

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Note that the following URLs in this document are not available:
http://www.necel.com/
http://www2.renesas.com/

Please refer to the following instead:
Development Tools | http://www.renesas.com/tools
Download | http://www.renesas.com/tool_download

For any inquiries or feedback, please contact your region.
http://www.renesas.com/inquiry

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

CA850 Ver. 3.20
C Compiler Package

Link Directives

User’s Manual

Target Device
 V850 Series

Printed in Japan

Document No. U18515EJ1V0UM00 (1st edition)
Date Published May 2007 CP(K)
© NEC Electronics Corporation 2007

User’s Manual U18515EJ1V0UM 2

[MEMO]

User’s Manual U18515EJ1V0UM 3

Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States
and/or other countries.

User’s Manual U18515EJ1V0UM 4

The information in this document is current as of May, 2007. The information is subject to change
without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or
data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all
products and/or types are available in every country. Please check with an NEC Electronics sales
representative for availability and additional information.
No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may
appear in this document.
NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from the use of NEC Electronics products listed in this document
or any other liability arising from the use of such products. No license, express, implied or otherwise, is
granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of a customer's equipment shall be done under the full
responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by
customers or third parties arising from the use of these circuits, software and information.
While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products,
customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To
minimize risks of damage to property or injury (including death) to persons arising from defects in NEC
Electronics products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment and anti-failure features.
NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and
"Specific".
The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-
designated "quality assurance program" for a specific application. The recommended applications of an NEC
Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of
each NEC Electronics product before using it in a particular application.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC
Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications
not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to
determine NEC Electronics' willingness to support a given application.

(Note)

•

•

•

•

•

•

M8E 02. 11-1

(1)

(2)

"NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its
majority-owned subsidiaries.
"NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as
defined above).

Computers, office equipment, communications equipment, test and measurement equipment, audio
and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots.
Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support).
Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

"Standard":

"Special":

"Specific":

User’s Manual U18515EJ1V0UM 5

[MEMO]

User’s Manual U18515EJ1V0UM 6

INTRODUCTION

Target Devices The V850 Series C compiler packages create the object codes for NEC

Electronics’s V850 Series RISC microcontrollers.

Readers This manual is intended for user engineers who wish to develop application
systems using the V850 Series C compiler package.

Purpose This manual explains the Link Directives specifications supported by the linker

(ld850) included in the package.

Organization This manual contains the following information:
• OVERVIEW
• INSTALLATION
• STARTING AND EXITING
• GENERATION METHOD
• WINDOW REFERENCE
• MESSAGES

 User’s Manual U18515EJ1V0UM 7

Related Documents Read this manual together with the following documents.
 The related documents indicated in this publication may include preliminary

versions. However, preliminary versions are not marked as such.

Documents related to development tools (user’s manuals)

Document Name Document No.

Operation U18512E

C Language U18513E

Assembly Language U18514E

CA850 Ver. 3.20 C Compiler Package

Link Directives This manual

PM+ Ver. 6.30 Project Manager U18416E

ID850 Ver. 3.00 Integrated Debugger Operation U17358E

ID850NW Ver. 3.10 Integrated Debugger Operation U17369E

ID850QB Ver. 3.20 Integrated Debugger Operation U17964E

Operation U17246E SM+ System Simulator

User Open Interface U18212E

SM850 Ver. 2.50 System Simulator Operation U16218E

SM850 Ver. 2.00 or Later System Simulator External Part User Open Interface Specifications U14873E

Basics U13430E

Installation U17419E

Technical U13431E

RX850 Ver. 3.20 or Later Real-Time OS

Task Debugger U17420E

Basics U18165E

Internal Structure U18164E

RX850 Pro Ver. 3.21 Real-Time OS

Task Debugger U17422E

Functionalities U16643E

Internal Structure U16644E

RX850V4 Ver. 4.22 Real-Time OS

Task Debugger U16811E

AZ850 Ver. 3.30 System Performance Analyzer U17423E

AZ850V4 Ver. 4.10 System Performance Analyzer U17093E

TW850 Ver. 2.00 Performance Analysis Tuning Tool U17241E

8 User’s Manual U18515EJ1V0UM

[MEMO]

User’s Manual U18515EJ1V0UM 9

CONTENTS

CHAPTER 1 OVERVIEW ... 14

1. 1 Functional Outline ... 14

1. 2 System Configuration ... 15

1. 3 Operating Environment ... 16

CHAPTER 2 INSTALLATION ... 17

2. 1 Installing LDG ... 17

2. 2 Folder Configuration ... 17

2. 3 Uninstalling LDG ... 17

CHAPTER 3 STARTING AND EXITING ... 18

3. 1 Starting LDG ... 18

3. 2 Exiting ... 18

CHAPTER 4 GENERATION METHOD ... 19

4. 1 Generation Procedure ... 19

4. 2 Setting Development Environment ... 20

4. 2. 1 Creating new link directive file ... 20

4. 2. 2 Editing existing link directive file ... 20

4. 3 Editing ... 21

4. 3. 1 Adding memory ... 21

4. 3. 2 Adding section ... 21

4. 3. 3 Adding object file ... 21

4. 4 Saving ... 22

4. 4. 1 Format of link directive file ... 22

CHAPTER 5 WINDOW REFERENCE ... 23

5. 1 Overview of Window and Dialog Boxes of LDG ... 23

5. 2 Explanation of Window and Dialog Boxes ... 24

Main window ... 25

[New Link Directive] dialog box ... 44

[Select Development Environment] dialog box ... 46

[Open] dialog box ... 48

[Save As] dialog box ... 50

[Find] dialog box ... 52

10 User’s Manual U18515EJ1V0UM

[Select Object File] dialog box ... 54

[Add Memory] dialog box ... 56

[Add Section] dialog box ... 59

[Add Symbol] dialog box ... 63

[Option] dialog box ... 66

CHAPTER 6 MESSAGES ... 70

6. 1 Display Format ... 70

6. 2 Error Message ... 71

6. 3 Warning Message ... 71

6. 4 Question Message ... 73

6. 5 Information Message ... 74

APPENDIX A LINK DIRECTIVE ... 75

A. 1 Overview ... 75

A. 1. 1 Specification Items ... 75

A. 2 Sections and Segments ... 77

A. 2. 1 Sections ... 77

A. 2. 2 Segments ... 77

A. 2. 3 Relationship between segments and sections ... 79

A. 2. 4 Types of sections ... 79

A. 2. 5 Relationship between types and attributes of sections ... 84

A. 3 Symbols ... 86

A. 3. 1 Text pointer (tp) ... 86

A. 3. 2 Global pointer (gp) ... 87

A. 3. 3 Element pointer (ep) ... 90

A. 4 Link Directive Format ... 92

A. 4. 1 Characters used in link directive file ... 92

A. 4. 2 Link directive file name ... 93

A. 4. 3 Segment directive ... 93

A. 4. 4 Mapping directive ... 99

A. 4. 5 Symbol directive ... 107

A. 5 Defaults ... 112

A. 6 Link Directive File Coding Examples ... 113

INDEX ... 122

User’s Manual U18515EJ1V0UM 11

LIST OF FIGURES

Figure No. Title and Page

1-1 System Configuration Example ... 15

2-1 Folder Configuration ... 17

3-1 Main Window on Starting LDG ... 18

4-1 Generation Procedure of Link Directive File ... 19

5-1 Main Window ... 25

5-2 Example of Memory Mapping View Area ... 26

5-3 Example of Displayed Contents of Memory ... 27

5-4 Example of Displayed Contents of Mirror Image (If Each Memory Is Not Displayed) ... 28

5-5 Example of Displayed Contents of Section ... 29

5-6 Example of Displayed Contents of Object File ... 30

5-7 Example of Displayed Contents of Symbol ... 31

5-8 Property View Area (When Section Is Selected) ... 36

5-9 Example of Message View Area ... 39

5-10 [New Link Directive] Dialog Box ... 44

5-11 [Select Development Environment] Dialog Box ... 46

5-12 [Open] Dialog Box ... 48

5-13 [Save As] Dialog Box ... 50

5-14 [Find] Dialog Box ... 52

5-15 [Select Object File] Dialog Box ... 54

5-16 [Add Memory] Dialog Box ... 56

5-17 [Add Section] Dialog Box ... 59

5-18 [Add Symbol] Dialog Box ... 63

5-19 [Option] Dialog Box (When [Font] Is Selected) ... 66

5-20 Setting of [Font] in [Option] Dialog Box ... 67

5-21 Setting of [Color] in [Option] Dialog Box ... 68

5-22 Setting of [Whole] in [Option] Dialog Box ... 68

6-1 Example of Message Dialog Box ... 70

A-1 Segment Directives and Mapping Directives ... 75

A-2 Symbol Directive ... 76

A-3 Relation Between Segments and Sections ... 79

A-4 Example of Memory Allocation to Various Sections by CA850 (With Internal ROM) ... 83

A-5 Example of tp Setting ... 86

A-6 Example of gp Setting (When Specifying Segment) ... 87

A-7 Example of gp Setting (When Specifying Offset from tp) ... 88

A-8 Rules for Determining Global Pointer Values ... 89

A-9 Example of ep Setting ... 90

A-10 Rules for Determining Element Pointer Values ... 91

12 User’s Manual U18515EJ1V0UM

LIST OF TABLES

Table No. Title and Page

5-1 Window and Dialog Boxes of LDG ... 23

5-2 Displayed Contents of Memory ... 27

5-3 Displayed Contents of Mirror Image Area ... 28

5-4 Relationship Between Memory Attribute and Background Color (Default) ... 28

5-5 Displayed Contents of Section ... 29

5-6 Relationship Between Section Attribute and Background Color (Default) ... 30

5-7 Displayed Contents of Section ... 31

5-8 Items That Can Be Directly Edited in Mapping View Area and Notes ... 32

5-9 Editing by Drag-and-Drop Operation ... 35

5-10 Displayed Contents in Property View Area and Editing Availability (When Memory Is Selected) ... 36

5-11 Displayed Contents in Property View Area and Editing Availability (When Section Is Selected) ... 37

5-12 Displayed Contents in Property View Area and Editing Availability (When Group Is Selected) ... 37

5-13 Displayed Contents in Property View Area and Editing Availability (When Object File Is Selected) ... 38

5-14 Displayed Contents in Property View Area and Editing Availability (When Symbol Is Selected) ... 38

5-15 Toolbar of Main Window ... 43

5-16 Function Buttons of [New Link Directive] Dialog Box ... 45

5-17 Function Buttons of [Select Development Environment] Dialog Box ... 47

5-18 Function Buttons of [Open] Dialog Box ... 49

5-19 Function Buttons of [Save As] Dialog Box ... 51

5-20 Function Buttons of [Find] Dialog Box ... 53

5-21 Function Buttons of the [Select Object File] Dialog Box ... 55

5-22 Function Buttons of [Add Memory] Dialog Box ... 58

5-23 Function Buttons of [Add Section] Dialog Box ... 62

5-24 Function Buttons of [Add Symbol] Dialog Box ... 65

5-25 Categories in [Option] Dialog Box ... 67

5-26 Function Buttons of [Option] Dialog Box ... 69

6-1 Message Types ... 70

6-2 List of Error Message ... 71

6-3 List of Warning Message ... 71

6-4 List of Question Message ... 73

6-5 List of Information Message ... 74

A-1 CA850 Allocation Section Types ... 80

A-2 Section Types ... 84

A-3 Section Attributes ... 84

A-4 Types of Sections ... 85

A-5 Items Specified in Segment Directive ... 93

A-6 Default Values for Omitted Segment Directive Specification Items ... 94

A-7 Reserved Section Names with Fixed Segment Names ... 94

A-8 Segment Attributes and Their Meanings ... 95

A-9 Segment Example ... 97

A-10 Items Specified in Mapping Directive ... 99

User’s Manual U18515EJ1V0UM 13

A-11 Default Values/Conventions for Values That Can Be Omitted in Mapping Directive Specification Items ... 100

A-12 Input Section Names with Fixed Section Names ... 100

A-13 Section Types ... 101

A-14 Section Attributes and Their Meanings ... 101

A-15 Section Types and Default Values for Alignment Condition ... 102

A-16 Output Based on Combination of Input Section and Object File Specifications ... 103

A-17 Specific Examples of Combined Input Section and Object File Specifications ... 103

A-18 Mapping Directive Specification Example ... 106

A-19 Specifiable Items When Creating tp Symbol ... 107

A-20 Default Values for tp Symbols ... 107

A-21 Specifiable Items When Creating gp Symbol ... 108

A-22 Default Values for gp Symbols ... 108

A-23 Specifiable Items When Creating ep Symbol ... 109

A-24 Default Values for ep Symbols ... 109

A-25 Address Specification for tp Symbol and gp Symbol ... 110

A-26 Segment Names Targeted for Reference by tp Symbol and gp Symbol ... 111

A-27 Symbol Directive Specification Example ... 111

CHAPTER 1 OVERVIEW

14 User’s Manual U18515EJ1V0UM

CHAPTER 1 OVERVIEW

1. 1 Functional Outline

In an embedded application system, many considerations must be given in allocating memory in order to satisfy the

specifications of the target device, such as allocating program codes and data to or separating them from certain

addresses.

The Link Directive Generator (LDG) is a tool that automatically generates or edits a link directive file through a GUI

in which such memory allocation information (including section information) is described.

By using the functions of the LDG that visually display the address space of the target device and image of allocation

of the addresses of the executable object file output by a linker, a link directive file can be generated and edited

smoothly and efficiently.

The major functions of the LDG are as follows:

- Graphical mapping display

Graphically displays the physical memory mapping and section mapping of the target device to be used, object file

names included in each section, and the section-related symbol names, as one view.

- Automatic generation/editing of link directive file through GUI operation

By dragging a section name, object file name, or symbol name with the mouse, allocation and assignment of it can

be visually edited.

- Re-editing/updating existing link directive file

A link directive file that was created by a tool other than the LDG can also be read.

CHAPTER 1 OVERVIEW

User’s Manual U18515EJ1V0UM 15

1. 2 System Configuration

The LDG obtains address space information from a device file, and section information/symbol information from an

object file/execution file (ELF format).

An example of the system configuration of the LDG is illustrated below.

Figure 1-1 System Configuration Example

[Remark] The LDG can also operate by itself, without coordinating with the PM+.

Project manager

Device file Link directive fileObject file Execution file

PM+ Project file

Link directive generator
LDG

Project information

Section allocation
information

Address space information

- Address space information
- Section allocation information
- Compiler information
- OS information

Section information
Symbol information

CHAPTER 1 OVERVIEW

16 User’s Manual U18515EJ1V0UM

1. 3 Operating Environment

The following environments are required in order to use LDG.

(1) Host machine

CPU : Pentium IITM 400MHz or higher

Memory : 128 Mbytes or more

OS : Windows® 2000, Windows XP Professional, Windows XP Home Edition

[Caution] Regardless of which OS is used, higher and the latest Service Pack must be installed.

(2) Software

- Compiler

CA850 Ver.3.00 or later

- Device file

Device file of the target device to be used

- Development tool (if necessary)

PM+ Ver.6.00 or later

CHAPTER 2 INSTALLATION

User’s Manual U18515EJ1V0UM 17

CHAPTER 2 INSTALLATION

2. 1 Installing LDG

LDG is included with a compiler package (CA850).

When CA850 is installed, LDG can be also installed if necessary, as it is supplied in the same package.

For the details on how to install the CA850, refer to "CA850 C Compiler Package Operation User’s Manual".

2. 2 Folder Configuration

The folders are configured as a result of installing the LDG are as follows.

Figure 2-1 Folder Configuration

A shortcut for the LDG (default: [Program] -> [NEC Electronics Tools] -> [LDG] -> [Vx.xx] -> [LDG Vx.xx]) is

automatically added to the Windows start menu.

2. 3 Uninstalling LDG

To uninstall LDG, start "Add or Remove Programs" ("Add/Remove Programs" in Windows other than Windows XP)

on the Control Panel of Windows and select the following items.

- NEC EL LDG Vx.xx

- NEC EL LDG Vx.xx Documents

Installation destination folder (default: C:\Program Files\NEC Electronics Tools\LDG\Vx.xx)

bin

hlp Help file (*.chm)

doc Document-related file (*.pdf / *.txt)

Execution file, DLL file, resource file, etc.

CHAPTER 3 STARTING AND EXITING

18 User’s Manual U18515EJ1V0UM

CHAPTER 3 STARTING AND EXITING

3. 1 Starting LDG

The LDG can be started in the following three ways.

(1) Starting from the shortcut in the Windows start menu

Select Windows start menu -> [Program] -> [NEC Electronics Tools] -> [LDG] -> [Vx.xx] -> [LDG vx.xx] (default).

(2) Starting from PM+

Select the [Tool] menu -> [Startup LDG] from the main window of the PM+.

(3) Double-clicking execution file of LDG

Directly double-click the execution file of the LDG as follows:

C:\Program Files\NEC Electronics Tools\LDG\Vx.xx\bin\LDG.exe (default)

When the LDG is started, the following Main window is opened.

Figure 3-1 Main Window on Starting LDG

[Caution] If the LDG is not started from PM+, "project information" (information of object files, etc., that configure a

project) set on PM+ cannot be used with the LDG.

3. 2 Exiting

To exit the LDG, select the [File] menu -> [Exit] from the Main window.

CHAPTER 4 GENERATION METHOD

User’s Manual U18515EJ1V0UM 19

CHAPTER 4 GENERATION METHOD

4. 1 Generation Procedure

The procedure to generate a link directive file by using the LDG is illustrated below.

Figure 4-1 Generation Procedure of Link Directive File

Adding section Adding object fileAdding memory

(Automatic generation)

(Automatic generation)

Saving (*.lnd)

Editing

Exiting LDG

Setting Development
Environment

Starting LDG

CHAPTER 4 GENERATION METHOD

20 User’s Manual U18515EJ1V0UM

4. 2 Setting Development Environment

Set the development environment of the link directive file to be created or edited.

4. 2. 1 Creating new link directive file

Create a new link directive file in the following procedure.

(1) Select [File] menu -> [New...].

Open the [New Link Directive] dialog box by selecting the [File] menu -> [New...] from the Main window.

(2) Set the details of the development environment.

Specify the name of the device and compiler to be used, and, as necessary, the name of the real-time OS.

(3) Click [OK] button.

After completing the necessary setting, click the [OK] button.

The internal ROM/RAM area corresponding to the specified device and allocation of sections that are absolutely

necessary and sections necessary for the real-time OS will be reflected in the Main window.

[Remark] If the LDG is started from PM+, the [New Link Directive] dialog box is opened with the development

environment of PM+ (project information) reflected.

4. 2. 2 Editing existing link directive file

Edit an existing link directive file that was created with a tool other than the LDG in the following procedure.

(1) Select [File] menu -> [Open...].

Open the [Open] dialog box by selecting the [File] menu -> [Open...] from the Main window, and select a link

directive file to be edited.

(2) Set the details of the development environment.

Next, specify the name of the device and the name of the compiler to be used in the [Select Development

Environment] dialog box that is automatically opened.

(3) Click [OK] button.

After completing the necessary setting, click the [OK] button.

The internal ROM/RAM area corresponding to the specified device and allocation of sections that are absolutely

necessary and sections necessary for the real-time OS will be reflected in the Main window.

[Remark] If the LDG is started from PM+, a link directive file is opened with the development environment of PM+

(project information) automatically reflected (the [Select Development Environment] dialog box is not

opened).

CHAPTER 4 GENERATION METHOD

User’s Manual U18515EJ1V0UM 21

4. 3 Editing

4. 3. 1 Adding memory

If a memory other than the internal memory of the device is to be used, add the new memory in the following

procedure.

(1) Select [Edit] menu -> [Add] -> [Memory].

Open the [Add Memory] dialog box by selecting the [Edit] menu -> [Add] -> [Memory] from the Main window.

(2) Set detailed information for the memory.

Specify the type (ROM/RAM), start address, size, and alignment of the memory to be newly added, and then

click the [OK] button.

4. 3. 2 Adding section

Allocate a new section, if necessary, in the following procedure.

(1) Select [Edit] menu -> [Add] -> [Section].

Select a memory to which a new section is to be allocated in the Memory mapping view area in the Main

window, and open the [Add Section] dialog box by selecting the [Edit] menu -> [Add] -> [Section].

(2) Set detailed information for the section.

Set the access type (read only, read write, or instruction code), section name, allocation method (address

specification or allocating following preceding section) to be newly added, and then click the [OK] button.

[Remark] If sections are allocated in overlapping areas, allocate the additional section in the mirror area.

The mirror area can be displayed by checking the [View] menu -> [Show Mirror Image] (this is checked by

default).

4. 3. 3 Adding object file

Add an object file (*.o) or execution file (*.out) to be linked in the following procedure.

The LDG reads section information from a specified object file and allocates it to the memory. It also checks the size

of the section.

(1) Select [File] menu -> [Select Object(s)...].

Open the [Open] dialog box by selecting the [File] menu -> [Select Object(s)...] from the Main window, select an

object file (*.o) or execution file (*.out) to be linked, and then click the [OK] button.

Two or more object files may be selected.

CHAPTER 4 GENERATION METHOD

22 User’s Manual U18515EJ1V0UM

4. 4 Saving

When all of the editing has been completed, save the link directive file in the procedure below.

The LDG saves the link directive file, appending information on the added memory and section.

(1) Select [File] menu -> [Save As...].

Open the [Save As] dialog box by selecting the [File] menu -> [Save As...] from the Main window, specify the

name of the file to be saved (*.lnd), and then click the [OK] button.

4. 4. 1 Format of link directive file

To the link directive file generated by the LDG, device information, memory information, and comments are added in

the comment format.

The character codes are stored as "shift JIS codes" and the carriage return code is stored as "CR+LF".

[Caution] If the device information or memory information the LDG has output to the link directive file is edited, the

link directive file may not be correctly read.

[Remark] Information peculiar to the LDG is not added to a link directive file if the check is removed from the [Output

LDG Information] check box in the [Save As] dialog box when the file is generated.

CHAPTER 5 WINDOW REFERENCE

User’s Manual U18515EJ1V0UM 23

CHAPTER 5 WINDOW REFERENCE

5. 1 Overview of Window and Dialog Boxes of LDG

The LDG has the following window and dialog boxes.

Table 5-1 Window and Dialog Boxes of LDG

Window/Dialog Box Functional Outline

Main window This window is used for basic operation of the LDG.

In this window, the physical memory mapping and section

mapping of the target device, object file names included in each

section, and related symbol names are displayed and edited.

[New Link Directive] dialog box Generates a new link directive file.

[Select Development Environment] dialog box Sets a new environment if an existing link directive file that has

been created by a tool other than the LDG is opened.

[Open] dialog box Specifies a file to be read by the LDG.

[Save As] dialog box Saves edited file, giving a name to it.

[Find] dialog box Searches a memory name, section name, or object file name,

or searches a character string in a message output by the LDG.

[Select Object File] dialog box Adds a new object file.

[Add Memory] dialog box Adds a new memory.

[Add Section] dialog box Adds a new section.

[Add Symbol] dialog box Adds a new symbol.

[Option] dialog box Makes basic setting related to operation and display of the

LDG.

CHAPTER 5 WINDOW REFERENCE

24 User’s Manual U18515EJ1V0UM

5. 2 Explanation of Window and Dialog Boxes

This section explains the window and dialog boxes of the LDG in the following format.

Window/dialog box name

The name of the window or dialog box is shown in the frame.

The display image and functional outline of the window or dialog box, and how to open the window or dialog box are

explained here.

Explanation of each area

Each area of the window or dialog box is explained.

Menubar

Menu items that can be pulled down from the concerned item on the menu bar are enumerated and each function is

explained.

Toolbar

The function of each button on the toolbar is explained.

Function buttons

The operation of each button in the dialog box is explained.

Others

The special functions of the window or dialog box, if any, and how to use those functions are explained.

Note on operation

Points to be noted when operating the window or dialog box are enumerated.

CHAPTER 5 WINDOW REFERENCE

User’s Manual U18515EJ1V0UM 25

Main window

This window is automatically opened when the LDG has been started. To use the LDG, start operation from this

window.

Figure 5-1 Main Window

Menu bar

Message view area

Toolbar

Memory mapping view area Property view area

CHAPTER 5 WINDOW REFERENCE

26 User’s Manual U18515EJ1V0UM

The following items are explained below.

- Memory mapping view area

(1) Displayed contents of each item

(2) Editing through keyboard operation

- Property view area

- Message view area

- Menu bar

(1) [File] menu

(2) [Edit] menu

(3) [View] menu

(4) [Tool] menu

(5) [Help] menu

- Toolbar

Memory mapping view area

This area is used to display and edit the physical memory mapping and section mapping of the target device, and

object file name included in each section and related symbol name.

The view area can be divided into two parts, upper and lower, by dragging the division bar at the upper part of the

vertical scroll bar.

In this area, all the addresses are displayed as hexadecimal numbers. If an address is of less than the specified

number of digits, it is padded with "0". One blank is inserted in every 4 digits.

Figure 5-2 Example of Memory Mapping View Area

Division bar

CHAPTER 5 WINDOW REFERENCE

User’s Manual U18515EJ1V0UM 27

(1) Displayed contents of each item

(a) Memory display

Each memory of each attribute is displayed as a box. In each box, a memory name, size, start address, and end

address are displayed.

If a box is clicked, that memory is selected. The detailed information of the selected memory is displayed in the

Property view area.

If the mouse cursor is moved onto a memory name, the detailed information of that memory pops up for display

(the displayed contents are the same as those displayed in the property view area). The pop-up display time can

be changed in the [Option] dialog box.

Figure 5-3 Example of Displayed Contents of Memory

Table 5-2 Displayed Contents of Memory

If the address space of the target device has mirror images, each mirror image area is displayed as follows.

Start address
Memory name

Size

End address

End address
Memory name

Size

Start address

(If start address is at top) (If start address is at bottom)

Item Description

Memory name Displays a name to identify the memory.

These marks are displayed on the left of the memory name if a section is allocated to the

memory. "+" mark indicates that the allocated sections are not displayed, and "-" mark

indicates that the sections are displayed.

By clicking these marks, it can be specified whether the allocated sections are to be

displayed or not.

Size Displays the size (bytes) of the memory.

By default, the size is displayed as a decimal number. It can also be displayed as a

hexadecimal number with "0x" prefixed by either of the following methods.

- Select [Show Size With Hex] on the context menu that is displayed when the right mouse

button is clicked in the box.

- Select the box and select [View] menu -> [Show Size With Hex].

Start address Displays the start address of the memory area as a hexadecimal number with "0x" prefixed.

End address Displays the end address of the memory area as a hexadecimal number with "0x" prefixed.

CHAPTER 5 WINDOW REFERENCE

28 User’s Manual U18515EJ1V0UM

Figure 5-4 Example of Displayed Contents of Mirror Image (If Each Memory Is Not Displayed)

Table 5-3 Displayed Contents of Mirror Image Area

[Remark] It can be specified whether the mirror image is to be displayed or not by selecting the [View] menu ->

[Show Mirror Image] or [Whole] in the [Option] dialog box.

The background color of each box indicates the attribute of the memory.

The relationship between the memory attribute and background color is as follows (default).

Table 5-4 Relationship Between Memory Attribute and Background Color (Default)

[Remark] The background color and character color of the box can be specified by using [Color] of the [Option]

dialog box.

Start address
Mirror N

End address
Mirror N

End address Start address

(If start address is at top) (If start address is at bottom)

Item Description

Mirror N "N" indicates the number (from 0) of a mirror image.

These marks indicate whether each memory in the mirror image is displayed.

"+" mark indicates that the memory in the mirror image is not displayed, and "-" mark

indicates that the memory in the mirror image is displayed.

By clicking these marks, it can be selected whether each memory in the mirror image is

displayed or not.

Start address Displays the start address of the mirror image area as a hexadecimal number with "0x"

prefixed.

End address Displays the end address of the mirror image area as a hexadecimal number with "0x"

prefixed.

Background Color Attribute

External ROM

External RAM

Vacant area

Area where memory cannot be allocated

Internal ROM

Internal RAM

CHAPTER 5 WINDOW REFERENCE

User’s Manual U18515EJ1V0UM 29

(b) Section display

A section of each attribute is displayed as a box. In each box, a section name, size, start address, and end

address are displayed.

If a box is clicked, that section is selected. The detailed information of the selected section is displayed in the

Property view area.

If the mouse cursor is moved onto a section name, the detailed information of that section pops up for display

(the displayed contents are the same as those displayed in the property view area). The pop-up display time can

be changed in the [Option] dialog box.

Figure 5-5 Example of Displayed Contents of Section

Table 5-5 Displayed Contents of Section

Start address
Section name

Size

End address

End address
Section name

Size

Start address

(If start address is at top) (If start address is at top)

Item Description

Section name Displays a section name.

These marks are displayed on the left of the section name if an object file is read. "+" mark indicates

that the target object file are not displayed, and "-" mark indicates that the target object files are

displayed.

By clicking these marks, it can be specified whether the target object files are to be displayed or not.

Size Displays the size (bytes) of the section.

By default, the size is displayed as a decimal number. It can also be displayed as a

hexadecimal number with "0x" prefixed by either of the following methods.

- Select [Show Size With Hex] on the context menu that is displayed when the right mouse

button is clicked in the box.

- Select the box and select the [View] menu -> [Show Size With Hex].

Start address Displays the start address of the section as a hexadecimal number with "0x" prefixed.

If the section is allocated following the preceding section, the start address is displayed in "(

)".

If the section starts from the start address, this mark is displayed to the left of the start

address.

If the section follows the preceding section, this mark is displayed to the left of the start

address.

End address Displays the end address of the section as a hexadecimal number with "0x" prefixed.

If the section is allocated following the preceding section, the end address is displayed in "(

)".

CHAPTER 5 WINDOW REFERENCE

30 User’s Manual U18515EJ1V0UM

[Caution] "?" is displayed instead of the item concerned in the following cases.

- [Size] if the size of the section cannot be obtained

- [Start address] and [End address] if the size of the section cannot be obtained and if the section is

allocated following other section

- Size of the contiguous sections adjacent in the direction of the start address or [Size] and [Start

address] of a vacant area if the start address is not determined

The background color of each box indicates the attribute of the section.

The relationship between the section attribute and background color is as follows (default).

Table 5-6 Relationship Between Section Attribute and Background Color (Default)

[Remark] The background color and character color of the box can be specified by using [Color] of the [Option]

dialog box, according to a section type (with or without initial value) or an access type.

(c) Object file display

The object file names included in each section are displayed in a box.

When an object file name is clicked, that object file is selected. The detailed information of the selected object

file is displayed in the Property view area.

If the mouse cursor is moved onto an object file name, the detailed information of that object file pops up for

display (the displayed contents are the same as those displayed in the property view area). The pop-up display

time can be changed in the [Option] dialog box.

Figure 5-6 Example of Displayed Contents of Object File

[Caution] The sequence of displaying the object file affects the sequence of the resolving link.

Background Color
Attribute

In Mirror Image

Instruction code

Vacant area

Section other than above

Object file name 1
Object file name 2
Object file name 3
Object file name 4

CHAPTER 5 WINDOW REFERENCE

User’s Manual U18515EJ1V0UM 31

(d) Symbol display

Symbol names related to a section are displayed in a box.

Symbols are displayed only when the linker can generate symbols related to a section.

Each symbol is displayed connected to the related memory and section with lines. A symbol related to two or

more memories or sections is displayed connected to those memories and sections with lines.

A symbol that starts from the break of a memory or a section is displayed with the top and bottom sides of the

box indicating the memory or section connected with a line.

Figure 5-7 Example of Displayed Contents of Symbol

Table 5-7 Displayed Contents of Section

Address
Symbol name

Item Description

Address Displays the address of the symbol. If the address cannot be obtained, however, "?" is

displayed. If the address of the symbol can be obtained, this box is displayed where the

address is. If the address cannot be obtained, it is displayed at the center right of the box of

the related memory or section.

Symbol name Displays the name of the symbol.

CHAPTER 5 WINDOW REFERENCE

32 User’s Manual U18515EJ1V0UM

(2) Editing through keyboard operation

(a) Editing through keyboard operation

The contents of each item in a memory or section can be directly edited through keyboard input by performing

the following operation.

[Operation]

Click a box indicating a memory or section. The box will be selected. If an item in the box is clicked in this status

again, it can be directly edited.

[Determining new value]

A new value is determined when the [Enter] key is pressed or when the item is unselected.

If an illegal value is specified, however, the selection cannot be canceled. In this case, a message is displayed in

the Message view area.

The items that can be edited by the above operation and the points to be noted in doing so are listed below.

Table 5-8 Items That Can Be Directly Edited in Mapping View Area and Notes

Item Note

Memory

Memory name The first character must be an alphabetic character.

The second character and those that follow must be alphanumeric characters.

Size - [End address] is changed as necessary.

- If the size of memory is reduced, a vacant area is displayed between the memory

area of the end address and the adjacent memory area.

- If a memory area that overlaps the higher address does not exist after editing, the

[Start address] of vacant area is changed.

- If a memory area that overlaps the higher address exists after editing, the change is

not applied and a message is displayed in the message area.

Start address If the memory area overlaps another memory area as a result of editing, the change is

not applied and a message is displayed in the message area.

End address - [Size] is changed in accordance with the change.

- If the lower end address is specified, a vacant area is displayed between the memory

area of the end address and the adjacent memory area.

- If a memory area that overlaps the higher address does not exist after editing, the

[Start address] of vacant area is changed.

- If a memory area that overlaps the higher address exists after editing, the change is

not applied and a message is displayed in the message area.

Section

Section name None

Start address If the section area overlaps another section area as a result of editing, the change is

not applied and a message is displayed in the message area.

CHAPTER 5 WINDOW REFERENCE

User’s Manual U18515EJ1V0UM 33

[Caution] The values of the internal memory, vacant area, and memory non-allocatable area (such as SFR area)

cannot be changed by editing (information of the internal memory is obtained from the device file).

(b) Editing via a mouse

The allocation and assignment of the memory, section, object file, and symbol can be visually edited via following

function using the mouse operation.

- Use of context menu

- Use of drag-and-drop function

- Use of context menu

If each box for a memory or section, or an object file name is clicked by the right mouse button, the memory,

section, or object file at the clicked position is selected, and the following context menu is displayed.

[Memory]

[Show Size With Hex] Checked : Displays [Size] as a hexadecimal number.

Not checked : Displays [Size] as a decimal number (default).

[Cut] Cuts the selected memory.

At this time, information of the [Start address] and [End address] of the memory that

has been cut is lost.

However, this item cannot be selected if a vacant memory area is selected.

[Copy] Copies the selected memory to the copy buffer.

At this time, information of the [Start address] and [End address] of the memory that

has been copied is lost.

However, this item cannot be selected if a vacant memory area is selected.

[Paste] To paste a memory, the memory must be pasted immediately next to the lower

address of the selected memory (if a vacant memory area is selected, paste the

memory to the [Start address] of that area).

To paste a section, allocate the section in the selected memory.

If a memory or section is not copied to the copy buffer, however, this item cannot be

selected.

[Add Memory...] Opens the [Add Memory] dialog box.

[Add Section...] Opens the [Add Section] dialog box.

[Add Symbol...] Opens the [Add Symbol] dialog box.

[Delete] Deletes the selected memory.

However, this item cannot be selected if a vacant memory area is selected.

CHAPTER 5 WINDOW REFERENCE

34 User’s Manual U18515EJ1V0UM

[Section]

[Object file]

[Show Size With Hex] Checked : Displays [Size] as a hexadecimal number.

Not checked : Displays [Size] as a decimal number (default).

[Cut] Cuts the selected section.

At this time, information of the [Start address] and [End address] of the section that

has been cut is lost.

[Copy] Copies the selected section to the copy buffer.

At this time, information of the [Section name], [Start address], and [End address] of

the section that has been copied is lost.

However, this item cannot be selected if a vacant memory area is selected.

[Paste] To paste a section, the section must be pasted immediately next to the lower

address of the selected section (if a vacant area is selected, paste the section to the

[Start Address] of that area).

To paste an object file, paste the object file to the selected section.

If a section or an object file is not copied to the copy buffer, however, this item

cannot be selected.

[Add Memory...] Opens the [Add Section] dialog box.

[Add Section...] Opens the [Select Object File] dialog box.

[Add Symbol...] Opens the [Add Symbol] dialog box.

gp and tp symbols can be generated (a new ep symbol cannot be generated

because only one ep symbol can be generated).

[Delete] Deletes the selected section from the memory.

However, this item cannot be selected if a vacant memory area is selected.

[Group] Groups two or more of the selected sections (treats them as segments).

However, this item cannot be selected if two or more sections are not selected.

[Ungroup] Cancels grouping of sections.

However, this item cannot be selected if grouped sections are not selected.

[Show Size With Hex] Checked : Displays [Size] as a hexadecimal number.

Not checked : Displays [Size] as a decimal number (default).

[Cut] Cuts the selected object file.

[Copy] Copies the selected object file to the copy buffer.

[Paste] Pastes an object file.

If an object file is not copied to the copy buffer, however, this item cannot be

selected.

[Select Object File...] Opens the [Select Object File] dialog box.

[Delete] Deletes the selected object file from the section.

CHAPTER 5 WINDOW REFERENCE

User’s Manual U18515EJ1V0UM 35

- Use of drag-and-drop function

Each box of a memory or section, or an object file name can be dragged and dropped by using the mouse.

Table 5-9 Editing by Drag-and-Drop Operation

[Caution] The tp symbol can be dropped only to a section of text attribute, and the gp symbol can be dropped only

to a section with a data attribute.

The ep symbol cannot be dropped because the address cannot be resolved, related to a section or

memory other than SIDATA and internal RAM.

[Remark] Two or more memories, sections, and object files can be selected.

If items are clicked with the [Ctrl] key held down, the clicked items are selected one after another. If an

item is selected and another item is clicked with the [Shift] key held down, the items from the item

selected first to the one that is clicked are selected.

Dragging
Source

Dropping
Destination Operation

Memory Memory - Deletes the memory at the dragging source and allocates it before the memory

at the dropping destination.

However, the internal ROM and RAM cannot be dropped.

Section Memory - Deletes a section dragged from the memory at the dragging source and

allocates it to the memory at the dropping destination.

Section - Allocates the section at the dragging source before the section at the dropping

destination.

Object file
name

Section - If a section of the same attribute is at the dropping destination, deletes the

dragged object file and allocates it to the section at the dropping destination.

- If a section with a different attribute is at the dropping destination, the dragged

object file is not deleted and allocated to the section at the dropping

destination.

Object file
name

- If an object file with the same attribute is at the dropping destination, the

dragged object file is deleted and allocated to the section at the dropping

destination.

- If an object file with a different attribute is at the dropping destination, the

dragged object file is not deleted and allocated to the section at the dropping

destination.

- If the object file is dropped to other file name on the same section, it is moved

from the dragging source position to the dropping destination position. The

order in which object files are displayed here affects the order of resolution

when the linker is executed.

Symbol Section - If the symbol at the dragging source is generated, related to two or more

sections, the section at the dropping destination is added to the relation of the

symbol.

- If the symbol at the dragging source is generated, related to a single section,

the relation of the symbol is switched to the section at the dropping destination.

[Target] tp symbol and gp symbol

CHAPTER 5 WINDOW REFERENCE

36 User’s Manual U18515EJ1V0UM

Property view area

This area is used to display or edit the detailed information of an item (memory, section, or object file) selected in the

Memory mapping view area.

The detailed setting not displayed in the Memory mapping view area can be directly edited in this area.

Figure 5-8 Property View Area (When Section Is Selected)

The displayed contents of the item selected in the Memory mapping view area, and whether the item can be edited

are shown below.

Table 5-10 Displayed Contents in Property View Area and Editing Availability (When Memory Is Selected)

[Caution] The values of internal memory, vacant area, and memory non-allocatable area (such as an SFR area)

cannot be directly changed by editing (information of the internal memory is obtained from the device file).

Explanation and notes on the selected item are displayed.

Selected Item Displayed Contents Editing
Availability

Memory Memory Name (The first character must be alphabetic and the second

character and those that follow must be alphanumeric.)
OK

Start Address OK

End Address OK

Size OK

Type (ROM, RAM, vacant area, or memory non-allocatable area) OK

Align (1 byte, 2 bytes, 4 bytes, or 8 bytes) OK

Comment OK

CHAPTER 5 WINDOW REFERENCE

User’s Manual U18515EJ1V0UM 37

Table 5-11 Displayed Contents in Property View Area and Editing Availability (When Section Is Selected)

Table 5-12 Displayed Contents in Property View Area and Editing Availability (When Group Is Selected)

Selected Item Displayed Contents Editing
Availability

Section
(not grouped)

Section Name OK

Preceding section (preceding section name or none) OK

Start Address

"?" is displayed if no start address is determined.
OK

End Address

"?" is displayed if no end address is determined.
-

Size

"?" is displayed if no size is determined.
-

Access Type (instruction code, read only, or read/write) OK

Section Type (with initial value or without initial value) OK

Align (1 byte, 2 bytes, 4 bytes, or 8 bytes) OK

Maximum Size OK

Input Section OK

Object File -

Comment OK

Selected Item Displayed Contents Editing
Availability

Group
(sections grouped and
treated as segment)

Group Name

However, the group name of a segment defined by the CA850 cannot

be edited.

OK

Preceding section (preceding section name or none) OK

Start Address

"?" is displayed if no start address is determined.
OK

End Address

"?" is displayed if no end address is determined.
-

Size

"?" is displayed if no size is determined.
-

Access Type (instruction code, read only, or read/write) OK

Align (1 byte, 2 bytes, 4 bytes, or 8 bytes) -

Maximum Size OK

Section -

Comment OK

CHAPTER 5 WINDOW REFERENCE

38 User’s Manual U18515EJ1V0UM

Table 5-13 Displayed Contents in Property View Area and Editing Availability (When Object File Is Selected)

Table 5-14 Displayed Contents in Property View Area and Editing Availability (When Symbol Is Selected)

Selected Item Displayed Contents Editing
Availability

Object file File Name -

Start Address

"?" is displayed if no start address is determined.
-

End Address

"?" is displayed if no end address is determined.
-

Size

"?" is displayed if no size is determined.
-

Section Type (with initial value or without initial value) -

Path -

Library

Not displayed if the object file is not included in the library file
-

Comment OK

Selected Item Displayed Contents Editing
Availability

Symbol Symbol Name OK

Symbol Type (TP symbol, GP symbol, or EP symbol) OK

Address OK

Align (1 byte, 2 bytes, 4 bytes, or 8 bytes) OK

Base Symbol

Not displayed if [Symbol type] is other than "GP symbol".
OK

Reference Sections -

Comment OK

CHAPTER 5 WINDOW REFERENCE

User’s Manual U18515EJ1V0UM 39

Message view area

This area displays messages to the user.

It is divided into two areas: one that displays history of all the messages that have been displayed (All Message

Histories) and the other that displays the latest message (Latest Message) (the size of these areas can be changed by

using the mouse).

Figure 5-9 Example of Message View Area

If the right mouse button is clicked on this area, the area below the mouse cursor is selected, and the following

context menu is displayed.

[Clear] Clears the displayed message.

If the latest message area is selected, this item cannot be selected.

[Copy] Copies a selected character string to the copy buffer.

If no character string is selected, this item cannot be selected.

[Find] Opens the [Find] dialog box that is used to search a character string from the message log.

CHAPTER 5 WINDOW REFERENCE

40 User’s Manual U18515EJ1V0UM

Menu bar

(1) [File] menu

[New...] Opens the [New Link Directive] dialog box to create a new link directive.

While a link directive is being edited, a message asking you whether it is

saved to a file is displayed. If "Save" is selected at this time, the operation is

the same as [Save].

[Ctrl]+[N]

[Open...] Opens the [Open] dialog box.

If a link directive file created by a tool other than the LDG is used or if the link

directive file of a compiler that cannot describe comments in a link directive

file is used, the [Select Development Environment] dialog box is opened.

If the LDG has been started from PM+, however, the link directive file is

opened in the environment set on PM+ (for details of how the LDG files are

read, refer to the description of the [Open] dialog box.

If a file is being edited, a message asking you whether the file is to be saved

is displayed. If "Save" is selected at this time, the operation is the same as

[Save].

[Ctrl]+[O]

[Save] Overwrites and saves a file.

If a file that has been newly created has never been saved, the operation is

the same as [Save As...].

[Ctrl]+[S]

[Save As...] Opens the [Save As] dialog box.

The format of the file to be saved is *.lnd.
-

[Select Object(s)...] Opens the [Select Object File] dialog box that is used to select an object file in

order to select object file(s) or execution file to be linked.

The type of the file that can be read is as follows.

- Execution file (*.out)

- Object file (*.o)

- Library (*.a)

While a file is being edited, a message asking you whether the file is saved is

displayed. If "Save" is selected at this time, the operation is the same as

[Save].

-

[History File Name] Displays history of up to four files that have been used.

By selecting a file name, that file can be opened.
-

[Exit] Quits the LDG. -

CHAPTER 5 WINDOW REFERENCE

User’s Manual U18515EJ1V0UM 41

(2) [Edit] menu

[Undo] Restores the editing operation immediately before.

However, this item cannot be selected if the operation cannot be restored.
[Ctrl]+[Z]

[Cut] Cuts the selected item. [Ctrl]+[X]

[Copy] Copies the selected item to the copy buffer.

The name information of the copy source will be lost.
[Ctrl]+[C]

[Paste] Pastes the contents of the copy buffer to a selected position.

If the memory to be pasted does not have a name, name "NewMemory" is assumed.

If the section to be pasted does not have a name, name "NewSection.section type" is

assumed.

If the same name already exists, a decimal number (0 to 4,294,967,295) is suffixed to

the specified name.

[Ctrl]+[V]

[Add] Displays the following cascade menu to add an item to the Memory mapping view

area.

To add an object file, select the [File] menu -> [Select Object (s)...].

-

[Memory] Opens the [Add Memory] dialog box that is used to add a memory. -

[Section] Opens the [Add Section] dialog box that is used to add a section. -

[Symbol] Opens the [Add Symbol] dialog box that is used to add a symbol. -

[Delete] Deletes the selected item. [Del]

[Group] [Group] Groups the selected sections. -

[Ungroup] Cancels the grouping of the sections. -

[Joint] Combines selected memories and treats them as one memory. -

[Find...] Opens the [Find] dialog box that is used to search a section, object file, or a character

string in the message log.
[Ctrl]+[F]

CHAPTER 5 WINDOW REFERENCE

42 User’s Manual U18515EJ1V0UM

(3) [View] menu

(4) [Tool] menu

(5) [Help] menu

[Toolbar] Checked: Displays the toolbar (default).

-
Not checked: Does not display the toolbar.

The checked status is saved when the LDG is terminated and is restored

when the LDG is started the next time.

[Show Size With Hex] Checked: Displays the memory size as a hexadecimal number.

-
Not checked: Displays the memory size as a decimal number (default).

The checked status is saved when the LDG is terminated and is restored

when the LDG is started the next time.

[Upside Down] Checked: Displays the memory map with the start address at

bottom.

-
Not checked: Displays the memory map with the start address at top

(default).

The checked status is saved when the LDG is terminated and is restored

when the LDG is started the next time.

[Show Mirror Image] Checked: Displays the mirror image (default).

-
Not checked: Does not display the mirror image.

The checked status is saved when the LDG is terminated and is restored

when the LDG is started the next time.

[Show All Memory Space] Checked: Checked: Linearly displays the whole memory area.

Sections are displayed only at the addresses where they

are allocated.
-Not checked: The mirror image can be expanded or folded (default).

The checked status is saved when the LDG is terminated and is restored

when the LDG is started the next time.

[Clear Messages] Clears the message displayed in the Message view area. -

[Option...] Opens the [Option] dialog box that is used to make various setting of the

LDG (such as font and color of memory mapping).
-

[LDG Help] Opens the on-line help of the LDG. F1

[NEC Electronics Microcomputer Web] Opens a NEC Electronics microcontroller-related Website. -

[About...] Displays the version information of the LDG.

Displays "LDG version number [day month year]".
-

CHAPTER 5 WINDOW REFERENCE

User’s Manual U18515EJ1V0UM 43

Toolbar

On the toolbar, buttons of menu items that are used relatively frequently are displayed. By selecting the button of a

menu item, the item can be executed.

Table 5-15 Toolbar of Main Window

Button Function

Function same as selecting the [File] menu -> [New...]

Function same as selecting the [File] menu -> [Open...]

Function same as selecting the [File] menu -> [Save]

Function same as selecting the [Edit] menu -> [Cut]

Function same as selecting the [Edit] menu -> [Copy]

Function same as selecting the [Edit] menu -> [Paste]

Function same as selecting the [Edit] menu -> [Add]

CHAPTER 5 WINDOW REFERENCE

44 User’s Manual U18515EJ1V0UM

[New Link Directive] dialog box

This dialog box is used to set information of a target device, compiler, and real-time OS to create a new link

directive.

This dialog can be opened by either of the following operations.

- Selecting the [File] menu -> [New...]

- Clicking button

Figure 5-10 [New Link Directive] Dialog Box

This section explains the following items.This section explains the following items.

- Explanation of each area

- Function buttons

CHAPTER 5 WINDOW REFERENCE

User’s Manual U18515EJ1V0UM 45

Explanation of each area

(1) Device

Select the name of a device to be used from the pull-down menu.

The LDG will determine the address space and internal memory area.

Specifying this item must not be omitted.

(2) Compiler

Select the name of a compiler to be used from the pull-down menu.

With this version of the LDG, only "CA850" can be selected.

Specifying this item must not be omitted.

(3) RTOS

Select the name of a real-time OS to be used from the pull-down menu.

The LDG will add the necessary sections.

When no real-time OS is used, select "Not Use".

[Remark] If the LDG is started from PM+, each of the items are displayed reflecting the setting of the project.

Function buttons

Table 5-16 Function Buttons of [New Link Directive] Dialog Box

Button Function

Creates a new link directive file with the specified contents.

Ignores the setting and closes the dialog box.

Displays the on-line help of this dialog box.

CHAPTER 5 WINDOW REFERENCE

46 User’s Manual U18515EJ1V0UM

[Select Development Environment] dialog box

This dialog box is used to set a target device and compiler information when an existing link directive file (a link

directive file created by a tool other than the LDG or a link directive file that was saved with the check of [Output LDG

Information] on the [Save As] dialog box removed) is opened.

This dialog box can be opened by either of the following operations.

- Selecting the [File] menu -> [Open...] and then specifying an existing link directive file

- Clicking button and then specifying an existing link directive file

Figure 5-11 [Select Development Environment] Dialog Box

This section explains the following items.

- Explanation of each area

- Function buttons

CHAPTER 5 WINDOW REFERENCE

User’s Manual U18515EJ1V0UM 47

Explanation of each area

(1) Device

Select the name of a device to be used from the pull-down menu.

The LDG will determine the address space and internal memory area.

Specifying this item must not be omitted.

(2) Compiler

Select the name of a compiler to be used from the pull-down menu.

With this version of the LDG, however, only "CA850" can be selected.

Specifying this item must not be omitted.

(3) RTOS

This area is always invalid.

Function buttons

Table 5-17 Function Buttons of [Select Development Environment] Dialog Box

Button Function

Creates a new link directive file with the specified contents.

Ignores the setting and closes the dialog box.

Displays the on-line help of this dialog box.

CHAPTER 5 WINDOW REFERENCE

48 User’s Manual U18515EJ1V0UM

[Open] dialog box

This dialog box is used to select a file to be newly opened.

This dialog box can be opened by either of the following operations.

- Selecting the [File] menu -> [Open...]

- Clicking button

Figure 5-12 [Open] Dialog Box

This section explains the following items.

- Explanation of each area

- Function buttons

- Notes on Operation

CHAPTER 5 WINDOW REFERENCE

User’s Manual U18515EJ1V0UM 49

Explanation of each area

(1) Look in:

Select a drive or folder where the specified file exists, from the drop-down list. In the area below this field, the

files in the specified drive or folder are displayed.

(2) File name:

Input a file name from the keyboard.

If a file name is selected from the area above this field, the select file name is displayed in this field.

(3) Files of type:

The following types of files can be selected.

- Link directive file (*.lnd, *dir)

[Caution] If a file with extension ".dr" is opened, the specified file is opened if the contents of the file are a link

directive file of the CA850. If they are not a link directive file of the CA850, an error message is displayed

and the specified file cannot be opened.

Function buttons

Table 5-18 Function Buttons of [Open] Dialog Box

Notes on Operation

- If a link directive file that has not been created by the LDG is specified, the [Select Development Environment]

dialog box is opened (set a new development environment in this dialog box).

If the LDG is started from PM+, however, the link directive file is opened in the environment set by PM+.

*.lnd File saved by the LDG including comment

*.dir Standard link directive file of CA850

Link directive file used as sample of RX850 Pro

Button Function

Opens the specified file and closes this dialog box.

Ignores the setting and closes this dialog box.

CHAPTER 5 WINDOW REFERENCE

50 User’s Manual U18515EJ1V0UM

[Save As] dialog box

This dialog box is used to save a specified file by giving it a name.

This dialog box can be opened by the following operation.

- Selecting the [File] menu -> [Save As...]

Figure 5-13 [Save As] Dialog Box

This section explains the following items.

- Explanation of each area

- Function buttons

Explanation of each area

(1) Save in:

Select a drive or folder to which the file is to be saved, from the drop-down list. In the area below this field, the files

in the specified allocation are displayed.

(2) File name:

Input the name of the file to be saved from the keyboard.

If a file name is selected from the area above, the selected file name is displayed.

(3) Save as type:

Specify the type of the file to be saved, from the drop-down list.

However, the LDG can save only files with extension ".lnd".

CHAPTER 5 WINDOW REFERENCE

User’s Manual U18515EJ1V0UM 51

(4) Output LDG information

Check this check box as necessary.

Function buttons

Table 5-19 Function Buttons of [Save As] Dialog Box

Checked Outputs information peculiar to the LDG and saves the specified file as a link directive file

(default).

If the file that has been saved in this way is read next time by the LDG, all the information

before the file is save is restored.

Not checked Saves the link directive file without outputting information peculiar to the LDG, to improve the

legibility of the file.

To read the file saved in this way the next time by the LDG, the following points must be

noted.

- Memory information is not restored to the original status.

- Device information is not restored to the original status (must be re-selected).

- Regarding sections that were added before saving the file and were not grouped (into a

segment), a segment is read and displayed because the segment was automatically created

when the file was saved.

[Example]

 SEGMENT.text : !LOAD ?RX H0x0 F0x0 A0x8 {
 .text = $PROGBITS ?AX A0x8;
};

-> File output

Display when file is read again

Click "+".

Button Function

Saves the file with the specified name and closes this dialog box.

Ignores the setting and closes this dialog box.

CHAPTER 5 WINDOW REFERENCE

52 User’s Manual U18515EJ1V0UM

[Find] dialog box

This dialog box is used to search for a character string from a memory name, section name, or object file name

displayed in the Memory mapping view area, or from the messages in the Message view area.

If a specified character string is found, the allocation where it has been found is selected and displayed in the area.

This dialog box can be opened by either of the following operations.

- Selecting the [Edit] menu -> [Find]

- Clicking right mouse button in Message view area

-> selecting the [Find] context menu

Figure 5-14 [Find] Dialog Box

This section explains the following items.

- Explanation of each area

- Function buttons

Subject to search selection area

CHAPTER 5 WINDOW REFERENCE

User’s Manual U18515EJ1V0UM 53

Explanation of each area

(1) Find What:

Specify a character string to be searched for.

Up to five character strings that have been searched after the LDG was started can be selected from the pull-down

menu.

(2) Subject to search selection area

This area is displayed only when the Memory mapping view area is selected.

In this area, select subject(s) (memory, section, or object file) for a search.

Only the checked subject(s) will be target for a search.

When this dialog box is opened for the first time after the LDG has been started, all the items are checked. When

the dialog box is opened the next time, the previous status is retained.

(3) Match Case

When this box is checked, only the upper and lower characters which exactly match the character string that is

designated in [Find What:] are searched for.

Function buttons

Table 5-20 Function Buttons of [Find] Dialog Box

Button Function

Searches for the specified character string.

Ignores the setting and closes this dialog box.

Displays the on-line help of this dialog box.

CHAPTER 5 WINDOW REFERENCE

54 User’s Manual U18515EJ1V0UM

[Select Object File] dialog box

This dialog box is used to select an object file to add a new object file.

This dialog box can be opened by either of the following operations.

- Selecting the [File] menu -> [Select Object(s)...]

- Clicking right mouse button on section in the Memory mapping view area

 -> selecting the [Select Object File...] context menu

Figure 5-15 [Select Object File] Dialog Box

This section explains the following items.

- Explanation of each area

- Function buttons

CHAPTER 5 WINDOW REFERENCE

User’s Manual U18515EJ1V0UM 55

Explanation of each area

(1) Look in:

Select a drive or folder where the specified file exists, from the drop-down list. In the area below this field, the files

in the specified drive or folder are displayed.

(2) File name:

Input the name of a file to be specified from the keyboard.

If a file name is selected from the area above, the selected file name is displayed in this field (two or more object

files may be selected).

(3) Files of type:

The following types of files may be selected.

- Execution file (*.out)

- Object file (*.o)

- Library file (*.a)

Function buttons

Table 5-21 Function Buttons of the [Select Object File] Dialog Box

Button Function

Adds the specified object file and closes this dialog box.

Ignores the setting and closes this dialog box.

CHAPTER 5 WINDOW REFERENCE

56 User’s Manual U18515EJ1V0UM

[Add Memory] dialog box

This dialog box is used to add a new memory to the Memory mapping view area in the Main window.

This dialog box can be opened by either of the following operations.

- Selecting the [Edit] menu -> [Add] -> [Memory]

- Clicking right mouse button on memory in the Memory mapping view area

-> selecting the [Add Memory] context menu

Figure 5-16 [Add Memory] Dialog Box

This section explains the following items.

- Explanation of each area

- Function buttons

Detailed information setting area

Explanation area

CHAPTER 5 WINDOW REFERENCE

User’s Manual U18515EJ1V0UM 57

Explanation of each area

(1) Detailed information setting area

In this area, specify the value of each of the following items.

(a) Memory Name

Specify the name of the memory to be added.

The memory name must start with an alphabetic character. The second character and those that follow may be

alphanumeric characters.

By default, "NewMemory" is specified. If a memory of the same name already exists, a decimal number (0 to

4,294,967,295) is suffixed to the specified name.

(b) Start Address

Specify the start address of the memory to be added as a hexadecimal number with "0x" prefixed or a decimal

number.

If a memory is selected in the Memory mapping view area, an address to be added immediately before the

selected memory is specified by default.

If no memory is selected in the Memory mapping view area, an address to be added to the beginning of a vacant

address is specified by default.

In any of the following cases, the input value is assumed as illegal and a message is displayed.

- If the specified number of address digits is exceeded

- If [Start Address] is higher than [End Address]

- If the specified address overlaps other memory

(c) End Address

Specify the end address of the memory to be added as a hexadecimal number with "0x" prefixed or a decimal

number.

If a memory is selected in the Memory mapping view area, an address to be added immediately before the

selected memory is specified by default.

If no memory is selected in the Memory mapping view area, an address to be added to the beginning of a vacant

address is specified by default.

If the value of size is edited, the end address is automatically changed according to that value.

In any of the following cases, the input value is assumed as illegal and a message is displayed.

- If the specified number of address digits is exceeded

- If [Start Address] is higher than [End Address]

- If the specified address overlaps other memory

CHAPTER 5 WINDOW REFERENCE

58 User’s Manual U18515EJ1V0UM

(d) Size

Specify the size of the memory to be added as a hexadecimal number with "0x" prefixed or a decimal number.

By default, "0x1000 bytes" is specified. If the vacant area is less than 0x1000 bytes, however, the size of the

vacant area is specified.

If the value of [Start Address] or [End Address] is edited, the size is automatically changed according to that

value.

(e) Type

Specify either "ROM" or "RAM" as the type of the memory to be added.

"ROM" is specified by default.

(f) Align

Specify "1 byte", "2 bytes", "4 bytes", or "8 bytes" as align.

By default, "8 bytes" is specified.

(g) Comment

Specify a comment.

This field is blank by default.

(2) Explanation area

This area displays explanation of the item selected in the Detailed information setting area.

Function buttons

Table 5-22 Function Buttons of [Add Memory] Dialog Box

Button Function

Adds new memory of the specified contents and closes this dialog box.

Adds new memory of the specified contents, but does not close this dialog box.

Cancels the specified contents.

Displays the on-line help of this dialog box.

CHAPTER 5 WINDOW REFERENCE

User’s Manual U18515EJ1V0UM 59

[Add Section] dialog box

This dialog box is used to add a new section to the Memory mapping view area on the Main window.

This dialog box can be opened by either of the following operations.

- Selecting the [Edit] menu -> [Add] -> [Section]

- Clicking the right mouse button on memory or section in the Memory mapping view area

-> selecting the [Add Section...] context menu

Figure 5-17 [Add Section] Dialog Box

This section explains the following items.

- Explanation of each area

- Function buttons

Detailed information setting area

Explanation area

CHAPTER 5 WINDOW REFERENCE

60 User’s Manual U18515EJ1V0UM

Explanation of each area

(1) Detailed information setting area

In this area, specify the value of each of the following items.

(a) Section Name

Specify the name of the section to be added.

Depending on the item selected in the Memory mapping view area, one of the following names is specified by

default.

If a section of the same name already exists, a decimal number (0 to 4,294,967,295) is suffixed to the name of

that section.

(b) Previous Section

Specify the section preceding the section to be added.

If a section other than the first section of contiguous sections is selected in the Memory mapping view area, the

preceding section is specified by default.

Otherwise, this field will be blank by default.

If [Start Address] is edited, the value of this item is changed to "None".

(c) Start Address

Specify the start address of the section to be added as a hexadecimal number with "0x" prefixed or a decimal

number.

If a memory is selected in the Memory mapping view area, the address to be added to the beginning of the

vacant area of the selected memory is specified by default.

If the first section of contiguous sections is selected in the Memory mapping view area and if there is a vacant

area before that section, the address to be added immediately before the selected section is specified by default.

Otherwise, this field will be blank by default.

If [Previous Section] is edited, the value of this item is "?".

In any of the following cases, the input value is assumed as illegal and a message is displayed.

- If the specified number of address digits is exceeded

- If the specified address overlaps other memory

- If an address to which no memory is allocated is specified

Selected Item Section Name (default)

Memory (RAM) NewSection.data

Memory (ROM) NewSection.text

Section NewSection.type of first section selected

None NewSection.data

CHAPTER 5 WINDOW REFERENCE

User’s Manual U18515EJ1V0UM 61

(d) Access Type

Specify "Instruction", "Read Only", or "Read Write" as an access type.

One of the following access types are specified by default, depending on the item selected in the Memory

mapping view area.

(e) Section Type

Specify either "With Initial Value" or "Without Initial Value" as a section type.

One of the following section types is specified by default, depending on the item selected in the Memory mapping

view area.

(f) Align

Specify "1 byte", "2 bytes", "4 bytes", or "8 bytes" as align.

If a memory is selected in the Memory mapping view area, a value same as the align of the memory is specified

by default.

(g) Maximum Size

Specify the maximum size of the section to be added as a hexadecimal number with "0x" prefixed or a decimal

number.

By default, "0x100000 bytes" is specified.

If a value exceeding the address digit is specified, it is assumed as an illegal input value and a message is

displayed.

(h) Input Section

Specify an input section.

This field is blank by default.

(i) Object File

Sections having the same attribute as the output section to be created are extracted from the specified object

and are then output.

(j) Comment

Specify a comment.

This field is blank by default.

Selected Item Access Type (Default)

Memory (RAM) Read Write

Memory (ROM) Instruction

Section Access type of the first section selected

Selected Item Section Type (Default)

Memory With Initial Value

Section Section type of the first section selected

CHAPTER 5 WINDOW REFERENCE

62 User’s Manual U18515EJ1V0UM

(2) Explanation area

This area displays explanation of the item selected in the Detailed information setting area.

Function buttons

Table 5-23 Function Buttons of [Add Section] Dialog Box

Button Function

Adds a new section of the specified contents and closes this dialog box.

Adds a new section of the specified contents but does not close this dialog box.

Cancels the specified contents.

Displays the on-line help of this dialog box.

CHAPTER 5 WINDOW REFERENCE

User’s Manual U18515EJ1V0UM 63

[Add Symbol] dialog box

This dialog box is used to add a new symbol to the Memory mapping view area on the Main window.

This dialog box can be opened by either of the following operations.

- Selecting the [Edit] menu -> [Add] -> [Symbol]

- Clicking right mouse button on memory or section in memory mapping view area

-> selecting the [Add Symbol] context menu

Figure 5-18 [Add Symbol] Dialog Box

This section explains the following items.

- Explanation of each area

- Function buttons

Detailed information setting area

Explanation area

CHAPTER 5 WINDOW REFERENCE

64 User’s Manual U18515EJ1V0UM

Explanation of each area

(1) Detailed information setting area

In this area, specify the value of each of the following items.

(a) Symbol Name

Specify the name of a symbol to be added.

By default, "NewSymbol" is specified.

If a symbol of the same name exists, a decimal number (0 to 4,294,967,295) is suffixed to the name of the

specified symbol.

(b) Symbol Type

Specify "TP Symbol", "EP Symbol", or "GP Symbol" as a symbol type.

By default, "TP Symbol" is specified.

[Caution] Two or more ep symbols cannot be generated.

(c) Address

Specify an address at which the symbol is to be allocated.

By default, "?" is displayed.

(d) Align

Specify "1 byte", "2 bytes", "4 bytes", or "8 bytes" as align.

By default, "4 bytes" is specified.

(e) Base Symbol

Specify a base symbol.

When specifying a base symbol, all the TP symbols can be selected.

This item is displayed only if "GP Symbol" is specified as [Symbol Type].

(f) Reference Sections

A list of section names to which the symbol to be created references is displayed.

(g) Comment

Specify a comment.

This field is blank by default.

(2) Explanation area

This area displays explanation of the item selected in the Detailed information setting area.

CHAPTER 5 WINDOW REFERENCE

User’s Manual U18515EJ1V0UM 65

Function buttons

Table 5-24 Function Buttons of [Add Symbol] Dialog Box

Button Function

Adds a new symbol of the specified contents and closes this dialog box.

Adds a new symbol of the specified contents but does not close this dialog box.

Cancels the specified contents.

Displays the on-line help of this dialog box.

CHAPTER 5 WINDOW REFERENCE

66 User’s Manual U18515EJ1V0UM

[Option] dialog box

This dialog box is used for basic settings related to the operation and display of the LDG.

When the LDG is started next time, it is started in the status set in this dialog box (status when the LDG was

terminated before).

This dialog box can be opened by the following operation.

- Selecting the [Tool] menu -> [Option]

Figure 5-19 [Option] Dialog Box (When [Font] Is Selected)

This section explains the following items.

- Explanation of each area

- Function buttons

Category selection area Setting area

CHAPTER 5 WINDOW REFERENCE

User’s Manual U18515EJ1V0UM 67

Explanation of each area

(1) Category selection area

Select a category to be set from the following categories.

Table 5-25 Categories in [Option] Dialog Box

(2) Setting area

(a) If [Font] is selected

Figure 5-20 Setting of [Font] in [Option] Dialog Box

[Font]

Select font-type to be displayed in the Memory mapping view area from the pull-down menu.

[Size]

Select font-size to be displayed in the Memory mapping view area from the pull-down menu.

[Sample]

This area displays sample of characters depending on the specification of [Font] and [Size].

Category Setting

Font Changes font and size displayed in the Memory mapping view area.

Color Changes the color of the items (such as memory and section) displayed in the Memory

mapping view area.

Whole Changes the setting, such as the pop-up display time and whether the mirror image is

displayed or not.

CHAPTER 5 WINDOW REFERENCE

68 User’s Manual U18515EJ1V0UM

(b) If [Color] is selected

Figure 5-21 Setting of [Color] in [Option] Dialog Box

Select the background color and character color of the item (such as memory and section) to be displayed in the

Memory mapping view area, from the pull-down menu.

If [User Definition] is selected from the pull-down menu of each item, [Color] dialog box of Windows is opened,

and any color can be selected or created.

(c) If [Whole] is selected

Figure 5-22 Setting of [Whole] in [Option] Dialog Box

[Number Of Undoes]

This version of the LDG does not support this function.

[Length Of Time To Show Popup]

The time for which a pop-up menu that is used to display each item in details in the Memory mapping view

area can be selected from a pull-down menu.

By default, "30" seconds is specified.

A value of 0 to 4,294,967,295 can be specified.

CHAPTER 5 WINDOW REFERENCE

User’s Manual U18515EJ1V0UM 69

[Show Mirror Image]

Whether the mirror image is displayed or not in the Memory mapping view area can be specified.

This item can be selected only if the target device has a mirror image function.

[Show All Memory Space]

This item can be selected only if [Show Mirror Image] is checked.

Function buttons

Table 5-26 Function Buttons of [Option] Dialog Box

Checked: Displays the mirror image (default).

Not checked: Does not display the mirror image.

Checked: Linearly displays the whole memory area.

Sections are displayed only at the addresses where they are allocated, and not at

addresses that are mirrored.

Not checked: The mirror image can be expanded or folded (default).

Button Function

Sets operation of the LDG of the specified contents and closes this dialog box.

Cannot be selected with this version.

Cancels the specified contents.

Displays the on-line help of this dialog box.

CHAPTER 6 MESSAGES

70 User’s Manual U18515EJ1V0UM

CHAPTER 6 MESSAGES

6. 1 Display Format

The messages output by the LDG are displayed in the message dialog box shown in Figure 6-1.

There are four types of messages. When a message is displayed, an icon and a character identifying the type of the

message are also displayed. The meaning of each message type is as shown in Table 6-1.

Figure 6-1 Example of Message Dialog Box

Table 6-1 Message Types

Icon Character Type

E Error Message

W Warning Message

Q Question Message

I Information Message

CHAPTER 6 MESSAGES

User’s Manual U18515EJ1V0UM 71

6. 2 Error Message

The number and the contents displayed as an error message are as follows.

The character string in " " indicates the character string of the contents shown in " ".

Table 6-2 List of Error Message

6. 3 Warning Message

The number and the contents displayed as a warning message are as follows.

The character string in " " indicates the character string of the contents shown in " ".

Table 6-3 List of Warning Message

Number Message

E0001 Cannot find message file (File Name). Please re-install.

E0002 Could not read"File Name"correctly. Select environment in the [Select Environment Dialog Box].

E0900 There are no device files installed. Please install device file by the device file installer.

E0901 Cannot get address space by read error of device file for "Device name" Please re-install device

file by the device file installer.

Number Message

W0001 "File Name"is read-only. To save a copy, click [OK], then give the file new name in the [Save As

Dialog Box].

W0002 "Drive" becomes full while writing to the disk.

Please make enough free space or save to another disk.

W0003 Selected plural executable files. "File Name"[, "File Name"...]

W0004 "File Name"is changed. Does it save?

W0005 Format of "File Name" is illegal.

W0006 Cannot exchange "Character string" to integer.

W0007 Cannot edit internal memory.

W0008 Cannot edit blank area.

W0009 Cannot edit "Memory or Section Name".

W000A Cannot edit "Property Name" of "Memory or Section Name".

W000B "Memory Name or Section Name" overlaps with "Memory or Section Name".

W000C That address is without memory.

W000D That name is too long. Please name by less than "Number" characters.

W000F Start address of "Memory Name" is out of address space.

W0010 End address of "Memory Name" is out of address space.

W0011 Start address of "Memory Name" is out of "Memory Name".

CHAPTER 6 MESSAGES

72 User’s Manual U18515EJ1V0UM

W0012 End address of "Memory Name" is out of "Memory Name".

W0013 "Memory Name" has different mirror number between start address to end address.

W0014 Size of "Memory or Section Name" is negative.

W0015 Size is too large to drop to "Memory Name".

W0017 Cannot place data section to ROM.

W0018 Cannot decide start address because previous section "Section Name" dose not have resolved

end address. Please set start address.

W0019 Cannot create name. Please name another to "Memory or Section Name"-"Memory or Section

Name4294967295".

W001A Cannot find "Character string".

W001B Cannot access "File Name".Please check if file exists. Please check permission of file and drive.

W0900 Please set maximum size larger than the size.

This message is displayed if a value smaller than the current value was set to the maximum size.

W0901 "Link directive file name" " Line number" : ';' is expected at end of directive.

W0902 "Link directive file name" " Line number" : '}' is expected at end of region.

W0903 "Link directive file name" " Line number" : name is expected at beginning of directive.

W0904 "Link directive file name" " Line number" : section name is expected at beginning of section

directive.

W0905 "Link directive file name" " Line number" : ' ', '=' or '@' is expected to follow name.

W0906 "Link directive file name" " Line number" : '=' is expected to follow section name.

W0907 "Link directive file name" " Line number" : too many '}'.

W0908 "Link directive file name" " Line number" : illegal character "Character code".

W090A "Link directive file name" " Line number" : "Character string" is illegal in segment directive.

W090B "Link directive file name" " Line number" : "Character string" is illegal in section directive.

W090C "Link directive file name" " Line number" : "Character string" is illegal in symbol directive.

W090D "Link directive file name" " Line number" : "Character string" is illegal in file specification field.

W090E "Link directive file name" " Line number" : "Character string" is illegal in segment name

specification field.

W090F "Link directive file name" " Line number" : "Character string" specified to segment "Segment

Name" more than once in same or other directive.

W0910 "Link directive file name" " Line number" : "Character string" specified to section "Section Name"

more than once in same or other directive.

W0911 "Link directive file name" " Line number" : "Character string" specified to symbol "Symbol Name"

more than once in same or other directive.

W0912 "Link directive file name" " Line number" : segment "Segment Name" already defined.

W0913 "Link directive file name" " Line number" : section "Section Name" already defined line "Line

number".

Number Message

CHAPTER 6 MESSAGES

User’s Manual U18515EJ1V0UM 73

6. 4 Question Message

A number and contents displayed as a question message are as follows.

Table 6-4 List of Question Message

W0914 "Link directive file name" " Line number" : symbol "Symbol Name" already defined line "Line

number".

W0915 "Link directive file name" " Line number" : illegal segment type "Character string".

W0916 "Link directive file name" " Line number" : illegal section type "Character string".

W0917 "Link directive file name" " Line number" : illegal attribute character "Character".

W0918 "Link directive file name" " Line number" : %s in segment directive of non LOAD segment

"Character string" is illegal.

W0919 "Link directive file name" " Line number" : aligned odd value ("specified Number") to be even

value ("Number").

W091A "Link directive file name" " Line number" : segment directive of segment "Segment Name" needs

"Character string".

W091B "Link directive file name" " Line number" : section directive of section "Section Name" needs

"Character string".

W091C "Link directive file name" " Line number" : symbol directive of symbol "Symbol Name" needs

"Character string".

W091D "Link directive file name" " Line number" : unknown symbol kind "Character string".

W091E "Link directive file name" " Line number" : symbol kind "Character string" specified more than

once in same or other directive.

W091F "Link directive file name" " Line number" : section attribute "Character which indicates an

attribute" of section "Section Name" and segment attribute "Character which indicates an

attribute" of segment "Segment Name" do not much.

W0920 "Link directive file name" " Line number" : start address ("Address") of section "Section Name"

overflowed start address ("Address") of segment "Segment Name".

W0921 "Link directive file name" " Line number" : Character string needs effective parameter.

W0922 "Link directive file name" " Line number" : "Character string" specified in EP symbol directive,

ignored.

W0923 "Link directive file name" " Line number" : "Character string" specified to section "Section Name"

more than once in same or other directive.

W0924 "Link directive file name" " Line number" : illegal section type "Character string".

Number Message

Number Message

Q0001 After "Showing All Memory Space", it cannot be canceled. In the case of placing sections to same

physical address, select this. Does it perform?

CHAPTER 6 MESSAGES

74 User’s Manual U18515EJ1V0UM

6. 5 Information Message

A number and contents displayed as an information message are as follows.

The character string in " " indicates the character string of the contents shown in " "

Table 6-5 List of Information Message

Number Message

I0001 Added "Memory Name"("Start Address" - "End Address").

[Note] If allocation of a section is not on the internal memory when a link directive file that was
created by a tool other than the LDG is read, a memory is automatically added and this
message is displayed.

I0002 Because there is no section size information, below cases may happen when linking.

[Note] This message is displayed if an object file is not read when a link directive file is saved. This
is because, if an object file is not read, the size information of the section is missing and
therefore, the area of the section cannot be checked.

I0003 Applied alignment to be "Start Address after alignment" to the "specified Start Address" of "Memory

Name" (Property Name).

I0004 There are no previous sections. Set "Address" as start address of "Section Name".

I0005 "Memory, Section or Object File Name" is already exist.

I0007 Cannot get information for "Object File Name", because cannot find that file.

I0900 Added attribute R to segment "Segment Name".

I0901 Added attribute A to section "Section Name".

I0902 Address for section "Section Name" was applied to address for segment "Segment Name".

APPENDIX A LINK DIRECTIVE

User’s Manual U18515EJ1V0UM 75

APPENDIX A LINK DIRECTIVE

A. 1 Overview

This chapter describes the items required for link directives and the link directive file description method.

In an embedded application, caution is required when allocating code to memory, such as when allocating program

code from a certain address or partitioning code to be allocated.

To achieve the expected results for such memory allocation, the linker must be directed to allocation information

about the program code and data. The various bits of directed information are called "link directives" and the file that

contains the link directives is called "link directive file".

The linker determines the memory allocation according to the contents of the link directive file, then creates a load

module.

A. 1. 1 Specification Items

Items specified in the link directive generally fall into the following two categories.

- Segment directives and mapping directives

Link directives that gather information on sections where programs and data are allocated into information on

segments for certain types and attributes, and that determine the corresponding allocation address.

A link directive that contains description of section information is called a "mapping directive" and a link directive

that contains description of segment information is called a "segment directive".

The following shows examples of a segment directive and mapping directives that are contained in a link directive

file.

For further description of the link directive format, refer to "A. 4 Link Directive Format".

Figure A-1 Segment Directives and Mapping Directives

SEDATA : !LOAD ?RW V0xff6000{

 .sedata = $PROGBITS ?AW .sedata ;

 .sebss = $NOBITS ?AW .sebss ;

} ;

Segment name Segment attribute Allocation address

Output section Section type

Segment type (fixed)

Section attribute

Segment directive

Input section

Mapping directive

APPENDIX A LINK DIRECTIVE

76 User’s Manual U18515EJ1V0UM

- Symbol directive

Link directives that create "symbols" which generate tp (text pointers), gp (global pointers), and ep (element

pointers): this symbol-related information is called a "symbol directive".

The following shows an example of a symbol directive that is contained in a link directive file.

For further description of the link directive format, refer to "A. 4 Link Directive Format".

Figure A-2 Symbol Directive

__tp_TEXT @ %TP_SYMBOL ;

__gp_DATA @ %GP_SYMBOL &__tp_TEXT { DATA } ;

__ep_DATA @ %EP_SYMBOL ;

Symbol name

Base symbol name of "gp"

Symbol type (fixed for tp/gp/ep)

Segment name to be referenced by "gp"

APPENDIX A LINK DIRECTIVE

User’s Manual U18515EJ1V0UM 77

A. 2 Sections and Segments

This section describes the sections and segments.

A. 2. 1 Sections

A section is the basic unit making up programs (area to which programs or data are allocated). For example,

program code is allocated to a text-attribute section and variables that have initial values are allocated to a data-

attribute section. In other words, different types of information are allocated to different sections.

Section names can be specified within application. In C language, they can be specified using a #pragma section

directive or #pragma text directive and in assembly language they can be specified using a .section pseudo-operation.

Even if the #pragma directive is not used to specify a section, however, allocation by the compiler to a particular

section may already be set as the default setting in the program code or data (variables).

For details of these specifications, refer to the "CA850 C Compiler Package C Language User's Manual" or "CA850

C Compiler Package Assembly Language User's Manual".

A. 2. 2 Segments

A segment is the basic unit in which programs and data are loaded to memory. Sections that have the same

attribute or the same type are gathered into one section group which is called segment. In other words, the general

idea is that a segment is a collection of similar sections.

A segment name, attribute, and address to which a program is loaded can be freely specified by a link directive.

[Caution] Some characters cannot be specified in segment names and attributes. For details, refer to "A. 4. 3

Segment directive".

The following shows code extracted from a link directive file that allocates the read-enabled (R) and executable (X)

segment "TEXT1" to address 0x100000.

Since a segment is the basic unit for loading to memory, the segment is also the unit for allocating program code

and data. In other words, to allocate a certain section to a specified memory area, the section information is coded in

a mapping directive and then a segment that includes the mapping directive is created. Next, the segment's allocation

address is determined.

[Caution] Although the allocation address for a mapping directive can be directly specified in a section, addresses

are usually specified with segment units.

TEXT1!LOAD ?RX V0x100000{
 :
 (Mapping directive)
 :
} ;

APPENDIX A LINK DIRECTIVE

78 User’s Manual U18515EJ1V0UM

[Example : Allocate variable "i" to the sdata area and function "func1" to 0x120000.]

[test1.c]

#pragma section sdata begin
i = 10 ;
#pragma section sdata end

#pragma text "f1.text" func1

void
func1(){
 :
 return ;
}

[Link directive (partial)]

TEXT2 : !LOAD ?RX V0x120000{
 text1= $PROGBITS ?AX f1.text ;
} ;

DATA : !LOAD ?R V0x200000{
 .data = $PROGBITS ?AW ;
 .sdata = $PROGBITS ?AWG ;
 .sbss = $NOBITS ?AWG ;
 .bss = $NOBITS ?AW ;
} ;
 :

APPENDIX A LINK DIRECTIVE

User’s Manual U18515EJ1V0UM 79

A. 2. 3 Relationship between segments and sections

The following shows a mapping image of the relation between segments and sections.

Figure A-3 Relation Between Segments and Sections

Sections that are included in objects (file1.o, file2.o, file3.o) are called "input sections". These sections are gathered

in the same attribute. Sections that are grouped and output are called "output sections". Output section groups are

also gathered in corresponding segments (DATA segment and TEXT segment) and are mapped to appropriate areas

(if there is no explicit address specification).

The text pointer (tp) symbol "__tp_TEXT" and the global pointer (gp) symbol "__gp_DATA" are set according to

certain rules.

A. 2. 4 Types of sections

The following describes the types of sections that can be handled by the CA850.

Table A-1 lists the section types that can specify the allocations, and their features.

Data for which allocation to a section is not specified by this format or section file is allocated by the CA850 to the

.sdata section, .data section, .sbss section, or .bss section according to sizes specified by the CA850's options settings

[file1.o]

[file2.o]

[file3.o]

<- __gp_DATA

.bss

Input sections Output sections Segments

.sbss

.sdata

.text

.data

DATA allocated in RAM

TEXT allocated in

<- __tp_TEXT

(PROGBITS AX)

(PROGBITS AWG)

(PROGBITS AW)

(NOBITS AW)

(NOBITS AWG)

(NOBITS AW)

(NOBITS AWG)

(PROGBITS AX)

(PROGBITS AX)

(PROGBITS AWG)

(PROGBITS AW)

APPENDIX A LINK DIRECTIVE

80 User’s Manual U18515EJ1V0UM

(Note1).

Data for which the type qualifier const has been specified and character string constants are allocated by the CA850

to the .const section or .sconst section according to sizes specified by the CA850's options settings (Note2).

Allocation to sections can also be specified via section files (Note3).

[Note1] The default setting is for all data to be allocated to the .sdata or .sbss sections.

Refer to the description of the ca850's -G option in the "CA850 C Compiler Package User's Manual

Operation".

[Note2] Refer to the description of the ca850's -Xsconst option in the "CA850 C Compiler Package User's Manual

Operation".

[Note3] Refer to the description of the section file generator (sf850) in the "CA850 C Compiler Package User's

Manual Operation".

Table A-1 CA850 Allocation Section Types

Type Feature Specified
Character String

.tidata.byte section

.tidata.word section

.tibss.byte section

.tibss.word section
(tiny internal data /
tiny internal bss)

This sections can be referenced from ep (element pointer) with 1
instruction toward higher addresses.
These sections are accessed with 1 instruction in the same manner as
sidata/sibss attribute sections, but differ in terms of the assemble
instruction to be used. sidata/sibss attribute sections use the 4-byte
"st/ld" instruction for store/reference, whereas tidata/tibss attribute
sections use the 2-byte "sst/sld" instruction to perform access. In other
words, their code efficiency is better than that of sidata/sibss attribute
sections. However, the range in which sst/sld instruction can be
applied is small. so it is not possible to allocate a large number of
variables.
Data with initial values are allocated to the tidata (tidata.byte,
tidata.word) attribute section, and data without initial values are
allocated to the tibss (tibss.byte, tibss.word) attribute section.
Specify the tidata.byte/tibss.byte attribute to allocate byte data, and
specify the tidata.word/tibss.word attribute to allocate word data. To
select automatic byte/word judgment by the CA850, specify the tidata/
tibss attribute.

tidata
tidata_byte
tidata_word

.data section

.bss section
(data / bss)

These sections can be reference from gp (global pointer) with 2
instructions.
Since access (with ld/st instruction) is performed after address
generation, the code becomes correspondingly longer and the
execution speed also drops, but the entire 32-bit space can be
accessed. In other words, these sections can be allocated anywhere
as long as it is in RAM.
Data with initial values are allocated to the data attribute section, and
data without initial values are allocated to the bss attribute section.

data

APPENDIX A LINK DIRECTIVE

User’s Manual U18515EJ1V0UM 81

.sdata section

.sbss section
(sdata / sbss)

These sections can be referenced from gp (global pointer) with 1
instruction (ld/st instruction), and must be allocated within +/- 32K-byte
from gp (64K-byte total).
Data with initial values are allocated to the sdata attribute section, and
data without initial values are allocated to the sbss attribute section.
The CA850 first attempts to generate the code to be allocated to these
sections. If the code exceeds the upper limit of these attribute sections,
however, code to be allocated in data/bss attribute section is
generated.
To increase the amount of data to be allocated to sdata/sbss attribute
section, the upper size limit for the data to be allocated can be specified
with the "-G" option of the CA850 so that data in excess of this upper
limit is not allocated to the sdata/sbss attribute section.

sdata

.sedata section

.sebss section
(small extended
data/small
extended bss)

This sections can be referenced from ep (element pointer) with 1
instruction (ld/st instruction), and they are accessed from ep toward
lower addresses. In other words, theses sections are allocated within
32K-byte toward lower addresses from ep.
Data with initial values are allocated to the sedata attribute section, and
data without initial values are allocated to the sebss attribute section.
If variables that exceed the upper limit of sdata/sbss attribute section
that can be accessed from gp with 1 instruction, but which one wants to
access with 1 instruction still exist, they can be allocated in the range
that can be accessed with 1 instruction using ep. sidata/sibss attribute
section is section for access toward higher addresses from ep, but
sedata/sebss attribute section is section for access toward lower
addresses from ep.

sedata

.sidata section

.sibss section
(small internal data
/ small internal bss)

This sections can be referenced from ep (element pointer) with 1
instruction (ld/st instruction), and they are accessed from ep toward
higher addresses. In other words, theses sections are allocated within
32K-byte toward higher addresses from ep.
Data with initial values are allocated to the sidata attribute section, and
data without initial values are allocated to the sibss attribute section.
If variables that exceed the upper limit of sdata/sbss attribute section
that can be accessed from gp with 1 instruction, but which one wants to
access with 1 instruction still exist, they can be allocated in the range
that can be accessed with 1 instruction using ep. sidata/sibss attribute
section is section for access toward higher addresses from ep, but
sedata/sebss attribute section is section for access toward lower
addresses from ep.

sidata

Type Feature Specified
Character String

APPENDIX A LINK DIRECTIVE

82 User’s Manual U18515EJ1V0UM

In the above table, "2 instructions" refer to the two instructions that are generated by assembler's instruction

expansion function.

In addition, section types that are allocated to "external memory" can be used in cases where external memory has

been mounted in the target system.

[Note] For details on ".tidata.byte" or ".tidata.word", refer to the "CA850 C Compiler Package Assembly Language

User's Manual".

.sconst section
(small const data)

This section can be referenced from r0 (i.e. address 0) with 1
instruction (ld/st instruction), and must be allocated within +/- 32K-byte
from address 0. Basically, data that can be fixed into ROM is allocated
to this section.
In the case of V850 microcontrollers with internal ROM, in many cases
the internal ROM is assigned from address 0, and data that one wishes
to reference with 1 instruction and that can be fixed to ROM is allocated
as the sconst attribute section. In the case of devices without internal
ROM, when the ROM-less mode is specified, such data is allocated to
the external memory.
Variables/data declared by adding the const modifier are subject to
allocation to sconst/const attribute section. If the data exceeds the
upper limit of these attribute sections, it is allocated to the const
attribute section.
To increase the amount of data to be allocated to sconst attribute
section, the upper size limit for the data to be allocated can be specified
with the "-Xsconst" option of the CA850 so that data in excess of this
upper limit is not allocated to the sconst attribute section (refer to the
"CA850 C Compiler Package User's Manual Operation" for details on
the options).

sconst

.const section
(const data)

This section can be reference from r0 (i.e. address 0) with 2
instructions. Since access (with ld/st instruction) is performed after
address generation, the code becomes correspondingly longer and the
execution speed also drops, but the entire 32-bit space can be
accessed. Data that can be fixed into ROM that exceeds the upper
limit of the sconst attribute section, or data that one wishes to allocate
in external ROM in the case of ROM-less devices of the V850
microcontrollers, is allocated to the const attribute section.

const

Type Feature Specified
Character String

APPENDIX A LINK DIRECTIVE

User’s Manual U18515EJ1V0UM 83

The following shows an image of memory allocation to various sections in the V852.

Figure A-4 Example of Memory Allocation to Various Sections by CA850 (With Internal ROM)

.tidata.word section

.tibss.word section

.tidata.byte section

.tibss.byte section

.sidata section

.sibss section

Peripheral
I/O register

.sebss section

.sedata section

.const section

.bss section

.sbss section

.sdata section

.data section

.sconst section

.text section

Interrupt/exception table

r0-relative access area

ep-relative access area

gp-relative access area

tp-relative access area

Other

Address 0

tp

gp

ep

ep is generally set at
the beginning of internal RAM

gp points to the start address
of the .sdata section +32 K bytes

Within 32 K bytes

Within 32 K bytes

Within
256 bytes

Within
128 bytes

Within 32 K bytes

.sbss and .sdata are allocated within 64 K bytes

APPENDIX A LINK DIRECTIVE

84 User’s Manual U18515EJ1V0UM

A. 2. 5 Relationship between types and attributes of sections

The following describes the relation between types and attributes of sections.

These types and attributes are needed when coding section information in mapping directives.

The section types are categorized as shown below.

Table A-2 Section Types

The section attributes are categorized as shown below.

Table A-3 Section Attributes

Section Type Meaning

PROGBITS Section that has actual values in an object file
--> Text or data (variable) with initial value

NOBITS Section that does not have actual values in an object file
--> Data (variable) without initial value

Section Attribute Meaning

A Section that occupies a memory area (corresponds to entire section): memory-resident
section

W Write-enable section (section allocated in RAM)

X Executable section (mainly text section)

G Section that is allocated within a memory area that can be referenced using a global
pointer (gp) with 16-bit displacement
(.sdata and .sbss section)

APPENDIX A LINK DIRECTIVE

User’s Manual U18515EJ1V0UM 85

Sections are categorized into the following six groups according to their types and attributes.

Table A-4 Types of Sections

[Caution] In cases where a specific section name is created within the application, the user must check the attribute

for that section as shown in Table A-4, and specify the section type and section attribute in the mapping

directive.

Section names that start with "V/H/A" which is followed by numeric characters cannot be created due to

link directive format restrictions.

Section Attribute Section Type
Section Attribute

Corresponding Reserved
Section

bss attribute Section type NOBITS .bss .sebss,
.sibss
.tibss.byte
.tibss.word

Section attribute AW

const attribute Section type PROGBITS .const .sconst

Section attribute A

data attribute Section type PROGBITS .data .sedata
.sidata
.tidata.byte
.tidata.word

Section attribute AW

sbss attribute Section type NOBITS .sbss

Section attribute AWG

sdata attribute Section type PROGBITS .sdata

Section attribute AWG

text attribute Section type PROGBITS .pro_epi_runtime
.text

Section attribute AX

APPENDIX A LINK DIRECTIVE

86 User’s Manual U18515EJ1V0UM

A. 3 Symbols

The CA850 uses the following pointers for operation of applications.

- Text pointer (tp)

- Global pointer (gp)

- Element pointer (ep)

Each pointer value relates to the position of a segment and a means to determine these pointer values is required in

the link directive.

A link directive contains symbol definitions that are used to determine pointer values. A defined symbol's value is

determined by the linker and that value is copied to the pointer in the application to determine the pointer value. A link

directive is sometimes called a "symbol directive" because it defines symbols used for pointers.

This section describes the role of each pointer and how pointer values are determined.

A. 3. 1 Text pointer (tp)

When referencing a text area in an application, the text pointer (tp) is provided to enable access independent of the

allocation position (PIC : Position Independent Code). In other words, the text is referenced with tp-relative. Since the

compiler outputs the code on the assumption that the tp has correctly set to the start of the text, the pointer value must

be correctly.

In addition to creating a single tp for an application, several tps can be created for various segments.

When several tps have been created, however, the switching of tps must be explicitly performed by the application.

Figure A-5 Example of tp Setting

In the above example, the link directive is used to set so that the tp symbol value specifies the start of TEXT1

segment. Since the tp symbol name is "__tp_TEXT", the start address of TEXT1 segment which is determined when

linking is set to the symbol "__tp_TEXT".

To set this value to the tp, a startup routine (or other means) includes code (format: mov #__tp_TEXT, tp) that

assigns the value of "__tp_TEXT" to the variable "tp". This correctly sets the text pointer value to the tp.

Upper address

TEXT1
(segment)

Lower address

[Set tp symbol value to tp]

(in symbol directive)
__tp_TEXT @ %TP_SYMBOL{TEXT1} ;

(in startup routine)
mov #__tp_TEXT, tp

tp

APPENDIX A LINK DIRECTIVE

User’s Manual U18515EJ1V0UM 87

A. 3. 2 Global pointer (gp)

Data that is globally declared in an application is allocated to memory. When referencing (loading or storing) this

data that has been allocated to memory, the global pointer (gp) is provided to enable access independent of the

allocation position (PID : Position Independent Data).

Globally declared data is referenced with gp-relative. In V850 core devices, such data can be referenced using

either "gp and one instruction" or "gp and two instructions". Compared to the "gp and two instructions" method, the "gp

and one instruction" method speeds up applications and reduces the code size.

The sections that can be referenced using the gp and one instruction (ld/st instruction) method are the sections that

have either the sdata attribute or the sbss attribute, while those that can be referenced using the gp and two

instructions (movhi+ld/st instruction) method are the sections that have either the data attribute or the bss attribute.

This means there are a total four attributes of sections that can be referenced with the gp-relative. The sections that

have either the sdata attribute or sbss attribute are allocated within 32K-byte higher and lower the gp position, so that

data (variables) allocated this range can be accessed using only one instruction, which is high-speed access with

more reduced code size.

In addition to creating a single gp for an application, several gps can be created for various segments. When

several gps have been created, however, the switching of gps must be explicitly performed by the application program.

Figure A-6 Example of gp Setting (When Specifying Segment)

In the above example, the link directive is used to set so that the gp symbol value references the DATA1 segment.

Since the gp symbol name is "__gp_DATA ", the address that is 32K-byte away from the start of the DATA1 segment

which is determined when linking is set to the symbol "__gp_DATA " (refer to "Figure A-4").

To set this value to the gp, a startup routine (or other means) includes code (format: mov #__gp_DATA, gp) that

assigns the value of "__gp_DATA" to the variable "gp". This correctly sets the global pointer value to the gp.

In addition to address, a gp symbol can also be specified by using an offset address value from tp symbol.

Offset specification for gp symbol values is described next.

[Offset specification for gp symbol values]

As was described in the above, a typical method for specifying gp symbol values is the method that specifies the

target segment for gp referencing.

Other methods include directly specifying the gp symbol's address, and determining the base symbol and

assigning a gp symbol value that is offset from the base symbol. The latter method is described below (for the

former method, refer to "[Rules for determining gp symbol values]").

A tp symbol is specified as the base symbol for a gp symbol.

Upper address

DATA1
(segment)

Lower address

gp
32K-byte

[Set gp symbol value to gp]

(in symbol directive)
__gp_DATA @ %GP_SYMBOL{DATA1} ;

(in startup routine)
mov #__gp_DATA, gp

APPENDIX A LINK DIRECTIVE

88 User’s Manual U18515EJ1V0UM

When creating a gp symbol, if a tp symbol is specified as a base symbol, the value determined by the link directive

as the gp's symbol value is the offset value from the tp symbol value.

In this way, the gp symbol value can be easily calculated based on the tp symbol value as "tp symbol value + offset

value from tp symbol", which is useful for creating position-independent applications. For example, this method is

helpful for copying an executable module to RAM (and then executing it) from an application that has multiple

executable modules. In such cases, when determining the tp and gp values, once the tp value is known, the gp

symbol value is simply added to that address (as the offset value from tp) to determine the gp value.

Figure A-7 Example of gp Setting (When Specifying Offset from tp)

[Rules for determining gp symbol values]

The following factors are involved in determining gp symbol value.

- Whether or not an address has been specified in the symbol directive

- Whether or not sdata/sbss/data/bss-attribute sections exist

- Whether or not a base symbol has been specified

The linker checks for these factors in the link directive file and determines the gp symbol value.

The following figure illustrates the rules for determining gp symbol values.

DATA2

TEXT2

DATA2

TEXT2

DATA1

TEXT1

Modules RAM used for execution

(in symbol directive)
__tp_TEXT2 @ %TP_SYMBOL{TEXT2} ;
__gp_DATA2 @ %GP_SYMBOL &__tp_TEXT2{DATA2} ;

Offset value from __tp_TEXT2 is set to __gp_DATA2.

(in routine to be executed after downloading)
mov #__tp_TEXT2, tp
mov #__gp_DATA2, gp
add tp, gp

Set tp and assign the offset value from tp to gp.
Add that offset value to tp to get the gp value, so that the
correct gp value is set to the corresponding module.

Down load

APPENDIX A LINK DIRECTIVE

User’s Manual U18515EJ1V0UM 89

Figure A-8 Rules for Determining Global Pointer Values

gp symbol value =
offset from "base symbol" to "address
that is +32K-byte from the start
address of the lowest sdata/sbss-
attribute section in the segment
targeted for gp referencing"

gp symbol value =
address that is +32K-byte from the
start address of the lowest sdata/sbss-
attribute section in the segment
targeted for gp referencing

gp symbol value =
offset from "base symbol" to "address
that is +32K-byte from the start
address of the lowest data/bss-
attribute section in the segment
targeted for gp referencing"

gp symbol value =
address that is +32K-byte from the
start address of the lowest data/bss-
attribute section in the segment
targeted for gp referencing

Has gp symbol's address
been specified in symbol
directive?

Dose a sdata/sbss-
attribute section exist?

Dose a data/bss-attribute
section exist?

Has the gp's base symbol
been specified?

Has the gp's base symbol
been specified?

gp symbol value = specified address

gp symbol value = 0x0

No

No

No

Yes

No

No

Yes

Yes

Yes

Yes

APPENDIX A LINK DIRECTIVE

90 User’s Manual U18515EJ1V0UM

A. 3. 3 Element pointer (ep)

The element pointer is a pointer that is provided to realize faster access (loading and storing) by allocating data

(variables) that are globally declared within an application to RAM area in V850 core device.

Data (variables) that is globally declared and allocated to internal RAM area is referenced with ep-relative.

Although this reference uses the "ep and one instruction" combination, the attributes of sections are determined

based on whether the one instruction is an sld/sst instruction or an ld/st instruction.

- The sections that can be referenced by "ep + sld/sst instruction" are:

tidata.byte attribute, tibss.byte attribute, tidata.word attribute, or tibss.word attribute

- The sections that can be referenced by "ep + ld/st instruction" are:

sidata attribute, sibss attribute, sedata attribute, or sebss attribute

However, the sections with sedata/sebss attribute are not within internal RAM but within external RAM that is

accessible via ep-relative referencing.

Generally, internal RAM capacity is too limited to store large amounts of data (variables), but storing certain data

(variables) for which high-speed access is desired within the above area where "ep and one instruction" access is

possible can be expected to improve the speed of the applications and reduce the code size. The sld/sst instruction is

especially useful for reducing code size since its instruction length is two bytes compared to the ld/st instruction's four

bytes.

If a creation of ep symbol has been specified in the link directive file's symbol directive, the linker automatically sets

the ep symbol at the start of the internal RAM area according to the device file information that is provided for each

device being used.

Note that only one ep symbol can be created within an application:it is not possible to create several per application.

Figure A-9 Example of ep Setting

In the above example, the link directive is used to declare the creation of an ep symbol. Since the ep symbol name

is "__ep_DATA", the linker sets the start address of internal RAM to "__ep_DATA".

To set this value to the ep, a startup routine (or other means) includes code (format: mov #__ep_DATA, ep) that

assigns the value of "__ep_DATA" to the variable "ep". This correctly sets the element pointer value to the ep.

[Note] The application's RAM usage can be set completely within internal RAM (not at all in external RAM), by

creating only the ep symbol and not creating any gp symbols. However, if the runtime library will be used,

gp symbols must be created since runtime functions reference data (variables) with gp-relative.

Upper address

Internal RAM

Lower address
ep

[Set ep symbol value to ep]

(in symbol directive)
__ep_DATA @ %EP_SYMBOL ;

(in startup routine)
mov #__ep_DATA, ep

APPENDIX A LINK DIRECTIVE

User’s Manual U18515EJ1V0UM 91

[Rules for determining ep symbol values]

The following factors are involved in determining ep symbol value.

- Whether or not an address has been specified in the symbol directive

- Whether or not SIDATA segment exist

- Whether or not an internal RAM area has been difined in the device file

The linker checks for these factors and determines the ep symbol value.

The following figure illustrates the rules for determining ep symbol values.

Figure A-10 Rules for Determining Element Pointer Values

Has ep symbol's address
been specified in symbol
directive?

Dose SIDATA segment
exist?

ep symbol value = 0x0

Has address been specified
to the SIDATA segment?

Doses definition of internal
RAM area exist in the
device file?

ep symbol value =
start address of the internal RAM

ep symbol value =
start address of the SIDATA
segment

ep symbol value =
specified address

Yes

No

NoNo

Yes

YesNo

Yes

APPENDIX A LINK DIRECTIVE

92 User’s Manual U18515EJ1V0UM

A. 4 Link Directive Format

This section describes the format of the link directive file for each following item:

- Segment directive

- Mapping directive

- Symbol directive

The following is an outline of the link directive's format. An editor can be used to enter these directives in text format.

[Caution] It is recommended to describe segment directive starting from the lowest address.

A. 4. 1 Characters used in link directive file

The following characters can be used in the link directive file.

- Numerals (0 to 9)

- Uppercase characters (A to Z)

- Lowercase characters (a to z)

- Underscore (_)

- Dot (.)

- Forward slash (/)

- Back slash (\)

- Colon (:)

- Shift-JIS code (can be used only for file name; available only in the Japanese system)

- One-byte Japanese character (can be used only for file name; available only in the Japanese system)

- "#" (for comments)

A "#" in the link directive file indicates the start of a comment. Text that starts with "#" and ends at end of the line is

handled as a comment.

Segment directive1{
 Mapping directive ;
} ;

Segment directive2{
 Mapping directive ;
} ;

Segment directive3{
 Mapping directive ;
} ;

Segment directive4{
 Mapping directive ;
} ;

tp symbol directive ;
gp symbol directive ;
ep symbol directive ;

APPENDIX A LINK DIRECTIVE

User’s Manual U18515EJ1V0UM 93

A. 4. 2 Link directive file name

Any file name can be assigned to a link directive file as long as the characters used are all valid characters for the

link directive file. Note, however, that an extension is necessary; "dir" is recommended. Also note with caution that if

an especially long file name is used, it may exceed the number of characters that can be handled during linkage

(depending on the OS), which would preclude successful linkage.

If linkage is performed via command line entry, specify a link directive file with the "-D" option.

When using the PM+, specify the link directive file name with the [Link Directive FIle:] field on the [Link Directive] tab

in the [Compiler Common Options] dialog box, which is opend by selecting the PM+’s [Tool] menu -> [Compiler

Common Option Settings...].

A. 4. 3 Segment directive

This section describes the format of the segment directive for each following item:

(1) Specification items

(2) Segment directive specification example

(1) Specification items

The items that are specified in the segment directive are listed below.

Table A-5 Items Specified in Segment Directive

A specific example of the segment directive's format is shown below.

Item Cording Format Description Omittable?

Segment name segment name Name of segment to be created No

Segment type !LOAD Type (fixed) loaded to memory No

Segment attributes ?[R][W][X] Specifies whether the segment to be created will
have "read-enabled(R)" attribute, "write-enabled(W)"
attribute, and/or "executable(X)" attribute (several
can be specified).

No

Address Vaddress Start address of segment to be created Yes

Maximum memory
size

Lmaximum memory
size

Upper limit of memory area occupied by segment to
be created

Yes

Hole size Hhole size Size of hole to be created after segment (blank
space between segment and next segment)

Yes

Fill value Ffill value Value used to fill hole area Yes

Alignment condition Aalignment condition Alignment condition for memory allocation Yes

APPENDIX A LINK DIRECTIVE

94 User’s Manual U18515EJ1V0UM

A blank space is used to separate these items from each other. A semicolon (;) must be added at the end of each

segment directive. For details on the mapping directive, refer to "A. 4. 4 Mapping directive".

The omittable specification items are "Vaddress", "Lmaximum memory size", "Hhole size", "Ffill value", and

"Aalignment condition". Default values are used for these items when they are omitted. These default values are

listed below.

Table A-6 Default Values for Omitted Segment Directive Specification Items

[Caution] It is recommended to describe segment directive starting from the lowest address.

(a) Segment name

Specify the name of the segment to be created.

When creating a segment, specification of the segment name cannot be omitted.

The characters listed under "A. 4. 1 Characters used in link directive file" can be used to specify the segment

name, and there is no restriction on the length of the character string. However, the name of segments which

assign reserved sections listed in "Table A-7" are fixed. Names other than those listed cannot be used for these

segments.

Table A-7 Reserved Section Names with Fixed Segment Names

segment name : !segment type ?segment attribute Vaddress Lmaximum memory size
 Hhole size Ffill value Aalignment condition{
 :
 (Mapping directive)
 :
 } ;

Specification Item Default Value

Address Address 0x0 for first segment, and the value continued from the end of the previous
segment for other segments

Maximum memory size 0x100000 (bytes)

Hole size 0x0 (bytes)

Fill value 0x0000

Alignment condition 0x8 (bytes)

Section Name Segment Name

.sidata .sibss

.tidata .tibss

.tidata.byte .tibss.byte

.tidata.word .tibss.word

SIDATA

.sedata .sebss SEDATA

.sconst SCONST

APPENDIX A LINK DIRECTIVE

User’s Manual U18515EJ1V0UM 95

[Caution] The name of the segment for .sconst can be changed, but an error check is not performed to some of the

data.

(b) Segment type

Specify the type of the segment to be created.

When creating a segment, specification of the segment type cannot be omitted.

At present, only "LOAD" type (segment type that is loaded to memory) can be specified. The linker outputs an

error message if another value is specified. The "LOAD" can be specified using either uppercase or lowercase

letters.

Start the segment type specification with a "!", which must not be followed by blank space.

(c) Segment attributes

Specify the attribute of the segment to be created.

When creating a segment, specification of the segment attribute cannot be omitted.

The specifiable segment attributes and their meanings are listed below.

A segment attribute depends on an attribute of mapping directive belonging to the segment. Therefore, the

segment attribute specification must take into account the section attribute to be specified in the mapping

directive.

Table A-8 Segment Attributes and Their Meanings

Several segment attributes can be specified at the same time, with R, W, and X specified in any order with no

blank spaces between them. Start each segment attribute specification with a "?", which must not be followed by

a blank space.

[Caution] If multiple segment attribute specifications are performed in one segment directive, the linker outputs

an error message and stops linking.

[Example] : SEG : !LOAD ?RX ?RW {} ;

(d) Address

Specify the start address of the segment to be created.

When creating a segment, specification of the address can be omitted. When it is omitted, the address 0x0 is

assigned as the start address if the segment is the first segment, otherwise the assigned value for the start

address is the value continued from the end of the precious segment (based on the alignment).

Address specifications must be made with consideration given to the way memory is allocated in the target CPU.

For example, if the target CPU is a V850 core device, the address 0x0 is used for reset interrupt processing

(reset interrupt handler). Therefore, if reset interrupt will be processed, be sure to set addresses so that the

Segment Attribute Meaning

R Read-enabled segment

W Write-enabled segment

X Executable segment

APPENDIX A LINK DIRECTIVE

96 User’s Manual U18515EJ1V0UM

address 0x0 is not assigned to other segments.

Also, since different memory capacities are installed in the various V850 core devices, their internal ROM/RAM

uses different start and end addresses. Consequently, the allocation address specification for each segment

must take into account which CPU is being used. For description of a particular CPU's memory, refer to the

CPU's User's Manual (Hardware Version) and/or the corresponding device file's User's Manual.

Specify even-numbered values as the address values. If an odd-numbered value is specified, the linker outputs

a message and continues with linking on the assumption that the "specified address plus one" has been

specified.

Start the address specification with a "V" (uppercase or lowercase), which must not be followed by a blank

space. Address values can be specified using either decimal or hexadecimal numerals, but when using

hexadecimal numerals be sure to add "0x" before the value. Expressions cannot be used in the address

specification.

(e) Maximum memory size

Specify the maximum value for memory size of the segment to be created.

This specification is used not to exceed the segment's intended size. Therefore, if the segment's actual size is

less than the specified "maximum memory size", the next segment will follow immediately afterward.

If the segment's actual size exceeds the specified "maximum memory size", the linker outputs an error message

and stops linking.

When creating a segment, specification of the maximum memory size can be omitted. The value 0x100000

(bytes) is used as the default value when it is omitted.

Start the maximum memory size specification with a "L" (uppercase or lowercase), which must not be followed by

a blank space. Expressions cannot be used in the maximum memory size specification.

(f) Hole size

Specify the hole size of the segment to be created.

The segment's hole is the space between one segment and the next segment. When a hole size has been

specified, the specified hole is created at the end of the target segment.

When creating a segment, specification of the hole size can be omitted. The value 0x0 (bytes) is used as the

default value (which specifies that no hole is created) when it is omitted.

Start the hole size specification with an "H" (uppercase or lowercase), which must not be followed by a blank

space.

Expressions cannot be used in the hole size specification.

(g) Fill value

Specify a fill value as the value to be used for filling hole areas that are created either segments are allocated or

when explicitly specified via the "H" specification.

When specifying the fill value, specify the "-B" option to perform linking in the 2-pass mode. If the linkage is

performed with the fill value specification in the 1-pass mode (default), the linker outputs a message and

continues linking in the 2-pass mode.

When creating a segment, specification of the fill value can be omitted. The value 0x0000 is used as the default

value (which fills hole areas with zeros) when it is omitted. However, if the "-F" option (linker fill value option) has

APPENDIX A LINK DIRECTIVE

User’s Manual U18515EJ1V0UM 97

been specified, the linker outputs a message and continues linking while ignoring the fill value specified by the

link directive.

Start the fill value specification with an "F" (uppercase or lowercase), which must not be followed by a blank

space. Specify a two-byte four-digit hexadecimal value as the fill value. If the value dose not occupy all four

digits, the remaining (higher) digits are assumed to be zeros. If the hole size is less than two bytes, the required

digits are taken out of the lower value of the specified fill value. Expressions cannot be used in the fill value

specification.

(h) Alignment condition

Specify the segment alignment condition (alignment value) to be used for memory allocation of the segment to

be created.

When creating a segment, specification of the alignment condition can be omitted. The value 0x8 (bytes) is used

as the default value (which sets 8-byte alignment) when it is omitted.

Start the alignment condition specification with an "A" (uppercase or lowercase), which must not be followed by a

blank space. Specify even-numbered values as the alignment condition values. If an odd-numbered value is

specified, the linker outputs a message and continues with linking on the assumption that the "specified value

plus one" has been specified. Expressions cannot be used in the alignment condition specification.

(2) Segment directive specification example

A segment specification example is shown below.

Table A-9 Segment Example

The segment directive code appears as shown below for above segment.

[Caution] Basically, there is no problem if segment directives are described in the order of the allocation addresses.

The only exception applies to segments that have .sedata/.sebss section (by default, "SEDATA

Item Value

Segment name PROG1

Segment attribute(s) Read-enabled, executable

Allocation address address 0x1000

Maximum memory size 0x200000 (bytes)

Hole size 0x20 (bytes)

Fill value 0xffff

Alignment condition 0x16 (bytes)

PROG1 : !LOAD ?RX V0x1000 L0x200000 H0x20 F0xffff A0x16{
 :
 (Mapping directive)
 :
 } ;

APPENDIX A LINK DIRECTIVE

98 User’s Manual U18515EJ1V0UM

segment"), only when the allocation address is omitted.

In the CA850, the SEDATA segment is defined as a segment used to reference the area below the

internal RAM with 1 ep-relative instruction, and therefore, if the allocation address is omitted, the linker

considers that the address obtained by subtracting 0x8000 from the internal RAM start address defined in

the device file, has been specified.

The following is an example of this case.

The SEDATA address is omitted and this start address is judged as 0xff2000 (= 0xffb00 - 0x8000)

according to device file information. Since SIDATA is defined as being allocated to address 0xffb000, the

CA850 moves the SEDATA to the front of SIDATA and links them.

Moreover, since the address of the DATA segment defined after that is omitted, DATA is allocated

immediately after the SEDATA.

 SIDATA : !LOAD ?RW V0xffb000{
 .tidata.byte = $PROGBITS ?AW .tidata.byte ;
 .tibss.byte = $NOBITS ?AW .tibss.byte ;
 .tidata.word = $PROGBITS ?AW .tidata.word ;
 .tibss.word = $NOBITS ?AW .tibss.word ;
 .sidata = $PROGBITS ?AW .sidata ;
 .sibss = $NOBITS ?AW .sibss ;
 } ;

 SEDATA : !LOAD ?RW{
 .sedata = $PROGBITS ?AW .sedata ;
 .sebss = $NOBITS ?AW .sebss ;
 } ;

 DATA : !LOAD ?RW{
 .data = $PROGBITS ?AW .data ;
 .sdata = $PROGBITS ?AWG .sdata ;
 .sbss = $NOBITS ?AWG .sbss ;
 .bss = $NOBITS ?AW .bss ;
 } ;

APPENDIX A LINK DIRECTIVE

User’s Manual U18515EJ1V0UM 99

A. 4. 4 Mapping directive

This section describes the format of the mapping directive for each following item:

(1) Specification items

(2) Mapping directive specification example

(1) Specification items

The items that are specified in the mapping directive are listed below.

Table A-10 Items Specified in Mapping Directive

A specific example of the mapping directive's format is shown below.

A blank space is used to separate these items from each other. A semicolon (;) must be added at the end of each

segment directive.

The omittable specification items are "Vaddress", "Hhole size", "Aalignment condition", "input section name" and

"object file name". Default values or pre-set conventions are used for these items when they are omitted. These

default values and pre-set conventions are listed below.

Item Cording Format Description Omittable?

Output section name output section
name

Name of section output to load module No

Section type $PROGBITS,
$NOBITS

Type of section to be created No

Section attributes ?[A][W][X][G] Specifies whether the section to be created will have
"memory-resident(A)" attribute, "write-enabled(W)"
attribute, "executable(X)" attribute, and/or
"accessible via gp with 16-bit displacement(G)"
attribute (several can be specified).

No

Address Vaddress Start address of section to be created Yes

Hole size Hhole size Size of hole to be created after section (blank space
between section and next section)

Yes

Alignment condition Aalignment
condition

Alignment condition for memory allocation Yes

Input section name Input section name Name of input section allocated to output section Yes

Object file name {object file name
 object file name...}

Name of object file that includes the sections to be
extracted and used as the input sections (several
can be specified; insert spaces between the
specifications).

Yes

output section name = $section type ?section attribute Vaddress
 Hhole size Aalignment condition input section name
 {object file name object file name} ;

APPENDIX A LINK DIRECTIVE

100 User’s Manual U18515EJ1V0UM

Table A-11 Default Values/Conventions for Values That Can Be Omitted in Mapping Directive Specification Items

These specification items are explained below.

(a) Output section name

Specify the name of section to be output to the load module. When creating a section, specification of the output

section name cannot be omitted.

The characters listed under "A. 4. 1 Characters used in link directive file" can be used to specify the output

section name, and there is no restriction on the length of the character string.

However, note the fixed correspondence of output section names and input section names listed in the Table A-

12. Names other than those listed cannot be used for these sections.

Table A-12 Input Section Names with Fixed Section Names

Specification Item Default Value or Pre-set Convention

Address Sets according to address that was specified via the segment directive.
If there are several sections and this is not the first one, the value is continued from
the end of the previous section.
If the section is the first section, the value is continued from the start of the segment.

Hole size 0x0 (bytes)

Alignment condition .tidata.byte/.tidata.word section : 0x1 (bytes)
Other sections : 0x4 (bytes)

Input section Sections having the same attribute as the output section to be created are extracted
from all objects.
If an object file name has been specified, they are extracted from the specified
object.

Object file name Sections having the same attribute as the output section to be created are extracted
from all objects.
If an input section has been specified, they are extracted from all the objects that
have the same attribute as the output section to be created.

Input Section Name Output Section Name

.tidata section .tidata

.tibss section .tibss

.tidata.byte section .tidata.byte

.tibss.byte section .tibss.byte

.tidata.word section .tidata.word

.tibss.word section .tibss.word

.sidata section .sidata

.sibss section .sibss

.sedata section .sedata

.sebss section .sebss

.pro_epi_runtime section .pro_epi_runtime

APPENDIX A LINK DIRECTIVE

User’s Manual U18515EJ1V0UM 101

[Caution] The name of the section for .sconst can be changed, but an error check is not performed to some of the

data.

Although two or more mapping directives can be described in the same segment directive, two or more

of the same output section names cannot be specified in different segment directive. If two or more of

the same output section manes are specified, the linker outputs an error message and stops linking.

(b) Section type

Specify the type of the output section.

When creating a section, specification of the output section type cannot be omitted.

The specifiable section types and their meanings are listed below.

Table A-13 Section Types

Start the section type specification with a "$", which must not be followed by a blank space.

If only "$" is specified, the linker outputs an error message and stops linking.

(c) Section attributes

Specify the attribute of the section to be created.

When creating a section, specification of the section attribute cannot be omitted.

The specifiable section attributes and their meanings are listed below.

Table A-14 Section Attributes and Their Meanings

Several section attributes can be specified at the same time, with A, W, X, and G specified in any order with no

blank spaces between them. Start each section attribute specification with a "?", which must not be followed by

a blank space.

Section Type Meaning

PROGBITS Section that has actual values in an object file
--> Text or data (variable) with initial value

NOBITS Section that does not have actual values in an object file
--> Data (variable) without initial value

Section Attribute Meaning

A Section that occupies a memory area (corresponds to entire section) : memory-resident
section

W Write-enable section (section allocated in RAM)

X Executable section (mainly text section)

G Section (.sdata,/.sbss section) that is allocated within a memory area that can be
referenced using a global pointer (gp) with 16-bit displacement

APPENDIX A LINK DIRECTIVE

102 User’s Manual U18515EJ1V0UM

(d) Address

Specify the start address of the section to be created.

When creating a section, specification of the address can be omitted. If it is omitted, the address is assigned

based on the address specified via the segment directive. If there are several sections and this is not the first

one, the value is continued from the end of the previous section.

Normally, section addresses are specified as a group for each segment, but separate address specifications can

be made to assign certain addresses to certain sections.

Specify even-numbered values as the address values except for .tidata.byte/.tibss.byte section. If an odd-

numbered value is specified, the linker outputs a message and continues with linking on the assumption that the

"specified address plus one" has been specified.

Start the address specification with a "V" (uppercase or lowercase), which must not be followed by a blank

space. Address values can be specified using either decimal or hexadecimal numerals, but when using

hexadecimal numerals be sure to add "0x" before the value. Expressions cannot be used in the address

specification.

(e) Hole size

Specify the hole size of the sectionto be created.

The section's hole is the space between one section and the next section. When a hole size has been specified,

the specified hole is created at the end of the target section.

When creating a section, specification of the hole size can be omitted. The value 0x0 (bytes) is used as the

default value (which specifies that no hole is created) when it is omitted.

Start the hole size specification with an "H" (uppercase or lowercase), which must not be followed by a blank

space. Expressions cannot be used in the hole size specification.

(f) Alignment condition

Specify the section alignment condition (alignment value) to be used for memory allocation of the section to be

created.

When creating a section, specification of the alignment condition can be omitted. If it is omitted, the default value

is used, but that value differs among different types of section as shown below.

Table A-15 Section Types and Default Values for Alignment Condition

Start the alignment condition specification with an "A" (uppercase or lowercase), which must not be followed by a

blank space.

Either even-numbered or odd-numbered values can be specified for .tidata.byte and .tibss.byte sections and only

even-numbered values can be specified for all other sections. If an odd-numbered value is specified for any

section other than a .tidata.byte or .tibss.byte section, the linker outputs a message and continues with linking on

the assumption that the "specified value plus one" has been specified. Expressions cannot be used in the

Section Name Alignment Condition

.tidata.byte/.tibss.byte section 0x1 (bytes)

Other sections 0x4 (bytes)

APPENDIX A LINK DIRECTIVE

User’s Manual U18515EJ1V0UM 103

alignment condition specification.

(g) Input section name

Specify the input section information that is the basis for the output section to be created.

When creating a section, specifications of the input section name and object file name can be omitted. If it is

omitted, the information output to the output section varies according to the following combinations of

specifications.

Table A-16 Output Based on Combination of Input Section and Object File Specifications

More specific example are listed below.

Table A-17 Specific Examples of Combined Input Section and Object File Specifications

If there is multiple information when allocating sections, sections are allocated using the numbers indicated in the

[Code Pattern] column in "Table A-16" as the priority order (in the case of two or more sections with the same

priority number, the one with the lowest address has higher priority).

Specify the section name that has been set by the application as the input section name. If the application has

not set a section name, a default section name is already defined and should be used here. For details of default

section names, refer to the "CA850 C Compiler Package C Language User's Manual" or "CA850 C Compiler

Package Assembly Language User's Manual".

As was explained in "(a) Output section name", there is a fixed correspondence between output section names

Code Pattern Output

1) Input section name
 + object file name

The specified input section is extracted from the specified object and is then
output.

2) Input section name only The specified input section is extracted from all objects and is then output.

3) Object file name only Sections having the same attribute as the output section to be created are
extracted from the specified object and are then output.

4) No specification Sections having the same attribute as the output section to be created are
extracted from all objects and are then ouput.

Code Example Output

SEG1 : !LOAD ?RX{
 sec1 = $PROGBITS ?AX usrsec1 ;
} ;

"usrsec1" section is extracted form all objects
and is output as "sec1" section.

SEG1 : !LOAD ?RX{
 sec1 = $PROGBITS ?AX {file1.o file2.o} ;
} ;

Sections having $PROGBITS type and A and X
attributes are extracted from file1.o and file2.o
and are output as "sec1" section.

SEG1 : !LOAD ?RX{
 sec1 = $PROGBITS ?AX usrsec1{file1.o} ;
} ;

"usrsec1" section is extracted form file1.o and
is output as "sec1" section.

SEG1 : !LOAD ?RX{
 sec1 = $PROGBITS ?AX ;
} ;

Sections having $PROGBITS type and A and X
attributes are extracted from all objects and are
output as "sec1" section.

APPENDIX A LINK DIRECTIVE

104 User’s Manual U18515EJ1V0UM

and input section names. Other section names cannot be specified for section names that are included in this

group.

(h) Object file name

Enter the object file name specification at the end of the mapping directive and enclose each file name with "{ }".

Insert a blank space between file names when specifying several file names (if the file name includes blank

spaces, enclose the file name with quotation marks ("")).

When several object files have been specified, they are allocated in the order they are specified, in ascending

order from lower to higher addresses. However, if a different allocation order is specified for link directive by the

"objects for linking" specification that occurs when the linker is started, the file name sequence specified be that

specification's parameters takes priority.

When an object file name is specified in a mapping directive, specify all object file names that include sections

having the specified attribute.

For example, the four objects (file1.o, file2.o, file3.o, and file1.4) including text-attribute sections exist. In this

case, if the link directive is entered as:

and no specific allocation site for the text attribute in the file4.o has been specified, the linker searches and

allocates text-attribute sections from file4.o as suitable text-attribute sections. Therefore, the mapping results

may not be as expected (if the text-attribute section is not allocated to any section, the linker outputs a message).

Specify a file of the same name located in a different directory as follows by specifying a file name with the path

displayed on the link map.

Specify a file of the same name located in a different directory as follows by specifying a file name with the path

displayed on the link map.

Link directive
 sec = $PROGBITS ?AX {filel.o file2.o file3.o}

Linker activation
 ld850 file3.o filel.o file2.o
 --> file3.o, file1.o, and file2.o are allocated in that order, starting from lower address

TEXT1 : !LOAD ?RX {
 .text1 = $PROGBITS ?AX { filel.o file2.o } ;
} ;
TEXT2 : !LOAD ?RX{
 .text2 = $PROGBITS ?AX { file3.o } ;
} ;

APPENDIX A LINK DIRECTIVE

User’s Manual U18515EJ1V0UM 105

In the above case, the file1.o files that exist in the specified directories are allocated to textsec1 and textsec2

respectively, and the other file1.o file is allocated to textsec3. Since the path specification method during such

allocation is only the format displayed to the link map, attention is required when making descriptions.

It is also possible to specify input object names for objects in libraries or other type of archive files. For example,

the following is entered to specify output of object "lib1.o" in the archive file "libusr.a" to the "usrlib" section.

Moreover, describe as follows to allocate all the objects in the specified library.

In this case, the object in "libusr.a" is allocated to "usrlib" section.

(i) If specification duplicates

If the same section type, section attribute, input section name (can be omitted), or input file name (can be typed)

is specified for multiple segments and there is a section corresponding to it, an object is assigned to a segment

allocated at a lower address.

In the above case, the same section type, section attribute, input section name, and input file name are specified

for TEXT1 and TEXT2, the object is assigned to TEXT1, which is allocated at the lower address.

textsec1 = $PROGBITS ?AX { c:\work\dir1\file1.o } ;
textsec2 = $PROGBITS ?AX { c:\work\dir2\file1.o } ;
textsec3 = $PROGBITS ?AX { file1.o } ;

usrlib = $PROGBITS ?AX { lib1.o(a:\usrlib\libusr.a) } ;

usrlib = $PROGBITS ?AX { libusr.a } ;

TEXT1 : !LOAD ?RX V0x1000 {
 .text1 = $PROGBITS ?AX.text { filel.o file2.o } ;
} ;
TEXT2 : !LOAD ?RX V0x2000 {
 .text2 = $PROGBITS ?AX.text { filel.o file2.o } ;
} ;

APPENDIX A LINK DIRECTIVE

106 User’s Manual U18515EJ1V0UM

(2) Mapping directive specification example

This example shows specifications for the following types of output sections. Two type of sections are created.

Table A-18 Mapping Directive Specification Example

In the above case, the corresponding mapping directive specification is shown below.

Item Value-1 Value-2

Output section name .text textsec1

Section type Text Text

Section attribute Read-enabled, executable Read-enabled, executable

Hole size 0x10 (bytes) 0x20 (bytes)

Fill value 0xffff 0xffff

Alignment condition 0x10 (bytes) 0x10 (bytes)

Input section name .text usrsec1

Object file name main.o -

.text = $PROGBITS ?AX H0x10 F0xffff A0x10 .text {main.o} ;
textsec1 = $PROGBITS ?AX H0x20 F0xffff A0x20 usrsec1 ;

APPENDIX A LINK DIRECTIVE

User’s Manual U18515EJ1V0UM 107

A. 4. 5 Symbol directive

This section describes the format of the symbol directive for each following item:

(1) Specification items

(2) Symbol directive specification example

(1) Specification items

The items that are specified in the symbol directive are listed below.

[tp symbol]

Table A-19 Specifiable Items When Creating tp Symbol

A specific example of the symbol directive's format is shown below.

A blank space is used to separate these items from each other. A semicolon (;) must be added at the end of

each specification.

The omittable specification items are "Vaddress", "Aalignment condition", and "segment name". Default values

are used for these items when they are omitted. These default values are listed below.

Table A-20 Default Values for tp Symbols

Item Cording Format Meaning Omittable?

Symbol name symbol name Name of tp symbol to be created No

Symbol type %TP_SYMBOL Type of symbol to be created (fixed) No

Address Vaddress Address of tp symbol to be created Yes

Alignment condition Aalignment condition Alignment condition of symbol value Yes

Segment name {segment name
 segment name...}

Name of segment to be referenced by tp
symbol to be created (several can be specified;
insert blank spaces between the specifications.)

Yes

symbol name @ %TP_SYMBOL Vaddress Aalignment condition {segment name segment name} ;

Specification Item Default Value

Address If a segment name has been specified, this address is the start address of the text-
attribute section that has been allocated to the lowest address in that segment.
If a segment name has not been specified, this address is the start address of the text-
attribute section that has been allocated to the lowest address in the text-attribute
segment existing in the load module.

Alignment condition 0x4 (bytes)

Segment name All text-attribute segments exist in objects are targeted.

APPENDIX A LINK DIRECTIVE

108 User’s Manual U18515EJ1V0UM

[gp symbol]

Table A-21 Specifiable Items When Creating gp Symbol

A specific example of the symbol directive's format is shown below.

A blank space is used to separate these items from each other. A semicolon (;) must be added at the end of

each specification.

The omittable specification items are "Vaddress", "Aalignment condition", and "segment name". Default values

are used for these items when they are omitted. These default values are listed below.

Table A-22 Default Values for gp Symbols

Item Cording Format Meaning Omittable?

Symbol name symbol name Name of gp symbol to be created No

Symbol type %GP_SYMBOL Type of symbol to be created (fixed) No

Base symbol name &base symbol name tp symbol name that is specified as the offset
value when offsetting the gp symbol from the tp
symbol.

Yes

Address Vaddress Address of gp symbol to be created Yes

Alignment condition Aalignment condition Alignment condition of symbol value Yes

Segment name {segment name
 segment name...}

Name of segment to be referenced by gp symbol
to be created (several can be specified; insert
blank spaces between the specifications.)

Yes

symbol name @ %GP_SYMBOL &base symbol name Vaddress Aalignment condition
 {segment name segment name} ;

Specification Item Default Value

Base symbol name Address to be determined as the gp symbol value, not for offset from tp symbol For a
description of how to determine, refer to "[Offset specification for gp symbol values]".

Address According to "[Rules for determining gp symbol values]"

Alignment condition 0x4 (bytes)

Segment name All sections with sdata/data/sbss/bss attributes existing in objects are targeted (refer to
"[Offset specification for gp symbol values]").

APPENDIX A LINK DIRECTIVE

User’s Manual U18515EJ1V0UM 109

[ep symbol]

Table A-23 Specifiable Items When Creating ep Symbol

A specific example of the symbol directive's format is shown below.

A blank space is used to separate these items from each other. A semicolon (;) must be added at the end of

each specification.

The omittable specification items are "Vaddress" and "Aalignment condition". Default values are used for these

items when they are omitted. These default values are listed below.

Table A-24 Default Values for ep Symbols

These specification items are explained below.

(a) Symbol name

[Specifiable symbols: tp, gp, ep]

Specify the name of the symbol to be generated. When creating a symbol, specification of the symbol name

cannot be omitted.

The characters listed under "A. 4. 1 Characters used in link directive file" can be used to specify the symbol

name, and there is no restriction on the length of the character string.

(b) Symbol type

[Specifiable symbols: tp, gp, ep]

Specify whether the generated symbol will be a tp symbol, gp symbol, or ep symbol. When creating a symbol,

specification of the symbol type cannot be omitted.

Specify "TP_SYMBOL", "GP_SYMBOL", or "EP_SYMBOL" corresponding to the desired type of symbol (tp

symbol, gp symbol, or ep symbol). The linker outputs an error message if another value is specified.

Start the symbol type specification with a "%", which must not be followed by a blank space.

Item Cording Format Meaning Omittable?

Symbol name symbol name Name of ep symbol to be created No

Symbol type %EP_SYMBOL Type of symbol to be created (fixed) No

Address Vaddress Address of ep symbol to be created Yes

Alignment condition Aalignment condition Alignment condition of symbol value Yes

symbol name @ %EP_SYMBOL Vaddress Aalignment condition ;

Specification Item Default Value

Address According to "[Rules for determining ep symbol values]"

Alignment condition 0x4 (bytes)

APPENDIX A LINK DIRECTIVE

110 User’s Manual U18515EJ1V0UM

(c) Base symbol name

[Specifiable symbol: gp]

Specify the tp symbol that will be used to determine the gp symbol value when creating gp symbols. When a

base symbol name has been specified, the gp symbol value becomes the offset value from the tp symbol value.

When creating a gp symbol, specification of the base symbol name can be omitted. If it is omitted, the address

determined according to "[Rules for determining gp symbol values]" becomes the gp symbol value.

Start the base symbol specification with an "&", which must not be followed by a blank space. After the "&", enter

the tp symbol name to be used as the base symbol.

(d) Address

[Specifiable symbols: tp, gp, ep]

Specify the tp symbol value or gp symbol value (these values are addresses).

When creating a symbol, specification of the address can be omitted. If it is omitted, the address is determined

as described below.

Table A-25 Address Specification for tp Symbol and gp Symbol

Start the address specification with a "V" (uppercase or lowercase), which must not be followed by a blank

space.

(e) Alignment condition

[Specifiable symbols: tp, gp, ep]

Specify the alignment condition (alignment value) for setting values to the tp symbol, gp symbol, or ep symbol to

be created.

When creating a symbol, specification of the alignment condition can be omitted. The default value is used when

it is omitted. This default value is 0x4 (bytes).

Start the alignment condition specification with an "A" (uppercase or lowercase), which must not be followed by a

blank space. Specify even-numbered values as the alignment condition values. If an odd-numbered value is

specified, the linker outputs a message and continues with linking on the assumption that the "specified value

plus one" has been specified. Expressions cannot be used in the alignment condition specification.

Symbol Value Rule for Determination

tp symbol If a segment name has been specified:
start address of the text-attribute section that has been allocated to the lowest address in
the specified segment

If a segment name has not been specified:
start address of the text-attribute section that has been allocated to the lowest address in
the text-attribute segment existing in the load module

gp symbol According to "[Rules for determining gp symbol values]"

ep symbol According to "[Rules for determining ep symbol values]"

APPENDIX A LINK DIRECTIVE

User’s Manual U18515EJ1V0UM 111

(f) Segment name

[Specifiable symbols: tp, gp]

Specify the name of the segment to be referenced for the tp symbol value or gp symbol value to be created.

In other words, specify the segment that will be referenced by the tp symbol or gp symbol to be created. Several

segments can be specified as target segments for referencing.

When creating a symbol, specification of the segment name can be omitted. One of the following values is

assumed as the default value when it is omitted.

Table A-26 Segment Names Targeted for Reference by tp Symbol and gp Symbol

Specify a segment name that is assumed to be a target for gp-relative referencing as the target segment name

for gp symbol referencing.

For example, do not specify a segment that includes .sedata section or .sebss section, which is assumed to be

for ep-relative referencing. For details, refer to " A. 3. 2 Global pointer (gp)".

Enter the segment name specification at the end of the symbol directive and enclose the segment name with "{

}". If specifying several segment names, use blank spaces to separate them.

(2) Symbol directive specification example

This example shows specifications for the following types of symbols.

Table A-27 Symbol Directive Specification Example

In the above case, the corresponding symbol directive specification is shown below.

Note with caution that symbols will not be created unless a symbol directive specification has been made.

Symbol Value Rule for Determination

tp symbol All text-attribute segments exist in objects are targeted.

gp symbol All sections with sdata/data/sbss/bss attributes existing in objects are targeted (for
determination method, refer to "[Offset specification for gp symbol values]").

Symbol Specification Item Specified Value

tp symbol Symbol name __tp_TEXT

Name of segment targeted for reference TEXT1

gp symbol Symbol name __gp_DATA

Offset specification symbol __tp_TEXT

Name of segment targeted for reference DATA1, DATA2

ep symbol Symbol name __ep_TEXT

Address 0xFFFFD000

__tp_TEXT @ %TP_SYMBOL{TEXT1} ;
__gp_DATA @ %GP_SYMBOL &__tp_TEXT{DATA1 DATA2} ;
__ep_DATA @ %EP_SYMBOL V0xFFFFD000 ;

APPENDIX A LINK DIRECTIVE

112 User’s Manual U18515EJ1V0UM

A. 5 Defaults

If the user performs linking without creating a link directive file or without specifying a link directive file to reference,

the CA850 performs linking by using its own internal default link directive.

If corresponding input sections exist for the segments described in the default link directive, the segments are

generated by being allocated in the order in which the sections appear, from the lower address.

Regarding the segment allocation addresses, there are addresses that are allocated in the order described by the

link directive, and addresses that are allocated values defined in the device file or linker information.

If an interrupt handler is defined using the interrupt request name defined in the device file, a link directive that will

allocate functions to the set handler address is automatically generated inside the linker, regardless of whether the

directive is the default directive or a specified directive.

Caution must be exercised when describing a mapping directive using an interrupt request name because this will

result in an error caused by redundant section name definition.

[If SIDATA segment is generated]

- The SIDATA segment is allocated to the start address of the internal RAM.

- The DATA segment is allocated to the suitable addresses for the device type, according to the device file.

For example, in the case of the V851, which has internal ROM, the DATA segment is allocated to the start

address of the external memory.

- The SEDATA segment is allocated to a lower address from the start address of the internal RAM.

[If SIDATA segment is not generated]

- The DATA segment is allocated to the start address of the internal RAM.

- The CONST segment is allocated to the suitable addresses for the device type, according to the device file.

For example, in the case of the V851, which has internal ROM, the CONST segment is allocated to the start

address of the external memory.

- The SEDATA segment is allocated to a lower address from the start address of the internal RAM.

The addresses of segment other than those mentioned above are allocated in the order in which they are described.

The default link directive is solely provided as a sample, so generally the user should describe a link directive file

and use that as the link directive. The contents of the default link directive are provided as samples in the package.

Refer to them and rewrite them for your own use.

APPENDIX A LINK DIRECTIVE

User’s Manual U18515EJ1V0UM 113

A. 6 Link Directive File Coding Examples

The coding examples below show frequently used descriptions.

Note with caution that the priority of section allocation varies according to the code pattern for an input section name

specification in mapping directive (refer to "(g) Input section name").

(1) When allocating to "segment TEXT" all sections (from all objects) that have the text attribute (section type

=PROGBITS, section attribute = AX) and the section name ".text" (default name for .text sections):

(2) When allocating to "segment TEXT1" all sections (from object files: "file1.o" and "file2.o") that have the text

attribute (section type = PROGBITS, section attribute = AX):

(3) When allocating to "segment USRTEXT" all sections (from object files: "file1.o" and "file2.o") that have the text

attribute (section type = PROGBITS, section attribute = AX) and the section name "usrsec":

(4) Link directive coding method when entering "#pragma text "funcsec1" func1", which is coded in the C source,

and when function "func1" has been allocated to the independently generated text-attribute section "funcsec1"

(segment name: FUNC1):

If the independently specified text-attribute section has been allocated for a certain function via the #pragma text

directive, the actually created section name becomes "(specified character string) + .text", and the section name

must be entered in the link directive. In this example, the section name becomes "funcsec1.text section". For

details, refer to the "CA850 C Compiler Package C Language User’s Manual".

TEXT !LOAD ?RX{
 .text = $PROGBITS ?AX .text ;
} ;

TEXT1 !LOAD ?RX{
 sec = $PROGBITS ?AX{filel.o file2.o} ;
} ;

USRTEXT : !LOAD ?RX{
 usrsec = $PROGBITS ?AX usrsec{file1.o file2.o} ;
} ;

FUNC1 : !LOAD ?RX{
 funcsec1.text = $PROGBITS ?AX funcsec1.text ;
} ;

APPENDIX A LINK DIRECTIVE

114 User’s Manual U18515EJ1V0UM

(5) When object files "file1.o", "file2.o", and "file3.o" exist and text from "file1.o" and "file2.o" is allocated to address

0x100000 while text from "file3.o" is separately allocated to address 0x120000:

[Caution] Make sure the output section names are not identical.

(6) When specifying an object of the same name allocated in a different directory:

(7) When allocating to "usrlib" section all objects in library "libusr.a":

(8) When allocating to "usrlib" section object "libobj1.o" in library "libusr.a" (which is under C:\usrlib):

(9) When allocating to "segment SEG" all sections (from object files: "file1.o" and "file2.o") that have section type

PROGBITS and section attributes AW as well as sections that have section type NOBITS and section

attributes AW:

TEXT1 : !LOAD ?RX V0x100000{
 .text1 = $PROGBITS ?AX{file1.o file2.o} ;
} ;
TEXT2 : !LOAD ?RX V0x120000{
 .text2 = $PROGBITS ?AX{file3.o} ;

} ;

SEG : !LOAD ?RX {
 textsec1 = $PROGBITS ?AX { c:\work\dir1\file1.o } ;
 textsec2 = $PROGBITS ?AX { c:\work\dir2\file1.o } ;
 textsec3 = $PROGBITS ?AX { file1.o } ;
} ;

SEG : !LOAD ?RX {
 usrlib = $PROGBITS ?AX { libusr.a } ;
} ;

SEG : !LOAD ?RX {
 usrlib = $PROGBITS ?AX { libobj1.o(c:\usrlib\libusr.a) } ;
} ;

SEG : !LOAD ?RW{
 sec1 = $PROGBITS ?AW{file1.o file2.o} ;
 sec2 = $NOBITS ?AW{file1.o file2.o} ;
} ;

APPENDIX A LINK DIRECTIVE

User’s Manual U18515EJ1V0UM 115

(10) When allocating to "segment SEG" all sections (from object files: "file1.o" and "file2.o") that have the data

attribute (section type = PROGBITS and section attribute = AW) as well as the sdata attribute (section type =

PROGBITS and section attribute = AWG):

(11) When allocating to "segment DATA" from all objects all data-attribute sections, bss-attribute sections, sdata-

attribute sections, and sbss-attribute sections that are targeted for to gp-relative referencing:

(12) When using "#pragma section directive" in the C source:

The link directive cording method when the above has been specified to allocate variables to independently

generated data-attribute and bss-attribute sections (under segment name: USRDATA) is shown below.

In this case, variable "a" (with initial value) is allocated to "data1.data" section and variable "b" (without initial

value) is allocated to "data1.bss" section. Thus, the actually created section names become "(specified

character string) + .data" and "(specified character string) + .bss" respectively, and the section names must be

specified in the link directive file. For details, refer to the "CA850 C Compiler Package C Language User’s

Manual".

SEG : !LOAD ?RW{
 .data = $PROGBITS ?AW{file1.o file2.o} ;
 .sdata = $PROGBITS ?AWG{file1.o file2.o} ;

} ;

DATA : !LOAD ?RW{
 .data = $PROGBITS ?AW ;
 .sdata = $PROGBITS ?AWG ;
 .sbss = $NOBITS ?AWG ;
 .bss = $NOBITS ?AW ;

} ;

#pragma section data "data1" begin
int a = 10 ;
int b ;
#pragma section data "data1" end

USRDATA : !LOAD ?RW{
 data1.data = $PROGBITS ?AW data1.data ;
 datal.bss = $NOBITS ?AW data1.bss ;
} ;

APPENDIX A LINK DIRECTIVE

116 User’s Manual U18515EJ1V0UM

(13) When using "#pragma section directive" in the C source:

The link directive cording method when the above has been specified to allocate variables to independently

generated const-attribute section (under segment name: USRCONST) is shown below.

In this case, variable "c" is allocated to "const1.const" section. Thus, the actually created section name

becomes "(specified character string) + .const", and the section name must be specified in the link directive file.

This rule also applies to sconst section. For details, refer to the "CA850 C Compiler Package C Language

User’s Manual".

(14) When allocating separately to data/sdata-attribute sections and bss/sbss-attribute sections for all modules

and creating one gp symbol:

pragma section const "const1" begin
const int c = 10 ;
pragma section const "const1" end

USRCONST : !LOAD ?R{
 const1.const = $PROGBITS ?A const1.const ;
} ;

TEXT : !LOAD ?RX V0x1000{
 .text = $PROGBITS ?AX .text ;
} ;
DATA1 : !LOAD ?RW V0x10000{
 .data = $PROGBITS ?AW .data ;
 .sdata = $PROGBITS ?AWG .sdata ;
} ;
DATA2 : !LOAD ?RW V0x12000{
 .sbss = $NOBITS ?AWG .sbss;
 .bss = $NOBITS ?AW .bss ;
} ;
__tp_TEXT @ %TP_SYMBOL{TEXT} ;
__gp_DATA @ %GP_SYMBOL{DATA1 DATA2} ;

APPENDIX A LINK DIRECTIVE

User’s Manual U18515EJ1V0UM 117

(15) When allocating separately to data/sdata-attribute sections and bss/sbss-attribute sections for all modules

and creating one gp symbol each for DATA1 and DATA2:

(16) When several text-attribute segments exist among all modules and several segments having sdata-attribute

or sbss-attribute sections also exist, and there are a gp and a base symbol for each sdata/sbss-attribute

section:

Of the variables located in the .sbss section generated in C language, for those for external linkage tentative

definition (int i;), two or more temporary definitions are permitted by the ANSI standard, and the linker generates

a variable area, selecting the size from that of two or more variables.

This means that specifying the allocation of an .sbss section by using an input file name is difficult, and that, if

TEXT : !LOAD ?RX V0x1000{
 .text = $PROGBITS ?AX .text ;
} ;
DATA1 : !LOAD ?RW V0x100000{
 .data = $PROGBITS ?AW .data ;
 .sdata = $PROGBITS ?AWG .sdata ;
} ;
DATA2 : !LOAD ?RW V0x12000{
 .sbss = $NOBITS ?AWG .sbss;
 .bss = $NOBITS ?AW .bss ;
} ;
__tp_TEXT @ %TP_SYMBOL{TEXT} ;
__gp_DATA1 @ %GP_SYMBOL{DATA1} ;
__gp_DATA2 @ %GP_SYMBOL{DATA2} ;

TEXT1 : !LOAD ?RX V0x1000{
 text1 = $PROGBITS ?AX{start.o main.o} ;
} ;
TEXT2: !LOAD ?RX{
 text2 = $PROGBITS ?AX{func.o} ;
} ;
TEXT3: !LOAD ?RX{
 text3 = $PROGBITS ?AX{libfunc.o(c:\usrlib\libusr.a)} ;
} ;
DATA1: !LOAD ?RW V0x100000{
 sdata = $PROGBITS ?AWG ;
} ;
DATA2: !LOAD ?RW{
 sbss1 = $NOBITS ?AWG{start.o} ;
} ;
DATA3: !LOAD ?RW{
 sbss2 = $NOBITS ?AWG ;
} ;
__tp_symbol1 @ %TP_SYMBOL {TEXT1} ;
__tp_symbol2 @ %TP_SYMBOL {TEXT2} ;
__tp_symbol3 @ %TP_SYMBOL {TEXT3} ;

__gp_symbol1 @ %GP_SYMBOL &__tp_symbol1{DATA1} ;
__gp_symbol2 @ %GP_SYMBOL &__tp_symbol2{DATA2} ;
__gp_symbol3 @ %GP_SYMBOL &__tp_symbol3{DATA3} ;

APPENDIX A LINK DIRECTIVE

118 User’s Manual U18515EJ1V0UM

input file names are specified for all sbss attributes ($NOBITS, ?AWG), there are no more sections to be

allocated to the area of the variables generated by the linker. In this case, create a section with a ì$NOBITS

?AWGî attribute for which an input file name is not specified.

In the above example, this problem does not occur because the section sbss2, in addition to sbss1, is defined

and specification of the input section name is omitted.

(17) When creating segments that use internal RAM (in V850 core device) and that use internal RAM-only

sections:

Generally, in this case the specified address is the start address of the device's internal RAM. For details of the

start address of the target device's internal RAM, refer to the User's Manual, Hardware.

In the above example, all of the sections that can be specified for internal RAM are specified. Any sections that

are not needed can be deleted from the specification.

SIDATA : !LOAD ?RW V0xffffe000{
 .tidata.byte = $PROGBITS ?AW .tidata.byte ;
 .tibss.byte = $NOBITS ?AW .tibss.byte ;
 .tidata.word = $PROGBITS ?AW .tidata.word ;
 .tibss.word = $NOBITS ?AW .tibss.word ;
 .sidata = $PROGBITS ?AW .sidata ;
 .sibss = $NOBITS ?AW .sibss ;
} ;

APPENDIX A LINK DIRECTIVE

User’s Manual U18515EJ1V0UM 119

(18) Link directive for interrupt handler

[Example1]

[Example2]

The allocation of the interrupt handler is automatically performed by the linker, so there is no particular need for

the user to specify it in a link directive.

If an interrupt handler has been created using a directive such as "#pragma interrupt directive" in the C source

file, and if section definition that uses ".section quasi directive" in the assembler source file to specify the

interrupt request name has been made, section which have been defined as interrupt handlers are allocated to

the address determined based on information in the device file.

In the above example, if "direct" is specified for "#pragme interrupt", the function itself becomes the INTP100

section instead of branching to the "func" function.

#pragma interrupt INTP100 func <-- INTP100 is branch to func
"Directive added internally at this time"

INTP100 : !LOAD ?RX V0xc0{
 INTP100 = $PROGBITS ?AX INTP100 ;
} ;

.section "INTP120", text <-- defines INTP120 section
"Directive added internally at this time"

INTP120 : !LOAD ?RX V0x100{
 INTP120 = $PROGBITS ?AX INTP120 ;
} ;

APPENDIX A LINK DIRECTIVE

120 User’s Manual U18515EJ1V0UM

[Reference example of link directives]

SCONST : !LOAD ?R V0x280{
 .sconst = $PROGBITS ?A .sconst;
};

TEXT : !LOAD ?RX {
 .pro_epi_runtime= $PROGBITS ?AX.pro_epi_runtime;
 .text = $PROGBITS ?AX;
};

DATA : !LOAD ?RW 0x100000{
 .data = $PROGBITS ?AW;
 .sdata = $PROGBITS ?AWG;
 .sbss = $NOBITS ?AWG;
 .bss = $NOBITS ?AW;
};

CONST : !LOAD ?R V0x120000{
 .const = $PROGBITS ?A .const;
};

SEDATA : !LOAD ?RW V0xff6000 {
 .sedata = $PROGBITS ?AW .sedata;
 .sebss = $NOBITS ?AW .sebss;
};

SIDATA : !LOAD ?RW V0xffe000 {
 .tidata.byte = $PROGBITS ?AW .tidata.byte;
 .tibss.byte = $NOBITS ?AW .tibss.byte;
 .tidata.word = $PROGBITS ?AW .tidata.word;
 .tibss.word = $NOBITS ?AW .tibss.word;
 .sidata = $PROGBITS ?AW .sidata;
 .sibss = $NOBITS ?AW .sibss;
};

__tp_TEXT @ %TP_SYMBOL;
__gp_DATA @ %GP_SYMBOL &__tp_TEXT {DATA};
__ep_DATA @ %EP_SYMBOL;

Allocates SCONST segment to internal ROM. Allocated starting from
0x280 (for V853 CPU; different address is required for other CPUs) in order
to start allocation after the interrupt handler address.

The TEXT segment is allocated immediately after the SCONST
segment since a start address has not been specified. In other
words, the start address changes according to the size of the
SCONST segment. Note with caution, however, that if there is no
data to be allocated to the SCONST segment, the TEXT segment
is allocated starting immediately after the defined interrupt handler
address (address 0x280 is ignored).
In such cases, the address is specified to the TEXT segment.

DATA segment that is targeted for gp-relative referencing is allocated to
address 0x100000 (assuming that addresses starting at 0x100000 are in
the RAM area).

CONST segment is allocated (assuming that addresses starting at
0x120000 are in the ROM area).

Allocates SEDATA segment that is targeted for ep relative referencing.
Allocation is to an area within 32 KB of the internal RAM’s start address
(assuming that addresses starting at 0xff6000 are in the RAM area).

Allocates SIDATA segment that is targeted for ep relative
referencing to the internal RAM area. This segment’s start
address is usually the internal RAM’s start address, which varies
according to which CPU is being used.

This creates the tp, gp, and ep symbol information. In this case,
address 0x0 is set to __tp_TEXT, the ".sdata section’s start address -
__tp_TEXT" value is set to __gp_DATA, and the start address of
internal RAM (address 0xffe000) is set to __ep_DATA.

APPENDIX A LINK DIRECTIVE

User’s Manual U18515EJ1V0UM 121

[Allocation Image]

Even when section information has been coded
in the link directive file, if the program does not
contain anything to be allocated to a section,
the section will not be created.
For example, when a link directive is used to
define a .const section, unless the program
contains data to be allocated to the .const
section, the .const section will not be created.

4K-byte
(0x1000)

32K-byte
(0x8000)

256-byte
(0x100)

32K-byte
(0x8000)

32K-byte
(0x8000)

64K-byte
(0x10000)

.sidata

,tidata.word

Perifheral I/O register

.tibss.word

.sibss

.tibss.byte

.tidata.byte

.sebss

.sedata

.const

.bss

interrupt

.sbss

.sdata

.data

.text

.pro_eppi_runtime

.sconst

0xFFF000

0x0

0x280

0x100000

0xFFE000

0xFF6000

0x120000

tp

gp

ep

Maximum values are shown for the relative
values from the tp, gp, and ep pointers in this
figure. This means that the indicated sections
are included in that range (to save space, the
image shown at left uses a scale that differs
from the actual range scale).

It is assumed that the tp, gp, and ep pointer
values are set correctly based on the symbol
information. The following sort of program
must be coded, such as in a startup routine, to
implement the settings shown at left.

 mov #__tp_TEXT, tp
 mov #__gp_DATA, gp
 add tp, gp
 mov #__ep_DATA, ep

INDEX

122 User’s Manual U18515EJ1V0UM

INDEX

[A]
[Add Memory] dialog box ... 56

[Add Section] dialog box ... 59

[Add Symbol] dialog box ... 63

Adding memory ... 21

Adding object file ... 21

Adding section ... 21

Alignment condition ... 97, 102, 110

[B]
Background color ... 28, 30, 68

Base symbol name ... 110

bss attribute ... 85

[C]
Character color ... 68

Compiler ... 16

const attribute ... 85

Context menu ... 33

Creating new link directive file ... 20

[D]
data attribute ... 85

Device file ... 15

dialog box ... 44, 46, 48, 50, 52, 54, 56, 59, 63, 66

Drag-and-drop function ... 35

[E]
Element pointer ... 90

ep ... 90

ep symbol ... 109

Error message ... 71

[F]
Fill value ... 96

[Find] dialog box ... 52

[G]
Global pointer ... 87

gp ... 87

gp symbol ... 108

Groups ... 34

[H]
Hole size ... 96, 102

Host machine ... 16

[I]
Information message ... 74

Input section ... 103

Input section name ... 103

Installing ... 17

[M]
Main window ... 25

Mapping directive ... 75, 99

Maximum memory size ... 96

Memory display ... 27

Memory mapping view area ... 26

Menu bar ... 40

Message view area ... 39

Messages ... 70

Mirror image ... 27, 69

[N]
[New Link Directive] dialog box ... 44

Number of Undoes ... 68

[O]
Object file display ... 30

Object file name ... 104

[Open] dialog box ... 48

Operating Environment ... 16

[Option] dialog box ... 66

Output section name ... 100

[P]
PM+ ... 16

Pop-up ... 68

Property view area ... 36

[Q]
Question message ... 73

INDEX

User’s Manual U18515EJ1V0UM 123

[S]
[Save As] dialog box ... 50

sbss attribute ... 85

sdata attribute ... 85

Section ... 77

Section attribute ... 84, 101

Section display ... 29

Section type ... 84, 101

Segment ... 34, 77

Segment attributes ... 95

Segment directive ... 75, 93

Segment name ... 94, 111

Segment type ... 95

[Select Development Environment] dialog box ... 46

[Select Object File] dialog box ... 54

Starting LDG ... 18

Storing ... 22

Symbol ... 109

Symbol directive ... 76, 86

Symbol display ... 31

Symbol type ... 109

System Configuration ... 15

[T]
text attribute ... 85

Text pointer ... 86

Toolbar ... 43

tp ... 86

tp symbol ... 107

[W]
Warning message ... 71

NEC Electronics Corporation
1753, Shimonumabe, Nakahara-ku,
Kawasaki, Kanagawa 211-8668,
Japan
Tel: 044-435-5111
http://www.necel.com/

[America]

NEC Electronics America, Inc.
2880 Scott Blvd.
Santa Clara, CA 95050-2554, U.S.A.
Tel: 408-588-6000
 800-366-9782
http://www.am.necel.com/

[Asia & Oceania]

NEC Electronics (China) Co., Ltd
7th Floor, Quantum Plaza, No. 27 ZhiChunLu Haidian
District, Beijing 100083, P.R.China
Tel: 010-8235-1155
http://www.cn.necel.com/

NEC Electronics Shanghai Ltd.
Room 2511-2512, Bank of China Tower,
200 Yincheng Road Central,
Pudong New Area, Shanghai P.R. China P.C:200120
Tel: 021-5888-5400
http://www.cn.necel.com/

NEC Electronics Hong Kong Ltd.
Unit 1601-1613, 16/F., Tower 2, Grand Century Place,
193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: 2886-9318
http://www.hk.necel.com/

NEC Electronics Taiwan Ltd.
7F, No. 363 Fu Shing North Road
Taipei, Taiwan, R. O. C.
Tel: 02-8175-9600
http://www.tw.necel.com/

NEC Electronics Singapore Pte. Ltd.
238A Thomson Road,
#12-08 Novena Square,
Singapore 307684
Tel: 6253-8311
http://www.sg.necel.com/

NEC Electronics Korea Ltd.
11F., Samik Lavied’or Bldg., 720-2,
Yeoksam-Dong, Kangnam-Ku,
Seoul, 135-080, Korea
Tel: 02-558-3737
http://www.kr.necel.com/

For further information,
please contact:

G07.1A

[Europe]

NEC Electronics (Europe) GmbH
Arcadiastrasse 10
40472 Düsseldorf, Germany
Tel: 0211-65030
http://www.eu.necel.com/

Hanover Office
Podbielskistrasse 166 B
30177 Hannover
Tel: 0 511 33 40 2-0

Munich Office
Werner-Eckert-Strasse 9
81829 München
Tel: 0 89 92 10 03-0

Stuttgart Office
Industriestrasse 3
70565 Stuttgart
Tel: 0 711 99 01 0-0

United Kingdom Branch
Cygnus House, Sunrise Parkway
Linford Wood, Milton Keynes
MK14 6NP, U.K.
Tel: 01908-691-133

Succursale Française
9, rue Paul Dautier, B.P. 52
78142 Velizy-Villacoublay Cédex
France
Tel: 01-3067-5800

Sucursal en España
Juan Esplandiu, 15
28007 Madrid, Spain
Tel: 091-504-2787

Tyskland Filial
Täby Centrum
Entrance S (7th floor)
18322 Täby, Sweden
Tel: 08 638 72 00

Filiale Italiana
Via Fabio Filzi, 25/A
20124 Milano, Italy
Tel: 02-667541

Branch The Netherlands
Steijgerweg 6
5616 HS Eindhoven
The Netherlands
Tel: 040 265 40 10

	COVER
	INTRODUCTION
	CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1 OVERVIEW
	1. 1 Functional Outline
	1. 2 System Configuration
	1. 3 Operating Environment

	CHAPTER 2 INSTALLATION
	2. 1 Installing LDG
	2. 2 Folder Configuration
	2. 3 Uninstalling LDG

	CHAPTER 3 STARTING AND EXITING
	3. 1 Starting LDG
	3. 2 Exiting

	CHAPTER 4 GENERATION METHOD
	4. 1 Generation Procedure
	4. 2 Setting Development Environment
	4. 2. 1 Creating new link directive file
	4. 2. 2 Editing existing link directive file

	4. 3 Editing
	4. 3. 1 Adding memory
	4. 3. 2 Adding section
	4. 3. 3 Adding object file

	4. 4 Saving
	4. 4. 1 Format of link directive file

	CHAPTER 5 WINDOW REFERENCE
	5. 1 Overview of Window and Dialog Boxes of LDG
	5. 2 Explanation of Window and Dialog Boxes
	Main window
	[New Link Directive] dialog box
	[Select Development Environment] dialog box
	[Open] dialog box
	[Save As] dialog box
	[Find] dialog box
	[Select Object File] dialog box
	[Add Memory] dialog box
	[Add Section] dialog box
	[Add Symbol] dialog box
	[Option] dialog box

	CHAPTER 6 MESSAGES
	6. 1 Display Format
	6. 2 Error Message
	6. 3 Warning Message
	6. 4 Question Message
	6. 5 Information Message

	APPENDIX A LINK DIRECTIVE
	A. 1 Overview
	A. 1. 1 Specification Items

	A. 2 Sections and Segments
	A. 2. 1 Sections
	A. 2. 2 Segments
	A. 2. 3 Relationship between segments and sections
	A. 2. 4 Types of sections
	A. 2. 5 Relationship between types and attributes of sections

	A. 3 Symbols
	A. 3. 1 Text pointer (tp)
	A. 3. 2 Global pointer (gp)
	A. 3. 3 Element pointer (ep)

	A. 4 Link Directive Format
	A. 4. 1 Characters used in link directive file
	A. 4. 2 Link directive file name
	A. 4. 3 Segment directive
	A. 4. 4 Mapping directive
	A. 4. 5 Symbol directive

	A. 5 Defaults
	A. 6 Link Directive File Coding Examples

	INDEX

