the V850Ex core/V850E2 core only. If num is omitted, the following codes are identified

from the device file and output.

(1

)

@)
4)

If the target device is the V850E2 core or if V850E2 core common;[-cnv850e2] is specified as the magic
number by an assembler option, code 5 to 10 is output.

If the target device is the V850Ex core or if V850E core common;[-cnv850¢e] is specified as the magic
number by an assembler option, code 5 to 10 is output.

Code 1 to 4 is output if the target device is the V850 core.

If "V850 core common[-cn]" is specified as the magic number by an assembler option, code 1 to 10 is

output.

[Note]

148

To determine whether or not a fault that has occurred is from the CPU being used, refer to the CPU’s
documentation.

If -p option and as850 optimization option (-O) are specified at the same time when the target device of the
V850 core is specified or if a V850 core common object is created, -p takes precedence and -O is ignored.
If -p option and as850 optimization option (-O) are specified at the same time when a target device of the
V850Ex core/V850E2 core is specified or if a V8B50Ex core/V850E2 core common object is created, both -p
and -O are valid.

If a code pattern that generates a fault covers different sections, this option’s function becomes invalid.
Only the -Xv850patch=11 option is handled by the ca850.

The correspondence between CPU core and -p option is as follows (for the newest version uPD70(F)3xxx,
not including maintenance or obsolete products):

To check whether or not the failure affects the CPU used, refer to the CPU’s documentation.

User's Manual U18512EJ1VOUM

CHAPTER 4 ASSEMBLER

Table 4 - 4 Correspondence Between CPU Core and -p Option

CPU Core -p1 -p2 -p3 -p4 | -pda | -p5 -p6 -p7 -p8 -p9 | -p10
V850 core OK | OK | OK | OK | OK - - — - — —
V850E/MS1 -— — — — OK A A
V850E1 core - - - - OK | OK — OK
V850ES core -—- - - — - -— — - - - —

Remark A: Affected
OK': Corrected (for the newest version uPD70(F)3xxx, not including maintenance or obsolete
products)

---: Not affected

The types and meanings of num are as follows.

For the instructions and registers, refer to the relevant device’s architecture manual.

(1) 1 (-Xv850patch=1 [-p1])
Insert a nop instruction immediately after the first Id.w in relation to the combination of "Id.w instruction +

(st.[b|h|w]/sst.[b]h|w]/Id.[b|w]/sld.[b|w] instruction) + branch instruction”.

Example
1d.w ld.w
sst.w nop
jarl sst.w
jarl

(2) 2 (-Xv850patch=2 [-p2])
Insert a nop instruction between the load/store instruction and branch instruction in relation to the combination

of "ld.w/sld.w/st.w/sst.w instruction + branch instruction".

Example
ld.w ld.w
jarl nop

jarl

If the pattern of num=1 is processed at the same time, the pattern of num=2 is searched and processed first.
An unnecessary nop instruction does not need to be inserted.

(3) 3 (-Xv850patch=3 [-p3])
This inserts the clr1 instruction in relation to the corresponding interrupt control register immediately before the

reti instruction.

Example

reti clrl 5, POICO

reti

User’'s Manual U18512EJ1VOUM 149

CHAPTER 4 ASSEMBLER

(4) 4 (-Xv850patch=4 [-p4])
This inserts a nop instruction immediately after the first load instruction in relation to the combination of "load
instruction (Id.[b|h|w]/sld.[blh|w]) + load store instruction (Id.[blh|w]/sld.[b]h|w]/sst.[blh|w]/st.[blh|w])" (inserted

when the peripheral 1/O register has been accessed in the input file).

Example
ld.w ld.w
1d.w nop

1d.w

(5) 4a (-Xv850patch=4a [-p4a])
This inserts a nop instruction immediately after the first load instruction in relation to the combination of "load
instruction (Id.[b|h|w]/sld.[blh|w]) + load store instruction (Id.[blh|w]/sld.[b]h|w]/sst.[blh|w]/st.[blh|w])" (inserted

regardless of whether the peripheral 1/0O register is accessed or not).

Example
ld.w ld.w
1d.w nop

1d.w

-p4 sets patch 4 in cases where peripheral I/O access occurs in an input file. -p4a sets patch 4 regardless of

whether or not peripheral I/O access occurs.

(6) 5 (-Xv850patch=5 [-p5])

This inserts a nop instruction in relation to the multiplication instruction immediately after it without any

conditions.
Example
mulh mulh
jarl nop

jarl

(7) 6 (-Xv850patch=6 [-p6])
This inserts a nop instruction immediately after the load instruction in relation to the combination of "load

instruction (Id.[b]h|w]/sld.[b|h|w]) + jr/jarl/jcond (bcond)"

Example
sld.bu sld.bu
jarl nop

jarl

(8) 7 (-Xv850patch=7 [-p7])
This inserts a nop instruction immediately after the callt instruction. It also inserts the "mov r31, r0" instruction

immediately before the switch instruction and reti instruction.

Example

switch mov r3l, r0

switch

150 User's Manual U18512EJ1VOUM

CHAPTER 4 ASSEMBLER

(9) 8 (-Xv850patch=8 [-p8])

This inserts a nop instruction between the consecutive sld instructions.

Example
sld.b sld.b
sld.b nop

sld.b

(10) 9 (-Xv850patch=9 [-p9])
If instructions (a), (b), and (c) below exist in a row, a nop instruction is inserted immediately after the sld

instruction (b).

Example
add add ... ()
sld sld.b ... (b)
and nop
and ... (o)

(@) Of 2-byte instructions mov, not, satsubr, satsub, satadd, zxb, zxh, sxh, or, xor, and, subr, sub, add, shr, sar,

and shl, instructions that write back to a register other than r0 and r30.

Example

add 0x1, rlo0

Including the instructions that describe a .set symbol with LABEL, expression, or definition after reference,

and that are expanded to the above instructions.

Example
addi SYM, rl10, rl0
.set SYM, 0x123

This example is not a chip bug pattern but is subject to patching.

(b) The sld instruction that writes back to a register different from those to which the instructions in (a) write
back

Example

sld.b $LABEL, rll

(c) Aninstruction that loads a value to the register to which the instructions (a) write back

Example

add rll, rlo0

Including the instructions that describe a .set symbol with LABEL, expression, or definition after reference,

and that load a value to the register to which the instructions (a) write back

User's Manual U18512EJ1VOUM 151

CHAPTER 4 ASSEMBLER

Example

addi LABEL2-LABEL1l, rl0, rl2
LABELL:

-- (omitted)
LABEL2:

In this example, if the relative values of LABEL2 and LABEL1 exceed the range that can be expressed by 16

bits, the instructions are expanded as follows:

mov LABEL2-LABEL1l, rl2
and rl0, rl2

Instruction (b) is immediately followed by the move instruction, and the value of r10 is not loaded.

In other words, this example is not of a chip bug pattern but is subject to patching.

(11) 10 (-Xv850patch=10 [-p10])
This inserts a nop instruction immediately after the store instruction in relation to the combination of "store

instruction (sst.[b|h|w]/st.[b]h|w]) + jcond(bcond)".

Example

sst.b sst.b

br nop
br

(12) No num specification (-Xv850patch [-p])
This outputs each code in the combination of 1 to 3 and 5 to 10, judged by the device file (refer to descriptions
above). If this option is specified when creating an object that does not require a corresponding patch, no patch

is set. The correspondence between created objects and options is shown below.

Table 4 - 5 Correspondence Between Created Objects and -p Options

Created Objects -p1 | -p2 | -p3 | -p4 | -p4a | -p5 | -p6 | -p7 | -p8 | -p9 | -p10

Specific to V850 directive

Specific to V850EXx directive

Specific to V850E2 directive

V850 core (common)

V850Ex core (common)

Z|Z2| 10V | 2| Z2)| T
Z|Z2| 0V | Z2|Z2)| T
Z2|Z2| 0| Z2|Z2| 0
Z|Z2| 0| Z2|Z2| 0
Z|Z2| 0| Z2|Z2| 0
TU| V| V| ©T|T| Z
TU| V| V| ©T|T| Z
TU| V| V| ©T|T| Z
©U| | V| ©U| T Z
TU| V| V| T|T| Z
TU| V| V| ©T|T| Z

V850E2 core (common)

Remark P : Patched
N : Not patched

152 User's Manual U18512EJ1VOUM

CHAPTER 5 LINKER

This chapter presents an overview and describes the operation, link map, cautions, and output messages of

the linker (1d850).

5.1 Flow of Operation

Generally, an application program is divided into several source files and coded. Source files written in C
language activate the compiler (ca850) or assembler (as850) and source files written in an assembly language
activate the assembler (as850) to output object files.

The linker (1d850) resolves the addresses of these object files in accordance with the information of the link
directive and device files and generates one executable object file, i.e., a load module file. If there is external
reference that is not resolved when the linker links object files, the linker searches the specified archive file
(library file) to resolve the external reference. It then links only the object files necessary for resolving and
generates executable object files. The linker can also generate relocatable object files when the -r option is

specified.

Figure 5- 1 Operation Flow of 1d850

-

~
Object file

< Object file

- 1d850 |—»p @
Object file

-

\

N~/
Archive file

-

ull

— Device file
Link directive file

User's Manual U18512EJ1VOUM 153

CHAPTER 5 LINKER

Figure 5 - 2 1d850 Operation Image (Example)

>|d850 a.o b.o c.olib.a

a.o a.out
Section 1 Segment 1 Higher
Section 2 Section 1 of lib.a
Section 1 of c.o
Section 1 of b.o
b.o Section 1 of a.0
- Lower
Section 1
Section 2
Segment 2 Higher
c.0 ’ 1d850 ’ Section 2 of lib.a
- Section 2 of b.o
Section 1 Section 2 of a.0
Section 3 Lower
lib.a Segment 3
Section 1 Establishes relations between -
ection sections and segments and ‘ Section 3 of c.0 ‘
Section 2 references addresses
Link directive file Device file

The ca850 internally activates the as850 and 1d850 as drivers. When the ca850 is activated, a load module

can be generated. Therefore, there is no need to be aware of activating the as850 and 1d850.

Figure 5 - 3 Batch Processing

N S -0
—p — —Pb

ca850 as850

_p| 10850 —
s >
N~

Figure 5 - 4 Modular Processing

—» | ca850

as850 | _-©

D >
s |————»{ 1850 _>

154 User's Manual U18512EJ1VOUM

CHAPTER 5 LINKER

5.1.1 Link procedure
The 1d850’s link procedure is described below.

(1) The Id850 links a section (input section) that is included in a specified object file according to a link directive

and device file to create an output section consisting of output object files.

Figure 5 - 5 Creation of Output Section

Input object files Output object file
file.o a.out

text section

—

.text section

1

—p| -sdata section

v

f

Output section

.sbss section

Input section

$

text section .sdata section

Ly

.sbss section

func.o
inlib.a

(2) The Id850 links the output section created in the above-mentioned step according to the link directive and

creates a segmentNote,
Note A segment is the minimum unit for loading a program to memory, and it is indicated in the program
header of the created object file.
(3) The Id850 allocates the segment created in the above-mentioned step to the target machine’s memory

space according to the link directive and device file.

Figure 5 - 6 Allocation to Memory Space

Output object files
a.out a.out

—p| -textsection —> .text section :I'—lXT segment

0xFF0000

Output section

—»| .sbss section sbss section
- b DATA segment
—»| .sdata section — »| -sdatasection °
0x100000

(4) The Id850 resolves unresolved external references in the output section.

(5) The 1d850 creates the following three types of symbols according to the symbol directive in the link

directiveNote,

User's Manual U18512EJ1VOUM 155

CHAPTER 5 LINKER

- Text pointer symbol having the value set to the text pointer (tp)
- Global pointer symbol having the value set to the global pointer (gp)

- Element pointer symbol having the value set to the element pointer (ep)

Note These symbols are used to set appropriate values to the text pointer (tp), global pointer (gp), and
element pointer (ep) before executing the codes created by the CA850 (such as in the start-up

module). The element pointer symbol is set by the Id850 after it reads target device-specific values

from a specified device file.

(6) The Id850 creates reserved symbols. These reserved symbols include the following.
- Start address of each output section
- Start address (with 4-byte alignment) of segment exceeding each output section

- Start address (with 4-byte alignment) of segment exceeding the created executable object file

For details of reserved symbols, refer to "5.7.3 Reserved symbols" .

156 User's Manual U18512EJ1VOUM

CHAPTER 5 LINKER

5.2 Operation Method

This section explains how to operate the 1d850.

5.21 Command input method

Enter the following from the command prompt.

1d850 [option] ... file name [file name or option]
[1: Can be omitted

: Pattern in preceding [] can be repeated

5.2.2 Method using PM+

The [Linker Options] dialog box that is used to set the linker options can be displayed via the following

methods once a project has been established under PM+.
- Select [Tool] - [Linker Options...]

Since the linker is activated once per project, there are no file-specific settings.

The name of the executable object file that is output by the linker is a.out.

The default file name is a.out. To modify the name of the object file, specify a file name in "Output File[-0]"
field on the [File] tab.

User's Manual U18512EJ1VOUM 157

CHAPTER 5 LINKER

5.3 Types and Features of Options

The following tables list the 1d850’s options.
Some options which are listed on the following options are not in the PM+’s option dialog box. When one of

these options must be specified, activate the 1d850 from the command line.

[Symbols used in option list]

[V850E2] Option dedicated to V850E2 core
[V850E] Option dedicated to V850Ex core
[PM+] Option exists as specification item under the PM+.

158 User's Manual U18512EJ1VOUM

CHAPTER 5 LINKER

5.31 Input file

This sets an option related to the input file of the linker.

-D dfile
[PM+]

When this option is specified, links are made according to the link directive in the directive file dfile.

The length of dfile must be no more than 127 characters including the path specification or no more than 14
characters when not including the path specification. The extension is necessary, and .dir is recommended. If
this option is omitted, the default link directive is used.

For description of the link directive’s functions and organization, refer to CA850 for Link Directive User’s

Manual.

-Xolddir [=version]
[PM+]
This option selects the compatibility of the format of the link directive file with old versions.
"V240", "V250", or "V260" can be specified as version. If version is omitted, "V240" is assumed.

If this option is omitted, the latest link directive file format is supported.

- When V240 is specified
Section priority layout function OFF, segment sort OFF (equivalent to CA850 Ver. 2.40)

- When V250 is specified
Section priority layout function ON, segment sort OFF (equivalent to CA850 Ver. 2.50)
- When V260 is specified
Section priority layout function ON, segment sort ON (equivalent to CA850 Ver. 2.60 or later)

User's Manual U18512EJ1VOUM 159

CHAPTER 5 LINKER

5.3.2 Output file
This specifies the files referenced and linked by the linker and an output file name.

+err file=file

This option adds and saves error messages to the file file.

-err_file=file

This option overwrites and saves error messages to the file file.

-o ofile
[PM+]
This option specifies ofile as the name of the object file to be created. If this option is omitted, the default file

name a.out is used.

-m[=mapfile]
[PM+]
This option outputs as a mapfile the link map that indicates the state of allocation to the memory space of
the input and output sections. If mapfile is omitted, the link map is output to the standard output. For details of

the link map, refer to "5.5 Link Map".

-mo [=mapfile]
[PM+]
This option outputs a link map that indicates allocation of the input and output sections to the memory space
to mapfile in the format of products older than CA850 Ver. 2.60. If mapfile is omitted, the link map is output to

the standard output.

160 User's Manual U18512EJ1VOUM

CHAPTER 5 LINKER

5.3.3 Library
This specifies options related to libraries that are referenced by the 1d850.

-Ldir
[PM+]

If the -I option is specified with this option (or after this option in the case of the command line), the archive
file (also called library file) specified by the -l option is searched, starting in the folder dir and then in the
standard folders. The archive file specified by the -l option specified after this option is searched. If this option
is omitted, only the standard folders are searched.

The 1d850 handles the folder where the 1d850 is installed, the folder at the position of ..\lib850, and the folder
at the position of ..\lib850\rXY (XY=[32]26|22]) as the standard folders of libraries.

-1c
[PM+]

This option specifies whether or not to link the compiler’s standard library(libc.a).

-1lm
[PM+]
This option specifies whether or not to link the compiler’s mathematical library(libm.a).
The mathematical library is valid when the -Ic option is set because it also references the functions in the

standard library.

-lstring
[PM+]
When resolving an unresolved external symbol reference, this option references the archive file libstring.a.

If several archive files are specified by this option, the files are searched in the order of their specification.

(1) Use no more than 64 characters to specify string.

(2) When this option has been specified, the Id850 references only the archive files that are specified as
having unresolved external references at the time they are specified. Therefore, when activating from
the command line, specify this option after specifying the object file that will reference the specified
archive files.

(3) The mathematical library supplied by the CA850 references the libc.a file of the standard library.
Therefore, specify standard library reference specification "-Ic" after mathematical library reference

specification "-Im" when the 1d850 is activated from the command line.

User's Manual U18512EJ1VOUM 161

CHAPTER 5 LINKER

5.3.4

Flash ROM

This specifies options related to the flash ROM of the 1d850.

-ext table address

162

[PM+]

This option creates an object file for the flash/external ROM relink function using the specified 8-digit

hexadecimal address value as the start address value of the analysis table (Refer to "5.6 Flash Memory/

External ROM Relink Function").

When specifying the boot area, the branch to the flash area side is processed as a branch using the branch
table specified for the address that is specified by this option.

During the flash area specification, a branch table having the branch instruction to the previous branch
destination is created at the address specified by this option.

The address value specified by this option must be the same as the value that is used when creating an
object file in the boot areal/flash area. If a different value is specified, operation faults will occur. There is
no error checking.

The address value specified by this option must be within the ROM area used as the flash area. No error
checking is done because it is not possible to determine which area contains the specified address.

When creating an object file in the flash area, this option automatically creates an -ext table section
having a size of "(the maximum ID valueN°t + 1) x (Entry size of branch table)" and starting with the
specified address value. Although there is no need to follow the directive file’s allocation specification for
this section, an empty area must be available for the section.

This option cannot be specified with the - option. Operation faults will occur if a relocatable object file that

has been created using the -r option is input.

If this option is omitted, an object file for the flash/external ROM relink function will not be created.

Note This is the value specified by the .ext_func quasi directive in the assembly language source file.

User's Manual U18512EJ1VOUM

CHAPTER 5 LINKER

-zf bootfile

[PM+]

This option creates a flash-side object file from the specified object file as the boot area’s object file when

using the flash/external ROM relink function.

Specify the boot area’s object file as the object file that was specified and created via flash/external ROM

relink function.

If this option is omitted, a boot area object file is created.

The -ext_table option must be specified in order to use this option.

Example

1d850 -ext table 0x200 -D dfile2 -zf boot.out -o flash.out flashl.o flash2.o

(1M

)
@)

4)
®)

The object files flash1.0 and flash2.0, which are generated from the assembly language source file
that are processed for the flash/external ROM relink function are linked as objects in the flash area.
A branch table is created at address 0x200.

When linking, the information in the boot area’s executable object file boot.out is referenced. boot.out

is not linked at this time.
Linking is performed according to the flash area’s executable directive file.

The generated object file name is "flash.out".

User's Manual U18512EJ1VOUM 163

CHAPTER 5 LINKER

5.3.5 Device
This specifies options related to the device of the 1d850.

-X256M
[VB50E] [PM+]
This option handles the memory space as a 256 M bytes space. If this option is not specified, the memory
space is handled as a 64 M bytes space and addresses are resolved. Set this option in accordance with the
chipset to be used. The physical address space of the V850Ex core has 256 M bytes in many cases. When

creating an application that uses a space between 64 M bytes and 256 M bytes, specify this option.

-Xsid=id

[PM+]

This option sets the security ID of an on-chip flash memory device. It cannot be used if a device not
supporting the security ID function is used.

Specify the ID in a hexadecimal number of 10 bytes or less (including the first 0x). If the specified value runs
short of 10 bytes, the higher bits are filled with 0. If 10 bytes are exceeded, an error is output.

If the specification of a security ID is omitted for a device supporting the security ID function, it is assumed
that "Oxffffffffffff" is specified.

If the security ID is set using a method other than the above, the compiler judges that the security ID is

duplicated with the security ID that is generated by the linker, and outputs the following error.

F4264: start address(0x00000070) of section "SECURITY ID" overlaps previous

section "section name" ended before address (0xXXXXXXXX) .

In such a case, specify the +Xsid option to suppress security ID generation by the linker. If an object for a
device not supporting the security ID function is specified when the linker is executed, a warning message is
output and the specification is ignored.

For example, to set security code "0x112233445566778899aa" (setting Ox11 to address 0x70, 0x22 to
address 0x71, 0x33 to address 0x72, 0x44 to address 0x73, 0x55 to address 0x74, 0x77 to address 0x76,
0x88 to address 0x77, 0x99 to address 0x78, and Oxaa to address 0x79), describe as follows.

-Xs1d=0x112233445566778899%aa

-Xob=none

This option suppresses the option byte that is generated by default.

Only the default generation by the initial value registered in the device file is suppressed. When specified by
using .section "OPTION_BYTES" in the assembler source file, the .section "OPTION_BYTES" specification
will be given priority, regardless of this option's specification.

Also, when this option is specified for devices that do not include option byte functionality, this option is

ignored without outputting a message.

164 User's Manual U18512EJ1VOUM

CHAPTER 5 LINKER

5.3.6 Option
This sets the 1d850 options.

-A
[PM+]

This option outputs as a standard output the information that can be used as a guide for the [sdata/sbss
Allocation] option (num setting of -Gnum option), which is specified for the ca850 and as850 when compiling or
assembling source file. When using the value indicated by *OK*, data with a size less than that value is
allocated to the sdata/sbss area.

When activating from the ca850, the -A option used in the ca850 activation is passed.

For details, refer to "5.7.1 Using -A option".

-B
[PM+]
This option executes linkage in two-pass mode.
If this option is omitted, linkage is executed in one-pass mode.

Although two-pass mode is slower than one-pass mode, it is able to process larger files.

-E
[PM+]
This option outputs a warning message, not an error message, and continues linking if any of the following
illegalities is found during relocation processing.
- The result of address calculation of an unresolved external reference is illegal
- The relationship with the section to be allocated is illegal
The value of address calculation judged as illegal is not assigned to the unresolved external reference

judged as an error; the original value remains.

-M
[PM+]
This option outputs a message for all external symbols that are defined more than once, and stops link
processing.
If this option is omitted, a message is output only for the first external symbol that is defined more than once,

and link processing is stopped.

-T
[PM+]
This option suppresses checking of the size and alignment condition when linking an external symbol.
If this option is omitted, the size is checked, and if a size difference is detected, a warning message is output

and link processing is continued. At this time, the symbol size of the file in which the symbol is defined is valid.

-Ximem overflow=warning
[PM+]
This option controls checking when the internal ROM/RAM overflows. In case of an overflow, a warning
message is output and linking continues.

If this option is omitted, an error message is output and linking is stopped if an overflow occurs.

User's Manual U18512EJ1VOUM 165

CHAPTER 5 LINKER

-e symbol
[PM+]
This is the entry point address value for the object file from which the symbol value symbol is created. If the
specified symbol cannot be found, the linker outputs a message and link processing is stopped. When this

option is not specified, the entry point address value is determined according to the following rules.

(1) Ifthe symbol __ start exists, it is used.
(2) If the symbol __start does not exist, the start address of the text attribute section that is allocated to the
lowest address area in the created object file is used.

(3) If the text attribute section does not exist, "0" is used.
The symbol name space cannot be left blank.

-f num
[PM+]

This option specifies the fill value for align holes between sections of the created object, with four-digit
hexadecimal numbers (2 bytes). When using this option, specify -B option to execute linking in the 2-pass
mode. 0x at the beginning can be omitted. Specification by this option takes precedence over the fill value
specification in the link directive.

- If the value does not occupy all four digits, it is assumed that zeros are used to fill the empty digit(s).
- If a hole does not cover two bytes, only the required number of digits are fetched and initialized from the

specified fill value (starting from the lowest value).
If this option is omitted, the default specification 0x0000 is used.

-mc
[PM+]
This option checks whether or not the files that use the mask register function are mixed with files that do
not use this function when linking the object files created from the C language source files. Link processing is

stopped if they are found to be mixed.

-rc
[PM+]
This option outputs detailed information when use of register mode is mixed for all input object files.
If this option is specified with the -w option, this option is ignored. If this option is omitted, detailed

information does not output.

-rescan
[PM+]
This option re-references the library file specified by the -l option. When this option is specified, symbols left

unresolved because of the link sequence of the library can be prevented.

166 User's Manual U18512EJ1VOUM

CHAPTER 5 LINKER

-rom less
[PM+]
This option suppresses checking of the internal ROM area. When the application allocation overlaps the
addresses of the internal ROM area, a warning message is not output.

This option should be specified when the application has been created in ROM-less mode.

Caution Checking of the overflow of the internal ROM is not supported when the single-chip mode is
selected. Invalidate checking of the overflow of the internal ROM and check the overflow on the link

map.

-S
[PM+]
This option creates an object file in which the debug information, line number information, and global pointer

table have been removed.

-t
[PM+]

This option suppresses checking of the symbol size and alignment condition when linking undefined
external symbols. If this option is omitted, the symbol size and alignment condition are checked, and if a
difference is detected, a warning message is output and link processing is continued.

- The linker supports multiple definitions of undefined external symbols. Multiple-defined undefined external
symbols are allocated to the .sbss or .bss section after linking. If symbol sizes and alignment conditions to

be linked vary, the maximum size and the least common multiple of the alignment condition are used.

-V
[PM+]
This option outputs the detailed execution status of the Id850. It displays lists of objects to be linked.
-w
[PM+]

This option suppresses output of warning messages. Only messages for fatal errors are output.

User's Manual U18512EJ1VOUM 167

CHAPTER 5 LINKER

5.3.7 Other

This sets other options.
-F devpath

When the 1d850 is started by itself, this option sets the device file search to begin in the devpath folder. If this
option is omitted, the search goes directly to the standard folders. When activating from the ca850, use the
ca850's -devpath option to specify the path of the device file. The Id850 handles the folder where the -v

This option outputs the 1d850 version information as standard error output, then terminates.

-cpu devicename
This option specifies that the device file for the target device specified by devicename will be read. If using
PM+, this corresponds to the device specification that is done when setting up a project.
If this option is omitted, the device file for the target device specified when the .o file was created will be

read.

-fc
This option checks all input object files to see if the old function calling and the calling specification of the
current version are used together.
The old function calling specification is not supported by the current version.

If this option is omitted, only the object files created from the C language source file are checked.

-help

This option outputs a help description of options as standard error output.

-mask reg
This option references the mask register function’s library. Use the -Xmask_reg option when activating from

the ca850.
The mask register function’s library is a 32 register mode library. When 22 register mode or 26 register

mode has been specified, the following warning is output and any subsequent specification is ignored.

W4857: reg22" option is illegal when "-mask reg" option is specified, ignored

"-reg22" option.

168 User's Manual U18512EJ1VOUM

CHAPTER 5 LINKER

This option creates a relocatable object file. This option is ignored if it is specified with the -ro option. If this
option is specified, a message is not output and linking is completed normally even if an unresolved external
reference remains at the end of linking. If this option is omitted and if an unresolved external reference
remains, the following message is output and linking is stopped. In this case, an object file (load module file)

is not generated.

F4452: undefined symbol.
symbol referenced in "file"

If an object file created by the 1d850 will be specified as the target for relinking by the 1d850, specify this

option when creating the target object file for relinking.

[Cautions]

- If this option has been specified, the link directive is valid only for the type and attribute in the mapping
directive section and is otherwise ignored.

- If this option has been specified, the Id850 does not create any reserved symbols.

- The specification of the -r option has changed from CA850 Ver.2.30 or earlier. When using the mapping

method of an old version, use -r instead of the -ro option.

-ro
This option creates a relocatable object file in the old mapping mode (CA850 Ver. 2.30 or earlier).
If this option is specified with the -r option, the -r option is ignored. If this option is omitted, an executable

object file is created.

-regnum
This option references a register mode library. The 22 register mode, 26 register mode, or 32 register mode
can be specified for num. Do not enter any blank spaces after -reg.

If this option is omitted, the 32 register mode library is referenced.

@cfile
This option handles cfile as a command file. A command file specifies an option and a file name for a
command not as arguments on the command line but by describing them in a file. On Windows, the length of
a character string specified as an option of a command is limited. If many options are set and some of the
options cannot be recognized, create a command file and specify this option.

For details of the command file, refer to "3.7.2 Command file".

User's Manual U18512EJ1VOUM 169

CHAPTER 5 LINKER

5.4 Settings Made via PM+

This section describes dialog boxes that are used to set the command options of the 1d850 for the target

project’s source file.

5.4.1 [Linker Options] dialog box

At the upper part of this dialog box, the following four tabs are displayed.

The contents of this dialog box depend on selecting the following tab.

Figure 5 - 7 [Linker Options] Dialog Box

Tab Description
[File] Setting of options related to files
[Library] Setting of options related to library
[Option] Setting of linker options
[Others] Other settings
Note The option shown with "[]" in this dialog box is the option that is activated from the command line.

170 User's Manual U18512EJ1VOUM

CHAPTER 5 LINKER

[File]

This tab is used to set options related to files of the linker.

Figure 5 - 8 [Linker Options] Dialog Box ([File] Tab)

Linker Options gj

File lLibrarﬂ Optior | Others |

Dutput File[-o:

[Browse...

Link. tap File[-m=]:

| Browse. .. | Edit by Text Editar

[OM Style Link Map[-ma]

Command Line Options;

-cpu 3207

0OF, | Cancel] Help

(1) Output File[-o0]
This field is used to specify the name of the object file (with extension ".out") to be output. If this option is
omitted, it is assumed that a.out is specified.

A file can also be selected by using the dialog box that is displayed by selecting the [Browse...] button.

(2) Link Map File[-m=]
This option specifies the name of the output file when a link map is output. A file can be selected by using the
dialog box that is displayed by selecting the [Browse...] button.
By selecting the [Edit by Text Editor] button, the text editor can be displayed and the link map file can be
edited.
Note that this setting takes precedence over "Output Link Map[-m]" check box on the [Option] tab.

(3) Old Style Link Map[-mo]
This check box specifies whether the link map of an old version is to be output. If this box is checked, the link

map file specified by "Link Map File[-m=]" is output in the old format.

(4) Command Line Options
This area displays the options set in this dialog box by command line options.

This area is for reference and cannot be written to.

User's Manual U18512EJ1VOUM 171

CHAPTER 5 LINKER

[Library]

This tab is used to set options related to library of the linker.

Figure 5 - 9 [Linker Options] Dialog Box ([Library] Tab)

Linker Options @

File Library] Optior | Others |

Library[-I]: Edit..
[

Library Search Path[-L] Edit...

W Link Standard Library[-c]

W Link Mathematics Library[-Im]
Library Lizt...

Library Options:

A e

0Ok | Cancel] Help

(1) Library[-]
This option specifies the string portion of the archive file (library file) libstring.a to be accessed. When
specifying several files, delimit each name with a semicolon ";". Selecting the [Edit...] button displays the [Edit
Option] dialog box, where the library items can be edited. The archive file is searched in the folder specified by

"Library Search Path[-L]" and the standard.

(2) Library Search Path[-L]

This specifies the folder where the archive file (library file) to be accessed is stored. When specifying several
folders, delimit each name with a semicolon ";". Selecting the [Edit...] button displays the [Edit Option] dialog
box, where the path items can be edited. If a folder is specified by this option, the library is searched from the
specified folder before the standard folders of the library. If two or more folders are specified, the library is

searched in the sequence in which the folders were specified in the text box.

(3) Link Standard Library[-ic]
This check box is used to reference the standard library "libc.a" provided in the package. This check box is

selected as the default setting.

172 User's Manual U18512EJ1VOUM

CHAPTER 5 LINKER

(4) Link Mathematics Library[-Im]

Because the mathematics library references the standard library, also check the standard library as a
reference library. The library reference is automatically specified after the input object file, and the standard
library is linked after the other libraries. The path of a library is automatically specified before the library
reference. rompcrt.o, which is necessary for ROMization, is automatically linked after a library. This is to place

the rompcrt section for ROMization after the .text section of the other input files.

(5) Library List
When this button is clicked, a list of libraries to be linked specified by the options currently set on this page is

displayed.

Figure 5 - 10 [Library List] Dialog Box

Library List

C:%Program FileshHEC Electronic
C:\Program Filesh\MELC Electronics Tools

(6) Command Line Options
This area displays the options set in this dialog box by command line options.

This area is for reference and cannot be written to.

User's Manual U18512EJ1VOUM 173

CHAPTER 5 LINKER

[Option]

This tab is used to set options of the linker.

Figure 5 - 11 [Linker Options] Dialog Box ([Option] Tab)

Linker Options

File] Library Option lDthers]

Entry Symbol[-e]: [Suppress Warninal-w]
|| [~ lgnore Belocation Erar[-E]
[Check All tulti-Defined Spmbol[-+]
[lgnore Undefined External Symbal Enar[4]
[Dutput GP Infarmation]-4] [lgnore External Symbal Error[-T]
™ 2Pass Mode[-B] [Check Mask Register[-mc]
I Dutput Link Map[-m] [Check Register Maodef-rc]
I Output Old Style Link. Map(-mo] [Rescan Library File[-rescan]
I Ship Debug Information]-s] [lgnore Intermal ROM Check[-rom_less]
I Yerbose Maode[-v] ['Wham Internal Mermon Overflow
[-=imenm_averflow=warning)
Command Line Options:
-cpu 3201

0Ok | Cancel] Help

(1) Entry Symbol[-e]

This text box is used to specify a symbol to be set as the entry point address. If the specified symbol is not
found, the linker outputs a message and stops linking.This area uses a drop-down list type of display to list all
symbol names that have been specified once (up to 10 symbol names). Either click on the desired symbol name
or use the arrow keys to select it.

If this option is not specified, the entry point address value is determined by the following rules.

- Value of __ start (two underscores) symbol if that symbol exists.

- The start address of the text-attribute section allocated to the lowest part in the object file created if __start

symbol does not exist.

- 0 if the text-attribute section does not exist.

(2) Filling Number of Hole[-f]

This specifies the fill value for the created hole in the object as a 4-digit hexadecimal number (2 bytes). When
using this option, specify "2 Pass Mode[-B]" to execute linking. Ox at the beginning can be omitted. Specification
by this option takes priority over the fill value specified by the link directive file.

If the value is less than 4 digits, prefix it with zeros to fill. If the size of the hole is less than 2 bytes, take out the
required number of low-order digits from the specified fill value. If the fill value specification is omitted, the

default value 0x0000 is used.

174 User's Manual U18512EJ1VOUM

CHAPTER 5 LINKER

(3) Output GP Information[-A]

This option outputs information to the standard output that can be used as criteria in setting numeric values in
the "Size Threshold of sdata/sbss Section Allocation[-G]" option set in the [Output Code] tab of the [Compiler
Options] dialog box or [Option] tab of the [Assembler Options] dialog box when compiling or assembling a source
file. If data displayed as "*OK*" is used, data for which the size is that numeric value or less is allocated to the
sdata/sbss data area.The displayed results are included in the log file (project name + .plg) that is generated

automatically in the project folder.

(4) 2 Pass Mode[-B]
This check box is used to specify whether linking is to be executed in the 2-pass mode specified by the -B

option.

(5) Output Link Map[-m]
This option outputs a link map to the standard output that shows the allocation of memory space in the input
and output sections. The link map that is output is included in the log file (project name + .plg) that is generated

automatically in the project folder.

Remark If an output file name was specified in "Link Map File[-m=]" on the [File] tab, output to the file takes

precedence and this option is void.

(6) Output Old Style Link Map[-mo]
This option specifies whether the link map of an old version is to be output. Its effect is the same as "Old Style
Link Map[-mo]" on the [File] tab.

(7) Strip Debug Information|[-s]
This option creates an object file from which the debug information, line number information, and global

pointer table have been stripped.

(8) Verbose Mode[-v]
This option displays the detailed execution status of the as850 on the Output window.

It displays lists of objects to be linked.

(9) Suppress Warning[-w]

This option suppresses output of warning messages. Only messages concerning fatal errors will be output.

(10) Ignore Relocation Error[-E]
This option outputs a warning message and allows linking to continue if any of the following illegalities is found
during relocation processing.
- The result of address calculation of an unresolved external reference is illegal
- The relationship with section to be allocated is illegal
The value of address calculation judged as illegal is not assigned to the unresolved external reference judged

as an error; the original value remains.

User's Manual U18512EJ1VOUM 175

CHAPTER 5 LINKER

(11) Check All Multi-Defined Symbol[-M]
This option outputs a message for all external symbol duplicate definitions and stops linkage. If this option is

omitted, a message is output only for the first duplicate encountered and linkage is stopped.

(12) Ignore Undefined External Symbol Error[-t]
This option ignores checking of size and alignment conditions during linkage of undefined external symbols. If
this option is omitted, symbol size and alignment conditions are checked. If a difference is found, a warning

message is output and linking continues.

Remark The linker supports multiple definitions of undefined external symbols. The multiple, undefined
external symbols are allocated to the .sbss or .bss section after they have been linked. If the symbol
size or alignment condition of the symbols to be linked differ, the maximum size of the symbols to be
linked is used as the size and the least common multiple of the alignment condition is used as the

alignment condition.

(13) Ignore External Symbol Error[-T]
This option suppresses size checking when linking external symbols. If this option is omitted, the size is
checked, and if a difference in size is detected, a warning message is output and linking continues. At that point,

the symbol size of a file for which a symbol is actually defined is valid.
(14) Check Mask Register[-mc]

This option checks whether or not files that use the mask register function are mixed with files that do not use

this function when linking object files created from the C language source files. If mixed, linking is stopped.

(15) Check Register Mode[-rc]
This option checks whether or not different register modes are mixed among all of the input object files, and
outputs detailed information if mixed. If the "Suppress Warning" check box is checked, this option cannot be

selected.

(16) Rescan Library File[-rescan]
This option specifies whether the library file specified by "Library[-I]" on the [Library] tab is to be rescanned.
When this option is specified, symbols left unresolved because of the link sequence of the library can be

prevented.

(17) Ignore Internal ROM Check[-rom_less]
This option does not check the location for the internal ROM area. This option does not output a warning
message to the address of the internal ROM area even if the application allocations are overlapped.

Specify this option in the ROMless mode. Unnecessary warning messages will not be output.

(18) Warn Internal Memory Overflow[-Ximem_overflow=warning]
This option controls checking when the internal ROM/RAM overflows. In case of an overflow, a warning
message is output and linking is continued. If this option is omitted, an error message is output and linking is

stopped if an overflow occurs.

(19) Command Line Options
This area displays the options set in this dialog box by command line options.

This area is for reference and cannot be written to.

176 User's Manual U18512EJ1VOUM

CHAPTER 5 LINKER

[Others]

This tab is used to set other options of the linker.

Figure 5 - 12 [Linker Options] Dialog Box ([Others] Tab)

Linker Options @

File l Liblarﬂ Option Others]

Any Option:
I

W Use Command File

Command Line Options:

-cpu 3201

0K | Cancel] Help

(1) Any Option
This edit box is used to specify an option other than those described above in the [Linker Options] dialog box.
Describe an option in this edit box in the same manner as on the command line. At present, it is not necessary

to use other options because all the options related to the linker can be set on the [Linker Options] dialog box.

(2) Use Command File
In the Windows environment, the length of character strings used to specify options for the ca850 is restricted.
If this check box is selected, the option character string is output to a command file, which enables the operation
to be completed without observing the restriction on the character string length. Check this check box if many
options are set and not all of them can be recognized. Under the default setting, the check box is not checked.

For the details of command file, refer to "3.7.2 Command file".

(3) Command Line Options
This area displays the options set in this dialog box by command line options.

This area is for reference and cannot be written to.

User's Manual U18512EJ1VOUM 177

CHAPTER 5 LINKER

5.5 Link Map

This section describes the link map output by the 1d850.
A link map is where link result-related information is written. It can be referenced for information such as a
section’s allocation addresses.

Link map output methods are described below.

5.5.1 When starting the 1d850 from the command line

If the link map’s display option (-m) has been specified, link map is output when linking is completed. Since
output is via standard output, use the console’s redirect function to set file output.
If the -mo option is specified, display in the old format of CA850 Ver. 2.60 or earlier.

A file name is specified as the -m=file option or the -mo=file option to output to a file.

5.5.2 When starting from PM+

Go to the [Tool] - [Linker Options...] menu and select the [Option] tab, then check the "Output Link Map[-m]"
option to set link map output. The output destination is the specified file if file output has been specified, or if not,

the PM+’s output window.

5.5.3 Link map output example

Link map output examples are shown below. Figure 5 - 13 shows an example of the link map that is output

when object files have been linked.

[Objects]
crtN.o
main.o
func.o

libc.a (standard library)

178 User's Manual U18512EJ1VOUM

CHAPTER 5 LINKER

[Link Map Output]

Figure 5 - 13 Link Map Output Example

*kkkKkKkx*x** MEMORY ALLOCATION MAP ******x**%*

OUTPUT SEGMENT VIRTUAL SIZE(16) SIZE(10)
SEGMENT ATTRIBUTE ADDRESS
TEXT RX 0x00000000 0x00000082 130
DATA RW 0x00000088 0x00000018 24
(1) 2) (3) (4) (5)
FrxAkAxkxk LINK EDITOR ALLOCATION MAP *******x%

OUTPUT INPUT VIRTUAL SIZE INPUT
SECTION SECTION ADDRESS FILE
.text 0x00000000 0x00000082

.text 0x00000000 0x0000001a crtN.o

.text 0x0000001c 0x0000002c main.o

.text 0x00000048 0x00000018 func.o

.text 0x00000060 0x00000022 strcmp.o(../1ib850/r
.sdata 0x00000088 0x0000000e

.sdata 0x00000088 0x0000000e main.o
.sbss 0x00000098 0x00000008

.sbss 0x00000098 0x00000004 func.o

.sbss 0x0000009c¢ 0x00000004 * (GpCommon) *

(6) (7) (8) 9) (10)

"MEMORY ALLOCATION MAP" in the link map displays the following information.

(1) Output segment
Names of output segments configuring the object file to be generated (names of the output segments are not

stored)

(2) Segment attribute

R Read
W Write
X Executable

(3) Address

Start address of the output segment

(4) Size (hexadecimal)

Size of the memory including the alignment conditions between sections and the align hole (hexadecimal)

(5) Size (decimal)
Size of the memory including the alignment conditions between sections and the align hole (decimal)
"LINK EDITOR ALLOCATION MAP" of the link map displays the following information.

User's Manual U18512EJ1VOUM 179

CHAPTER 5 LINKER

(6) Output section

Section name output to the load module (displayed up to 12 characters)

(7) Input section

Name of input section configuring output section (displayed up to 12 characters)

(8) Address

The start address of output section or input section

(9) Size

Size of output section or input section

(10) Input file

Object file names belonging to an input section

If an area is allocated by using the .comm quasi directive of the as850, the area is common to all the files, and
its section is displayed as "*(Common)*" or "*(GpCommon)*". If the object file to which the input section belongs
is an object file in an archive file (library), the archive file is displayed as the full path name in the following
format.

- Object file name (archive file name)

If display in the old format of CA850 Ver. 2.60 or earlier is specified by using the -mo option, *(nil)* is displayed
for the section created with the 1d850, and sections created with the as850 such as .symtab, .strtab,

and.shstrtab.

Remark *(nil)*

(nil) may appear in the data areas of the .sbss and .sdata sections. This indicates that a globally declared
variable without an initial value has been allocated. Even if a variable with the same name is used for a
different file, it is still inevitably part of the load module, so the file name containing the variable becomes
undefined and therefore appears as *(nil)* in the link map. However, if data without an initial value was
declared using the #pragma section "data" instruction, the file name appears instead of *(nil)* since the file's

allocation is identified.

180 User's Manual U18512EJ1VOUM

CHAPTER 5 LINKER

5.6 Flash Memory/External ROM Relink Function

5.6.1 Relink function

Some systems are equipped with flash memory or detachable ROM. To upgrade the version of the program,
the contents of the flash memory may be rewritten or the detachable ROM may be replaced with a new ROM.
When changing the program even partially, basically the project itself is reorganized or "rebuilt". However, it
would be convenient if the allocation to be upgraded was limited to the flash memory or external ROM and if it
was not necessary to reorganize the project.

The boot area is fixed to the internal ROM. If a function is called between the flash memory to be rewritten and
the boot area, and if the start address of the function is changed as a result of modifying the function in the flash
memory, the function cannot be called correctly.

The "flash memory/external ROM relink function" (hereafter referred to as the "relink function") is used to

prevent this and enable functions to be called correctly.
This function is realized as follows.

(1) A "branch table" where instructions to branch to the functions in the flash memory area are written is
prepared in the flash memory area.

(2) When a function in the flash memory area is called from the boot area, execution jumps to the branch table
in the flash memory area, and then the instruction used to branch to the intended function is executed and

jump occurs.

This mechanism can be realized by the user. If the "relink function" is used, this can be done relatively easily.
To use this function, however, the functions to be called in the flash memory area must be determined when the
fixed ROM area is created. This mechanism is used to call a function from the fixed ROM area even if the

function is modified in the flash memory area.

User's Manual U18512EJ1VOUM 181

CHAPTER 5 LINKER

5.6.2 Image of relink function

A function is called as shown below when the relink function is used.

(1) To call function in fixed ROM from fixed ROM

The function can be called without problem because addresses have been resolved before they are
programmed to the fixed ROM.

Figure 5- 14 In Fixed ROM

void func roml (void) 4

{

void func_rom2 (void)

{

func_romil () ;

Function can be called without problem.

(2) To call function in flash memory from flash memory

The function can be called without problem because addresses have been resolved in the flash memory.

Figure 5 - 15 In Flash Memory

void func_flashl (void) 4

{

void func flash2 (void)

{

func flashl () ;

Function can be called without problem.

182 User's Manual U18512EJ1VOUM

CHAPTER 5 LINKER

(3) To call function in flash memory from fixed ROM
When a function in the flash memory is called from the fixed ROM, the address of the function cannot be
known from the fixed ROM because the function size, etc., have been changed in the flash memory. In other
words, a function in the flash memory cannot be directly called. To solve this, execution jumps to the branch
table in the flash memory. From this table, an instruction that jumps execution to the function in question is

executed. In this way, execution jumps to the intended function.

Figure 5 - 16 From Fixed ROM to Flash Memory

In fixed ROM In flash memory
void func_roml (void) void func flashl (void)l
{ {
} }
void func_rom2 (void) void func flash2 (void)
{ {
func_flashi() ; func_flash() ;
} }

o \ Branch table
Execution jumps to branch table
of flash memory. jr _func_flash1

jr _func_flash2

In the same manner as functions, this is relevant to referencing external variables.
A global variable defined in the flash memory cannot be referenced from the fixed ROM. Therefore, an
external variable of the same name can be defined in both the fixed ROM and flash memory. Each of these

external variables is referenced only from the respective areas.

User's Manual U18512EJ1VOUM 183

CHAPTER 5 LINKER

(4) To call function in fixed ROM from flash memory

When a function in the fixed ROM is called from the flash memory, the contents of the fixed ROM are not

changed. Therefore, a function in the fixed ROM can be directly called from the flash memory.

Figure 5-17 From Flash Memory to Fixed ROM

In fixed ROM In flash memory
void func_roml (void) void func_flashl (void)

{ {

’—_—, func_rom2 () ;

’—
/ }
void func_rom2 (void)

{
void func_flash2 (void)

} | {

Branch table
A function in fixed ROM can be

directly called from flash memory. jr _func_flash1

jr _func_flash2

In the same manner as functions, this is relevant to referencing external variables. A global variable defined in

the fixed ROM can be referenced from the flash memory.

184 User's Manual U18512EJ1VOUM

CHAPTER 5 LINKER

5.6.3 Realizing relink function

This section describes specifically how to realize the relink function.

(1) Project of PM+
To realize the relink function, a fixed ROM area and flash memory area must be separately created. This
means that only the flash memory area is modified after the fixed ROM area has been created (after a program

has been stored in ROM). When creating a project with PM+, therefore, divide the project as follows.

(a) Project to be allocated to the fixed ROM area

(b) Project to be allocated to the flash memory area (project that may be modified in the future)
In addition, separately prepare a startup routine and link directive file for each project.

(2) .ext_func quasi directive
When calling a function in the flash memory area from the fixed ROM area, the name of the function to be
called (label name) and ID number are assigned to the fixed ROM area by using the .ext_func quasi directive.

The format of the .ext_func quasi directive is as follows.

.ext func function-name, ID-number

Specify a positive number as the ID number. A different ID number must not be specified for the same function
name or the same ID number must not be specified for different function names.

When a function name in the flash memory area is specified in the fixed ROM area by using the .ext_func
quasi directive, a branch table (ext_table) is created. The address of this ext_table is specified by the user.

Specify the address as follows, by using linker option "-ext_table", when a load module of the internal ROM

area and a load module of the flash memory area are created.

-ext table address /* address to be specified */

When execution branches to the body of a function, the actual function address is obtained by referencing the

offset of the ID number from the beginning of the created branch table, and then execution branches.

User's Manual U18512EJ1VOUM 185

CHAPTER 5 LINKER

186

Example

func_flasho ()
func flashil ()
func flash2()

If the above three C functions are allocated to the flash memory and they are called from the fixed ROM,

describe as follows in the fixed ROM using the as850.

.ext func func_flashO, 0
.ext func func flashl, 1

.ext_func _func_ flash2, 2

To make this description in a C language source file, use the #pragma asm - #pragma endasm directives or

__asm(). When the #pragma asm - #pragma endasm directives are used, the description looks as follows.

#pragma asm
.ext func func_ flashO, 0
.ext_func _func_flashl, 1
.ext_func func_flash2, 2

#pragma endasm

It is recommended to describe these .ext_func quasi directives in one file and include this file in all source
files by using the .include quasi directive (or #include directive when describing in C language), in order to
prevent missing descriptions or the occurrence of contradictions, i.e., to prevent the error of specifying
different ID numbers for the same function names or specifying the same ID number for different function
names. If a file using the #pragma asm - #pragma endasm directives is included as above, the compiler
outputs the following message but this may be ignored (or set by "Individual Warnings" not to output this

message).

W2244: '#pragma asm' used out of function is not supported completely.

User's Manual U18512EJ1VOUM

CHAPTER 5 LINKER

An image of the relink function is shown below.

Assembly language source described by user Assembler image after linking

[ext table.inc]
.ext func func_flashO, 0
.ext func func_flashl, 1

.ext func func flash2, 2

[rom. s] [rom.out]

.include "ext table.inc" .extern __ext table head
.extern _func_flashO jarl ext table head+0x4*0,lp
.extern func flashl jarl _ ext table head+0x4*1,1lp
.extern _func_flash2 jarl __ext table head+0x4*2,1lp

jarl _func_flash0O, 1p
jarl func flashl, 1lp
jarl func flash2, 1lp

[flash.s] [flash.o]

include "ext_table.inc" # (branch table)

.globl func_ flashO .section ".ext table", text
.globl func flash2 .globl ext table head
_func_flasho: .extern _func_flashoO

.extern _func_flashl

jop [1p] .extern _func flash2

__ext table head:
.globl _func_flashl jr _func_flasho
_func_flashl: jr _func_flashl

jr func flash2

jmp [1p] # (function body)
.globl func flashO

£ flash2:
_func_flas _func_flashoO:

jmp [1p] jmp [1p]

.globl _func_flashl
_func_flashl:

jmp [1p]

.globl func flash2
_func_flash2:

jmp [1p]

If the .ext_func quasi directive is specified as shown above, a table is created with the symbol ext_table, and

the first symbol of this table is "__ext_table_head".

Code "jarl__flashO, Ip" in the fixed ROM is an offset from __ext_table_head, and obtains the address of

__flashO and jumps to the function body by the jarl instruction.

User's Manual U18512EJ1VOUM 187

CHAPTER 5 LINKER

(3) Startup routine
Separately prepare a startup routine for the fixed ROM and a startup routine for the flash memory. Each

startup routine must perform the following processing.

(a) Setting tp, gp, and ep values in the fixed ROM

(b) Calling the _rcopy function to initialize the RAM area to be used for the fixed ROM
(c) Branching from the fixed ROM to the startup routine of the flash memory

(d) Calling the _rcopy function to initialize the RAM area to be used for the flash memory

(e) Moving to the processing of the flash memory

If tp, gp, and ep are not used in the fixed ROM, the values may be set in the flash memory. When the initial
value data is copied by using the _rcopy function, the load module must be "ROMized" by the ROMization pro-
cessor. Prepare rompcrt.o having the first symbol of the rompsec section and execute linking by specifying the
linker option "-Ir". By using the packing section created as a result, copy data with an initial value by using the
_rcopy function (refer to "CHAPTER 6 ROMIZATION PROCESSOR").

It is recommended to use the same address values in the fixed ROM and flash memory for the tp, gp, and ep
values. These values may be different, but in this case the values must be set each time control has been trans-

ferred between an instruction code in the fixed ROM and one in the flash memory.

Fixed ROM Flash memory

__start: .ext_func _flash start 3
jr __ flash start

mov #__ tp TEXT, tp
mov #__gp_DATA, gp __flash start:
mov #__ep DATA, ep

To main function in flash memory
To main function in fixed ROM jarl main, 1p

It is not necessary to stick to
the name "main function".

jarl main, 1lp

.ext func flash start 3

jr _ flash start

extern unsigned long _S romp; extern unsigned long _S romp;
void main (void) void main (void)
{ {

_rcopy (& S_romp, -1); _rcopy (& S_romp, -1);

188 User's Manual U18512EJ1VOUM

CHAPTER 5 LINKER

(4) Describing link directive file

Each of the fixed ROM and flash memory projects has a link directive file. The following points should be

noted when describing a link directive file.

(@)

(b)

()

Even if the address of a section placed in the RAM area overlaps in the fixed ROM and flash memory, the
linker does not output an error because the projects are different. In other words, the addresses can
overlap. For the RAM area that must be referenced simultaneously in the fixed ROM and flash memory,
addresses must be specified so that they do not overlap.

It is recommended to use the same address values for the tp, gp, and ep values in the fixed ROM and flash
memory. These values may be different, but in this case the values must be set each time control has
been transferred between an instruction code in the fixed ROM and one in the flash memory.

A link directive file related to the branch table (ext_table) does not have to be described. It is automatically
allocated to an address specified by the linker option "-ext_table". However, the following points must be
noted.

If a vacant area of the size of the branch table is at the address specified by -ext_table, the link directive file
is allocated as is. The other segments are not affected. This is the most ideal case.

If a vacant area of the size of the branch table is not at the address specified by -ext_table, an error occurs.
This applies, for example, if a code has been already allocated to the address specified by -ext_table in a

TEXT segment for which an address is specified. Here is an example.

Address specification of branch table

-ext_table 0x500

Link directive file (part)

TEXT : !LOAD ?RX VO0x400
.text = $PROGBITS ?AX .text;

}i

(Size of TEXT segment is 0x100 bytes or more.)

An error occurs as a result of linking because the branch table cannot be allocated to
address 0x500. Change the value specified by -ext_table.

User's Manual U18512EJ1VOUM 189

CHAPTER 5 LINKER

- If another segment is allocated to the address specified by -ext_table before the relink function is used but
the address of that segment is not specified in the link directive file, the branch table is allocated to the
address specified by -ext_table and the original segment is moved behind the branch table. If the segment

overlaps a segment for which an address is specified as a result of moving, however, an error occurs.

Address specification of branch table

-ext table 0x500

Link directive file (part)

TEXT : !LOAD ?RX ({
.text = SPROGBITS ?AX .text;

i

(It is assumed that the TEXT segment is allocated from address 0x500 as

a continuation from the segment ahead of the TEXT segment.)

At this time, the branch table is allocated to address 0x500 because no address is
specified for the TEXT segment, and the TEXT segment is allocated behind the branch
table.

190 User's Manual U18512EJ1VOUM

CHAPTER 5 LINKER

(5) Assembler and linker options

To assemble an object in the flash memory, specify the assembler option "-zf". When the as850 alone is
activated, this option is specified. When it is activated from PM+, the assembler option "-zf" is automatically
appended if "Create Flash Object" of the Compiler Common Options is checked and an object file of the fixed
RAM is specified by "Boot Object File". Specify an object output by the Id850. An error occurs if an object output
by the romp850 is specified. Specify "Branch Table Address (ext_table) (-ext_table option)" as a linker option.

Specify an address of the flash memory. An example where the address of the branch table is 0x200000 is
shown below.

Figure 5 - 18 Compiler Common Options for Flash Memory

Compiler Common Options @

File:] Startup] Link, Directive% ROM Flash lDevice]

[+ Create Flash Object

Branch Table Address: Ox200000

Boot Object File:

|f|ash_h00t.0ut Browse...

Thiz edit box can be specified an address of branch table by hexadecimal of C
language.

Same address iz neceszary with both the flazh area side and the boat area side.
When it iz specified, -ext_table option of the linker iz get.

Ok | Cancel | Apply | Help |

Check "Create Flash Object" also for a project of the fixed ROM, but do not specify "Boot Object File (-zf
option)". Specify the same address as the flash memory for "Branch Table Address (ext_table) (-ext_table

option)". An example of option setting for the fixed ROM is shown below.

Figure 5 - 19 Compiler Common Options for Fixed ROM

Compiler Common Options @

File] Startup] Link, Directive% RO Flash]Device]

Branch T able Address:]DR2DDDDD

Boot Object File:

| Browse. .

By checking thiz check box, object files that uses re-linking function of the flazh
afea are created.

Check iz neceszary with bath the flash area side and the boot area side.

ak. | Cancel Apply Help

User's Manual U18512EJ1VOUM 191

CHAPTER 5 LINKER

(6) .ext_ent_size quasi directive
When an actual function is called from the branch table in the flash memory, jr branch instructions are output

as follows by default.

__ext table head:
jr _func_flasho
jr _func_flashl
jr func flash2

However, the jr instruction can branch only within a 22-bit range because of a restriction of the architecture. To
branch in the entire 32-bit space, additionally specify the .ext_ent_size quasi directive. The format of this

directive is as follows.

.ext_ent size size -- Entry size of table

The value that can be specified as the entry size is "4", "8", or "10". "Entry size of table" above means
"instruction size necessary for one branch processing". The default entry size is "4". In this case, a 4-byte

instruction is allocated as follows.

jr _flash funco -- 4-byte instruction

If "8" is specified, a total of 8 bytes of instructions are allocated, as follows.

mov # flash funcO, rl -- 6-byte instruction

jmp [rl] -- 2-byte instruction

If "10" is specified, a total of 10 bytes of instructions are allocated, as follows.

movhi hil(# flash funcO), r0, rl -- 4-byte instruction
movea lo(#_flash func0O), rl, rl -- 4-byte instruction
jmp [rl] -- 2-byte instruction

Note that an 8-byte instruction can be used only when the V850Ex core/V850E2 core is used (because only
the VB50EXx supports this instruction set).
When creating an object common to the V850 core/V850Ex core/V850E2 core (when using the -cn option),

always specify "10".

192 User's Manual U18512EJ1VOUM

CHAPTER 5 LINKER

(7) Library

If a library function is called from the fixed ROM or flash memory, the library is linked to the object on the

calling side. For example, even if a library is linked to the flash memory, the same library is linked to the fixed

ROM if the same library function is called from the fixed ROM. When a library function is called, therefore, a

function does not have to be specified by the .ext_func quasi directive for the library function because branching

does not take place between the fixed ROM and flash memory. In a special case where the library linked to the

fixed ROM branches to a function in the flash memory, however, a function must be specified by the .ext_func

quasi directive.

For the "standard library" and "mathematical library" of the CA850 package, a function does not have to be

specified by using the .ext_func quasi directive.

(8) Interrupt handler

Describe the part that calls an interrupt handler in the area where the address of the interrupt handler exists.

In the following case, an interrupt handler function name must also be specified by the .ext_func quasi directive.

- Interrupt handler address is in fixed ROM.

- Interrupt handler body is in flash memory.

Assembly language source described by user

Assembler image after linking

[ext table.inc]

.ext _func _int flash0, 0

[rom.s]

.include "ext table.inc"
.extern _int flashoO
.section "INT0O0", text
jr _int flashoO

[rom.out]
.section "INTOO", text
jr _ext table head+0x4*0,lp

[flash.s]

.include "ext_ table.inc"
.globl int flashoO

_int flasho:

reti

[flash.o]

(branch table)
.section ".ext table", text
.globl ext table head
.extern _int_ flashoO

__ext table head:
jr _int flashoO

(handler body)
.globl _int flashoO
_int_flasho:

reti

User’'s Manual U18512EJ1VOUM

193

CHAPTER 5 LINKER

5.7 Supplementary Information

This section describes the supplementary points related to the 1d850.

5.71 Using -A option

This section describes how to use the -A option.

With PM+, specify "Output GP Information[-A]" on the [Option] tab of the [Linker Options] dialog box for the -A

option.

-A

[Function]

194

This option displays the following information that serves as a yardstick for the value to be set to num of the

-Gnum option that can be specified for the ca850 and as850 when a source file is compiled or assembled.

- Standard output if ca850 or as850 has been activated with the -A option specified on the command line

- Output window if "Output GP Information[-A]" is specified with PM+

The -Gnum option allocates data of less than num bytes to the .sdata or .sbss section.The ca850 and as850
output codes in compliance with the following rule for the data allocated to the sdata, sbss, data, and bss
areas.

The ca850 or as850 first tries to allocate the data to the sdata section or sbss section, which are areas that
can be accessed with a single instruction from the gp register (data with an initial value is allocated to the
sdata section and data without an initial value is allocated to the sbss section).

Because these areas are accessed by a code that uses gp and a 16-bit displacement for access, data can
be allocated only in a range of +32 KB from gp. If the data does not fit in these areas, the ca850 or as850 tries
to allocate the data to the data section or bss section, which are areas that can be accessed with two
instructions from the gp register (data with an initial value is allocated to the data section and data without an
initial value is allocated to the bss section). In these areas, the address of the access area is first generated,
and a code using gp and a 32-bit displacement for access is generated. Consequently, the entire 4 GB space

can be accessed.

Figure 5 - 20 Memory Allocation Image of gp Offset Reference Section

Upper address

bss attribute section . .
Data without initial value

sbss attribute section

op > sdata attribute section o
gp indicates the Data with initial value

position of the first | data attribute section
of the sdata
attribute section
+ 32 KB.

Lower address

User's Manual U18512EJ1VOUM

CHAPTER 5 LINKER

Therefore, the execution efficiency and object efficiency are enhanced if more data is allocated to the sdata
or sbss section, which can be accessed with a single instruction.

To allocate data, the user can intentionally specify the allocation location by using the #pragma section
directive in the case of a C language source or by using the .section quasi directive in the case of an assembly
language source. If a threshold value of the size of the data to be allocated to the sdata or sbss section is
prepared and if data of a size less than the threshold value can be allocated to the sdata or sbss section, more
data can be allocated without having to modify the source program. This specification is made by the -Gnum
option of the ca850 or as850.

The value specified as num of this option is the data size, so it would be convenient to have information that
can be used as a yardstick. The -A option outputs this information. If the -A option is specified for the 1d850, it

outputs information that can serve as a yardstick for determining the value of num of the -Gnum option.

[Explanation of output information]
An example of the information output when this option is specified when an executable object file is
generated without the -r option specified and an example of the information output when this option is

specified when a relocatable object file is generated with the -r option specified are shown below.

Figure 5 - 21 Example of Output Information on Executable Object File

kxxxxx*x [LINK EDITOR GP INFORMATION *****x

GP SYMBOL SECTION SECTION SECTION GP

NAME NAME SIZE (REAL) SIZE (ASSUMED) NUMBER

_gp_DATA

.sdata 0x000afl10

0x00002000 4 *QOK*
0x00003450 8 *OK*
0x00004430 12 *QK*
0x000050a8 16 *OK*
0x00007b40 20 *OK*

0x0000a010 24
0x0000afl1o0 32

.sbss 0x00012050
0x00000050 4 *QK*
0x00002050 16 *OK*
0x00007050 512 *OK*
0x00010050 1024

(@) (b) (€) (d) (e) (f)

User's Manual U18512EJ1VOUM 195

CHAPTER 5 LINKER

196

Figure 5 - 22 Example of Output Information on Relocatable Object File

kxxxxx* [,INK EDITOR GP INFORMATION *****x
GP SYMBOL SECTION SECTION SECTION GP
NAME NAME SIZE (REAL) SIZE (ASSUMED) NUMBER

*(NOT AVAILABLE) *

.sdata 0x000aflo0
0x00002000 4 *QK*
0x00003450 8 *QK*
0x00004430 12 *QK*
0x000050a8 16 *QOK*
0x00007b40 20 *OQK*
0x0000a010 24
0x0000afl1o0 32

.sbss 0x00012050
0x00000050 4 *QK*
0x00002050 16 *QOK*

*GpCommon * 0x00010000
0x00005000 512 *OK*
0x00010000 1024

(a) (b) () (d) (e) (f)

The meaning of each item of the output information is as follows:

(@) Name of global pointer symbol
This is the name of the global pointer symbol used for linking. If the created object file is a relocatable file,
"*(NOT AVAILABLE)*" is displayed.
(b) Section name
This is the name of the sdata attribute section or sbss attribute section to which data are allocated.
Because a relocatable object file cannot determine allocation of an undefined external symbol to a section,
the 1d850 internally creates a virtual section "*GpCommon*" and temporarily allocates the data to this
section .
(c) Actual size of section
This is the actual size of the section that is considered for use as the area for the hole generated by data
alignment.
(d) Assumed size of section
This is the size of the section that is assumed if the ca850 is started with the -Gnum option specified (with
the value shown in the column at the right to this column specified as num). Because the calculation of this
size assumes an alignment condition of more than 4 bytes without taking the actual alignment condition into
consideration, the value shown in this column does not necessarily agree with the actual size of the created
section.
(e) Value of num of -Gnum option assumed
This is the value of the -Gnum option num upon starting the ca850 and the as850 that is assumed as a

result of calculating the "assumed size of section" shown on the column to the left of this column.

User's Manual U18512EJ1VOUM

CHAPTER 5 LINKER

(f) Judgement result
This is the result of the judgmentN°® as to whether or not the size of the section is within a range of 15 bits
(0x0 to Ox7fff) if the ca850 is started with the -Gnum option specified with the value shown in the column at
the left to this column (specified as num). If the size is within this range, "*OK*" is displayed; if it is not,

nothing is displayed.

Note Usually the sections to which data is allocated are allocated from the lower address in the order of
data/sdata/sbss/bss attribute sections in CA850. The global pointer (gp) is assumed to be set in the
startup module, etc. so as to indicate the first address of the sdata attribute section + 32 KB. If the
result is OK in this judgement, the sdata/sbss attribute sections are assumed to be allocated to a

memory range that can be referenced using 16-bit displacement.

[Cautions]

- The information output by this option is only a guide, and the judgment result may not be correct, such as in

the following cases:

(a) If allocation of a section that creates a hole is specified by a link directive, etc.
(b) If a direct address is specified for a global pointer symbol.

(c) If datais allocated to the .sdata/.sbss section by the #pragma section directive.

Example

> 1d850 -A filel.o file2.o

file1.0 and file2.0 are linked and information that can be used as a guide for setting the num value of the
-Gnum option that can be specified for the ca850 or the as850 when compiling or assembling is output via

standard output.

5.7.2 Archive files

An archive file is created by linking two or more object files with the archiver (ar850).

When an archive file is specified, the 1d850 searches the archive file for unresolved external references’Note !

and links only the necessary object files.
The archive file can be also specified via the link directive’s mapping directive. If the archive file is also

specified in the mapping directive, it is searched for unresolved external references at that time and only the

Note 2

necessary object files are linked.

Notes 1 The archive file includes a symbol table of the symbols belonging to the archiver’s object files, and the
archive file is repeatedly searched as long as unresolved external references remain unresolved.

2 Object file that defines a referenced symbol.

User's Manual U18512EJ1VOUM 197

CHAPTER 5 LINKER

5.7.3 Reserved symbols

During link-related processing, the 1d850 creates reserved symbols whose values include the start address of
each output section, the start address beyond the end of each output section, and the start address beyond the
end of a created executable object file.

If the user defines a symbol having the same name as any of these reserved symbols, the 1d850 uses the
defined symbol, and does not create its own symbol.

A symbol having a name made by prefixing "__s" to the name of the output section is used as a reserved
symbol that has the start address of a section as a value. If this section name begins with ".", "." is taken out and
"__s"is prefixed to make it a symbol name.

A symbol name with "__e " prefixed to the name of that output section is used as a reserved symbol that has
the start address beyond the end of a section as a value. If the section name begins with ".", however, the "." is
stripped and "__e " is prefixed so that the name becomes a symbol name.

__endis used as a reserved symbol having a start address beyond the end of a created executable object file.

The default link directive used by the I1d850 uses the following reserved sections as output sections.

Table 5 - 1 Reserved Section

text, .pro_epi_runtime, .data, .sdata,
.sbss, .bss, .sconst, .const,
.sedata, .sebss, .sidata, .sibss,
tidata, ibss, tidata.byte, tibss.byte,
tidata.word, .tibss.word

Therefore, the I[d850 normally creates the following reserved symbols.

Table 5 - 2 Special Symbols in Ordinary Object File

__end, ___ebss, ___econst, __edata,
___epro_epi_runtime, __esbss, ___esconst, __esdata,
___esebss, ___esedata, ___esibss, ___esidata,
___etext, __etibss, __etibss.byte, __etibss.word,
__etidata, __etidata.byte, __etidata.word, __sbss,
___sconst, ___sdata, __spro_epi_runtime, __ssbss,
___ssconst, ___ssdata, ___ssebss, ___ssedata,
___ssibss, __ssidata, __stibss, __stibss.byte,
__stibss.word, __stidata, __stidata.byte, __stidata.word

Caution Of the above symbols, only those for which a section exists in the executable file after link processing
are generated. The Id850 behaves as if no section exists if a section that is actually allocated does not

exist even if a mapping directive is described in the link directive file.

198 User's Manual U18512EJ1VOUM

CHAPTER 5 LINKER

5.74 May not be allocated to the expected sections

Even if a directive file specifies an object file or archive file to be allocated to a section, the object file or archive
file may or may not be allocated to the expected sections, depending on how the file name is described.
In such cases, refer to the link map [-m] and specify the directive file with the file name displayed on the link

map and with the identical name including the path name, then relink.

5.7.5 V850 core and V850EXx core

The V850EXx is upward-compatible with the other V850 core microprocessors. Source programs used for the
V850 core can be used for the V850EXx. In this case, create the V850 core object file as an object file common to
the core with the as850 option.

An object file created as "common to V850E" cannot link with a non-V850Ex object file (refer to "4.7.1 Magic

number").

5.7.6 V850 core and V850E2 core

The V850E2 is upward-compatible with the other V850 core microprocessors. Source programs used for the
V850 core can be used for the V850E2. In this case, create the V850 core object file as an object file common to
the core with the as850 option.

An object file created as "common to V850E2" cannot link with a non-V850E2 object file (refer to "4.7.1 Magic

number").

5.7.7 Mathematics library

An error such as an undefined symbol error may be output even when a mathematics library function is used
in a program and a mathematics library (libm.a) is subsequently linked. This relates to the linking sequence with
the standard libraries. Since this sequence must comply with the ANSI standard, the standard libraries should
be linked last. Note this with caution, especially when starting the linker from the command line. Describe the

options in the order of the -Im and the -Ic.

5.7.8 main function

If linking is performed without first creating a main function, an error message may be output to indicate that
the _main symbol is an undefined symbol.

This may occur when the user links the default startup routine (crtN.o or crtE.o[V850EX]) rather than a user-
specified startup routine, or when the crtN.s or crtE.s source files that are provided with the package are used as
they are for assembly and linkage.

The error is due to the "jarl _main, Ip" code that is written following crtN.s or crtE.s. If the main function is not

needed, the user should overwrite this code then use the reassembled object as the startup routine.

User's Manual U18512EJ1VOUM 199

CHAPTER 5 LINKER

5.7.9 Prologue/epilogue runtime library

The prologue/epilogue runtime library must be allocated to the special-purpose .pro_epi_runtime section. If it

is not allocated there, the linker outputs the following message and stops linking.

F4286: section ".pro epi runtime" must be specified in link directive.

If a link directive file has been specified, enter the mapping directive before the .text section.

.pro_epi runtime = $PROGBITS ?AX .pro_epi runtime;
.text = $PROGBITS °?AX;

If the .pro_epi_runtime section is placed after the .text section, it will overlap during ROMization under the
ROMization processor’s default operation for packed sections. Placing the .pro_epi_runtime section before the

.text section is recommended. If a link directive file has not been specified, link before the .text section.

[Cautions]

The prologue and epilogue runtime libraries are included in standard library libc.a.

- Unlike ordinary sections, the .pro_epi_runtime section has a fixed input section name and only the special-
purpose section is allocated.

- If the .pro_epi_runtime section is allocated after the .text section, it overlaps the allocation position of the
default operation of the section that is packed during ROMization. Allocate the .pro_epi_runtime section
before the .text section.

- The prologue and epilogue runtime libraries use the callt instruction when a device of the V850EXx core is

used. Set CTBP in the startup routine.

200 User's Manual U18512EJ1VOUM

CHAPTER 5 LINKER

5.7.10 Linking for ROMization

For ROMization, the packing section area must be considered when coding the link directive. Refer to
"CHAPTER 6 ROMIZATION PROCESSOR".

ROMization is not possible if the default link directive and the CONST segment are both used. Since the
default link directive allocates the CONST segment immediately after the TEXT segment, the packed section
(rompsec section) and the CONST segment become overlapped during the ROMization processor’s default

Note

operation. Perform one of the following responses while considering the additional sample directive attached
to the package.
Note "v850def.dir/v850def2.dir//v850def3.dir" stored in "install folder\smp850\ca850".
v850def.dir Sample using internal ROM/RAM and external RAM
v850def2.dir Sample using only internal ROM/RAM
v850def3.dir Sample using internal ROM/RAM, external RAM, and internal instruction RAM
(such as V850E/ME2)

Memory allocation must suit the microprocessor being used.
Place the CONST segment before the TEXT segment.

CONST : !LOAD ?R {

.const = $SPROGBITS ?A .const;
TEXT : !LOAD ?RX {

.text = $PROGBITS ?AX;

Reserve a packed section area (refer to "CHAPTER 6 ROMIZATION PROCESSOR") after the TEXT

segment and place the CONST segment after that reserved section.

TEXT : !LOAD ?RX {

.text = $PROGBITS ?AX;
}i
#
[Packed section area]
#

Address specification takes packed section into account.
CONST : !LOAD ?R V0x200000 {
.const = $PROGBITS ?A .const;

i

User's Manual U18512EJ1VOUM 201

CHAPTER 5 LINKER

5.7.11

Programmable peripheral I/O register

For an application program that uses programmable peripheral I/O register functions, a .bpc section (which is

a reserved section) is output when assembling. If there is a .bpc section in a link input object file, the linker

checks values specified as BPC values. If values do not match between input object files, the linker outputs an

error message like the following and suspends link processing.

F4457: input files have different BPC value.
0x00001234filel.o
0x00001234file2.0
0x00001235file3.0

* (none)*filed4.o

In the above case, there is an error because the value set in file3.0 is different.

Object that does not reference the programmable peripheral 1/O register is not checked. As in file4.0 above,

"*(none)*" is displayed.

If there are no errors in checking BPC values, a .bpc section is generated with section type SHT_PROGBITS,

section attribute none, and section size Ox4. The start address of the programmable peripheral I/O register area,

which is the BPC value shifted a preset number of bits, is stored in the .bpc section.

Example

202

If the BPC value is specified as "0x1234" when using the V850E/IA1, the start address of the programmable
peripheral I/O register area is the value shifted 14 bits to the left, or "0x48d0000". In this case, the information

in the .bpc section is as follows.

.bpc
Address 00 01 02 03 04 05 06 07 - 08 09 OA OB O0C OD OE OF
0x00000000 : 00 00 8d 04 -

The processing above is performed without question when creating a relocatable object file and when
creating an executable object file.

The .bpc section is a special reserved section for information and is never loaded into memory. Therefore,

it need not be specified in a link directive like a normal section.

User's Manual U18512EJ1VOUM

CHAPTER 5 LINKER

5.7.12 Option byte

Describe 6-byte data in the assembly language source as follows in order to use the option byte function.

.section "OPTION BYTES"
.byte0b00000001-- 0x7a
.byte0b00000000-- 0x7b
.byte0b00000000-- 0x7c
.byte0b00000000-- 0x7d
.byte0b00000000-- 0x7e
.byte0b00000000-- 0x7f

- If a device not having the option byte is specified, it is handled as an ordinary input section.

- Ifa device having the option byte is specified and if description of this section is omitted, the initial value set
in the device file is set.

- Be sure to describe 6 bytes for this section. If less than 6 bytes is described, the following message is

output and linking is stopped.

F4112: illegal "section" section size.

The initial value of a bit that cannot be set must not be changed. If it is changed, the following message is

output.

W4613: illegal flash mask option access (file:"file" address:numl bit:num2)

User's Manual U18512EJ1VOUM 203

CHAPTER 6 ROMIZATION PROCESSOR

This chapter describes an outline of the ROMization processor (romp850), as well as the ROMization

procedure, operation method, etc.

6.1 Flow of Operation

When a variable is declared globally within a program, the variable is allocated to the data-attribute section in
RAM if the variable has a default value, or to the bss-attribute section if it does not have a default value. When
the variable has a default value, that default value is also stored in RAM. In addition, program code may be
stored in the internal RAM area to speed up applications.

In the case of an embedded system, if a debug tool such as an in-circuit emulator is used, executable modules
can be downloaded and executed just as they are in the allocation image. However, if the program is actually
written to the target system’s ROM area before being executed, the default value information that has been
allocated to the data-attribute section and the program code that has been allocated to a RAM area must be
deployed in RAM prior to execution. In other words, data that is residing in RAM must be deployed in ROM, and
this means that data must be copied from ROM to RAM before the corresponding application is executed.

The romp850 (ROMization processor) is a tool that takes default value information for variables in data-
attribute sections as well as programs allocated to RAM and packs them into a single section. This section is
allocated in ROM and the default value information or program code it contains can be easily deployed in RAM
by calling the copy function that is provided by the CA850.

The following figure shows an outline of the operation flow in creating objects for ROMization.

Figure 6 - 1 Creation of Object for ROMization

ROMization area reservation code
(default: rompcrt.o)

Source program \
Link

Compile with option (-Xr) romp850
specifying ROMization . - .
Additional code Executable object ROMization object

Copy function _rcopy ROMization library (libr.a)
(_rcopy function)

204 User's Manual U18512EJ1VOUM

CHAPTER 6 ROMIZATION PROCESSOR

When ROMization objects are created as shown in the figure, execution of the _rcopy function copies the data

to be allocated to RAM from the packed ROM section. An image of this operation is shown below.

Figure 6 - 2 Image of Processing Immediately After _rcopy Function Call

RAM area for data with

default value default value

RAM area for data with

RAM area for data without
default value

RAM area for data without
default value

RAM allocation program area

s}
=
<
L
o
Q
®
=
o
=)
ke
=
o
<Q
=
)
3
QD
=
[
o

Copy data to RAM

Text area Text area

Copy text to RAM

Constant data area Constant data area

Data with default value
Text for RAM allocation

Data with default value
Text for RAM allocation

Image of object for ROMization Image after data is copied by _rcopy function

User’'s Manual U18512EJ1VOUM 205

CHAPTER 6 ROMIZATION PROCESSOR

The default values for the section name and the section’s start address (label name) required for the
ROMization object are as follows.
- Name of packed section — rompsec section

- Start address (label name) of rompsec section — __ S _romp

The function used to copy from the rompsec section to the RAM area is as follows.

- Copy function — _rcopy, _rcopy1, _rcopy2, _rcopy4 function

This function is stored in the library "libr.a" which is in the lib850\r** folder.

__S_romp is a label that is defined by "rompcrt.0" in the [ib850\r** folder (the corresponding source file is
rompcrt.s). The rompcrt.o object file is used as it is when the romp850 automatically creates a rompsec section
immediately after (at the 4-byte alignment position) the .text-attribute section. __ S romp becomes the label
indicating the start address of that rompsec section.

In addition to this method for automatically creating a rompsec section, it is also possible to independently
create and allocate a program corresponding to the rompcrt.s source file. For details of this method, refer to
"6.4.2 Creating procedure (customize)" .

During ROMization, once the object for ROMization has been created, it is converted into a hexadecimal file
and written to ROM. If the application does not include any data that requires packing, there is no need to create
a ROMization object. Instead, the object created by the linker can be converted directly into a hexadecimal file.

If the object files resolved for relocation include symbol information and debug information, romp850 creates a
ROMization object file without deleting them.

Therefore, the debugger can debug the source even with a ROMization object file.

206 User's Manual U18512EJ1VOUM

CHAPTER 6 ROMIZATION PROCESSOR

6.2 Input/Output Files

The romp850 enables the following files to be handled as input files.
- file1.out ... Executable object output by linker

The file that is output is:

- file2.out ... Executable object for ROMization

The linker and the romp850 are both able to specify I/O file names. The default output file name is romp.out.

User’'s Manual U18512EJ1VOUM 207

CHAPTER 6 ROMIZATION PROCESSOR

6.3 rompsec Section

6.3.1 Types of sections to be packed

The default setting for the types of data that can be packed in a rompsec section is "data allocated to sections
having a write-enabled attribute". In addition, any section that has either the text attribute or const attribute can
be specified for packing by specifying the -t option.

Specific examples of packing targets are listed below.

(1) The reserved sections listed in Table 7-1
(2) Any section created with any name, as long as either the sdata attribute or data attribute has been

specified for it by the .section quasi directive in an assembly language program

Table 6 - 1 Reserved Sections Packed by romp850

.data, .sdata, .sedata, .sidata,

.tidata, .tidata.byte, .tidata.word

Note, however, that if any user-specified sections with either the text attribute or const attribute are not packed
and if the above-listed sections are not in an executable module, there is no need to create a ROMization object.
See the link map file to determine whether or not the sections listed in Table 7-1 exist in an executable module.

In addition, the object file created by the romp850 can be referenced via the dump command (dump850) to
confirm that a rompsec section has been created in place of another section such as a .data section or .sdata

section.

208 User's Manual U18512EJ1VOUM

CHAPTER 6 ROMIZATION PROCESSOR

6.3.2 Size of rompsec section

This section describes the memory area size to be reserved for the rompsec section.

When creating the ROMization module, note the size of the rompsec section as well as the internal ROM
capacity of the target CPU and the address range and size of the target system’s ROM area. Code the link
directive file carefully to prevent the rompsec section from overlapping other sections. For specific code
examples, refer to "6.4 Creating Object for ROMization".

Formulas used to calculate the size of the rompsec section are shown below.

8 + 16 x (Number of sdata/data sections) + Size of sdata/data section

+ Padding sizeNote

For example, if .sdata and .data sections exist, the size of each is 1002 bytes and 1000 bytes, and the
alignment condition of each section is 4 bytes, the size of the rompsec section is as follows.

8 + 16 x 2 + 1002 + 1000 + 2 = 2044 bytes

Note The padding size is 0 to 3 bytes per section, depending on the alignment condition of the section

subject to ROMization.

User’'s Manual U18512EJ1VOUM 209

CHAPTER 6 ROMIZATION PROCESSOR

6.3.3 rompsec section and link directive

During ROMization, a rompsec section is added immediately after the .text section. By allocating the .text

section to the end of ROM, therefore, the rompsec section up to the end of ROM can be allocated.

Figure 6 - 3 Link Directive Taking ROMization Processing into Consideration

Allocates SCONST, CONST, and TEXT to internal ROM
SCONST : !LOAD ?R {
.sconst = S$SPROGBITS ?A .sconst;

CONST : !LOAD ?R {
.const = S$PROGBITS ?A .const;

Allocates .text to end of internal ROM

TEXT : !LOAD ?RX {
.pro_epi runtime = $PROGBITS ?AX .pro epi runtime;
.text = $PROGBITS ?AX .text;

i

Allocates DATA to external RAM
DATA : !LOAD ?RX V0x100000 {
.data = $PROGBITS ?AW;
.sdata = SPROGBITS ?AWG;
.sbss = SNOBIT ?AWG;
.bgss = SNOBIT ?AW;

i

Allocates SIDATA to internal RAM

SIDATA : !LOAD ?RX VO0xffe000 (
.sidata = S$PROGBRITS ?AW .sidata;
.sibss = SNOBIT ?AWG .sibss;

}i

__tp TEXT @ %TP_SYMBOL;
__gp DATA @ %GP_SYMBOL & _tp TEXT{DATA};
__ep DATA @ %$EP_SYMBOL;

If the rompsec section exceeds the internal ROM area, the following message is output and the processing is

stopped.

F8425 : rompsec section overflowed highest address of target machine.

By specifying the -rom_less option, the internal ROM area may be ignored.

By specifying the -Ximem_overflow=warning option, an error message can be changed to a warning message.

The above check is not performed if the rompsec section is allocated to the end of the external ROM area.
Check the memory map information to see if the sections fit in ROM.

If it is necessary to allocate the rompsec section in the middle of ROM, check the area where the rompsec sec-

210 User's Manual U18512EJ1VOUM

CHAPTER 6 ROMIZATION PROCESSOR

tion is to be allocated as follows, from the size and allocation address of the rompsec section, and specify an

appropriate address for the segment immediately after the rompsec section.

Figure 6 - 4 Link Directive Taking ROMization Processing into Consideration (Size Considered)

Allocates SCONST, CONST, and TEXT to internal ROM
SCONST : !LOAD ?R {
.sconst = $SPROGBITS ?A .sconst;

}i

Allocates .text in middle of internal ROM
TEXT : !LOAD ?RX ({
.pro_epi_runtime = $PROGBITS ?AX .pro_epi_runtime;
.text = $PROGBITS ?AX .text;
}i
#
rompsec between TEXT and CONST
#
Allocates CONST to end of internal ROM by specifying address
taking size into consideration
CONST : !LOAD ?R Vx3£800 ({
.const = $PROGBITS ?A .const;

}i

Allocates DATA to external RAM
DATA : !LOAD ?RX V0x100000 {
.data = $PROGBITS ?AW;
.sdata = SPROGBITS ?AWG;
.sbss = $SNOBIT ?AWG;
.bss = SNOBIT ?AW;

}i

Allocates SIDATA to internal RAM

SIDATA : !LOAD ?RX V0xffe000 {
.sidata = S$PROGBITS ?AW .sidata;
.sibss = SNOBIT ?AWG .sibss;

i

__tp TEXT @ %TP_SYMBOL;
__9p DATA @ %GP_SYMBOL & _tp TEXT{DATA};
__ep DATA @ $EP_SYMBOL;

User’'s Manual U18512EJ1VOUM

211

CHAPTER 6 ROMIZATION PROCESSOR

6.4 Creating Object for ROMization

6.4.1 Creating procedure (default)

This section describes a method that uses the ROMization area reservation code (rompcrt.o) that is provided

as the default object.

(1) First, a copy function is called within the application.

The copy function should be activated early on, such as within the startup routine or at the start of the main
function. _rcopy, _rcopy1, _rcopy2, and _rcopy4 are available as copy functions, and each of these has a
different transfer size (the transfer size of _rcopy and _rcopy1 is the same). For details of the copy functions,
refer to "6.5 Copy Functions". An example of using a copy function is shown in the figure below.

In this example, the _rcopy function is activated at the start of the main function.

Figure 6 - 5 Example of Using Copy Function _rcopy 1

#define ALL COPY (-1)

int rcopy(unsigned long *, long);

extern unsigned long _S romp;
void main (void)
{

intret;

ret = rcopy(& S romp, ALL_ COPY);

(2) During ROMization, the rompsec section is added immediately after the .text section.
By allocating the .text section to the end of ROM, the rompsec section up to the end of ROM can be allo-

cated (refer to Figure 6 - 3).

(3) Specify "Create Object for ROM" as a compiler option.
- From command line:
Add compiler option "-Xr".
- From PM+:

Check "Create Object for ROM" on the [ROM] tab of the [Compiler Common Options] dialog box.

As a result, a code that indicates that label __S_romp indicates the first address that exceeds the end of the

.text section in the object is generated.

212 User's Manual U18512EJ1VOUM

CHAPTER 6 ROMIZATION PROCESSOR

(4) Compile and link.

By specifying "Create Object for ROM" for the ca850, the ROMization area reservation code "rompcrt.o"
(that is in lib850\r**) and "libr.a" that stores the _rcopy function are automatically linked. At this time, the link-
ing sequence is relevant. Because "rompcrt.0" must be linked at the end of a group of TEXT attributes, link it
after the libraries specified by the -I option for linking if the linker has been activated from the command line. If
PM+ is used, there is no need to be aware of "rompcrt.o" because it is automatically linked at the end of the
TEXT attribute group.

(5) Activate the ROMization processor (romp850).

Generate a ROMization module from the executable module completed in (4), by using the romp850. If
"Create Object for ROM" is specified with PM+, (4) and this is automatically performed, and a hex file is gener-
ated. If the compiler package has been activated from the command line, the romp850 is activated and a
ROMization object is created after the ca850 to 1d850 have been activated and an executable module has

been generated. An image of the map is shown below.

User’'s Manual U18512EJ1VOUM 213

214

CHAPTER 6 ROMIZATION PROCESSOR

(Executable object output by the 1d850)

__ S romp —

Figure 6 - 6 ROMization Image 1

Peripheral 1/0

.sidata section

tidata section

.sedata section

.sdata section

.data section

text section

.const section

.sconst section

0x0

Interrupt

romp850

__S romp —

Peripheral 1/0

(Executable object output by the romp850)

.sidata section

Copied information

rompsec
section

text section

.const section

.sconst section

0x0

Interrupt

hx850

Hex file

ROM writer

ROM

Target system

User's Manual U18512EJ1VOUM

CHAPTER 6 ROMIZATION PROCESSOR

6.4.2 Creating procedure (customize)

This section describes the method for independently creating the rompcrt.o program corresponding to the
ROMization area reservation code and determining the desired rompcrt section start address and allocation

position.

(1) Enter code corresponding to the default "rompcrt.s" ROMization area reservation code.
Let us assume the specified file name is "rompack.s" and the name of the symbol specifying the start of the
ROMization area is "__rompack". Also, the section containing this symbol is the "rompack section". In this

case, the code in rompack.s appears as follows.

Figure 6 - 7 Example of rompack.s

.file"rompack.s"
.section".rompack", text
.align4

.globl rompack, 4

__rompack:

(2) A copy function is called within the application.

The copy function should be activated early on, such as within the startup routine or at the start of the main
function. _rcopy, _rcopy1, _rcopy2, and _rcopy4 are available as copy functions, and each of these has a
different transfer size (the transfer size of _rcopy and _rcopy1 is the same). For details of the copy functions,
refer to "6.5 Copy Functions". An example of using a copy function is shown in the figure below.

In this example, the _rcopy function is activated at the start of the main function.

Figure 6 - 8 Example of Using Copy Function _rcopy 2

#define ALL COPY (-1)

int _rcopy(unsigned long *, long);

extern unsigned long _rompack;
void main (void)
{

intret;

ret = rcopy (& rompack, ALL_COPY) ;

User’'s Manual U18512EJ1VOUM 215

CHAPTER 6 ROMIZATION PROCESSOR

(3) Define the created rompack section in a link directive.
At the same time, you can specify the rompack section’s allocation site as any address. For example, to
specify ROMPACK as the segment containing the rompack section and to allocate that segment to start at

address 0x3000, enter the following link directive.

Figure 6 - 9 Link Directive Specification Example

TEXT:!LOAD ?RX V0x1000 {
.text = S$SPROGBITS ?AX .text;

}i

ROMPACK: !LOAD ?RX V0x3000 {
.rompack = $PROGBITS ?AX .rompack;

}i

The rompack section’s size is estimated using the formula described in "6.3.2 Size of rompsec section" to
avoid the ROMPACK segment’s allocation address from overlapping with adjacent segments. This

information is reflected in the link directive file.

(4) Specify "Create Object for ROM" as a compiler option.
- From command line:
Add compiler option "-Xr".
- From PM+:
Check "Create Object for ROM" on the [ROM] tab of the [Compiler Common Options] dialog box.

This generates code that specifies the same address for label "rompack" as is specified for rompsec.

(5) Specify the compiler common option and ROMization processor option.

- From command line:
As a ROMization processor option, specify "__rompack" for the "-b" option to specify the entry symbol for
the ROMization area reservation code.

- From PM+:
Add "rompack.s" or "rompack.o" to "rompcrt file" on [ROM] tab of the [Compiler Common Options] dialog
box.
Describe "__rompack" which is the first label of the rompack section into "Entry Label[-b]" on the [Option]

tab of the [ROM Processor Options] dialog box.

(6) Compile and link.
When the compiler is instructed to create an object for ROMization, the library "libr.a", which contains the

_rcopy function, is automatically linked.

216 User's Manual U18512EJ1VOUM

CHAPTER 6 ROMIZATION PROCESSOR

(7) Activate the ROMization processor (romp850).

Use the romp850 to create a ROMization module from the executable module completed at step (6).

"Create Object for ROM" has been specified via PM+, the processing from steps (6) to this step is performed

automatically up to the creation of the hexadecimal file. If activation was via the command line, after the 1d850

has been activated from the ca850 and the executable module has been created, the romp850 is activated to

create the object for ROMization.

A corresponding mapping image is shown below.

(Executable object output by the 1d850)

__rompack —»

0x0

Figure 6 - 10 ROMization Image 2

Peripheral /0

.sidata section

tidata section

.sedata section

.sdata section

.data section

ext section

.const section

.sconst section

Interrupt

romp850

__rompack —=

0x0

Peripheral I/0O

(Executable object output by the romp850)

.sidata section

Copied information

rompack
section

ext section

.const section

.sconst section

Interrupt

hx850

Hex file

ROM writer

ROM

Target system

User’'s Manual U18512EJ1VOUM

217

CHAPTER 6 ROMIZATION PROCESSOR

6.5 Copy Functions

6.5.1 Copy routine

This section describes the copy routines (_rcopy) necessary for the program to be stored in ROM.

Table 6 - 2 Copy Routines

Function Name Feature
_rcopy Copies ROMization section (1-byte transfer)
_rcopy1 Copies ROMization section (1-byte transfer)
_rcopy2 Copies ROMization section (2-byte transfer)
_rcopy4 Copies ROMization section (4-byte transfer)

Use 1-byte, 2-byte, or 4-byte transfer, depending on the specification of the RAM at the transfer destination.

The specification of each function is as follows.

218 User's Manual U18512EJ1VOUM

CHAPTER 6 ROMIZATION PROCESSOR

_rcopy

[Overview]
_rcopy
Copies default data or RAM textN°t® (1 byte).

Note Data section with initial value which is to be allocated to RAM, and text section for internal RAM.
[Format]
int _rcopy (&label, number)

unsigned long label;

long number;

[Description]

_rcopy(&label, number) copies the initial value data of section number number to be copied, or text to be
allocated to RAM, to the RAM area 1 byte at a time, based on the information in the rompsec section allocated
starting at the address following the address indicated by label. If -1 is specified as number, all sections in the
rompsec section are copied. Section number number is a positive number that starts from 1.

By default, sections are allocated in the order in which they appear in the input file. If sections to be
allocated to the rompsec section are specified by the "-p" or "-t" option of the romp850, they are allocated in
the order in which they are specified. If a ROM section file is created with PM+, however, a C language source
header file that makes "number" and "label" correspond to each other by #define is generated, and number
can be specified by a label name.

For a specific example, refer to "6.5.2 Example".

[Return value]

0 Normal completion (if copied correctly)

-1 Abnormal termination (if not copied correctly)

[Cautions]
- Data is not copied if the address indicated by label is not at the start of the rompsec section.
- _rcopy copies data in accordance with the information generated by the romp850.
- No data is copied if data may be overwritten as a result of copying.
- Specify a global label having an absolute value or an absolute address as the first argument of _rcopy,
label. If any other value or address is specified, the result is not guaranteed.
- The _rcopy and _rcopy1 functions are identical in feature. _rcopy is used to maintain compatibility with old

versions.

User’'s Manual U18512EJ1VOUM 219

CHAPTER 6 ROMIZATION PROCESSOR

_rcopy1

[Overview]
_rcopy1
Copies default data or RAM textN°t® (1 byte).

Note Data section with initial value which is to be allocated to RAM, and text section for internal RAM.
[Format]
int _rcopyl (&label, number)

unsigned long label;

long number;

[Description]

_rcopy1(&label, number) copies the initial value data of section number number to be copied, or text to be
allocated to RAM, to the RAM area 1 byte at a time, based on the information in the rompsec section allocated
starting at the address following the address indicated by label. If -1 is specified as number, all sections in the
rompsec section are copied. Section number number is a positive number that starts from 1.

By default, sections are allocated in the order in which they appear in the input file. If sections to be
allocated to the rompsec section are specified by the "-p" or "-t" option of the romp850, they are allocated in
the order in which they are specified. If a ROM section file is created with PM+, however, a C language source
header file that makes "number" and "label" correspond to each other by #define is generated, and number
can be specified by a label name.

For a specific example, refer to "6.5.2 Example".

[Return value]

0 Normal completion (if copied correctly)

-1 Abnormal termination (if not copied correctly)

[Cautions]
- Data is not copied if the address indicated by label is not at the start of the rompsec section.
- _rcopy1 copies data in accordance with the information generated by the romp850.
- No data is copied if data may be overwritten as a result of copying.
- Specify a global label having an absolute value or an absolute address as the first argument of _rcopy1,
label. If any other value or address is specified, the result is not guaranteed.
- The _rcopy1 and _rcopy functions are identical in feature. _rcopy is used to maintain compatibility with old

versions.

220 User's Manual U18512EJ1VOUM

CHAPTER 6 ROMIZATION PROCESSOR

_rcopy?2

[Overview]
_rcopy2
Copies default data or RAM textNote (2 byte).

Note Data section with initial value which is to be allocated to RAM, and text section for internal RAM.
[Format]
int _rcopy?2 (&label, number)

unsigned long label;

long number;

[Description]

_rcopy2(&label, number) copies the initial value data of section number number to be copied, or text to be
allocated to RAM, to the RAM area 2 bytes at a time, based on the information in the rompsec section
allocated starting at the address following the address indicated by label. If -1 is specified as number, all
sections in the rompsec section are copied. Section number number is a positive number that starts from 1.

By default, sections are allocated in the order in which they appear in the input file. If sections to be
allocated to the rompsec section are specified by the "-p" or "-t" option of the romp850, they are allocated in
the order in which they are specified. If a ROM section file is created with PM+, however, a C language source
header file that makes "number" and "label" correspond to each other by #define is generated, and number
can be specified by a label name.

For a specific example, refer to "6.5.2 Example".

[Return value]

0 Normal completion (if copied correctly)

-1 Abnormal termination (if not copied correctly)

[Cautions]
- Data is not copied if the address indicated by label is not at the start of the rompsec section.
- _rcopy?2 copies data in accordance with the information generated by the romp850.
- No data is copied if data may be overwritten as a result of copying.
- Specify a global label having an absolute value or an absolute address as the first argument of _rcopy2,

label. If any other value or address is specified, the result is not guaranteed.

User’'s Manual U18512EJ1VOUM 221

CHAPTER 6 ROMIZATION PROCESSOR

_rcopy4

[Overview]

_rcopy4
Copies default data or RAM textN°t® (4 byte).

Note Data section with initial value which is to be allocated to RAM, and text section for internal RAM.
[Format]
int _rcopy4 (&label, number)

unsigned long label;

long number;

[Description]

_rcopy4(&label, number) copies the initial value data of section number number to be copied, or text to be
allocated to RAM, to the RAM area 4 bytes at a time, based on the information in the rompsec section
allocated starting at the address following the address indicated by label. If -1 is specified as number, all
sections in the rompsec section are copied. Section number number is a positive number that starts from 1.

By default, sections are allocated in the order in which they appear in the input file. If sections to be
allocated to the rompsec section are specified by the "-p" or "-t" option of the romp850, they are allocated in
the order in which they are specified. If a ROM section file is created with PM+, however, a C language source
header file that makes "number" and "label" correspond to each other by #define is generated, and number
can be specified by a label name.

For a specific example, refer to "6.5.2 Example".

[Return value]

0 Normal completion (if copied correctly)

-1 Abnormal termination (if not copied correctly)

[Cautions]

222

- Data is not copied if the address indicated by label is not at the start of the rompsec section.

- _rcopy4 copies data in accordance with the information generated by the romp850.

- No data is copied if data may be overwritten as a result of copying.

- Specify a global label having an absolute value or an absolute address as the first argument of _rcopy4,

label. If any other value or address is specified, the result is not guaranteed.

User's Manual U18512EJ1VOUM

CHAPTER 6 ROMIZATION PROCESSOR

6.5.2 Example

(1) To transfer all sections in 1-byte units

extern unsigned long S romp;

main ()
{
intret;
ret = rcopy(& S romp, -1);

/* -Xr specifies a global label having an absolute value. */

The label references an absolute address when the ca850's ROMization option has been specified as shown

above. Therefore, describe as follows to call _copy() in an assembly language source program.

.extern __ S romp, 4-- Declared as an external label

Calls rcopy with absolute address of =S romp as first argument
and -1 as second argument

mov# S romp, r6

mov-1, xr7

jarl rcopy, 1lp

(2) To transfer sections 1 to 6 in 4-byte units and sections 7 to 11 in 1-byte units

extern unsigned long _S romp;

main()

{

intret, num;

for (num=1; num<=6; num++) {
ret=_rcopy4 (& S romp, num);
if (ret==-1) {

/* Error processing */

for (num=7; num<=11; num++) {
ret= rcopyl(& S romp, num) ;
if (ret==-1) {

/* Error processing */

User’'s Manual U18512EJ1VOUM

223

CHAPTER 6 ROMIZATION PROCESSOR

(3) Example of incorrect specification 1

extern unsigned long _S romp;

char *cp;

void func (void)

intret;

/* First argument is gp relative value because copied to variable */
Cp = & S _romp;

ret = rcopy(cp, -1);

(4) Example of incorrect specification 2

224

extern unsigned long S romp;

int 1i;

void func(void)

intret;

/* First argument is gp relative value because copied to variable */
i = 0x100;

ret = rcopy(i, -1);

The section number to be specified as number should be a positive number that starts from 1. The
relationship between the section name and section number can be referenced from the memory map.
When PM+ is used, a C language header file in which correspondence between the section number and
label is established can be created by outputting a ROM section file. In other words, a label can be used as
number. For the method of outputting the ROM section file and for the label naming rules, refer to "6.8.1
[ROM Processor Options] dialog box".

If a section number or -1 is not specified as number, nothing is copied.

If two or more RAMs exist and two or more copy routines are used, and if -1 is specified as number, data
cannot be correctly copied due to problems such as alignment of all sections. In this case, do not specify -
1 as number; specify a section number.

If -1 is specified as number, data is copied in the order of section numbers. If there is a section that is not
copied, -1 is returned as the return value. Sections following the section in which a problem has occurred

are not copied.

User's Manual U18512EJ1VOUM

CHAPTER 6 ROMIZATION PROCESSOR

6.6 Operation Method

This section describes how to operate the romp850 (ROMization processor).

6.6.1 Command input method

Enter the following from the command prompt.

romp850 [option] ... file nam
[1: Can be omitted

: Pattern in preceding [] can be repeated

6.6.2 Method using PM+

The [ROM Processor Options] dialog box that is used to set ROMization processor options can be displayed

via the following method once a project has been established under PM+.
- Select [Tool] - [ROM Processor Options...]

Since the ROMization processor is activated once per project, there are no file-specific settings.

The name of the executable object file that is output by the ROMization processor is the name of the first file
shown in the "Source file name" list when the [Source file] tab is selected via the [Project Settings] dialog box in
the PM+. The extension ".out" is added to this file name, which makes it identical to the object file output by the
linker.

The default file name is romp.out. To modify the name of the object file, specify a file name in "Output File[-0]"
field on the [File] tab.

Note that the ROMization processor can be started from PM+ only when the "Create Object for ROM" has
been specified on the [ROM] tab in the [Compiler Common Options] dialog box.

User’'s Manual U18512EJ1VOUM 225

CHAPTER 6 ROMIZATION PROCESSOR

6.7 Types and Features of Options

226

The romp850 options are shown below.

[Symbols used in option list]

[PM+]

Option exists as specification item under the PM+.

User's Manual U18512EJ1VOUM

CHAPTER 6 ROMIZATION PROCESSOR

6.7.1 File
This specification sets the file’s output file options.

+err file=file

This option adds and saves error messages to the file file.

-err_file=file

This option overwrites and saves error messages to the file file.

-o ofile
[PM+]
The ofile is the object file name to be created.
If this option is omitted, it is assumed that "romp.out" has been specified. "a.out" cannot be specified as the

file name. Spaces cannot be used in the file name.

User’'s Manual U18512EJ1VOUM 227

CHAPTER 6 ROMIZATION PROCESSOR

6.7.2 Options
These specifications set the ROMization processor’s ordinary options.

-Ximem overflow=warning
[PM+]
This option controls checking if the internal ROM/RAM has overflowed. A warning message is output and
processing is continued in case of an overflow.

If this option is omitted, an error message is output and processing is stopped if an overflow occurs.

-b label
[PM+]
The label /abel indicates the start address of the rompsec section to be created. If the specified label does
not exist in the object file or if the option has been specified more than once, a message is output and
processing is stopped.

If this option is omitted, it is assumed that __S_romp has been specified.

-d
[PM+]
This option creates an object file that includes only a rompsec section; no text-attribute section is inserted in
the file to be created.

If this option is omitted, a section with the text attribute is inserted.

-i
[PM+]

This option prevents checking of duplicate addresses in input files and output files.

-m[=mapfilel
[PM+]
This option outputs to mapfile a memory map of the object file to be created.

If mapfile is omitted, the link map is output to the standard output.

-p section
[PM+]

This option inserts the contents of the section name section and the corresponding address and size
information into the rompsec section. If the specified section does not exist in the object file, a message is
output and processing is stopped. This option is applicable for data-attribute and sdata-attribute sections. If
this option is specified more than once, insertion to the rompsec section occurs according to the order of
specification. If this option is omitted, it is assumed that all sections having the data attribute or sdata attribute

have been specified. Spaces cannot be used in the section name.

228 User's Manual U18512EJ1VOUM

CHAPTER 6 ROMIZATION PROCESSOR

-rom less
[PM+]
This option does not check the rompsec section for a peripheral location error of the internal ROM. It is
recommended to specify this option in the ROMless mode.
This option does not support checking of overflow of the internal ROM in the single-chip mode. Specify this
option to invalidate overflow check of the internal ROM and check for overflow with the dump850.

If this option is omitted, the rompsec section is checked for a peripheral location error of the internal ROM.

-t section
[PM+]

This option inserts the contents of the section name section and the corresponding address and size
information into the rompsec section. If the specified section does not exist in the object file, a message is
output and processing is stopped. This option is applicable for text-attribute and const-attribute sections. If
this option is specified more than once, insertion to the rompsec section occurs according to the order of
specification. Only sections having either a text attribute or the const attribute can be specified by this option.
If any other type of section is specified, a message is output and processing is stopped. Spaces cannot be

used in the section name.

User’'s Manual U18512EJ1VOUM 229

CHAPTER 6 ROMIZATION PROCESSOR

6.7.3 Other

The specifications set other options.

-F devpath
This option sets the device file search to begin in the devpath folder. If this option is omitted, the search

goes directly to the standard folders.

-V
This option outputs the ROMization processor’s version information as standard error output, then

terminates.

-help

This option outputs a help description of ROMization processor options as standard error output.

@cfile
This option handles cfile as a command file. A command file specifies an option and a file name for a
command not as arguments on the command line but by describing them in a file. On Windows, the length of
a character string specified as an option of a command is limited. If many options are set and some of the
options cannot be recognized, create a command file and specify this option.

For details of the command file, refer to "3.7.2 Command file".

230 User's Manual U18512EJ1VOUM

CHAPTER 6 ROMIZATION PROCESSOR

6.8 Settings Made via PM+

This section describes dialog boxe that is used to set the command options of the romp850 for the target

project’s source file.

6.8.1 [ROM Processor Options] dialog box

At the upper part of this dialog box, the following four tabs are displayed.

The contents of this dialog box depend on selecting the following tab.

Table 6 - 3 [ROM Processor Options] Dialog Box

Tab Description
[File] Setting of options related to files
[Section] Setting of sections to be ROMized
[Option] Setting of romp850 options
[Others] Other settings
Note The option shown with "[]" in this dialog box is the option that is activated from the command line.

User’'s Manual U18512EJ1VOUM 231

CHAPTER 6 ROMIZATION PROCESSOR

[File]

This tab is used to set options related to files of the romp850.

Figure 6 - 11 [ROM Processor Options] Dialog Box ([File] Tab)

ROM Processor Options @

File l Section] Dption 1 Others]

Dutput File[-a]:

[Browse...

Memary Map File[-m=]:

| Browse. . | Edit by Text Editar

Command Line Options:

0k | Cancel] Help

(1) Output File[-o0]
This edit box is used to specify an output file name. Blanks must not be specified as the file name. If no file
name is specified, romp.out is assumed as the output file name. Selecting the [Browse...] button opens a dialog

box in which a file can be selected.

(2) Memory Map File[-m=]
This edit box is used to specify the name of a file to which mapping information resulting from activating the
romp850 is to be output. Selecting the [Edit by Text Editor] button opens the specified file (the file can then be
edited).

(3) Command Line Options
This area displays the options set in this dialog box by command line options.

This area is for reference and cannot be written to.

232 User's Manual U18512EJ1VOUM

CHAPTER 6 ROMIZATION PROCESSOR

[Section]

This tab is used to set sections to be ROMized.

Figure 6 - 12 [ROM Processor Options] Dialog Box ([Section] Tab)

ROM Processor Options

File Section letiorﬂ Elthers]

Section List: Section:
addlgl | Addpy |
Delete | Up |

ROM Section File

File Marme: Browsze. .
|

[~ Output If Changed

Dutput I

Command Line Options:

0k | Cancel] Help

(1) Section List

This list box displays the sections to be ROMized and options in the order in which they were specified.

The sections and options displayed in this list box are stored in the .rompsec section in that order. In other
words, the order of the sections and options is equivalent to the number specified by the second argument of
_rcopy, _rcopy1, _rcopy2, or _rcopy4 (numbers are sequentially assigned to sections starting from 1).

If "ROM Section File" to be explained in (3) below is selected, a C language source header file in which
"number" and "label" are made to correspond by #define is created, and the number to be specified by the

second argument can be specified

(2) Section
To add a section to the list in this dialog box, describe a section name in this text box and then click the [Add[-

p]] or [Add[-{]] button

(@) Add[-p]
This button adds a section to "Section List" as a -p option. It adds the section specified in "Section" to
"Section List" as a section to be specified by the -p option. In other words, if the section specified in "Section"

has a data or sdata attribute, it is added to the section list by using this button.

User's Manual U18512EJ1VOUM 233

CHAPTER 6 ROMIZATION PROCESSOR

(b) Add[-t]
This button adds a section to "Section List" as a -t option. It adds the section specified in "Section" to

"Section List" as a section to be specified by the -t option. In other words, if a section specified in "Section"

has a text or const attribute, it is added to the section list by using this button.

(c) Delete

This button deletes the section currently selected in "Section List".

(d) Up

This button moves the section currently selected in "Section List" up by one position.

(e) Down

This button moves the section currently selected in "Section List" down by one position.

(3) ROM Section File
A ROM section file makes it easy to specify the number specified by the second argument of _rcopy,
_rcopy1, _rcopy2, or _rcopy4 in an application, and is a C language source header file in which "number" and
"label" are made to correspond by #define. Therefore the section to be copied from the rompsec section can
be specified by specifying a label as the second argument. For example, the following is output if .text, .data,

.const, and text1 are registered to the section list, and the ROM section file is output.

#define ROMPSCN__text 1
#define ROMPSCN__data 2
#define ROMPSCN__ const 3
#define ROMPSCN_ textl 4

(a) File Name

If a file name is specified in this text box, the file is output according to (b) or (c).

(b) Output If Change

If this check box is checked, the file specified in the above text box is output when the section is changed
and the [OK] or [Apply] button is clicked.

(c) Output
The file is output when the [Output] button is clicked. When the file has been output, a message box is
displayed regardless of whether outputting has been successful or has failed.

As many of the following #define directives as the number of sections are output in the ROM section file.

#define ROMPSCN <section name> <section numbers

All the characters that cannot be used as an identifier of the preprocessor are replaced by "_". If the same

identifier exists, a message box is displayed and the file cannot be output.

(4) Command Line Options

This area displays the options set in this dialog box by command line options.

This area is for reference and cannot be written to.

234 User's Manual U18512EJ1VOUM

CHAPTER 6 ROMIZATION PROCESSOR

[Option]

This tab is used to set romp850 options.

Figure 6 - 13 [ROM Processor Options] Dialog Box ([Option] Tab)

ROM Processor Options

File | Section Dption] Others |

Entry Label[-b]:
[

I Delete text' Sttibute Section[-d]
I lgnore Address Duplication[-]

I Output Memory Mapl-m]
™ lgnare Intemal ROM Check[-rom_less]

I Warn Internal Memary Overflow
[+#imem_overflow=warning]

Command Line Options:

0k | Cancel] Help

(1) Entry Label[-b]
This option sets the specified label value as the start address of the rompsec section to be created. If the
specified label does not exist in the object file, a message is output and processing is stopped. If this option is

omitted, it is assumed that __ S _romp has been specified.

(2) Delete 'text’ Attribute Section[-d]
This option creates an object file that contains only the rompsec section and does not include any sections

with the text attribute.

(3) Ignore Address Duplication]-i]

This option prevents checking for duplicate addresses among input files and output files.

(4) Output Memory Map[-m]
This option outputs a memory map of the object file created by the romp850 to the PM+'s output window.

The memory map is included in the log files (project name + .plg) automatically generated in the project folder.

User’'s Manual U18512EJ1VOUM 235

CHAPTER 6 ROMIZATION PROCESSOR

(5) Ignore Internal ROM Check[-rom_less]
When this option is selected, the rompsec section is not checked for allocation errors of the internal ROM area.
It is recommended to specify this option in the ROMless mode. This option does not support checking of
overflow of the internal ROM in the single-chip mode. Specify this option to invalidate overflow check of the
internal ROM and check the overflow with the dump850. If this option is not specified, the rompsec section is

checked for allocation errors of the internal ROM area.

(6) Warn Internal Memory Overflow[-Ximem_overflow=warning]
This option sets a message warning of the overflow of the internal memory. If it is selected, a warning

message is output. If it is not selected, an error message is output.

(7) Command Line Options
This area displays the options set in this dialog box by command line options.

This area is for reference and cannot be written to.

236 User's Manual U18512EJ1VOUM

CHAPTER 6 ROMIZATION PROCESSOR

[Others]

This tab is used to set other options of the romp850.

Figure 6 - 14 [ROM Processor Options] Dialog Box ([Others] Tab)

ROM Processor Options

File | Section| Option Others]

Ary Option:

I Use Command File

Command Line Options:

0k | Cancel] Help

(1) Any Option
This edit box is used to specify an option other than described above on the [ROM Processor Options] dialog
box. Describe an option in this edit box in the same format as on the command line.
At present, however, no option has to be specified in this edit box because all the options related to the

ROMization processor can be specified in the [ROM Processor Options] dialog box.

(2) Use Command File
In the Windows environment, the length of character strings used to specify options for the ca850 is restricted.
If this check box is selected, the option character string is output to a command file, which enables the operation
to be completed without observing the restriction on the character string length. Check this check box if many
options are set and not all of them can be recognized. Under the default setting, the check box is not checked.

For the details of command file, refer to "3.7.2 Command file".

(3) Command Line Options
This area displays the options set in this dialog box by command line options.

This area is for reference and cannot be written to.

User’'s Manual U18512EJ1VOUM 237

CHAPTER 7 HEXADECIMAL CONVERTER

This chapter describes an outline of the hex converter (hx850), as well as its operation method, and output file

format.

7.1 Flow of Operation

The hx850 inputs an object file output by the romp850 and converts the format of that file into a hex
(hexadecimal) format.

When there is no data with initial value and the romp850 is not used, the hx850 inputs an object file output by
the 1d850.

Figure 7 - 1 Operation Flow in hx850

> hx850 >

Object file Intel hex file
Motorola hex file

Tektro hex fil

238 User's Manual U18512EJ1VOUM

CHAPTER 7 HEXADECIMAL CONVERTER

7.2 Input/Output Files

The hx850 can handle the following file as an input file.

- file1.out ... Executable object file output by the 1d850 or romp850
The following formats can be specified as hex file formats.

(1) Intel hex format
- Intel expanded hex format
(2) Tektro hex format
- Expanded Tek hex format
(3) Motorola hex format
- S type format (standard address)
- S type format (32-bit address)

Caution Addresses of lines in each hexadecimal format file are output in ascending order.

User’'s Manual U18512EJ1VOUM

239

CHAPTER 7 HEXADECIMAL CONVERTER

7.3 Operation Method

This section describes how the hx850 operates.

7.31 Command input method

Enter the following from the command prompt.

hx850 [option] ... file name
[1] : Can be omitted

: Pattern in [] immediately before can be repeated.

7.3.2 Method using PM+

The [Hexa Converter Options] dialog box that is used to set the hex converter options can be displayed via the

following methods once a project has been established under PM+.

- Select [Tool] - [Hex Converter Options...]

Since the hex converter is activated once per project, there are no file-specific settings.

The name of the output file that is output by the hex converter is identical with the output file name from the
1d850 or romp850 with the suffix changed to ".hex". To modify the name of the object file, specify a file name in
"Output File[-o]" field on the [File] tab.

240 User's Manual U18512EJ1VOUM

CHAPTER 7 HEXADECIMAL CONVERTER

7.4 Types and Features of Options

The hx850 options are shown below.

[Symbols used in option list]

[PM+]

Option exists as specification item under the PM+.

User’'s Manual U18512EJ1VOUM

241

CHAPTER 7 HEXADECIMAL CONVERTER

741 File
This specification specifies the name of the file to be output by the hx850.

+err file=file
This option adds and saves error messages to the file file.

-err file=file

This option overwrites and saves error messages to the file file.

-o ofile
[PM+]
This option outputs the hex-converted result to the file named ofile.

If this option is omitted, output is standard output.

242 User's Manual U18512EJ1VOUM

CHAPTER 7 HEXADECIMAL CONVERTER

7.4.2

Format
These specifications specify an option of the hexadecimal converter.

-bnum
[PM+]
The decimal number specified as num is regarded as the maximum block length value (or, in the case of the
Intel expanded hex format or the Motorola S type hex format, the number of code bytes indicated in one data

record).

If this option is omitted, the default value for each hex format is used. Specify a decimal number or a

hexadecimal number that starts with Ox or 0X as num.

Table 7 - 1 HEX Format Block/Record

HEX Format Range of Specifiable Values Default Value
Intel expanded hex format 1 - 255 (0x01 - 0xff) 31 (0x1f)
Motorola type S hex format 1-251 (0x01 - Oxfb) 80 (0x50)
Motorola type S hex format 1 - 250 (0x01 - Oxfa) 80 (0x50)
(32-bit address)
Expanded Tek hex format 16 - 255 (0x10 - Oxff) 255 (0xff)

-dnum
[PM+]
This option offsets the address to be output from num.
For num, specify either a decimal number or a hexadecimal number that begins with either Ox or 0X.
Specifiable values are in the range of 0 to Oxfffffffe.

The address output is the value offset from the specified value. The default value is 0.

-fc
[PM+]
This option specifies use of the hex format specified by the letter "c".

The significance of the letter "c" is described below.

| Intel expanded hex format

S Motorola type S hex format

s Motorola type S hex format (32-bit address)
T Expanded Tek hex format

If this option is omitted, Intel expanded hex format is used. If the -fT option is specified together with the -U

option, the -U is ignored.

User’'s Manual U18512EJ1VOUM 243

CHAPTER 7 HEXADECIMAL CONVERTER

-Iname
[PM+]
This option converts and outputs code in the section specified by the section name name. The hex
converter converts in section units, not in segment units.
If a section (section having the section type NOBITS and section attribute A) is specified for the data for
which no initial value has been specified, null characters (\0) are created corresponding to the section’s size.
If this option is omitted, code is converted in all sections which correspond to a section type other than
NOBITS and which have the section attribute ANote 3.
Spaces cannot be used in the section name. If this option is specified together with the -U option, this option

is ignored.

-8
[PM+]
This option converts and outputs symbol table portion.
This option is valid only when the extended Tek hex format has been specified (via the -fT option).

If this option is specified together with the -U option, this option is ignored.

-U
-Unum
-Unum, start, size
-Ustart,size

[PM+]

This option converts into hex format and outputs all the codes in the area specified by address start to size
size. If start and size are omitted, all the codes in the internal ROM defined by the device file are converted
into hex format and output. Of the area specified, the unused area is filled with num. num can be specified by
1 or 2 bytes. If num is of less than 2 or 4 digits, it is assumed that as many Os as the deficient number of digits
are specified at the beginning. If num is omitted, the unused area is filled with Oxff.

This option must not be specified when the extended Tektronix hex format is specified. If this option is

specified, the specification by the -I, -S, -f, -x, and -Z option is ignored.

-X
[PM+]
This option makes local symbols also eligible when hex-converting and outputting the symbol table portion.
This option is valid only when the -S option has also been specified. If this option is omitted, only global

symbols are eligible. If this option is specified together with the -U option, this option is ignored

-rom_less
[PM+]
When the -U option is specified, this option disables use of the information of the internal ROM area defined
by the device file and information of the internal ROM area to be converted into hex. It also disables output of
a warning message that is output if the area subject to hex conversion exceeds the internal ROM area. If this
option is omitted and if start, size of the -U option is omitted, the internal ROM area defined in the device file is

converted. If the area to be converted exceeds the internal ROM area, a warning message is output.

244 User's Manual U18512EJ1VOUM

CHAPTER 7 HEXADECIMAL CONVERTER

-2
[PM+]
This option generates as many null characters (\0) as the size of a section for a section with the section type
NOBITS and section attribute A (section for data for which no default value is specified, such as .bss section

and .sbss section). If this option is specified together with the -U option, this option is ignored.

User’'s Manual U18512EJ1VOUM 245

CHAPTER 7 HEXADECIMAL CONVERTER

7.4.3 Other

The specifications set other options.

-F devpath
[PM+]
This option sets the device file search to begin in the devpath folder. If this option is omitted, only the

standard folders are searched.

-V

This option outputs the hx850’s version information via standard error output, then terminates.

@cfile
This option handles cfile as a command file. A command file specifies an option and a file name for a
command not as arguments on the command line but by describing them in a file. On Windows, the length of
a character string specified as an option of a command is limited. If many options are set and some of the
options cannot be recognized, create a command file and specify this option.

For details of the command file, refer to "3.7.2 Command file".

246 User's Manual U18512EJ1VOUM

CHAPTER 7 HEXADECIMAL CONVERTER

7.5 Settings Made via PM+

This section describes dialog boxes that are used to set the command option of the hx850 for the target

project’s source file.

7.51 [Hexa Converter Options] dialog box

At the upper part of this dialog box, the following three tabs are displayed.

The contents of this dialog box depend on selecting the following tab.

Table 7 - 2 [Hexa Converter Options] Dialog Box

Tab Description
[File] Setting of options related to a file
[Option] Setting of hx850 options
[Others] Other settings
Note The option shown with "[]" in this dialog box is the option that is activated from the command line.

User’'s Manual U18512EJ1VOUM 247

CHAPTER 7 HEXADECIMAL CONVERTER

[File]

This tab is used to set options related to a file of the hx850.

Figure 7 - 2 [Hexa Converter Options] Dialog Box ([File] Tab)

Hexa Converter Options @

File: l Dpti0n1 Elthelsl

Output File[-a:

| Browsze...

Command Line Options:

-0 a.hex

Ok | Cancel Help

(1) Use This

If this check box is checked, the hex converter is used. This box is checked by default.

(2) Output File[-0]
This is used to specify the name of the hex file. Spaces cannot be used in a file name.
If a file name is not specified, the default output file name is the output file name for the linker (ROMization
processor when the ROMization processor is started up) with the extension changed to ".hex".
To select a directive file, either click on the desired directive file or use the arrow keys. Selecting the

[Browse...] button displays a dialog box, where the files can be selected.

(3) Command Line Options
This area displays the options set in this dialog box by command line options.

This area is for reference and cannot be written to.

248 User's Manual U18512EJ1VOUM

CHAPTER 7 HEXADECIMAL CONVERTER

[Option]

This tab is used to set hx850 options.

Figure 7 - 3 [Hexa Converter Options] Dialog Box ([Option] Tab)

Hexa Converter Options @

Fie Option | Others |

Farmat: ROM Area

Intel Extended [Convert ROM Areal-U]
= ; . —
S C :

Converting Section[]; Edit...

Masimum Length of I_ I Zem Initialization of NOBITS Section[-2]
Block/Record(-b] I lgnore Internal ROM Check[-ronm_less]

Offzet of Output li
Address[-d]:

Command Line Options:

-0 a.hex

Ok | Cancel Help

(1) Format
This option specifies the hex format to use when creating a hex file. The formats that can be specified are
"Intel Extended", "Motorola Type S (Standard)", "Motorola Type S (32 bits)", and "Extended Tek". The default

format is "Intel Extended".

(2) Symbol Table
This area is used to convert a symbol table. The options in this area can be specified only when the extended

Tektronix format is selected in the "Format".

(@) Convert Symbol Table[-S]
This check box is used to convert and output the symbol table. This can be selected only when the

extended Tektronix hex format is specified (when -fT is specified).

(b) Include Local Symbol[-x]
This check box is used to specify that local symbols are also converted when a symbol table is converted. It
is valid only when it is specified together with "Convert Symbol Table[-S]". If this option is omitted, only global

symbols are converted. If this option and the -U option are specified together, this option is ignored.

User's Manual U18512EJ1VOUM 249

CHAPTER 7 HEXADECIMAL CONVERTER

(3) ROM Area

(@) Convert ROM Area[-U]

This option converts into hex format and outputs all the codes in the area of the specified size starting from
the specified start address. If no start address and size are specified, all the codes in the internal ROM area
defined by the device file are converted into hex format and output. Any unused are in the specified area is
filled with a filling value. This option cannot be used when the extended Tektronix hex format is specified.

When this option is specified, options "Converting Section[-1]", "Convert Symbol Table[-S]", "Include Local

Symbol[-x]", and "Zero Initialization of NOBITS Section[-z]" are ignored.

(b) Filling Number
A filling value of 1 or 2 bytes can be specified. Specify a filling value in hexadecimal numbers. The prefix
"0x" must not be omitted. If the filling value is of less than 2 or 4 digits, it is assumed that as many Os as the
number of deficient digits are specified at the beginning. If this option is omitted, the unused area is filled with
Oxff.

(c) Start Address
This option specifies the starting address of the area to be converted. Use a decimal or hexadecimal

number. Be sure to specify this if "Size" is specified.

(d) Size
This option specifies the size of the area to be converted. Use a decimal or hexadecimal number. Be sure

to specify this if "Start Address" is specified.

(4) Converting Section[-I]

This option specifies a section to convert to hex format. The hex converter performs conversion by section
and not by segment.

If a section for which initial values of data are not specified (section having section type NOBITS and section
attribute A) is specified, as many null characters (\0) as the size of the section are generated. If this item is
omitted, all sections that have a section type other than NOBITS and section attribute A are converted.

To specify multiple sections, separate them by ";". Selecting the [Edit...] button displays the [Edit Option]

dialog box, where section items can be edited. Spaces cannot be used in the section name.

250 User's Manual U18512EJ1VOUM

CHAPTER 7 HEXADECIMAL CONVERTER

(5) Maximum Length of Block/Record[-b]
The decimal number specified as num is regarded as the maximum block length value (or, in the case of the
Intel expanded hex format or the Motorola S type hex format, the number of code bytes indicated in one data
record).
If this option is omitted, the default value for each hex format is used. Specify a decimal number or a

hexadecimal number that starts with Ox or 0X as num.

Table 7 - 3 HEX Format Block/Record

HEX Format Range of Specifiable Values Default Value
Intel expanded hex format 1 - 255 (0x01 - 0xff) 31 (0x1f)
Motorola type S hex format 1-251 (0x01 - Oxfb) 80 (0x50)
Motorola type S hex format 1- 250 (0x01 - Oxfa) 80 (0x50)
(32-bit address)
Expanded Tek hex format 16 - 255 (0x10 - Oxff) 255 (0xff)

(6) Offset of Output Address[-d]
This option specifies the offset of an output address as a decimal number or a hexadecimal number that

begins with 0x. An output address is the offset value from a specified value. The default is 0.

(7) Zero Initialization of NOBITS Section[-z]
This option generates as many null characters (\0) as the size of the section for a section that has section type
NOBITS and section attribute A. (That is, a section for which initial vales of data are not specified, such as the

.bss section or .sbss section)

(8) Ignore Internal ROM Check[-rom_less]
When the -U option is specified, this option disables use of the information of the internal ROM area defined by
the device file and information of the internal ROM area to be converted into hex. It also disables output of a
warning message that is output if the area subject to hex conversion exceeds the internal ROM area. If this
option is omitted and if start, size of the -U option is omitted, the internal ROM area defined in the device file is

converted. If the area to be converted exceeds the internal ROM area, a warning message is output.

(9) Command Line Options
This area displays the options set in this dialog box by command line options.

This area is for reference and cannot be written to.

User’'s Manual U18512EJ1VOUM 251

CHAPTER 7 HEXADECIMAL CONVERTER

[Others]

This tab is used to set other options of the hx850.

Figure 7 - 4 [Hexa Converter Options] Dialog Box ([Others] Tab)

Hexa Converter Options @

Fie | Option Others |

Any Option:
[

I Use Command File

Command Line Options:

-0 a.hex

Ok | Cancel Help

(1) Any Option
This edit box is used to specify an option other than one described above in the [Hexa Converter Options]
dialog box. Describe an option in this edit box in the same format as on the command line. At present, however,
no option has to be specified in this edit box because all the options related to the hex converter can be specified

in the [Hexa Converter Options] dialog box.

(2) Use Command File
In the Windows environment, the length of character strings used to specify options for the ca850 is restricted.
If this check box is selected, the option character string is output to a command file, which enables the operation
to be completed without observing the restriction on the character string length. Check this check box if many
options are set and not all of them can be recognized. Under the default setting, the check box is not checked.

For the details of command file, refer to "3.7.2 Command file".

(3) Command Line Options
This area displays the options set in this dialog box by command line options.

This area is for reference and cannot be written to.

252 User's Manual U18512EJ1VOUM

CHAPTER 7 HEXADECIMAL CONVERTER

7.6 Output File Formats

This section describes the hx850 output file formats.

7.6.1 Intel expanded

This section describes Intel expanded hexadecimal format files, which consist of four recordsN°: the start

address record, expanded address record, data record, and end record
Note Each record is output in ASCII code.

The following figure shows a file configuration in Intel expanded hex format.

Figure 7 - 5 File Configuration in Intel Expanded Hex Format

Start address record |

Expanded address recordNote ‘

Data recordNote

Data record

Expanded address record

Data record

Data record

End record

Note The expanded address record and data record are repeated.

Each record consists of the following fields.

CC AAAA TT [field] ... SS NL

@@ () (o) (d) e) (0

(@) Record mark

(b) Number of bytes (number of bytes that are expressed as two-digit hexadecimal numbers of [field] ...)

(c) Location address

(d) Record type (03: start address record, 02: expanded address record, 00: data record, 01: end record)

(e) Checksum (value expressed as two-digit hexadecimal number in records (other than :, SS, and NL)
sequentially subtracted from initial value 0 and that lower 1 byte expressed as a two-digit hexadecimal
number)

(f) New line (\n)

User’'s Manual U18512EJ1VOUM 253

CHAPTER 7 HEXADECIMAL CONVERTER

(1) Start address record

This record indicates an entry point address.

04 0000 03 PPPP 0000 SS NL

@ (b) (c) (d) (e)

(@) Number of bytes is fixed to 04.
(b) Fixed to 0000
(c) Record type is 03.

(d) Paragraph value of entry point addressN°t

(e) Offset value of entry point address

Note The address is calculated by (paragraph value << 4) + offset value.

(2) Expanded address record

This record indicates the paragraph value of a load addressNote,

Note The paragraph value is output if the segment is renewed at the beginning of a segment (when the
data record is output) or when the offset value of the data record’s load address exceeds the

maximum value of Oxffff.

02 0000 02 PPPP SS NL

(@) (b) () (d)

(@) Number of bytes is fixed to 02.
(b) Fixed to 0000
(c) Record type is 02.

(d) Paragraph value of segment

254 User's Manual U18512EJ1VOUM

CHAPTER 7 HEXADECIMAL CONVERTER

(3) Data record

This record indicates the value of a code.

CC AAAA 00 DD...DD SS NL

@ (b) () (d)

(@) Number of bytesNote

(b) Location address
(c) Record type is 00.

(d) Code (each byte of code expressed as two-digit hexadecimal number)

Note This is limited to the range of 0x1 to Oxff (the minimum value for the number of bytes of code

indicated by one data record is 1 and the maximum value is 255).

Example

04 0100 00 3C58E01B 6C NL

(@) (b) () (d) (e)

(@) Number of bytes of 3C58E01B expressed as two-digit hexadecimal number is 04.

(b) Location address is 0100.

(c) Record type is 00.

(d) Code

(e) Checksum is 6C which is the lower 1 byte of two’s complement E6 of 04 + 01 + 00 + 00 + 3C + 58 + EO

+ 1B = 194 expressed as a two-digit hexadecimal number.

(4) End record

This record indicates the end of a code.

00 0000 01 FF NL

(@) (b) () (d)

Number of bytes is fixed to 00.

)

(b) Fixed to 0000
) Record type is 01.
)

Checksum is fixed to FF.

User’'s Manual U18512EJ1VOUM 255

CHAPTER 7 HEXADECIMAL CONVERTER

[Reference] Intel hex

256

An allocation address in the Intel hex format is 2 bytes (16 bits). Therefore, only a 64 KB space can be
directly specified. To extend this area, the Intel extended hex format adds an extension address of 16 bits so
that a space up to 1 M byte (20 bits) can be used.

Specifically, a record type that specifies a 16-bit extension address is added. This extension address is
shifted 4 bits and added to the allocation address to express a 20-bit address. To indicate FFFFFH, for
example, FOOOH is set as the extension address, and FFFFH is specified as the allocation address. In the
Intel extended hex format, only 0 to FFFFFH can be addressed. To express FFFFFFH, another object format
must be used.

The hx850 outputs a message if the rule of this format is violated with this address and size used. In the

Intel extended hex format, a value that can be expressed is 20 bits, or 1 M byte (0x100000).

W8737: The start address of convert area exceeds the maximum value of the

address that can be expressed in the Intel expanded hex format

If the message "W8737" is output, the start address of the area to be converted into the hex format exceeds

1 M byte.

W8735: The address of convert area exceeds the maximum value of the address

that can be expressed in the Intel expanded hex format

If the message "W8735" is output, the address to be converted into the hex format exceeds 1 M byte (20

bits). The above error occurs in the following cases even if 1 M byte is not exceeded.

Example
- An offset that starts from the address specified by the -d option is not used
The absolute address is stored in the hex format.
- A section is allocated in the vicinity of the upper limit of the address that can be expressed by 20 bits

The start address fits in 20 bits but 20 bits are exceeded in the middle of the section.

If these two patterns are satisfied, the message "W8735" is output even if the area to be converted is as

small as 4 bytes.

User's Manual U18512EJ1VOUM

CHAPTER 7 HEXADECIMAL CONVERTER

7.6.2

A file

records

Motorola S type

in the Motorola S type hex format consists of five recordsN°® 1: S0 record as a header record, $2/S3

as data records, and S8/S7 records as end recordsNote 2,

The following figure shows the file configuration of the Motorola S type hex format.

Notes 1
2

Each record is output in ASCII code.
The Motorola S type hex formats are divided into two types: (24-bit) standard address and 32-bit
address types. The format of the standard address type consists of SO, S2, and S8 records, and the

format of the 32-bit address type consists of SO, S3, and S7 records.

Figure 7 - 6 File Configuration of Motorola S Type Hex Format

SO0 record

S2/S3 record

S2/S3 record

S8/S7 record

Each

record format consists of the following fields.

ST

(@)

LL field [field] ... SS NL

(b) (¢) (d)

(a)
(b)

()

(d)

Note

Record type
Record length (number of bytes of field [field] ... expressed as two-digit hexadecimal number + number
of bytes expressed by SSNote)

Checksum (Lower 1 byte expressed as two-digit hexadecimal number of one’s complement of total of

number of bytes in records (other than ST, SS, and NL) expressed as two-digit hexadecimal number)

New line (\n)

This is one.

(1) SO record

This record indicates a file name.

SO

(a)

LL FF...FF SS NL

(b)

(a)
(b)

Record type is SO.

File name (specified file name indicated in ASCII code)

User’'s Manual U18512EJ1VOUM 257

CHAPTER 7 HEXADECIMAL CONVERTER

(2) S2record

This record indicates the value of a code.

S2 LL AAAAAA DD...DD SS NL

(@) (b) ()

(a) Record type is S2
(b) Load address (24 bitsN°t®)
(c) Code (1 byte expressed as two-digit hexadecimal number)

Note Range is 0x0 to Oxffffff.

(3) S3record

This record indicates the value of a code.

S3 LL AAAAAAAA DD...DD SS NL

(@) (b) (©)

(a) Record typeis S3
(b) Load address (32 bitsN°te)
(c) Code (1 byte expressed as two-digit hexadecimal number)

Note Range is 0x0 to Oxffffffff.

(4) S7 record

This record indicates an entry point address.

S7 LL AAAAAAAA SS NL

(@) (b)

(a) Record typeis S7
(b) Entry point address (32 bitsN°t€)

Note Range is 0x0 to Oxffffffff.

(5) S8 record

This record indicates an entry point address.

S8 LL AAAAAA SS NL

(a) (b)

(a) Record type is S8
(b) Entry point address (24 bitsN°t®)

Note Range is 0x0 to Oxffffff.

258 User's Manual U18512EJ1VOUM

CHAPTER 7 HEXADECIMAL CONVERTER

7.6.3 Expanded Tek

A file in the expanded Tek hex format consists of three types of blocks: a data block, symbol block, and
termination block.

The following figure shows the file configuration of the expanded Tek hex format.

Figure 7 - 7 File Configuration of Expanded Tek Hex Format

Data block |

Data block ‘
Symbol block |

Symbol block |

Termination block

Each block consists of the following fields.

% LL T Ss field [field] ... NL

(@ () (c) (d) (e)

(@) Header character
(b) Block length (number of characters in blocks other than % and NL)

(c) Type of blockNote 1

Note 2 ot characters in blocks other than

(d) Checksum (value of remainder resulting from dividing total value
%, SS, and NL, by 256 and expressed as two-digit hexadecimal number)

(e) New line (\n)

Notes 1 6 ... data block, 3 ... symbol block, 8 ... termination block
2 The value for each character is determined as follows: 0 to 9: 0to 9, A to Z: 10 to 35, $: 36, %: 37, .:
38, -: 39, a to z: 40 to 65).

User’'s Manual U18512EJ1VOUM 259

CHAPTER 7 HEXADECIMAL CONVERTER

(1

Data block

This record indicates the value of a code.

A D...D

()

SS LA...

(@) (b)

(a)

Block type is 6

(b) Number of digits in load address and the load address
(c) Code (one byte of code expressed as two-digit hexadecimal number)
Example

% 15 6 1C 3 1000 20202020202 NL

)

260

(@ () (c) (d) (e)

(a) Block length is 15.
(b)

(c)

Block type is 6.

dividing1+5+6+3+1+0+0+0+2+0+2+0+2+0+2+0+2+0+2=28by 256.

Number of digits in load address is 3, and load address is 100.

(d)

(e) Code

Symbol block

This block indicates the value of a symbol.

Checksum is 1C, which is remainder expressed as two-digit hexadecimal number that results from

SYDF [SYDF]NL

(B)

.N [SEDFNote;
(A)

SS L N..

(b)

LL T

(@)

(a) Block typeis 3
(b)

Note

Number of characters of the section name and the section name.

or can follow any of symbol definition fields.

User's Manual U18512EJ1VOUM

One section definition field must exist in each section. A section definition field can be followed by

CHAPTER 7 HEXADECIMAL CONVERTER

(A)

(a)
(b)
(c)

(B)

(@)

(b)
(c)

Section definition field (SEDF)

0 L B...B L L...L

(@ () (c)

Indicates that this field is a section definition field.
Number of digits in the base address of a section and the base address of the section

Number of digits in the length of a section and the length of the section

Symbol definition field (SYDF)

T L s...S L V...V

(@) () (c)

Type of symbol
1: global address (symbol having binding class GLOBAL and type other than ABS)
2: global scalar (symbol having binding class GLOBAL and type ABS)
5: local address (symbol having binding class LOCAL and type other than ABS)
6: local scalar (symbol having binding class LOCAL and type ABS)
Number of characters of symbol and the symbol

Number of digits in symbol value and value of symbol

Example1

%

37 3 60 8SVCSTUFFO 2402C6 22CR1D140PEN25014READ25815WRITE260 NL
(@) (b) (c) (d) (€) (f)

(a)
(b)
(c)
(d)
(e)

()

Block length is 37

Block type is 3

Checksum is 60

Number of characters of section name is 8 and the section name is SVCSTUFF.

Section definition field (number of digits in the base address of the section is 2, the base address of
the section is 20, the number of digits in the length of the section is 2, and the length of the section is
C6)

Symbol definition field (22CR1D/140PEN250/14READ258/15WRITE260)

User’'s Manual U18512EJ1VOUM 261

CHAPTER 7 HEXADECIMAL CONVERTER

Example2

% 37 3 C8 8SVCSTUFFO 15CLOSE26814EXIT27029BUFLENGTH28013BUF278 NL
(@) (b) (c) (d) (e)

(a) Block length

(b) Block type is 3

(c) Checksum

(d) Number of characters of section name is 8 and section name is SVCSTUFF.

(e) Symbol definition field
(15CLOSE268/14EXIT270/29BUFLENGTH280/13BUF278)

(3) Termination block

Indicates an entry point address.

(a) Block typeis 8
(b) Number of digits in entry point address and the entry point address

Example

% 08 8 1A 2 80 NL

(@ (b) (c) (d)

(a) Block lengthis 8

(b) Block type is 8

(c) Checksumis 1A

(d) Number of digits in entry point address is 2, and entry point address is 80.

262 User's Manual U18512EJ1VOUM

CHAPTER 8 ARCHIVER

This chapter describes the outline and operation of the archiver (ar850).

8.1 Archiver

The archiver is a utility that couples specified relocatable object files and generates one archive file.
Therefore, this utility is used to combine two or more objects to create a "library".

In the C compiler package, "ar850" is the archiver.

Figure 8 - 1 The ar850’s Operation Flow

ar850 —

4>
Object file / Archive file

The archive file generated by the ar850 can be specified as an input file to the linker. If an archive file is

specified, the Id850 searches the necessary objects from the specified archive file, and links only the objects

found.

User’'s Manual U18512EJ1VOUM 263

CHAPTER 8 ARCHIVER

8.2 Operation Method

This section describes how the ar850 operates.

8.21 Command input method

Enter the following from the command prompt.

ar850 [+err file=file] key [option] [member-name archive-file [member-
name or file]
[1] : Can be omitted
Pattern in [] immediately before can be repeated.
Note When files are linked within an archive file, they are called members. Each member’s member name is

the same as its original file name.

8.2.2 Method using PM+

To create an archive file (library file), a special project must be established under PM+. To establish the project

using PM+, select the following as the microcontrollers name.

- V850 Microcontrollers

- V850 Microcontrollers Common Library
- V850 Microcontrollers Library

- V850E Core Common Library

- V850E2 Core Common Library

This establishes a project for creating an archive file (library file). At this time, the setting dialogs that can be

selected via [Tools] menu are as follows:

- [Compiler Common Options] dialog box

- [Compiler Options] dialog box

- [Assembler Options] dialog box

- [Archiver Options] dialog box

- [Section File Generator Options] dialog box

- [Static performance analyzer] dialog box

Activation of the archiver is performed once for each project, and settings for each file are not necessary.

When starting the ar850 from the command line, collect a group of object files and create an archive file.

Various detailed operations can be performed within archive files, such as manipulation of archive file objects.

By contrast, when using PM+ to create an archive file, start by compiling and assembling source files, then

gather the resulting objects into an archive file. Operations cannot be executed within complete archive files via

PM+. The user should keep this difference in mind when choosing between command-line activation and

activation via PM+. The differences between command-line option settings and option settings via PM+ are

described below.

264 User's Manual U18512EJ1VOUM

CHAPTER 8 ARCHIVER

8.3 Types and Features of Keys and Options

This section describes "keys" and "options". A key is an item that must be specified for activation, while an

option can be omitted.

[Symbols used in key/option list]

[PM+]

Key/option exists as specification item under the PM+.

User’'s Manual U18512EJ1VOUM

265

CHAPTER 8 ARCHIVER

8.3.1 Types and features of keys

The following table lists the ar850 keys.

v

This option outputs the ar850 version number via standard output and then terminates processing.
d

This option deletes the specified member from the specified archive file.
m

This option moves the specified member to the end of the specified archive file.

ma member
This option moves the specified member to the position immediately after the member member in the

specified archive file. If member is omitted, processing is stopped.

mb member
This option moves the specified member to the position immediately before the member member in the

specified archive file. If member is omitted, processing is stopped.

This option adds the specified file to the end of the specified archive file. There is no checking as to whether
or not a member with the same name as the specified file exists. If the specified archive file does not exist, a

new archive file is created, and it contains the specified file.

This option exchanges the specified file with the member having the same name in the specified archive file.
If the member with the same name as the specified file does not exist in the specified archive file, the
specified file is added to the end of the specified archive file. If the specified archive file does not exist, a new

archive file is created, and it contains the specified file.

ra member
This option exchanges the specified file with the member having the same name in the specified archive file,
and then moves the specified file to the position immediately after the member member. If the member with
the same name as the specified file does not exist in the specified archive file, the specified file is added to the

end of the specified archive file. If member is omitted, processing is stopped.

rb member
This option exchanges the specified file with the member having the same name in the specified archive file,
and then moves the specified file to the position immediately before the member member. If the member with
the same name as the specified file does not exist in the specified archive file, the specified file is added to the

end of the specified archive file. If member is omitted, processing is stopped.

266 User's Manual U18512EJ1VOUM

CHAPTER 8 ARCHIVER

ru
[PM+]

If the specified file has been updated more recently than the member having the same name in the specified
archive file, this option replaces the member with the specified file. If the member with the same name as the
specified file does not exist in the specified archive file, the specified file is added to the end of the specified
archive file. If the specified archive file does not exist, a new archive file is created, and it contains the

specified file.

If a member name has been specified, this option outputs only the member name of the member existing in
the specified archive file. If a member name has not been specified, this option outputs (via standard output)

the member names of all members existing in the specified archive file.

If a member name has been specified and if the specified member exists in the specified archive file, this
option extracts that member and creates a file having the same name. If a member name has not been
specified, this option extracts all of the members existing in the specified archive file and creates files having

the same names. The contents of the archive file are not changed.

User’'s Manual U18512EJ1VOUM 267

CHAPTER 8 ARCHIVER

8.3.2 Types and features of options

Options can be omitted.

(1) Option list

C
[PM+]
This option does not output any messages.
v
[PM+]
This option outputs this archiver’s execution status using the format "[a|d|q|m|r|x] - file".
a - file Add
d - file Delete
q - file Create new
m - file Move
r - file Replace
x - file Extract
@cfile
[PM+]

This option handles cfile as a command file. A command file specifies an option and a file name for a
command not as arguments on the command line but by describing them in a file. On Windows, the length of
a character string specified as an option of a command is limited. If many options are set and some of the
options cannot be recognized, create a command file and specify this option.

For details of the command file, refer to "3.7.2 Command file".
(2) Error output specification options

+err file=file

This option adds and saves error messages to the file file.

-err_file=file

This option overwrites and saves error messages to the file file.

268 User's Manual U18512EJ1VOUM

CHAPTER 8 ARCHIVER

8.4 Settings Made via PM+

This section describes each dialog for setting ar850 command options for the source file of a given project.

8.4.1 [Archiver Options] dialog box

At the upper part of this dialog box, the following one tab is displayed.

Table 8 - 1 [Archiver Options] Dialog Box

Tab

Description

[Option]

Setting of ar850 options

User’'s Manual U18512EJ1VOUM

269

CHAPTER 8 ARCHIVER

[Option]

This tab is used to set ar850 options.

Figure 8 - 2 [Archiver Options] Dialog Box ([Option] Tab)

Archiver Options

Option l

Auchive File:

|| Browse...

[Suppress Message of File Creation[c]
[Verboze Mode[v]
W Use Command File

0k | Cancel Help

(1) Archive File
This option specifies the name of the archive file to output (extension ".a"). If this option is omitted, the project
file name with the extension changed to ".a" is regarded as having been specified.
It can be selected by clicking or by using arrow keys. A file also can be selected by using the dialog that is

displayed by selecting the [Browse...] button.

(2) Suppress Message of File Creation[c]

Messages are not output on file creation if this option is checked.

(3) Verbose Mode[v]

This option outputs the execution status in the following format.

a - file Add

d - file Delete

q - file Create new
m - file Move

r - file Replace

x - file Extract

270 User's Manual U18512EJ1VOUM

CHAPTER 8 ARCHIVER

(4) Use Command File
In the Windows environment, the length of character strings used to specify options for the ca850 is restricted.
If this check box is selected, the option character string is output to a command file, which enables the operation
to be completed without observing the restriction on the character string length. Check this check box if many
options are set and not all of them can be recognized. Under the default setting, the check box is not checked.

For the details of command file, refer to "3.7.2 Command file".

User’'s Manual U18512EJ1VOUM 271

CHAPTER 9 SECTION FILE GENERATOR

This chapter describes the outline of the section file generator (sf850), the sequence for using section files,

and sf850 operations.

9.1 Section Files

This section explains what section files are.

Section files are files that define the sections to which external variables (global variables) and static variables
that have been declared in a C language source file are allocated. The sections to which these variables are
allocated can be determined at compilation by referencing these section files. As the default setting, as many
high access-frequency variables as possible are allocated to the .tidata-attribute, .tidata.word-attribute, and
tidata.byte-attribute sections assigned to the internal RAM area of the V850 microcontrollers.

The ca850 provides the following three methods for declaring external variables in C language source files

and allocating the variables to sections.

(1) Use the compiler option (-Gnum) to limit the data size when allocating to a .sdata section or .sbss section.
(2) Use the #pragma section directive to determine the section for allocation of each variable.

(3) Use section files to allocate the specified variables when the compiler is activated.

Method (1) is applicable in cases where external variables that do not exceed a certain size can be allocated
to either .sdata or .sbss sections. Since this specification is via a compiler option, there is no need to add
changes to the C language source file.

Method (2) enables a freer choice of the section for allocation. Here, the #pragma section directive is used in
the C language source file to explicitly specify the target section for allocation. However, this method requires

that changes be added to the C language source file.

Neither method (1) nor method (2) can be used in cases where the target section for allocation must be freely
specified, such as in order to strictly comply with an ANSI standard but without having to use the #pragma
section directive, or such as when attempting to migrate a C language source file that has been compiled by a
compiler other than the ca850 without adding changes to the C language source file.

Method (3) involving section files is recommended in such cases.

Section files define the following for all external variables and static variables:
- Clanguage source files where the static variables are declared

- external variable names, static variable names, and names of the sections where they are allocated

Also, by having the section files referenced by the compiler, the variables can be allocated to the intended

locations without having to modify the C language source file.

272 User's Manual U18512EJ1VOUM

CHAPTER 9 SECTION FILE GENERATOR

With the ca850, specification of a compiler option (-Xcre_sec_data or -Xcre_sec_data_only) generates a
frequency information file, which can be input to the section file generator (sf850) to create a section file.
However, the sf850 is designed to output information for allocating data to tidata-attribute, tidata.word-attribute,
and tidata.byte-attribute sections that are intended to be allocated in the internal RAM of V850 microcontrollers
devices. Since section files are text-format files, they can be edited and modified by using an editor. In other
words, changes can be made in this way to the section files that are output by the sf850 in order to create the
final (completed) section files.

When compilation is performed once again using the completed section file (with the -Xsec_file option
specified), the result is a complete object file whose external variables and static variables are allocated to the

specified sections.

Figure 9 - 1 Image of Compilation Using Section File Specifications

(3)
Complle sf850

—Xcre sec_data
is specified
C language source file Frequency information file (.sec) Section file

(4)

Re-compile

L
-Xsec_fileis specified

C language source file Object file with modified

allocation of variables

Section file

(1
@

Compile once using -Xcre_sec_data option to create a section file.

Use the sf850 to convert the frequency information file into a section file.

—

)
)

3) Edit the section file, if necessary.
)

(4) Compile once more using -Xsec_file option to input the section file.

For description of the section file’s format, refer to "9.2 Section File Format".

The variables whose allocation can be specified via section files are external variables (global variables), static
variables in files (static variables that are declared within a file), and static variables in functions (static variables
that are declared within a function). Allocation specifications cannot be made using character string constants

(such as "abc").

User’'s Manual U18512EJ1VOUM 273

CHAPTER 9 SECTION FILE GENERATOR

When compiling each of several C language source files and linking them to create an object file, compile
each file after specifying its frequency information output, which creates several .sec files. However, when
creating these section files, the .sec files must be input to the sf850 all at once and then integrated. Otherwise,

the variable information for the external variables will not be integrated, and valid section files cannot be created.

The variable specified by the section file is equivalent to specifying "#pragma section". Therefore, a temporary
definition of an external variable is handled as a "definition", so if an external variable is temporarily defined by
two or more files, an error occurs during linking. In such cases, extern must be always declared in a file that

references external variables.

If a variable whose allocation has been specified via a section file has also been specified (via a #pragma
section directive in a C language source file) to be allocated to a different section, the specification via the
section file takes priority. Even when the "-Gnum" compiler option has been specified, if a section file specifies
that the target will be allocated to an .sdata section or .sbss section, it will be allocated to that section regardless
of the num value. In other words, the order of priority among the specifications "section file" specification,

"#pragma section" specification, and "-Gnum" specification is as follows.

(¢~ Higher priority) Section file > #pragma section > -Gnum (lower priority —)

274 User's Manual U18512EJ1VOUM

CHAPTER 9 SECTION FILE GENERATOR

9.2 Section File Format

Section files are text files that are input at compile time to revise the sections where variables are to be
allocated. They enable variable allocation settings to be changed without having to modify any C language
source files. Allocation specifications made via section files take priority over specifications made via #pragma
section directives in C-language source programs.

The ca850 enables the user to specify which section files will be output to the sf850 at compile time. The
sf850 merges the information from several files that have been input and outputs a single section file as specified
via the ca850’s options.

The following figure shows an example of a section file output by the sf850.

Figure 9 - 2 Example of Section File Output by sf850

//Created by sf850. at Thu Jan 22 17:26:25 2004

[tidatal

// [file: [func:]]variable // section size total freq Byte freqg Word freqg
// data 4 10 10 O

// data 4 8 8 0

"main.c:funcl:val3" // -4 5 5 0

"iv // -4 3 3 0

"jv // -2 110

"main.c:vall"

"main.c:val2"

On each line, all content that follows "//" is regarded as comments.

Variables are displayed in section files as shown below.

[Section typel
"file-name:function-name:variable-name" //comment
"file-name:variable-name" // comment

"variable-name" // comment

There are three ways to display variables, according to the type of variable. The variable types and display

variations are listed below.

Table 9 - 1 Variable Types and Displays

Display

Meaning

file-name : function-name : variable-name

Static variable declared in a function.
The function name and file name are also displayed.

file-name : variable-name

Static variable declared in a file.
The file name is also displayed.

variable-name

External variable. Only the variable name is displayed.

Comments are output in the following format.

section size total freq Byte frec

Word frec

User’'s Manual U18512EJ1VOUM

275

CHAPTER 9 SECTION FILE GENERATOR

The displayed variables and their meanings are listed below.

Table 9 - 2 Variable Displays and Their Meanings

Display Meaning
section Section to which allocation of the variable is explicitly specified.
If the variable is not explicitly specified, "-" is displayed.
size Size of variable (in bytes). If the size is unknown, "0" is displayed.
total_freq Frequency of variable references. This indicates the number of load/store instructions

that have appeared for a particular variable.

Byte freq For the given variable reference frequency, this indicates the number of variable
references in byte units.

Word_frec For the given variable reference frequency, this indicates the number of variable
references in word units.

The sf850 outputs a section file in which all variables are allocated to the .tidata section. Since the .tidata
section’s memory capacity is 256 bytes, if the variables exceed that amount they must be revised as determined
on the user side.

However, if the -O option is specified, the file can be input to the ca850 as it is because the variables will be
sorted according to use frequency and only the more frequently used variables will be included up to the .tidata
section’s capacity. Also, when specifying the -O option, the user can choose to have the output sent to
"tidata_word" and "tidata_byte" instead of just "tidata".

The following figure shows a section file example output when the "-O option" is specified.

Figure 9 - 3 Example of Section File Output by sf850 Using -O Option

// Created by sf850. at Thu Jan 22 17:26:25 2004
[tidata_ byte]

// [file: [func:]]lvariable // section size total freqg Byte freq Word freq
"a.c:sil" // data 4 10 10 O

"a.c:si2" // data 4 8 8 0

"a.c:fl:sfil" // - 4 55 0

"iv // -4 3 3 0

g // -2 110

[tidata word]

"a.c:si3" // data 4 10 0 10

"a.c:si4" // data 4 8 0 8

"a.c:fl:sfi2" // -4 5 2 3

" // -4 3 21

"m" // -2 101

276 User's Manual U18512EJ1VOUM

CHAPTER 9 SECTION FILE GENERATOR

The specifiable types of output sections include other types besides tidata-attribute sections, tidata.word-
attribute sections, and tidata.byte-attribute sections.

The following character strings can be used to specify section types.

Table 9 - 3 Types of Sections Specifiable by ca850

Type Specification . .
Character String Target Section for Allocation

tidata Byte data for which a default value has been set is allocated to the .tidata.byte
section and half-word (or larger) data for which a default value has been set is
allocated to the .tidata.word section.
Byte data for which a default value has not been set is allocated to the .tibss.byte
section and half-word (or larger) data for which a default value has not been set is
allocated to the .tibss.word section.

data If a default value has been set, allocation is to the .data section. If a default value
has not been set, allocation is to the .bss section.

sdata If a default value has been set, allocation is to the .sdata section. If a default value
has not been set, allocation is to the .sbss section.

sedata If a default value has been set, allocation is to the .sedata section. If a default value
has not been set, allocation is to the .sebss section.

sidata If a default value has been set, allocation is to the .sidata section. If a default value
has not been set, allocation is to the .sibss section.

const Allocation is to the .const section.

sconst Allocation is to the .sconst section.

User’'s Manual U18512EJ1VOUM 277

CHAPTER 9 SECTION FILE GENERATOR

[Cautions]

278

Do not insert blank spaces before or after a section name when specifying the section name in square
brackets ([1)

For example, in the case of [tidata], blank spaces cannot be inserted before or after "tidata".

Enclose a variable name in a section file with "(double quotate). The format of CA850 Ver. 2.60 or earlier
can be used.

Only one variable can be used per line. Do not modify the code to specify two or more variables per line
and do not make one variable specification occupy more than one line.

Do not insert blank spaces before or after ":".

Do not specify the path when specifying file names.

If a function or variable definition is included in a header file, the "file name" in the section file is not the
header file name; it is the C language source file name that includes the header file.

Comments in the form of "/* */" or "//" can be inserted. However, a section name or variable name must not
be delimited by a comment. A blank space is required immediately after a variable name.

ASCII code and EUC (Japanese) code can be used in comments.

If a variable for which "data" has been specified as the section type in a section file is referenced by
another assembly language source file, use the .option quasi directive to specify "data" so that the
assembler will be notified of the data/bss attribute. Also, if a variable for which "sdata" has been specified
is referenced by another assembly language source file, use the .option quasi directive to specify "sdata"

so that the assembler will be notified of the sdata/sbss attribute.

User's Manual U18512EJ1VOUM

CHAPTER 9 SECTION FILE GENERATOR

Example

// Section file

[data]

"a.c:dat1l" // With default value; allocation is to .data section.
"b.c:dat2" // Without default value; allocation is to .bss section.
[sdatal

"a.c:sdatl" // With default value; allocation is to .sdata section.
"b.c:sdat2" // Without default value; allocation is to .sbss section.

Assembly language source file

.option
.text

mov

.option
.text

mov

.option
.text

mov

.option
.text

mov

data _datl

$_datl, rilil
-- Allocation
data _dat2

$ dat2, ri2
-- Allocation
sdata _sdatl

$_sdatl, ril3
-- Allocation
sdata _sdat2

$_sdat2, ril4

-- Allocation

to

to

to

to

.data section is assumed; instruction is expanded.

.bss section is assumed; instruction is expanded.

.sdata section is assumed; instruction is not expanded.

.sbss section is assumed; instruction is not expanded.

User’'s Manual U18512EJ1VOUM

279

CHAPTER 9 SECTION FILE GENERATOR

9.3 Operation Method

The following describes how to use section files when activating either from the command line or from PM+.

9.3.1 Command input method

Enter the following from the command prompt.

sf850 [option] ... filel [fileZ2]...
[1] : Can be omitted
Pattern in [] immediately before can be repeated

9.3.2 Method using PM+

The [Section File Generator Options] dialog box that is used to set the section file generator options can be

displayed via the following methods once a project has been established under PM+.
- Select [Tool] - [Section File Generator Options...]

Since the section file generator is activated once per project, there are no file-specific settings

The default name of the section file that the section file generator outputs is the project file name with the
extension changed to ".sf". It also is possible to use an option to specify the output file name.

Note that when starting the section file generator from PM+, check "Use This" in the [File] tab in the [Section

File Generator Options] dialog box.

280 User's Manual U18512EJ1VOUM

CHAPTER 9 SECTION FILE GENERATOR

9.3.3 Use from command line
The following describes how to use section files from the command line.

(1) First, create a frequency information file. Specify the ca850 option "-Xcre_sec_data_only" and compile the
C language source file to create a frequency information file for the external variables and static variables
in the C language source file. The file’s default file name is the C language source file name with the suffix
".sec". To specify a particular file name for the frequency information file, specify the file name when

specifying the "-Xcre_sec_data_only" option.

Example

> ca850 -cpu 3201 -Xcre sec_data only=secsrc funcl.c

In this case, a frequency information file for the C language source file "func1.c" is output as "secsrc".

(2) Input the generated frequency information file to the sf850, which outputs a section file. In this case, the
generated section file specifies that variables will be allocated to tidata-attribute sections, tidata.word-

attribute sections, and tidata.byte-attribute sections.

Example

> sf850 funcl.sec func2.sec func3.sec -o secfile

In this case, the three frequency information files func1.sec, func2.sec, and func3.sec are gathered as
one section file, which is output as "secfile". It is easier to create a command file in cases where there are a
lot of files and consequently a lot of file names to enter. For details of command files, refer to "3.7.2 Com-

mand file".

(38) Since the default specification for the output section file is that all variables are allocated to a .tidata-
attribute section, it may be necessary to modify the section file. If the -O option is specified when activating
sf850, the variables that can be accommodated in the memory range of the .tidata section can be

automatically selected in sequence, starting from the most frequently referenced variable.

(4) Re-compile the C language source file by specifying the ca850 option "-Xsec_file". As a result of re-

compiling, a section-allocated object file is created in accordance with the input section file.

Example

> ca850 -cpu 3201 -Xsec file secfile funcl.c func2.c func3.c

In this case, secfile is input as a section file and func1.c, func2.c, and func3.c are compiled.

User’'s Manual U18512EJ1VOUM 281

CHAPTER 9 SECTION FILE GENERATOR

9.3.4 Use via PM+

This section explains a method for using section files via PM+.

When operating from PM+, check "Use This" in the [File] tab that is displayed using the "[Section File

Generator Options] dialog box" menu. This causes the ca850 to create a frequency information file and then

automatically start sf850 to generate a section file, which it then uses to compile.

A section file output using the above method specifies allocating all variables to a section that has the .tidata

attribute. If a section file is to be revised and used, this must be done using the following method and not

checking "Use This".

(1

)

First, create a frequency information file. Select "[Compiler Options] dialog box" from the menu and then
select the [Output File] tab and check the "Frequency Information File[-Xcre_sec_data]". If a file name is
specified in the combo box, the name of a file to which frequency information is to be output can be
specified. A frequency information file must be created for each C language source file. If, as in the
example shown above, the frequency information file specification applies to all C language source files
(i.e., is not specified for a particular source file), the frequency information in the func1.sec file will be
overwritten each time a C language source file is compiled. In other words, the final func1.sec file will
contain only the information for the C language source file that was compiled last. If no frequency
information file name is specified, the output frequency information file’'s file name becomes the C
language source file’s file name with the suffix ".sec”, and this enables a separate frequency information
file to be created for each C language source file. This means that when creating all of the frequency
information files, it is better not to specify a file name unless you wish to specify particular file names as

options for particular C language source files.

Input the generated frequency information file to the sf850, which outputs a section file. Consequently, the
sf850 must be activated via the command line. Once this is done, a section file which specifies the
variables that will be allocated to tidata-attribute sections, tidata.word-attribute sections, and tidata.byte-

attribute sections is generated.

Example

sf850 funcl.sec func2.sec func3.sec -o secfile

@)

(4)

282

In this case, the three frequency information files func1.sec, func2.sec, and func3.sec are gathered as
one section file, which is output as "secfile". It is easier to create a command file in cases where there are a
lot of files and consequently a lot of file names to enter. For details of command files, refer to "3.7.2

Command file".

Since the default specification for the output section file is that all variables are allocated to a .tidata-
attribute section, it may be necessary to modify the section file. If the -O option is specified when activating
sf850, the variables that can be accommodated in the memory range of the .tidata-attribute section can be

automatically selected in sequence, starting from the most frequently referenced variable.

Select "[Compiler Options] dialog box" from the menu and then select the [Input File] tab and specify the
generated section file name in the combo box of "Section File[-Xsec_file]", then rebuild. The build will

result in the creation of a section-allocated object file in accordance with the input section file.

User's Manual U18512EJ1VOUM

CHAPTER 9 SECTION FILE GENERATOR

9.4 Types and Features of Options

The sf850 options are shown below.

[Symbols used in option list]

[PM+]

Option exists as specification item under the PM+.

User’'s Manual U18512EJ1VOUM

283

CHAPTER 9 SECTION FILE GENERATOR

9.4.1 Options

This specifies options of the sf850.

-0
[PM+]

This option specifies that only the number of variables that can be allocated to the .tidata section will

be selected, in order starting from highest use frequency and output.

The maximum data size that can be allocated to the .tidata section is 256 bytes, which are internally divided
into .tidata.byte byte data (128 bytes) and .tidata.word word data. When this option is specified, variables are
selected until the total section size of 256 bytes is reached, at which point the variables are output to the
section file. However, selection is stopped when the byte data reaches 128 bytes. If this option is omitted, all

variables that have appeared are output to the section file.

-V
This option outputs the section file generator’s version number via standard output and then terminates

processing.

-Xcs [=name]
[PM+]

This option excludes variables allocated to a section from optimization when the -O option is specified as
name. A name is specified a section file to the specified the link directive file. Please .bss/.sbss of bss
attribute section replace .data/.sdata. If name is omitted, all section names are specified. If the ".tidata" is
specified the name, the user can choose to have the output sent to ".tidata.word" and "tidata.byte" instead of

just ."tidata".

-Xcv=name
[PM+]
This option excludes variables from optimization when the -O option is specified as name. A name is spec-

ified with the same from as a Table 9 - 1.

-cl num
[PM+]
This option specifies the comment level of the section file to be output. The following values can be

specified as num.

0 No output of comments

1 Outputs file creation information (date, etc.), variable information, and corresponding
descriptions.
The variable information includes the section name, size, and use frequency. If the section
name is not determined by an external variable, "-" is output.

2 Outputs a format guide in addition to level 1.
If -O has been specified, variables judged not to fit in the .tidata section are output as
comments.

If this option is omitted, comment level 1 is assumed.

284 User's Manual U18512EJ1VOUM

CHAPTER 9 SECTION FILE GENERATOR

+err file=file

This option adds and saves error messages to the file file.

-err file=file

This option overwrites and saves error messages to the file file.

-h
-help
This option outputs a description of the section file generator’s options via standard output and then

terminates processing.

-ns
[PM+]
This option arranges variable names in section files to be output in the order they appear instead of sorting
them. If this option is omitted, the variable names are arranged in order of highest use frequency. If two

variable names have the same use frequency, they are arranged so that the smaller of the two is first.

-0 name
[PM+]
This option specifies the section file name to be output as name.

If this option is omitted, the section file is output via standard output.

-size tidata=num
[PM+]
This option specifies the upper size (num bytes) limit of variables allocated to the tidata.word/tidata.byte

section when the -O option is specified.

-size tidata byte=num
[PM+]
This option specifies the upper size (num bytes) limit of variables allocated to the tidata.byte section when

the -O option is specified.

-sname

[PM+]
This option arranges the variable names in section files to be output according to the dictionary order of
variable names. If two variables have the same name, they are arranged according to the dictionary order of

file names and function names.

-ssection
[PM+]
This option arranges the variable names in section files to be output according to their size (smallest first). If

two variables have the same size, they are arranged in order of highest use frequency.

-ssize
[PM+]
This option arranges the variable names in section files to be output according to their size (smallest first).

If two variables have the same size, they are arranged in order of highest use frequency.

User’'s Manual U18512EJ1VOUM 285

CHAPTER 9 SECTION FILE GENERATOR

-V

[PM+]

This option displays the section file generator’s execution process.

@cfile

[PM+]

This option handles cfile as a command file. A command file specifies an option and a file name for a
command not as arguments on the command line but by describing them in a file. On Windows, the length of
a character string specified as an option of a command is limited. If many options are set and some of the
options cannot be recognized, create a command file and specify this option.

For details of the command file, refer to "3.7.2 Command file".

[Cautions]

286

Some of the above options are invalid if specified concurrently with other options.

- If two or more options related to sorting (-0 or -cl) are specified, the one specified last is valid and the
others are invalid.

- If -V, -h, and/or -help are specified at the same time, the one specified first is valid, and the others are
invalid.

- If -O and an option related to sorting are specified at the same time, -O is valid and the option related to
sorting is invalid.

- The CA850’s output that results when frequency information files are input to the sf850 should be used as

it is. Operation is not guaranteed if a frequency information file with modified content has been input.

For description of the contents of section files output by the sf850, refer to "9.2 Section File Format" .

User's Manual U18512EJ1VOUM

CHAPTER 9 SECTION FILE GENERATOR

9.5 Settings Made via PM+

This section describes each dialog for setting sf850 command options for source files of a given project.

9.5.1 [Section File Generator Options] dialog box

At the upper part of this dialog box, the following three tabs are displayed.

The contents of this dialog box depend on selecting the following tab.

Table 9 - 4 [Section File Generator Options] Dialog Box

Tab Description
[File] Setting of options related to a file
[Option] Setting of sf850 options
[Others] Other settings
Note The option shown with "[]" in this dialog box is the option that is activated from the command line.

Caution The generated file is deleted if the section file generator options are changed.

To edit and use, copy it to a separate file then use.

User’'s Manual U18512EJ1VOUM

287

CHAPTER 9 SECTION FILE GENERATOR

[File]

This tab is used to set options related to a file of the sf850.

Figure 9 - 4 [Section File Generator Options] Dialog Box ([File] Tab)

Section File Generator Options @

File: l Dpti0n1 Elthersl

Output File[-a]:

| Browse. .

Command Line Options:
-0 bsf

Ok | Cancel Help

(1) Use This
This check box is used to specify whether a section file generator is used for build. If it is checked, the section

file generator is used. If it is used, a frequency information file ".sec" is created for all C language source files in

the project folder or work folder.

(2) Output File [-0]
This option specifies the name of the section file to output (extension ".sf"). Spaces cannot be used in the
file name. Specifying a file name is the same as specifying it in the -0 option.
If a file name is not specified, the project file name with the extension changed to ".sf" is regarded as having
been specified.

A file also can be selected by using the dialog that is displayed by selecting the [Browse...] button.

(3) Command Line Options
This area displays the options set in this dialog box by command line options.

This area is for reference and cannot be written to.

288 User's Manual U18512EJ1VOUM

CHAPTER 9 SECTION FILE GENERATOR

[Option]

This tab is used to set sf850 options.

Figure 9 - 5 [Section File Generator Options] Dialog Box ([Option] Tab)

Section File Generator Options

Fie Option | Others |

Allocatable Size of lidata Section[-zize_tidata]:

I~ Mo Ophrmizaton Section€ecsl Edit...

Allocatable Size of tidata byte Section-size_tidata_byte]:

1 E

Mo Optimization ' ariable[-+ov]: Edit...

Sort Yariable: Comment Level;

L]

|Sequence of Freguency ﬂ |Level 1

I Verbose Made[-v]
Command Line Options:

-0 bsf

Ok | Cancel Help

(1) No Optimization Section[-Xcs]

This option excludes variables allocated to a section from optimization when the "Optimize Location[-O]" is
specified. If this check box is checked, it is assumed that all sections are specified. If a section is specified in the
edit box below, the variable allocated to that section is excluded from optimization. To specify two or more
sections, delimit each by ";" (semicolon). Selecting the [Edit...] button displays the [Edit Option] dialog box.

Sections can be edited in this dialog box.

(2) Allocation Size of tidata Section[-size_tidata]
This option specifies the upper size limit of variables allocated to the tidata.word/tidata.byte section when the

"Optimize Location[-O]" option is specified. Specify size in decimal numbers.

(3) Allocation Size of tidata.byte Section[-size_tidata_byte]
This option specifies the upper size limit of variables allocated to the tidata.byte section when the "Optimize

Location[-O]" option is specified. Specify size in decimal numbers.

(4) No Optimization Variable[-XcV]
This option excludes variables from optimization when the -O option is specified. To specify two or more
variables, delimit each by ";" (semicolon). Selecting the [Edit...] button displays the [Edit Option] dialog box.

Variables can be edited in this dialog box.

User's Manual U18512EJ1VOUM 289

CHAPTER 9 SECTION FILE GENERATOR

(5) Sort Variable

This option specifies options related to sorting variables.

(@) Does Not Sort[-ns]

Variable names in the output section file are not sorted, but are listed in the order in which they appeared.

(b) Sequence of Frequency
Variables are sorted in descending order of frequency of use (default). When the frequency of use is the

same, variables are listed in ascending order of size.

(c) Variable Name[-sname]
The variable names in the output section file are listed in alphabetical order. When variable names are the

same, they are listed in alphabetical order of file name and function name.

(d) Section Name[-ssection]
The names of sections to which the variable names in the output section file are allocated are listed in
alphabetical order. When section names are the same, they are listed in descending order of frequency of

use.

(e) Variable Size[-ssize]
The variable names in the output section file are listed in ascending order of size. When sizes are the same,

they are listed in descending order of frequency of use.

(f) Optimize Location[-O]

Determine how many variables can be allocated to the .tidata.byte section or .tidata.word section and output
them in descending order of frequency of use. 256 bytes can be allocated in the .tidata section and this is
divided internally into the byte data of .tidata.byte (128 bytes) and the word data of .tidata.word. 8-bit data can
be allocated only to the .tidata.byte area. The section file generator selects variables and outputs them in the

section file until their total is 256 bytes. However, it terminates selection when 8-bit data reaches 128 bytes.

(6) Comment Level

This option specifies the comment level of the output section file.

(@) Not Output[-cl 0]

Do not output comments.

(b) Level1
Output date and other file creation information, as well as variable information and its explanation
(default). Variable information is section name, size, and frequency of use. If the section name is not

determined for an external variable, "-" is output.

(c) Level 2[-cl 2]
In addition to Level 1, output a format guide. If "Optimize Location" is specified, variables determined not

to be in the .tidata section also are output as comments.

(7) Verbose Mode[-v]

This option displays the execution status of the section file generator.

290 User's Manual U18512EJ1VOUM

CHAPTER 9 SECTION FILE GENERATOR

(8) Command Line Options
This area displays the options set in this dialog box by command line options.

This area is for reference and cannot be written to.

User’'s Manual U18512EJ1VOUM 291

CHAPTER 9 SECTION FILE GENERATOR

[Others]

This tab is used to set other options of the sf850.

Figure 9 - 6 [Section File Generator Options] Dialog Box ([Others] Tab)

Section File Generator Options

File | Option Others

Any Option:
I

W Use Command File

Command Line Options:

-0 bsf

Ok | Cancel Help

(1) Any Option
This edit box is used to specify an option other than one described above in the [Section File Generator
Options] dialog box. Describe an option in this edit box in the same format as on the command line. At present,
however, no option has to be specified in this edit box because all the options related to the section file generator

can be specified in the [Section File Generator Options] dialog box.

(2) Use Command File
In the Windows environment, the length of character strings used to specify options for the ca850 is restricted.
If this check box is selected, the option character string is output to a command file, which enables the operation
to be completed without observing the restriction on the character string length. Check this check box if many
options are set and not all of them can be recognized. Under the default setting, the check box is not checked.

For the details of command file, refer to "3.7.2 Command file".

(3) Command Line Options
This area displays the options set in this dialog box by command line options.

This area is for reference and cannot be written to.

292 User's Manual U18512EJ1VOUM

CHAPTER 10 DUMP COMMAND

This chapter describes the outline, operation, and display format of the dump command (dump850).

10.1 Dump Command

A dump command displays the contents or information of a specified object file or archive file. It is used to
check information such as the address, attribute, and symbol name of a section/segment in a created object file
or archive file.

The dump command of the C compiler package is "dump850".

Figure 10 - 1 Operation Flow of dump850

> dump850 —p» Outputs input file contents
via standard output.

Object file or Archive file

If an archive file is input to the dump command, and if a member that is not an object file exists in the archive
file, a warning message is output and the next member is processed; except, however, when the -e option is
specified.

For details of the options, refer to "10.3 Types and Features of Options".

User's Manual U18512EJ1VOUM 293

CHAPTER 10 DUMP COMMAND

10.2 Operation Method

This section describes how to operate the dump850 command.

10.2.1 Command input method

Enter the following from the command prompt.

dump850 [option] ... filel [file2]
[1] : Can be omitted

: Pattern in [] immediately before can be repeated.

10.2.2 Method using PM+

The [Object Analysis Tool] dialog box that is used to activate the dump command can be displayed via the

following methods once a project has been established under PM+.
- Select [Tool] - [Startup Object Analysis Tool...], then click the [Dump] tab

Since the dump command is activated once per project, there are no file-specific settings.

294 User's Manual U18512EJ1VOUM

CHAPTER 10 DUMP COMMAND

10.3 Types and Features of Options

The dump850 options are shown below.

-A

This option displays the entire contents of the specified object file or archive file. Specifying the -A option is

the same as specifying "-abcfghikimrst".

+d

If no option is specified, it is assumed that the -A option is specified.

This option does not display the member update date among the displayed archive header contents.

This option outputs the dump850 version number to standard output and then terminates processing.
This option displays the archive header contents of all members existing in the specified archive file.

This option displays the contents of debug information.

This option displays the contents of the string table.

num

This option displays data from the section indicated by the section header table index num.

num

This option displays data up to the section indicated by the section header table index num.

This option displays the contents of members (other than archive symbol table, archive string table, or object

file) existing in the specified archive file.

-f

This option displays the ELF header contents of all members existing in the specified archive file.

This option displays the external symbol contents of the archive symbol table existing in the specified

archive file.

-h

This option displays the contents of all section headers existing in the specified archive file.

This option displays the contents of all program headers existing in the specified archive file.

User's Manual U18512EJ1VOUM 295

CHAPTER 10 DUMP COMMAND

This option displays the contents of the global pointer table.

This option displays the line number information.

This option displays the contents of strings existing in the archive string table for the specified archive file.

- name

This option displays the contents of the section indicated by section name name.

This option does not display the title.

This option displays the contents of relocation information.

This option displays the contents of the section.

-t [num]
This option displays the contents of a symbol table starting from the numth symbol table entry. If num is

omitted, the display starts from the first symbol table entry.

+t num

This option displays the contents of a symbol table up to the numth symbol table entry.

This option displays a value, such as for a section attribute value, using a character string to indicate the

meaning of the value rather than a number (refer to "10.5.2 Element values and meanings").

-z name [num]
This option displays contents of line number information for the function name, starting from the numth line

number entry. If num is omitted, the display starts from the first line number entry.

+Z num

This option displays contents of line number information, up to the numth line number entry.

@cfile
This option handles cfile as a command file. A command file specifies an option and a file name for a
command not as arguments on the command line but by describing them in a file. On Windows, the length of
a character string specified as an option of a command is limited. If many options are set and some of the
options cannot be recognized, create a command file and specify this option.

For details of the command file, refer to "3.7.2 Command file".

296 User's Manual U18512EJ1VOUM

CHAPTER 10 DUMP COMMAND

10.4 Settings Made via PM+

This section describes the dialog boxe that is used to set the command options of the dump850 for the target

project's C language source files.

10.4.1 [Object Analysis Tool] dialog box

At the upper part of this dialog box, the following three tabs are displayed.

The contents of this dialog box depend on selecting the following tab.

Table 10 - 1 [Object Analysis Tool] Dialog Box (dump850)

Tab

Description

(Dump]

Setting of options related to dump command

[Disassembler]

Setting of options related to disassembler

[RAM map]

Setting of options related to RAM map

User’'s Manual U18512EJ1VOUM

297

CHAPTER 10 DUMP COMMAND

[Dump]

For the dump command activation dialog box, set the project settings in the PM+, then select the [Dump] tab in

the dialog opened by selecting [Tool] - [Startup Object Analysis Tool...].

Figure 10 - 2 [Object Analysis Tool] Dialog Box ([Dump] Tab)

Object Analysis Tool

Dump lDisaxsembler] RAM Mal:']

File List;

T

1_Save...‘ 2 Browsze Save...| |+ 35ave Open

- Dutput tems

I Specific [tems-4]

I Debug Infarmation[-b]
[String Table[-c]

[ELF Header-f]

[Section Header-h]

[~ Program Header[-]

[~ Global Pointer T able[k]
[~ Line Mumber Infarmation[-]
I Belocation Infarmation]-r]
[~ Section[-s]

I~ Symbal Table[-t]

Command Line O ption;

Edit Dutput Section[-n]...

Edit Line Hurmber Function]-z]...

DOutput Indesx... |
Archive File Optionz... |

[~ Mo Title[-p]
[~ Dutput Item by Stingl-v]

Any Option:

QK. | Cancel pal, Help

(1) File List

Object files for building in the project are displayed in the drop-down list. (Paths are not displayed in the list.)

The following files are displayed in the list.

- ROMization processor output files (only when ROMization is specified for projects in which executable

object files are built)

- Linker output files (only for projects in which executable object files are built)

- Archiver output files (only for projects that output libraries)

- Compiler output files

- Assembler output files

Open the [Save As] dialog box with the [1 Save...] button and save the dump result of the object file specified

in "File List". By default, it is saved as "object-file-name.dmp" in the same folder as the object file specified in

"File List".

298

User's Manual U18512EJ1VOUM

CHAPTER 10 DUMP COMMAND

Also, with the [2 Browse Save...] button, the dump result can be saved by specifying the object file . In this

case, the [Open] dialog box is opened, so specify the object file. By default, folders specified in previous [Open]

dialog boxes or project folders are displayed.

When an object file is specified in the [Open] dialog box, the dump result for the specified object file is saved in

the same way as clicking the [1 Save...] button.

(2) 3 Save Open

After saving the dump result with the [1 Save...] or [2 Browse Save...] button, this specifies whether or not to

open the file which was saved with the editor set in PM+. It is selected by default.

(3) Output ltems

Select items to be output as dump results using the check boxes.

(@)

(b)

(c)

(d)

(e)

()

)

Specific ltems[-A]

This outputs particular items specified with the -A option.

Selecting the box works the same as specifying with the -A option.

Debug Information[-b]

This outputs debug information specified with the -b option.

Selecting the box works the same as specifying with the -b option.

This check box is unavailable when the -A option is specified.

String Table[-c]

This outputs the string table specified with the -c option.

Selecting the box works the same as specifying with the -c option.

This check box is unavailable when the -A option is specified.

ELF Header[-f]
This outputs the ELF header specified with the -f option.
Selecting the box works the same as specifying with the -f option.

This check box is unavailable when the -A option is specified.

Section Header[-h]

This outputs the section header specified with the -h option.

Selecting the box works the same as specifying with the -h option.

This check box is unavailable when the -A option is specified.

Program Header[-i]
This outputs the program header specified with the -i option.
Selecting the box works the same as specifying with the -i option.

This check box is unavailable when the -A option is specified.

Global Pointer Table[-k]
This outputs the global pointer table specified with the -k option.

Selecting the box works the same as specifying with the -k option.

This check box is unavailable when the -A option is specified.

User’'s Manual U18512EJ1VOUM

299

CHAPTER 10 DUMP COMMAND

(h) Line Number Information][-I]
This outputs line number information specified with the -l option.
Selecting the box works the same as specifying with the -I option.

This check box is unavailable when the -A option is specified.

(i) Relocation Information[-r]
This outputs relocation information specified with the -r option.
Selecting the box works the same as specifying with the -r option.

This check box is unavailable when the -A option is specified.

(i) Section[-s]
This outputs the section specified with the -s option.
Selecting the box works the same as specifying with the -s option.

This check box is unavailable when the -A option is specified.

(k) Symbol Table[-]
This outputs the symbol table specified with the -t option.
Selecting the box works the same as specifying with the -t option.

This check box is unavailable when the -A option is specified.

(4) No Title[-p]
This specifies whether or not to suppress output of the title specified with the -p option.

Selecting the box works the same as specifying with the -p option.

(5) Output Iltem by String[-v]
This specifies whether or not to output some items specified with the -v option as character strings.

Selecting the box works the same as specifying with the -v option.

(6) Any Option
This specifies options that cannot be set in the "dump850 command options" described before. Describe it
into this edit box displays in the same format as described in the command line.
In addition, since all dump850 command-related options can be specified in this dialog box, it is not necessary

to use any other options.

(7) Command Line Option
Options specified in the dialog box are displayed.

Since this area is for reference purposes, it cannot be written to.

300 User's Manual U18512EJ1VOUM

CHAPTER 10 DUMP COMMAND

[Buttons]

(a) [Edit Output Sction[-n]...] button
This opens the [Edit Option] dialog box for editing the output section specified with the -n option.

(b) [Edit Line Number Function[-Z]...] button
This opens the [Edit Option] dialog box for editing functions that output line number information specified

with the -n option.

(c) [Output Index...] button

This opens the [Output Index] dialog box for performing settings related to the output index.

(d) [Archive File Options...] button

This opens the [Archive File Options] dialog box for performing settings for archive files.

User's Manual U18512EJ1VOUM 301

CHAPTER 10 DUMP COMMAND

10.4.2 [Output Index] dialog box
A dialog box for performing settings related to the output index.

Specify the various indexes in edit boxes with decimal or hexadecimal values.

Figure 10 - 3 [Output Index] Dialog Box

Qutput Index g]

Start Indesx of Section Header[-d): || 5] 4 |
End Indes of Sechon Header[+d]; FarD

Start Index of Symbol T ablel-t]:

Help
End Indes of Symbol Table[+t]; Q

Start Index of Line Mumber Information]-z];

End Index af Line Mumber Information]+z]:

(1) Start Index of Section Header[-d]
This sets the section header start index specified with the -d option.

Specifying the value works the same as specifying with the -d option.

(2) End Index of Section Header[+d]
This sets the section header end index specified with the +d option.

Specifying the value works the same as specifying with the +d option.

(3) Start Index of Symbol Tabler[-t]
This sets the symbol table start index specified with the -t option.

Specifying the value works the same as specifying with the -t option.

(4) End Index of Symbol Tabler[+t]
This sets the symbol table end index specified with the +t option.

Specifying the value works the same as specifying with the +t option.

(5) Start Index of Line Number Information[-z]
This sets the line number information start index specified with the -z option.

Specifying the value works the same as specifying with the -z option.

(6) End Index of Line Number Information[+z]
This sets the line number information end index specified with the +z option.

Specifying the value works the same as specifying with the +z option.

302 User's Manual U18512EJ1VOUM

CHAPTER 10 DUMP COMMAND

10.4.3 [Archive File Options] dialog box

A dialog box for performing settings for archive files.

Figure 10 - 4 [Archive File Options] Dialog Box

Archive File Options

Quptut ltems
[DOther lkems[-g] Cancel

[Symbal Tablel-g] Hel

[~ Sting T ablef-m] Q—E"

[~ Mo Update Time of Archiver Header-T]

(1) Output Items

Select items to be output using the check boxes.

(@) Archive Header[-a]
This outputs the archive header specified with the -a option.

Selecting the box works the same as specifying with the -a option.

(b) Other ltems][-€]
This outputs other archive file items specified with the -e option.

Selecting the box works the same as specifying with the -e option.

(c) Symbol Table[-g]
This outputs the archive file symbol table specified with the -g option.
Selecting the box works the same as specifying with the -g option.

This check box is unavailable when the -A option is specified.

(d) String Table[-m]
This outputs the archive file string table specified with the -m option.
Selecting the box works the same as specifying with the -m option.

This check box is unavailable when the -A option is specified.

(2) No Update Time of Archive Header[-T]
This suppresses output of the archive header updated date specified with the -T option.

Selecting the box works the same as specifying with the -T option.

User's Manual U18512EJ1VOUM 303

CHAPTER 10 DUMP COMMAND

10.5 Dump List

This section describes the display format of the dump850 command.

10.5.1 Dump list display contents

(1)

Archive header

Display the contents of the archive header.

ARCHIVE HEADER%

Date (a) uid (b) Gid (c) Mode (d)
0x3158DE73 0 0 0100664

Size (e)
0x2B8

Member Name (f)
atof.o

(2)

(@) Member updatedate
User ID

)

(c) Group ID
) File permission
)

Total number of bytes for members

(f) Member name

Archive symbol table

Display the contents of the archive symbol table.

ARCHIVE SYMBOL TABLE

Offset (a)
0x1f3c

Name (b)
abs

@)

(a) Offsetin file to member including symbol

(b) Symbol name

Archive string table

Display the contents of the archive string table.

***ARCHIVE STRING

Offset (a)
0x1100

TABLE***

Name (b)

foo.o

304

(a) Offset

(b) Member name

User's Manual U18512EJ1VOUM

CHAPTER 10 DUMP COMMAND

(4) ELF header

Display the contents of the ELF header.

ELF HEADER

Class (a) Data (b) Type (C) Machine (d) Version (e)
Entry (f) Phoff (g) Shoff (h) Flags (i) Ehsize (j)
Phentsize (k) Phnum (I) Shentsz (m) Shnum (n) Shstrndx (0)
1 1 1 070377 1

0x0 0x0 0x2A4 0x84 0x34

0x20 0 0x28 6 5

(@) Class

(b) Byte order

(c) Type

(d) Processor

(k)

Version number

Entry point address

Offset in file of program header table
Number of entries in section header table
Flag

Size of ELF header

Entry size of program header table
Number of entries in program header table
Entry size of section header table

Number of entries in section header table

Section header table index of string table containing section name

User’'s Manual U18512EJ1VOUM

305

CHAPTER 10 DUMP COMMAND

(5) Program header table

Display the contents of the program header table.

***PROGRAM HEADER* * *
No. (a) Type (b) Offset (c) Vaddr (d) Paddr (e)
Filesz (f) Memsz (Q) Flags (h) Align (i)
1. 0 0x0 0x0 0x0
0x0 0x0 0x0 0x0
(@) Index
(b) Segment type
(c) Offsetin file
(d) Virtual address
(e) Physical address
(f) File size
() Memory size
(h) Segment attribute
(i) Alignment condition
(6) Section header table
Display the contents of the section header table.
SECTION HEADER
No. (a) Type (b) Flags (c) Addr (d) Offset (e) Size (f) Name (Q)
Link (h) Info (i) Adralgn (j) Entsize (k)
1. 0x1 0x6 0x0 0x1 0x7556 .text
0x0 0x0 0x4 0x0
(a) Index
(b) Section type
(c) Section attribute
(d) Start address
(e) Offsetin file
(f) Size
(g) Section name
(h) Section header table index link
(i) Information
()) Alignment condition

306

Size of entry

User's Manual U18512EJ1VOUM

CHAPTER 10 DUMP COMMAND

(7)

String table

Display the contents of the string table.

STRING TABLE INFORMATION

Index (a) String (b)
0x1 .text

(@) Index

(b) Character string

(8) Symbol table
Display the contents of the symbol table.
SYMBOL TABLE INFORMATION
No. Value Size Bind Type Other Shndx Name
1. 0x0 0x0 0 3 0 0x1 .text
(a) (b) (c) (d) (e) () (9) (h)
(@) Index
(b) Value
(c) Size
(d) Binding class
(e) Type
(f) Other
(g) Section header table index
(h) Symbol name
(9) Relocation information

Display the contents of the relocation information (array of relocation entries).

***SYMBOL TABLE INFORMATION**=*

Offset Sym Type Addend
0x20 6 0x23 0x0

(a) (b) (c) (d)

(a) Offset
(b) Symbol table index
(c) Relocation type

(d) Added constant

User’'s Manual U18512EJ1VOUM

307

CHAPTER 10 DUMP COMMAND

(10) Register mode information

Display the contents of the register mode information.

REGISTER MODE INFORMATION

SymIdx TmpReg ParReg

0x1 0x5 0x5

(a) (b) ()

(a)
(b)
(c)

Symbol table index
Number of working registers

Number of registers for register variables

(11) Global pointer table

Display the contents of the global pointer table.

GPTAB INFORMATION

Gnum Gsize

0x4

(a)

Oxc

(b)

(a)
(b)

(12) Line

Size of num/data of -Gnum

Size when aligned by 0/word

number information

Display the contents of the line number information.

L,INE NUMBER INFORMATION

Bfunc Maddr Daddr Pad Function Name Num Snum Offset Flags
0x0 0xA2 0xE28 0x0 _main 0x5 0x0 0x0 0x1
(a) (b) (c) (d) (e) (f) (9 (h) (i)

(a)
(b)
(c)
(d)
(e)
(f)

(9)
(h)
(i)

308

start of subsection

Address of function

Address of debug information
Padding

Function name

Line number

Position of statement

Offset

Flag

User's Manual U18512EJ1VOUM

CHAPTER 10 DUMP COMMAND

(13) Debug information

Display the contents of the debug information.

***DEBUG INFORMATION* **

Tag Attr Aux
0x0016
size 0x00000026
0x000c 0x00000E1C

(a) (b) (c)

(@) Tag
(b) Attribute

(c) Auxiliary information

(14) PROGBITS data

PROGBITS DATA in HEX

0x00000000 : 40 OE 00 00 21 2E 00 0O ...

Display in hexadecimal numbers the raw data contents of the section having section type PROGBITS.

User's Manual U18512EJ1VOUM 309

CHAPTER 10 DUMP COMMAND

10.5.2 Element values and meanings

When the -v option has been specified, the following information indicates that character strings are used

instead of numerical values to indicate the meanings of the values for some elements.

ELF header

Program header table
Section header table
Symbol table
Relocation information

Debug information

The following tables list valuesN°® the display when -v is specified, and the meanings of the elements that are

displayed as character strings when -v has been specified.

Note

The value is displayed using the number base output by the dump850 command.

(1) "Flags" in ELF headers

Value DiTg'gggngzg v Meaning

0x1 L .vline section exists

0x2 b .vdebug section exists

0x4 PP Object is a PIC (Position Independent Code) object

0x10 R Register mode is 22-register mode or 26-register mode

0x20 - Different register modes are mixed

ox40 | r Object is output by romp850

oxeo | ___ N Default function call specification (call does not use old
specification).

oxto0 |] M Uses mask register function.

Ox2z00 U_ The prologue and epilogue runtime libraries use the callt
instruction.

Ox400 | __ S The prologue and epilogue runtime libraries use the CTBP for
callt instruction.

(2) "Type" in program header table

310

Display When -v .
Value Is Specified Meaning
1 Load Segment is loaded into memory
4 Note Segment, including auxiliary information

User's Manual U18512EJ1VOUM

CHAPTER 10 DUMP COMMAND

(3) "Type" in section header table

Display When -v .
Value Is Specified Meaning

0x1 Progbits Section that corresponds to an entity that contains an actual
value in an object file (machine language instruction and data
with default value)

0x2 Symtab Symbol table

0x3 Strtab String table

0x4 Rela Relocation information

0x8 Nobits Section that corresponds to an entity that does not contain an
actual value in an object file (data without default value)

0x9 Rel Relocation information

0x70000000 Gptab Global pointer table (in which the first entry contains a num of -
Gnum specified for ca850 or as, and the Oth, 2nd, and
subsequent entries indicate the size when aligned with data
size and word)

0x70000001 Regmode Section that exists in a relocatable object file created using the
register mode function (Information concerning the number of
registers used internally by the CA850 is stored)

(4) "Bind" in symbol table

Display When -v

Value Is Specified Meaning
0 Local Symbol that is not used to resolve external reference
1 Global Symbol that is used to resolve external reference

(5) "Type" in symbol table

Display When -v

Value Is Specified Meaning
1 Object Ordinary object (label)
2 Func Function name
3 Section Section
4 File Ordinary file name
13 Devfile Device file name

User's Manual U18512EJ1VOUM 311

CHAPTER 10 DUMP COMMAND

(6) "Shndx" in symbol table

312

Display When -v

Value Is Specified Meaning
0x0 Undef Undefined symbol
0xFFO00 GpCommon Undefined external symbol that is referenced by global pointer
(gp) and 16-bit displacement
OxFFF1 Abs Symbol indicating constant
OxFFF2 Common Undefined external symbol that is referenced by global pointer

(gp) and 32-bit displacement

For further description of object file formats, refer to "APPENDIX A FORMAT OF OBJECT FILE".

User's Manual U18512EJ1VOUM

CHAPTER 11 DISASSEMBLER

This chapter describes the outline, operation, and display format of the disassembler (dis850).

11.1 Disassembler

A disassembler is a utility that converts the program codes of an object file that has been compiled or

assembled or an archive file created with the ar850 into assembly-language codes for output. This utility is used

to verify the codes of an object file.

The disassembler of the C compiler package is "dis850".

Figure 11 - 1 Operation Flow of dis850 Command

—

Object file or archive file

dis850 —

User’'s Manual U18512EJ1VOUM

Outputs assembly language
program via standard output.

313

CHAPTER 11 DISASSEMBLER

11.2 Operation Method

This section describes how to use the dis850 command.

11.2.1 Command input method

Enter the following from the command prompt.

dis850 [option] ... filel [file2]
[1] : Can be omitted

: More than one input file can be specified.

11.2.2 Method using PM+

The [Object Analysis Tool] dialog box that is used to activate the disassembler can be displayed via the

following methods once a project has been established under PM+.
- Select [Tool] - [Startup Object Analysis Tool...], then click the [Disassembler] tab

Since the disassembler is activated once per project, there are no file-specific settings.

314 User's Manual U18512EJ1VOUM

CHAPTER 11 DISASSEMBLER

11.3 Types and Features of Options

The dis850 options are shown below.

If no option is specified, it is assumed that the -o option has been specified.

-A
Specifying this option is the same as specifying the option -aoptr.
-F devpath
This option searches folder devpath for the device file. If this option is omitted, the standard folder is
searched.
-V

dis850 handles the folder at the ..\dev position from the dis850’s installation folder as the standard folder of

the device file.

This option displays addresses.

This option displays code (assembler instruction, data).

-e address
This option specifies an end address. The address is specified as a decimal number or as a hexadecimal

number starting with 0x. If this option is omitted, it is assumed that Oxffffffff has been specified.

-1 size
This option specifies the display size. size is specified as a decimal number or as a hexadecimal number

starting with Ox. If this option is omitted, it is assumed that Oxffffffff has been specified.

-m
This option displays the assembly language source’s format. If this option is omitted, it is displayed with a

symbol offset, etc.

-0
This option displays the offset from symbols. If this option is omitted, symbols are displayed unless the -a

option or the -m option has been specified.

-pP
This option displays code that has been arranged according to the processor’s instruction format. However,

the -c option takes priority if it has been specified.

-r
This option displays registers r0, r2, r3, r4, r5, r30, and r31 as zero, hp, sp, gp, tp, ep, and Ip. If this option is

omitted, all registers are displayed in rnum format, in which num is a value from 0 to 31.

User’'s Manual U18512EJ1VOUM 315

CHAPTER 11 DISASSEMBLER

-s address
This option specifies a start address. The address is specified as a decimal number or as a hexadecimal

number starting with 0x. If this option is omitted, it is assumed that 0x0 has been specified.

-t

This option displays a title indicating the displayed contents.

This option displays comments, etc.

@cfile
This option handles cfile as a command file. A command file specifies an option and a file name for a
command not as arguments on the command line but by describing them in a file. On Windows, the length of
a character string specified as an option of a command is limited. If many options are set and some of the
options cannot be recognized, create a command file and specify this option.

For details of the command file, refer to "3.7.2 Command file".

316 User's Manual U18512EJ1VOUM

CHAPTER 11 DISASSEMBLER

11.4 Settings Made via PM+

This section describes dialog boxe that is used to set the command options of the dis850 for the target

project’s source file.

11.4.1 [Object Analysis Tool] dialog box

At the upper part of this dialog box, the following three tabs are displayed.

The contents of this dialog box depend on selecting the following tab.

Table 11 - 1 [Object Analysis Tool] Dialog Box (dis850)

Tab Description
[Dump] Setting of options related to dump command
[Disassembler] Setting of options related to disassembler
[RAM map] Setting of options related to RAM map

User’'s Manual U18512EJ1VOUM 317

CHAPTER 11 DISASSEMBLER

[Disassembler]

tab in the dialog opened by selecting [Tool] - [Startup Object Analysis Tool...].

(1)

specified in "File List".

For the disassembler activation dialog box, set the project settings in the PM+, then select the [Disassembler]

Figure 11 - 2 [Object Analysis Tool] Dialog Box ([Disassembler] Tab)

File List:

S G ~

'I_Sa\-'e...| 2 Browze Save...| ¥ 3Save Open

- Output Items

[Specific [berms[-4]
[Address[-a]

[Codel-c]

[Aszzembler S ourcel-m]
[Offsetf-0]

[~ Opcodel-p]

[Register Mame[-1]

™ Titel4]

Any Dphion;

Start Address(-s];
End Address|-g];

Size[-l]:
I Dutput Carmment]-v]

Dump Disassembler] = Map]

Cammand Line Dption;

] 8 | Cancel

Help

The following files are displayed in the list.

object files are built)

Compiler output files

Assembler output files

specified in "File List".

318

Linker output files (only for projects in which executable object files are built)

Archiver output files (only for projects that output libraries)

User's Manual U18512EJ1VOUM

Object files for building in the project are displayed in the drop-down list. (Paths are not displayed in the list.)

ROMization processor output files (only when ROMization is specified for projects in which executable

Open the [Save As] dialog box with the [a Save...] button and save the disassemble result of the object file

By default, it is saved as "object-file-name.dis" in the same folder as the object file

CHAPTER 11 DISASSEMBLER

Also, with the [2 Browse Save...] button, the disassemble result can be saved by specifying the object file . In

this case, the [Open] dialog box is opened, so specify the object file. By default, folders specified in previous

[Open] dialog boxes or project folders are displayed.

When an object file is specified in the [Open] dialog box, the disassemble result for the specified object file is

saved in the same way as clicking the [1 Save...] button.

(2) 3 Save Open

After saving the disassemble result with the [1 Save...] or [2 Browse Save...] button, this specifies whether or

not to open the file which was saved with the editor set in PM+. It is selected by default.

(3) Output ltems

Select items to be output as disassemble results using the check boxes.

(@)

(b)

(c)

(d)

(e)

V)

(h)

Specific ltems[-A]

This outputs particular items specified with the -A option.

Selecting the box works the same as specifying with the -A option.

Addressl-a]
This outputs the address specified with the -a option.
Selecting the box works the same as specifying with the -a option.

This check box is unavailable when the -A option is specified.

Codel-c]
This outputs the code specified with the -c option.

Selecting the box works the same as specifying with the -c option.

Assembler Source[-m]

This outputs the assembler source specified with the -m option.

Selecting the box works the same as specifying with the -m option.

Offset[-0]
This outputs the offset specified with the -o option.
Selecting the box works the same as specifying with the -o option.

This check box is unavailable when the -A option is specified.

Opcode[-p]
This outputs the opcode specified with the -p option.
Selecting the box works the same as specifying with the -p option.

This check box is unavailable when the -A option is specified.

Register Name[-r]
This outputs the register name specified with the -r option.
Selecting the box works the same as specifying with the -r option.

This check box is unavailable when the -A option is specified.

Title[-t]
This outputs the title specified with the -t option.
Selecting the box works the same as specifying with the -t option.

This check box is unavailable when the -A option is specified.

User’'s Manual U18512EJ1VOUM

319

CHAPTER 11 DISASSEMBLER

(4) Start Address[-s]
This sets the start address specified with the -s option.
Specify the edit box with a decimal or hexadecimal value.

Specifying the value works the same as specifying with the -s option.

(5) End Address|[-e]
This sets the end address specified with the -e option.
Specify the edit box with a decimal or hexadecimal value.

Specifying the value works the same as specifying with the -e option.

(6) Size[-]
This sets the size of the output range specified with the -I option.
Specify the edit box with a decimal or hexadecimal value.

Specifying the value works the same as specifying with the -l option.

(7) Output Comment[-v]
This specifies whether or not to output comments specified with the -v option.

Selecting the box works the same as specifying with the -v option.

(8) Any Option
This specifies options that cannot be set in the "dis850 command options" described before. This edit box
displays in the same format as the command line.
In addition, since all dis850 command-related options can be specified in this dialog box, it is not necessary to

use any other options.

(9) Command Line Option
Options specified in the dialog box are displayed in the command line options.

Since this area is for reference purposes, it cannot be written to.

320 User's Manual U18512EJ1VOUM

CHAPTER 11 DISASSEMBLER

11.5 Cautions

(1) If labels for the same address exist in the object file, the latter label in the symbol table takes priority.
(2) If the program starts from address 0 and if output of the symbol at address 0 is required during output for
an object that does not have a symbol indicating address 0, "__dummy" may be output as the symbol of

address 0.

User’'s Manual U18512EJ1VOUM 321

CHAPTER 11 DISASSEMBLER

11.6 Output Format

The following are examples of dis850 output.

> dis850 -A a.out
Address Offset Opecode
_main:
0x00000000 0x00000000 45D5 br _main + 0x8a
0x00000002 0x00000002 D800 mov zero, r27
0x00000004 0x00000004 E6230000 movea 0, sp, r28
0x00000008 0x00000008 301C mov r28, r6
0x0000000A 0x0000000A FF800176 jarl _getToken[pc]l, 1lp
0x0000000E 0x0000000E 580A mov rl0, rill
0x00000010 0x00000010 5A7F cmp -0x1, ril1
0x00000012 0x00000012 1D92 bz _main + 0x44
0x00000014 0x00000014 EE2003E8 movea 0x3e8, zero, r29
0x00000018 0x00000018 DI9FD cmp r29, r27
0x0000001A 0x0000001A 15DE bge _main + 0x44
0x0000001C 0x0000001C 301C mov r28, r6
0x0000001E 0x0000001E FF800000 jarl O[pcl, 1lp
0x00000022 0x00000022 580A mov rl0, rll
0x00000024 0x00000024 501B mov r27, rl0
0x00000026 0x00000026 52C2 shl 0x2, rlo0
0x00000028 0x00000028 66230020 movea 0x20, sp, rl2
0x0000002C 0x0000002C 61CA add rl0, ril2
0x0000002E 0x0000002E 5F6C0001 st.w rll, 0[rl2]
0x00000032 0x00000032 DA41l add 0x1l, r27
0x00000034 0x00000034 301C mov r28, r6
0x00000036 0x00000036 FF80014A jarl _getToken[pc]l, 1lp
0x0000003A 0x0000003A 580A mov rl0, rill
0x0000003C 0x0000003C 5A7F cmp -0x1, ril1
0x0000003E 0x0000003E 05B2 bz _main + 0x44

Among the information in the file a.out, the dis850 displays addresses, offsets, codes (according to instruction

format), and titles, along with assembly language instructions. Registers are displayed using aliases.

322 User's Manual U18512EJ1VOUM

CHAPTER 12 CROSS REFERENCE TOOL

This chapter presents an overview of the cross reference tool (CXREF) and describes its operation, and output

file format.

12.1 Cross Reference Tool

The cross reference tool "CXREF" is a tool that checks identifier references and definition locations based on

the C language source file. The target identifiers, which are functions and variables (other than auto variables),

also identify their storage class.

Cross reference information and tag jump information are output as the detection results. The analysis is

performed for individual functions, and a call tree, function metrics, and call database can also be output.

In cross reference tool processing, a "reference" means that the identifier appears within an expression and a

"definition" means that the identifier appears within a declaration statement. The cross reference tool handles an

identifier for which it cannot determine whether it appears in an expression or a declaration statement as

"unknown."

Call trees, function metrics, or call databases that are output by the cross reference tool have the following

features.

- They do not depend on the target and the ca850 optimization.

- Standard output can be used by specifying an option.

Figure 12 - 1 Flow of Operation in cxref

—

[Output information 1]
ca8s0 - Cross reference
- Tag jump information
Text file or standard output

C language source file

cxref
[Output information 2]
- Call tree
- Call database
- Function metrics
Text file, CSV-format file,

or standard output

User’'s Manual U18512EJ1VOUM

323

CHAPTER 12 CROSS REFERENCE TOOL

12.2 Input/Output

12.2.1 Input file

The CXREF input file is a C language source file. If the -cpp850 option is specified when the cross reference
tool is started, the cross reference tool processing is performed after the specified C language source file has

passed through the preprocessor.

(1) A prerequisite for CXREF processing is that the C language source file to be input contains no syntax
errors. Confirm that compilation has been executed for the C language source file and that no syntax error
was found.

(2) The character set is assumed to be Shift JIS.

(3) The cross reference tool performs its analysis by simply ignoring preprocessor instructions included in the
C language source file, without performing any error handling for these instructions. Therefore, if a C
language source file does not contain any of the following items, it can be processed directly without
specifying the -cpp850 option, even if the file has not passed through the ca850. This is effective when
ignoring a header file, when subjecting false condition blocks to analysis, and when targeting macro names
for cross reference.

- Condition block in which braces { } are not balanced
- Macro created for a control structure
- Macro created for a declaration statement

(4) The input file can contain line number information and comment information.

324 User's Manual U18512EJ1VOUM

CHAPTER 12 CROSS REFERENCE TOOL

12.2.2 Output information

The following information is output by cxref.

(1) Cross reference
The cross reference outputs cross reference information for variables and functions that are used within the

file, for each file.

(2) Tag information
The tag information outputs the definition file name and line number information (tag jump information) for

variables and functions.

(3) Calltree

The call tree outputs which functions are called by certain functions in tree format.

(4) Function metrics
The function metrics output information about the function such as the "number of lines" and "call

frequency."

(5) Call database
The call database outputs the functions called by a given function and the number of times each function is

called by that function.

For details about each kind of information, refer to "12.6 Output Files" and following.

User’'s Manual U18512EJ1VOUM 325

CHAPTER 12 CROSS REFERENCE TOOL

12.3 Operation Method

This section explains operations for cxref.

12.3.1 Command input method

Enter the following from the command prompt (Windows).

cxref [option] ... [file]
[1 : Can be omitted.

: Pattern in preceding [] can be repeated.

12.3.2 Method using PM+

The [Static performance analyzer] dialog box that is used to set the cross reference options can be displayed

via the following methods once a project has been established under PM+.
- Select [Tool] - [Static performance analyzer], then click the [Cross reference] tab

Since the cross reference tool is activated once per project, there are no file-specific settings.

326 User's Manual U18512EJ1VOUM

CHAPTER 12 CROSS REFERENCE TOOL

12.4 Types and Features of Options

The cxref options are shown below.

These are presented separately for each kind of output information.

User’'s Manual U18512EJ1VOUM 327

CHAPTER 12 CROSS REFERENCE TOOL

12.4.1 Common options
The cxref common options are shown below.

-V

This option outputs the version number of cxref and then terminates processing.

-all
This option outputs all information to a text-format file and CSV-format file.

This option has the same result as when "-x -t -c -cc -m -mc -b -bc" is specified.

-cpp850
This option processes the C language source file after it is passed through the ca850(preprocessor).
This option and all subsequent options are passed as the ca850 options. Therefore, this option must be
specified as the last cross reference tool option.
Setting -c option that works to include comments of the source programs with the preprocessor is recom-

mended so that line numbers are output correctly.

Example

> cxref -t -cpp850 -cpu 3201 -DDEBUG -I..\myinc main.c sub.c

The above operations are the same as the following operations.

> ca850 -cpu 3201 -E -DDEBUG -I..\myinc main.c > main.i
> ca850 -cpu 3201 -E -DDEBUG -I..\myinc sub.c > sub.i

> cxref -t main.i sub.i

-dident

This option specifies an identifier that is handled as a type name.

-d=file

This option specifies the name of a file in which an identifier that is handled as a type name is defined.

-file=file

This option specifies the name of a file in which the following information is defined.

(1) File name that is not to be displayed in execution results
(2) Identifier name that is not to be displayed in execution results

(3) Identifier name that is to be handled as a type name

When -file=file and -ni are specified at the same time, the contents of "NolncludeFile" in file of the previously

specified -file=file option are invalid.

- File format specified as -ni/-i/-dffile options
The -ni/-il-d options read the corresponding section information, and the -file option reads all the section
information.
The three sections below can be described.
- NolncludeFile section

- DefinitionType section

328 User's Manual U18512EJ1VOUM

CHAPTER 12 CROSS REFERENCE TOOL

- Ignoreldent section

If a line begins with //, the line is regarded as a comment.

(1) NolncludeFile section
This section specifies information that is not displayed as an analysis result, for each file. This section
mainly describes Include files. A file name specified in this section has the same effect as the same file
name specified after the -ni option.

Describe one file name on one line. Wildcard characters can be used.

Example
[NoIncludeFile]
// All the * .h files
*.h
// common definition file
common .def

(2) DefinitionType section
This section specifies an identifier that is handled as a type name. A file name specified in this section

has the same effect as the same file name specified after the -d option. Describe one identifier in one line.

Example

[DefinitionTypel
// 1l-byte type
BYTE

UBYTE

// 2-byte type
WORD

UWORD

(3) Ignoreldent section
This section specifies information that is not displayed as an analysis result, for each identifier. A file

name specified in this section has the same effect as the same file name specified after the -i option.

Describe one identifier in one line.

Example

[IgnoreIdent]

// Common area temporarily used in each process
tmp

buf

work

-h
-help
This option outputs an explanation of the options and then terminates processing.

-iident

This option specifies an identifier that is not to be displayed in the execution results.

-i=file
This option specifies the name of the file in which an identifier that is not to be displayed in the execution

results is defined.

User’'s Manual U18512EJ1VOUM 329

CHAPTER 12 CROSS REFERENCE TOOL

-ni
This option causes include file information not to be displayed.
-nifile

This option specifies a file name that is not to be displayed in the execution results. Wild cards can be used

in file.
? One arbitrary character
* The arbitrary character sequences of zero or more characters

Example
r File name that includes 'r'
e?? File name that includes 'e' and two or more subsequent characters
w?*.h File name composed of two or more characters, which starts with 'w' and

ends with ".h'
-ni=file

This option specifies the name of the file in which file names that are not to be displayed in the execution

results are defined.

-o path
This option specifies the output file path.

If this option is omitted, the file is output to the current path.

@cfile
This option handles cfile as a command file. A command file specifies an option and a file name for a
command not as arguments on the command line but by describing them in a file. On Windows, the length of
a character string specified as an option of a command is limited. If many options are set and some of the
options cannot be recognized, create a command file and specify this option.

For details of the command file, refer to "3.7.2 Command file".

330 User's Manual U18512EJ1VOUM

CHAPTER 12 CROSS REFERENCE TOOL

12.4.2 Cross reference
The cxref cross reference options are shown below.

-x[=filel
This option outputs the cross reference in text format to the specified file. If [=file] is omitted, cxref is

assumed for the file name.

-xstd

This option outputs the cross reference to standard output (default).

User’'s Manual U18512EJ1VOUM 331

CHAPTER 12 CROSS REFERENCE TOOL

12.4.3 Tag information
The cxref tag information options are shown below.

-t[=filel
This option outputs tag information in text format to the specified file. If [=file] is omitted, ctags is assumed

for the file name.

-tstd

This option outputs tag information to standard output.

332 User's Manual U18512EJ1VOUM

CHAPTER 12 CROSS REFERENCE TOOL

12.4.4 Call tree

The cxref Call tree options are shown below.

-cl[=filel
This option outputs the call tree in text format to the specified file.

If [=file] is omitted, ccalltre.Ist is assumed for the file name.

-cc[=filel
This option outputs the call tree in CSV format to the specified file.

If [=file] is omitted, ccalltre.csv is assumed for the file name.

-call[=file]
This option outputs the call tree in text format and CSV format to the specified files.
The file names are file.Ist and file.csv. If an extension is appended to the specification for file, that extension
is ignored.

If [=file] is omitted, ccalltre.Ist and ccalltre.csv are assumed for the file names.

-cenum

This option specifies the method of omitting output. Any of the following can be specified for num.

1 Output all information
2 Omit output for call trees at the same level
3 Omit output once the information has been output

If this option is omitted, -ce3 is assumed.

-cfstring
This option specifies for string the function name for which the call tree is to be output.
-cf=file
This option specifies the text file, which contains specifications of the function names for which a call tree is

to be output.

-clnum
This option specifies the output level. Any number from 1 to 255 can be specified for num. If this option is

omitted, 255 is assumed.

-cp

This option includes the arguments and return value in the output.

-Cr

This option includes reference information in the output.

-Cs

This option includes the source file name and description starting line in the output.

-cstd

This option outputs the text-format call tree to standard output.

-ct

This option outputs only the first tree.

User’'s Manual U18512EJ1VOUM 333

CHAPTER 12 CROSS REFERENCE TOOL

12.4.5 Function metrics
The cxref function metrics options are shown below.

-m[=file]
This option outputs the function metrics in text format to the specified file.

If [=file] is omitted, cmeasure.Ist is assumed for the file name.

-mc[=filel
This option outputs the function metrics in CSV format to the specified file. If [=file] is omitted, cmeasure.csv is

assumed for the file name.

-mall[=file]
This option outputs the function metrics in text format and CSV format to the specified files.
The file names are file.Ist and file.csv. If an extension is appended to the specification for file, that extension
is ignored.

If [=file] is omitted, cmeasure.Ist and cmeasure.csv are assumed for the file names.

-ms [+]| -1 num

This option specifies the output order. Any of the following can be specified for num.

1 Output the information sorted in alphabetical order of the function names.

2 Output the information sorted in alphabetical order of the file names and
function names

3 Output the information without sorting.

If "+" is specified, the information is output in ascending order. If "-" is specified, the information is output in
descending order. If this option is omitted, the information is output without sorting, in the order that the

functions appeared.

-mstd

This option outputs the text-format function metrics to standard output.

334 User's Manual U18512EJ1VOUM

CHAPTER 12 CROSS REFERENCE TOOL

12.4.6 Call database

The cxref call database options are shown below.

-b[=file]
This option outputs the call database in text format to the specified file.

If [=file] is omitted, cprofile.dat is assumed for the file name.

-bec[=filel
This option outputs the call database in CSV format to the specified file. If [=file] is omitted, cprofile.csv is

assumed for the file name.

-ball[=filel
This option outputs the call database in text format and CSV format to the specified files.
The file names are file.Ist and file.csv. If an extension is appended to the specification for file, that extension
is ignored.

If [=file] is omitted, cprofile.dat and cprofile.csv are assumed for the file names.

-bstd

This option outputs the text-format call database to standard output.

User’'s Manual U18512EJ1VOUM 335

CHAPTER 12 CROSS REFERENCE TOOL

12.5 Settings Made via PM+

This section describes the dialog boxe that is used to set command options of the cxref for a file of the targeted

project.

12.5.1 [Static performance analyzer] dialog box

At the upper part of this dialog box, the following two tabs are displayed.

The contents of this dialog box depend on selecting the following tab.

Table 12 - 1 [Static performance analyzer] Dialog Box (cxref)

Tab Description

[Cross reference] Setting of cross reference options

[RAM map] Setting of RAM map options

336 User's Manual U18512EJ1VOUM

CHAPTER 12 CROSS REFERENCE TOOL

[Cross reference]

This tab is used to set the "Cross reference".

Figure 12 - 2 [Static performance analyzer] Dialog Box (Cross reference)

Static peformance analyzer - sample. prj E|

Crozs reference] Frsbd mapl

Preprocessor Contral : |Use Y8R0 preprocessor j

Preprocessor option |

Analyze folder |

Anallyze files :

main.c

elet

Dutput folder ; |':1"\SEII'I'II:'|E Browse. .
v Generate all analyzing files Detail options...

Other options : |

Command Line Options :

curef -all -cppBA0 C:hsamplehmain.c C:hsamplelsample.c

0] Cancel Apply Help

(1) Preprocessor Control
Select a preprocessor in the combo box.

The default assumption is as follows.

- If an option is saved, the specification of the saved preprocessor is displayed.

- Ifan option is not saved but there is information specified by a compiler option in the project file, "Use V850
preprocessor" is assumed.

- If an option is not saved and there is no information specified by a compiler option in the project file, "No

use preprocessor" is assumed.

(2) Preprocessor option
Specify options of the preprocessor.
Setting -c option that works to include comments of the source programs with the preprocessor is recom-

mended so that line numbers are output correctly.

User’'s Manual U18512EJ1VOUM 337

CHAPTER 12 CROSS REFERENCE TOOL

()

(4)

Analyze folder
Specify an analyze folder in the edit box.

The default assumption is as follows.

- If an option is saved, the saved analysis folder is used.

- If an option is not saved, the folder where the project file is placed is used.

Analyze files

A list of analyze files is displayed in the list box.

The default assumption is as follows.

- If an option is saved, the saved file to be analyzed is used.

- If no option is saved, what is used is the C language source file specified in the project file corresponding to
the source file registered in the project file.

Clicking the [Add...] button displays an additional file name. A file name cannot be directly input. Clicking the

[Add...] button opens the [Set analyze file] dialog box where a file can be specified. The specified file is

displayed in the list. If "Analyze folder" is blank, the path of the specified file is displayed in "Analyze folder".

(5)

In the [Set analyze file] dialog box, the default position is determined in the following sequence:

(1) "Analyze folder" on this tab

(2) "Output folder" on this tab

(3) Path of "Analyze file" on the [RAM map] tab
(4) Install folder

Clicking the Delete button deletes the file selected from the list.

This button can be selected only if a file is selected from the list.

Output folder

Specify the analysis result output destination (folder) in the edit box.

The default assumption is as follows.

- If an option is saved, the saved analysis result output destination is assumed.
- If an option is not saved, the folder where the project file is placed is assumed.

This box is blank in the default condition. If the specified folder does not exist, clicking the [OK] or [Apply]

button opens a folder creation dialog box, and clicking the [OK] button creates a folder.

Clicking the [Browse...] button opens the "Browse for Folder" dialog box where a folder to which the analysis

result is to be output can be selected. The selected folder is displayed in "Output folder".

In the "Browse for Folder" dialog box, the default position is determined in the following sequence:

(1) "Output folder" on this tab

(2) "Analyze folder" on this tab

(3) Path of "Analyze file" on the [RAM map] tab
(4) Install folder

(6) Generate all analyzing files

338

If this is checked, the defaults of the options are set. It is checked in the default condition.

User's Manual U18512EJ1VOUM

CHAPTER 12 CROSS REFERENCE TOOL

(7) Detail options
Clicking this button opens the [Cross reference Option] dialog box where the option of each function can be

set.

(8) Other options

Options can be directly described in the edit box. This box is blank in the default condition.

(9) Command Line Options
A list of options is displayed. "cxref -all" is displayed in the default condition. Clicking the [Run] button starts
analysis of the analyze file with the set option contents. The analysis command in install folder is started. If no
analyze file is specified, a message box that indicates no analyze file is specified is opened. Depending on the
result of analysis, a message box that indicates normal or abnormal termination is opened. The output message
of the analysis command is output to file cxref.log in the folder at the analysis result output destination or that in

the folder of the analysis folder.

User’'s Manual U18512EJ1VOUM 339

CHAPTER 12 CROSS REFERENCE TOOL

12.5.2 [Cross reference Option] dialog box

This dialog box is displayed by clicking the "Detail options" button on the [Cross reference] tab in the [Static
performance analyzer] dialog box.
At the upper part of this dialog box, the following six tabs are displayed.

The contents of this dialog box depend on selecting the following tab.

Table 12 - 2 [Cross reference Option] Dialog Box

Tab Description
[Common option] Setting of common options.
[Cross reference list] Setting of the cross reference list.
[Tag information] Setting of the tag information.
[Call graph] Setting of the call graph.
[Function measure] Setting of the function measure.
[Call database] Setting of the call database.

340 User's Manual U1