

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Note that the following URLs in this document are not available: http://www.necel.com/http://www2.renesas.com/ Please refer to the following instead:Development Tools | http://www.renesas.com/toolsDownload | http://www.renesas.com/tool_download For any inquiries or feedback, please contact your region.http://www.renesas.com/inquiry

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

CA850 Ver. 3.20
C Compiler Package

C Language

User’s Manual

Target Device
 V850 Series

Printed in Japan

Document No. U18513EJ1V0UM00 (1st edition)
Date Published May 2007 CP(K)
© NEC Electronics Corporation 2007

User’s Manual U18513EJ1V0UM 2

[MEMO]

User’s Manual U18513EJ1V0UM 3

Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States
and/or other countries.

User’s Manual U18513EJ1V0UM 4

The information in this document is current as of May, 2007. The information is subject to change
without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or
data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all
products and/or types are available in every country. Please check with an NEC Electronics sales
representative for availability and additional information.
No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may
appear in this document.
NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from the use of NEC Electronics products listed in this document
or any other liability arising from the use of such products. No license, express, implied or otherwise, is
granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of a customer's equipment shall be done under the full
responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by
customers or third parties arising from the use of these circuits, software and information.
While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products,
customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To
minimize risks of damage to property or injury (including death) to persons arising from defects in NEC
Electronics products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment and anti-failure features.
NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and
"Specific".
The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-
designated "quality assurance program" for a specific application. The recommended applications of an NEC
Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of
each NEC Electronics product before using it in a particular application.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC
Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications
not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to
determine NEC Electronics' willingness to support a given application.

(Note)

•

•

•

•

•

•

M8E 02. 11-1

(1)

(2)

"NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its
majority-owned subsidiaries.
"NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as
defined above).

Computers, office equipment, communications equipment, test and measurement equipment, audio
and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots.
Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support).
Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

"Standard":

"Special":

"Specific":

User’s Manual U18513EJ1V0UM 5

[MEMO]

User’s Manual U18513EJ1V0UM 6

INTRODUCTION

Target Devices The V850 Series C compiler packages create the object codes for NEC

Electronics’s V850 Series RISC microcontrollers.

Readers This manual is intended for user engineers who wish to develop application
systems using the V850 Series C compiler package.

Purpose This manual explains the C language specifications supported by the C

compiler (ca850) included in the package.

Organization This manual contains the following information:
• OVERVIEW
• BASIC LANGUAGE SPECIFICATIONS
• COMPILATION ENVIRONMENT
• C LANGUAGE EXPANSION
• CALLING PROGRAM
• STARTUP ROUTINE
• LIBRARY FUNCTION
• FOR EFFICIENT USE

Notes on reading this manual • In this manual, sections on the V850 Series peculiar to “V850E” are

specified by the title name or the mark “ [V850E] ”. Sections peculiar to
other than “V850E” are specified by the title or the mark “ [V850] ”, etc..

 User’s Manual U18513EJ1V0UM 7

Related Documents Read this manual together with the following documents.
 The related documents indicated in this publication may include preliminary

versions. However, preliminary versions are not marked as such.

Documents related to development tools (user’s manuals)

Document Name Document No.

Operation U18512E

C Language This manual

Assembly Language U18514E

CA850 Ver. 3.20 C Compiler Package

Link Directives U18515E

PM+ Ver. 6.30 Project Manager U18416E

ID850 Ver. 3.00 Integrated Debugger Operation U17358E

ID850NW Ver. 3.10 Integrated Debugger Operation U17369E

ID850QB Ver. 3.20 Integrated Debugger Operation U17964E

Operation U17246E SM+ System Simulator

User Open Interface U18212E

SM850 Ver. 2.50 System Simulator Operation U16218E

SM850 Ver. 2.00 or Later System Simulator External Part User Open Interface Specifications U14873E

Basics U13430E

Installation U17419E

Technical U13431E

RX850 Ver. 3.20 or Later Real-Time OS

Task Debugger U17420E

Basics U18165E

Internal Structure U18164E

RX850 Pro Ver. 3.21 Real-Time OS

Task Debugger U17422E

Functionalities U16643E

Internal Structure U16644E

RX850V4 Ver. 4.22 Real-Time OS

Task Debugger U16811E

AZ850 Ver. 3.30 System Performance Analyzer U17423E

AZ850V4 Ver. 4.10 System Performance Analyzer U17093E

TW850 Ver. 2.00 Performance Analysis Tuning Tool U17241E

8 User’s Manual U18513EJ1V0UM

[MEMO]

User’s Manual U18513EJ1V0UM 9

 CONTENTS

CHAPTER 1 BASIC LANGUAGE SPECIFICATIONS ... 17

1.1 Dependent on Processing System Stipulated ... 18
1.1.1 Data type and size ... 18
1.1.2 Translation stages ... 18
1.1.3 Diagnosis message ... 18
1.1.4 Free-standing environment ... 18
1.1.5 Executing program ... 19
1.1.6 Character set ... 19
1.1.7 Multi-byte characters ... 19
1.1.8 Meaning of character indication ... 19
1.1.9 Translation limit ... 20
1.1.10 Quantitative limit ... 21
1.1.11 Identifier ... 23
1.1.12 char type ... 23
1.1.13 Floating-point constants ... 23
1.1.14 Character constants ... 23
1.1.15 Character string ... 24
1.1.16 Header file name ... 24
1.1.17 Comment ... 24
1.1.18 Signed constants and unsigned constants ... 25
1.1.19 Floating-points and general integers ... 25
1.1.20 double type and float type ... 25
1.1.21 Signed type in operator in bit units ... 25
1.1.22 Members of structures and unions ... 25
1.1.23 sizeof operator ... 25
1.1.24 Cast operator ... 26
1.1.25 Division/remainder operator ... 26
1.1.26 Addition and subtraction operators ... 26
1.1.27 Shift operator in bit units ... 26
1.1.28 Storage area class specifier ... 26
1.1.29 Structure and union specifier ... 27
1.1.30 Enumerate type specifier ... 27
1.1.31 Type qualifier ... 27
1.1.32 Condition embedding ... 27
1.1.33 Loading header file ... 28
1.1.34 #pragma directives ... 29
1.1.35 Predefined macro names ... 31
1.1.36 Definition of special data type ... 32

1.2 ANSI Option ... 33

CHAPTER 2 COMPILATION ENVIRONMENT ... 34

2.1 Internal Representation and Value Area of Data ... 34
2.1.1 Integer type ... 34
2.1.2 Floating-point type ... 35
2.1.3 Pointer type ... 36
2.1.4 Enumerate type ... 36
2.1.5 Array type ... 36
2.1.6 Structure type ... 37
2.1.7 Union type ... 37
2.1.8 Bit field ... 38
2.1.9 Alignment conditions ... 39

2.2 General-Purpose Registers ... 41

2.3 Referencing Data ... 42

2.4 Software Register Bank ... 43

10 User’s Manual U18513EJ1V0UM

2.4.1 Register modes ... 43
2.4.2 Register mode and library ... 44

2.5 Mask Register ... 45
2.5.1 Setting mask values ... 46
2.5.2 Using mask register function ... 47

2.6 Device File ... 48
2.6.1 Specifying device file ... 48
2.6.2 Notes on specifying device file ... 49

CHAPTER 3 C LANGUAGE EXPANSION ... 50

3.1 Allocation of Data to Section ... 51
3.1.1 #pragma section directive ... 58
3.1.2 Specifying link directive of specific data section ... 60
3.1.3 Notes on section allocation ... 61
3.1.4 Example of #pragma section directive ... 65

3.2 Allocating Functions to Sections ... 69
3.2.1 #pragma text directive ... 69
3.2.2 Specifying link directive of specific text section ... 71
3.2.3 Notes on #pragma text directive ... 72

3.3 Peripheral I/O Register ... 73
3.3.1 Accessing ... 73
3.3.2 Bit access ... 74

3.4 Describing Assembler Instruction ... 75

3.5 Controlling Interrupt Level ... 78
3.5.1 __set_il function ... 78
3.5.2 __set_il function and interrupt control register ... 79

3.6 Disabling Interrupts ... 81
3.6.1 Locally disabling interrupt in function ... 81
3.6.2 Disabling interrupts in entire function ... 81
3.6.3 Notes on disabling interrupts in entire function ... 83

3.7 Interrupt/Exception Processing Handler ... 84
3.7.1 Occurrence of interrupt/exception ... 84
3.7.2 Processing necessary in case of interrupt/exception ... 86
3.7.3 Describing interrupt/exception handler ... 89
3.7.4 Notes on describing interrupt/exception handler ... 93
3.7.5 Description example of interrupt/exception handler ... 95

3.8 Inline Expansion ... 96
3.8.1 Inline expansion ... 96
3.8.2 Conditions of inline expansion ... 97
3.8.3 Controlling inline expansion via options ... 99
3.8.4 Execution speed priority optimization and inline expansion ... 100
3.8.5 Examples of differences in inline expansion operation depending on option specification ... 101

3.9 Real-Time OS Support Function ... 102
3.9.1 Description of task ... 102

3.10 Embedded Functions ... 104
3.10.1 Interrupt control (DI/EI) ... 105
3.10.2 nop ... 105
3.10.3 halt ... 106
3.10.4 Saturated addition (satadd) ... 106
3.10.5 Saturated subtraction (satsub) ... 107
3.10.6 Halfword data byte swap (bsh) [V850E] ... 107
3.10.7 Word data byte swap (bsw) [V850E] ... 108
3.10.8 Word data halfword swap (hsw) [V850E] ... 108
3.10.9 Byte data sign extension (sxb) [V850E] ... 109
3.10.10 Halfword data sign extension (sxh) [V850E] ... 109
3.10.11 Instruction that assigns higher 32 bits of multiplication result to variable using mul instruction

[V850E] ... 110

User’s Manual U18513EJ1V0UM 11

3.10.12 Instruction that assigns higher 32 bits of unsigned multiplication result to variable using mulu
instruction [V850E] ... 111

3.10.13 Flag condition setting with logical left shift (sasf) [V850E] ... 112

3.11 Structure Packing Function ... 114
3.11.1 Structure packing specified ... 114
3.11.2 Rules of structure packing ... 115
3.11.3 Union ... 116
3.11.4 Bit field ... 117
3.11.5 Alignment condition of top structure object ... 118
3.11.6 Size of structure objects ... 118
3.11.7 Size of structure array ... 120
3.11.8 Area between objects ... 121
3.11.9 Notes concerning structure packing function ... 121

3.12 Binary Constants ... 123

CHAPTER 4 CALLING PROGRAM ... 124

4.1 Calling Between C Functions ... 124
4.1.1 Stack frame/function call ... 125

4.2 Calling Between C Function and Assembler Function ... 136
4.2.1 Calling assembler function from C function ... 136
4.2.2 Calling C function from assembler function ... 138

4.3 Prologue/Epilogue Processing of Function ... 140
4.3.1 Specifying use of runtime library function for prologue/epilogue of function ... 141
4.3.2 Calling runtime library for prologue/epilogue of function in V850Ex ... 142
4.3.3 Notes on calling runtime library for prologue/epilogue of function ... 143

4.4 Far Jump Function ... 144
4.4.1 Specifying far jump ... 144
4.4.2 File listing functions to be called by far jump function ... 145
4.4.3 Examples of using far jump function ... 146

CHAPTER 5 STARTUP ROUTINE ... 150

5.1 Operation of Startup Routine ... 150
5.1.1 Setting RESET handler when reset is input ... 152
5.1.2 Setting register mode of startup routine ... 153
5.1.3 Securing stack area and setting stack pointer (sp) ... 154
5.1.4 Securing argument area for main function ... 155
5.1.5 Setting text pointer (tp) ... 156
5.1.6 Setting global pointer (gp) ... 157
5.1.7 Setting element pointer (ep) ... 158
5.1.8 Setting mask value to mask registers (r20 and r21) ... 159
5.1.9 Initializing peripheral I/O registers that must be initialized before execution of main function ... 160
5.1.10 Initializing user target that must be initialized before execution of main function ... 162
5.1.11 Clearing sbss area to 0 ... 163
5.1.12 Clearing bss area to 0 ... 164
5.1.13 Clearing sebss area to 0 ... 165
5.1.14 Clearing tibss.byte area to 0 ... 166
5.1.15 Clearing tibss.word area to 0 ... 167
5.1.16 Clearing sibss area to 0 ... 168
5.1.17 Setting CTBP value for prologue/epilogue runtime library of functions ... 169
5.1.18 Setting BPC value of programmable peripheral I/O register ... 170
5.1.19 Setting r6 and r7 as argument of main function ... 171
5.1.20 Branching to main function ... 172
5.1.21 Branching to initialization routine of real-time OS ... 173

5.2 Example of Startup Routine ... 174

CHAPTER 6 LIBRARY FUNCTION ... 180

6.1 Supplied Libraries ... 180
6.1.1 Standard library ... 181
6.1.2 Mathematical library ... 187

12 User’s Manual U18513EJ1V0UM

6.1.3 Runtime library ... 190
6.1.4 ROMization library ... 192
6.1.5 Prologue/epilogue runtime library of functions ... 193

6.2 Header Files ... 196

6.3 Object Names Linked ... 197

6.4 Explanation of Format ... 198

6.5 Definition of Function with Variable Number of Arguments ... 199
STDARG ... 200

6.6 Management of Character String and Memory ... 202
STRING ... 203
MEMORY ... 207

6.7 Character Type Macros and Functions ... 209
CONV ... 210
CTYPE ... 212

6.8 Standard Input/Output ... 215
ERROR ... 216
FILEIO ... 217
GETS ... 219
PUTS ... 221
SPRINTF ... 223
PRINTF ... 227
SSCANF ... 230
SCANF ... 234

6.9 Standard Utility Functions ... 236
ABS ... 237
BSEARCH ... 238
DIV ... 240
ECVTF ... 242
ITOA ... 244
MALLOC ... 246
RAND ... 249
STRTODF ... 250
STRTOL ... 252

6.10 Non-Local Jump Functions ... 255
SETJMP ... 256

6.11 Mathematical Functions ... 258
BESSEL ... 260
ERFF ... 262
EXPF ... 263
FLOORF ... 265
FREXPF ... 267
GAMMAF ... 269
HYPOTF ... 270
MATHERR ... 271
SINHF ... 273
TRIG ... 275

6.12 Runtime Library ... 277
ADDF.S ... 279
CMPF.S ... 280
CVT.WS ... 282
DIV ... 283
DIVF.S ... 285
MOD ... 286
MUL ... 288
MULF.S ... 289
SUBF.S ... 290
TRNC.SW ... 291

User’s Manual U18513EJ1V0UM 13

CHAPTER 7 FOR EFFICIENT USE ... 292

7.1 volatile Qualifier ... 292

7.2 Declaration of Function Without Return Value ... 293

7.3 Pointers and Optimization ... 294

7.4 Assembler Code and Optimization ... 296

7.5 Registers ... 297
7.5.1 Register specifier ... 297
7.5.2 Static variables and external variables ... 297
7.5.3 Argument of function in K&R format ... 298
7.5.4 Optimum number of local variables to be assigned ... 298
7.5.5 Optimum number of arguments to be used for function ... 298
7.5.6 Other ... 299

7.6 Stack Size ... 300

7.7 Aligning Data ... 301

7.8 Data Type ... 302

APPENDIX A EXPANDED FUNCTIONS OF CC78Kx ... 305

A.1 #pragma Directive ... 305

A.2 Assembler Control Instructions ... 309

A.3 Specifying Interrupt/Exception Handler ... 309

A.4 Expanded Functions Not Supported ... 309

APPENDIX B CAUTIONS ... 310

APPENDIX C INDEX ... 317

14 User’s Manual U18513EJ1V0UM

 LIST OF FIGURES

Figure No. Title Page

2 - 1 Internal Representation of Integer Type ... 34
2 - 2 Internal Representation of Floating-Point Type ... 35
2 - 3 Internal Representation of Pointer Type ... 36
2 - 4 Internal Representation of Enumerate Type ... 36
2 - 5 Internal Representation of Array Type ... 36
2 - 6 Internal Representation of Structure Type ... 37
2 - 7 Internal Representation of Union ... 38
2 - 8 Internal Representation of Bit Field ... 38
2 - 9 Register Modes and Usable Registers ... 44
3 - 1 sdata and sbss Attribute Sections ... 51
3 - 2 sidata and sibss Sections ... 53
3 - 3 sedata and sebss Sections ... 54
3 - 4 tidata and tibss Sections ... 55
3 - 5 Image of Memory Allocation of Each Section ... 57
3 - 6 Image of Interrupt Handler Address ... 85
4 - 1 Stack Frame (When Argument Register Area Is Located at Center of Stack) ... 125
4 - 2 Stack Frame (When Argument Register Area Is Located at Beginning of Stack) ... 126
4 - 3 Generation/Disappearance of Stack Frame ... 128
4 - 4 Stack Growth Direction of Each Area of Stack Frame ... 130
4 - 5 Generation/Disappearance of Stack Frame ... 132
4 - 6 Stack Growth Direction of Each Area of Stack Frame ... 134
5 - 1 Example of Startup Routine ... 174
6 - 1 Image of Using Runtime Library ... 277

User’s Manual U18513EJ1V0UM 15

 LIST OF TABLES

Table No. Title Page

1 - 1 Expanded Notation and Meaning ... 19
1 - 2 Translation Limit ... 20
1 - 3 Limit Values Defined by limits.h File ... 21
1 - 4 Limit Values Defined by float.h File ... 22
1 - 5 A List of Supported Macros ... 31
1 - 6 Definition of NULL, size_t, ptrdiff_t(stddef.h File) ... 32
1 - 7 Processing When -ansi Option Strictly Conforming to Language Specifications Is Specified ... 33
2 - 1 Value Area of Integer Type ... 34
2 - 2 Value Area of Floating-Point Type ... 35
2 - 3 Alignment Condition for Basic Type ... 39
2 - 4 Alignment Condition for Union Type ... 39
2 - 5 Alignment Condition of Structure Type ... 40
2 - 6 Using General-Purpose Registers ... 41
2 - 7 Referencing Data ... 42
2 - 8 Register Modes Supplied by CA850 ... 43
3 - 1 Section Names Specified by User and Generated Section Names ... 59
3 - 2 Section Names Specified by User and Generated Section Names (text) ... 70
3 - 3 Enabling or Disabling Maskable Interrupt ... 78
3 - 4 Interrupt Control Functions ... 81
3 - 5 Interrupt/Exception Table (V850ES/SG2) ... 84
3 - 6 Registers for Register Variables ... 86
3 - 7 Stack Frame for Interrupt/Exception Handler ... 86
3 - 8 Stack Frame for Multiple Interrupt/Exception Handler ... 87
3 - 9 Usage of Registers ... 87
3 - 10 Processing for Saving/Restoring Registers During Interrupt ... 88
3 - 11 Trap Instructions and Software Exception Codes ... 91
3 - 12 Embedded Functions ... 104
4 - 1 Meanings of Macros for Functions ... 126
4 - 2 Method of Accessing Stack Area ... 127
4 - 3 Identifier ... 136
4 - 4 Registers for Register Variables ... 136
4 - 5 Registers for Register Variables ... 138
4 - 6 Work Registers ... 138
4 - 7 List of Prologue/Epilogue Runtime Functions ... 149
5 - 1 Startup Routine Samples ... 151
5 - 2 Symbols of sbss Area ... 163
5 - 3 Symbols of bss Area ... 164
5 - 4 Symbols of sebss Area ... 165
5 - 5 Symbols of tibss.byte Area ... 166
5 - 6 Symbols of tibss.word Area ... 167
5 - 7 Symbols of sibss Area ... 168
5 - 8 BPC Register ... 170
6 - 1 Supplied Libraries ... 180
6 - 2 Definition of Functions with Variable Number of Arguments ... 181
6 - 3 Character String Functions ... 182
6 - 4 Memory Management Functions ... 182
6 - 5 Conversion of Character ... 183
6 - 6 Classification of Characters ... 183
6 - 7 Standard I/O Functions ... 184
6 - 8 Standard Utility Functions ... 185
6 - 9 Non-Local Jump Functions ... 186
6 - 10 Mathematical Functions ... 188
6 - 11 Runtime Library ... 191
6 - 12 ROMization Copy Functions ... 192
6 - 13 List of Prologue Runtime Library Functions ... 193
6 - 14 List of Prologue Runtime Library Functions [V850E] ... 194

16 User’s Manual U18513EJ1V0UM

6 - 15 List of Epilogue Runtime Library Functions ... 194
6 - 16 List of Epilogue Runtime Library Functions [V850E] ... 195
6 - 17 Header Files ... 196
6 - 18 Definition of Function with Variable Number of Arguments ... 199
6 - 19 Functions for Character String/Memory Management ... 202
6 - 20 Character Type Macros ... 209
6 - 21 Standard Input/Output ... 215
6 - 22 Standard Utility Functions ... 236
6 - 23 Non-Local Jump Functions ... 255
6 - 24 Mathematical Functions ... 258
6 - 25 Runtime Library ... 278

CHAPTER 1 BASIC LANGUAGE SPECIFICATIONS

User’s Manual U18513EJ1V0UM 17

CHAPTER 1 BASIC LANGUAGE SPECIFICATIONS

This chapter explains the basic language specifications supported by the CA850.

The CA850 supports the language specifications stipulated by the ANSI standards. These specifications

include items that are stipulated as processing definitions. This chapter explains the language specifications of

the items dependent on the processing system of the V850 microcontrollers.

The differences between when options strictly conforming to the ANSI standards are used and when those

options are not used are also explained.

For the expanded specifications of the CA850, refer to "CHAPTER 3 C LANGUAGE EXPANSION".

18 User’s Manual U18513EJ1V0UM

CHAPTER 1 BASIC LANGUAGE SPECIFICATIONS

1.1 Dependent on Processing System Stipulated

This section explains items dependent on processing system stipulated by ANSI standards.

1.1.1 Data type and size

- The number of bits of 1 byte is 8.

- The number of bytes, byte order, and coding in an object are stipulated as follows.

The byte order in a word is "from lower to higher". Signed integers are expressed as 2's complements. The

most significant bit indicates a sign (0 if positive or 0, and 1 if negative).

1.1.2 Translation stages

The ANSI standards specify eight translation stages (known an "phases") of priorities among syntax rules for

translation. In the third translation phase "decomposition of source file into preprocessing tokens and sequences

of white-space characters", whether each nonempty sequence of white-space characters other than new-line is

retained or replaced by one space character is implementation-defined. In this implementation, each nonempty

sequence of white-space characters other than new-line is retained, not replaced by one space character.

1.1.3 Diagnosis message

Error messages including the source file name and line number (only when the line number can be specified)

are output in response to a translation unit that violates a syntax rule or limit. These error messages are

classified into three types: "alarm", "fatal error", and "other error" messages.

1.1.4 Free-standing environment

(1) The name and type of a function called on starting program processing are not stipulated in a free-standing

environmentNote. Therefore, they are dependent on the user-own coding or target system.

(2) The effect of terminating a program in a free-standing environment is not stipulated. Therefore, it is

dependent on the user-own coding or target system.

Note Environment in which a C program is executed without using the functions of the operating system.

The ANSI Standards specify two environments: a free-standing environment and a host environment.

The CA850 does not supply a host environment at present.

char type 1 byte

short type 2 bytes

int, long, float, double type 4 bytes

Pointer Same as unsigned int type

CHAPTER 1 BASIC LANGUAGE SPECIFICATIONS

User’s Manual U18513EJ1V0UM 19

1.1.5 Executing program

The configuration of the interactive unit is not stipulated. Therefore, it is dependent on the uuser-own coding

and target system.

1.1.6 Character set

The values of elements of the execution environment character set are ASCII codes.

1.1.7 Multi-byte characters

Multibyte characters are not supported by character constants. However, comments and character strings in

Japanese are supported.

1.1.8 Meaning of character indication

The values of expanded notation are stipulated as follows:

Table 1 - 1 Expanded Notation and Meaning

Expanded Notation Value (ASCII) Meaning

\a
\b
\f
\n
\r
\t
\v

07
08
0C
0A
0D
09
0B

Alert (alarm sound)
Back space
Form feed (new page)
New line (carriage return)
Carriage return (return)
Horizontal tab
Vertical tab

20 User’s Manual U18513EJ1V0UM

CHAPTER 1 BASIC LANGUAGE SPECIFICATIONS

1.1.9 Translation limit

The limit values of translation are explained below.

The values marked * are guaranteed values. These values may be exceeded in some cases, but the operation

is not guaranteed.

Note The upper limit of the macro identifier can be changed by a C compiler option (-Xm).

Table 1 - 2 Translation Limit

Contents limit Value

Number of nesting levels of compound statements, repetitive control structures, and
selective control structures (however, dependent on the number of "case" labels)

127

Number of nesting levels of condition embedding 255

Number of pointers, arrays, and function declarators (in any combination) qualifying one
arithmetic type, structure type, union type, or incomplete type in one declaration

16

Number of nesting levels enclosed by parentheses in a complete declarator 255(*)

Number of nesting levels of an expression enclosed by parentheses in a complete
expression

255(*)

Valid number of first characters in a macro name 1023(*)

Valid number of first characters of an external identifier 1022

Valid number of first characters in an internal identifier 1023

Number of identifiers having the valid block range declared by an external identifier in one
translation unit and in one basic block

4095(*)

Number of macro identifiers simultaneously defined in one translation unitNote 2047

Number of dummy arguments in one function definition and number of actual arguments in
one function call

255

Number of dummy arguments in one macro definition 127

Number of actual arguments in one macro call 127

Number of characters in one logical source line 32768

One character string constant after concatenation, or number of characters in a wide
character string constant

32768

Number of nesting levels for include (#include) files 50

Number of "case" labels for one "switch" statement (including those nested, if any) 1025

Number of members of a single structure or single union 1023(*)

Number of enumerate constants in a single enumerate type 1023(*)

Number of nesting levels of a structure or union definition in the arrangement of a single
structure declaration

63(*)

CHAPTER 1 BASIC LANGUAGE SPECIFICATIONS

User’s Manual U18513EJ1V0UM 21

1.1.10 Quantitative limit

(1) The limit values of the general integer types (limits.h file)

The limits.h file stipulates the limit values of the values that can be expressed as general integer types (char

type, signed/unsigned integer type, and enumerate type).

Because multibyte characters are not supported, MB_LEN_MAX does not have a corresponding limit, and is

only defined with MB_LEN_MAX as 1.

If a -Xchar=unsigned optionNote of the CA850 is specified, CHAR_MIN is 0, and CHAR_MAX takes the same

value as UCHAR_MAX.

The limit values defined by the limits.h file are as follows.

Note Specify a simple char type code.

Table 1 - 3 Limit Values Defined by limits.h File

Name Value Meaning

CHAR_BIT 8 The number of bits (= 1 byte) of the minimum object not
in bit field

SCHAR_MIN - 128 Minimum value of signed char type

SCHAR_MAX + 127 Maximum value of signed char type

UCHAR_MAX + 255 Maximum value of unsigned char type

CHAR_MIN - 128 Minimum value of char type

CHAR_MAX + 127 Maximum value of char type

SHRT_MIN - 32768 Minimum value of short int type

SHRT_MAX + 32767 Maximum value of short int type

USHRT_MAX + 65535 Maximum value of unsigned short int type

INT_MIN - 2147483648 Minimum value of int type

INT_MAX + 2147483647 Maximum value of int type

UINT_MAX + 4294967295 Maximum value of unsigned int type

LONG_MIN - 2147483648 Minimum value of long int type

LONG_MAX + 2147483647 Maximum value of long int type

ULONG_MAX + 4294967295 Maximum value of unsigned long int type

22 User’s Manual U18513EJ1V0UM

CHAPTER 1 BASIC LANGUAGE SPECIFICATIONS

(2) The limit values of the floating-point type (float.h file)

The limit values related to the characteristics of the floating-point type are defined by the float.h file.

The limit values defined by the float.h file are as follows.

Table 1 - 4 Limit Values Defined by float.h File

Name Value Meaning

FLT_ROUNDS + 1 Rounding mode for floating-point addition.
1 for the V850 microcontrollers (rounding in the nearest
direction).

FLT_RADIX + 2 Radix of exponent (b)

FLT_MANT_DIG + 24 Number of numerals (p) with FLT_RADIX of floating-
point mantissa as base

DBL_MANT_DIG + 24

LDBL_MANT_DIG + 24

FLT_DIG + 6 Number of digits of a decimal numberNote 1 (q) that can
round a decimal number of q digits to a floating-point
number of p digits of the radix b and then restore the
decimal number of q

DBL_DIG + 6

LDBL_DIG + 6

FLT_MIN_EXP - 125 Minimum negative integer (emin) that is a normalized
floating-point number when FLT_RADIX is raised to the
power of the value of FLT_RADIX minus 1.DBL_MIN_EXP - 125

LDBL_MIN_EXP - 125

FLT_MIN_10_EXP - 37 Minimum negative integer log10bemin- 1 that falls in the
range of a normalized floating-point number when 10 is
raised to the power of its value.

DBL_MIN_10_EXP - 37

LDBL_MIN_10_EXP - 37

FLT_MAX_EXP + 128 Maximum integer (emax) that is a finite floating-point
number that can be expressed when FLT_RADIX is
raised to the power of its value minus 1.DBL_MAX_EXP + 128

LDBL_MAX_EXP + 128

FLT_MAX_10_EXP + 38 Maximum integer log10((1- b- p) * bemax) that falls in the
range of a finite floating-point number when 10 is raised
to the power of its value.

DBL_MAX_10_EXP + 38

LDBL_MAX_10_EXP + 38

FLT_MAX 3.40282347E + 38F Maximum number of finite floating-point numbers that

can be expressed (1 - b - p) * bemax
DBL_MAX 3.40282347E + 38F

LDBL_MAX 3.40282347E + 38F

FLT_EPSILON 1.19209290E - 07F DifferenceNote 2 between 1.0 that can be expressed by
specified floating-point number type and the lowest
value which is greater than 1.0, b1 - pDBL_EPSILON 1.19209290E - 07F

LDBL_EPSILON 1.19209290E - 07F

FLT_MIN 1.17549435E - 38F Minimum value of normalized positive floating-point

number bemin - 1
DBL_MIN 1.17549435E - 38F

LDBL_MIN 1.17549435E - 38F

CHAPTER 1 BASIC LANGUAGE SPECIFICATIONS

User’s Manual U18513EJ1V0UM 23

Notes 1 DBL_DIG and LDBL_DIG are 10 or more in the ANSI standards but 6 in the V850 microcontrollers

because both the double and long double types are 32 bits.

2 DBL_EPSILON and LDBL_EPSILON are 1E-9 or less in the ANSI standards, but 1.19209290E-07F in

the V850 microcontrollers.

1.1.11 Identifier

An external name must consist of up to 1022 characters and must be able to be identified uniformly.

Uppercase and lowercase characters are distinguished.

1.1.12 char type

A char type with no type specifier (signed, unsigned) specified is treated as a signed integer as the default

assumption. However, a simple char type can be treated as an unsigned integer by specifying the -

Xchar=unsigned optionNote of the CA850.

The types of those that are not included in the character set of the source program required by the ANSI

standards (escape sequence) is converted for storage, in the same manner as when types other than char type

are substituted for a char type.

Note Specify a simple char type code.

Example

1.1.13 Floating-point constants

The floating-point constants conform to IEEE754Note.

Note IEEE: Institute of Electrical and Electronics Engineers

IEEE754 is a standard to unify specifications such as the data format and numeric range in systems

that handle floating-point operations.

1.1.14 Character constants

(1) Both the character set of the source program and the character set in the execution environment are

basically ASCII codes, and correspond to members having the same value.

For the character set of the source program, however, character codes in Japanese can be used (refer to

"1.1.15 Character string").

(2) The last character of the value of an integer character constant including two or more characters is valid.

char c = ’\777’ /* Value of c is -1. */

24 User’s Manual U18513EJ1V0UM

CHAPTER 1 BASIC LANGUAGE SPECIFICATIONS

(3) A character that cannot be expressed by the basic execution environment character set or escape

sequence is expressed as follows.

(a) An octal or hexadecimal escape sequence takes the value indicated by the octal or hexadecimal

notation.

(b) The simple escape sequence is expressed as follows.

(c) Character constants of multibyte characters are not supported.

1.1.15 Character string

The default character code is Shift JIS.

A character code can be changed by using the -Xk option of the CA850.

Option specification

The character codes in the output object file can be converted by the -Xkt option of the CA850.

Option specification

If n or none is specified, the character code is not converted.

1.1.16 Header file name

The method to reflect the string in the two formats (< > and " ") of a header file name on the header file or an

external source file name is stipulated in "1.1.33 Loading header file".

1.1.17 Comment

A comment can be described in Japanese. The character code is the same as the character string in "1.1.15

Character string".

\777 511

\' '

\" "

\? ?

\\ \

-Xk=[e | euc | n | none | s | sjis]

-Xkt=[e | euc | n | none | s | sjis]

CHAPTER 1 BASIC LANGUAGE SPECIFICATIONS

User’s Manual U18513EJ1V0UM 25

1.1.18 Signed constants and unsigned constants

If the value of a general integer type is converted into a signed integer of a smaller size, the higher bits are

truncated and a bit string image is copied.

If an unsigned integer is converted into the corresponding signed integer, the internal representation is not

changed.

1.1.19 Floating-points and general integers

If the value of a general integer type is converted into the value of a floating-point type, and if the value to be

converted is within a range that can be expressed but not accurately, the result is rounded to the closest

expressible valueNote.

Note If the value is precisely in the middle, it is rounded to an even number (with the least significant bit of

the mantissa being 0).

1.1.20 double type and float type

In the processing system of the V850 microcontrollers, a double type is expressed as a floating-point number

in the same manner as a float type, and is treated as 32-bit (single-precision) data.

1.1.21 Signed type in operator in bit units

The characteristics of the shift operator conform to the stipulation in "1.1.27 Shift operator in bit units". The

other operators in bit units for signed type are calculated as unsigned values (as in the bit image).

1.1.22 Members of structures and unions

If the value of a member of a union is stored in a different member, it is stored according to an alignment

condition. Therefore, the members of that union are accessed according to the alignment condition (refer to

"2.1.6 Structure type" and "2.1.7 Union type").

In the case of a union that includes a structure sharing the arrangement of the common first members as a

member, the internal representation is the same, and the result is the same even if the first member common to

any structure is referenced.

1.1.23 sizeof operator

The value resulting from the "sizeof" operator conforms to the stipulation related to the bytes in an object in

"1.1.1 Data type and size". The number of bytes in a structure and union includes padding.

26 User’s Manual U18513EJ1V0UM

CHAPTER 1 BASIC LANGUAGE SPECIFICATIONS

1.1.24 Cast operator

When a pointer is converted into a general integer type, the required size of the variable is the same as the

size of the int type. The bit string is saved as is as the conversion result.

Any integer can be converted by a pointer. However, the result of converting an integer smaller than an int type

is expanded according to the type.

1.1.25 Division/remainder operator

The result of the division operator ("/") when the operands are negative and do not divide perfectly with integer

division, is as follows:

If either the divisor or the dividend is negative, the result is the smallest integer greater than the algebraic

quotient. If both the divisor and the dividend are negative, the result is the largest integer less than the algebraic

quotient.

If the operand is negative, the result of the "%" operator takes the sign of the first operand in the expression.

1.1.26 Addition and subtraction operators

If two pointers indicating the elements of the same array are subtracted, the type of the result is int type, and

the size is 4 bytes.

1.1.27 Shift operator in bit units

If E1 of "E1 >> E2" is of signed type and takes a negative value, an arithmetic shift is executed.

1.1.28 Storage area class specifier

The storage area class specifier "register" is declared to increase the access speed as much as possible, but

this is not always effectiveNote.

Note For the registers to be allocated, refer to "7.5.1 Register specifier".

CHAPTER 1 BASIC LANGUAGE SPECIFICATIONS

User’s Manual U18513EJ1V0UM 27

1.1.29 Structure and union specifier

(1) A simple int type bit field without signed or unsigned appended is treated as a signed field, and the most

significant bit is treated as the sign bit. However, the simple int type bit field can be treated as an unsigned

field by specifying the -Xbitfield optionNote of the CA850.

Note Specify a simple int type bit field code.

(2) To retain a bit field, a storage area unit to which any address with sufficient size can be assigned can be

allocated. If there is insufficient area, however, the bit field that does not match is packed into to the next

unit according to the alignment condition of the type of the field.

(3) The allocation sequence of the bit field in unit is from lower to higher.

(4) Each member of the non-bit field of one structure or union is aligned at a boundary as follows.

1.1.30 Enumerate type specifier

The type of an enumeration specifier is signed int.

When the -Xenum_type=string option is specified, however, it is as follows.

1.1.31 Type qualifier

The configuration of access to data having a type qualified to be "volatile" is dependent upon the address (I/O

port, etc.) to which the data is mapped.

1.1.32 Condition embedding

(1) The value for the constant specified for condition embedding and the value of the character constant

appearing in the other expressions are equal.

(2) The character constant of a single character must not have a negative value.

char, unsigned char type, and its array Byte boundary

short, unsigned short type, and its array Halfword boundary

Others (including pointer) Word boundary

char Treated as char

uchar Treated as unsigned char

short Treated as short

ushort Treated as unsigned short

28 User’s Manual U18513EJ1V0UM

CHAPTER 1 BASIC LANGUAGE SPECIFICATIONS

1.1.33 Loading header file

(1) A preprocessing directive in the form of "#include <character string>"

A preprocessing directive in the form of "#include <character string>" searches for a header file from the folder

specified by the -I option if "character string" does not begin with "\"Note 2, and then searches the ..\inc850 folder

with a relative path from the bin folder where the ca850 is placed.

If a uniformly identified header file is searched with a character string specified between delimiters "<" and ">",

the whole contents of the header file are replaced.

Notes Both "\" and "/" are regarded as the delimiters of a folder.

Example

The search order is as follows:

(1) Folder specified by -I

(2) Standard folder

(2) A preprocessing directive in the form of "#include "character string""

A preprocessing directive in the form of "#include "character string"" searches for a header file from the folder

where the source file exists, and then searches the ..\inc850 folder via a relative path from the bin folder where

the ca850 is placed.

If a header file uniformly identified is searched with a character string specified between delimiters (") and ("),

the whole contents of the header file are replaced.

Example

The search order is as follows:

(1) Folder where source file exists

(2) Folder specified by -I

(3) Standard folder

(3) The format of "#include preprocessing character phrase string"

The format of "#include preprocessing character phrase string" is treated as the preprocessing character

phrase only if the preprocessing character phrase string is a macro that is replaced to the form of <character

string> or "character string".

(4) Between a string delimited (finally) and a header file name

Between a string delimited (finally) and a header file name, the length of the alphabetic characters in the string

is identified, and the file name length valid in the compiler operating environment is valid. The folder that

searches a file conforms to the above stipulation.

#include <header.h>

#include "header.h"

CHAPTER 1 BASIC LANGUAGE SPECIFICATIONS

User’s Manual U18513EJ1V0UM 29

1.1.34 #pragma directives

The CA850 can specify the following #pragma directives.

(1) Description with assembler instruction

Assembler directives can be described in a C language source program.

For the details of description, refer to "3.4 Describing Assembler Instruction".

(2) Inline expansion specification

A function that is expanded inline can be specified.

For the details of expansion specification, refer to "3.8 Inline Expansion".

(3) Device type specification

Specify so that a device file defining the machine-dependent information of the device used is referenced.This

function is the same as the device specification option (-cpu) of the CA850.

For the device file, refer to "2.6 Device File".

(4) Data or program memory allocation

(a) section

Allocates variables to an arbitrary section. For details about the allocation method, refer to "3.1 Allocation of

Data to Section".

(b) text

A function to be allocated in a text section with an arbitrary name can be specified. For details about the

allocation specification, refer to "3.2 Allocating Functions to Sections" by Specifying Section Name.

(5) Peripheral I/O register name validation specification

The peripheral I/O registers of a device are accessed by using peripheral function register names. For the

details of access, refer to "3.3 Peripheral I/O Register" by Using Register Name.

(6) Interrupt/exception handler specification

#pragma asm

assembler instruction

#pragma endasm

#pragma inline function-name [, function-name ...]

#pragma cpu device-name

#pragma section section-type ["section-name"] [begin | end]

#pragma text ["section-name"] function-name

#pragma ioreg

#pragma interrupt interrupt-request-name function-name [allocation-method]

30 User’s Manual U18513EJ1V0UM

CHAPTER 1 BASIC LANGUAGE SPECIFICATIONS

Interrupt exception handlers are described in C language.

For details, refer to "3.7 Interrupt/Exception Processing Handler".

(7) Interrupt disable function specification

Interrupts are disabled for the entire function.

For description, refer to "3.6 Disabling Interrupts".

(8) Task specification

A task that runs on an RTOS is described in C language.

For details, refer to "3.9.1 Description of task".

(9) Structure type packing specification

Specifies the packing of a structure type. The packing value, which is an alignment value of the member, is

specified as the numeric value. A value of 1, 2, 4, or 8 can be specified. When the numeric value is not specified,

the setting is the default assumption.

For details, refer to "3.11 Structure Packing Function".

#pragma block_interrupt function-name

#pragma rtos_task [function-name]

#pragma pack([1248])

CHAPTER 1 BASIC LANGUAGE SPECIFICATIONS

User’s Manual U18513EJ1V0UM 31

1.1.35 Predefined macro names

All the following macro names are supported.

Macros not ending with "__" are supplied for the sake of former C language specifications (K&R

specifications). To perform processing strictly conforming to the ANSI standards, use macros with "__" before

and after.

Note For the processing to be performed when the -ansi option is specified, refer to "1.2 ANSI Option".

Table 1 - 5 A List of Supported Macros

Macro Name Definition

__LINE__ Line number of source line at that point (decimal).

__FILE__ Name of assumed source file (character string constant).

__DATE__ Date of translating source file (character string constant in the form of
"Mmm dd yyyy". The name of the month is the same as that created by
the asctime function stipulated by the ANSI standards (three alphabetic
characters with only the first character being uppercase) and the first
character of dd is blank if its value is less than 10).

__TIME__ Translation time of source file (character string constant having format
"hh:mm:ss" similar to the time created by the asctime function).

__STDC__ Decimal constant 1 (defined when -ansi option is specified)Note

__v800
__v800__

Decimal constant 1

__v850
__v850__

Decimal constant 1

__v850e
__v850e__

Decimal constant 1 (defined by CA850, if V850Ex is specified as a target
device)

__v850e2
__v850e2__

Decimal constant 1 (defined by CA850, if V850E2/xxx is specified as a
target device)

__CA850
__CA850__

Decimal constant 1

__CHAR_SIGNED__ Decimal constant 1 (defined if signed is specified by -Xchar option or
when -Xchar option is not specified)

__CHAR_UNSIGNED__ Decimal constant 1 (defined when unsigned is specified by -Xchar option)

__DOUBLE_IS_32BITS__ Decimal constant 1

_DOUBLE_IS_32BITS Decimal constant 1

CPU macro Decimal constant 1 of a macro indicating the target CPU. A character
string indicated by "product type specification" in the device file with "__"
prefixed and suffixed is defined.

Register mode macro Decimal constant 1 of a macro indicating the target CPU.
Macros defined as a register mode are as follows.
 32 register mode : __reg32__
 26 register mode : __reg26__
 22 register mode : __reg22__

32 User’s Manual U18513EJ1V0UM

CHAPTER 1 BASIC LANGUAGE SPECIFICATIONS

1.1.36 Definition of special data type

NULL, size_t, and ptrdiff_t defined by stddef.h file are as follows.

Table 1 - 6 Definition of NULL, size_t, ptrdiff_t(stddef.h File)

NULL / size_t / ptrdiff_t Definition

NULL ((void *)0)

size_t unsigned int

ptrdiff_t int

CHAPTER 1 BASIC LANGUAGE SPECIFICATIONS

User’s Manual U18513EJ1V0UM 33

1.2 ANSI Option

If the -ansi option is specified by the CA850, processing strictly conforming to the ANSI standards is

performed. The difference between when the -ansi option is specified and when it is not specified are as follows.

Notes 1 Normal error beginning with "E". The same applies hereafter.

2 char type, signed/unsigned integer type, and enumerate type

3 Refer to the ANSI standards.

4 Refer to "3.4 Describing Assembler Instruction".

Table 1 - 7 Processing When -ansi Option Strictly Conforming to Language Specifications Is Specified

Item -ansi Specified -ansi Not Specified

Trigraph series Replaces trigraph series. Does not replace.

Bit field ErrorNote 1 occurs if type other than int is
specified for bit field.

Outputs alarm message and
permits.

Scope of argument Multiple defined error occurs if automatic
variable having same name as argument of
function is declared.

Outputs alarm message and
validates automatic variable.

Substitution of pointer
1

Error occurs if numeric value of pointer type is
substituted into general integer typeNote 2

variable.

Outputs alarm message,
casts, and substitutes.

Substitution of pointer
2

Error occurs if pointers indicating different types
are substituted for each other.

Outputs alarm message and
permits.

Type conversion Error occurs if conversion into pointer of array
that is not left-member value is performed.

Outputs alarm message and
permits.

Comparison operator Error occurs if comparison is made between
arithmetic type variable and pointer.

Outputs alarm message and
permits.

Conditional operator Error occurs if both second and third
expressions are not general integer type, same
structure, same union, or numeric value of
pointer type to type same as substitution
destination.

Outputs alarm message,
casts, and substitutes.

line number Error occurs. Treated in same manner as
"#line line number"Note 3.

Character # in middle
of line

Error occurs if character '#' appears in middle of
line.

Outputs warning message
and enables the character

_asm Outputs warning message and treats the
character as function call.
However, __asm is valid.

Treated as assembler
insertionNote 4

__STDC__ Defines as macro with value of 1. Does not define.

Binary constant Error occurs if "0b" or "0B" is followed by one or
more "0" or "1".

Treats "0b" or "0B" followed
by one or more "0" or "1" as
a binary constant.

34 User’s Manual U18513EJ1V0UM

CHAPTER 2 COMPILATION ENVIRONMENT

CHAPTER 2 COMPILATION ENVIRONMENT

This chapter explains how the CA850 handles data, registers, and the environment during execution.

2.1 Internal Representation and Value Area of Data

This section explains the internal representation and value area of each type for the data handled by the

CA850.

2.1.1 Integer type

(1) Internal representation

The leftmost bit in an area is a sign bit with a signed type (type declared without "unsigned"). The value of a

signed type is expressed as 2's complement.

If -Xchar=unsigned is specified, however, a char type specified without "signed" or "unsigned" is assumed to

be unsigned.

Figure 2 - 1 Internal Representation of Integer Type

(2) Value area

Table 2 - 1 Value Area of Integer Type

Type Value Area

charNote -128 to +127

short -32768 to +32767

int -2147483648 to +2147483647

long -2147483648 to +2147483647

unsigned char 0 to 255

char (no sign bit for unsigned)

short (no sign bit for unsigned)

int,long (no sign bit for unsigned)

7

15

31

0

0

0

CHAPTER 2 COMPILATION ENVIRONMENT

User’s Manual U18513EJ1V0UM 35

Note The value area is 0 to 255 if "-Xchar=unsigned" is specified by the CA850.

Caution 64-bit operation cannot do the CA850.

2.1.2 Floating-point type

(1) Internal representation

The internal representation of floating-point type data conforms to IEEE754Note.

The leftmost bit in the area is the sign bit. If the value of this sign bit is 0, the data is a positive value; if it is 1,

the data is a negative value.

A double type is a floating-point representation the same as a float type, and is handled as 32-bit (single-

precision) data.

Note IEEE: Institute of Electrical and Electronics Engineers

IEEE754 is a standard to unify specifications such as the data format and numeric range in systems

that handle floating-point operations.

Figure 2 - 2 Internal Representation of Floating-Point Type

S : Sign bit of mantissa

E : Exponent (8 bits)

M : Mantissa (23 bits)

(2) Value area

unsigned short 0 to 65535

unsigned int 0 to 4294967295

unsigned long 0 to 4294967295

Table 2 - 2 Value Area of Floating-Point Type

Type Value Area of Absolute Value

float,double 1.18 x 10-38 to 3.40 x 1038

Table 2 - 1 Value Area of Integer Type

Type Value Area

float,double

31 023 22
S E M

36 User’s Manual U18513EJ1V0UM

CHAPTER 2 COMPILATION ENVIRONMENT

2.1.3 Pointer type

(1) Internal representation

The internal representation of a pointer type is the same as that of an unsigned int type.

Figure 2 - 3 Internal Representation of Pointer Type

2.1.4 Enumerate type

(1) Internal representation

The internal representation of an enumerate type is the same as that of a signed int type. The leftmost bit of

the area is the sign bit.

Figure 2 - 4 Internal Representation of Enumerate Type

2.1.5 Array type

(1) Internal representation

The internal representation of an array type arranges the elements of an array in the form that satisfies the

array condition(alignment) of the elements.

The internal representation of the array shown above is as follows.

Figure 2 - 5 Internal Representation of Array Type

char a[8] = { 1, 2, 3, 4, 5, 6, 7, 8 }

31 0

31 0

7 00 0 0 0 0 0 07 7 7 7 7 77

CHAPTER 2 COMPILATION ENVIRONMENT

User’s Manual U18513EJ1V0UM 37

2.1.6 Structure type

(1) Internal representation

The internal representation of a structure type arranges the elements of a structure in a form that satisfies the

alignment condition of the elements.

Example

The internal representation of the structure shown above is as follows.

Figure 2 - 6 Internal Representation of Structure Type

For the internal representation when the structure type packing function is used, refer to "3.11 Structure

Packing Function".

2.1.7 Union type

(1) Internal representation

A union is considered as a structure whose members all start with offset 0 and that has sufficient size to

accommodate any of its members. The internal representation of a union type is like each element of the union is

placed separately at the same address.

Example

The internal representation of the union shown in the above example is as follows.

struct {

short s1;

int s2;

char s3;

long s4;

} tag;

union {

int u1;

short u2;

char u3;

long u4;

} tag;

31 00 0 031 31 318 7 16 15
s4 s3 s2 s1

38 User’s Manual U18513EJ1V0UM

CHAPTER 2 COMPILATION ENVIRONMENT

Figure 2 - 7 Internal Representation of Union

2.1.8 Bit field

(1) Internal representation

An area including the declared number of bits is reserved for a bit field. The most significant bit of the area for

a bit field declared to be of signed type is a sign bit.

The bit field declared first is allocated from the least significant bit of a word area. If the alignment condition of

the type specified in the declaration of a bit field is exceeded as a result of allocating an area that immediately

follows the area of the preceding bit field to the bit field, the area is allocated starting from a boundary that

satisfies the alignment condition.

Example

The internal representation for the bit field in the above example is as follows.

Figure 2 - 8 Internal Representation of Bit Field

The ANSI standards do not allow char and short types to be specified for a bit field, but CA850 allows this. In

this case, a warning message is output, and padding is performed according to the alignment condition of the

specified typeNote.

For the internal representation of bit field when the structure type packing function is used, refer to "3.11

Structure Packing Function".

Note An error occurs if -ansi is specified as an option of the CA850.

struct {

unsigned int f1 : 30;

int f2 : 14;

unsigned int f3 : 6;

} flag;

31 0

tag

tag.u1,tag.u4(4bytes)

tag.u2(2bytes)

tag.u3(1byte)

31 00 3120 19 14 13 29
f3 f2 f1

CHAPTER 2 COMPILATION ENVIRONMENT

User’s Manual U18513EJ1V0UM 39

2.1.9 Alignment conditions

(1) Alignment conditions for basic type

Table 3-3 shows the alignment conditions for basic types. If -Xi of the CA850 is specified, however, all the

alignment types are word boundaries.

(2) Alignment condition for union type

The alignment condition for the union type varies as shown in Table 3-4, depending on the maximum member

size.

Here are examples of the respective cases:

Example 1

Example 2

Table 2 - 3 Alignment Condition for Basic Type

Basic Type Alignment Condition

(unsigned) char and its array type Byte boundary

(unsigned) short and its array type Halfword boundary

Other basic types (including pointer) Word boundary

Table 2 - 4 Alignment Condition for Union Type

Maximum Member Size Alignment Condition

2 bytes < size Word boundary

Size <= 2 bytes Maximum member size boundary

union tug1 {

unsigned short i; /* 2-byte member */

unsigned char c; /* 1-byte member */

}; /* The union is aligned with 2 bytes. */

union tug2 {

unsigned int i; /* 4-byte member */

unsigned char c; /* 1-byte member */

}; /* The union is aligned with 4 bytes. */

40 User’s Manual U18513EJ1V0UM

CHAPTER 2 COMPILATION ENVIRONMENT

(3) Alignment condition for structure type

The alignment condition for the structure type differs as shown in Table 3-5, depending on the size of the

structure (excluding the size of the integer). If -Xi of the CA850 is specified, however, all the structure types are

word boundaries.

Here are examples of the respective cases:

Example 1

Example 2

Example 3

Example 4

(4) Alignment condition for function argument

The alignment condition for a function argument is a word boundary.

(5) Alignment condition for executable program

The alignment condition when an executable object file is created by linking object files is a halfword boundary.

Table 2 - 5 Alignment Condition of Structure Type

Structure Size Alignment Condition

2 bytes < size Word boundary

Size <= 2 bytes If member of type more than int type exists Word boundary

If there is no member of type more than int type,
and 1 byte < size <= 2 bytes

Halfword boundary

If there is no member of type more than int type,
and size <= 1 byte

Byte boundary

struct SS {

int i; /* 4-byte member */

char c; /* 1-byte member */

}; /* Structure is aligned with 4 bytes. */

struct BIT_I {

int i1 : 5; /* 4-byte member (size is 1 byte or less) */

}; /* Structure is aligned with 4 bytes because member type is int. */

struct BIT_C {

char c1 : 5; /* 1-byte member */

}; /* Structure is aligned with 1 byte. */

struct BIT_CC {

char c1 : 5; /* 1-byte member */

char c2 : 5; /* 1-byte member */

}; /* Structure is aligned with 2 bytes because size is 2 bytes. */

CHAPTER 2 COMPILATION ENVIRONMENT

User’s Manual U18513EJ1V0UM 41

2.2 General-Purpose Registers

Table 3-6 shows how the CA850 uses the general-purpose registers.

The general-purpose registers includes the following functions.

(1) Software register bank

The number of the work registers (r10 through r19) and register variable registers (r20 through r29) used can

be reduced by the -reg option of CA850 (refer to "2.4 Software Register Bank").

(2) Mask register function

In the 32-register mode and 22-register mode, registers r20 and r21 can be used to set a mask value (refer to

"2.5 Mask Register").

Note For the allocation of data to a section, refer to "3.1 Allocation of Data to Section".

Table 2 - 6 Using General-Purpose Registers

Register Usage

r0 Zero register Used for operation as value of 0.
Also used to reference data located at const section
(read-only section placed in ROM area)Note.

r1 Assembler-reserved register Used for instruction expansion by assembler.

r2(hp) Handler stack pointer Reserved for system.

r3(sp) Stack pointer Used to indicate beginning of stack frame.

r4(gp) Global pointer Used to reference external variable.

r5(tp) Text pointer Used to indicate beginning of text section (.text section)

r6 - r9 Argument registers Used to pass argument.

r10 - r19 Work registers Used as work register during operation (r10 is also
used to pass return value of function).

r20 - r29 Register variable registers Used as an area for register variables.

r30(ep) Element pointer Used to reference external variable specified to be
located in internal RAM or external RAM sectionNote.

r31(lp) Link pointer Used to pass return address of function.

42 User’s Manual U18513EJ1V0UM

CHAPTER 2 COMPILATION ENVIRONMENT

2.3 Referencing Data

How the CA850 references data are as follows.

Table 2 - 7 Referencing Data

Type Referencing Method

Numeric constant Immediate

Character constant Offset from global pointer (gp)
Offset from r0 register

Automatic variable,
argument

Offset from stack pointer (sp)

External variable,
static variable in function

Offset from global pointer (gp)
Offset from element pointer (ep)
Offset from r0 register

Function address Operated during execution by using offset from text pointer (tp)

CHAPTER 2 COMPILATION ENVIRONMENT

User’s Manual U18513EJ1V0UM 43

2.4 Software Register Bank

Because the CA850 implements a register bank function by software, three register modes are provided. By

specifying these register modes efficiently, the contents of some registers do not need to be saved or restored

when an interrupt occurs or the task is switched. As a result, the processing speed can be improved.

The register modes are specified by using the register mode specification option (-reg) of CA850.

This function reduces the number of registers internally used by the CA850 on a step-by-step basis.

As a result, the following effects can be expected:

(1) The registers not used can be used for the application program (that is, a source program in assembly

language).

(2) The overhead required for saving and restoring registers can be reduced.

Note In an application program that has many variables to be allocated to registers by the CA850, the

variables so far allocated to a register are accessed from memory when a register mode has been

specified. As a result, the processing speed may drop.

2.4.1 Register modes

Next table and next Figure show the three register modes supplied by the CA850.

Table 2 - 8 Register Modes Supplied by CA850

Mode Work Registers Register Variable Registers

32-register mode (default) r10 - r19 r20 - r29

26-register mode r10 - r16 r23 - r29

22-register mode r10 - r14 r25 - r29

44 User’s Manual U18513EJ1V0UM

CHAPTER 2 COMPILATION ENVIRONMENT

Figure 2 - 9 Register Modes and Usable Registers

Specification example on command line

2.4.2 Register mode and library

A library supplied by the CA850 (refer to "CHAPTER 6 LIBRARY FUNCTION") is provided for each register

mode.

The standard folders that search a library are "Install Folder\lib850" and "Install Folder\lib850\r32" as the

default assumption. If the 22- or 26-register mode is specified by the CA850, however, "Install Folder \lib850\r22"

or "Install Folder\lib850\r26" is used as the standard folder for the library, in the place of "Install

Folder\lib850\r32".

If ld850 is not started from the CA850 but object files are linked by directly starting ld850 from the command

line, however, a library suitable for each register mode must be specified by specifying the -reg option of ld850.

> ca850 -cpu 3201 -reg26 file.c -- compiled in 26-register mode

Other Registers

31 0
r0

r10

r19
r20

r29

r31

Work Registers

Register Variable
Registers

Other Registers

31 0 31 0
r0 r0

r10 r10

r16
r17

r22
r23

r29

r31 r31

r29

r25
r24

r14
r15

32-register mode 26-register mode 22-register mode

Register that can be used
freely for application

CHAPTER 2 COMPILATION ENVIRONMENT

User’s Manual U18513EJ1V0UM 45

2.5 Mask Register

When byte data or halfword data is loaded from the memory to a register, the V850 microcontrollers sign-

extends the data to a word length according to the value of the most significant bit of the data. Therefore, mask

codes of the higher bits may be generated during an unsigned char or unsigned short type data (refer to "7.8

Data Type") operation. When storing the result of an operation to a register variable, mask codes are generated

to clear the higher bits if the result of the operation is unsigned byte data or unsigned halfword data.

Generation of mask codes can be prevented if word data is used. If word data cannot be used and the mask

codes are generated, the code size can be reduced by using the mask register function.

However, to decide whether the mask register function is to be used or not, the following points must be

carefully considered for the code where the mask register function may be used.

(1) Whether the program outputs many mask codes

(2) Two register variable registers will not be able to be used because they will be used as mask registers.Will

this cause any difficulties

The CA850 uses r20 and r21 as mask registers, as shown in the example below, when the mask register

function is used. Note that mask values must be set to the mask registers by program.

Mask code generation example

unsigned char UC;

unsigned short US;

void func(void)

{

register unsigned char ruc;

register unsigned short rus;

 :

UC *= UC;

 :

ruc = UC;

rus = US;

 :

}

-- Normal code

ld.b $UC, r11

andi 0xff, r11, r11

mulh r11, r11

st.b r11, $UC

:

ld.b $UC, r29

andi 0xff, r29, r29

ld.h $US, r28

andi 0xffff, r28, r28

-- Code when mask register is used

ld.b $UC, r11

and r20, r11

mulh r11, r11

st.b r11, $UC

:

ld.b $UC, r29

and r20, r29

ld.h $US, r28

and r21, r28

46 User’s Manual U18513EJ1V0UM

CHAPTER 2 COMPILATION ENVIRONMENT

An instruction that executes "an operation on unsigned data" has been added to the V850Ex and the CA850

outputs a code that uses this instruction. When the V850Ex is used, therefore, setting to use the mask register

may not have as much effect as expected.

2.5.1 Setting mask values

Mask values (0xff and 0xffff) must be set to r20 and r21, which are used as mask registers, via the program.

The CA850 generates mask codes using the mask registers, assuming that the mask values have been set.

Example of setting of mask value

If the program uses an RTOS, however, the mask values are automatically set according to the RTOS type.

(1) When RX850 is used

Because the mask values are automatically set by the initialization routine of the RX850, they do not have to

be set by program.

(2) When RX850 Pro is used

The mask values must be set in advance by using the startup module.

(3) When real-time OS is not used

Set the mask values in advance by using the startup moduleNote.

Note The startup module crtN.s (for 32-register mode) supplied with the package sets the mask values

(refer to "CHAPTER 5 STARTUP ROUTINE").

__start :

mov #__tp_TEXT, tp

mov #__gp_DATA, gp

:

mov 0xff, r20 -- Sets mask value to r20

mov 0xffff, r21 -- Sets mask value to r21

:

jarl _main, lp

CHAPTER 2 COMPILATION ENVIRONMENT

User’s Manual U18513EJ1V0UM 47

2.5.2 Using mask register function

This section describes the specifications for using the mask register functions and points to be noted.

(1) To newly compile C language source file

By specifying the mask register function option (-Xmask_reg) of the CA850, an assembly language source

program including the mask codes that use the mask registers and information indicating that the mask register

function is used (".option mask_reg" directive) is output.

(2) Checking during linking

Once the link editor has been started by specifying the mask register function option (-Xmask_reg) of the

compiler, the object file with the file name information (information specified by the ".file" directive) that indicates

that the object file has been created from the .c file is checked while the object file is linked. If an object using the

mask register function and an object that does not use the function exist together at this time, an error occurs.

Notes 1 Objects included in an archive file (.a file) are not checked. To use an .a file created by the user,

confirm that the mask registers are not used.

2 To start ld850 alone from the command line of the DOS window, an option that performs checking

during linking (-mc) must be specified.

(3) When using created assembly language source file

If the program is described in an assembly language from the beginning, check that the contents of the mask

registers are not lost. The mask registers are not checked during linking because the file name information is not

".c".

Whether or not the contents of the mask registers are lost can be confirmed by a warning message that is

output when the assembler is executed, if the -m option that specifies the use of the mask registers is specified

in the assembler.

(4) Supplied library restrictions

Although the object files in the archive file are not checked during linking, almost all the libraries in the package

do not destroy the contents of the mask registers. The bsearch function in the standard library, however, may

destroy the contents of the mask registers because it calls an application function. Therefore, do not use the

bsearch function when the mask register function is used (the compiler does not output an error even if the

bsearch function is used)Note.

Note The bsearch function in the standard library, however, may destroy the contents of the mask registers

because it calls an application function. Therefore, do not use the bsearch function when the mask

register function is used (The CA850 does not output an error even if the bsearch function is used).

48 User’s Manual U18513EJ1V0UM

CHAPTER 2 COMPILATION ENVIRONMENT

2.6 Device File

A device file is a binary file that contains information dependent upon the device type. One device file is

available for each device or group of target devices as a package. The compiler references a device file to

generate object codes corresponding to the target system that is used in the application system. Therefore,

place the device file to be used under the standard folder for the device file. If the device is placed under any

other folder, specify the folder using a compiler option; otherwise an error occurs during compilation because the

device file is not found.

2.6.1 Specifying device file

A device file that is referenced by a program in C language can be specified in the following two ways.

(1) Specifying device name using compiler option (-cpu device-name)

Example

When building a program with PM+, specifying a device has an effect equivalent to specifying this option.

(2) Specifying device name using #pragma directive (#pragma cpu device-name) in C language source file

Example

In this example, the device name is "3201" (V850ES/SA2).

The character strings that can be specified as "device name" are common to option specification and the

#pragma directive. Uppercase and lowercase characters are not distinguished.

For the character strings that can be specified as a device name, refer to the Architecture User's Manual of

each device.

Notes 1 When specifying a device name using the #pragma directive, device specification must be

described in all source files.

2 Specify a device name at the beginning of a source file when using the #pragma directive. Only

preprocessing that has nothing to do with C language syntax and comments can be described

before specification of the device name. If a device name is specified in C language syntax, the

compiler outputs the following error message and stops processing.

Example of incorrect specification

> ca850 -cpu 3201 file.c

#pragma cpu 3201

F2625: illegal placement ' #pragma cpu '

#include <stdio.h>

int i;

#pragma cpu 3201

:

CHAPTER 2 COMPILATION ENVIRONMENT

User’s Manual U18513EJ1V0UM 49

2.6.2 Notes on specifying device file

(1) If no device name is specified

If a device file is specified by neither the #pragma directive nor the -cpu option, and if neither the -cn option nor

the -cnv850e optionNote is specified, the compiler outputs the following error message and stops compiling.

Note A device file is necessary during linking even if the -cn or -cnv850e option is specified.

(2) If device is specified by both option and #pragma directive

The compiler outputs a warning message and continues processing, giving priority to the option. If different

device names are specified by two or more options or #pragma directives, the compiler outputs the following

message and stops processing.

(3) Program described in assembler instructions

In this case also, a device must be specified by an assembler option or the .option quasi directive when an

object file that can be linked is created.

F2620: unknown cpu type, cannot compile

F2622: duplicated cpu type

50 User’s Manual U18513EJ1V0UM

CHAPTER 3 C LANGUAGE EXPANSION

CHAPTER 3 C LANGUAGE EXPANSION

This chapter explains the language specifications expanded by the CA850.

The expanded specifications include how to specify section location of data and access the internal peripheral

function registers of the device, how to insert assembler code in a C language source program, how to specify

inline expansion for each function, how to define a handler when an interrupt or exception occurs, how to disable

interrupts at the C language level, the valid RTOS functions when a real-time OS is used for the target

environment, and how to embed instructions in a C language source program.

CHAPTER 3 C LANGUAGE EXPANSION

User’s Manual U18513EJ1V0UM 51

3.1 Allocation of Data to Section

When external variables and data are defined in a source, the CA850 allocates them to memory.

The memory location to which the variables and data are allocated is, basically, an area that can be referenced

by an offset from the address pointed to by the global pointer (gp). If the variables or data are accessed in the

program, therefore, the CA850 attempts to output a code that accesses the area using gp, by default.

At this time, the CA850 attempts to output a code that allocates data to an area that can be referenced from gp

by one instruction, in order to enhance the object efficiency and execution efficiency as much as possible. Since

the range that can be referenced by one instruction from gp must be within +32 K bytes (a total of 64 K bytes)

from gp according to the V850 architecture, the CA850 has dedicated sections in the +32 K bytes area from gp.

These sections are called the sdata and sbss attribute sections.

Figure 3 - 1 sdata and sbss Attribute Sections

In many cases, however, variables exceed in this range when using an application that uses many variables.

In this case, the variables must be allocated to other sections. The CA850 has many sections to which variables

and data can be allocated, in addition to the sdata and sbss attribute sections. Each of these sections has its

own feature and sections to which variables that must be accessed quickly can be allocated are also available,

so that the sections can be selected depending on the usage. The sections that can be used in the CA850 are

explained below.

(1) sdata and sbss attribute sections

These sections can be referenced from gp with one instruction and must be allocated within +32 K bytes from

gp.

Data with initial values is allocated to the sdata attribute section, and data without initial values is allocated to

the sbss attribute section.

The CA850 first attempts to generate a code that is to be allocated to these sections. If the code exceeds the

upper limit of the section of these attributes, the compiler generates a code that allocates data to a data or bss

attribute section.

To increase the amount of data to be allocated to the sdata or sbss attribute sections, the upper size limit for

the data to be allocated can be specified with the "-G" option of the CA850 so that data in excess of this upper

limit is not allocated to the sdata or sbss attribute sections (refer to CA850 for Operation User’s Manual for

details of this option).

sdata attribute

sbss attribute

section

gp

32K bytes
(0x8000)

32K bytes
(0x8000)

High Address

52 User’s Manual U18513EJ1V0UM

CHAPTER 3 C LANGUAGE EXPANSION

Use the #pragma section directive to specify a variable to be allocated to the sdata or sbss attribute section in

the program (refer to "3.1.1 #pragma section directive" for details).

(2) data and bss attribute sections

These sections can be referenced from gp with two instructions. Since access is performed after address

generation, the code becomes correspondingly longer and the execution speed also drops, but the entire 32-bit

space can be accessed. In other words, these sections can be allocated anywhere as long as they are in RAM.

Use the #pragma section directive to specify a variable to be allocated to the data or bss attribute section in

the program (refer to "3.1.1 #pragma section directive" for details).

(3) sconst attribute section

This is a section that can be referenced from r0, in other words from address 0, with 1 instruction, and must be

allocated within +32 bytes from address 0. Basically, data that can be fixed to ROM is allocated to this section.

In the case of V850 devices with internal ROM, in many cases the internal ROM is assigned from address 0,

and data that should be referenced with 1 instruction and that can be fixed to ROM is allocated to the sconst

attribute section. Variables/data declared by adding the const qualifier are subject to allocation to the sconst

attribute section. If the data exceeds the upper limit of this attribute section, it is allocated to the const attribute

section.

To increase the amount of data to be allocated to the sconst attribute section, the upper size limit for the data

to be allocated can be specified with the "-Xsconst" option of the CA850 so that data in excess of this upper limit

is not allocated to the sconst attribute section (refer to CA850 for Operation User’s Manual for details of this

option).

Use the #pragma section directive to specify a variable to be allocated to the sconst attribute section in the

program (refer to "3.1.1 #pragma section directive" for details).

#pragma section sdata begin

int a=1; /* allocated to sdata attribute section */

int b; /* allocated to sbss attribute section */

#pragma section sdata end

#pragma section data begin

int a=1; /* allocated to data attribute section */

int b; /* allocated to bss attribute section */

#pragma section data end

#pragma section sconst begin

const int a=1; /* allocated to sconst attribute section */

#pragma section sconst end

CHAPTER 3 C LANGUAGE EXPANSION

User’s Manual U18513EJ1V0UM 53

(4) const attribute section

This is a section that can be referenced from r0, in other words from address 0, with two instructions. Data that

can be fixed to ROM that exceeds the upper limit of the sconst attribute section, or data that should be allocated

to external ROM in the case of ROMless devices of the V850 microcontrollers, is allocated to the const attribute

section. Variables/data declared by adding the const qualifier are subject to allocation to the const attribute

section. The variables declared by adding the const qualifier are allocated to the const attribute section, string

literal even if allocation to the .const section is not specified by the #pragma section directive. Since access is

performed after address generation, the code becomes correspondingly longer and the execution speed also

drops, but the entire 32-bit space can be accessed. In other words, the const attribute section can be allocated

anywhere as long as it is in the 32-bit space. Use the #pragma section directive to specify a variable to be

allocated to the const attribute section in the program (refer to "3.1.1 #pragma section directive" for details).

(5) sidata and sibss attribute sections

These sections can be referenced from ep (element pointer) with 1 instruction toward higher addresses. In

other words, these sections are allocated in the 32 K bytes space toward higher addresses from ep.

Figure 3 - 2 sidata and sibss Sections

Data with initial values is allocated to the tidata attribute section, and data without initial values is allocated to

the tibss attribute section. If variables that exceed the upper limit of the sdata and sbss attribute sections that can

be accessed from gp with 1 instruction, but which need to be accessed with 1 instruction still exist, they can be

allocated in the range that can be accessed with 1 instruction using ep.The sidata and sibss attribute sections

are sections for access toward higher addresses from ep; the sedata and sebss attribute sections are sections

for access toward lower addresses from ep.

Use the #pragma section directive to specify a variable to be allocated to the sidata or sibss attribute section in

the program (refer to "3.1.1 #pragma section directive" for details).

#pragma section const begin

const int a=1; /* allocated to const attribute section */

#pragma section const end

#pragma section sidata begin

int a=1; /* allocated to sidata attribute section */

int b; /* allocated to sibss attribute section */

#pragma section sidata end

sidata attribute

sibss attribute

section

ep

32K bytes
(0x8000)

High Address

54 User’s Manual U18513EJ1V0UM

CHAPTER 3 C LANGUAGE EXPANSION

(6) sedata and sebss attribute sections

These sections can be referenced from ep (element pointer) with 1 instruction toward lower addresses. In

other words, these sections are allocated within 64 K bytes toward lower addresses from ep.

Figure 3 - 3 sedata and sebss Sections

Data with initial values is allocated to the sedata attribute section, and data without initial values is allocated to

the sebss attribute section. If variables that exceed the upper limit of the sdata and sbss attribute sections that

can be accessed from gp with 1 instruction, but which need to be accessed with 1 instruction still exist, they can

be allocated in the range that can be accessed with 1 instruction using ep. The sidata and sibss attribute

sections are sections for access toward higher addresses from ep; the sedata and sebss attribute sections are

sections for access toward lower addresses from ep.

Use the #pragma section directive to specify a variable to be allocated to the sedata or sebss attribute section

in the program (refer to "3.1.1 #pragma section directive" for details).

#pragma section sedata begin

int a=1; /* allocated to sedata attribute section */

int b; /* allocated to sebss attribute section */

#pragma section sedata end

sedata attribute

sebss attribute

section

ep

32K bytes
(0x8000)

High Address

CHAPTER 3 C LANGUAGE EXPANSION

User’s Manual U18513EJ1V0UM 55

(7) tidata (tidata.byte, tidata.word) and tibss (tibss.byte, tibss.word) attribute sections

These sections can be referenced from ep (element pointer) with 1 instruction toward higher addresses. These

sections are accessed with 1 instruction in the same manner as the sidata and sibss attribute sections, but differ

in terms of the assembler instruction to be used.

The sidata and sibss attribute sections use the 4-byte st/ld instruction for store/reference, whereas the tidata

and tibss attribute sections use the 2-byte sst/sld instruction to perform access. In other words, the code

efficiency of the tidata and tibss attribute sections is better than that of the sidata and sibss attribute sections.

However, the range in which sst/sld instructions can be applied is small, so it is not possible to allocate a large

number of variables.

Figure 3 - 4 tidata and tibss Sections

Data with initial values is allocated to the tidata (tidata.byte, tidata.word) attribute section, and data without

initial values is allocated to the tibss (tibss.byte, tibss.word) attribute section. Specify the tidata.byte/tibss.byte

attribute to allocate byte data, and specify the tidata.word/tibss.word attribute to allocate word data. To select

automatic byte/word judgment by the CA850, specify the tidata/tibss attribute.

The tidata and tibss attribute sections are used to allocate data that must be accessed the fastest in the

system. However, the data to be allocated to these sections must be carefully selected because the quantity of

data that can be allocated to these sections is limited. Use the #pragma section directive to specify variables to

be allocated to the tidata.byte/tibss.byte or tidata.word/tibss.word attribute section in the program (refer to "3.1.1

#pragma section directive" for details).

tidata.word attribute

tibss.word attribute

section

ep

256 bytes
(0x100)

High Address
tidata.byte attribute

tibss.byte attribute

56 User’s Manual U18513EJ1V0UM

CHAPTER 3 C LANGUAGE EXPANSION

The efficiency can be enhanced in terms of execution speed if variables or data that are especially frequently

used in the system are selected and allocated to the tidata (tidata.byte, tidata.word) or tibss (tibss.byte or

tibss.word) attribute section.

The CA850 has a section file generator that investigates the frequency of reference.

The frequency information obtained as a result of the investigation is output as a frequency information file.

The code that allocates data to the tidata (tidata.byte, tidata.word) or tibss (tibss.byte, tibss.word) attribute

section is output based on this information. The user can edit the frequency information file to select variables

that should be allocated to the tidata (tidata.byte, tidata.word) or tibss (tibss.byte, tibss.word) attribute section by

priority. The variables can then be allocated to these sections without qualifying the source.

Refer to CA850 for Operation User’s Manual for details of the section file generator and frequency information

file.

Figure 3 - 5 shows an example of memory allocation of each section.

#pragma section tidata_byte begin

char a=1; /* allocated to tidata.byte attribute section */

unsigned char b; /* allocated to tibss.byte attribute section */

#pragma section tidata_byte end

#pragma section tidata_word begin

int a=1; /* allocated to tidata.word attribute section */

short b; /* allocated to tibss.word attribute section */

#pragma section tidata_word end

#pragma section tidata begin

int a=1; /* allocated to tidata.word attribute section */

char b; /* allocated to tibss.byte attribute section */

#pragma section tidata end

CHAPTER 3 C LANGUAGE EXPANSION

User’s Manual U18513EJ1V0UM 57

Figure 3 - 5 Image of Memory Allocation of Each Section

.tidata.word section

.tibss.word section

.tidata.byte section

.tibss.byte section

.sidata section

.sibss section

Peripheral
I/O register

.sebss section

.sedata section

.const section

.bss section

.sbss section

.sdata section

.data section

.sconst section

.text section

Interrupt/exception table

r0-relative access area

ep-relative access area

gp-relative access area

tp-relative access area

Other

Address 0

tp

gp

ep

ep is generally set at
the beginning of internal RAM

gp points to the start address
of the .sdata section +32 K bytes

Within 32KB

Within 32 K bytes

Within
256 bytes

Within
128 bytes

Within 32 K bytes

.sbss and .sdata are allocated within 64 K bytes

58 User’s Manual U18513EJ1V0UM

CHAPTER 3 C LANGUAGE EXPANSION

3.1.1 #pragma section directive

How to allocate data to a section using the #pragma section directive is explained below.

(1) To use default section name as is

Describe the #pragma section directive in the following format when using the section name defined by the

CA850 as is.

The following can be specified as the section-type.

- data

- sdata

- sedata

- sidata

- tidata

- tidata.word

- tidata.byte

- sconst

- const

The name of the bss attribute section must not be specified as the section type. The CA850 automatically

allocates declared or defined data with initial values to the data attribute section, and data without initial values to

the bss attribute section.

In the above case, "variable a" is allocated to the data-attribute .sdata section because it has an initial value,

and "variable b" is allocated to the sbss-attribute sbss section because it does not have an initial value.

Two or more variable declarations or definitions can be described between "#pragma section section-type

begin" and "#pragma section section-type end". Enumerate variables to be allocated for each section type.

Use "_" (underscore) instead of "." (period) to specify tidata.word or tidata.byte as the section type, as shown

below.

- tidata_word

- tidata_byte

#pragma section section-type begin

variable-declaration/definition

#pragma section section-type end

#pragma section sdata begin

int a=1; /* allocated to sdata attribute section */

int b; /* allocated to sbss attribute section */

#pragma section sdata end

CHAPTER 3 C LANGUAGE EXPANSION

User’s Manual U18513EJ1V0UM 59

(2) To assign original section name

The user can assign a specific name to the sections with the following attributes, and can allocate variables

and data to those sections.

- data

- sdata

- sconst

- const

In this case, describe the #pragma section directive in the following format.

However, ".section-type" is appended to a section name actually generated by this method as follows.

This is to prevent a section with another attribute and having the same name from being created because the

section attribute is classified into data or bss depending on whether the data has an initial value or not. Specify a

generated section name when specifying a section in a link directive file. Refer to "3.1.2 Specifying link directive

of specific data section" for an example of specification in a link directive file.

The following table shows specific examples of section names specified by the user and generated section

names.

If the name is specified as follows, "variable a" is allocated to the mysdata.sdata section because it has an

initial value, and "variable b" is allocated to the mysdata.sbss section because it does not have an initial value.

#pragma section section-type "created-section-name" begin

Variable declaration/definition

#pragma section section-type "created-section-name" end

created-section-name.section-type

Table 3 - 1 Section Names Specified by User and Generated Section Names

Section Name
Specified by User Section Type Character String

Appended Generated Section Name

mydata data attribute .data/.bss mydata.data/mydata.bss

mysdata sdata attribute .sdata/.sbss mysdata.sdata/mysdata.sbss

myconst const attribute .const myconst.const

mysconst sconst attribute .sconst mysconst.sconst

#pragma section sdata "mysdata" begin

int a=1; /* allocated to mysdata.sdata attribute section */

int b; /* allocated to mysdata.sbss attribute section */

#pragma section sdata "mysdata" end

60 User’s Manual U18513EJ1V0UM

CHAPTER 3 C LANGUAGE EXPANSION

3.1.2 Specifying link directive of specific data section

When a specific section is created using the #pragma section directive, describe that section in a link directive

file as explained below.

If "variable a" and "variable b" are specified as follows in a C language source, "variable a" is allocated to the

mysdata.sdata section because it has an initial value, and "variable b" is allocated to the mysdata.sbss section

because it does not have an initial value.

At this time, the variable can be allocated to a specific section if the mapping directive in the link directive file is

described as follows.

Since the variables are allocated in the order in which they are described, change the description order to

change the allocation order. It is also possible to specify the start address of the section directly (generally, a

segment is created first and a mapping directive, which specifies the start address of a section in segment units,

is then described in that segment).

Because the attribute of mysdata.data is "$PROGBITS?AW" and that of mysdata.bss is "$NOBITS?AW", do

not omit the input section (".data", ".bss", "mysdata.data", and "mysdata.bss" on the rightmost side of the

mapping directive in the above example) from mapping directives that have the same attribute as these.

Example

If an input section is omitted from a mapping directive having the same "$PROGBITS?AW" or "$NOBITS?AW"

attribute, the linker links and locates all the sections having that attribute. Consequently, data is not allocated to

the specific section created by the user. This means that the data that should be allocated to the mysdata.data

section is allocated to the .data section, and the data that should be allocated to the mysdata.bss section is

allocated to the .bss section.

Refer to CA850 for Link Directive User’s Manual for details of the format of the link directive file.

#pragma section sdata "mysdata" begin

int a=1; /* allocated to mysdata.sdata attribute section */

int b; /* allocated to mysdata.sbss attribute section */

#pragma section sdata "mysdata" end

.data = $PROGBITS ?AW .data;

.bss = $NOBITS ?AW .bss;

mysdata.data = $PROGBITS ?AW mysdata.data;

mysdata.bss = $NOBITS ?AW mysdata.bss;

.data = $PROGBITS ?AW;

.bss = $NOBITS ?AW;

CHAPTER 3 C LANGUAGE EXPANSION

User’s Manual U18513EJ1V0UM 61

3.1.3 Notes on section allocation

Notes below must be noted when sections are allocated by the #progma section directive, the const qualifier,

or the section file.

(1) An error occurs during compilation if the #pragma section directive is specified as follows.

- Section allocation is nested.

- begin and end of #pragma section cross.

- Either begin or end of #pragma section is missing.

Example of incorrect specification: "Nesting of sections"

Example of incorrect specification: "Crossing sections"

(2) If a section is specified for an automatic variable, the specification is ignored. Section specification is a

function for external variables.

(3) When specifying a specific section name, keep the length of the name to within 256 characters.

#pragma section data begin

int a=1

#pragma section sdata begin

short b;

char c=0x10

#pragma section sdata end

int d;

#pragma section data end

#pragma section data begin

int a=1

#pragma section sdata begin

short b;

char c=0x10

#pragma section data end

int d;

#pragma section sdata end

62 User’s Manual U18513EJ1V0UM

CHAPTER 3 C LANGUAGE EXPANSION

(4) A variable declaration that is not set with an initial value is usually treated as a tentative definition. When a

section is specified, however, it is treated as a "definition". Do not allow variable declarations which do not

have their initial values set to get mixed in with definitions.

If a section is specified for the tentative definition of an ordinary external variable, it is treated as a

"definition". Be sure to make extern declaration in files that reference an external variable. In the example

below, a duplicated definition error occurs if extern is missing in the tentative definition of the variable in

file1.c.

(5) When a variable specified by a section is referenced by another file, the section must be specified with the

same section type for the extern declaration of that variable. An error occurs if a type of section different

from that of the section specified when a variable is defined is specified.

For example, if "#pragma section data begin - #pragma section data end" is specified on the definition

side and "#pragma section data begin - #pragma section data end" is not specified on the tentative

definition side (extern declaration), it is assumed on the tentative definition side that the variable is

allocated to the sdata section. This means that a code that accesses the variable from gp with two

instructions is output on the definition side and that a code that accesses the variable from gp with one

instruction is output on the tentative definition side. In other words, a contradiction occurs. Consequently,

the following error message is output during linking.

/* Variable declaration not using

 #pragma section */

int i; /* tentative definition */

int i=10; /* definition */

/* Error does not occur. */

/* Variable declaration using

 #pragma section */

#pragma section sedata begin

int i; /* definition */

int i=10; /* definition */

#pragma section sedata end

/* Duplicated definition error */

[file1.c]

#pragma section sedata begin

extern int i;

#pragma section sedata end

[file2.c]

#pragma section sedata begin

int i;

#pragma section sedata end

[Duplicated definition error occurs if extern is not declared]

F4163: output section ".data" overflowed or illegal label reference for symbol

"symbol" in file "file" (value: value, input section: section, offset: offset,

type:R_V850_GPHWLO_1). "symbol" is allocated in section ".data" (file: file).

CHAPTER 3 C LANGUAGE EXPANSION

User’s Manual U18513EJ1V0UM 63

Example of correct specification

Example of incorrect specification 1

"variable i" defined by file1.c is allocated to the sbss or bss attribute section. However, file2.c outputs a

code that accesses the sebss attribute section for "variable i". As a result, the linker outputs the following

error message.

[file1.c]

#pragma section sedata begin

int i=1;

#pragma section sedata end

[file2.c]

#pragma section sedata begin

extern int i;

#pragma section sedata end

[file1.c]

int i=1;

[file2.c]

#pragma section sedata begin

extern int i;

#pragma section sedata end

64 User’s Manual U18513EJ1V0UM

CHAPTER 3 C LANGUAGE EXPANSION

Example of incorrect specification 2

f"variable i" defined by file1.c is allocated to the sebss attribute section but file2.c outputs a code that

accesses the sbss attribute section or bss attribute section to "variable i". Consequently, the linker outputs

the following mismatch error.

(6) When defining a variable with the sconst or const attribute using the #pragma section directive, be sure to

make a const specification for the variable. A const specification is also necessary at the location of the

tentative definition made by extern declaration.

If the const declaration is missing when a variable is declared, the variable is not allocated to the sconst

section or const section (the #pragma section directive is ignored) even if "#pragma section sconst begin -

#pragma section sconst end" or "#pragma section const begin - #pragma section const end" is specified,

but to a gp-relative section such as the sdata section or data section. In other words, allocation is not

performed as intended.

A code that allocates "variable i" to the sconst section is output in file1.c. In file2.c, however, the #pragma

section specification is ignored because the const specification is missing from "variable i", and therefore

the variable is treated as a gp-relative variable. In other words, a code that allocates the variable to the

sdata or data section is output. Consequently, "variable i" is not allocated to the sconst section during

linking. A const specification is also necessary at the location of the tentative definition with extern

declaration, as shown below.

F4163: output section ".sebss" overflowed or illegal label reference forsymbol

"_i" in file "file2.o" (value: value, input section: section, offset: offset,

type: type). "_i" isallocated in section ".sbss" (file: file1.o).

[file1.c]

#pragma section sedata begin

int i=1;

#pragma section sedata end

[file2.c]

extern int i;

F4156: can not find GP-symbol in segment "*DUMMY*" or illegal labelreference

for symbol "_i" in file "file2.o" (section: section, offset: offset,

type:R_V850_GPHWLO_1). "_i" is allocated in section ".sedata" (file: file1.o).

[file1.c]

#pragma section sconst begin

const int i=1;

#pragma section sconst end

[file2.c]

#pragma section sconst begin

int i;

#pragma section sconst end

[file1.c]

#pragma section sconst begin

const int i=10;

#pragma section sconst end

[file2.c]

#pragma section sconst begin

extern const int i;

#pragma section sconst end

CHAPTER 3 C LANGUAGE EXPANSION

User’s Manual U18513EJ1V0UM 65

3.1.4 Example of #pragma section directive

Here are some examples of using the #pragma section directive.

(1) Allocating "variable a" to tidata.word section and "variable b" to tibss.word section

(2) Allocating "variable c" to tidata.byte section and "variable d" to tibss.byte section

In the tidata section, word data or halfword data is allocated to the tidata_word or tibss_word section, and

byte data is allocated to the tidata_byte or tibss_byte section. If char-type arrays are declared in the C lan-

guage source, however, they are allocated to the tidata.word section. The tidata.word section can be used up

to 256 bytes. Because the arrays are of char type, a code using sld.b or sst.b is output. However, the sld.b and

sst.b instructions cannot access more than 128 bytes. Therefore, if a char-type array is declared and if the

array itself is of more than 128 bytes or is located at a place exceeding 128 bytes relatively from ep, an error

occurs during linking. Take this point into consideration when allocating char-type arrays to the tidata section.

(3) Allocating "variable e" specified by const to the sconst section and character string constant data indicated

by pointer p to sconst section

In the above description, "Hello World" indicated by pointer p is allocated to the sconst section, and pointer

variable "p" itself is allocated to the sdata section or data section. The allocation position of the pointer variable

and the contents indicated by the pointer vary depending on how const is specified.

Example 1

If this declaration is made, the pointer variable and character sting constant indicated by the pointer are

allocated as follows.

#pragma section tidata_word begin

int a=1; /* allocated to tidata.word attribute section */

short b; /* allocated to tibss.word attribute section */

#pragma section tidata_word end

#pragma section tidata_byte begin

char c=0x10; /* allocated to tidata.byte attribute section */

char d; /* allocated to tibss.byte attribute section */

#pragma section tidata_byte end

#pragma section sconst begin

const int e=0*10;

const char *p="Hello World";

#pragma section sconst end

const char *p="Hello World";

66 User’s Manual U18513EJ1V0UM

CHAPTER 3 C LANGUAGE EXPANSION

Describe as shown below to allocate what the pointer variable indicates to a section with the const

attribute. This description is used when the pointer itself is fixed to ROM.

With the above definition, the pointer and character string constant are allocated to the following sections.

Example 2

Describe as shown below to allocate the pointer variable to a section with the const attribute. This is used

to fix the pointer itself to ROM.

The above description allocates both the pointer variable and character string constant "Hello World" to a

section with the const attribute.

The above definition allocates the pointer variable and constant to the following sections.

Pointer variable "p" Can be rewritten ("p = 0" can be compiled).

Character string constant

"Hello World"

Cannot be rewritten

("*p = 0" cannot be compiled).

#pragma section sconst begin

const char *p="Hello World";

#pragma section sconst end

Pointer variable "p" sdata/data section

Character string constant

"Hello World"

sconst section

char *const p;

Pointer variable "p" Cannot be rewritten

("p = 0" cannot be compiled).

char *const p="Hello World";

#pragma section sconst begin

char *const p="Hello World";

#pragma section sconst end

Pointer variable "p" sconst section

Character string constant

"Hello World"

sconst section

CHAPTER 3 C LANGUAGE EXPANSION

User’s Manual U18513EJ1V0UM 67

Example 3

Describe as shown above to allocate the pointer variable and the destination it indicates to a section with

the const attribute. Both the above descriptions are used to fix the pointer to ROM.

The above description allocates both the pointer variable and character string constant "Hello World" to a

section with the const attribute.

The above definition allocates the pointer variable and constant to the following sections.

In addition to the #pragma section directive, the compiler option "-Xconst" can be used to allocate a

variable specified by const to the sconst section.

const char *const p;

Pointer variable "p" Cannot be rewritten

("p = 0" cannot be compiled).

const char *const p="Hello World";

#pragma section sconst begin

const char *const p="Hello World";

#pragma section sconst end

Pointer variable "p" sconst section

Character string constant

"Hello World"

sconst section

68 User’s Manual U18513EJ1V0UM

CHAPTER 3 C LANGUAGE EXPANSION

(4) Make the extern declaration of the #pragma section directive in a commonly used header file and include it

in the C language source.

If the extern declaration of the #pragma section directive is made in a header file as shown above, the errors

decrease and the source is visually simplified.

[header.h]

#pragma section sidata begin

extern int k;

#pragma section sidata end

[file1.c]

#include "header.h"

#pragma section sidata begin

int k;

#pragma section sidata end

[file2.c]

#include "header.h"

void func1(void)

{

k = 0x10;

}

CHAPTER 3 C LANGUAGE EXPANSION

User’s Manual U18513EJ1V0UM 69

3.2 Allocating Functions to Sections

The CA850 allocates the functions of a C language source program, i.e., program codes, to the .text section

by default. When the .text section allocation address is specified in the link directive file, the program is allocated

from that address. However, it may be necessary to change the allocation address for each function or distribute

the allocation address because of the layout of the memory. To satisfy these necessities, the CA850 has the

#pragma text directive. Using this directive, any name can be given to a section with the text attribute, and the

allocation address can be changed in the link directive file.

3.2.1 #pragma text directive

Using the #pragma text directive, any name can be given to a section with the text attribute. The #pragma text

directive can be used in the following two ways.

- Specifying the function name to be allocated to a section to be created using the #pragma text directive

- Describing the #pragma text directive before the main body of a function (function definition) but not

specifying a function name

(1) Specifying the function name to be allocated to a section to be created using the #pragma text directive

Describe functions that are described in the C language. In the case of a function, "void func1() {}", specify

"func1". The created section name can be omitted. In this case, a function specified by "function name" is

allocated to the default .text section.

(2) Describing the #pragma text directive before the main body of a function (function definition) but not

specifying a function name

The created section name can be omitted. In this case, specification of the name of section to be created by

"#pragma text" specified immediately before is canceled, and the subsequent functions are allocated to the

default .text section. However, ".text" is appended to a section name actually generated by this method as

follows.

Specify the generated section name when specifying a section in a link directive file. Refer to "3.2.2

Specifying link directive of specific text section" for an example of specifying in a link directive file.

#pragma text "created section name" function-name

#pragma text "created section name"

section-name.text

70 User’s Manual U18513EJ1V0UM

CHAPTER 3 C LANGUAGE EXPANSION

The following table shows specific examples of section names specified by the user and generated section

names.

If the name is specified as follows, "func1" is allocated to the mytext1.text section, and "func2" is allocated to

the .text section by default, because the #pragma text directive is not used.

If the name is specified as follows, "func1" and "func2" are allocated to the mytext2.text section, "func3" to

the "mytext3.text section", and "func4" to the default .text section because the #pragma text "mytext3"

immediately before is canceled.

Table 3 - 2 Section Names Specified by User and Generated Section Names (text)

Section Name
Specified by User Section Type Character String

Appended Generated Section Name

mytext text attribute .text mytext.text

#pragma text "mytext1" func1

void func1(void)

{

:

}

void func2(void)

{

:

}

#pragma text "mytext2"

void func1(void)

{

:

}

void func2(void)

{

:

}

#pragma text "mytext3"

void func3(void)

{

:

}

#pragma text

void func4(void)

{

:

}

CHAPTER 3 C LANGUAGE EXPANSION

User’s Manual U18513EJ1V0UM 71

3.2.2 Specifying link directive of specific text section

When a specific section is created using the #pragma section directive, describe that section in a link directive

file as explained below.

If the #pragma text directive is specified in a C language source as shown above, "func1" and "func2" are

allocated to the mytext2.text section, "func3" to the mytext3.text section, and "func4" to the default .text section

because the #pragma text "mytext3" immediately before is canceled.

Since the functions are allocated in the order in which they are described, change the description order to

change the allocation order. It is also possible to specify the start address of the function directly (generally, a

segment is created first and a mapping directive, which specifies the start address of a function in segment units,

is then described in that segment).

Because the attribute of mytext2.text and mytext3.text is "$PROGBITS ?AW", do not omit the input section

(".text", "mytext2.text", and "mytext3.text" on the rightmost side of the mapping directive in the above example)

from mapping directives that have the same attribute as these.

#pragma text "mytext2"

void func1(void)

{

:

}

void func2(void)

{

:

}

#pragma text "mytext3"

void func3(void)

{

:

}

#pragma text

void func4(void)

{

:

}

.text = $PROGBITS ?AX .text;

mytext2 = $PROGBITS ?AX mytext2.text;

mytext3 = $PROGBITS ?AX mytext3.text;

72 User’s Manual U18513EJ1V0UM

CHAPTER 3 C LANGUAGE EXPANSION

Example

If an input section is omitted from a mapping directive having the same "$PROGBITS ?AX" attribute, the linker

links and locates all the sections having that attribute. Consequently, data is not allocated to the specific section

created by the user. This means that the program that should be allocated to the mytext2.text or mytext3.text

section is allocated to the .text section.

Refer to CA850 for Link Directive User’s Manual for details of the format of the link directive file.

3.2.3 Notes on #pragma text directive

Note the following points when using the #pragma text directive.

(1) Describe the #pragma text directive before the function definition in the same file; otherwise a warning

message is output and the directive is ignored. However, the order of prototype declaration of a function is

not affected.

(2) If a function specified by the #pragma text directive is an interrupt handler specified as direct allocation, a

warning message is output and the #pragma text directive is ignored. Refer to "3.7 Interrupt/Exception

Processing Handler" for details of direct allocation specification.

(3) A function specified by #pragma text cannot be expanded inline by a #pragma inline specification or an

optimization option. Inline expansion specification is ignored.

(4) When specifying a section name, keep the length of the name to within 256 characters.

.text = $PROGBITS ?AX;

CHAPTER 3 C LANGUAGE EXPANSION

User’s Manual U18513EJ1V0UM 73

3.3 Peripheral I/O Register

Peripheral I/O registers are used to control the internal peripheral functions of a device.

By using the peripheral I/O register name defined by the device, the internal I/O can be accessed at C

language level. The peripheral I/O register names can be treated in the C language source program as if they

were normal unsigned external variables.

For the register names and attributes that can be specified, refer to the Relevant Device’s Hardware User’s

Manual of each device.

3.3.1 Accessing

A peripheral function register name is validated by describing the following pragma directive.

In a C language source file in which "#pragma ioreg" directive is described, the peripheral function register

name described after the pragma directive can be used.

If this directive is not used or if a peripheral function register name is used without specifying an applicable

device name, an "undefined variable" error occurs. An error also occurs if the access attribute peculiar to the

specified register is violated.

Of the examples as follows, Example 1 is correct, but Examples 2 and 3 cause an error.

P0, P1, P2, RXB0, and OVF0 in the following examples indicate the peripheral I/O registers of the V850

microcontrollers.In this way, symbols defined by the device file are specified as "register names".

Next shows specification examples.

Example 1

Example 2

#pragma ioreg

#pragma ioreg

void func1(void)

{

int i;

P0 = 1; /* Writes to P0 */

i = RXB0; /* Reads from RXB0 */

}

void func2(void)

{

P1 = 0; /* Writes to P1 */

}

void func(void)

{

P1 = 0; /* Undefined error */

}

74 User’s Manual U18513EJ1V0UM

CHAPTER 3 C LANGUAGE EXPANSION

Example 3

3.3.2 Bit access

The CA850 can access each bit of a peripheral function register.

"bit number" is specified as 0 to 31 in the case of a 32-bit register.

(1) Cautions of case of bit access

(a) If a value other than 0 or 1 is substituted in accessing a bit, the binary least significant value of that value is

set (In this case, no message is output.).

Specification examples 1

(b) The bits of the flag of each register can be accessed by using a bit name.Specify a name defined by the

device file as the bit name

Specification examples 2

#pragma ioreg

void functorial)

{

RXB0 = 1; /* Error that occurs if attribute of RXB0 is read-only */

}

(register name).(bit number) = ...

#pragma ioreg

void func(void)

{

P0.1 = 1; /* Sets bit 1 of P0 to 1 */

P2.3 = 0; /* Resets bit 3 of P2 to 0 */

}

#pragma ioreg

void func(void)

{

OVF0 = 1; /* Sets bit name OVF0 to 1 */

}

CHAPTER 3 C LANGUAGE EXPANSION

User’s Manual U18513EJ1V0UM 75

3.4 Describing Assembler Instruction

With the CA850, assembler instruction can be described in the functions of a C language source program in

the following format.

- asm declaration

- #pragma directive

To use registers with an inserted assembler, save or restore the contents of the registers in the program

because they are not saved or restored by the CA850.

It is advisable to insert assembler in a function. It the instructions are described outside a function, the

following restrictions apply and a warning message is output.

- The output sequence of the function and code is not guaranteed.

- The code is not output in a file where the function does not exist.

(1) asm declaration

[Cautions]

(a) The _asm format is provided to maintain compatibility with the conventional language specifications. If the

-ansi option is specified, the compiler outputs a warning message to the _asm format and treats the option

as a function call. When specifying the -ansi option, use the __asm format.

(b) If the asm declaration is specified, the compiler suffixes a new-line character (\n) to the specified character

string constantNote and passes it to the assembler.

Note The specified character string constant is unlike the normal character string constant, "\" followed by a

character other than a new line indicates the following character itself ("\" followed by a new line

causes an error).

Example

(c) __asm or __asm is a declaration and is not treated as a statement. Therefore, because of the syntax of

the C language source, an error occurs in a structure that does not allow the use of a declaration only, as

shown in Example 1 below. Therefor, enclose the statement in "{ }" as shown in Example 2 to make it a

compound statement.

Example 1

__asm(character string constant); or _asm(character string constant);

__asm("nop ");

__asm(".str \"string\\0\"");

if(i == 0)

__asm("mov r11, r10"); /* Error occurs because only declaration is made. */

76 User’s Manual U18513EJ1V0UM

CHAPTER 3 C LANGUAGE EXPANSION

Example 2

(2) #pragma directive

In the range enclosed by the above #pragma directives, assembler instructions can be described as is. This is

useful for using two or more assembler instructions.

A description of example 1 to show next is same to a description of example 2.

Example 1

Example 2

The description from "#pragma asm" to "#pragma endasm" is passed to the assembler as is. In other words,

the CA850 internally creates an assembler instruction and starts the assembler. Therefore, a quasi directive of

the assembler can be used after the #pragma asm declaration. A local variable in a C language source must not

be used with the assembler. Because the local variable is allocated to the stack or a register by the CA850, it

cannot be used with an inline assembler.

if(i == 0){

__asm("mov r11, r10"); /* Can be used because this is compound statement. */

}

#pragma asm

assembler instruction

#pragma endasm

extern int i;

void f(void)

{

#pragma asm

mov r0, r10

st.w r10, $_i

:

#pragma endasm

}

extern int i;

void f(void)

{

__asm("mov r0, r10");

__asm("st.w r10, $_i");

:

}

CHAPTER 3 C LANGUAGE EXPANSION

User’s Manual U18513EJ1V0UM 77

A local variable in a C language source must not be used with the assembler. Because the local variable is

allocated to the stack or a register by the CA850, it cannot be used with an inline assembler. A symbol defined

using #define in the C language source file cannot be used in the description from "#pragma asm" to "#pragma

endasm", therefore expand a macro defined by #define in a file by an assembler instruction, as follows.

- Define the macro by using the .macro instruction in the #pragma asm - #pragma endasm directives.

- Call an assembler instruction from the C language source program by means of a function call.

Another method is to write an assembler instruction without making a macro definition.

78 User’s Manual U18513EJ1V0UM

CHAPTER 3 C LANGUAGE EXPANSION

3.5 Controlling Interrupt Level

3.5.1 __set_il function

The CA850 can manipulate the interrupts of the V850 microcontrollers as follows in a C language source.

- By controlling interrupt level

- By enabling or disabling acknowledgment of maskable interrupts (by masking interrupts)

In other words, the interrupt control register can be manipulated. For this purpose, the "__set_il" function is

used. Specify this function as follows to manipulate the interrupt priority level.

The "interrupt request name" that can be specified is the "maskable interrupt request name" defined in the

device file. Because a request name defined in the device file is used, the #pragma ioreg directive must be

described in the C language source that uses this function. Integer values 1 to 8 can be specified as the interrupt

priority level. With the V850, eight steps, from 0 to 7, can be specified as the interrupt priority level. To set the

interrupt priority level to "5", therefore, specify the interrupt priority level as "4" by this function.

Example

This specification sets the interrupt priority level of interrupt INTP0 to 1.

Specify the __set_il function as follows to enable or disable acknowledgment of a maskable interrupt.

"-1" or "0" can be specified to enable or disable the maskable interrupt.

Example

If the function is specified as shown above, acknowledging maskable interrupt INTP0 is disabled (INTP0

is masked). Note that the __set_il function does not manipulate the ep flag (that indicates that exception

processing is in progress) in the program status word (PSW).

__set_il(interrupt-priority-level, "interrupt-request-name");

__set_il(2, "INTP0");

__set_il(enables/disables maskable interrupt, "interrupt request name");

Table 3 - 3 Enabling or Disabling Maskable Interrupt

Set Value Operation

-1 Disables acknowledgment of maskable interrupt (masks interrupt).

0 Enables acknowledgement of maskable interrupt (unmasks interrupt).

__set_il(-1, "INTP0");

CHAPTER 3 C LANGUAGE EXPANSION

User’s Manual U18513EJ1V0UM 79

3.5.2 __set_il function and interrupt control register

The interrupt control register of the V850 microcontrollers is configured as follows.

If the __set_il function is used, either "priority level" or "interrupt mask flag" is set. This means that the

__set_il function cannot set an interrupt request flag.

To set the interrupt priority level to 6 when the interrupt request name is "INTP000" and the interrupt control

register name is "P00IC0", for example, describe the function as follows.

The following codes will be output.

Therefore, codes that change only the lower 3 bits (xxxPR02 to xxxPR00) of the setting of the priority level are

output.

Describe the __set_il function as follows to enable a maskable interrupt when the interrupt request name is

"INTP000" and the interrupt control register name is "P00IC0".

The following code will then be output.

A code that changes only the interrupt mask flag is output.

If a value is directly written to the interrupt control register, values are set to the priority level, interrupt mask

flag, and interrupt request flag.

Example

When the interrupt control register name is "P00IC0"

7 6 5 4 3 2 1 0

xxIFn xxMKn 0 0 0 xxPRn2 xxPRn1 xxPRn0

__set_il(7, "INTP000");

ld.b P00IC0, r1

andi 0xf8, r1, r1

ori 0x6, r1, r1

st.b r1, P00IC0

__set_il(0, "INTP000");

clr1 6, P00IC0

P00IC0=0x6;

80 User’s Manual U18513EJ1V0UM

CHAPTER 3 C LANGUAGE EXPANSION

The above description outputs the following codes.

The meanings of these codes are as follows.

- Sets the priority level to 6.

- Enables the maskable interrupt.

- Clears the interrupt request flag.

mov 0x6, r29

st.b r29, P00IC0

CHAPTER 3 C LANGUAGE EXPANSION

User’s Manual U18513EJ1V0UM 81

3.6 Disabling Interrupts

The CA850 can disable the maskable interrupts in a C language source. This can be done in the following two

ways.

- Locally disabling interrupt in function

- Disabling interrupts in entire function

3.6.1 Locally disabling interrupt in function

The "di instruction" and "ei instruction" of the assembler instruction can be used to disable an interrupt locally

in a function described in C language. However, the CA850 has functions that can control the interrupts in a C

language source.

Example (How to use the __DI() and __EI() functions and the codes to be output are shown below.)

3.6.2 Disabling interrupts in entire function

The CA850 has a "#pragma block_interrupt" directive that disables the interrupts of an entire function.

Table 3 - 4 Interrupt Control Functions

Interrupt Control Function Operation Processing by CA850

__DI() ; Disables interrupt. Generates di instruction.

__EI() ; Enables interrupt. Generates ei instruction.

[C language source]

void func1(void)

{

:

__DI() ;

/* describe processing to be performed with interrupt disabled */

__EI() ;

:

}

[output code of C language source above]

_func1:

-- prologue code

:

di

-- processing to be performed with interrupt disabled

ei

:

-- epilogue code

jmp [lp]

82 User’s Manual U18513EJ1V0UM

CHAPTER 3 C LANGUAGE EXPANSION

This directive is described as follows.

Describe functions that are described in the C language. In the case of a function, "void func1() {}", specify

"func1".

The interrupt to the function specified by "function-name" above is disabled.

As explained in "3.6.1 Locally disabling interrupt in function", "__DI()" can be described at the beginning of a

function and "__EI()", at the end. In this case, however, an interrupt to the prologue code and epilogue code

output by the CA850 cannot be disabled or enabled, and therefore, interrupts in the entire function cannot be

disabled.

Using the #pragma block_interrupt directive, interrupts are disabled immediately before execution of the

prologue code, and enabled immediately after execution of the epilogue code. As a result, interrupts in the entire

function can be disabled.

Example (How to use the #pragma block_interrupt directive and the code that is output are shown below.)

#pragma block_interrupt function-name

[C language source]

#pragma block_interrupt func1

void func1(void)

{

:

/* describe processing to be performed with interrupt disabled */

:

}

[output code of C language source above]

_func1:

di

-- prologue code

:

-- processing to be performed with interrupt disabled

:

-- epilogue code

ei

jmp [lp]

CHAPTER 3 C LANGUAGE EXPANSION

User’s Manual U18513EJ1V0UM 83

3.6.3 Notes on disabling interrupts in entire function

Note the following points when disabling interrupts in an entire function.

(1) If an interrupt handler and a #pragma block_interrupt directive are specified for the same interrupt, the

interrupt handler takes precedence, and the setting of disabling interrupts is ignored.

(2) If the following functions are called in a function in which an interrupt is disabled, the interrupt is enabled

when execution has returned from the call.

- Function specified by #pragma block_interrupt

- Function that disables interrupt at the beginning and enables interrupt at the end

(3) Describe the #pragma block_interrupt directive before the function definition in the same file; otherwise an

error occurs during compilation. However, the order of prototype declaration of a function is not affected.

(4) Neither #pragma inline nor inline expansion can be specified by an optimization option for the function

specified by a #pragma block_interrupt directive. The inline expansion specification is ignored.

(5) A code that manipulates the ep flag (that indicates exception processing is in progress) in the program

status word (PSW) is not output even if #pragma block_interrupt is specified.

84 User’s Manual U18513EJ1V0UM

CHAPTER 3 C LANGUAGE EXPANSION

3.7 Interrupt/Exception Processing Handler

The CA850 can describe an interrupt handler or exception handler that is called if an interrupt or exception

occurs. This section explains how to describe these handlers.

3.7.1 Occurrence of interrupt/exception

If an interrupt or exception occurs in the V850, the program jumps to a handler address corresponding to the

interrupt or exception. An interrupt source and a handler address correspond one by one. A collection of handler

addresses is called an interrupt/exception table. For example, the interrupt/exception table of the V850ES/SG2 is

as shown below (only the top part is shown).

The arrangement of the handler addresses and the available interrupts vary depending on the device of the

V850. Refer to the Relevant Device’s Hardware User’s Manual of each device for details.

Each handler address has a 16-byte area. If an interrupt occurs, an instruction written in that 16-byte area is

executed. This means that, if the processing code does not exceed 16 bytes, it is performed only in the handler

address. If not, an instruction that branches to a function (interrupt handler) where the processing is written is

described.

Table 3 - 5 Interrupt/Exception Table (V850ES/SG2)

Address Interrupt Name Interrupt Trigger

0x00000000 RESET RESET pin input/reset by internal source

0x00000010 NMI Valid edge input to NMI pin

0x00000020 INTWDT2 Overflow of WDT2

0x00000040 TRAP0n TRAP instruction

0x00000050 TRAP1n TRAP instruction

0x00000060 LGOP/DBG0 Illegal instruction code/DBTRAP instruction

0x00000080 INTLVI Low voltage detection

0x00000090 INTP0 Detection of input edge of external interrupt pin (INTP0)

0x000000A0 INTP1 Detection of input edge of external interrupt pin (INTP1)

0x000000B0 INTP2 Detection of input edge of external interrupt pin (INTP2)

0x000000C0 INTP3 Detection of input edge of external interrupt pin (INTP3)

:
:

CHAPTER 3 C LANGUAGE EXPANSION

User’s Manual U18513EJ1V0UM 85

Figure 3 - 6 Image of Interrupt Handler Address

The above description is at an assembly language source level. With the CA850, users do not have to pay

much attention to this when describing interrupt servicing in C language source. How to describe interrupt

servicing is explained specifically in "3.7.3 Describing interrupt/exception handler".

jr _func_intp0

jr _func_intp1

Interrupt handler
address of INTP0

Interrupt handler
address of INTP1

0x00000090

0x00000100

If the INTP0 interrupt occurs in the V850ES/SG2, the program jumps to address
0x90 and executes the code written at that address.
In this example, the program jumps to the func_intp0 function because a code
that branches to that function is written.
This means that func_intp0 is the interrupt handler of INTP0.

Address

86 User’s Manual U18513EJ1V0UM

CHAPTER 3 C LANGUAGE EXPANSION

3.7.2 Processing necessary in case of interrupt/exception

If an interrupt/exception occurs while a function or a task is being executed, interrupt/exception processing

must be immediately executed. When the interrupt/exception processing is completed, execution must return to

the function or task that was interruptedNote. Therefore, the register information at that time must be saved

when an interrupt/exception occurs, and the register information must be restored when interrupt/exception

processing is complete.

Note When a real-time OS is used, execution may not return to a task that is interrupted if a system call is

issued during interrupt servicing. Refer to the User's Manual of each real-time OS for details.

The prologue and epilogue codes of an ordinary function save and restore the registers for register variables.

The registers for register variables are shown below. Those that must be saved and restored are saved and

restored.

When execution shifts to an interrupt/exception handler, the following registers that must be saved, in addition

to the registers shown in the above table, are also saved as a stack frame for the interrupt/exception handler.

Table 3 - 6 Registers for Register Variables

Register Mode Registers for Register Variables

22-register mode r25, r26, r27, r28, r29

26-register mode r23, r24, r25, r26, r27, r28, r29

32-register mode r20, r21, r22, r23, r24, r25, r26, r27, r28, r29

Table 3 - 7 Stack Frame for Interrupt/Exception Handler

Register Mode Registers Saved/Restored in Case of Interrupt/Exception

22-register mode r1, r6, r7, r8, r9,
r10, r11, r12, r13, r14,
r31(lp), CTPC [V850E], CTPSW [V850E]

26-register mode r1, r6, r7, r8, r9,
r10, r11, r12, r13, r14, r15, r16,
r31(lp), CTPC [V850E], CTPSW [V850E]

32-register mode r1, r6, r7, r8, r9,
r10, r11, r12, r13, r14, r15, r16, r17, r18, r19,
r31(lp), CTPC [V850E], CTPSW [V850E]

CHAPTER 3 C LANGUAGE EXPANSION

User’s Manual U18513EJ1V0UM 87

When execution shifts to an interrupt/exception handler, the following registers that must be saved, in addition

to the registers shown in the above table, are also saved as a stack frame for the interrupt/exception handler.

The usage of the above registers is as follows.

When interrupt/exception processing is completed, the code which restores saved registers is output, the reti

instruction is output. This instruction notifies the V850 that the interrupt servicing is completed.

If codes for saving/restoring registers or outputting the reti instruction are described as explained in "3.7.3

Describing interrupt/exception handler", the CA850 automatically outputs the relevant code. The code for saving/

restoring registers is output as explained in Table 3 - 10. The user therefore does not have to pay much

attention to this and can concentrate on describing the processing of the main body of the interrupt handler.

Table 3 - 8 Stack Frame for Multiple Interrupt/Exception Handler

Register Mode Registers Saved/Restored in Case of Multiple Interrupts/Exceptions

22-register mode r1, r6, r7, r8, r9,
r10, r11, r12, r13, r14,
r31(lp), EIPC, EIPSW, CTPC [V850E], CTPSW [V850E]

26-register mode r1, r6, r7, r8, r9,
r10, r11, r12, r13, r14, r15, r16,
r31(lp), EIPC, EIPSW, CTPC [V850E], CTPSW [V850E]

32-register mode r1, r6, r7, r8, r9,
r10, r11, r12, r13, r14, r15, r16, r17, r18, r19,
r31(lp), EIPC, EIPSW, CTPC [V850E], CTPSW [V850E]

Table 3 - 9 Usage of Registers

Register Usage

r1 Assembler-reserved register

r6 - r9 Registers for arguments (registers to set arguments of function)

r10 - r19 Work registers (registers used by CA850 to generate codes)

r31 Link pointer

CTPC [V850E] Program counter (PC) when CALLT instruction is executed

CTPSW [V850E] Program status word (PSW) when CALLT instruction is executed

EIPC Program counter (PC) during interrupt/exception processing

EIPSW Program status word (PSW) during EIPSW interrupt/exception processing

88 User’s Manual U18513EJ1V0UM

CHAPTER 3 C LANGUAGE EXPANSION

Table 3 - 10 Processing for Saving/Restoring Registers During Interrupt

Register Name Register Explanation

r1 register r1 Always saved/restored at interrupt.

Argument registers r6 - r9 r6 is always saved/restored when the interrupt source is TRAP0/
TRAP1.
Saved/restored when a function call (including runtime functions)
exists.
Saved/restored if a function call does not exist but is used with an
interrupt function.

Work
registers

22-register
mode

r10 - r14 Saved/restored when a function call exists.
Saved/restored if a function call does not exist but is used with an
interrupt function.

26-register
mode

r10 - r16

32-register
mode

r10 - r19

Register
variable
registers

22-register
mode

r25 - r29 Saved/restored as necessary, as with ordinary functions.

26-register
mode

r23 - r29

32-register
mode

r20 - r29

Link pointer r31(lp) Saved/restored when a function call (including runtime functions)
exists.
Saved/restored if a function call does not exist.

Interrupt-related system
registers

EIPCE,
EIPSW

Saved/restored with functions using the multiple interrupt qualifier
__multi_interrupt.
Not saved/restored with the __interrupt qualifier.

callt instruction-related
system registers [V850E]

CTPC,
CTPSW

Always saved/restored with interrupt functions being compiled
with a V850E/V850ES/V850E2 core device specified.

CHAPTER 3 C LANGUAGE EXPANSION

User’s Manual U18513EJ1V0UM 89

3.7.3 Describing interrupt/exception handler

The format in which an interrupt/exception handler is described does not differ from ordinary C functions, but

the functions described in C must be recognized as an interrupt/exception handler by the CA850. With the

CA850, an interrupt/exception handler is specified using the #pragma interrupt directive and __interrupt qualifier,

or #pragma interrupt directive and __multi_interrupt qualifier.

(1) When specifying interrupt handler

(2) When specifying multiple-interrupt handler

Describe functions that are described in the C language. In the case of a function, "void func1() {}", specify

"func1".

"Specifying multiple-interrupt handler" means to "specify a function that can be interrupted more than once"

and does not mean "to specify a function that interrupts more than once".

(a) Interrupt request name

Interrupt request names registered in the device file can be specified. Refer to the interrupt request

names described in the Relevant Device’s Architecture User’s Manual of each device; they are the interrupt

request names registered in the device file.

A non-maskable interrupt (NMI) can also be specified in this way, but a reset interrupt (RESET) cannot be

specified. Processing after reset must be described with assembler instructions. Processing after reset is

generally described in the startup routine, so refer to "CHAPTER 5 STARTUP ROUTINE" for details.

(b) Function name

Specify the names of functions that are used as an interrupt handler. Describe the function name in C lan-

guage source. When specifying the function "void func1(void)", specify the function name as "func1".

(c) Allocation method

Specify whether the main body of the function is directly allocated to the handler address, or only the

instruction that branches to the interrupt handler function is allocated. Specify "direct" when the main body of

the function is directly allocated; otherwise describe nothing as "allocation method".

By specifying "direct", all functions are allocated from the handler address of the specified interrupt

source. Note, however, that the areas for the subsequent handler address are also used.

When specifying "direct", be sure to describe the #pragma interrupt directive before the function definition;

otherwise an error occurs during compilation.

#pragma interrupt Interrupt-request-name Function-name Allocation-method

__interrupt Function-definition, or Function-declaration

#pragma interrupt Interrupt-request-name Function-name Allocation-method

__multi_interrupt Function-definition, or Function-declaration

90 User’s Manual U18513EJ1V0UM

CHAPTER 3 C LANGUAGE EXPANSION

Next, the roles of the #pragma interrupt directive, __interrupt qualifier, and __multi_interrupt qualifier are

explained.

(1) #pragma interrupt directive

Allocates an instruction (jr) that branches to the specified function to a handler address corresponding to the

interrupt request name specified by the #pragma interrupt directive. When the -Xj option is specified, this

directive allocates an instruction that saves the r1 register contents to the stack and an instruction (jmp) that

branches to the specified function.

(2) __interrupt qualifier

Adds processing to save/restore the register contents by an interrupt/exception handler to a function with

the __interrupt qualifier and adds the reti instruction at the end. When the -Xj option is specified, processing to

save the r1 register contents is output to the handler address, so only restore processing is output for the

function.

(3) multi_interrupt qualifier

Adds processing to save/restore the register contents by an interrupt handler and processing to save/

restore the contents of the EIPC and EIPSW registers to a function with the __multi_interrupt qualifier. This

directive also adds the reti instruction at the end. When the -Xj option is specified, processing to save the r1

register contents is output to the handler address, so only restore processing is output for the function.

When the #pragma interrupt directive, __interrupt qualifier, and __multi_interrupt qualifier are specified at the

same time, the following codes are output and the handler completes the interrupt servicing routine.

- Allocation of an instruction branching to the specified interrupt handler to the handler address

- Addition of processing to save/restore the register contents by an interrupt handler (and processing to

save/restore the contents of EIPC and EIPSW if the __multi_interrupt qualifier is specified)

- Addition of the reti instruction at the end of the handler

In this case, function definition and the #pragma interrupt directive can be described in separate files in any

order. If "direct" is specified for the allocation method, however, they cannot be described in separate files.The

following codes are output if only the __interrupt qualifier or __multi_interrupt qualifier is specified.

- Addition of processing to save/restore the register contents by an interrupt handler (and processing to

save/restore the contents of EIPC and EIPSW if the __multi_interrupt qualifier is specified)

- Addition of the reti instruction at the end of the handler

Therefore, the function can be started as an interrupt handler but the processing to allocate "an instruction to

branch to the interrupt handler to the handler address" output by the #pragma interrupt directive is not

performed.

CHAPTER 3 C LANGUAGE EXPANSION

User’s Manual U18513EJ1V0UM 91

Example

The #pragma interrupt is specified as follows when the interrupt handler "void intp0_func(void)" is used for

the interrupt request name "INTP0" without "direct" being specified and multiple interrupts being enabled.

Next, the function type that can be specified as an interrupt handler is explained.

(1) Function type

The type of a handler that handles a maskable interrupt or NMI is as follows.

void func(void) type

The argument and return value of this function are void type.

The type of a software exception processing (trap) handler is as follows.

void func(unsigned int) type

EICC (exception code) of the interrupt source register (ECR) is set as the argument. Unless the function is

specified by this type, an error occurs during compilation. Refer to the next paragraph for the software

exception processing function.

(2) Software exception processing (trap processing) handler

When software exception processing (trap processing) is used, two entry points, TRAP0 (address 0x40) and

TRAP1 (address 0x50), are used according to the specifications of the V850 microcontrollers.

When the software exception "trap 0x00 to trap 0x0f" occurs, execution branches to TRAP0 (address 0x40);

if "trap 0x10 to trap0x1f" occurs, it branches to TRAP1 (address 0x50). At this time, the value "0x40 to 0x4f" is

set to the interrupt source register (ECR) as a software exception code in the case of TRAP0. In the case of

TRAP1, the value "0x50 to 0x5f" is set to the ECR.

#pragma interrupt INTP0 intp0_func

__interrupt

void intp0_func(void)

{

:

/* main body of interrupt servicing */

:

}

Table 3 - 11 Trap Instructions and Software Exception Codes

Trap Instruction Software Exception Code

trap 0x00 0x40

trap 0x01 0x41

trap 0x02 0x42

:
:

:
:

trap 0x0a 0x4a

trap 0x0b 0x4b

92 User’s Manual U18513EJ1V0UM

CHAPTER 3 C LANGUAGE EXPANSION

When software exception processing for TRAP0 or TRAP1 is described, that function has one argument and

the type of the variable is "unsigned int". The software exception code set to the interrupt source register (ECR)

is set as the argument. In the case of TRAP0, the value is "0x40 to 0x4f". In the case of TRAP1, it is "0x50 to

0x5f". Processing must be described in the handler depending on these values.

:
:

:
:

trap 0x10 0x50

trap 0x11 0x51

trap 0x12 0x52

:
:

:
:

trap 0x1e 0x5e

trap 0x1f 0x5f

#pragma interrupt TRAP0 trap0_func

__interrupt

void trap0_func(unsigned int codenum)

{

:

/* describe processing of each exception code. */

:

}

Table 3 - 11 Trap Instructions and Software Exception Codes

Trap Instruction Software Exception Code

CHAPTER 3 C LANGUAGE EXPANSION

User’s Manual U18513EJ1V0UM 93

3.7.4 Notes on describing interrupt/exception handler

(1) "Specifying multiple-interrupt handler" with the __multi_interrupt qualifier means to "specify a function that

can be interrupted more than once" and does not mean "to specify a function that interrupts more than

once".

(2) Even if a handler that enables multiple interrupts is specified by __multi_interrupt, interrupts are not

enabled when the interrupt handler is activated. Therefore, be sure to issue an interrupt enabling

instruction (such as __EI()) in the interrupt handler, and issue an interrupt disabling instruction (such as

__DI()) at the end of the handler. If the interrupt disabling instruction is not issued at the end of the handler,

an interrupt may be acknowledged while the contents of a register are being restored, which may cause a

hang-up.

(3) The reset interrupt cannot be specified by the #pragma interrupt directive.

If the above description is made, an error occurs during compilation. Processing after reset must be

described with assembler instructions. Processing after reset is generally described in the startup routine,

so refer to "CHAPTER 5 STARTUP ROUTINE" for details.

(4) The #pragma interrupt directive and __multi_interrupt qualifier do not support multiple exceptions and

multiple NMIs. To use multiple exceptions or multiple NMI, add a code that saves or restores the necessary

system registers (such as FEPC and FEPSW). Refer to the Relevant Device’s Hardware User’s Manualt of

each device for the necessary system registers.

(5) The user is not required to additionally describe an interrupt handler address in the link directive file; it is

output internally by the CA850.

(6) The same interrupt request name must not be specified for two or more functions.

(7) Both the __interrupt qualifier and __multi_interrupt qualifier must not be specified for the same function.

(8) An error occurs during compilation if a function is declared with the __interrupt qualifier or __multi_interrupt

qualifier after the function is defined without the __interrupt qualifier or __multi_interrupt qualifier being

specified.

(9) A function specified as an interrupt/exception handler cannot be expanded inline. The #pragma inline

directive is ignored even if specified.

(10) An interrupt to a function specified as an interrupt/exception handler is disabled. Therefore, the #pragma

block_interrupt directive is ignored even if specified.

(11) A function specified as an interrupt/exception handler cannot be called by an ordinary function call. If it is

called from another file, the compiler cannot check it.

#pragma interrupt RESET reset_func /* error */

94 User’s Manual U18513EJ1V0UM

CHAPTER 3 C LANGUAGE EXPANSION

(12) When an assembler program is called from an interrupt/exception handler and the registers for register

variables and the registers shown in Table 3 - 6 and Table 3 - 7 are used, processing to save/restore the

register contents must be described. Processing to save/restore the register contents must also be

described when sp (r3), gp (r4), tp (r5), and ep (r30) are rewritten.

(13) The #pragma interrupt directive, __interrupt qualifier, and __multi_interrupt qualifier do not issue a

processing end report (EOI command) to the external interrupt controller. The user should therefore

execute this directive, if necessary.

(14) Disable interrupts at the end of multiple interrupts because a code that restores EIPC and EIPSW must be

described.

(15) If "direct" is not specified, an instruction to branch to the interrupt/exception handler is allocated to the

handler address. In this case, the CA850 outputs the jr instruction to enhance the code efficiency.

However, the range in which the jr instruction can branch execution is limited to +21 bits from the jr

instruction. If the main body of the interrupt handler is not within the range in which the jr instruction can

branch execution, an error occurs during linking. In this case, specify the compilation option "-Xj" to replace

the jr instruction with the jmp instruction.

CHAPTER 3 C LANGUAGE EXPANSION

User’s Manual U18513EJ1V0UM 95

3.7.5 Description example of interrupt/exception handler

Examples of describing interrupt/exception handlers are shown below. Note that the interrupt request name

differs depending on the device. Refer to the Relevant Device’s Architecture User’s Manual of each device.

Example 1 (Non-maskable interrupt)

Example 2 (Trap)

Example 3 (#pragma interrupt and __interrupt qualifier in separate files)

Example 4 (Specification of multiple interrupts)

#pragma interrupt NMI func1 /* non-maskable interrupt */

__interrupt

void func1(void)

{

:

}

#pragma interrupt TRAP0 func2 /* trap 0 */

__interrupt

void func2(unsigned int num)

{

switch(num){ /* for every exception code */

:

}

}

[a. c]

__interrupt /* __interrupt specification */

void func1(void)

{

:

}

[b. c]

#pragma interrupt NMI func1 /* can be described after definition or in separate file */

#pragma interrupt INTP0 func1

__multi_interrupt /* multiple-interrupt function specified */

void func1(void)

{

:

}

96 User’s Manual U18513EJ1V0UM

CHAPTER 3 C LANGUAGE EXPANSION

3.8 Inline Expansion

The CA850 allows inline expansion of each function. This section explains how to specify inline expansion.

3.8.1 Inline expansion

Inline expansion is used to expand the main body of a function at a location where the function is called. This

decreases the overhead of function call and increases the possibility of optimization. As a result, the execution

speed can be increased. If inline expansion is executed, however, the object size increases.

Specify the function to be expanded inline using the #pragma inline directive.

Describe functions that are described in the C language. In the case of a function, "void func1() {}", specify

"func1". Two or more function names can be specified with each delimited by "," (comma).

#pragma inline function-name [,function-name...]

#pragma inline func1,func2

void func1(){ ... }

void func2(){ ... }

void func(void)

{

func1(); /* function subject to inline expansion */

func2(); /* function subject to inline expansion */

}

CHAPTER 3 C LANGUAGE EXPANSION

User’s Manual U18513EJ1V0UM 97

3.8.2 Conditions of inline expansion

At least the following conditions must be satisfied for inline expansion of a function specified using the

#pragma inline directive. If optimization other than "size priority optimization (-Os)" and "execution speed priority

optimization (-Ot)" is specified, however, inline expansion may not be executed even if the following conditions

are satisfied, because of the internal processing of the CA850.

(1) A function that expands inline and a function that is expanded inline are described in the same file.

A function that expands inline and a function that is expanded inline, i.e., a function call and a function

definition must be in the same file. This means that a function described in another C language source cannot

be expanded inline. If it is specified that a function described in another C language source is expanded inline,

the CA850 does not output a warning message and ignores the specification.

(2) The #pragma inline directive is described before function definition.

If the #pragma inline directive is described after function definition, the CA850 outputs a warning message

and ignores the specification. However, prototype declaration of the function may be described in any order.

Here is an example.

Example

(3) The number of arguments is the same between "call" and "definition" of the function to be expanded inline.

If the number of arguments is different between "call" and "definition" of the function to be expanded inline,

the CA850 outputs a warning message and ignores the specification.

(4) The types of return value and argument are the same between "call" and "definition" of the function to be

expanded inline.

If the return value type and argument type are different between "call" and "definition" of the function to be

expanded inline, the CA850 outputs a warning message and ignores the specification. If the type can be

converted, however, it is converted as follows and the function is expanded inline.

- The return value type is the type of the "calling side".

- The argument type is the type of the "function definition".

If the "-ansi" option is specified, however, the type is not converted and an error is output.

Valid Inline Expansion Specification Invalid Inline Expansion Specification

#pragma inline func1,func2

/* prototype declaration */

void func1();

void func2();

/* function definition */

void func1() { /* ... */ }

void func2() { /* ... */ }

/* prototype declaration */

void func1();

void func2();

/* function definition */

void func1() { /* ... */ }

void func2() { /* ... */ }

#pragma inline func1,func2

98 User’s Manual U18513EJ1V0UM

CHAPTER 3 C LANGUAGE EXPANSION

(5) The size of the function to be expanded inline and the stack size are not too large.

If the size of the function to be expanded inline and the stack size are too large, neither an error nor warning

is output, and the inline expansion specification is ignored. This "size" means the size in the intermediate

language and is different from the size of the actual object. The upper limit of the size can be changed in the

CA850. The function size in the intermediate language can be changed by this option.

The function size in the intermediate language can be changed by this option.

The stack size used by the function in the intermediate language can be changed by this option.

In addition, the size of each function and stack size used in the intermediate language can be checked by

using this option.

This option can be used to determine the size for specification.

(6) The number of arguments of the function to be expanded inline is not variable.

If inline expansion is specified for a function with a variable number of arguments, the CA850 outputs neither

an error nor warning message and ignores the specification.

(7) Recursive function is not specified to be expanded inline.

If a recursive function that calls itself is specified for inline expansion, the CA850 outputs neither an error nor

warning message and ignores the specification. If two or more function calls are nested and if a code that calls

itself exists, however, inline expansion may be executed.

(8) An interrupt handler is not specified to be expanded inline.

A function specified by the #pragma interrupt, __interrupt, or t__multi_interrupt directive is recognized as

an interrupt handler. If inline expansion is specified for this function, the CA850 outputs a warning message

and ignores the specification.

(9) A task of a real-time OS is not specified to be expanded inline.

A function specified by the #pragma rtos_task directive is recognized as a task of a real-time OS. If inline

expansion is specified for this function, the CA850 outputs a warning message and ignores the specification.

(10) Interrupts are not disabled in a function by the #pragma block_interrupt directive.

If inline expansion is specified for a function in which interrupts are declared by the #pragma block_interrupt

directive to be disabled, the CA850 outputs a warning message and ignores the specification.

-Wp,-Nnum

-Wp,-Gnum

-Wp,-l

CHAPTER 3 C LANGUAGE EXPANSION

User’s Manual U18513EJ1V0UM 99

3.8.3 Controlling inline expansion via options

Inline expansion can be controlled using options when inline expansion by the compiler should be suppressed.

The cases in which inline expansion can be controlled and the options are as follows. If execution speed priority

optimization (-Ot) is specified, however, refer to "3.8.4 Execution speed priority optimization and inline

expansion".

(1) To expand inline all static functions that are referenced only once

If this option is specified, a static function that is referenced only once is expanded inline, regardless of

optimization specification and the presence or absence of a #pragma inline specification. If optimization other

than the size priority optimization (-Os) is specified, however, inline expansion may not be executed even if the

-Wp,-S option is specified, because of the internal processing of the CA850.

(2) To suppress inline expansion of all functions

In this case, inline expansion is suppressed even if the -Wp,-S option or the #pragma inline directive is

specified.

-Wp,-S

-Wp,-no_inline

100 User’s Manual U18513EJ1V0UM

CHAPTER 3 C LANGUAGE EXPANSION

3.8.4 Execution speed priority optimization and inline expansion

If the "execution speed priority optimization (-Ot)" option of the CA850 is specified, the CA850 uses inline

expansion as one of the means of optimization. If the -Ot option is specified, the CA850 selects an appropriate

function and expands it inline as long as the inline expansion conditions in "3.8.2 Conditions of inline expansion"

are satisfied, even if the function is not specified for inline expansion by the #pragma inline directive. Inline

expansion can be controlled using options when inline expansion by the compiler should be suppressed. The

items that can be controlled and the options are as follows.

(1) To suppress inline expansion of all functions even though the -Ot option is specified

In this case, inline expansion is suppressed even if the -Wp,-S option or the #pragma inline directive is

specified.

(2) To expand inline only the function specified by the #pragma inline directive even though the -Ot option is

specified

In this case, the function for which inline expansion is specified must meet the conditions explained in "3.8.2

Conditions of inline expansion".

-Wp,-no_inline

-Wp,-inline

CHAPTER 3 C LANGUAGE EXPANSION

User’s Manual U18513EJ1V0UM 101

3.8.5 Examples of differences in inline expansion operation depending on
option specification

Here are examples of differences in inline expansion operation depending on whether the #pragma inline

directive or an option is specified.

When -Os (size priority optimization) is specified (other than -Ot)

When -Ot (execution speed priority optimization) is specified

When -Ot (execution speed priority optimization)

+ -Wp,-inline (inline expansion of only function specified by #pragma inline) are specified

Remarks 1 The CA850 does not treat a function specified for inline expansion by the #pragma inline directive

as a static function. To use such a function as a static function, static must be explicitly specified.

2 When executing debugging, a breakpoint cannot be specified for a function specified for

inlineexpansion in the C language source.

#pragma inline func0

/* expanded if inline expansion conditions are satisfied because

 #pragma inline is specified #pragma inline */

void func0(){...}

void func1(){...} /* not expanded */

void func2(){...} /* not expanded */

#pragma inline func0

/* expanded if inline expansion conditions are satisfied because -Ot is

 specified */

void func0(){...}

/* expanded if inline expansion conditions are satisfied because -Ot is

 specified */

void func1(){...}

/* expanded if inline expansion conditions are satisfied because -Ot is

 specified */

void func2(){...}

#pragma inline func0

/* expanded if inline expansion conditions are satisfied because

 #pragma inline is specified */

void func0(){...}

/* not expanded because -Wp,-inline is specified but #pragma inline is not

 specified */

void func1(){...}

/* not expanded because -Wp,-inline is specified but #pragma inline is not

 specified */

void func2(){...}

102 User’s Manual U18513EJ1V0UM

CHAPTER 3 C LANGUAGE EXPANSION

3.9 Real-Time OS Support Function

The CA850 has functions to improve programming description and to reduce the number of codes, making

allowances for organizing a system using the V850 microcontrollers real-time OS RX850 or RX850 Pro.

3.9.1 Description of task

An application using a real-time OS performs processing in task units. The real-time OS schedules a task

using a system call issued in that task or interrupt servicing. Register contents are saved and restored by the

real-time OS when the task is switched (when the context is switched). Therefore, prologue and epilogue

processing are different from those of an ordinary function. In other words, the prologue and epilogue processing

generated by the CA850 when a function is called are not executed by a task.

To use a function described as a task, the code can be reduced by deleting the prologue and epilogue

processing that are executed when a function is called. However, ordinary functions and tasks are not

distinguished according to the description method of C language. Therefore, the CA850 has the following

#pragma directive so that a function can be recognized as a task of a real-time OS.

Consequently, the function specified by "function-name" can be recognized as a task of a real-time OS. A

function name described in C is specified as "function-name". The following description is made, for example, to

use the function "void func1(int inicode){}" as a task.

"function-name" can also be omitted. If omitted, the function following the #pragma rtos_task directive in that

file is recognized as a task.

Specifying the #pragma rtos_task directive has the following effect.

(1) The prologue/epilogue processing output by an ordinary function is not performed. Specifically, the

following codes are not output.

(a) Saving/restoring of register contents for register variables

(b) Saving/restoring of link pointer (lp)

(c) Jump to return address

#pragma rtos_task [function-name]

#pragma rtos_task func1

CHAPTER 3 C LANGUAGE EXPANSION

User’s Manual U18513EJ1V0UM 103

(2) The system call "ext_tsk" can be used as a defined function.

This system call can be used even if a prototype declaration is not made in the application. Functions other

than the one specified as a task can be called in the same manner as long as they are described after the

#pragma rtos_task directive. When this system call is called, a code using the jr instruction is output to reduce

the code size. If the main body of system call "ext_tsk" is not in the range in which the jr instruction can branch

execution, the linker (ld850) outputs an error. In this case, take the following actions.

(a) Change the memory allocation by the link directive.

(b) Replace the jr instruction with the jmp instruction in the assembly language source.

(c) Specify far jump

Note the following points when the #pragma rtos_task directive is specified.

- A task cannot be called in the same manner as calling a function. A task called from a separate file is not

checked. A task cannot be expanded inline because it cannot be called as a function. That is, even if the

#pragma inline directive is specified for a function specified by the #pragma rtos_task directive, the

#pragma inline specification is ignored.

- An error occurs if "#pragma rtos_task function-name" is described after the function definition in the same

file. If the function is not defined after "#pragma rtos_task function-name" is described in the file, the

#pragma directive for that function is ignored.

- A function specified by the #pragma rtos_task directive cannot be specified as an ordinary interrupt/

exception handler (refer to "3.7 Interrupt/Exception Processing Handler").

Refer to the User's Manual of each real-time OS for the real-time OS functions.

104 User’s Manual U18513EJ1V0UM

CHAPTER 3 C LANGUAGE EXPANSION

3.10 Embedded Functions

In the CA850 some of the instructions can be described in C language source as embedded functions.

Table 3 - 12 shows the instructions that can be described as functions.

Remark [V850E] mark indicates that only V850Ex core is available.

Caution Even if a function is defined with the same name as an embedded function, it cannot be used.

If an attempt is made to call such a function, processing for the embedded function provided by the

compiler takes precedence.

Table 3 - 12 Embedded Functions

Assembler
Instruction Function Description

di
ei

Interrupt control (DI/EI) __DI()
__EI()

nop nop __nop()

halt halt __halt()

satadd Saturated addition (satadd) long a, b;
long __satadd(a, b)

satsub Saturated subtraction (satsub) long a, b;
long __satsub(a, b)

bsh Halfword data byte swap (bsh) [V850E] long a;
long __bsh(a)

bsw Word data byte swap (bsw) [V850E] long a;
long __bsw(a)

hsw Word data halfword swap (hsw) [V850E] long a;
long __hsw(a)

sxb Byte data sign extension (sxb) [V850E] char a;
long __sxb(a)

sxh Halfword data sign extension (sxh) [V850E] short a;
long __sxh(a)

mul Instruction that assigns higher 32 bits of multiplication
result to variable using mul instruction [V850E]

long a; long b;
long __mul32(a, b)

mulu Instruction that assigns higher 32 bits of unsigned
multiplication result to variable using mulu instruction
[V850E]

unsigned long a, b;
unsigned long __mul32u(a, b)

sasf Flag condition setting with logical left shift (sasf)
[V850E]

long a;
unsigned int b;
long __sasf(a, b)

CHAPTER 3 C LANGUAGE EXPANSION

User’s Manual U18513EJ1V0UM 105

3.10.1 Interrupt control (DI/EI)

An example of describing the interrupt control (DI/EI) instruction is shown below.

Example

Compiler output of above example

3.10.2 nop

An example of describing the nop instruction is shown below.

Example

Compiler output of above example

void func(void)

{

:

__DI(); /* Describe the processing to be executed while interrupts are disabled. */

__EI();

:

}

_func:

-- Prologue code

di

-- Describe the processing to be executed while interrupts are disabled.

ei

:

-- Epilogue code

jmp [lp]

void func(void)

{

:

__nop();

:

}

_func:

 :

nop

 :

106 User’s Manual U18513EJ1V0UM

CHAPTER 3 C LANGUAGE EXPANSION

3.10.3 halt

An example of describing the halt instruction is shown below.

Example

Compiler output of above example

3.10.4 Saturated addition (satadd)

An example of describing the saturated addition instruction is shown below.

Example

Compiler output of above example

void func(void)

{

 :

__halt();

}

_func:

 :

halt

void func(void)

{

long a, b, c;

:

c = __satadd(a, b); /* The result of the saturated operation of a */

/* and b is stored in c. */

:

}

_func:

:

ld.w -4 +.A2[sp], r10 -- Load variable a

ld.w -8 +.A2[sp], r11 -- Load variable b

satadd r11, r10 -- Saturated subtraction (a + b)

st.w r10, -12 +.A2[sp]

-- The result of the saturated operation is stored in variable c.

:

CHAPTER 3 C LANGUAGE EXPANSION

User’s Manual U18513EJ1V0UM 107

3.10.5 Saturated subtraction (satsub)

An example of describing the saturated subtraction instruction is shown below

Example

Compiler output of above example

3.10.6 Halfword data byte swap (bsh) [V850E]

An example of describing the halfword data byte swap (bsh) instruction is shown below.

Example

Compiler output of above example

void func(void)

{

long a, b, c;

:

c = __satsub(a, b); /* The result of the saturated operation of a */

 /* and b is stored in c (c = a - b). */

:

}

_func:

:

ld.w -4 +.A2[sp], r10 -- Load variable a

ld.w -8 +.A2[sp], r11 -- Load variable b

satsub r11, r10 -- Saturated subtraction (a - b)

st.w r10, -12 +.A2[sp]

-- The result of the saturated operation is stored in variable c.

:

void func(void)

{

long a, b;

:

b = __bsh(a); /* Halfword data of a is byte-swapped */

/* and the result is stored in b. */

:

}

_func:

 :

ld.w -4+.A2[sp], r10 -- Load variable a

bsh r10, r10 -- Halfword data byte swap

st.w r10, -8+.A2[sp]

-- The result of halfword data byte swap is stored in variable b.

 :

108 User’s Manual U18513EJ1V0UM

CHAPTER 3 C LANGUAGE EXPANSION

3.10.7 Word data byte swap (bsw) [V850E]

An example of describing the word data byte swap (bsw) instruction is shown below.

Example

Compiler output of above example

3.10.8 Word data halfword swap (hsw) [V850E]

An example of describing the word data halfword swap (hsw) instruction is shown below.

Example

Compiler output of above example

void func(void)

{

long a, b;

 :

b = __bsw(a); /* Word data of a is byte-swapped and the result is stored in b.*/

 :

}

_func:

:

ld.w -8+.A2[sp], r10 -- Load variable a

bsw r10, r10 -- Word data byte swap

st.w r10, -12+.A2[sp] -- Stored in variable b

:

void func(void)

{

long a, b;

:

b = __hsw(a); /* Word data of a is halfword-swapped and the result is stored in b. */

:

}

_func:

:

ld.w -8+.A2[sp], r10 -- Load variable a

hsw r10, r10 -- Word data halfword swap

st.w r10, -12+.A2[sp] -- Stored in variable b

:

CHAPTER 3 C LANGUAGE EXPANSION

User’s Manual U18513EJ1V0UM 109

3.10.9 Byte data sign extension (sxb) [V850E]

An example of describing the byte data sign extension (sxb) instruction is shown below.

Example

Compiler output of above example

3.10.10 Halfword data sign extension (sxh) [V850E]

An example of describing the halfword data sign extension (sxh) instruction is shown below.

Example

Compiler output of above example

void func(void)

{

char a;

long b;

:

b = __sxb(a); /* Sign extension of the byte data of a is performed */

/* and the result is stored in b. */

:

}

_func:

 :

ld.w -8+.A2[sp], r10 -- Load variable a

sxb r10, r10 -- Sign extension of byte data

st.w r10, -12+.A2[sp] -- Stored in variable b

 :

void func(void)

{

short a;

long b;

:

b = __sxh(a); /* Sign extension of the halfword data of a is */

/* performed and the result is stored in b. */

:

}

_func:

:

ld.w -8+.A2[sp], r10 -- Load variable a

sxh r10 -- Sign extension of halfword data

st.w r10, -12+.A2[sp] -- Stored in variable b

:

110 User’s Manual U18513EJ1V0UM

CHAPTER 3 C LANGUAGE EXPANSION

3.10.11 Instruction that assigns higher 32 bits of multiplication result to
variable using mul instruction [V850E]

An example of describing the instruction that assigns variable for the higher 32 bits of the multiplication result

using the mul instruction is shown below.

Example

Compiler output of above example

void func(void)

{

long a, b, c;

:

c = __mul32(a, b); /* The higher 32 bits of the result of a * b are stored in c. */

:

}

_func:

:

ld.w -4+.A2 [sp], r10 -- Load variable a

ld.w -8+.A2 [sp], r11 -- Load variable b

mul r11, r10, r12 -- a * b

st.w r12, -12+.A2 [sp] -- Stored in variable c

:

CHAPTER 3 C LANGUAGE EXPANSION

User’s Manual U18513EJ1V0UM 111

3.10.12 Instruction that assigns higher 32 bits of unsigned multiplication result
to variable using mulu instruction [V850E]

An example of describing the instruction that assigns the higher 32 bits of the unsigned multiplication result to

variable using mulu instruction is shown below.

Example

Compiler output of above example

void func(void)

{

unsigned long a, b, c;

:

c = __mul32u(a, b); /* The higher 32 bits of the result of a * b are stored in c. */

:

}

_func:

:

ld.w -4+.A2 [sp], r10 -- Load variable a

ld.w -8+.A2 [sp], r11 -- Load variable b

mulu r11, r10, r12 -- a * b

st.w r12, -12+.A2 [sp] -- Stored in variable c

:

112 User’s Manual U18513EJ1V0UM

CHAPTER 3 C LANGUAGE EXPANSION

3.10.13 Flag condition setting with logical left shift (sasf) [V850E]

An example of describing the flag condition setting instruction with logical left shift when a conditional

expression is written in the second argument is shown in Example 1.

An example of describing the flag condition setting instruction with logical left shift when a variable is written in

the second argument is shown in Example 2.

Example 1

Compiler output of above Example 1

Example 2

/* When a conditional expression is written in the second argument */

void func(void)

{

unsigned long a, b, c;

:

c = __sasf(c, a == b); /* If a == b is true, c is shifted left logically by */

/* 1 bit and 1 is added. */

/* If a == b is not true, c is shifted left logically */

/* by 1 bit. The result is stored in c. */

 :

}

_func:

:

ld.w -4+.A2 [sp], r10 -- Load variable a

ld.w -8+.A2 [sp], r11 -- Load variable b

cmp r11, r10 -- Compare variable a and b.

ld.w -12+.A6 [sp], r12 -- Load variable c

sasf 0x2, r12

 -- If a == b is true, c is shifted left logically by 1 bit and 1 is added.

 -- If a == b is not true, c is shifted left logically by 1 bit.

st.w r12, -12+.A2 [sp] -- Stored in variable c.

:

/* When a variable is written in the second argument */

void func(void)

{

unsigned long a, b;

:

b = __sasf(b, a); /* If a is not 0, b is shifted left logically by 1 bit */

/* and 1 is added. */

 /* If a is other than 0, b is shifted left logically */

/* by 1 bit. */

 /* The result is stored in b. */

:

}

CHAPTER 3 C LANGUAGE EXPANSION

User’s Manual U18513EJ1V0UM 113

Compiler output of above Example 2

_func:

:

ld.w -4+.A2 [sp], r10 -- Load variable a

cmp r0, r10 -- Compare variable a and 0.

ld.w -8+.A2 [sp], r11 -- Load variable b

sasf 0xa, r11

-- If a is not 0, b is shifted left logically by 1 bit and 1 is added.

-- If a is 0, b is shifted left logically by 1 bit.

st.w r11, -8+.A2 [sp] -- Stored in variable b

:

114 User’s Manual U18513EJ1V0UM

CHAPTER 3 C LANGUAGE EXPANSION

3.11 Structure Packing Function

In the CA850, the alignment of structure members can be specified at the C language level. This function is

equivalent to the -Xpack option, however, the structure-packing directive can be used to specify the alignment

value in any location in the C language source.

Note The data area can be reduced by packing a structure, but the program size increases and the

execution speed is degraded.

3.11.1 Structure packing specified

The structure packing function is specified in the following format.

#pragma pack changes to an alignment value of the structure member upon the occurrence of this directive.

The alignment value is called the packing value and the specifiable numeric values are 1, 2, 4, and 8. When the

packing value is not specified, the default alignment (1)Note is specified. Since this directive becomes valid upon

occurrence, several directives can be described in the C language source.

Example

Note Alignment values "4" and "8" are treated as the same in Ver. 2.70.

#pragma pack([1248])

/* Structure member aligned using 1-byte alignment */

#pragma pack(1)

struct TAG {

char c;

int i;

short s;

};

CHAPTER 3 C LANGUAGE EXPANSION

User’s Manual U18513EJ1V0UM 115

3.11.2 Rules of structure packing

The structure members are aligned in a form that satisfies the condition whereby members are aligned

according to whichever is the smaller value: the structure packing value or the member’s alignment value.

For example, if the structure packing value is 2 and member type is int type, the structure members are

aligned in 2-byte alignment.

Example

struct S {

char c; /* Satisfies 1-byte alignment condition */

int i; /* Satisfies 4-byte alignment condition */

};

#pragma pack(1)

struct S1 {

char c; /* Satisfies 1-byte alignment condition */

int i; /* Satisfies 1-byte alignment condition */

};

#pragma pack(2)

struct S2 {

char c; /* Satisfies 1-byte alignment condition */

int i; /* Satisfies 2-byte alignment condition */

};

struct S sobj; /* Size of 8 bytes */

struct S1 s1obj; /* Size of 5 bytes */

struct S2 s2obj; /* Size of 6 bytes */

0 6331 327 8
c i

0 397 8
c i

0 4715 167 8
c i

sobj

s1obj

s2obj

116 User’s Manual U18513EJ1V0UM

CHAPTER 3 C LANGUAGE EXPANSION

3.11.3 Union

A union is treated as subject to packing and is handled in the same manner as structure packing.

Example 1

Example 2

union U {

struct S {

char c;

int i;

} sobj;

};

#pragma pack(1)

union U1 {

struct S1 {

char c;

int i;

} s1obj;

};

#pragma pack(2)

union U2 {

struct S2 {

char c;

int i;

} s2obj;

};

union U uobj; /* Size of 8 bytes */

union U1 u1obj; /* Size of 5 bytes */

union U2 u2obj; /* Size of 6 bytes */

union U {

int 7:i;

};

#pragma pack(1)

union U1 {

int 7:i;

};

#pragma pack(2)

union U2 {

int 7:i;

};

union U uobj; /* Size of 4 bytes */

union U1 u1obj; /* Size of 1 byte */

union U2 u2obj; /* Size of 2 bytes */

CHAPTER 3 C LANGUAGE EXPANSION

User’s Manual U18513EJ1V0UM 117

3.11.4 Bit field

Data is allocated to the area of the bit field element as follows.

(1) When the structure packing value is equal to or larger than the alignment condition value of the

member type

Data is allocated in the same manner as when the structure packing function is not used. That is, if the data is

allocated consecutively and the resulting area exceeds the boundary that satisfies the alignment condition of the

element type, data is allocated from the area satisfying the alignment condition.

(2) When the structure packing value is smaller than the alignment condition value of the element type

(a) If data is allocated consecutively and results in the number of bytes including the area becoming larger

than the element type

The data is allocated in a form that satisfies the alignment condition of the structure packing value.

(b) Other conditions

The data is allocated consecutively

Example

struct S {

short a : 7; /* 0 to 6th bit */

short b : 7; /* 7 to 13th bit */

short c : 7; /* 16 to 22nd bit (aligned to 2-byte boundary) */

short d : 7; /* 32 to 46th bit (aligned to 2-byte boundary) */

} sobj;

#pragma pack (1)

struct S1 {

short a : 7; /* 0 to 6th bit */

short b : 7; /* 7 to 13th bit */

short c : 7; /* 14 to 20th bit */

short d : 15; /* 24 to 38th bit (aligned to byte boundary) */

} s1obj;

0 6331 3276
a

0 4076
a

sobj

s1obj

b c d

b c d

13 16 22 23 46 47

13 14 20 212324 3839

118 User’s Manual U18513EJ1V0UM

CHAPTER 3 C LANGUAGE EXPANSION

3.11.5 Alignment condition of top structure object

The alignment condition of the top structure object is the same as when the structure packing function is not

used.

3.11.6 Size of structure objects

Perform padding so that the size of structure objects becomes a multiple value of whichever is the smaller

value: the structure alignment condition value or the structure packing value. The alignment condition of the top

structure object is the same as when the structure packing function is not used.

Example 1

struct S {

int i;

char c;

};

#pragma pack(1)

struct S1 {

int i;

char c;

};

struct S sobj; /* Size of 8 bytes */

struct S1 s1obj; /* Size of 5 bytes */

struct S2 s2obj; /* Size of 6 bytes */

0 633132 39 40
ci

0 393132
ci

0 4739 403132
ci

sobj

s1obj

s2obj

CHAPTER 3 C LANGUAGE EXPANSION

User’s Manual U18513EJ1V0UM 119

Example 2

struct S {

int i;

char c;

};

struct T {

char c;

struct S s;

};

#pragma pack(1)

struct S1 {

int i;

char c;

};

struct T1 {

char c;

struct S1 s1;

};

#pragma pack(2)

struct S2 {

int i;

char c;

};

struct T2 {

char c;

struct S2 s2;

};

struct T tobj; /* Size of 12 bytes */

struct T1 t1obj; /* Size of 6 bytes */

struct T2 t2obj; /* Size of 8 bytes */

0 9531 32 63 64
c s.i

0 4739 40
c1 s1.i

0 6355 564748
c2 s2.i

sobj

s1obj

s2obj

s.c
71 727 8

7 8
s1.c

7 8 15 16
s2.c

120 User’s Manual U18513EJ1V0UM

CHAPTER 3 C LANGUAGE EXPANSION

3.11.7 Size of structure array

The size of the structure object array is a value that is the sum of the number of elements added to the size of

structure object.

Example

struct S {

int i;

char c;

};

#pragma pack(1)

struct S1 {

int i;

char c;

};

#pragma pack(2)

struct S2 {

int i;

char c;

};

struct S sobj[2]; /* Size of 16 bytes */

struct S1 s1obj[2]; /* Size of 10 bytes */

struct S2 s2obj[2]; /* Size of 12 bytes */

0 12731 32 63 64
ci

0 7139 40

0 87798047 48

sobj

s1obj

s2obj

c
95 963940

31 32

31 32 39 40

103104
i

72 79
i ic c

88 95
i ic c

CHAPTER 3 C LANGUAGE EXPANSION

User’s Manual U18513EJ1V0UM 121

3.11.8 Area between objects

For example, sobj.c, sobj.i, and cobj may be allocated consecutively without a gap in the following source

program (the allocation order of sobj and cobj is not guaranteed).

Example

3.11.9 Notes concerning structure packing function

(1) Specification of -Xpack option and #pragma pack directive at the same time

If the -Xpack option is specified when structure packing is specified with the #pragma directive in the C lan-

guage source, the specified option value is applied to all the structures until the first #pragma pack directive

appears. After this, the value of the #pragma directive is applied.

Even after the #pragma directive appears, however, the specified option value is applied to the area specified

as default

Example

#pragma pack(1)

struct S {

char c;

int i;

} sobj;

char cobj;

/* When specify -Xpack = 2 */

struct S2 { ... }; /* Packing value is specified as 2 in option */

/* Option -Xpack = 2 is valid: packing value is 2 */

#pragma pack(1) /* Packing is specified as 1 in #pragma directive */

struct S1 { ... }; /* Pragma pack (1) is valid: packing value is 1 */

#pragma pack() /* Packing value is specified as default in #pragma directive */

struct S2_2 { ... };/* Option -Xpack = 2 is valid: packing value is 2 */

0 4739 407 8
c i

sobj,cobj

cobj

122 User’s Manual U18513EJ1V0UM

CHAPTER 3 C LANGUAGE EXPANSION

(2) Restrictions

When using the V850 microcontrollers and a CPU that is set to disable misalign access for V850Ex products,

the following restrictions apply.

(a) Access using the structure member address cannot be executed correctly.

As shown in the following example, the structure member address is acquired, and the access to that

address is then performed with the address masked in accordance with the data alignment of the device.

Therefore, some data may disappear or be rounded off.

Example

(b) In bit field access, an area with no data to be read using the member’s type is also accessed.

If the width of the bit field is smaller than the member’s type as shown in the following example, access

occurs outside the object because reading is performed using the member’s type.

Generally, there is no problem with the function, but if I/O are mapped, an illegal access may occur.

Example

struct test {

char c; /* offset 0 */

int i; /* offset 1-4 */

} test;

int *ip ,i;

void func(void)

{

i = *ip; /* Accessed with address masked */

}

void func2(void)

{

ip = &(test.i); /* Acquire structure member address */

}

struct S {

int x : 21;

} sobj; /* 3byte */

sobj.x = 1

CHAPTER 3 C LANGUAGE EXPANSION

User’s Manual U18513EJ1V0UM 123

3.12 Binary Constants

The CA850 can handle integer constants in binary form.

A binary constant is a string that consists of "0b" or "0B" followed by one or more "0" or "1".

Example

Note Binary constants cannot be used when the -ansi option is specified.

0b00010110111101010111111010010111

124 User’s Manual U18513EJ1V0UM

CHAPTER 4 CALLING PROGRAM

CHAPTER 4 CALLING PROGRAM

This chapter explains how to handle arguments when a program is called by the CA850.

4.1 Calling Between C Functions

- Normal function call

- Function call using a pointer indicating a function (and returning from function call)

When a C function is called from another C function, a 4-word argument is stored in the argument registers (r6

to r9). An argument in excess of 4 words is stored in the stack frame of the calling function. Control is then

transferred (jumps) to the called function and the value in the argument registers stored when the function was

called is stored in the stack frame of the calling function.

The stack frame is generated when the prologue code of the function, i.e., the code that is executed before the

code of the main body of the function is called (processing (4) to (7) in Figure 4 - 3 and Figure 4 - 5 is the

prologue code), is executed and the stack pointer (sp) is shifted by the necessary size. The stack frame disap-

pears when the epilogue code of the function, i.e., the code that is executed after the code of the main body of

the function is executed and until control returns to the calling function, is executed and the stack pointer (sp) is

returned.

→ jarl instruction

→ jmp instruction (dispose instruction [V850E])

CHAPTER 4 CALLING PROGRAM

User’s Manual U18513EJ1V0UM 125

4.1.1 Stack frame/function call

This section explains the stack frame format and how the stack frame is generated and disappears when a

function is called.

(1) Stack frame format

The CA850 allocates the argument register area to either the beginning of the stack or center of the stack in

the stack frame, according to the argument condition. The argument conditions are as follows.

(a) When the argument register area is allocated to the beginning of the stack

The argument register area is allocated to the beginning of the stack when the area is accessed

successively, exceeding the area for the 4-word argument, in the following two cases.

- If the number of arguments is variable

- If the argument is the entity of a structure and its area extends over a 4-word area

(b) When the argument register area is allocated to the center of the stack

The argument register area is allocated to the center of the stack under conditions other than (a).

Figure 4 - 1 shows the stack frame when the argument register area is at the beginning of the stack, and

Figure 4 - 2 shows the stack frame when the argument register area is at the center of the stack.

Figure 4 - 1 Stack Frame (When Argument Register Area Is Located at Center of Stack)

r20
r21

r28
r29

.S=.F

.X

.R

.A

.T

old sp

new sp

Register area for
register variables

lp

Argument register area
(4-word argument area)

Work register area

Automatic variable
area

Argument area for
argument of more
than 4 words

...

126 User’s Manual U18513EJ1V0UM

CHAPTER 4 CALLING PROGRAM

Figure 4 - 2 Stack Frame (When Argument Register Area Is Located at Beginning of Stack)

".S, .F, .X, .R, .A, and .T" in the figure are macros for functions output by the compiler internally. These

macros are used for a specific purpose, as shown in Table 4 - 1.

Note .P is not shown in Figure 4 - 1 and Figure 4 - 2 because it is always 0.

Table 4 - 1 Meanings of Macros for Functions

Macro Name Meaning

.S Stack size

.F Stack size - Size of argument register area (if at the beginning of the stack)

.X Size of argument register area (if at the center of the stack) + .R

.R Size of work register area + .A + .T

.A Size of automatic variable area + .T

.T Size of area for arguments of function to be called in excess of 4 words

.P Always 0 (macro for code generation)Note

r20
r21

r28
r29

.S

.F

.R=.X

.A

.T

old sp

new sp

Register area for
register variables

lp

Argument register area
(4-word argument area)

Work register area

Automatic variable
area

Argument area for
argument of more
than 4 words

...

CHAPTER 4 CALLING PROGRAM

User’s Manual U18513EJ1V0UM 127

These macros are used to access the stack area. Table 4 - 2 shows specific access methods (access codes

to be output).

"offset" in this table is a positive integer and means the offset in each area. "xx" after a macro is a positive

integer and indicates the frame number of the function.

(2) Generation/disappearance of stack frame when function is called (when argument register area is at

center of stack)

The following explains the generation and disappearance of the stack frame when a function is called if the

argument register area is at the center of the stack.

This case applies to most function calls. Figure 4 - 3 shows an example of the generation/disappearance of

the stack frame when the function "func2()" is called from the function "func1()" and then execution returns to

"func1()".

Table 4 - 2 Method of Accessing Stack Area

Stack Area Access Method (Displacement [sp])

Register area for register variables (including lp) -offset+.Fxx[sp]

Work register area -offset+.Rxx[sp]

Automatic variable area -offset+.Axx[sp]

Area for arguments in excess of 4 words offset+.Pxx[sp]

Argument register area (if at the beginning of the stack) offset+.Fxx[sp]

Argument register area (if at the center of the stack) offset+.Rxx[sp]

128 User’s Manual U18513EJ1V0UM

CHAPTER 4 CALLING PROGRAM

Figure 4 - 3 Generation/Disappearance of Stack Frame
 (When Argument Register Area Is Located at Center of Stack)

Higher address

Area for automatic
variables

Area for arguments
in excess of 4 words

Area for saving contents of
registers for register variables

lp saving area

Stack frame
for func1

Stack frame
for func2

Argument register area
(4 words)

Area for arguments
in excess of 4 words

Area for automatic
variables

Work register area

Area for saving contents of
registers for register variables

lp saving area

Lower address

sp of func1

sp of func2

(iii)

(4)

Area for arguments
in excess of 4 words

Area for automatic
variables

Work register area

Argument register area
(4 words)

lp saving area

Area for saving contents of
registers for register variables

(2)

(6) (i)

(5) (ii)

(7)

Processing on func1() side when func2() is called

(4) sp is shifted.
The stack pointer moves to the stack to be
used by func2.

(5) lp is saved.
The return address of func1() is stored.

(6) Register variable registers are saved.
These registers are saved because the register
values used by func1 must be retained when
func2 also uses the register variable registers.

(7) Arguments in argument register area are
stored.
The values of r6 to r9 are stored. The current
argument values are stored in the stack
because when another function is called from
func2, the arguments at that time are stored in
registers r6 to r9.

Processing on func2() side when called by func1

Processing on func2() side when execution
returns from func2() to func1()

[Note]Since the V850Ex can perform processing (4),
(5), and (6) with the prepare instruction, the
CA850 outputs the prepare instruction.

[Note]Since the V850Ex can perform processing (i),
(ii), (iii), and (iv) with the dispose instruction,
the CA850 outputs the dispose instruction.

(i) The contents of the registers for register
variables are restored.
The values of the register variable registers of
func1() is restored to registers.

(ii) lp is restored.
The return address of func1() is restored.

(iii) sp is returned.
The stack pointer moves back to the stack to be
used by func1().

(iv) Execution is returned by the jmp [lp] instruction.

(1) The arguments are stored in the argument
registers.
The arguments of func2 to be called are stored
in r6 to r9.

(2) The arguments in excess of 4 words are stored
in the stack.
The excess arguments that cannot be stored in
r6 to r9 are stored in the stack. This processing
is performed if the number of arguments is five
or more.

(3) Execution branches to func2() by the jarl
instruction.

CHAPTER 4 CALLING PROGRAM

User’s Manual U18513EJ1V0UM 129

The items saved to the stack frame and the stack frame to be used are summarized below.

(a) Calling side - func1() -

- The values of the excess arguments are called if the arguments of func2() to be called exceed 4 words

(b) Called side - func2() -

- Passing the arguments stored in the argument registers

(The calling side (func1()) stores the argument in the register.)

- Saving the link pointer (lp) (= return address of func1()) of the calling side (func1())

- Saving the contents of the register variable registers

- The register variable registers are allocated as follows.

In 22-register mode: r25, r26, r27, r28, r29

In 26-register mode: r23, r24, r25, r26, r27, r28, r29

In 32-register mode: r20, r21, r22, r23, r24, r25, r26, r27, r28, r29

Of these registers, those that are used are saved.

- Area for automatic variables

- Allocating an area used for operation if a very complicated expression is used in a function

Although this area is not shown in Figure 4 - 3, it is allocated at the lower address of the area for automatic

variables if it is necessary.

If the function has a return value, that value is stored in r10.

The location of each area of the stack frame and the image of the stack growth direction of each area are

illustrated below (it is assumed that func2() to be called has five arguments).

130 User’s Manual U18513EJ1V0UM

CHAPTER 4 CALLING PROGRAM

Figure 4 - 4 Stack Growth Direction of Each Area of Stack Frame

An example of a source calling a C function from a C function and an assembly source when that source is

compiled is shown below.

Example

void func1(void)

{

int a, b, c, d, e;

func2(a, b, c, d, e);

:

}

int func2(int a, int b, int c, int d, int e)

{

register int i;

:

return i;

}

Growth direction
of each area

Stores 5th argument
sp for func1

sp for func2

Area for saving contents of registers
for register variables

Area for saving link pointer (lp)

Stores 4th argument

Stores 3rd argument

Stores 2nd argument

Stores 1st argument

Area for automatic variables

Area for complicated operations

Area for arguments of function to be called
from func2 in excess of 4 words

CHAPTER 4 CALLING PROGRAM

User’s Manual U18513EJ1V0UM 131

Assembler instructions generated when func2 is called in example above

(3) Generation/disappearance of stack frame when function is called (when argument register area is at

beginning of stack)

The following explains the generation and disappearance of the stack frame when a function is called if the

argument register area is at the beginning of the stack.

Figure 4 - 5 shows an example of the generation/disappearance of the stack frame when the function "func2()"

is called from the function "func1()" and then execution returns to "func1()".

[V850]
_func1:

jbr .L3

.L4:

ld.w -8+.A3 [sp], r6

ld.w -12+.A3 [sp], r7

ld.w -16+.A3 [sp], r8 --- (1)

ld.w -20+.A3[sp], r9

ld.w -24+.A3[sp], r10

st.w r10, [sp] --- (2)

jarl _func2, lp --- (3)

:

-- epilogue for main

-- processing from (ii) to (iv)

.L3:

-- prologue for main

-- processing from(4) and (5)

:

jbr .L4

_func2:

jbr .L5

.L6:

st.w r6, .R2[sp]

st.w r7, 4+.R2[sp]

st.w r8, 8+.R2[sp] --- (7)

st.w r9, 12+.R2[sp]

st.w r29, -4+.A2[sp]

:

jbr .L2

.L2:

ld.w -4+.A2[sp], r10

ld.w -4+.F2[sp], r29 --- (i)

ld.w -8+.F2[sp], lp --- (ii)

add .F2, sp --- (iii)

jmp [lp] --- (iv)

.L5:

add -.F2, sp --- (4)

st.w lp, -8+.F2[sp] --- (5)

st.w r29, -4+.F2[sp] --- (6)

jbr .L6

[V850E]
_func1:

jbr .L3

.L4:

ld.w -8+.A3[sp], r6

ld.w -12+.A3[sp], r7

ld.w -16+.A3[sp], r8 --- (1)

ld.w -20+.A3[sp], r9

ld.w -24+.A3[sp], r10

st.w r10, [sp] --- (2)

jarl _func2, lp --- (3)

:

-- epilogue for main

-- processing from (ii) to (iv)

.L3:

-- prologue for main

-- processing from(4) and (5)

:

jbr .L4

_func2:

jbr .L5

.L6:

st.w r6, .R2[sp]

st.w r7, 4+.R2[sp]

st.w r8, 8+.R2[sp] --- (7)

st.w r9, 12+.R2[sp]

st.w r29, -4+.A2[sp]

:

jbr .L2

.L2:

ld.w -4+.A2[sp], r10

dispose .X2, 0x3, [lp]

--(i), (ii), (iii), (iv)

.L5:

prepare 0x3, .X2

--(4), (5), (6)

jbr .L6

132 User’s Manual U18513EJ1V0UM

CHAPTER 4 CALLING PROGRAM

Figure 4 - 5 Generation/Disappearance of Stack Frame
 (When Argument Register Area Is Located at Beginning of Stack)

Higher address

Area for automatic
variables

Area for automatic
variables

Area for automatic
variables

Area for arguments
in excess of 4 words

Area for arguments
in excess of 4 words

Area for arguments
in excess of 4 words

Stack frame
for func1

Stack frame
for func2

Argument register area
(4 words)

Argument register area
(4 words)

Argument register area
(4 words)

lp saving area

lp saving area

lp saving area

Lower address

Work register area

Work register area

Area for saving contents of
registers for register variables

Area for saving contents of
registers for register variables

sp of func1

sp of func2

(2)

(6) (i)

(iii)

(5) (ii)

(7)

(4)

Processing on func1() side when func2() is called

(4) sp is shifted.
The stack pointer moves to the stack to be
used by func2.

(5) lp is saved.
The return address of func1() is stored.

(6) Register variable registers are saved.
These registers are saved because the
register values used by func1 must be
retained when func2 also uses the register
variable registers.

(7) Arguments in argument register area are
stored.
The values of r6 to r9 are stored. The current
argument values are stored in the stack
because when another function is called from
func2, the arguments at that time are stored in
registers r6 to r9.

Processing on func2() side when called by func1

Processing on func2() side when execution
returns from func2() to func1()

[Note]Since the V850Ex can perform processing (4),
(5), and (6) with the prepare instruction, the
CA850 outputs the prepare instruction.

[Note]Since the V850Ex can perform processing (i),
(ii), (iii), and (iv) with the dispose instruction,
the CA850 outputs the dispose instruction.

(i) The contents of the registers for register
variables are restored.
The values of the register variable registers of
func1() is restored to registers.

(ii) lp is restored.
The return address of func1() is restored.

(iii) sp is returned.
The stack pointer moves back to the stack to
be used by func1().

(iv) Execution is returned by the jmp [lp]
instruction.

(1) The arguments are stored in the argument
registers.
The arguments of func2 to be called are
stored in r6 to r9.

(2) The arguments in excess of 4 words are
stored in the stack.
The excess arguments that cannot be stored
in r6 to r9 are stored in the stack. This
processing is performed if the number of
arguments is five or more.

(3) Execution branches to func2() by the jarl
instruction.

CHAPTER 4 CALLING PROGRAM

User’s Manual U18513EJ1V0UM 133

The items that are saved to the stack frame and the stack frame to be used are summarized below.

(a) Calling side - func1() -

- The values of the excess arguments are called if the arguments of func2() to be called exceed 4 words

(b) Called side - func2() -

- Passing arguments stored in argument registers

(The calling side (func1()) stores the arguments in the registers.)

- Saving the link pointer (lp) (= return address of func1()) of the calling side (func1())

- Saving contents of register variable registers

- Area for automatic variables

- Allocating an area used for operation if a very complicated expression is used in a function

Although this area is not shown in Figure 4 - 3, it is allocated at the lower address of the area for automatic

variables if it is necessary.

If the function has a return value, it is stored in r10.

The location of each area of the stack frame and the image of the stack growth direction of each area are

illustrated below (it is assumed that func2() to be called has five arguments).

134 User’s Manual U18513EJ1V0UM

CHAPTER 4 CALLING PROGRAM

Figure 4 - 6 Stack Growth Direction of Each Area of Stack Frame

An example of a source calling a C function from a C function and an assembly source when that source is

compiled is shown below.

Example

void func1(void)

{

int a, b, c, d, e;

func2(a, b, c, d, e);

:

}

int func2(int a, int b, int c, int d, int e)

{

register int i;

:

return i;

}

Growth direction
of each area

sp for func1

sp for func2

Stores 5th argument

Stores 4th argument

Stores 3rd argument

Stores 2nd argument

Stores 1st argument

Area for saving contents of registers
for register variables

Area for saving link pointer (lp)

Area for automatic variables

Area for complicated operations

Area for arguments of function to be called
from func2 in excess of 4 words

CHAPTER 4 CALLING PROGRAM

User’s Manual U18513EJ1V0UM 135

Assembler instructions generated when func2 is called in example above

[V850]
_func1:

jbr .L3

.L4:

ld.w -8+.A3[sp], r6

ld.w -12+.A3[sp], r7

ld.w -16+.A3[sp], r8 --- (1)

ld.w -20+.A3[sp], r9

ld.w -24+.A3[sp], r10

st.w r10, [sp] --- (2)

jarl _func2, lp --- (3)

:

-- epilogue for main

-- processing from (ii) to (iv)

.L3:

-- prologue for main

-- processing (4) and (5)

:

jbr .L4

_func2:

jbr .L5

.L6:

st.w r6, .F2[sp]

st.w r7, 4+.F2[sp]

st.w r8, 8+.F2[sp] --- (7)

st.w r9, 12+.F2[sp]

:

st.w r29, -4+.A2[sp]

jbr .L2

.L2:

ld.w -4+.A2[sp], r10

ld.w -4+.F2[sp], r29 --- (i)

ld.w -8+.F2[sp], lp --- (ii)

add .S2, sp --- (iii)

jmp [lp] --- (iv)

.L5:

sub -.S2, sp --- (4)

st.w lp, -8+.F2[sp] --- (5)

st.w r29, -4+.F2[sp] --- (6)

jbr .L6

[V850E]
_func1:

jbr .L3

.L4:

ld.w -8+.A3[sp], r6

ld.w -12+.A3[sp], r7

ld.w -16+.A3[sp], r8 --- (1)

ld.w -20+.A3[sp], r9

ld.w -24+.A3[sp], r10

st.w r10, [sp] --- (2)

jarl _func2, lp --- (3)

:

-- epilogue for main

-- processing from (ii) to (iv)

.L3:

-- prologue for main

-- processing (4) and (5)

:

jbr .L4

_func2:

jbr .L5

.L6:

st.w r6, .F2[sp]

st.w r7, 4+.F2[sp]

st.w r8, 8+.F2[sp] --- (7)

st.w r9, 12+.F2[sp]

:

st.w r29, -4+.A2[sp]

jbr .L2

.L2:

ld.w -4+.A2[sp], r10

dispose .X2, 0x3

-- (i), (ii), (iii)

add .S2-.F2, sp --- (iii)

jmp [lp] --- (iv)

.L5:

add .F2 -.S2, sp --- (4)

prepare 0x3, .X2

--- (4), (5), (6)

jbr .L6

136 User’s Manual U18513EJ1V0UM

CHAPTER 4 CALLING PROGRAM

4.2 Calling Between C Function and Assembler Function

This section explains the points to be note when an assembler function is called by a C function or vice versa.

4.2.1 Calling assembler function from C function

Note the following points when calling an assembler function from a C function.

(1) Identifier

If external names, such as functions and external variables, are described in the C language source by the

CA850, they are prefixed with "_" (underscore) when they are output to the assembler.

Prefix "_" to the identifier when defining functions and external variables with the assembler. Remove "_" when

referencing them from a C function.

(2) Stack frame

The CA850 outputs codes on the assumption that the stack pointer (sp) always indicates the lowest address of

the stack frame. Therefore, the address area lower than the address indicated by sp can be freely used in the

assembler function after branching from a C language source to an assembler function. Conversely, if the

contents of the higher address area are changed, the area used by a C function may be lost and the subsequent

operation cannot be guaranteed. To avoid this, change sp at the beginning of the assembler function before

using the stack. At this time, however, make sure that the value of sp is retained before and after calling. When

using a register variable register in an assembler function, make sure that the register value is retained before

and after the assembler function is called. In other words, save the value of the register variable register before

calling the assembler function, and restore the value after calling.

The register variable registers that can be used differ depending on the register mode.

Table 4 - 3 Identifier

C Assembler

func1() _func1

Table 4 - 4 Registers for Register Variables

Register Mode Registers for Register Variables

22-register mode r25, r26, r27, r28, r29

26-register mode r23, r24, r25, r26, r27, r28, r29

32-register mode r20, r21, r22, r23, r24, r25, r26, r27, r28, r29

CHAPTER 4 CALLING PROGRAM

User’s Manual U18513EJ1V0UM 137

(3) Argument passed to assembler function

The CA850 stores 4-word arguments in argument registers r6 to r9 and arguments in excess of 4 words in the

stack frame on the calling side (refer to "4.1.1 Stack frame/function call" for details). Reference each stored

value when using an argument value in an assembler function. An argument value in a C function is the value

itself that is specified as an argument. The operation of the C function is not affected even if this value is

changed in an assembler function.

(4) Return value returned from assembler function

The CA850 generates codes on the assumption that the return value of a function is stored in the r10 register.

Store the value returned from an assembler function in r10. If the function returns a structure, the return value,

i.e., the structure, is stored in the stack frame of the calling function.

(5) Return address passed to C function

The CA850 generates codes on the assumption that the return address of a function is stored in link pointer lp

(r31). When execution branches to an assembler function, the return address of the function is stored in lp.

Execute the jmp [lp] instruction to return to a C function.

138 User’s Manual U18513EJ1V0UM

CHAPTER 4 CALLING PROGRAM

4.2.2 Calling C function from assembler function

Note the following points when calling a C function from an assembler function.

(1) Stack frame

The CA850 generates codes on the assumption that the stack pointer (sp) always indicates the lowest address

of the stack frame. Therefore, set sp so that it indicates the higher address of an unused area of the stack area

when execution branches from an assembler function to a C function. This is because the stack frame is

allocated toward the lower addresses.

(2) Work register

The CA850 retains the values of the register variable registers before and after a C function is called but does

not retain the values of the work registers. Therefore, do not leave a value that must be retained assigned to a

work register.

The register variable registers and work registers that can be used differ depending on the register mode.

(3) Argument passed to C function

The CA850 stores 4-word arguments in argument registers r6 to r9 and arguments in excess of 4 words in the

stack frame of the calling function (refer to "4.1.1 Stack frame/function call" for details). Store the arguments in

excess of 4 words upward from the address indicated by sp.

(4) Return value returned from C function

The CA850 generates codes on the assumption that the return value of a function is stored in the r10 register.

Reference the r10 register when using the value returned from a C function. If the function returns a structure, a

value is stored in an area for the return value of the calling function, and a code that passes the address of that

area as an argument is output. An area for the return value must be allocated in advance on the calling side.

Table 4 - 5 Registers for Register Variables

Register Mode Registers for Register Variables

22-register mode r25, r26, r27, r28, r29

26-register mode r23, r24, r25, r26, r27, r28, r29

32-register mode r20, r21, r22, r23, r24, r25, r26, r27, r28, r29

Table 4 - 6 Work Registers

Register Mode Work Registers

22-register mode r10, r11, r12, r13, r14

26-register mode r10, r11, r12, r13, r14, r15, r16

32-register mode r10, r11, r12, r13, r14, r15, r16, r17, r18, r19

CHAPTER 4 CALLING PROGRAM

User’s Manual U18513EJ1V0UM 139

(5) Return address returned to assembler function

The CA850 generates codes on the assumption that the return address of a function is stored in link pointer lp

(r31). When execution branches to a C function, therefore, the return address of the function must be stored in

lp. Execution is generally branched to a C function using the jarl instruction.

140 User’s Manual U18513EJ1V0UM

CHAPTER 4 CALLING PROGRAM

4.3 Prologue/Epilogue Processing of Function

The CA850 can reduce the object size in part of the prologue/epilogue processing of a function by calling a

runtime library. Because the prologue/epilogue processing of a function is predetermined, it is prepared as

runtime library functions and these functions are called when a function is called or execution returns to a

function.

An example of the assembler code of the prologue/epilogue processing of a function is shown below. Numbers

in parentheses in this example correspond to those in Figure 4 - 3.

Example

Assembler instruction in prologue/epilogue processing of function "func" in above example

int func(int a, int b, int c, int d, int e)

{

register int i;

:

return i;

}

[Code when runtime library function is not used]
_func :

jbr .L5

.L6 :

st.w r6, .R2[sp]

st.w r7, 4+.R2[sp]

st.w r8, 8+.R2[sp] --- (7)

st.w r9, 12+.R2[sp]

:

st.w r29, -4+.A2[sp]

jbr .L2

.L2 :

ld.w -4+.A2[sp], r10

ld.w -4+.F2[sp], r29 --- (i)

ld.w -8+.F2[sp], lp --- (ii)

add .F2, sp --- (iii)

jmp [lp] --- (iv)

.L5:

add -.F2, sp --- (4)

st.w lp, -8+.F2[sp] --- (5)

st.w r29, -4+.F2[sp] --- (6)

jbr .L6

[Code when runtime library function is used]
_func :

jbr .L5

.L6 :

st.w r6, .R2[sp]

st.w r7, 4+.R2[sp]

st.w r8, 8+.R2[sp] --- (7)

st.w r9, 12+.R2[sp]

:

st.w r29, -4+.A2[sp]

jbr .L2

.L2 :

ld.w -4+ .A2[sp], r10

add .R2, sp --- (iii)

jarl ___pop2904, lp

-- (i), (ii), (iii), (iv)

.L5 :

jarl ___push2904, r10

-- (4), (5), (6)

add -.R2, sp --- (4)

jbr .L6

CHAPTER 4 CALLING PROGRAM

User’s Manual U18513EJ1V0UM 141

4.3.1 Specifying use of runtime library function for prologue/epilogue of
function

Specify the compiler option "-Xpro_epi_runtime=on" to call the runtime library for prologue/epilogue. Specify

"-Xpro_epi_runtime=off" if the runtime library is not called. When an optimization option other than "-Ot

(execution speed priority optimization)" is specified, however, the runtime library is automatically called for the

prologue/epilogue of a function. That is, the compiler option "-Xpro_epi_runtime=on" is automatically specified.

If an option other than "-Ot" is specified and if a runtime library should not be called, specify the

"-Xpro_epi_runtime=off" option. The "-Xpro_epi_runtime" option can be specified in each source file, so a file for

which the runtime library is called and a file for which the runtime library is not called can be used together.

When a runtime library is called for the prologue/epilogue of a function by specifying the "-

Xpro_epi_runtime=on" option, a dedicated section ".pro_epi_runtime" is necessary. Consequently, the following

definition must be described by a link directive.

Table information of the prologue/epilogue runtime function is allocated to this section.

.pro_epi_runtime = $PROGBITS ?AX .pro_epi_runtime;

142 User’s Manual U18513EJ1V0UM

CHAPTER 4 CALLING PROGRAM

4.3.2 Calling runtime library for prologue/epilogue of function in V850Ex

When the V850Ex is used, the following instruction is used to call the prologue/epilogue runtime function of a

function.

The CALLT instruction is a 2-byte instruction. The code size can be reduced by using this instruction for calling

a function. The CALLT instruction requires a pointer that indicates that the table of the function subject to the

CALLT instruction is set to the CTBP (Callt Base Pointer) register. If processing of the setting is missing from the

program, the following error message is output during linking.

Since setting a value to the CTBP register is performed by an assembler instruction, it should be performed in

the startup routine. Add the following instruction to the startup routine.

At this time, ___PROLOG_TABLE is the first symbol of the function table of the runtime function of the

prologue/epilogue of a function, and the function table itself is allocated to the ".pro_epi_runtime" section. The

r12 register is used in the above example, but it is not always necessary to use r12. If the CALLT instruction

provided in the CA850 is used for any purpose other than calling a runtime library for the prologue/epilogue of a

function, the CTBP register contents must be saved/restored. If the CALLT instruction is used by another object,

such as middleware or a user-created library, and if a code that saves/restores the CTBP register contents is

missing or cannot be inserted in that object, a runtime library for the prologue/epilogue of a function cannot be

called. In this case, suppress calling the runtime library by specifying the "-Xpro_epi_runtime=off" option.

Refer to the Relevant Device’s Architecture User’s Manual of each device for details of the CALLT instruction

and the CTBP register.

CALLT instruction

F4414: CallTBasePointer(CTBP) is not set. CTBP must be set when compileroption

"-Ot" (or "-Xpro_epi_runtime=off") is not specified.

mov #___PROLOG_TABLE, r12 -- three underscores "_" before "PROLOG"

ldsr r12, 20

CHAPTER 4 CALLING PROGRAM

User’s Manual U18513EJ1V0UM 143

4.3.3 Notes on calling runtime library for prologue/epilogue of function

Note the following points when calling a runtime library for the prologue/epilogue of a function.

(1) Calling a runtime library for the prologue/epilogue of a function degrades the execution speed because a

function is called. Specify the "-Xpro_epi_runtime=off" option to avoid this. Specifying this option in file units

is effective.

(2) In the case of a program in which few functions are called, the code size may not be reduced even if a

runtime library is called for the prologue/epilogue. If no real effect can be expected, specify the

"-Xpro_epi_runtime=off" option.

(3) A runtime library is not called for the prologue/epilogue of an interrupt function.

However, a function called from an interrupt function is subject to runtime library calling.

144 User’s Manual U18513EJ1V0UM

CHAPTER 4 CALLING PROGRAM

4.4 Far Jump Function

The CA850 outputs a code using the jarl instruction when a function is called.

The architecture allows only a sign-extended value of up to 22 bits (22-bit displacement) to be specified as the

first operand of the jarl instruction. This means that, if the branch destination is not within a 1 MB range from the

branch point, branching cannot take place and the linker outputs the following error message.

This can be solved easily by allocating the branch destination within a 1 MB range from the branch point.

However, the branch destination may not be able to be located within this range depending on target system.

The "far jump" function solves this.

When the far jump function is used, a code that uses the jmp instruction is output when a function is called. As

a result, execution can branch to the entire 32-bit space of the V850. Function calling using the far jump function

is called "far jump calling".

4.4.1 Specifying far jump

When calling a function using the far jump function, prepare a file in which functions to be called by the far

jump function are enumerated (file listing functions to be called by the far jump function), and use the compiler

option "-Xfar_jump".

The "-Xfar_jump" option can also be used with "=" as follows.

Refer to the next section for the format of the file listing the functions to be called by the far jump function.

jarl _func1, lp

F4161:symbol " function-name"(output section : section-name) is too far from

output section " section-name".(value : disp-value, file : main.o, input sec-

tion : .text, offset: offset-value, type : R_V850_PC22).

-Xfar_jump file listing functions to be called by far jump function

-Xfar_jump=file listing functions to be called by far jump function

CHAPTER 4 CALLING PROGRAM

User’s Manual U18513EJ1V0UM 145

4.4.2 File listing functions to be called by far jump function

This section explains the format of the file that enumerates the functions to be called by using the far jump

function. Describe one function to which the far jump function is applied in one line. Describe a C function name

with "_" (underscore) prefixed.

Sample of file listing functions to be called by far jump

If the following description is made instead of "_function-name", all the functions are called using the far jump

function.

If {all_function} is specified, all the functions are called by the far jump function, even if "_function-name" is

specified.

The far jump function can also be applied to the following functions, as well as to user functions.

- Standard library functions

- Runtime library functions

- Prologue/epilogue runtime function of function

- System calls of real-time OS

Refer to "4.4.3 Examples of using far jump function" for examples of specification.

Note the following points when describing the file listing the functions to be called by the far jump function.

- Only ASCII characters can be used.

- Comments must not be inserted.

- Describe only one function in one line.

- A blank and tab may be inserted before and after a function name.

- Up to 1,023 characters can be described in one line. A blank or tab is also counted as one character.

- Describe a C function name with "_" (underscore) prefixed to the function name.

- The far jump function cannot be used together with the re-link function of the flash memory/external ROM.

_func_led

_func_beep

_func_motor

 :

 :

_func_switch

{all_function}

146 User’s Manual U18513EJ1V0UM

CHAPTER 4 CALLING PROGRAM

4.4.3 Examples of using far jump function

Examples of using the far jump function are shown below.

(1) User function (same applies to standard functions)

[C language source file]

extern void func3(void);

void func(void)

{

func3();

}

[file listing functions to be called by far jump]

_func3

[Normal calling code]

#@CALL_ARG

jarl _func3, lp

[far jump calling code]

#@CALL_ARG

movea #_func3, tp, r10

movea .L18, tp, lp

jmp [r10]

.L18:

CHAPTER 4 CALLING PROGRAM

User’s Manual U18513EJ1V0UM 147

(2) Runtime function (when calling a macro)

(3) Runtime function (direct calling)

The compiler automatically selects whether a runtime macro is called or a runtime function is directly called by

judging the register efficiency in the process of optimization.

[file listing functions to be called by far jump]

___mul

[Normal calling code]

.macro mul arg1, arg2

add -8, sp

st.w r6, [sp]

st.w r7, 4[sp]

mov arg1, r6

mov arg2, r7

jarl ___mul, lp

ld.w 4[sp], r7

mov r6, arg2

ld.w [sp], r6

add 8, sp

.endm

[far jump calling code]

.macro mul arg1, arg2

.local macro_ret

add -8, sp

st.w r6, [sp]

st.w r7, 4[sp]

mov arg1, r6

mov arg2, r7

movea macro_ret, tp, r31

.option nowarning

movea #___mul, tp, r1

jmp [r1]

.option warning

macro_ret:

ld.w 4[sp], r7

mov r6, arg2

ld.w [sp], r6

add 8, sp

.endm

[file listing functions to be called by far jump]

___mul

[Normal calling code]

mov r12, r6

mov r13, r7

#@CALL_ARG r6, r7

#@CALL_USE r6, r7

jarl ___mul, lp

mov r6, r13

[far jump calling code]

mov r12, r6

mov r13, r7

#@CALL_ARG r6, r7

#@CALL_USE r6, r7

movea #___mul, tp, r14

movea .L13, tp, lp

jmp [r14]

.L13 :

mov r6, r13

148 User’s Manual U18513EJ1V0UM

CHAPTER 4 CALLING PROGRAM

(4) System calls of real-time OS

(5) Prologue/epilogue runtime function

[file listing functions to be called by far jump]

_ext_tsk

[Normal calling code]

#@B_EPILOGUE

#@BEGIN_NO_OPT

add .S4, sp

jr _ext_tsk -- C NR

#@END_NO_OPT

#@E_EPILOGUE

[far jump calling code]

#@B_EPILOGUE

#@BEGIN_NO_OPT

add .S4, sp

movea #_ext_tsk, tp, r10

jmp [r10] -- C NR

#@END_NO_OPT

#@E_EPILOGUE

[file listing functions to be called by far jump]

___pop2900

___push2900

[Normal calling code]

#@B_EPILOGUE

jarl ___pop2900, lp -- 1

#@E_EPILOGUE

.L3 :

jarl ___push2900, r10

#@E_PROLOGUE

[far jump calling code]

#@B_EPILOGUE

movea #___pop2900, tp, r11

jmp [r11] --1

#@E_EPILOGUE

.L3 :

movea #___push2900, tp, r11

movea .L5, tp, r10

jmp [r11]

.L5 :

#@E_PROLOGUE

CHAPTER 4 CALLING PROGRAM

User’s Manual U18513EJ1V0UM 149

Table 4 - 7 shows the prologue/epilogue function names that can be specified by the far jump function. Before

specifying a prologue/epilogue runtime function, confirm the functions used in the assembly source output after

compilation.

Refer to "4.3 Prologue/Epilogue Processing of Function" for details of the prologue/epilogue runtime library of

functions.

Table 4 - 7 List of Prologue/Epilogue Runtime Functions

___pop2000, ___pop2001, ___pop2002, ___pop2003, ___pop2004, ___pop2040,

___pop2100, ___pop2101, ___pop2102, ___pop2103, ___pop2104, ___pop2140,

___pop2200, ___pop2201, ___pop2202, ___pop2203, ___pop2204, ___pop2240,

___pop2300, ___pop2301, ___pop2302, ___pop2303, ___pop2304, ___pop2340,

___pop2400, ___pop2401, ___pop2402, ___pop2403, ___pop2404, ___pop2440,

___pop2500, ___pop2501, ___pop2502, ___pop2503, ___pop2504, ___pop2540,

___pop2600, ___pop2601, ___pop2602, ___pop2603, ___pop2604, ___pop2640,

___pop2700, ___pop2701, ___pop2702, ___pop2703, ___pop2704, ___pop2740,

___pop2800, ___pop2801, ___pop2802, ___pop2803, ___pop2804, ___pop2840,

___pop2900, ___pop2901, ___pop2902, ___pop2903, ___pop2904, ___pop2940,

___poplp00, ___poplp01, ___poplp02, ___poplp03, ___poplp04, ___poplp40,

___push2000, ___push2001, ___push2002, ___push2003, ___push2004, ___push2040,

___push2100, ___push2101, ___push2102, ___push2103, ___push2104, ___push2140,

___push2200, ___push2201, ___push2202, ___push2203, ___push2204, ___push2240,

___push2300, ___push2301, ___push2302, ___push2303, ___push2304, ___push2340,

___push2400, ___push2401, ___push2402, ___push2403, ___push2404, ___push2440,

___push2500, ___push2501, ___push2502, ___push2503, ___push2504, ___push2540,

___push2600, ___push2601, ___push2602, ___push2603, ___push2604, ___push2640,

___push2700, ___push2701, ___push2702, ___push2703, ___push2704, ___push2740,

___push2800, ___push2801, ___push2802, ___push2803, ___push2804, ___push2840,

___push2900, ___push2901, ___push2902, ___push2903, ___push2904, ___push2940,

___pushlp00, ___pushlp01, ___pushlp02, ___pushlp03, ___pushlp04, ___pushlp40

150 User’s Manual U18513EJ1V0UM

CHAPTER 5 STARTUP ROUTINE

CHAPTER 5 STARTUP ROUTINE

This chapter explains the startup routine.

5.1 Operation of Startup Routine

A startup routine is a routine that is executed after the V850 is reset and before the main function is executed.

Basically, it performs initialization as follows after the system is reset. The specific operations are shown below.

- Setting RESET handler when a reset is input

- Setting register mode of startup routine

- Securing stack area and setting stack pointer

- Securing argument area of main function

- Setting text pointer (tp)

- Setting global pointer (gp)

- Setting element pointer (ep)

- Setting mask value to mask registers r20 and r21

- Initializing peripheral I/O registers that must be initialized before execution of main function

- Initializing user target that must be initialized before execution of main function

- Clearing sbss area to 0

- Clearing bss area to 0

- Clearing sebss area to 0

- Clearing tibss.byte area to 0

- Clearing tibss.word area to 0

- Clearing sibss area to 0

- Setting CTBP value for prologue/epilogue runtime library of functions [V850E]

- Setting programmable peripheral I/O register values [V850E]

- Setting r6 and r7 as argument of main function

- Branching to main function (when real-time OS is not used)

- Branching to initialization routine of real-time OS (when real-time OS is used)

Depending on the system, some of these operations may not be necessary and can be omitted. In addition to

the above, the user can describe necessary processing. The above operations must be described basically with

assembler instructions. How to describe each operation is explained below. Startup routine samples are provided

in the CA850.

CHAPTER 5 STARTUP ROUTINE

User’s Manual U18513EJ1V0UM 151

The samples are stored in the location shown in the following table.

If the startup routine is not added to the project, the CA850 automatically links a default startup routine

(object). The file to be linked is as follows.

- Project for V850 core: crtN.o

- Project for V850Ex core: crtE.o

These files result from compiling (assembling) sample startup routines "crtN.s" and "crtE.s". These objects are

assembled with the assembler options "-cn" and "-cnv850e" and can be used commonly in the V850

microcontrollers.

Table 5 - 1 Startup Routine Samples

Storage Location File Name Meaning

Install Folder\lib850\r22 crtN.s Startup routine sample for V850 core
and for 22-register mode

crtE.s Startup routine sample for V850Ex core
and for 22-register mode

Install Folder\lib850\r26 crtN.s Startup routine sample for V850 core
and for 26-register mode

crtE.s Startup routine sample for V850Ex core
and for 26-register mode

Install Folder\lib850\r32 crtN.s Startup routine sample for V850 core
and for 32-register mode

crtE.s Startup routine sample for V850Ex core
and for 32-register mode

152 User’s Manual U18513EJ1V0UM

CHAPTER 5 STARTUP ROUTINE

5.1.1 Setting RESET handler when reset is input

Describe the processing to be performed when a reset (reset interrupt) is input. Execution branches to the

handler address 0x0 when a reset is input in the V850. Therefore, allocate an instruction that branches to the

beginning of the startup routine to address 0x0. As explained in "3.7.4 Notes on describing interrupt/exception

handler", describe a reset interrupt with assembler instructions because it cannot be described in C language by

specifying the #pragma interrupt directive. The description is as follows.

Use the .section quasi directive to allocate an instruction to the handler address. If the above description is

made, the "jr __start" instruction is allocated to the handler address. If the jr instruction cannot reach the

destination, i.e., if "__start" is not within +1Mbytes from address 0x0, use the jmp instruction as follows.

In this case, one register is used. The lp (r31) register is used in the above example. Any general-purpose

register whose contents can be lost at this point can be used. The lp (r31) register in which the return address

from a function is stored is not used when a reset is input. Therefore, it is safe to use the lp (r31) register.

The description of the .section quasi directive does not always have to be in the startup routine. In the above

example, the symbol of the startup routine is "__start". This may be another name.

.section "RESET", text

jr __start

__start:

.section "RESET", text

mov #__start, lp

jmp [lp]

__start:

CHAPTER 5 STARTUP ROUTINE

User’s Manual U18513EJ1V0UM 153

5.1.2 Setting register mode of startup routine

Describe the setting of the register mode in the startup routine described with assembler instructions.

However, this setting is necessary only when the 22-register mode or 26-register mode is used for the overall

system. It is not necessary to describe this setting when the 32-register mode is used.

(1) 22-register mode

(2) 26-register mode

If this setting is not described, the linker outputs the following warning message.

.option reg_mode 5 5

.option reg_mode 7 7

W4608: input files have different register modes. use -rc option for more

information.

154 User’s Manual U18513EJ1V0UM

CHAPTER 5 STARTUP ROUTINE

5.1.3 Securing stack area and setting stack pointer (sp)

Secure the stack area used by the system and set the stack pointer (sp = r3) at the beginning of this area.

When a real-time OS is used, however, the stack specified here is used until execution branches to the

initialization routine of the real-time OS. In other words, it is hardly used or not used at all. If a large stack area is

secured, therefore, the RAM area is wasted. Check if the stack is used before execution branches to the

initialization routine of the real-time OS. Interrupts must be especially noted. It seems, however, that the startup

routine is mostly executed with interrupts disabled.

The stack area is secured as follows.

This is an example of securing a 0x200-byte stack in the .bss area. The contents of the stack are allocated to

a bss attribute area because they do not have an initial value. Of course, they can be allocated to the sbss area,

but the size of the stack that can be allocated to the sbss area is limited because the sbss area is accessed with

a single gp-relative instruction. It is recommended to allocate the stack contents to the bss area if the stack size

is great, as it may be better to allocate other variables to the sbss area. Change the value written to the .set

instruction to change the stack size to be secured.

The CA850 generates codes on the assumption that the sp is at a 4-byte boundary when it references the

memory relatively with the stack pointer (sp). Therefore, be sure to allocate the stack pointer at a 4-byte

boundary. If necessary, use the quasi directive ".align 4".

The stack has a serious effect on the operation of the system. If the stack area runs short, the stack size

exceeds the secured area and the stack contents are lost, which may cause a system hang-up. Estimate the

stack size to be used by functions using stack850 included with the CA850, and secure a sufficient stack size.

.set STACKSIZE, 0x200

.bss

.lcomm __stack, STACKSIZE, 4

mov #__stack+STACKSIZE, sp

CHAPTER 5 STARTUP ROUTINE

User’s Manual U18513EJ1V0UM 155

5.1.4 Securing argument area for main function

The ANSI C specification defines the format of the main function as follows without dummy argument:

or, as the following function with two dummy arguments.

argc of the function having two dummy arguments is a value that is not negative and indicates the total number

of dummy arguments. argv indicates an array of pointers to argument character strings. argv[argc] is null (vacant

pointer). If argc is 1 or more, argv[0] to argv[argc-1] are pointers to character strings.

Secure the areas for argc and argv in the startup routine, as shown below.

The above area is not necessary if the main function is defined in this format.

The used RAM area can be reduced by deleting the above area.

Actually, processing that sets arguments (r6 and r7) of the main function is performed immediately before the

main function. If r6 and r7 are not used in the startup routine, the processing can be executed immediately after

the above program. Refer to "5.1.19 Setting r6 and r7 as argument of main function" for the processing to be set.

int main(void) { /* ... */ }

int main(int argc, char *argv[]) { /* ... */ }

.data

.size __argc, 4

.align 4

__argc:

.word 0

.size __argv, 4

__argv:

.word #.L16

.L16:

.byte 0

.byte 0

.byte 0

.byte 0

int main(void) { /* ... */ }

156 User’s Manual U18513EJ1V0UM

CHAPTER 5 STARTUP ROUTINE

5.1.5 Setting text pointer (tp)

The text pointer (tp) is a pointer prepared to implement referencing (PIC: Position Independent Code)

independent of the position at which the text area of an application, i.e., program code is allocated when the

program code is referenced. For example, if it is necessary to reference a specific location in the code during

program execution, the CA850 outputs the code to be accessed in tp-relative mode. Since the code is output on

the assumption that tp is correctly set, tp must be correctly set in the startup routine.

The text pointer value is determined during linking, and is in a symbol defined by a symbol directive that is

described in the link directive file. For example, suppose that the symbol directive of the text pointer is described

as follows.

The text pointer value is the beginning of the TEXT segment, and is in "__tp_TEXT".

Describe as follows to set tp in the startup routine.

Refer to CA850 for Link Directive User’s Manual for details of symbol directives and link directives.

__tp_TEXT @ %TP_SYMBOL {TEXT};

.extern __tp_TEXT, 4

mov #__tp_TEXT, tp

CHAPTER 5 STARTUP ROUTINE

User’s Manual U18513EJ1V0UM 157

5.1.6 Setting global pointer (gp)

External variables or data defined in an application are allocated to the memory. The global pointer (gp) is a

pointer prepared to implement referencing independent of location position (PID: Position Independent Data)

when the variables or data allocated to the memory are referenced. The CA850 outputs a code for the section

that is to be accessed in gp-relative mode. Since the code is output on the assumption that gp is correctly set, gp

must be correctly set in the startup routine.

The global pointer value is determined during linking, and is in a symbol defined by a symbol directive that is

described in the link directive file. For example, suppose that the symbol directive of the global pointer is

described as follows.

The gp symbol value can be defined the beginning of "data segment" of the DATA segment as shown above,

or offset from a text symbol. A gp symbol can be specified not only by specifying the start address of a data

segment (such as the DATA segment), but also by using an offset value from the text symbol as its address.

Using the second method, the gp symbol value is determined by adding an offset value from tp to tp. In other

words, a code that is independent of location can be generated. To copy a program code and data used by that

code to the RAM area simultaneously and execute them, the value of gp can be acquired immediately if the start

address of the copy destination is known. In this case, the symbol directive is described as follows.

The global pointer value is "__tp_TEXT to which the value of __gp_DATA is added", and the value to be

added, i.e., offset value, is stored in "__gp_DATA". Therefore, describe as follows to set gp in the startup routine.

This sets the correct value of the global pointer to gp.

Refer to CA850 for Link Directive User’s Manual for details of symbol directives and link directives.

__gp_DATA @ %GP_SYMBOL {DATA};

__tp_TEXT @ %TP_SYMBOL {TEXT};

__gp_DATA @ %GP_SYMBOL&__tp_TEXT {DATA};

.extern __tp_TEXT, 4

.extern __gp_DATA, 4

mov #__tp_TEXT, tp

mov #__gp_DATA, gp

add tp, gp

158 User’s Manual U18513EJ1V0UM

CHAPTER 5 STARTUP ROUTINE

5.1.7 Setting element pointer (ep)

Of the external variables or data defined in an application, those that are allocated to the following sections are

accessed from the element pointer (ep) in relative mode.

- sedata/sebss attribute section

- sidata/sibss attribute section

- tidata.byte/tibss.byte section

- tidata.word/tibss.word section

If these sections exist, the CA850 outputs a code to access these areas in ep-relative mode. Since the code is

output on the assumption that ep is correctly set, ep must be correctly set in the startup routine. The element

pointer value is determined during linking, and is in a symbol defined by a symbol directive that is described in

the link directive file. For example, suppose that the symbol directive of the element pointer is described as

follows.

The element pointer value is the beginning of the SIDATA segment by default, and its value is in

"__ep_DATA". Therefore, describe as follows to set ep in the startup routine.

The element pointer value is the beginning of the SIDATA segment by default, and its value is in

"__ep_DATA".

Therefore, describe as follows to set ep in the startup routine.

Reference the absolute address of __ep_DATA and set that value to ep.

Refer to CA850 for Link Directive User’s Manual for details of symbol directives and link directives.

__ep_DATA@%EP_SYMBOL;

.extern __ep_DATA, 4

mov #__ep_DATA, ep

CHAPTER 5 STARTUP ROUTINE

User’s Manual U18513EJ1V0UM 159

5.1.8 Setting mask value to mask registers (r20 and r21)

When using mask registers, set them in the startup routine. The mask registers are "r20" and "r21". Set these

registers to the following values.

- r20 to 8-bit mask value "0xff"

- r21 to 16-bit mask value "0xffff"

Set these values as follows.

The portion between ".option nowarning" and ".option warning" is the quasi directive that suppresses output of

warning messages during assembling. If the assembler option "-m" (use of mask option) is set, codes in which

mask values are set are output to r20 and r21. If the user intentionally attempts to substitute values in r20 and

r21, therefore, the following warning message is output.

Refer to "2.5 Mask Register" for details of the mask registers.

.option nowarning

mov 0xff, r20

mov 0xffff, r21

.option warning

W3013: mask register r20 or r21 used as destination register.

160 User’s Manual U18513EJ1V0UM

CHAPTER 5 STARTUP ROUTINE

5.1.9 Initializing peripheral I/O registers that must be initialized before
execution of main function

When the external RAM is initialized by the startup routine, the external memory must first be set to the

peripheral I/O; otherwise the memory area cannot be accessed and initialized. In addition, initialize the

peripheral I/O registers that must be set for executing the startup routine.

Register setting can be described with assembler instructions, or execution may once branch from the startup

routine to a C function and register setting can be described in this function. If it is described in C, reading and

substitution in the peripheral I/O can be described in a visually simple way. For example, when creating the C

function "void reset(void)" and calling it from the startup routine, describe the following instruction in the startup

routine.

Differences between assembler instruction description and C description are shown below using the following

examples. An instruction that substitutes "1" in P0 (port 0) is described as an assembly language source and as

a C language source is as follows.

Assembly language source

r10 is used in this example.

C language source

The external memory setting differs depending on the device. Refer to the Relevant Device’s Hardware User’s

Manual of each device.

With a clock generation function, the "internal system clock" that is supplied to each unit built in the V850

needs to be generated. In this case, the clock needs to be multiplied by a PLL (Phase locked loop) synthesizer

before use. In other words, the clock must be correctly set to the frequency used; otherwise the clock operates

slower or faster than the assumed operation speed.

Regarding the default value of the PLL, usually, the multiplication value is small and the operation frequency is

low. These also apply to the startup routine. If the clearing of the memory area that is explained in "5.1.11

Clearing sbss area to 0" and later sections is executed while the operating frequency is low, it takes a lot of time

to complete the execution. Therefore, it is recommended that the PLL be set during the early stages of the

startup routine.

jarl _reset, lp

mov 1, r10

st.b r10, P0

#pragma ioreg

P0 = 1;

CHAPTER 5 STARTUP ROUTINE

User’s Manual U18513EJ1V0UM 161

Aside from the above settings, set the following settings: the "system wait control register (VSWC)", the

"command register (PRCMD)", and, if necessary, the "watch dog timer (WDT)". For the correct settings, refer to

the Relevant Device’s Hardware User’s Manual.

-- Setting 5 MHz to the value multiplied by four (20 MHz) in V850ES/SG

mov 0x80,r10
st.b r10,PRCMD
st.b r10,PCC -- fcpu = fxx
nop
nop
nop
nop
nop
set1 0, PLLCTL -- PLLON = 1

162 User’s Manual U18513EJ1V0UM

CHAPTER 5 STARTUP ROUTINE

5.1.10 Initializing user target that must be initialized before execution of main
function

Describe the necessary initialization processing for the user target, if any, in the startup routine.

The processing can be described with assembler instructions, or execution may once branch from the startup

routine to a C function and the processing can be described in this function.

CHAPTER 5 STARTUP ROUTINE

User’s Manual U18513EJ1V0UM 163

5.1.11 Clearing sbss area to 0

Initialize the sbss area, one of the bss attribute areas that do not have an initial value. Since the memory

contents are undefined after the V850 is reset, it is recommended to clear the sbss area to zero. This processing

is not necessary if the sbss attribute section has not been created or if it is not necessary to clear the sbss area

to zero.

Use symbols "__ssbss" and "__esbss" reserved for the CA850 to clear the sbss area. The meaning of each

symbol is as follows.

The values (addresses) of these symbols are determined during linking. The program that clears the sbss area

using these symbols is as follows.

This program clears the sbss area to zero in 4-byte units.

Table 5 - 2 Symbols of sbss Area

Symbol Name Meaning

__ssbss Symbol indicating start of sbss area

__esbss Symbol indicating end of sbss area

.extern __ssbss, 4

.extern __esbss, 4

mov #__ssbss, r13

mov #__esbss, r12

cmp r12, r13

jnl .L11

.L12:

st.w r0, [r13]

add 4, r13

cmp r12, r13

jl .L12

.L11:

164 User’s Manual U18513EJ1V0UM

CHAPTER 5 STARTUP ROUTINE

5.1.12 Clearing bss area to 0

Initialize the bss area, one of the bss attribute areas that do not have an initial value. Since the memory

contents are undefined after the V850 is reset, it is recommended to clear the bss area to zero. This processing

is not necessary if the bss attribute section has not been created or if it is not necessary to clear the bss area to

zero.

Use symbols "__sbss" and "__ebss" reserved for the CA850 to clear the bss area. The meaning of each

symbol is as follows.

The values (addresses) of these symbols are determined during linking. The program that clears the bss area

using these symbols is as follows.

This program clears the bss area to zero in 4-byte units.

Table 5 - 3 Symbols of bss Area

Symbol Name Meaning

__sbss Symbol indicating start of bss area

__ebss Symbol indicating end of bss area

.extern __sbss, 4

.extern __ebss, 4

mov #__sbss, r13

mov #__ebss, r12

cmp r12, r13

jnl .L14

.L15:

st.w r0, [r13]

add 4, r13

cmp r12, r13

jl .L15

.L14:

CHAPTER 5 STARTUP ROUTINE

User’s Manual U18513EJ1V0UM 165

5.1.13 Clearing sebss area to 0

Initialize the "sebss area", one of the bss attribute areas that do not have an initial value.

Since the memory contents are undefined after the V850 is reset, it is recommended to clear the sebss area to

zero. This processing is not necessary if the sebss attribute section has not been created or if it is not necessary

to clear the sebss area to zero.

Use symbols "__ssebss" and "__esebss" reserved for the CA850 to clear the sebss area. The meaning of

each symbol is as follows.

The values (addresses) of these symbols are determined during linking. The program that clears the sebss

area using these symbols is as follows.

This program clears the sebss area to zero in 4-byte units.

Table 5 - 4 Symbols of sebss Area

Symbol Name Meaning

__ssebss Symbol indicating start of sebss area

__esebss Symbol indicating end of sebss area

.extern __ssebss, 4

.extern __esebss, 4

mov #__ssebss, r13

mov #__esebss, r12

cmp r12, r13

jnl .L17

.L18:

st.w r0, [r13]

add 4, r13

cmp r12, r13

jl .L18

.L17:

166 User’s Manual U18513EJ1V0UM

CHAPTER 5 STARTUP ROUTINE

5.1.14 Clearing tibss.byte area to 0

Initialize the tibss.byte area, one of the bss attribute areas that do not have an initial value.

Since the memory contents are undefined after the V850 is reset, it is recommended to clear the tibss.byte

area to zero. This processing is not necessary if the tibss.byte section has not been created or if it is not

necessary to clear the tibss.byte area to zero.

Use symbols "__stibss.byte" and "__etibss.byte" reserved for the CA850 to clear the tibss.byte area. The

meaning of each symbol is as follows.

The values (addresses) of these symbols are determined during linking. The program that clears the tibss.byte

area using these symbols is as follows.

This program clears the tibss.byte area to zero in 4-byte units.

Table 5 - 5 Symbols of tibss.byte Area

Symbol Name Meaning

__stibss.byte Symbol indicating start of tibss.byte area

__etibss.byte Symbol indicating end of tibss.byte area

.extern __stibss.byte, 4

.extern __etibss.byte, 4

mov #__stibss.byte, r13

mov #__etibss.byte, r12

cmp r12, r13

jnl .L20

.L21:

st.w r0, [r13]

add 4, r13

cmp r12, r13

jl .L21

.L20:

CHAPTER 5 STARTUP ROUTINE

User’s Manual U18513EJ1V0UM 167

5.1.15 Clearing tibss.word area to 0

Initialize the tibss.word area, one of the bss attribute areas that do not have an initial value.

Since the memory contents are undefined after the V850 is reset, it is recommended to clear the tibss.word

area to zero. This processing is not necessary if the tibss.word section has not been created or if it is not

necessary to clear the tibss.word area to zero.

Use symbols "__stibss.word" and "__etibss.word" reserved for the CA850 to clear the tibss.word area. The

meaning of each symbol is as follows.

The values (addresses) of these symbols are determined during linking. The program that clears the

tibss.word area using these symbols is as follows.

This program clears the tibss.word area to zero in 4-byte units.

Table 5 - 6 Symbols of tibss.word Area

Symbol Name Meaning

__stibss.word Symbol indicating start of tibss.word area

__etibss.word Symbol indicating end of tibss.word area

.extern __stibss.word, 4

.extern __etibss.word, 4

mov #__stibss.word, r13

mov #__etibss.word, r12

cmp r12, r13

jnl .L23

.L24:

st.w r0, [r13]

add 4, r13

cmp r12, r13

jl .L24

.L23:

168 User’s Manual U18513EJ1V0UM

CHAPTER 5 STARTUP ROUTINE

5.1.16 Clearing sibss area to 0

Initialize the sibss area, one of the bss attribute areas that do not have an initial value.

Since the memory contents are undefined after the V850 is reset, it is recommended to clear the sibss area to

zero. This processing is not necessary if the sibss attribute section has not been created or if it is not necessary

to clear the sibss area to zero.

Use symbols "__ssibss" and "__esibss" reserved for the CA850 to clear the sibss area. The meaning of each

symbol is as follows.

The values (addresses) of these symbols are determined during linking. The program that clears the sibss

area using these symbols is as follows.

This program clears the sibss area to zero in 4-byte units.

Table 5 - 7 Symbols of sibss Area

Symbol Name Meaning

__ssibss Symbol indicating start of sibss area

__esibss Symbol indicating end of sibss area

.extern __ssibss, 4

.extern __esibss, 4

mov #__ssibss, r13

mov #__esibss, r12

cmp r12, r13

jnl .L26

.L25:

st.w r0, [r13]

add 4, r13

cmp r12, r13

jl .L25

.L26:

CHAPTER 5 STARTUP ROUTINE

User’s Manual U18513EJ1V0UM 169

5.1.17 Setting CTBP value for prologue/epilogue runtime library of functions

This setting is necessary when the V850Ex core is used and when the prologue/epilogue runtime library is

used.

Since the CALLT instruction is used when the prologue/epilogue runtime library of functions is called by the

V850Ex core, the value of CTBP necessary for the CALLT instruction must be set at the beginning of the function

table of the prologue/epilogue runtime library of functions.

The prologue/epilogue runtime library is used in the following case.

- Compiler option "-Xpro_epi_runtime=on" is set

If a compiler option other than "-Ot" is specified for optimization, "-Xpro_epi_runtime=on" is automatically

specified.

- ___PROLOG_TABLE

Describe the following code using this symbol.

CTBP is system register 20. Set a value to it using the ldsr instruction.

mov #___PROLOG_TABLE, r12

ldsr r12, 20

170 User’s Manual U18513EJ1V0UM

CHAPTER 5 STARTUP ROUTINE

5.1.18 Setting BPC value of programmable peripheral I/O register

The peripheral area select control register (BPC) must be set when using a V850 microcontrollers product in

which programmable peripheral I/O registers are provided and using a programmable peripheral I/O register.

For example, the peripheral area select control register of the V850E/IA1 is configured as follows.

BPC register

When using a programmable peripheral I/O register, a value must be set to the programmable peripheral I/O

register using the compiler option "-Xbps". As a result, the CA850 outputs a code to access the programmable

peripheral I/O register. However, this option does not set a value to BPC. To set a value to BPC, processing to

write a value to the BPC register must be described in the startup routine.

In the case of the V850E/IA1, PA15 is set to 1, and a programmable peripheral I/O area address is set to PA13

to PA0. Set the BPC register, for example, to set the address of the programmable peripheral I/O area to 0x1234

as follows.

Because PA15 must be set to 1, set BPC to the logical sum (OR) of 0x1234 and 0x8000. The value set by the

compiler option "-Xbps" is 0x1234, and the value set to BPC is 0x9234. Therefore, care must be exercised that

no contradiction occurs.

Refer to the Relevant Device’s Architecture User’s Manual of each device for details of the programmable

peripheral I/O registers.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PA15 0 PA13 PA12 PA11 PA10 PA9 PA8 PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0

Table 5 - 8 BPC Register

Bit Position Bit Name Meaning

15 PA15 Enables or disables use of programmable peripheral I/O area.
0: Use of programmable peripheral I/O area disabled.
1: Use of programmable peripheral I/O area enabled.

13 - 0 PA13 - PA0 Set address of programmable peripheral I/O area.

mov 0x9234, r13

st.h r13, BPC

CHAPTER 5 STARTUP ROUTINE

User’s Manual U18513EJ1V0UM 171

5.1.19 Setting r6 and r7 as argument of main function

If the main function is defined to have two dummy arguments as follows,

processing that sets a value to the arguments (r6 and r7) must be performed before execution branches to the

main function. Refer to "5.1.4 Securing argument area for main function" for how to secure an area. This

processing is not necessary for an application using a real-time OS because the main function is not created.

Processing to set a value to r6 and r7 is as follows.

The argument area of the main function is allocated to the .sdata section, so describe an access code in gp-

relative mode.

int main(int argc, char *argv[]) { /* ... */ }

ld.w $__argc, r6

movea $__argv, gp, r7

172 User’s Manual U18513EJ1V0UM

CHAPTER 5 STARTUP ROUTINE

5.1.20 Branching to main function

Then the processing necessary for the startup routine has been completed, execute an instruction that

branches to the main function. However, this processing is not necessary for an application using a real-time OS

because the main function is not created. Instead, an instruction that branches to the initialization routine of the

OS is necessary. Refer to "5.1.21 Branching to initialization routine of real-time OS" for details.

Describe the following code to branch to the main function.

When the main function has been executed, execution returns to the 4 bytes subsequent to this branch

instruction. The following instruction can also be used if it is known that execution does not return.

The entire 32-bit space can be accessed using the jmp instruction. When the "jarl_main, lp" instruction is used,

execution returns after the main function is executed. It is recommended to take appropriate action to prevent

deadlock from occurring when execution returns.

jarl _main, lp

jr _main

mov #_main, lp

jmp [lp]

CHAPTER 5 STARTUP ROUTINE

User’s Manual U18513EJ1V0UM 173

5.1.21 Branching to initialization routine of real-time OS

In an application using a real-time OS, execution branches to the initialization routine when the processing that

must be performed by the startup routine has been completed. In an application not using a real-time OS,

execution branches to the main function. Refer to "5.1.20 Branching to main function".

Branching to the initialization routine is performed differently depending on whether NEC Electronics' real-time

OS RX850 or RX850 Pro is used.

In RX850

In RX850 Pro

Note that the start symbol of the initialization routine of each OS differs. Refer to the User's Manual of each

real-time OS for details.

.extern __urx_start

jr __urx_start

.extern _sit

mov #_sit, r10

.extern __rx_start

mov #__rx_start, lp

jmp [lp]

174 User’s Manual U18513EJ1V0UM

CHAPTER 5 STARTUP ROUTINE

5.2 Example of Startup Routine

This section shows an example of the startup routine.

Figure 5 - 1 Example of Startup Routine

#---

external label declaration reserved for CA850 (1)

for tp, gp, ep

#---

.extern __tp_TEXT, 4

.extern __gp_DATA, 4

.extern __ep_DATA, 4

#---

external label declaration reserved for CA850 (2)

for initializing bss attribute section deleted if there is

a section not used If the section to be used is not determined,

write all sections and suppress the assemble error of the startup

routine that occurs due to addition/deletion of sections.

#---

.extern __ssbss, 4

.extern __esbss, 4

.extern __sbss, 4

.extern __ebss, 4

.extern __ssebss, 4

.extern __esebss, 4

.extern __stibss.byte, 4

.extern __etibss.byte, 4

.extern __stibss.word, 4

.extern __etibss.word, 4

.extern __ssibss, 4

.extern __esibss, 4

#---

external label declaration of symbol reserved for CA850

Declare start address of function table as external label

when using prologue/epilogue runtime library in V850Ex.

#---

.extern ___PROLOG_TABLE

#---

external label declaration of main function

#---

.extern _main

CHAPTER 5 STARTUP ROUTINE

User’s Manual U18513EJ1V0UM 175

#---

external label declaration of main function

unnecessary if void main(void) type is used

#---

.data

.size __argc, 4

.align 4

__argc:

.word 0

.size __argv, 4

__argv:

.word #.L16

.L16:

.byte 0

.byte 0

.byte 0

.byte 0

#---

The following is dummy data for section generation.

This dummy data is used to clear the bss attribute section

that appears later to zero.

#

The start symbol and end symbol are generated if data exists

in the corresponding section during linking.

If the section to be used has not yet been determined, however,

an assemble error of the startup routine occurs each time a section

is added or deleted. To avoid this, generate the start and

end symbols of a section by allocating dummy data to the section.

The bss attribute section is not described because data is allocated

by a stack generation code and dummy data does not have to be created

in that section.

#

If the section to be used is determined, delete this dummy data and

the zero clear routine except the necessary part of the routine.

This can eliminate waste and enhance the code efficiency.

#---

.sbss

.lcomm __sbss_dummy, 0, 0

.sebss

.lcomm __sebss_dummy, 0, 0

.tibss.byte

.lcomm __tibss_byte, 0, 0

.tibss.word

.lcomm __tibss_word, 0, 0

.sibss

.lcomm __sibss_dummy, 0, 0

Figure 5 - 1 Example of Startup Routine

176 User’s Manual U18513EJ1V0UM

CHAPTER 5 STARTUP ROUTINE

#---

securing stack

securing 0x200 bytes in bss area

#---

.set STACKSIZE, 0x200

.bss

.lcomm __stack, STACKSIZE, 4

#---

reset handler

Describe instructions to be allocated to the reset handler.

#---

.section "RESET", text

jr __start

#---

startup routine entity

#---

.text

.align 4

.globl __start

.globl __exit

.globl __startend

__start:

#---

It is assumed that __gp_DATA is set by a symbol directive

that uses a relative value from tp.

Therefore, gp adds the value of __gp_DATA to tp.

#---

mov #__tp_TEXT, tp

mov #__gp_DATA, gp

add tp, gp

mov #__stack+STACKSIZE, sp

mov #__ep_DATA, ep

#---

mask register setting

Delete this description to reduce the code if a mask register is

not used. There is no problem even if it is not deleted in operation

because it is overwritten in the program.

#---

.option nowarning

mov 0xff, r20

mov 0xffff, r21

.option warning

.L11:

Figure 5 - 1 Example of Startup Routine

CHAPTER 5 STARTUP ROUTINE

User’s Manual U18513EJ1V0UM 177

#---

clearing sbss attribute section to zero

delete this description to reduce the code if the sbss attribute

section is not used

#---

.extern __ssbss, 4

.extern __esbss, 4

mov #__ssbss, r13

mov #__esbss, r12

cmp r12, r13

jnl .L11

.L12:

st.w r0, [r13]

add 4, r13

cmp r12, r13

jl .L12

#---

clearing bss attribute section to zero

delete this description to reduce the code if the sbss attribute

section is not used

#---

.extern __sbss, 4

.extern __ebss, 4

mov #__sbss, r13

mov #__ebss, r12

cmp r12, r13

jnl .L14

.L15:

st.w r0, [r13]

add 4, r13

cmp r12, r13

jl .L15

.L14:

#---

clearing sebss attribute section to zero

delete this description to reduce the code if the sbss attribute

section is not used

#---

.extern __ssebss, 4

.extern __esebss, 4

mov #__ssebss, r13

mov #__esebss, r12

cmp r12, r13

jnl .L17

Figure 5 - 1 Example of Startup Routine

178 User’s Manual U18513EJ1V0UM

CHAPTER 5 STARTUP ROUTINE

.L18:

st.w r0, [r13]

add 4, r13

cmp r12, r13

jl .L18

.L17:

#---

clearing tibss.byte attribute section to zero

delete this description to reduce the code if the sbss attribute

section is not used

#---

.extern __stibss.byte, 4

.extern __etibss.byte, 4

mov #__stibss.byte, r13

mov #__etibss.byte, r12

cmp r12, r13

jnl .L20

.L21:

st.w r0, [r13]

add 4, r13

cmp r12, r13

jl .L21

.L20:

#---

clearing tibss.word attribute section to zero

delete this description to reduce the code if the sbss attribute

section is not used

#---

.extern __stibss.word, 4

.extern __etibss.word, 4

mov #__stibss.word, r13

mov #__etibss.word, r12

cmp r12, r13

jnl .L23

.L24:

st.w r0, [r13]

add 4, r13

cmp r12, r13

jl .L24

.L23:

#---

clearing sibss attribute section to zero

delete this description to reduce the code if the sbss attribute

section is not used

#---

.extern __ssibss, 4

.extern __esibss, 4

Figure 5 - 1 Example of Startup Routine

CHAPTER 5 STARTUP ROUTINE

User’s Manual U18513EJ1V0UM 179

mov #__ssibss, r13

mov #__esibss, r12

cmp r12, r13

jnl .L26

.L25:

st.w r0, [r13]

add 4, r13

cmp r12, r13

jl .L25

.L26:

#---

setting of prologue/epilogue runtime library of functions

The start address of the library function table is set to

CTBP (system register #20). Delete this description when a core

other than the V850Ex is used.
#---

mov #___PROLOG_TABLE, r12

ldsr r12, 20

#---

programmable peripheral I/O register setting

Delete this description if a V850 not having programmable

peripheral I/O registers is used.

Shown below is an example where the BPC register value

(set address) is 0x1234. The logical sum of 0x1234 (address) and

0x8000 (use of programmable peripheral I/O) is set to BPC.

#---

mov 0x9234, r13

st.h r13, BPC

#---

setting argument of main function to r6 and r7

#---

ld.w $__argc, r6

movea $__argv, gp, r7

#---

branching to main function

#---

jarl _main, lp

#---

processing when main function returns

#---

__exit:

halt

__startend:

Figure 5 - 1 Example of Startup Routine

180 User’s Manual U18513EJ1V0UM

CHAPTER 6 LIBRARY FUNCTION

CHAPTER 6 LIBRARY FUNCTION

This chapter explains the library functions provided in the CA850.

6.1 Supplied Libraries

The CA850 provides the following libraries.

When the standard library or mathematical library is used in an application, include the related header files to

use the library function. Reference these libraries using the linker option (-l). However, it is not necessary to

reference the libraries if only "definition of a function with a variable number of arguments" and "character type

macro/character type function" are used.

When PM+ is used, these libraries are referenced by default. Since the mathematical library internally

references the standard library, the standard library is required when the mathematical library is used. The

runtime library is a part of the standard library.

It is a routine that is automatically called by the CA850 when a floating-point operation or integer operation

(such as 32-bit integer multiplication, division, or remainder calculation) is performed. Unlike the other library

functions, therefore, the runtime library and prologue/epilogue runtime library of functions is not described in the

C language source or assembly language source.

When the mask register function is used in the 32-register mode, use the standard library stored in the mask

register folder (Install Folder\lib850\r32msk).

The linker automatically references the standard library in the above folder in the following cases.

- When 32-bit register mode is specified.

- When the mask register function is used with the compiler option "-Xmask_reg".

The ROMization library is referenced by the linker when the compiler option "-Xr" is specified. This library

stores functions "_rcopy", "_rcopy1", "_rcopy2", and "_rcopy4", which are used to copy packed data.

Table 6 - 1 Supplied Libraries

Library Type Library Name Function

Standard library libc.a Definition of Function with Variable Number of Arguments
Management of Character String and Memory
Character Type Macros and Functions
Standard Input/Output
Standard Utility Functions
Runtime Library
Prologue/epilogue runtime library of functions

Mathematical library libm.a Mathematical Functions

ROMization library libr.a ROMization copy functions

CHAPTER 6 LIBRARY FUNCTION

User’s Manual U18513EJ1V0UM 181

6.1.1 Standard library

The functions contained in the standard library are listed below. These functions are described in the "libc.a"

file. The prologue/epilogue runtime library of functions is explained in 6.1.5. The meaning of each element in the

list is as follows.

(1) Definition of Function with Variable Number of Arguments

Function name Name of function

Outline Functional outline of function

Header file Header file that must be included in the C language source when this function is
used. Include this file using the #include directive. "errno.h" must also be included if
errno is used when an exception occurs.

ANSI Indicates whether or not the function is stipulated by the ANSI standard. If it is
stipulated, "O" is shown in this column; if not, "- - -" is shown.

Use of sdata Indicates whether or not this function uses the memory area "sdata". In other words,
whether or not data for which the function has an initial value is allocated to RAM is
indicated. Because the section name must be ".sdata", generate the .sdata section
even when this area is not used by the user application. If the .sdata section is used,
"O" is shown in this column; if not, "- --" is shown. If "O" is shown, data with an initial
value is necessary, so the initial value must be copied to RAM before program
execution. In other words, ROMization processing must be performed using the
_rcopy function. Refer to CA850 for Operation User’s Manual for details of this
processing.

Use of sbss Indicates whether or not this function uses the memory area "sbss". In other words,
whether or not the function uses RAM as a temporary area is indicated. Because the
section name must be ".sbss", generate the .sbss section even when this area is not
used by the user application. If the .sbss section is used, "O" is shown in this
column; if not, "-- -" is shown. If "O" is shown, data without an initial value is
allocated, so unlike when .sdata is used, it is not necessary to perform ROMization
processing.

Re-entrancy Indicates whether or not the function is re-entrant. If it is re-entrant, "O" is shown; if
not, "-- -" is shown. "Re-entrant" means that the function can "re-enter". A re-entrant
function can be correctly executed even if an attempt is made in another process to
execute that function while the function is being executed. In an application using a
real-time OS, for example, this function is correctly executed even if dispatching to
another task is triggered by an interrupt while a certain task is executing this
function, and even if the function is executed in that task. A function that must use
RAM as a temporary area may not necessarily be re-entrant.

Table 6 - 2 Definition of Functions with Variable Number of Arguments

Function
Name Outline Header

File ANSI Use of
sdata

Use of
sbss

Re-
entrancy

va_start Initialization of variable for scanning
argument list

stdarg.h --- --- - - - - - -

va_arg Moving variable for scanning
argument list

stdarg.h --- --- - - - - - -

va_end End of scanning argument list stdarg.h --- --- - - - - - -

182 User’s Manual U18513EJ1V0UM

CHAPTER 6 LIBRARY FUNCTION

(2) Management of Character String and Memory

Table 6 - 3 Character String Functions

Function
Name Outline Header

File ANSI Use of
sdata

Use of
sbss

Re-
entrancy

bcmp Memory comparison
(char argument version of memcmp)

string.h --- --- - -- O

bcopy Memory copy
(char argument version of memcpy)

string.h --- --- - -- O

memchr Memory search string.h O --- --- O

memcmp Memory comparison string.h O --- --- O

memcpy Memory copy string.h O --- --- O

memmove Memory move string.h O --- --- O

memset Memory set string.h O --- --- O

Table 6 - 4 Memory Management Functions

Function
Name Outline Header

File ANSI Use of
sdata

Use of
sbss

Re-
entrancy

index Character string search (start position) string.h --- --- - -- O

rindex Character string search (end position) string.h --- --- - -- O

strcat Character string concatenation string.h O --- --- O

strchr Character string search
(start position of specified character)

string.h O --- --- O

strcmp Character string comparison string.h O --- --- O

strcpy Character string copy string.h O --- --- O

strcspn Character string search (maximum
length not including specified
character)

string.h O --- --- O

strerror Character string conversion
of error number

string.h O O --- ---

strlen Length of character string string.h O --- --- O

strncat Character string concatenation
(with number of characters specified)

string.h O --- --- O

strncmp Character string comparison
(with number of characters specified)

string.h O --- --- O

strncpy Character string copy
(with number of characters specified)

string.h O --- --- O

strpbrk Character string search (start position) string.h O --- --- O

strrchr Character string search (end position) string.h O --- --- O

strspn Character string search (maximum
length including specified character)

string.h O --- --- O

CHAPTER 6 LIBRARY FUNCTION

User’s Manual U18513EJ1V0UM 183

(3) Character Type Macros and Functions

strstr Character string search
(start position of specified character)

string.h O --- --- O

strtok Token division string.h O --- O ---

Table 6 - 5 Conversion of Character

Function
Name Outline Header

File ANSI Use of
sdata

Use of
sbss

Re-
entrancy

_tolower Conversion from uppercase to
lowercase (correctly converted only if
argument is in uppercase)

ctype.h --- --- - - - O

_toupper Conversion from lowercase to
uppercase (correctly converted only if
argument is in lowercase)

ctype.h --- --- - - - O

toascii Conversion from integer to ASCII
character

ctype.h --- --- - - - O

tolower Conversion from uppercase to
lowercase (not converted if argument
is not in uppercase)

ctype.h O O --- O

toupper Conversion from lowercase to
uppercase (not converted if argument
is not in lowercase)

ctype.h O O --- O

Table 6 - 6 Classification of Characters

Function
Name Outline Header

File ANSI Use of
sdata

Use of
sbss

Re-
entrancy

isalnum Identification of ASCII letter or
numeral

ctype.h O O --- O

isalpha Identification of ASCII letter ctype.h O O --- O

isascii Identification of ASCII code ctype.h --- --- - -- O

iscntrl Identification of control character ctype.h O O --- O

isdigit Identification of decimal number ctype.h O O --- O

isgraph Identification of display character
other than space

ctype.h O O --- O

islower Identification of lowercase character ctype.h O O --- O

isprint Identification of display character ctype.h O O --- O

ispunct Identification of delimiter character ctype.h O O --- O

isspace Identification of space/tab/carriage
return/line feed/vertical tab/page feed

ctype.h O O --- O

Table 6 - 4 Memory Management Functions

Function
Name Outline Header

File ANSI Use of
sdata

Use of
sbss

Re-
entrancy

184 User’s Manual U18513EJ1V0UM

CHAPTER 6 LIBRARY FUNCTION

(4) Standard Input/Output

isupper Identification of uppercase character ctype.h O O --- O

isxdigit Identification of hexadecimal number ctype.h O O --- O

Table 6 - 7 Standard I/O Functions

Function
Name Outline Header

File ANSI Use of
sdata

Use of
sbss

Re-
entrancy

perror Error processing stdio.h O O --- Note

fread Read from stream stdio.h O O --- ---

fwrite Write to stream stdio.h O O --- ---

fgetc Read one character from stream
(same as getc)

stdio.h O O --- ---

fgets Read one line from stream stdio.h O O --- ---

getc Read one character from stream
(same as fgetc)

stdio.h O O --- ---

getchar Read one character from standard
input

stdio.h O O --- ---

gets Read character string from standard
input

stdio.h O O --- ---

ungetc Push one character back to input
stream

stdio.h O O --- ---

rewind Reset file position indicator stdio.h O O --- ---

fputc Write character to stream stdio.h O O --- ---

fputs Output character string to stream stdio.h O O --- ---

putc Write character to stream stdio.h O O --- ---

putchar Write character to standard output
stream

stdio.h O O --- ---

puts Output character string to standard
output stream

stdio.h O O --- ---

sprintf Output with format stdio.h O O O ---

fprintf Output text in specified format to
stream

stdio.h O O O ---

printf Output text in specified format to
standard output stream

stdio.h O O O ---

vfprintf Write text in specified format to stream stdio.h O O O ---

vprintf Write text in specified format to
standard output stream

stdio.h O O O ---

Table 6 - 6 Classification of Characters

Function
Name Outline Header

File ANSI Use of
sdata

Use of
sbss

Re-
entrancy

CHAPTER 6 LIBRARY FUNCTION

User’s Manual U18513EJ1V0UM 185

Note stderr is not re-entrant.

(5) Standard Utility Functions

vsprintf Write text in specified format to
character string

stdio.h O O O ---

sscanf Input with format stdio.h O O O ---

fscanf Read and interpret data from stream stdio.h O O O ---

scanf Read and interpret text from standard
output stream

stdio.h O O O ---

Table 6 - 8 Standard Utility Functions

Function
Name Outline Header

File ANSI Use of
sdata

Use of
sbss

Re-
entrancy

abs Output absolute value (int type) stdlib.h O --- --- O

labs Output absolute value (long type) stdlib.h O --- --- O

bsearch Binary search stdlib.h O --- --- O

qsort Align stdlib.h O --- --- O

div Division (int type) stdlib.h O --- --- O

ldiv Division (long type) stdlib.h O --- --- O

ecvtf Conversion of floating-point value to
numeric character string (with total
number of characters specified)

stdlib.h --- O O ---

fcvtf Conversion of floating-point value to
numeric character string (with number
of digits below decimal point specified)

stdlib.h --- O O ---

gcvtf Conversion of floating-point value to
numeric character string
(in specified format)

stdlib.h --- O O ---

itoa Conversion of integer (int type) to
character string

stdlib.h --- --- - - - O

ltoa Conversion of integer (long type) to
character string

stdlib.h --- --- - - - O

ultoa Conversion of integer (unsigned long
type) to character string

stdlib.h --- --- - - - O

calloc Memory allocation (initialized to zero) stdlib.h O O O Note 1

free Memory release stdlib.h O O O Note 1

malloc Memory allocation
(not initialized to zero)

stdlib.h O O O Note 1

realloc Memory re-allocation stdlib.h O O O Note 1

Table 6 - 7 Standard I/O Functions

Function
Name Outline Header

File ANSI Use of
sdata

Use of
sbss

Re-
entrancy

186 User’s Manual U18513EJ1V0UM

CHAPTER 6 LIBRARY FUNCTION

Notes 1 A function that can be called recursively.

2 A function is not re-entrant if errno is updated when an exception occurs.

Remark errno.h must be included if errno is used when an exception occurs.

(6) Non-Local Jump Functions

rand Pseudorandom number sequence
generation

stdlib.h O O --- ---

srand Setting of type of pseudorandom
number sequence

stdlib.h O O --- ---

atoff Conversion of character string to
floating-point number

stdlib.h O O --- Note 2

strtodf Conversion of character string to
floating-point number (storing pointer
in last character string)

stdlib.h O O O Note 2

atoi Conversion of character string to
integer (int type)

stdlib.h O O --- Note 2

atol Conversion of character string to
integer (long type)

stdlib.h O O --- Note 2

strtol Conversion of character string to
integer (long type) and storing pointer
in last character string

stdlib.h O O O Note 2

strtoul Conversion of character string to
integer (unsigned long type) and
storing pointer in last character string

stdlib.h O O O Note 2

Table 6 - 9 Non-Local Jump Functions

Function
Name Outline Header

File ANSI Use of
sdata

Use of
sbss

Re-
entrancy

setjmp Set destination of non-local jump setjmp.h O --- --- O

longjmp Non-local jump setjmp.h O --- --- O

Table 6 - 8 Standard Utility Functions

Function
Name Outline Header

File ANSI Use of
sdata

Use of
sbss

Re-
entrancy

CHAPTER 6 LIBRARY FUNCTION

User’s Manual U18513EJ1V0UM 187

6.1.2 Mathematical library

The functions contained in the mathematical library are listed below. These functions are described in the

"libm.a" file. The meaning of each element in the list is as follows.

Function name Name of function

Outline Functional outline of function

Header file Header file that must be included in a C language source when this function is used.
Include this file using the #include directive. "errno.h" must also be included if errno
is used when an exception occurs, "limits.h" if limit values of general integer type
shown in "1.1.10 Quantitative limit" are used as a macro name, and "float.h" if limit
values of floating-point type are used.Header file that must be included in the C
language source when this function is used. Include this file using the #include
directive.

ANSI Indicates whether or not the function is stipulated by the ANSI standard. If it is
stipulated, "O" is shown in this column; if not, "- - -" is shown.

Use of sdata Indicates whether or not this function uses the memory area "sdata". In other words,
whether or not data for which the function has an initial value is allocated to RAM is
indicated. Because the section name must be ".sdata", generate the .sdata section
even when this area is not used by the user application. If the .sdata section is used,
"O" is shown in this column; if not, "- --" is shown. If "O" is shown, data with an initial
value is necessary, so the initial value must be copied to RAM before program
execution. In other words, ROMization processing must be performed using the
_rcopy function. Refer to CA850 for Operation User’s Manual for details of this
processing.

Use of sbss Indicates whether or not this function uses the memory area "sbss". In other words,
whether or not the function uses RAM as a temporary area is indicated. Because the
section name must be ".sbss", generate the .sbss section even when this area is not
used by the user application. If the .sbss section is used, "O" is shown in this
column; if not, "-- -" is shown. If "O" is shown, data without an initial value is
allocated, so unlike when .sdata is used, it is not necessary to perform ROMization
processing.

Re-entrancy Indicates whether or not the function is re-entrant. If it is re-entrant, "O" is shown; if
not, "-- -" is shown. "Re-entrant" means that the function can "re-enter". A re-entrant
function can be correctly executed even if an attempt is made in another process to
execute that function while the function is being executed. In an application using a
real-time OS, for example, this function is correctly executed even if dispatching to
another task is triggered by an interrupt while a certain task is executing this
function, and even if the function is executed in that task. A function that must use
RAM as a temporary area may not necessarily be re-entrant.

188 User’s Manual U18513EJ1V0UM

CHAPTER 6 LIBRARY FUNCTION

(1) Mathematical Functions

Table 6 - 10 Mathematical Functions

Function
Name Outline Header

File ANSI Use of
sdata

Use of
sbss

Re-
entrancy

j0f Bessel function of first kind (0 order) math.h --- O O Note

j1f Bessel function of first kind (first order) math.h --- O O Note

jnf Bessel function of first kind (n order) math.h --- O O Note

y0f Bessel function of second kind (0
order)

math.h --- O O Note

y1f Bessel function of second kind (first
order)

math.h --- O O Note

ynf Bessel function of second kind (n
order)

math.h --- O O Note

erff Error function (approximate value) math.h --- O O Note

erfcf Error function (complementary
probability)

math.h --- O O Note

expf Exponent function math.h O O O Note

logf Logarithmic function (natural
logarithm)

math.h O O O Note

log2f Logarithmic function (base = 2) math.h O O O Note

log10f Logarithmic function (base = 10) math.h O O O Note

powf Power function math.h O O O Note

cbrtf Cubic root function math.h --- --- - -- O

sqrtf Square root function math.h O O O Note

ceilf ceiling function math.h O --- --- O

fabsf Absolute value function math.h O --- --- O

floorf floor function math.h O --- --- O

fmodf Remainder function math.h O O O Note

frexpf Divide floating-point number into
mantissa and power

math.h O O O Note

ldexpf Convert floating-point number to
power

math.h O O O Note

modff Divide floating-point number into
integer and decimal

math.h O --- --- O

gammaf Logarithmic gamma function math.h --- O O Note

hypotf Euclidean distance function math.h --- O O Note

matherr Error processing function math.h --- --- - -- O

acoshf Inverse hyperbolic cosine math.h --- O O Note

asinhf Inverse hyperbolic sine math.h --- O O Note

CHAPTER 6 LIBRARY FUNCTION

User’s Manual U18513EJ1V0UM 189

Note These functions are not re-entrant only when errno is updated when an exception occurs and when

matherr is called.

Remark errno.h" must also be included if errno is used when an exception occurs, "limits.h" if limit values of

general integer type shown in "1.1.10 Quantitative limit" are used as a macro name, and "float.h" if

limit values of floating-point type are used.

atanhf Inverse hyperbolic tangent math.h --- O O Note

coshf Hyperbolic cosine math.h O O O Note

sinhf Hyperbolic sine math.h O O O Note

tanhf Hyperbolic tangent math.h O O O Note

acosf Inverse cosine math.h O O O Note

asinf Inverse sine math.h O O O Note

atanf Inverse tangent math.h O O O Note

atan2f Inverse tangent (y/x) math.h O O O Note

cosf Cosine math.h O O O Note

sinf Sine math.h O O O Note

tanf Tangent math.h O O O Note

Table 6 - 10 Mathematical Functions

Function
Name Outline Header

File ANSI Use of
sdata

Use of
sbss

Re-
entrancy

190 User’s Manual U18513EJ1V0UM

CHAPTER 6 LIBRARY FUNCTION

6.1.3 Runtime library

The functions contained in the runtime library are listed below. These functions are described in the "libc.a"

file. The functions of the runtime library are automatically called by the CA850 when a floating-point operation or

integer operation (32-bit integer multiplication/division or remainder calculation) is executed in a C-source

program, so they are not described in the C language source or assembly-language source, like the prologue/

epilogue runtime library of functions. The meaning of each element in the list is as follows.

Function name Name of function

Outline Functional outline of function

Use of sdata Indicates whether or not this function uses the memory area "sdata". In other words,
whether or not data for which the function has an initial value is allocated to RAM is
indicated. Because the section name must be ".sdata", generate the .sdata section
even when this area is not used by the user application. If the .sdata section is used,
"O" is shown in this column; if not, "- --" is shown. If "O" is shown, data with an initial
value is necessary, so the initial value must be copied to RAM before program
execution. In other words, ROMization processing must be performed using the
_rcopy function. Refer to CA850 for Operation User’s Manual for details of this
processing.

Use of sbss Indicates whether or not this function uses the memory area "sbss". In other words,
whether or not the function uses RAM as a temporary area is indicated. Because the
section name must be ".sbss", generate the .sbss section even when this area is not
used by the user application. If the .sbss section is used, "O" is shown in this
column; if not, "-- -" is shown. If "O" is shown, data without an initial value is
allocated, so unlike when .sdata is used, it is not necessary to perform ROMization
processing.

Re-entrancy Indicates whether or not the function is re-entrant. If it is re-entrant, "O" is shown; if
not, "-- -" is shown. "Re-entrant" means that the function can "re-enter". A re-entrant
function can be correctly executed even if an attempt is made in another process to
execute that function while the function is being executed. In an application using a
real-time OS, for example, this function is correctly executed even if dispatching to
another task is triggered by an interrupt while a certain task is executing this
function, and even if the function is executed in that task. A function that must use
RAM as a temporary area may not necessarily be re-entrant.

CHAPTER 6 LIBRARY FUNCTION

User’s Manual U18513EJ1V0UM 191

(1) Runtime Library

Note These functions are not re-entrant only when errno is updated when an exception occurs and when

matherr is called.

Remark "errno.h" must also be included if errno is used when an exception occurs, "limits.h" if limit values of

general integer type shown in "1.1.10 Quantitative limit" are used as a macro name, and "float.h" if

limit values of floating-point type are used.

Table 6 - 11 Runtime Library

Function
Name Outline Use of

sdata
Use of
sbss

Re-
entrancy

___mul Multiplication of signed 32-bit integer --- --- O

___mulu Multiplication of unsigned 32-bit integer --- --- O

___div Division of signed 32-bit integer --- --- O

___divu Division of unsigned 32-bit integer --- --- O

___mod Remainder of signed 32-bit integer --- --- O

___modu Remainder of unsigned 32-bit integer [V850] - - - - - - O

___addf.s Addition of single-precision floating-point O --- Note

___subf.s Subtraction of single-precision floating-point O --- Note

___mulf.s Multiplication of single-precision floating-point O --- Note

___divf.s Division of single-precision floating-point O --- Note

___cmpf.s Comparison of single-precision floating-point and
change of flag

O --- Note

___cvt.ws Conversion from integer to single-precision floating-
point number

--- --- O

___trnc.sw Conversion from single-precision floating-point number
to integer

--- --- O

192 User’s Manual U18513EJ1V0UM

CHAPTER 6 LIBRARY FUNCTION

6.1.4 ROMization library

The functions contained in the ROMization library are listed below. These functions are described in the "libr.a"

file. These functions are routines that copy data and program codes with initial values to RAM. Refer to

Operation User's Manual for the ROMization procedure.

- A ROMization function itself does not use the sdata and sbss areas but writes data to the sdata area.

- A ROMization function is usually called only once before the main program is executed, so it is not re-

entrant.

- When a load module is downloaded to the in-circuit emulator (ICE), the data with initial values and placed

in the data or sdata area is set as soon as the load module has been downloaded. Therefore, debugging

can be performed without calling the _rcopy function. If a ROMization load module is created and executed

on the actual machine, however, the initial values are not set and the operation is not performed as

expected unless data with an initial value is copied using the _rcopy function. The reason for the trouble is

that an initial value is not set by this _rcopy function in most of the cases. If a routine that clears RAM to

zero is executed during initialization, call the _rcopy function before that routine; otherwise the initial values

will also be cleared to zero.

(1) ROMization copy functions

Caution _rcopy and _rcopy1 perform the same operation. These functions are provided to maintain

compatibility with the previous version.

When a program code is copied to the internal instruction RAM of a V850 device that has an internal

instruction RAM (such as the V850E/ME2), it must be copied in 4-byte units because of the hardware

specifications. In this case, the program code is copied using the "_rcopy4" function. Any function could be used

were it not for hardware restrictions. When a program code is copied in 2-byte or 4-byte units, the area that must

be copied may be exceeded. If the size of a packed data area is not a multiple of 4, therefore, an area other than

the packed data area is also copied at the same time. Take this into consideration.

Function name Name of function

Outline Functional outline of function

Table 6 - 12 ROMization Copy Functions

Function
Name Outline

_rcopy Copies packed data to RAM, 1 byte at a time (same as _rcopy1).

_rcopy1 Copies packed data to RAM, 1 byte at a time (same as _rcopy).

_rcopy2 Copies packed data to RAM, 2 bytes at a time.

_rcopy4 Copies packed data to RAM, 4 bytes at a time.

CHAPTER 6 LIBRARY FUNCTION

User’s Manual U18513EJ1V0UM 193

6.1.5 Prologue/epilogue runtime library of functions

The functions contained in the prologue/epilogue runtime library are listed below. These functions are

described in the "libc.a" file. These functions are routines that are automatically called by the CA850 for

prologue/epilogue processing of functions, so they are not described in the C language source or assembly-

language source, like the runtime library.

The V850Ex core uses the CALLT instruction to call the prologue/epilogue runtime library of functions. The

code efficiency can be enhanced by calling these functions from the table of the CALLT instruction.

Calling the prologue/epilogue runtime library of functions is valid when:

- an optimization option other than "-Ot" (execution speed priority optimization) is specified.

- the compiler option "-Xpro_epi_runtime=on" is specified.

The following functions are used for prologue and epilogue processing of functions.

Table 6 - 13 List of Prologue Runtime Library Functions

Functional Outline Function Name

Prologue processing of
functions

___push2000, ___push2001, ___push2002, ___push2003,

___push2004, ___push2040,

___push2100, ___push2101, ___push2102, ___push2103,

___push2104, ___push2140,

___push2200, ___push2201, ___push2202, ___push2203,

___push2204, ___push2240,

___push2300, ___push2301, ___push2302, ___push2303,

___push2304, ___push2340,

___push2400, ___push2401, ___push2402, ___push2403,

___push2404, ___push2440,

___push2500, ___push2501, ___push2502, ___push2503,

___push2504, ___push2540,

___push2600, ___push2601, ___push2602, ___push2603,

___push2604, ___push2640

___push2700, ___push2701, ___push2702, ___push2703,

___push2704, ___push2740

___push2800, ___push2801, ___push2802, ___push2803,

___push2804, ___push2840,

___push2900, ___push2901, ___push2902, ___push2903,

___push2904, ___push2940,

___pushlp00, ___pushlp01, ___pushlp02, ___pushlp03,

___pushlp04, ___pushlp40

194 User’s Manual U18513EJ1V0UM

CHAPTER 6 LIBRARY FUNCTION

Table 6 - 14 List of Prologue Runtime Library Functions [V850E]

Functional Outline Function Name

Prologue processing of
functions

___Epush250, ___Epush251, ___Epush252, ___Epush253,

___Epush254,

___Epush260, ___Epush261, ___Epush262, ___Epush263,

___Epush264,

___Epush270, ___Epush271, ___Epush272, ___Epush273,

___Epush274,

___Epush280, ___Epush281, ___Epush282, ___Epush283,

___Epush284,

___Epush290, ___Epush291, ___Epush292, ___Epush293,

___Epush294,

___Epushlp0, ___Epushlp1, ___Epushlp2, ___Epushlp3,

___Epushlp4

Table 6 - 15 List of Epilogue Runtime Library Functions

Functional Outline Function Name

Epilogue processing of
functions

___pop2000, ___pop2001, ___pop2002, ___pop2003,

___pop2004, ___pop2040,

___pop2100, ___pop2101, ___pop2102, ___pop2103,

___pop2104, ___pop2140,

___pop2200, ___pop2201, ___pop2202, ___pop2203,

___pop2204, ___pop2240,

___pop2300, ___pop2301, ___pop2302, ___pop2303,

___pop2304, ___pop2340,

___pop2400, ___pop2401, ___pop2402, ___pop2403,

___pop2404, ___pop2440,

___pop2500, ___pop2501, ___pop2502, ___pop2503,

___pop2504, ___pop2540,

___pop2600, ___pop2601, ___pop2602, ___pop2603,

___pop2604, ___pop2640

___pop2700, ___pop2701, ___pop2702, ___pop2703,

___pop2704, ___pop2740

___pop2800, ___pop2801, ___pop2802, ___pop2803,

___pop2804, ___pop2840,

___pop2900, ___pop2901, ___pop2902, ___pop2903,

___pop2904, ___pop2940,

___poplp00, ___poplp01, ___poplp02, ___poplp03,

___poplp04, ___poplp40

CHAPTER 6 LIBRARY FUNCTION

User’s Manual U18513EJ1V0UM 195

Table 6 - 16 List of Epilogue Runtime Library Functions [V850E]

Functional Outline Function Name

Epilogue processing of
functions

___Epop250, ___Epop251, ___Epop252, ___Epop253,

___Epop254,

___Epop260, ___Epop261, ___Epop262, ___Epop263,

___Epop264,

___Epop270, ___Epop271, ___Epop272, ___Epop273,

___Epop274,

___Epop280, ___Epop281, ___Epop282, ___Epop283,

___Epop284,

___Epop290, ___Epop291, ___Epop292, ___Epop293,

___Epop294,

___Epoplp0, ___Epoplp1, ___Epoplp2, ___Epoplp3,

___Epoplp4

196 User’s Manual U18513EJ1V0UM

CHAPTER 6 LIBRARY FUNCTION

6.2 Header Files

The header files required for using the libraries of the CA850 are listed below. The macro definitions and

function declarations are described in each file.

Table 6 - 17 Header Files

File Name Outline

ctype.h Header file for character conversion and classification

errno.h Header file for reporting error condition

float.h Header file for floating-point representation and floating-point operation

limits.h Header file for quantitative limiting of integers

math.h Header file for mathematical calculation

setjmp.h Header file for non-local jump

stdarg.h Header file for supporting functions having variable number of arguments

stddef.h Header file for common definitions

stdio.h Header file for standard I/O

stdlib.h Header file for standard utilities

string.h Header file for memory manipulation and character string manipulation

CHAPTER 6 LIBRARY FUNCTION

User’s Manual U18513EJ1V0UM 197

6.3 Object Names Linked

When a load module is generated by compiling and linking C language sources using libraries, objects stored

in the libraries can be selected and linked as necessary. The names of the objects to be linked can be confirmed

in a link map file that indicates the result of linking. The names of the objects that are linked are almost the same

as the library function names. Routines commonly used for each function are combined and the object names

are different from the library function names. The following objects combine the routines commonly used, and

are automatically linked as necessary.

- com1f.o

- com1xf.o

- com2f.o

- com3f.o

- com4f.o

- com5f.o

- com6f.o

- com7f.o

198 User’s Manual U18513EJ1V0UM

CHAPTER 6 LIBRARY FUNCTION

6.4 Explanation of Format

About the library function that CA850 supports, the following format is used for the explanation.

Classification of library function

[Overview]

Outlines the feature of each function.

[Syntax]

Indicates the specification format of each function.

[Description]

Details of features of each function.

[Return value]

Indicates the return value of each function.

[Cautions]

Explains the supplementary points to be noted on each function.

[Example]

Indicates a simple example of each function.

[Preprocessing]

Indicates the necessary preprocessing.

[Argument setting register]

Indicates the name of the register used for argument setting.

[Flag]

Indicates the flags that are affected.

Because the runtime library is written as an assembler, the following items may be added.

CHAPTER 6 LIBRARY FUNCTION

User’s Manual U18513EJ1V0UM 199

6.5 Definition of Function with Variable Number of Arguments

This section explains the macros that define functions with a variable number of arguments in a portable form.

The declarations and definitions of these macros are described in the "stdarg.h" file.

Table 6 - 18 Definition of Function with Variable Number of Arguments

Classification Function Name Outline

STDARG va_start Initializes variable for scanning argument list

va_arg Moves variable for scanning argument list

va_end End of scanning argument list

200 User’s Manual U18513EJ1V0UM

CHAPTER 6 LIBRARY FUNCTION

STDARG

[Overview]

Defines a function with a variable number of arguments.

va_start, va_arg, va_end

[Syntax]

#include <stdarg.h>

void va_start(va_list ap, last-named-argument)

type va_arg(va_list ap, type)

void va_end(va_list ap)

[Description]

To define function func having a variable number of arguments in a portable form, the following format is

used.

arg-declarationsis an argument list with the last-named-argument declared at the end. "..." that follows

indicates a list of the variable number of arguments.

va_listis the type of the variable (ap in the above example) used to scan the argument list.

va_start(va_list ap, last-named-argument)

This function initializes variable ap so that it indicates the beginning (argument next to last-named-

argument) of the list of the variable number of arguments.

#include<stdarg.h>

void func(arg-declarations ...)

{

va_list ap;

type argN;

va_start(ap, last-named-argument);

argN = va_arg(ap, type);

va_end(ap);

}

CHAPTER 6 LIBRARY FUNCTION

User’s Manual U18513EJ1V0UM 201

va_arg(va_list ap, type)

This function returns the argument indicated by variable ap, and advances variable ap to indicate the next

argument. For the type of va_arg, specify the type converted when the argument is passed to the function.

With the CA850, specify the int type for an argument of char and short types, and specify the unsigned int

type for an argument of unsigned char and unsigned short types.

Although a different type can be specified for each argument, stipulate "which type of argument is passed"

according to the conventions between the called function and calling function.

Also stipulate "how many functions are actually passed" according to the conventions between the called

function and calling function.

va_end(va_list ap)

This function indicates the end of scanning the list. By enclosing va_arg ... between va_start and va_end,

scanning the list can be repeated.

[Example]

#include <stdarg.h>

void abc(int first, int second, ...)

{

va_list ap;

int i;

char c, *fmt;

va_start(ap, second);

i = va_arg(ap, int);

c = va_arg(ap, int); /* char type is converted into int type. */

fmt = va_arg(ap, char *);

va_end(ap);

}

202 User’s Manual U18513EJ1V0UM

CHAPTER 6 LIBRARY FUNCTION

6.6 Management of Character String and Memory

This section explains the character string processing features and memory area management features.

The declarations and definitions related to these functions are described in the "string.h" file.

Table 6 - 19 Functions for Character String/Memory Management

Classification Function Name Outline

STRING index Character string search (first position)

rindex Character string search (last position)

strcat Character string concatenation

strchr Character string search (first position of specifiedcharacter)

strcmp Character string comparison

strcpy Character string copy

strcspn Character string search (maximum length not including
specified character)

strerror Character string conversion of error number

strlen Length of character string

strncat Character string concatenation (number of characters
specification)

strncmp Character string comparison (number of characters
specification)

strncpy Character string copy (number of characters specification)

strpbrk Character string search (first position)

strrchr Character string search (last position)

strspn Character string search (maximum length including specified
character)

strstr Character string search (first position of specified character
string)

strtok Token division

MEMORY bcmp Memory comparison (char argument)

bcopy Memory copy (char argument)

memchr Memory search

memcmp Memory comparison (void argument)

memcpy Memory copy (void argument)

memmove Memory move

memset Memory set

CHAPTER 6 LIBRARY FUNCTION

User’s Manual U18513EJ1V0UM 203

STRING

[Overview]

Manipulates a character string.

index, rindex, strcat, strchr, strcmp, strcpy, strcspn, strerror, strlen, strncat, strncmp, strncpy, strpbrk, strrchr,

strspn, strstr, strtok

[Syntax]

#include <string.h>

char *index(const char *s, int c)

char *rindex(const char *s, int c)

char *strcat(char *dst, const char *src)

char *strchr(const char *s, int c)

int strcmp(const char *s1, const char *s2)

char *strcpy(char *dst, const char *src)

size_t strcspn(const char *s1, const char *s2)

char *strerror(int errnum)

size_t strlen(const char *s)

char *strncat(char *dst, const char *src, size_t length)

int strncmp(const char *s1, const char *s2, size_t length)

char *strncpy(char *dst, const char *src, size_t length)

char *strpbrk(const char *s1, const char *s2)

char *strrchr(const char *s, int c)

size_t strspn(const char *s1, const char *s2)

char *strstr(const char *s1, const char *s2)

char *strtok(char *s, const char *delimiters)

204 User’s Manual U18513EJ1V0UM

CHAPTER 6 LIBRARY FUNCTION

[Description]

index(const char *s, int c)

This function is a function having the same feature as strchr.

rindex(const char *s, int c)

This function a function having the same feature as strrchr.

strcat(char *dst, const char *src)

This function concatenates the duplication of the character string indicated by src to the end of the character

string indicated by dst, including the null character (\0). The first character of src overwrites the null character

(\0) at the end of dst.

strchr(const char *s, int c)

This function obtains the position at which a character the same as c converted into char type appears in the

character string indicated by s. The null character (\0) indicating termination is regarded as part of this

character string.

strcmp(const char *s1, const char *s2)

This function compares the character string indicated by s1 with the character string indicated by s2.

strcpy(char *dst, const char *src)

This function copies the character string indicated by src to the array indicated by dst.

strcspn(const char *s1, const char *s2)

This function obtains the length of the maximum and first portion consisting of characters missing from the

character string indicated by s2 (except the null character (\0) at the end) in the character string indicated by

s1.

strerror(int errnum)

This function converts error number errnum into a character string according to the correspondence

relationship of the processing system definition. The value of errnum is usually the duplication of global

variable errno. Do not change the specified array of the application program.

strlen(const char *s)

This function obtains the length of the character string indicated by s.

strncat(char *dst, const char *src, size_t length)

This function concatenates up to length characters (including the null character (\0) of src) to the end of the

character string indicated by dst, starting from the beginning of the character string indicated by src. The null

character (\0) at the end of dst is written over the first character of src. The null character indicating termination

(\0) is always added to this result.

strncmp(const char *s1, const char *s2, size_t length)

This function compares up to length characters of the array indicated by s1 with characters of the array

indicated by s2.

CHAPTER 6 LIBRARY FUNCTION

User’s Manual U18513EJ1V0UM 205

strncpy(char *dst, const char *src, size_t length)

This function copies up to length characters (including the null character (\0)) from the array indicated by src

to the array indicated by dst. If the array indicate by src is shorter than length characters, null characters (\0)

are appended to the duplication in the array indicated by dst, until all length characters are written.

strpbrk(const char *s1, const char *s2)

This function obtains the position in the character string indicated by s1 at which any of the characters in the

character string indicated by s2 (except the null character (\0)) appears first.

strrchr(const char *s, int c)

This function obtains the position at which c converted into char type appears last in the character string

indicated by s. The null character (\0) indicating termination is regarded as part of this character string.

strspn(const char *s1, const char *s2)

This function obtains the maximum and first length of the portion consisting of only the characters (except

the null character (\0)) in the character string indicated by s2, in the character string indicated by s1.

strstr(const char *s1, const char *s2)

This function obtains the position of the portion (except the null character (\0)) that first coincides with the

character string indicated by s2, in the character string indicated by s1.

strtok(char *s, const char *delimiters)

This function divides the character string indicated by s into strings of tokens by delimiting the character

string with a character in the character string indicated by delimiters. If this function is called first, s is used as

the first argument. Then, calling with the null pointer as the first argument continues. The delimiting character

string indicated by delimiters can differ on each call.

On the first call, the character string indicated by s is searched for the first character not included in the

delimiting character string indicated by delimiters. If such a character is not found, a token does not exist in the

character string indicated by s, and strtok returns the null pointer. If a character is found, that character is the

beginning of the first token. After that, strtok searches from the position of that character for a character

included in the delimiting character string at that time. If such a character is not found, the token is expanded to

the end of the character string indicated by s, and the subsequent search returns the null pointer. If a character

is found, the subsequent character is overwritten by the null character (\0) indicating the termination of the

token. strtok saves the pointer indicating the subsequent character. If the null pointer is used as the value of

the first argument, a code that is not re-entrant is returned.

This can be avoided by preserving the address of the last delimiting character in the application program,

and passing s as an argument that is not vacant, by using this address.

206 User’s Manual U18513EJ1V0UM

CHAPTER 6 LIBRARY FUNCTION

[Return value]

[Cautions]

Because the null character (\0) is always appended when strncat is used, if copying is limited by the number

of length arguments, the number of characters appended to dst is n + 1.

[Example]

strcat Returns the value of dst.

strchr Returns a pointer indicating the character that has been found. If c does not appear in
this character string, the null pointer is returned.

strcmp Returns an integer greater than, equal to, or less than 0, depending on whether the
character string indicated by s1 is greater than, equal to, or less than the character
string indicated by s2.

strcpy Returns the value of dst.

strcspn Returns the length of the portion that has been found.

strerror Returns a pointer to the converted character string.

strlen Returns the number of characters existing before the null character (\0) indicating
termination.

strncat Returns the value of dst.

strncmp Returns an integer greater than, equal to, or less than 0, depending on whether the
character string indicated by s1 is greater than, equal to, or less than the character
string indicated by s2.

strncpy Returns the value of dst.

strpbrk Returns the pointer indicating this character. If any of the characters from s2 does not
appear in s1, the null pointer is returned.

strrchr Returns a pointer indicating c that has been found. If c does not appear in this character
string, the null pointer is returned.

strspn Returns the length of the portion that has been found.

strstr Returns the pointer indicating the character string that has been found. If character
string s2 is not found, the null pointer is returned. If s2 indicates a character string with a
length of 0, s1 is returned.

strtok Returns a pointer to a token. If a token does not exist, the null pointer is returned.

#include <string.h>

void func(char *str, const char *src)

{

strcpy(str, src); /* Copies character string indicated by src to */

/* array indicated by str. */

:

}

CHAPTER 6 LIBRARY FUNCTION

User’s Manual U18513EJ1V0UM 207

MEMORY

[Overview]

Manipulates the memory contents.

bcmp, bcopy, memchr, memcmp, memcpy, memmove, memset

[Syntax]

#include <string.h>

int bcmp(const char *s1, const char *s2, size_t n)

void bcopy(const char *in, char *out, size_t n)

void *memchr(const void *s, int c, size_t length)

int memcmp(const void *s1, const void *s2, size_t n)

void *memcpy(void *out, const void *in, size_t n)

void *memmove(void *dst, void *src, size_t length)

void *memset(const void *s, int c, size_t length)

[Description]

bcmp(const char *s1, const char *s2, size_t n)

This function is a function having the same feature as memcmp.

bcopy(const char *in, char *out, size_t n)

This function is a function having the same feature as memcpy.

memchr(const void *s, int c, size_t length)

This function obtains the position at which character c (converted into char type) appears first in the first

length number of characters in an area indicated by s.

memcmp(const void *s1, const void *s2, size_t n)

This function compares the first n characters of an object indicated by s1 with the object indicated by s2.

memcpy(void *out, const void *in, size_t n)

This function copies n bytes from an object indicated by in to an object indicated by out.

memmove(void *dst, void *src, size_t length)

This function moves the length number of characters from a memory area indicated by src to a memory area

indicated by dst. Even if the copy source and copy destination areas overlap, the characters are correctly

copied to the memory area indicated by dst.

memset(const void *s, int c, size_t length)

This function copies the value of c (converted into unsigned char type) to the first length character of an

object indicated by s.

208 User’s Manual U18513EJ1V0UM

CHAPTER 6 LIBRARY FUNCTION

[Return value]

[Example]

memchr If c is found, a pointer indicating this character is returned. If c is not found, the null
pointer is returned.

bcmp,
memcmp

An integer greater than, equal to, or less than 0 is returned, depending on whether the
object indicated by s1 is greater than, equal to, or less than the object indicated by s2.

bcopy,
memcpy

Returns the value of out. The operation is undefined if the copy source and copy
destination areas overlap.

memmove Returns the value of dst at the copy destination.

memset Returns the value of s.

#include <string.h>

int func(const void *s1, const void *s2)

{

int i;

i = memcmp(s1, s2, 5); /* Compares the first five characters of */

/* the character string indicated by s1 with */

/* the first five characters of the character*/

/* string indicated by s2 */

return i;

}

CHAPTER 6 LIBRARY FUNCTION

User’s Manual U18513EJ1V0UM 209

6.7 Character Type Macros and Functions

This section explains the macros that classify characters into several categories (such as letters, numerals,

control characters, and blanks) and macros that perform simple mapping of characters.

These macros can also be used as subroutines.

These macros are defined by "ctype.h".

Table 6 - 20 Character Type Macros

Classification Function Name Outline

CONV _tolower Conversion from uppercase characters to lowercase characters

_toupper Conversion from lowercase characters to uppercase characters

toascii Conversion from integer to ASCII character

tolower Conversion from uppercase characters to lowercase characters

toupper Conversion from lowercase characters to uppercase characters

CTYPE isalnum Whether ASCII letter or numeral

isalpha Whether ASCII letter

isascii Whether ASCII code

iscntrl Whether control character

isdigit Whether decimal number

isgraph Whether display character (other than space)

islower Whether lowercase character

isprint Whether display character

ispunct Whether delimiter

isspace Whether space, tab, line feed, carriage return, vertical tab, or form
feed

isupper Whether uppercase character

isxdigit Whether hexadecimal character

210 User’s Manual U18513EJ1V0UM

CHAPTER 6 LIBRARY FUNCTION

CONV

[Overview]

Converts characters.

_tolower, _toupper, toascii, tolower, toupper

[Syntax]

#include <ctype.h>

int _tolower(int c)

int _toupper(int c)

int toascii(int c)

int tolower(int c)

int toupper(int c)

[Description]

_tolower(int c)

This function is a macro that performs the same operation as tolower if the argument is of uppercase

characters. Because the argument is not checked, the correct conversion is performed only if the argument is

of uppercase characters. If otherwise, the operation will be undefined. A compiled subroutine can be used

instead of the macro definition, which is invalidated by using "#undef _tolower".

_toupper(int c)

This function is a macro that performs the same operation as toupper if the argument is of lowercase

characters. Because the argument is not checked, the correct conversion is performed only if the argument is

of lowercase characters. If otherwise, the operation will be undefined. A compiled subroutine can be used

instead of the macro definition, which is invalidated by using "#undef _toupper".

toascii(int c)

This function is a macro that forcibly converts an integer into an ASCII character (0 to 127) by clearing bit 8

and higher of the argument to 0. A compiled subroutine can be used instead of the macro definition, which is

invalidated by using "#undef toascii".

tolower(int c)

This function is a macro that converts uppercase characters into the corresponding lowercase characters

and leaves the other characters unchanged. This macro is defined only when c is an integer in the range of

EOF to 255. A compiled subroutine can be used instead of the macro definition, which is invalidated by using

"#undef tolower".

CHAPTER 6 LIBRARY FUNCTION

User’s Manual U18513EJ1V0UM 211

toupper(int c)

This function is a macro that converts lowercase characters into the corresponding uppercase characters

and leaves the other characters unchanged. This macro is defined only when c is an integer in the range of

EOF.

[Return value]

[Example]

toascii Returns an integer in the range of 0 to 127.

_tolower,
tolower

If isupper is true with respect to c, returns a character that makes islower true in
response; otherwise, returns c.
Also with _tolower, operation can be inconsistent when specifying illegal values for c.

_toupper,
toupper

If islower is true with respect to c, returns a character that makes islower true in
response; otherwise, returns c.
Also with _toupper, operation can be inconsistent when specifying illegal values for c.

#include <ctype.h>

int chc = 'a';

int ret = func(chc);

int func(int c)

{

int i;

i = toupper(c); /* Converts lowercase character ’a’ of c into */

/* uppercase character ’A’. */

return i;

}

212 User’s Manual U18513EJ1V0UM

CHAPTER 6 LIBRARY FUNCTION

CTYPE

[Overview]

Classifies characters

isalnum, isalpha, isascii, iscntrl, isdigit, isgraph, islower, isprint, ispunct, isspace, isupper, isxdigit

[Syntax]

#include <ctype.h>

int isalnum(int c)

int isalpha(int c)

int isascii(int c)

int iscntrl(int c)

int isdigit(int c)

int isgraph(int c)

int islower(int c)

int isprint(int c)

int ispunct(int c)

int isspace(int c)

int isupper(int c)

int isxdigit(int c)

[Description]

isalnum(int c)

This function is a macro that checks whether a given character is an ASCII alphabetic character or numeral.

This macro is defined for all integer values. A compiled subroutine can be used instead of the macro definition,

which is invalidated by using "#undef isalnum".

isalpha(int c)

This function is a macro that checks whether a given character is an ASCII alphabetic character. This macro

id defined only when c is made true by isascii or when c is EOF. A compiled subroutine can be used instead of

the macro definition, which is invalidated by using "#undef isalpha".

isascii(int c)

This function is a macro that checks whether a given character is an ASCII code (0x00 to 0x7f). This macro

is defined for all integer values. A compiled subroutine can be used instead of the macro definition, which is

invalidated by using "#undef isascii".

iscntrl(int c)

This function is a macro that checks whether a given character is a control character (0x00 to 0x1F or 0x7F).

This macro is defined only when c is made true by isascii or when c is EOF. A compiled subroutine can be

used instead of the macro definition, which is invalidated by using "#undef iscntrl".

CHAPTER 6 LIBRARY FUNCTION

User’s Manual U18513EJ1V0UM 213

isdigit(int c)

This function is a macro that checks whether a given character is a decimal number. This macro is defined

only when c is made true by isascii or when c is EOF. A compiled subroutine can be used instead of the macro

definition, which is invalidated by using "#undef isdigit".

isgraph(int c)

This function is a macro that checks whether a given character is a display characterNote (0x20 to 0x7E)

other than space (0x20). This macro is defined only when c is made true by isascii or when c is EOF. A

compiled subroutine can be used instead of the macro definition, which is invalidated by using "#undef

isgraph".

Note printing character

islower(int c)

This function is a macro that checks whether a given character is a lowercase character (a to z). This macro

is defined only when c is made true by isascii or when c is EOF. A compiled subroutine can be used instead of

the macro definition, which is invalidated by using "#undef islower".

isprint(int c)

This function is a macro that checks whether a given character is a display character (0x20 to 0x7F). This

macro is defined only when c is made true by isascii or when c is EOF. A compiled subroutine can be used

instead of the macro definition, which is invalidated by using "#undef isprint".

ispunct(int c)

This function is a macro that checks whether a given character is a printable delimiter (isgraph(c) &&

!isalnum(c)). This macro is defined only when c is made true by isascii or when c is EOF. A compiled

subroutine can be used instead of the macro definition, which is invalidated by using "#undef ispunct".

isspace(int c)

This function is a macro that checks whether a given character is a space, tap, line feed, carriage return,

vertical tab, or form feed (0x09 to 0x0D, or 0x20). This macro is defined only when c is made true by isascii or

when c is EOF. A compiled subroutine can be used instead of the macro definition, which is invalidated by

using "#undef isspace".

isupper(int c)

This function is a macro that checks whether a given character is an uppercase character (A to Z). This

macro is defined only when c is made true by isascii or when c is EOF. A compiled subroutine can be used

instead of the macro definition, which is invalidated by using "#undef isupper".

isxdigit(int c)

This function is a macro that checks whether a given character is a hexadecimal number (0 to 9, a to f, or A

to F). This macro is defined only when c is made true by isascii or when c is EOF. A compiled subroutine can

be used instead of the macro definition, which is invalidated by using "#undef isxdigit".

214 User’s Manual U18513EJ1V0UM

CHAPTER 6 LIBRARY FUNCTION

[Return value]

These macros return a value other than 0 if the value of argument c matches the respective description (i.e.,

if the result is true). If the result is false, 0 is returned.

[Example]

#include <ctype.h>

void func(void)

{

int i, j = 0;

char s[50];

for(i = 50; i <= 99; i++) { /* Stores characters that can be */

/* displayed in codes 50 through 99 to s. */

if(isprint(i)) {

s[j] = i;

j++;

}

}

}

CHAPTER 6 LIBRARY FUNCTION

User’s Manual U18513EJ1V0UM 215

6.8 Standard Input/Output

This section explains the functions that generate and scan character strings in accordance with the

specification of a formatted character string. Definitions and declarations related to these functions are described

in the "stdio.h" file.

Note These functions are not supported by the NEC Electronics integrated debugger or the system

simulator.

Table 6 - 21 Standard Input/Output

Classification Function Name Outline

ERROR perror Error processing

FILEIO freadNote Read from stream

fwriteNote Write to stream

GETS fgetcNote Read one character from stream

fgetsNote Read one line from stream

getcNote Read one character from stream

getcharNote Read one character from standard input

getsNote Read string from standard input

ungetcNote Push one character back into input stream

rewindNote Reset file position indicator

PUTS fputcNote Write character to stream

fputsNote Output string to stream

putcNote Write character to stream

putcharNote Write character to standard output stream

putsNote Output string to standard output stream

SPRINTF sprintf Formatted output

vsprintf Write format-specified text to string

PRINTF fprintfNote Output format-specified text to stream

printfNote Output format-specified text to standard output stream

vfprintfNote Write format-specified text to stream

vprintfNote Write format-specified text to standard output stream

SSCANF sscanf Formatted input

SCANF fscanfNote Read and interpret data from stream

scanfNote Read and interpret text from standard output stream

216 User’s Manual U18513EJ1V0UM

CHAPTER 6 LIBRARY FUNCTION

ERROR

[Overview]

Error processing

perror

[Syntax]

#include <stdio.h>

void perror(const char *s)

[Description]

perror(const char *s)

This function outputs to stderr the error message that corresponds to global variable errno.

The message that is output is as follows.

s_fix is as follows.

[Example]

When s is not NULL fprintf(stderr, "%s:%s\n", s, s_fix);

When s is NULL fprintf(stderr, "%s\n", sfix);

When errno is EDOM "EDOM error"

When errno is ERANGE "ERANGE error"

When errno is 0 "no error"

Otherwise "error xxx"(xxx is abs (errno)%1000)

#include <stdio.h>

void func1(double x)

{

double d;

errno = 0;

d = exp(x);

if(errno) perror("func1"); /* If a calculation exception is generated */

/* by exp perror is called */

}

CHAPTER 6 LIBRARY FUNCTION

User’s Manual U18513EJ1V0UM 217

FILEIO

[Overview]

Direct input/output

fread, fwrite

Caution These functions are not supported by the NEC Electronics integrated debugger or the system

simulator.

[Syntax]

#include <stdio.h>

size_t fread(void *ptr, size_t, size, size_t nmemb, FILE *stream)

size_t fwrite(const void *ptr, size_t size, size_t nmemb, FILE *stream)

[Description]

fread(void *ptr, size_t, size, size_t nmemb, FILE *stream)

This function inputs nmemb elements of size size from the input stream pointed to by stream and stores

them in ptr. Only the standard input/output stdin can be specified for stream.

fwrite(const void *ptr, size_t size, size_t nmemb, FILE *stream)

This function outputs nmemb elements of size size from the array pointed to by ptr to the output stream

pointed to by stream. Only the standard input/output stdout or stderr can be specified for stream

[Return value]

Error return does not occur for either function.

fread The number of elements that were input (nmemb) is returned.

fwrite The number of elements that were output (nmemb) is returned.

218 User’s Manual U18513EJ1V0UM

CHAPTER 6 LIBRARY FUNCTION

[Example]

#include <stdio.h>

void func(void)

{

struct {

int c;

double d;

} buf[10];

fread(buf, sizeof(buf[0]), sizeof(buf)/sizeof(buf[0]), stdin);

}

CHAPTER 6 LIBRARY FUNCTION

User’s Manual U18513EJ1V0UM 219

GETS

[Overview]

Character or string input

fgetc, fgets, getc, getchar, gets, ungetc, rewind

Caution These functions are not supported by the NEC Electronics integrated debugger or the system

simulator.

[Syntax]

#include <stdio.h>

int fgetc(FILE *stream)

char *fgets(char *s, int n, FILE *stream)

int getc(FILE *stream)

int getchar()

char *gets(char *s)

int ungetc(int c, FILE *stream)

void rewind(FILE *stream)

[Description]

fgetc(FILE *stream)

This function inputs one character from the input stream pointed to by stream. Only the standard input/

output stdin can be specified for stream.

fgets(char *s, int n, FILE *stream)

This function inputs at most n-1 characters from the input stream pointed to by stream and stores them in s.

Character input is also ended by the detection of a new-line character. In this case, the new-line character is

also stored in s. The end-of-string null character is stored at the end in s. Only the standard input/output stdin

can be specified for stream.

getc(FILE *stream)

This function inputs one character from the input stream pointed to by stream. The getc function is

completely equivalent to fgetc.

getchar()

This function inputs one character from the standard input/output stdin.

gets(char *s)

This function inputs characters from the standard input/output stdin until a new-line character is detected

and stores them in s. The new-line character that was input is discarded, and an end-of-string null character is

stored at the end in s.

220 User’s Manual U18513EJ1V0UM

CHAPTER 6 LIBRARY FUNCTION

ungetc(int c, FILE *stream)

This function pushes the character c back into the input stream pointed to by stream. However, if c is EOF,

no pushback is performed. The character c that was pushed back will be input as the first character during the

next character input. Only one character can be pushed back by ungetc. If ungetc is executed continuously,

only the last ungetc will have an effect. Only the standard input/output stdin can be specified for stream.

rewind(FILE *stream)

This function clears the error indicator of the input stream pointed to by stream, and positions the file

position indicator at the beginning of the file. However, only the standard input/output stdin can be specified for

stream. Therefore, rewind only has the effect of discarding the character that was pushed back by ungetc.

[Return value]

Error return does not occur for any of these functions.

[Example]

fgetc, getc, getchar The input character is returned.

fgets, gets s is returned.

ungetc The character c is returned.

#include <stdio.h>

void func(void)

{

int c;

c = fgetc(stdin);

}

CHAPTER 6 LIBRARY FUNCTION

User’s Manual U18513EJ1V0UM 221

PUTS

[Overview]

Character or string output

fputc, fputs, putc, putchar, puts

Caution These functions are not supported by the NEC Electronics integrated debugger or the system

simulator.

[Syntax]

#include <stdio.h>

int fputc(int c, FILE *stream)

int fputs(const char *s, FILE *stream)

int putc(int c, FILE *stream)

int putchar(int c)

int puts(const char *s)

[Description]

fputc(int c, FILE *stream)

This functionoutputs the character c to the output stream pointed to by stream. Only the standard input/

output stdout or stderr can be specified for stream.

fputs(const char *s, FILE *stream)

This function outputs the string s to the output stream pointed to by stream. The end-of-string null character

is not output. Only the standard input/output stdout or stderr can be specified for stream.

putc(int c, FILE *stream)

This function outputs the character c to the output stream pointed to by stream. The putc function is

completely equivalent to fputc.

putchar(int c)

This function outputs the character c to the standard input/output stdout.

puts(const char *s)

This function outputs the string s to the standard input/output stdout. The end-of-string null character is not

output, but a new-line character is output in its place.

222 User’s Manual U18513EJ1V0UM

CHAPTER 6 LIBRARY FUNCTION

[Return value]

Error return does not occur for any of these functions.

[Example]

fputc, putc, putchar The character c is returned.

fputs, puts 0 is returned.

#include <stdio.h>

void func(void)

{

fputc('a', stdout);

}

CHAPTER 6 LIBRARY FUNCTION

User’s Manual U18513EJ1V0UM 223

SPRINTF

[Overview]

Formatted output

sprintf, vsprintf

[Syntax]

#include <stdio.h>

int sprintf(char *s, const char *format [, arg, ...])

int vsprintf(char *s, const char *format, va_list arg)

[Description]

sprintf(char *s, const char *format [, arg, ...])

This function applies the format specified by the string pointed to by format to the respective arg arguments,

and writes out the formatted data that was output as a result to the array pointed to by s.

If there are not sufficient arguments for the format, the operation is undefined. If the end of the formatted

string is reached, control returns. If there are more arguments that those required by the format, the excess

arguments are ignored. If the area of s overlaps one of the arguments, the operation is undefined.

The argument format specifies "the output to which the subsequent argument is to be converted". The null

character (\0) is appended at the end of written characters (the null character (\0) is not counted in a return

value).

The format consists of the following two types of directives:

Each conversion specification begins with character "%" (to insert "%" in the output, specify "%%" in the

format string). The following appear after the "%":

%[flag][field-width][precision][size][type-specification-character]

The meaning of each conversion specification is explained below

Ordinary characters Characters that are copied directly without conversion (other than "%").

Conversion specifications Specifications that fetch zero or more arguments and assign a specification.

224 User’s Manual U18513EJ1V0UM

CHAPTER 6 LIBRARY FUNCTION

(1) flag

Zero or more flags, which qualify the meaning of the conversion specification, are placed in any order.

The flag characters and their meanings are as follows:

Note Normally, a decimal point appears only when a digit follows it.

(2) field width

This is an optional minimum field width. If the converted value is smaller than this field width, the left side

is filled with spaces (if the left justification flag explained above is assigned, the right side will be filled with

spaces). This field width takes the form of "*" or a decimal integer. If "*" is specified, an int type argument is

used as the field width. A negative field width is not supported. If an attempt is made to specify a negative

field width, it is interpreted as a minus (-) flag appended to the beginning of a positive field width.

(3) precision

For d, i, o, u, x, or X conversion, the value assigned for the precision is the minimum number of digits to

appear. For e, f, or E conversion, it is the number of digits to appear after the decimal point. For g or G

conversion, it is the maximum number of significant digits. The precision takes the form of "*" or "." followed

by a decimal integer. If "*" is specified, an int type argument is used as the precision. If a negative precision

is specified, it is treated as if the precision were omitted. If only "." is specified, the precision is assumed to

be 0. If the precision appears together with a conversion specification other than the above, the operation is

undefined.

- The result of the conversion will be left-justified in the field, with the right side filled with
blanks (if this flag is not specified, the result of the conversion is right-justified).

+ The result of a signed conversion will start with a + or - sign (if this flag is not specified, the
result of the conversion starts with a sign only when a negative value has been converted).

Space If the first character of a signed conversion is not a sign and a signed conversion is not
generated a character, a space (" ") will be appended to the beginning of result of the
conversion. If both the space flag and + flag appear, the space flag is ignored.

The result is to be converted to an alternate format. For o conversion, the precision is
increased so that the first digit of the conversion result is 0. For x or X conversion, 0x or 0X
is appended to the beginning of a non-zero conversion result. For e, f, g, E, or G
conversion, a decimal point "." is added to the conversion result even if no digits follow the
decimal pointNote. For g or G conversion, trailing zeros will not be removed from the
conversion result. The operation is undefined for conversions other than the above.

0 For d, e, f, g, i, o, u, x, E, G, or X conversion, zeros are added following the specification of
the sign or base to fill the field width.
If both the 0 flag and - flag are specified, the 0 flag is ignored. For d, i, o, u, x, or X
conversion, when the precision is specified, the zero (0) flag is ignored.
Note that 0 is interpreted as a flag and not as the beginning of the field width.
The operation is undefined for conversion other than the above.

CHAPTER 6 LIBRARY FUNCTION

User’s Manual U18513EJ1V0UM 225

(4) size

This is an arbitrary optional size character h, l, or L, which changes the default method for interpreting the

data type of the corresponding argument.

When h is specified, a following d, i, o, u, x, or X type specification is forcibly applied to a short or

unsigned short argument.

When l is specified, a following d, i, o, u, x, or X type specification is forcibly applied to a long or unsigned

long argument. l is also causes a following n type specification to be forcibly applied to a pointer to long

argument. If another type specification character is used together with h or l, the operation is undefined.

When L is specified, a following e, E, f, g, or G type specification is forcibly applied to a long double

argument. If another type specification character is used together with L, the operation is undefined.

(5) type specification character

These are characters that specify the type of conversion that is to be applied.

The characters that specify conversion types and their meanings are as follows.

% Output the character "%". No argument is converted. The conversion specification is "%%".

c Convert an int type argument to unsigned char type and output the characters of the
conversion result.

d Convert an int type argument to a signed decimal number.

e, E Convert a double type argument to [-]d.dddde+dd format, which has one digit before the
decimal point (not 0 if the argument is not 0) and the number of digits after the decimal point
is equal to the precision. The E conversion specification generates a number in which the
exponent part starts with "E" instead of "e".

f Convert a double type argument to decimal notation of the form [-]dddd.dddd.

g, G Convert a double type argument to e (E for a G conversion specification) or f format, with
the number of digits in the mantissa specified for the precision. Trailing zeros of the
conversion result are excluded from the fractional part. The decimal point appears only
when it is followed by a digit.

i Perform the same conversion as d.

n Store the number of characters that were output in the same object. A pointer to int type is
used as the argument.

p Output a pointer in an implementation-defined format. The CA850 handles a pointer as
unsigned long (this is the same as the lu specification).

o, u, x, X Convert an unsigned int type argument to octal notation (o), unsigned decimal notation (u),
or unsigned hexadecimal notation (x or X) with dddd format. For x conversion, the letters
abcdef are used. For X conversion, the letters ABCDEF are used.

s The argument must be a pointer pointing to a character type array. Characters from this
array are output up until the null character (\0) indicating termination (the null character (\0)
itself is not included). If the precision is specified, no more than the specified number of
characters will be output. If the precision is not specified or if the precision is greater than
the size of this array, make sure that this array includes the null character (\0).

226 User’s Manual U18513EJ1V0UM

CHAPTER 6 LIBRARY FUNCTION

vsprintf(char *s, const char *format, va_list arg)

This function applies the format specified by the string pointed to by format to the argument string pointed to

by arg, and outputs the formatted data that was output as a result to the array pointed to be s. The vsprintf

function is equivalent to sprintf with the list of a variable number of real arguments replaced by arg. arg must

be initialized by the va_start macro before the vsprintf function is called.

[Return value]

The number of characters that were output (excluding the null character (\0)) is returned.

Error return does not occur.

[Example]

#include <stdio.h>

void func(int val)

{

char s[20];

sprintf(s,"%-10.51x\n", val);

/* Specifies left-justification, field width 10, precision 5,*/

/* size long, and hexadecimal notation for the value of val, */

/* and outputs the result with an appended new-line character to */

/* the array pointed to by s. */

}

CHAPTER 6 LIBRARY FUNCTION

User’s Manual U18513EJ1V0UM 227

PRINTF

[Overview]

Formatted output

fprintf, printf, vfprintf, vprintf

Caution These functions are not supported by the NEC Electronics integrated debugger or the system

simulator.

[Syntax]

#include <stdio.h>

int fprintf(FILE *stream, const char *format[, arg, ...])

int printf(const char *format,[, arg, ...])

int vfprintf(FILE *stream, const char *format, va_list arg)

int vprintf(const char *format, va_list arg)

[Description]

Stdin (standard input) and stdout (standard error) are specified for the argument streams in each of the

fprintf, printf, vfprintf, and vprintf functions. 1 memory addresses such as an I/O address is allocated for the I/O

destination of stream. To use these streams in combination with a debugger, the initial values of the stream

structure defined in stdio.h must be set. Be sure to set the initial values prior to calling the function.

Definition of stream structure in stdio.h

typedef struct {

int mode; /* with error descriptions */

unsigend handle;

int unget_c;

}FILE;

typedef int fpos_t;

#pragma section sdata begin

extern FILE __struct_stdin;

extern FILE __struct_stdout;

extern FILE __struct_stderr;

#pragma section sdata end

#define stdin(&__struct_stdin)

#define stdout(&__struct_stdout)

#define stderr(&__struct_stderr)

228 User’s Manual U18513EJ1V0UM

CHAPTER 6 LIBRARY FUNCTION

The first structure member, mode, indicates the I/O status and is internally defined as ACCSD_OUT/

ADDSD_IN. The third member, unget_c, indicates the pushed-back character (stdin only) setting and is

internally defined as -1. When the definition is -1, it indicates that there is no pushed-back character. The

second member, handle, indicates the I/O address. Set the value according to the debugger to be used.

Example of I/O address setting

fprintf(FILE *stream, const char *format[, arg, ...])

This function applies the format specified by the string pointed to by format to the respective arg arguments,

and outputs the formatted data that was output as a result to stream. Only the standard input/output stdout or

stderr can be specified for stream. The method of specifying format is the same as described for the sprintf

function. However, fprintf differs from sprintf in that no null character (\0) is output at the end.

printf(const char *format,[, arg, ...])

This function applies the format specified by the string pointed to by format to the respective arg arguments,

and outputs the formatted data that was output as a result to the standard input/output stdout. The method of

specifying format is the same as described for the sprintf function. However, printf differs from sprintf in that no

null character (\0) is output at the end.

vfprintf(FILE *stream, const char *format, va_list arg)

This function applies the format specified by the string pointed to by format to argument string pointed to by

arg, and outputs the formatted data that was output as a result to stream. Only the standard input/output stdout

or stderr can be specified for stream. The method of specifying format is the same as described for the sprintf

function. The vfprintf function is equivalent to fprintf with the list of a variable number of real arguments

replaced by arg. arg must be initialized by the va_start macro before the vfprintf function is called.

vprintf(const char *format, va_list arg)

This function applies the format specified by the string pointed to by format to the argument string pointed to

by arg, and outputs the formatted data that was output as a result to the standard input/output stdout. The

method of specifying format is the same as described for the sprintf function. The vprintf function is equivalent

to printf with the list of a variable number of real arguments replaced by arg. arg must be initialized by the

va_start macro before the vprintf function is called.

[Return value]

The number of characters that were output is returned.

__struct_stdout.handle = 0xfffff000;

__struct_stderr.handle = 0x00fff000;

__struct_stdin.handle = 0xfffff002;

extern FILE __struct_stdout;

extern FILE __struct_stderr;

#pragma section sdata end

#define stdin(&__struct_stdin)

#define stdout(&__struct_stdout)

#define stderr(&__struct_stderr)

CHAPTER 6 LIBRARY FUNCTION

User’s Manual U18513EJ1V0UM 229

[Example]

#include <stdio.h>

void func(int val)

{

fprintf(stdout, "%-10.5x\n", val);

}

/* Example using vfprintf in a general error reporting routine */

void error(char *function_name, char *format, ...)

{

va_list arg;

va_start(arg, format);

/* Output function name for which error occurred */

fprintf(stderr, "ERROR in %s:", function_name);

/* Output remaining messages */

vfprintf(stderr, format, arg);

va_end(arg);

}

230 User’s Manual U18513EJ1V0UM

CHAPTER 6 LIBRARY FUNCTION

SSCANF

[Overview]

Formatted input

sscanff

[Syntax]

#include <stdio.h>

int sscanf(const char *s, const char *format[, arg, ...])

[Description]

sscanf(const char *s, const char *format[, arg, ...])

This function reads the input to be converted according to the format specified by the character string

pointed to by format from the array pointed to by s and treats the arg arguments that follow format as pointers

that point to objects for storing the converted input.

An input string that can be recognized and "the conversion that is to be performed for assignment" are

specified for format. If sufficient arguments do not exist for format, the operation is undefined. If format is used

up even when arguments remain, the remaining arguments are ignored.

The format consists of the following three types of directives:

Each conversion specification starts with "%". The following appear after the "%":

%[assignment-suppression-character][field-width][size][type-specification-character]

Each conversion specification is explained below.

(1) Assignment suppression character

The assignment suppression character "*" suppresses the interpretation and assignment of the input field.

One or more Space characters Space (), tab (\t), or new-line (\n).
If a space character is found in the string when sscanf is executed, all
consecutive space characters are read until the next non-space
character appears (the space characters are not stored).

Ordinary characters All ASCII characters other than "%".
If an ordinary character is found in the string when sscanf is executed,
that character is read but not stored. sscanf reads a string from the
input field, converts it into a value of a specific type, and stores it at
the position specified by the argument, according to the conversion
specification. If an explicit match does not occur according to the
conversion specification, no subsequent space character is read.

Conversion specification Fetches 0 or more arguments and directs the conversion.

CHAPTER 6 LIBRARY FUNCTION

User’s Manual U18513EJ1V0UM 231

(2) field width

This is a non-zero decimal integer that defines the maximum field width.

It specifies the maximum number of characters that are read before the input field is converted. If the input

field is smaller than this field width, sscanf reads all the characters in the field and then proceeds to the next

field and its conversion specification.

If a space character or a character that cannot be converted is found before the number of characters

equivalent to the field width is read, the characters up to the white space or the character that cannot be

converted are read and stored. Then, sscanf proceeds to the next conversion specification.

(3) size

This is an arbitrary optional size character h, l, or L, which changes the default method for interpreting the

data type of the corresponding argument.

When h is specified, a following d, i, n, o, u, or x type specification is forcibly converted to short int type and

stored as short type. Nothing is done for c, e, f, n, p, s, D, I, O, U, or X.

When l is specified, a following d, i, n, o, u, or x type specification is forcibly converted to long int type and

stored as long type. An e, f, or g type specification is forcibly converted to double type and stored as double

type. Nothing is done for c, n, p, s, D, I, O, U, and X.

When L is specified, a following c, i, o, u, or x type specification is forcibly converted to long double type and

stored as long double type. Nothing is done for other type specifications.

In cases other than the above, the operation is undefined.

(4) type specification character

These are characters that specify the type of conversion that is to be applied.

The characters that specify conversion types and their meanings are as follows.

% Match the character "%". No conversion or assignment is performed. The conversion
specification is "%%".

c Scan one character. The corresponding argument should be "char *arg".

d Read a decimal integer into the corresponding argument. The corresponding argument
should be "int *arg".

e, f, g Read a floating-point number into the corresponding argument. The corresponding
argument should be "float *arg".

i Read a decimal, octal, or hexadecimal integer into the corresponding argument. The
corresponding argument should be "int *arg".

n Store the number of characters that were read in the corresponding argument. The
corresponding argument should be "int *arg".

o Read an octal integer into the corresponding argument. The corresponding argument must
be "int *arg".

p Store the pointer that was scanned. This is an implementation definition.
The ca processes %p and %U in exactly the same manner. The corresponding argument
should be "void **arg".

s Read a string into a given array. The corresponding argument should be "char arg[]".

u Read an unsigned decimal integer into the corresponding argument. The corresponding
argument should be "unsigned int *arg".

232 User’s Manual U18513EJ1V0UM

CHAPTER 6 LIBRARY FUNCTION

Make sure that a floating-point number (type specification characters e, f, g, E, F, and G) corresponds to

thefollowing general format.

[+ | -]ddddd[.]ddd[E | e[+ | -]ddd]

However, the portions enclosed by [] in the above format are arbitrarily selected, and ddd indicates a

decimal,octal, or hexadecimal digit.

[Return value]

The number of input fields for which scanning, conversion, and storage were executed normally is returned.

The return value does not include scanned fields that were not stored.

If an attempt is made to read to the end of the file, the return value is EOF.

If no field was stored, the return value is 0.

x, X Read a hexadecimal integer into the corresponding argument. The corresponding argument
should be "int *arg".

D Read a decimal integer into the corresponding argument. The corresponding argument
should be "long *arg".

E, F, G Read a floating-point number into the corresponding argument. The corresponding
argument should be "double *arg".

I Read a decimal, octal, or hexadecimal integer into the corresponding argument. The
corresponding argument should be "long *arg".

O Read an octal integer into the corresponding argument. The corresponding argument
should be "long *arg".

U Read an unsigned decimal integer into the corresponding argument. The corresponding
argument should be "unsigned long *arg".

[] Read a non-empty string into the memory area starting with argument arg. This area must
be large enough to accommodate the string and the null character (\0) that is automatically
appended to indicate the end of the string. The corresponding argument should be "char
*arg".
The character pattern enclosed by [] can be used in place of the type specification
character s. The character pattern is a character set that defines the search set of the
characters constituting the input field of sscanf. If the first character within [] is "^", the
search set is complemented, and all ASCII characters other than the characters within []
are included. In addition, a range specification feature that can be used as a shortcut is also
available. For example, %[0-9] matches all decimal numbers. In this set, "-" cannot be
specified as the first or last character. The character preceding "-" must be less in lexical
sequence than the succeeding character.

Examples

%[abcd]
%[^abcd]

%[A-DW-Z]
%[z-a]

Matches character strings that include only a, b, c, and d.
Matches character strings that include any characters other
than a, b, c, and d.
Matches character strings that include A, B, C, D, W, X, Y, and Z.
Matches z, -, and a (this is not considered a range specification).

CHAPTER 6 LIBRARY FUNCTION

User’s Manual U18513EJ1V0UM 233

[Cautions]

- sscanf may stop scanning a specific field before the normal end-of-field character is reached or may stop

completely.

- sscanf stops scanning and storing a field and moves to the next field under the following conditions.

(a) The substitution suppression character (*) appears after "%" in the format specification, and the input

field at that point has been scanned but not stored.

(b) A field width (positive decimal integer) specification character was read.

(c) The character to be read next cannot be converted according to the conversion specification (for

example, if Z is read when the specification is a decimal number).

(d) The next character in the input field does not appear in the search set (or appears in the complement

search set).

If sscanf stops scanning the input field at that point because of any of the above reasons, it is assumed that

the next character has not yet been read, and this character is used as the first character of the next field or

the first character for the read operation to be executed after the input.

- sscanf ends under the following conditions:

(a) The next character in the input field does not match the corresponding ordinary character in the string to

be converted.

(b) The next character in the input field is EOF.

(c) The string to be converted ends.

- If a list of characters that is not part of the conversion specification is included in the string to be converted,

make sure that the same list of characters does not appear in the input. sscanf scans matching characters

but does not store them. If there was a mismatch, the first character that does not match remains in the

input as if it were not read.

[Example]

#include <stdio.h>

void func(void)

{

int i, n;

float x;

const char *s;

char name[10];

s = "23 11.1e-1 NAME";

n = sscanf(s,"%d%f%s", &i, &x, name); /* Stores 23 in i, 1.110000 in x, */

/* and "NAME" in name. */

/* The return value n is 3. */

}

234 User’s Manual U18513EJ1V0UM

CHAPTER 6 LIBRARY FUNCTION

SCANF

[Overview]

Formatted input

fscanf, scanf

Caution These functions are not supported by the NEC Electronics integrated debugger or the system

simulator.

[Syntax]

#include <stdio.h>

int fscanf(FILE *stream, const char *format[, arg, ...])

int scanf(const char *format[, arg, ...])

[Description]

fscanf(FILE *stream, const char *format[, arg, ...])

reads the input to be converted according to the format specified by the character string pointed to by format

from stream and treats the arg arguments that follow format as objects for storing the converted input. Only the

standard input/output stdin can be specified for stream. The method of specifying format is the same as

described for the sscanf function.

scanf(const char *format[, arg, ...])

reads the input to be converted according to the format specified by the character string pointed to by format

from the standard input/output stdin and treats the arg arguments that follow format as objects for storing the

converted input. The method of specifying format is the same as described for the sscanf function.

[Return value]

The return value is similar to the one described for sscanf. See the section about sscanf.

CHAPTER 6 LIBRARY FUNCTION

User’s Manual U18513EJ1V0UM 235

[Example]

#include <stdio.h>

void func(void)

{

int i, n;

double x;

char name[10];

n = scanf("%d%lf%s", &i, &x, name); /* Perform formatted input of input */

/* from stdin using the format */

/* "23 11.1e-1 NAME" */

}

236 User’s Manual U18513EJ1V0UM

CHAPTER 6 LIBRARY FUNCTION

6.9 Standard Utility Functions

This section explains the utility functions useful for various programs. Definitions and declarations related to

these functions are described in the "stdlib.h" file

Table 6 - 22 Standard Utility Functions

Classification Function Name Outline

ABS abs Absolute value (int type)

labs Absolute value (long type)

BSEARCH bsearch Binary search

qsort Sorting

DIV div Division (int type)

ldiv Division (long type)

ECVTF ecvtf Conversion of floating-point value to numeric character string
(total number of characters specified)

fcvtf Conversion of floating-point value to numeric character string
(number below decimal point specified)

gcvtf Conversion of floating-point value to numeric character string
(format specified)

ITOA itoa Conversion of integer (int type) to character string

ltoa Conversion of integer (long type) to character string

ultoa Conversion of integer (unsigned long type) to character string

MALLOC calloc Dynamic memory allocation

free Dynamic memory release

malloc Dynamic memory allocation

realloc Dynamic memory reallocation

RAND rand Pseudo random number generation

srand Setting of pseudo random number seed

STRTODF atoff Conversion of character string to floating point

strtodf Conversion of character string to floating point (stores pointer
in last character string)

STRTOL atoi Absolute value (int type)

atol Absolute value (long type)

strtol Binary search

strtoul Sorting

CHAPTER 6 LIBRARY FUNCTION

User’s Manual U18513EJ1V0UM 237

ABS

[Overview]

Integer absolute value

abs, labs

[Syntax]

#include <stdlib.h>

int abs(int j)

long labs(long j)

[Description]

abs(int j)

This function obtains the absolute value of j (size of j), | j |. If j is a negative number, the result is the reversal

of j. If j is not negative, the result is j.

labs(long j)

This function is the same as abs, but uses long type instead of int type, and the return value is also of long

type.

[Return value]

Returns the absolute value of j (size of j), | j |.

[Example]

#include <stdlib.h>

void func(int i)

{

int val;

val = -15;

i = abs(val); /* Returns absolute value of val, 15, to 1. */

}

238 User’s Manual U18513EJ1V0UM

CHAPTER 6 LIBRARY FUNCTION

BSEARCH

[Overview]

Binary search

bsearch, qsort

[Syntax]

#include <stdlib.h>

void bsearch(const void *key, const void *base, size_t nmemb, size_t size,

int(*compar)(const void *, const void*))

void qsort(void *base, size_t nmemb, size_t size, int(*compar)(const void*, const

void*))

[Description]

bsearch(const void *key, const void *base, size_t nmemb, size_t size, int(*compar)(const void *, const

void*))

This function searches an element that coincides with key from an array starting with base by means of

binary search. nmemb is the number of elements of the array. size is the size of each element. The array must

be arranged in the ascending order in respect to the compare function indicated by compar (last argument).

Define the compare function indicated by compar to have two arguments. If the first argument is less than the

second, a negative integer must be returned as the result. If the two arguments coincide, zero must be

returned. If the first is greater than the second, a positive integer must be returned.

qsort(void *base, size_t nmemb, size_t size, int(*compar)(const void*, const void*))

This function sorts the array pointed to by base into ascending order in relation to the comparison function

pointed to by compar. nmemb is the number of array elements, and size is the size of each element. The

comparison function pointed to by compar is the same as the one described for bsearch.

[Return value]

A pointer to the element in the array that coincides with key is returned. If there are two or more elements

that coincide with key, the one that has been found first is indicated.

CHAPTER 6 LIBRARY FUNCTION

User’s Manual U18513EJ1V0UM 239

[Example]

#include <stdlib.h>

#include <string.h>

int compar(char **x, char **y);

void func(void)

{

static char *base[] = {"a", "b", "c", "d", "e", "f"};

char *key = "c"; /* Search key is "c". */

char **ret;

ret =(char **)bsearch((char *)&key,(char *)base, 6,

sizeof(char *), compar); /* Pointer to "c" is stored in ret. */

}

int compar(char **x, char **y)

{

return(strcmp(*x, *y)); /* Returns positive, zero, or negative /*

/* integer as result of comparing arguments. */

}

240 User’s Manual U18513EJ1V0UM

CHAPTER 6 LIBRARY FUNCTION

DIV

[Overview]

Division

div, ldiv

[Syntax]

#include <stdlib.h>

div_t div(int n, int d)

ldiv_t ldiv(long n, long d)

[Description]

div(int n, int d)

This function calculates the quotient and remainder resulting from dividing numerator n by denominator d,

and stores these two integers as the members of the following structure div_t.

quot the quotient, and rem is the remainder. If d is not zero, and if "r = div(n, d);", n is a value equal to

"r.rem + d * r.quot".

If d is zero, the resultant quot member has a sign the same as n and has the maximum size that can be

expressed. The rem member is 0.

ldiv(long n, long d)

This function is used to divide a value of long type, not a value of int type. The result is stored as the

member of the following structure ldiv_t.

[Return value]

The structure storing the result of the division is returned.

typedef struct {

int quot;

int rem;

} div_t

typedef struct {

long quot;

long rem;

} ldiv_t

CHAPTER 6 LIBRARY FUNCTION

User’s Manual U18513EJ1V0UM 241

[Example]

#include <stdlib.h>

void func(void)

{

div_t r;

r = div(110, 3); /* 36 is stored in r.quot, and 2 is stored in r.rem. */

}

242 User’s Manual U18513EJ1V0UM

CHAPTER 6 LIBRARY FUNCTION

ECVTF

[Overview]

Conversion from floating point number to character string

ecvtf, fcvtf, gcvtf

[Syntax]

#include <stdlib.h>

char *ecvtf(float val, int chars, int *decpt, int *sgn)

char *fcvtf(float val, int decimals, int *decpt, int *sgn)

char *gcvtf(float val, int prec, char *buf)

[Description]

ecvtf(float val, int chars, int *decpt, int *sgn)

This function generates a character string indicating a numeric value val of float type in number (terminated

with the null character (\0)). The second argument chars specifies the total number of characters to be written

(because only numbers are written, this argument specifies the valid number of numerals in the converted

character string). The digits of the integer of val are always included.

fcvtf(float val, int decimals, int *decpt, int *sgn)

This function is the same as ecvt, except the interpretation of the second argument. The second argument

decimals specify the number of characters to be written after the decimal point.

ecvtf and fcvtf only write a number to an output character string. Therefore, record the position of the

decimal point to *decpt and the sign of the numeric value to *sgn. After the number has been formatted, the

number of digits at the left of the decimal point is stored in *decpt. If the numeric value is positive, 0 is stored in

*sgn; if it is negative, 1 is stored.

gcvtf(float val, int prec, char *buf)

This function converts a numeric value into a character string, and stores it to buffer buf. gcvtf uses the same

rule as the format "%.prec" (sign is appended to the negative number only) of sprintf, and selects an exponent

format or normal decimal point format according to the valid number of digits (specified by prec).

[Return value]

ecvtf, fcvtf Returns a pointer indicating a new character string including the character string
representation of val.

gcvtf Returns a pointer (same as argument buf) to the formatted character string
representation of val.

CHAPTER 6 LIBRARY FUNCTION

User’s Manual U18513EJ1V0UM 243

[Example]

#include <stdlib.h>

void func(void)

{

float val;

int dec, sgn;

val = 111.11;

ecvtf(val, 12, &dec, &sgn);

/* Converts value 111.11 of val to character string of 12 characters. */

 /* dec records number of digits, 3, at left of decimal point, */

/* and sgn records sign(0 because numeric value is positive). */

}

244 User’s Manual U18513EJ1V0UM

CHAPTER 6 LIBRARY FUNCTION

ITOA

[Overview]

Conversion from integer to character string

itoa, ltoa, ultoa

[Syntax]

#include <stdlib.h>

char *itoa(int value, char *string, int radix)

char *ltoa(long int value, char *string, int radix)

char *ultoa(unsigned long int value, char *string, int radix)

[Description]

itoa(int value, char *string, int radix)

This function converts an int type numeric value to a character string for a radix-based number and stores it

in the array indicated by string. The terminating null character (\0) always is added at the end of the character

string. Numeric values from 2 to 36 can be specified for radix. If radix is 10, value is handled as a signed

numeric value, and when value < 0, the "-" character is appended at the beginning of the character string.

Otherwise, value is handled as an unsigned numeric value. If radix > 10, the lowercase letters a to z are

assigned for 10 to 35.

ltoa(long int value, char *string, int radix)

This function converts a long int type numeric value to a character string for a radix-based number and

stores it in the array indicated by string. Except for the type of value, this is the same as itoa.

ultoa(unsigned long int value, char *string, int radix)

This function converts an unsigned long int type numeric value to a character string for a radix-based

number and stores it in the array indicated by string. Except for the type of value, this is the same as itoa

[Return value]

itoa, ltoa, ultoa string is returned.

CHAPTER 6 LIBRARY FUNCTION

User’s Manual U18513EJ1V0UM 245

[Example]

#include <stdlib.h>

void func(void)

{

char buf[128];

itoa(12345, buf, 16); 3/* Converts 12345 to a hexadecimal character string */

}

246 User’s Manual U18513EJ1V0UM

CHAPTER 6 LIBRARY FUNCTION

MALLOC

[Overview]

Memory allocation and management

calloc, free, malloc, realloc

[Syntax]

#include <stdlib.h>

void *calloc(size_t nmemb, size_t size)

void free(void *ptr)

void *malloc(size_t size)

void *realloc(void *ptr, size_t size)

[Description]

The memory area management functions automatically allocate memory area as necessary from the heap

memory area. Also, since the compiler does not automatically allocate this area, when calloc, malloc, or

realloc is used, the heap memory area must be allocated. The area allocation should be performed first by an

application.

Heap memory setup example

Remarks 1 The symbol "sysheap" (three underscores "_") of the variable " _sysheap" (two under-scores "_")

points to the starting address of heap memory. This value should be a word integer value.

2 The required heap memory size (bytes) should be set for the variable "_sizeof_sysheap" (two

leading underscores). If assembly language is used for coding, this value should be set for the

symbol " _sizeof_sysheap" (three leading underscores).

calloc(size_t nmemb, size_t size)

This function allocates an area for an array of nmemb elements. The allocated area is initialized to zeros.

free(void *ptr)

This function releases the area pointed to by ptr so that this area is subsequently available for allocation.

The area that was acquired by calloc, malloc, or realloc must be specified for ptr.

malloc(size_t size)

This function allocates an area having a size indicated by size. The area is not initialized.

#define SIZEOF_HEAP 0x1000

int __sysheap[SIZEOF_HEAP>>2];

size_t __sizeof_sysheap = SIZEOF_HEAP;

CHAPTER 6 LIBRARY FUNCTION

User’s Manual U18513EJ1V0UM 247

realloc(void *ptr, size_t size)

This function changes the size of the area pointed to by ptr to the size indicated by size. The contents of the

area are unchanged up to the smaller of the previous size and the specified size. If the area is expanded, the

contents of the area greater than the previous size are not initialized. When ptr is a null pointer, the operation

is the same as that of malloc (size). Otherwise, the area that was acquired by calloc, malloc, or realloc must be

specified for ptr.

[Return value]

[Example]

calloc, malloc, realloc When area allocation succeeds, a pointer to that area is returned. When the area
could not be allocated, a null pointer is returned.

#include <stdlib.h>

typedef struct {

double d[3];

int i[2];

} s_data;

int func(void)

{

sdata *buf;

int i;

/* Allocate an area for 40 s_data*/

if((buf = calloc(40, sizeof(s_data))) == NULL) return(1);

for(i = 0; i<40; i++)

{

}

/* Release the area */

free(buf);

return(0);

}

248 User’s Manual U18513EJ1V0UM

CHAPTER 6 LIBRARY FUNCTION

[Cautions]

The memory area to be acquired or released by the calloc, free, malloc, and realloc functions is called the

heap area. The area for allocating this heap area and its size must be set in advance. When the heap area is

set via a C language source program, it is written as [Heap memory setup example], however, when specified

using the assembler, the following program should be added to the startup module.

If the heap area is specified by the C language source program and assembler simultaneously, an error

occurs, so specify via one or the other.

#--

system heap

#--

.set HEAPSIZE, 0x1000

.globl __sysheap

.bss

.lcomm __sysheap, HEAPSIZE, 4

.data

.globl __sizeof_sysheap

__sizeof_sysheap:

.word HEAPSIZE

In this example, a heap area of 0x1000 bytes is allocated in the .bss area.

CHAPTER 6 LIBRARY FUNCTION

User’s Manual U18513EJ1V0UM 249

RAND

[Overview]

Pseudo random number generation

rand, srand

[Syntax]

#include <stdlib.h>

int rand()

void srand(unsigned int seed)

[Description]

rand()

This function returns a random number that is greater than or equal to zero and less than or equal to

RAND_MAX.

srand(unsigned int seed)

This function assigns seed as the new pseudo random number sequence seed to be used by the rand call

that follows. If srand is called using the same seed value, the same numbers in the same order will appear for

the random numbers that are obtained by rand. If rand is executed without executing srand, the results will be

the same as when srand(1) was first executed.

[Return value]

[Example]

rand Random numbers are returned.

#include <stdlib.h>

void func(void)

{

if(rand()& 0xf)<4) func1(); /* Execute func1 with a probability of 25% */

}

250 User’s Manual U18513EJ1V0UM

CHAPTER 6 LIBRARY FUNCTION

STRTODF

[Overview]

Conversion from character string to floating-point number

atoff, strtodf

[Syntax]

#include <stdlib.h>

float atoff(const char *str)

float strtodf(const char *str, char **p)

[Description]

atoff(const char *str)

This function converts the first portion of the character string indicated by str into a float type representation.

atoff is the same as the following.

strtodf(const char *str, char **p)

This function converts the first part of the character string indicated by str into a long type representation.

The part of the character string to be converted is in the following format and is at the beginning of str with the

maximum length, starting with a normal character that is not a space.

If str is vacant or consists of space characters only, if the first normal character is other than "+", "-", ".", or a

numeral, the partial character string does not include a character. If the partial character string is vacant,

conversion is not executed, and the value of str is stored in the area indicated by ptr. If the partial character

string is not vacant, it is converted, and a pointer to the last character string (including the null character (\0)

indicating at least the end of str) is stored in the area indicated by ptr. This function is not re-entrant.

[Return value]

If the partial character string has been converted, the resultant value is returned. If the character string could

not be converted, 0 is returned. If an overflow occurs (the value is not in the range in which it can be

expressed), HUGE_VAL or -HUGE_VAL is returned, and ERANGE is set to global variable errno. If an

underflow occurs, 0 is returned, and macro ERANGE is set to global variable errno.

strtodf(str, NULL);

[+|-]digits[.][digits][(e|E)[+|-]digits]

CHAPTER 6 LIBRARY FUNCTION

User’s Manual U18513EJ1V0UM 251

[Example]

#include <stdlib.h>

#include <stdio.h>

void func(float ret)

{

char *p, *str, s[30];

str = "+5.32a4e";

ret = strtodf(str, &p); /* 5.320000 is returned to ret, and pointer */

/* to "a" is stored in area of p. */

sprintf(s, "%lf\t%c", ret, *p); /* "5.320000 a" is stored in array */

/* indicated by s. */

}

252 User’s Manual U18513EJ1V0UM

CHAPTER 6 LIBRARY FUNCTION

STRTOL

[Overview]

Conversion from character string to integer

atoi, atol, strtol, strtoul

[Syntax]

#include <stdlib.h>

int atoi(const char *str)

long atol(const char *str)

long strtol(const char *str, char **ptr, int base)

unsigned long strtoul(const char *str, char **ptr, int base)

[Description]

atoi(const char *str)

This function converts the first part of the character string indicated by str into an int type representation. atoi

is the same as the following.

atol(const char *str)

This function converts the first part of the character string indicated by str into a long int type representation.

atol is the same as the following.

(int) strtol(str, NULL, 10);

strtol(str, NULL, 10);

CHAPTER 6 LIBRARY FUNCTION

User’s Manual U18513EJ1V0UM 253

strtol(const char *str, char **ptr, int base)

This function converts the first part of the character string indicated by str into a long type representation.

strol first divides the input characters into the following three parts: the "first blank", "a string represented by

the base number determined by the value of base and is subject to conversion into an integer", and "the last

one or more character string that is not recognized (including the null character (\0))". Then strtol converts the

string into an integer, and returns the result.

(1) Specify 0 or 2 to 36 as argument base.

(a) If base is 0, the expected format of the character string subject to conversion is of integer format

having an optional + or - sign and "0x", indicating a hexadecimal number, prefixed.

(b) If the value of base is 2 to 36, the expected format of the character string is of character string or

numeric string type having an optional + or - sign prefixed and expressing an integer whose base is

specified by base. Characters "a" (or "A") through "z" (or "Z") are assumed to have a value of 10 to 35.

Only characters whose value is less than that of base can be used.

(c) If the value of base is 16, "0x" is prefixed (suffixed to the sign if a sign exists) to the string of characters

and numerals (this can be omitted).

(2) The string subject to conversion is defined as the longest partial string at the beginning of the input

character string that starts with the first character other than blank and has an expected format.

(a) If the input character string is vacant, if it consists of blank only, or if the first character that is not blank

is not a sign or a character or numeral that is permitted, the subject string is vacant.

(b) If the string subject to conversion has an expected format and if the value of base is 0, the base

number is judged from the input character string. The character string led by 0x is regarded as a

hexadecimal value, and the character string to which 0 is prefixed but x is not is regarded as an octal

number. All the other character strings are regarded as decimal numbers.

(c) If the value of base is 2 to 36, it is used as the base number for conversion as mentioned above.

(d) If the string subject to conversion starts with a - sign, the sign of the value resulting from conversion is

reversed.

(3) The pointer that indicates the first character string

(a) This is stored in the object indicated by ptr, if ptr is not a null pointer.

(b) If the string subject conversion is vacant, or if it does not have an expected format, conversion is not

executed.

(c) The value of str is stored in the object indicated by ptr if ptr is not a null pointer.

This function is not re-entrant.

strtoul(const char *str, char **ptr, int base)

This function is the same as strtol except that the type of the return value is of unsigned long type.

254 User’s Manual U18513EJ1V0UM

CHAPTER 6 LIBRARY FUNCTION

[Return value]

[Example]

atoi, atol Returns the converted value if the partial character string could be converted. If it could
not, 0 is returned.

strtol Returns the converted value if the partial character string could be converted. If it could
not, 0 is returned.
If an overflow occurs (because the converted value is too great), LONG_MAX or
LONG_MIN is returned, and macro ERANGE is set to global variable errno.

strtoul Returns the converted value if the partial character string could be converted. If it could
not, 0 is returned.
If an overflow occurs, ULONG_MAX is returned, and macro ERANGE is set to global
variable errno.

#include <stdlib.h>

void func(long ret)

{

char*p;

ret = strtol("10", &p, 0); /* 10 is returned to ret. */

ret = strtol("0x10", &p, 0); /* 16 is returned to ret. */

ret = strtol("10x", &p, 2); /* 2 is returned to ret, and pointer to "x" */

/* is returned to area of p. */

ret = strtol("2ax3", &p, 16); /* 42 is returned to ret, and pointer to "x" */

/* is returned to area of p. */

:

}

CHAPTER 6 LIBRARY FUNCTION

User’s Manual U18513EJ1V0UM 255

6.10 Non-Local Jump Functions

This section describes the non-local jump functions.

Declarations and definitions concerning these functions are described in the setjmp.h file

Table 6 - 23 Non-Local Jump Functions

Classification Function Name Outline

SETJMP setjmp Sets the destination of the non-local jump

longjmp Non-local jump

256 User’s Manual U18513EJ1V0UM

CHAPTER 6 LIBRARY FUNCTION

SETJMP

[Overview]

Non-local jumps

setjmp, longjmp

[Syntax]

#include <setjmp.h>

int setjmp(jmp_buf env)

void longjmp(jmp_buf env, int val)

[Description]

setjmp(jmp_buf env)

This function sets env as the destination for a non-local jump. In addition, the environment in which setjmp

was run is saved to env.

longjmp(jmp_buf env, int val)

This function performs a non-local jump to the place immediately after setjmp using env saved by setjmp.val

as a return value for setjmp.

[Return value]

setjmp 0 is returned if returning from setjmp. The second argument val in longjmp is returned if
a non-local jump is performed by longjmp. However, 1 is returned if val is 0.

CHAPTER 6 LIBRARY FUNCTION

User’s Manual U18513EJ1V0UM 257

[Example]

#include <setjmp.h>

#define ERR_XXX1 1

#define ERR_XXX2 2

jmp_buf jmp_env;

void func(void)

{

for(;;) {

switch(setjmp(jmp_env))

{

case ERR_XXX1 :

/* Termination of error XXX1 */

break;

case ERR_XXX2 :

/* Termination of error XXX2 */

break;

case 0 : /* No non-local jumps */

default :

break;

}

}

}

void func1(void)

{

longjmp(jmp_env, ERR_XXX1); /* Non-local jumps are performed upon */

/* generation of error XXX1 */

longjmp(jmp_env, ERR_XXX2); /* Non-local jumps are performed upon */

/* generation of error XXX2 */

}

258 User’s Manual U18513EJ1V0UM

CHAPTER 6 LIBRARY FUNCTION

6.11 Mathematical Functions

This section explains the mathematical functions.

Definitions and declarations related to these functions are described in the "math.h" file.

Mathematical library libm.a internally references standard library libc.a. When referencing libm.a by starting

ld850 alone, therefore, libc.a must also be referenced. When referencing two or more archive files by starting

ld850 alone, undefined symbols are searched in the sequence in which reference is specified; therefore, specify

the libc.a reference "-lc" at the end of the sequence.

If ld850 is started from the compiler, however, the libc.a file is automatically referenced

Table 6 - 24 Mathematical Functions

Classification Function Name Outline

BESSEL j0f Bessel function of first kind (0 degree)

j1f Bessel function of first kind (first degree)

jnf Bessel function of first kind (n degree)

y0f Bessel function of second kind (0 degree)

y1f Bessel function of second kind (first degree)

ynf Bessel function of second kind (n degree)

ERFF erff Error function (approximate value)

erfcf Error function (complementary probability)

EXPF expf Exponential function

logf Logarithmic function (natural logarithm)

log2f Logarithmic function (base 2)

log10f Logarithmic function (base 10)

powf Power function

cbrtf Cubic root function

sqrtf Square root function

FLOORF ceilf ceiling function

fabsf Absolute value function

floorf floor function

fmodf Remainder function

FREXPF frexpf Divides floating-point number into mantissa and power

ldexpf Converts floating-point number to power

modff Divides floating-point number into integer and decimal

GAMMAF gammaf Logarithmic gamma function

HYPOTF hypotf Euclidean distance function

MATHERR matherr Error processing function

CHAPTER 6 LIBRARY FUNCTION

User’s Manual U18513EJ1V0UM 259

SINHF acoshf Inverse hyperbolic function, cosine

asinhf Inverse hyperbolic function, sine

atanhf Inverse hyperbolic function, tangent

coshf Hyperbolic function, cosine

sinhf Hyperbolic function, sine

tanhf Hyperbolic function, tangent

TRIG acosf Inverse cosine

asinf Inverse sign

atanf Inverse tangent

atan2f Inverse tangent (y/x)

cosf Cosine

sinf Sign

tanf Tangent

Table 6 - 24 Mathematical Functions

Classification Function Name Outline

260 User’s Manual U18513EJ1V0UM

CHAPTER 6 LIBRARY FUNCTION

BESSEL

[Overview]

Bessel function

j0f, j1f, jnf, y0f, y1f, ynf

[Syntax]

#include <math.h>

float jnf(int n, float x)

float j0f(float x)

float j1f(float x)

float ynf(int n, float x)

float y0f(float x)

float y1f(float x)

[Description]

A Bessel function is a function that is the solution to the following differential equation.

jnf(int n, float x)

This function calculates the Bessel function of the first kind of the n degree.

j0f(float x)

This function calculates the Bessel functions of the first kind of the 0 degrees.

j1f(float x)

This function calculates the Bessel functions of the first kind of the first degrees.

ynf(int n, float x)

This function calculates the Bessel function of the second kind of the n degree.

y0f(float x)

This function calculates the Bessel functions of the second kind of the 0 degrees.

y1f(float x)

This function calculates the Bessel functions of the second kind of the first degrees.

x2d2y
dx2
--------- dy

dx
------ x2 p2–()y+ + 0=

CHAPTER 6 LIBRARY FUNCTION

User’s Manual U18513EJ1V0UM 261

[Return value]

[Example]

jnf Returns the Bessel function of the first kind of the n degree.

j0f Returns the Bessel function of the first kind of the 0 degree.

j1f Returns the Bessel function of the first kind of the first degree.

ynf Returns the Bessel function of the second kind of the n degree.

y0f Returns the Bessel function of the second kind of the 0 degree.

y1f Returns the Bessel function of the second kind of the first degree.

#include <math.h>

float func(void)

{

float ret, x;

ret = j1f(x); /* Calculates Bessel function of first kind and */

/* first decree in response to value of x, */

/* and returns function to ret. */

:

return(ret);

}

262 User’s Manual U18513EJ1V0UM

CHAPTER 6 LIBRARY FUNCTION

ERFF

[Overview]

Error function

erff, erfcf

[Syntax]

#include <math.h>

float erff(float x)

float erfcf(float x)

[Description]

erff(float x)

This function calculates the approximate value (numeric value between 0 and 1) of the "error function" that

estimates the probability for which the observed value is in a range of standard deviation x. The expression

that defines the error function is as follows.

erfcf(float x)

This function calculates complementary probability through "1.0-erff(x)". This function is provided to prevent

the accuracy from dropping if erff(x) is called by x with a large value and the result is subtracted from 1.0.

[Return value]

[Example]

erff Returns the approximate value (numeric value between 0 and 1) of the "error function".

erfcf Returns the complementary probability.

#include <math.h>

float func(void)

{

float ret, x;

ret = erff(x); /* Calculates approximate value of error function in */

/* response to value of x and returns it to ret. */

:

return(ret);

}

2
π

------- x e t– 2

td
0

x

∫

CHAPTER 6 LIBRARY FUNCTION

User’s Manual U18513EJ1V0UM 263

EXPF

[Overview]

Exponent/logarithm/power/cubic root/square root function

expf, logf, log2f, log10f, powf, cbrtf, sqrtf

[Syntax]

#include <math.h>

float expf(float x)

float logf(float x)

float log2f(float x)

float log10f(float x)

float powf(float x, float y)

float cbrtf(float x)

float sqrtf(float x)

[Description]

expf(float x)

This function calculates the xth power of e (e is the base of a natural logarithm and is about 2.71828).

logf(float x)

This function calculates the natural logarithm of x, i.e., logarithm with base e.

log2f(float x)

This function calculates the logarithm of x with base 2. This is realized by "log(x)/log(2)".

log10f(float x)

This function calculates the logarithm of x with base 10. This is realized by "log(x)/log(10)".

powf(float x, float y)

This function calculates the yth power of x.

cbrtf(float x)

This function calculates the cubic root of x.

sqrtf(float x)

This function calculates the square root of x.

264 User’s Manual U18513EJ1V0UM

CHAPTER 6 LIBRARY FUNCTION

[Return value]

The error processing of these functions can be changed by using the matherr function.

[Example]

expf Returns the xth power of e.
expf returns an unnormalized value if an underflow occurs (if x is a negative number that
cannot express the result), and sets macro ERANGE to global variable errno. If an
overflow occurs (if x is too great a number), HUGE_VAL (maximum double type
numerics that can be expressed) is returned, and macro ERANGE is set to global
variable errno.

logf Returns the natural logarithm of x.
logf returns a non-numeric value and sets macro EDOM to global variable errno if x is
negative. If x is zero, it returns -∞ (0xff800000) and sets macro ERANGE to global
variable errno.

log2f Returns the logarithm of x with base 2.
log2f returns a non-numeric value and sets macro EDOM to global variable errno if x is
negative. If x is zero, it returns -∞ and sets macro ERANGE to global variable errno.

log10f Returns the logarithm of x with base 10.
log10f returns a non-numeric value and sets macro EDOM to global variable errno if x is
negative. If x is zero, it returns -∞ and sets macro ERANGE to global variable errno.

powf Returns the yth power of x.
powf returns a negative solution only if x < 0 and y is an odd integer. If x < 0 and y is a
non-integer or if x = y = 0, powf returns a non-numeric value and sets the macro EDOM
for the global variable errno. If x = 0 and y < 0 or if an overflow occurs, powf returns
+HUGE_VAL and sets the macro ERANGE for errno. If the solution vanished
approaching zero, powf returns +0 and sets the macro ERANGE for errno. If the solution
is a non-normalized number, powf sets the macro ERANGE for errno.

cbrtf Returns the cubic root of x.

sqrtf Returns the positive square root of x.
sqrtf returns a non-numeric value and sets macro EDOM to global variable errno if x is a
negative real number.

#include <math.h>

float func(void)

{

float ret, x, y;

ret = powf(x, y); /* Returns yth power of x to ret. */

:

return(ret);

}

CHAPTER 6 LIBRARY FUNCTION

User’s Manual U18513EJ1V0UM 265

FLOORF

[Overview]

ceiling/absolute value/floor/remainder function

ceilf, fabsf, floorf, fmodf

[Syntax]

#include <math.h>

float ceilf(float x)

float fabsf(float x)

float floorf(float x)

float fmodf(float x, float y)

[Description]

ceilf(float x)

This function calculates the minimum integer value greater than x.

fabsf(float x)

This function fabsf (float x) calculates the absolute value (size) of x by directly manipulating the bit

representation of x.

floorf(float x)

This function calculates the maximum integer value less than x.

fmodf(float x, float y)

This function calculates a floating-point value that is the remainder resulting from dividing x by y. In other

words, it calculates the value "x - i * y" for the minimum integer i that has a sign the same as x and is less than

y, if y is not zero

[Return value]

The error processing of these functions can be changed by using the matherr function.

ceilf Returns the minimum integer greater than x.

fabsf Returns the absolute value (size) of x.

floorf Returns the maximum integer value less than x.

fmodf Returns a floating-point value that is the remainder resulting from dividing x by y.
fmodf(x, 0) returns x.

266 User’s Manual U18513EJ1V0UM

CHAPTER 6 LIBRARY FUNCTION

[Example]

#include <math.h>

float func(void)

{

float ret, x, y;

ret = fmodf(x, y); /* Returns remainder resulting from dividing x by y to ret. */

:

return(ret);

}

CHAPTER 6 LIBRARY FUNCTION

User’s Manual U18513EJ1V0UM 267

FREXPF

[Overview]

Manipulation of each part of floating-point number

frexpf, ldexpf, modff

[Syntax]

#include <math.h>

float frexpf(float val, int *exp)

float ldexpf(float val, int exp)

float modff(float val, float *ipart)

[Description]

All numbers other than zero can be expressed as m x 2p.

frexpf(float val, int *exp)

This function expresses val of float type as mantissa m and the pth power of 2. The resulting mantissa m is

0.5 <= |x| < 1.0, unless val is zero. p is stored in *exp. m and p are calculated so that val = m x 2p.

ldexpf(float val, int exp)

This function calculates val x 2exp.

modff(float val, float *ipart)

This function divides val of float type into integer and decimal parts, and stores the integer part in *ipart.

Rounding is not performed. It is guaranteed that the sum of the integer part and decimal part accurately

coincides with val.

For example, where realpart = modff (val, &intpart), "realpart + intpart" coincides with val.

[Return value]

frexpf Returns mantissa m.
frexpf sets 0 to *exp and returns 0 if val is 0. Although the value of val can be changed
by using the matherr function, the setting of *exp cannot be changed.

ldexpf Returns the value calculated by val x 2exp.
lIf an underflow or overflow occurs as a result of executing ldexpf, macro ERANGE is set
to global variable errno. If an underflow occurs, ldexpf returns an unnormalized value. If
an overflow occurs, it returns ∞ (+∞ = 0x7f800000, -∞ = 0xff800000) with the same sign
as HUGE_VAL.
This error processing can be changed by using the matherr function.

modff Returns a decimal part. The sign of the result is the same as the sign of val.

268 User’s Manual U18513EJ1V0UM

CHAPTER 6 LIBRARY FUNCTION

[Example]

#include <math.h>

float func(void)

{

float ret, x;

int exp;

x = 5.28;

ret = frexpf(x, &exp); /* Resultant mantissa 0.66 is returned to ret, */

/* and 3 is stored in exp */

:

return(ret);

}

CHAPTER 6 LIBRARY FUNCTION

User’s Manual U18513EJ1V0UM 269

GAMMAF

[Overview]

Logarithmic gamma function

gammaf

[Syntax]

#include <math.h>

float gammaf(float x)

[Description]

gammaf(float x)

This function calculates In(Γ(x)), i.e., the natural logarithm of the gamma function of x. The gamma function

(expf (gammaf(x)) is a generalized factorial, and has a relational expression of Γ(N) = N x Γ(N - 1). Therefore,

the result of the gamma function itself increases very rapidly. Consequently, gammaf is defined as "In(Γ(x))",

instead of simply "Γ(x)", to expand the valid range of the result that can be expressed.

[Return value]

The natural logarithm of the gamma function of x is returned.

If x is 0 or an overflow occurs, HUGE_VAL is returned, and macro ERANGE is set to global variable errno.

This error processing can be changed by using the matherr function.

[Example]

#include <math.h>

float func(float x)

{

float ret;

ret = gammaf(x); /* Returns natural logarithm of gamma function of x to ret. */

:

return(ret);

}

270 User’s Manual U18513EJ1V0UM

CHAPTER 6 LIBRARY FUNCTION

HYPOTF

[Overview]

Euclidean distance function

hypotf

[Syntax]

#include <math.h>

float hypotf(float x, float y)

[Description]

hypotf(float x, float y)

This function calculates a Euclidean distance

 between the origin (0, 0) and a point indicated by Cartesian coordinates (x, y).

[Return value]

Returns a Euclidean distance

 between the origin (0, 0) and a point indicated by Cartesian coordinates (x, y).

If an overflow occurs, HUGE_VAL is returned, and macro ERANGE is set to global variable errno.

This error processing can be changed by using the matherr function.

[Example]

#include <math.h>

float func(float x)

{

float ret, y;

ret = hypotf(x, y); /* Returns Euclidean distance between origin (0, 0) */

/* and coordinates (x, y) to ret. */

:

return(ret);

}

x2 y2+

x2 y2+

CHAPTER 6 LIBRARY FUNCTION

User’s Manual U18513EJ1V0UM 271

MATHERR

[Overview]

Error processing function

matherr

[Syntax]

#include <math.h>

int matherr(struct exception *e)

[Description]

matherr(struct exception *e)

This is a function that is called if an error occurs in a mathematical library function. By preparing a function

named matherr via a user subroutine, therefore, error processing can be customized. Customized matherr

must return 0 if resolution of an error has failed, and a value other than 0 if the error has been resolved. If

matherr returns a value other than 0, the value of global variable errno is not changed.

Error processing can be customized by using the information passed by pointer *e to structure exception.

Structure exception is defined as follows in "math.h".

The meaning of each member is as follows:

#if !defined(__cplusplus)

#define __exception exception

#endif

struct exception{

int type;

char *name;

double arg1, arg2, retval;

};

type Type of mathematical function error that has occurred.
The type of the macro encoding error is also defined in "math.h".

name Pointer indicating a character string that holds the name of the mathematical library
function in which an error has occurred, and ends with a space character.

arg1, arg2 Arguments responsible for the error.

retval Error return value that is returned by the calling function.

272 User’s Manual U18513EJ1V0UM

CHAPTER 6 LIBRARY FUNCTION

The types of mathematical library function errors that may occur are as follows.

Calling matherr when an operation exception occurs and updating global variable errno with a standard

function are not re-entrant.

[Return value]

By changing the value of e ->retval, the result of the function called from the customized matherr can be

changed. This also applies to the function on the calling side.

The matherr returns a value other than 0 if the error has been resolved, and 0 if the error could not be

resolved. If matherr returns 0, set an appropriate value to global variable errono on the calling side.

[Example]

DOMAIN The argument is not in the range of the definition area of the function.
Example: logf(-1)

OVERFLOW Overflow
Example: expf(1000)

UNDERFLOW Underflow, solutions to non-normalized number.
Solution < 1.1755e-38 and non 0 and precision is lower than the normal value.

Z_DIVISION Zero division.

#include <math.h>

#include <stdio.h>

float func(void)

{

float ret;

ret = logf(-0.1); /* 3 is returned to ret. */

:

return(ret);

}

int matherr(struct exception *e)

{

char s[30];

switch(e->type) {

case DOMAIN:

sprintf(s, "%s DOMAIN error %e\n", e->name, e->arg1);

e->retval = 3; /* Changes error return value to 3. */

break;

default:

sprintf(s, "%s other error %e\n", e->name, e->arg1);

}

return(1);

}

CHAPTER 6 LIBRARY FUNCTION

User’s Manual U18513EJ1V0UM 273

SINHF

[Overview]

Hyperbolic functions

acoshf, asinhf, atanhf, coshf, sinhf, tanhf

[Syntax]

#include <math.h>

float acoshf(float x)

float asinhf(float x)

float atanhf(float x)

float coshf(float x)

float sinhf(float x)

float tanhf(float x)

[Description]

acoshf(float x)

This function calculates the inverse hyperbolic cosine of x (where x is a numeric value of 1 or greater). The

definition expression is as follows.

asinhf(float x)

This function calculates the inverse hyperbolic sine of x. The definition expression is as follows.

atanhf(float x)

This function calculates the inverse hyperbolic tangent of x.

coshf(float x)

This function calculates the hyperbolic cosine of x. Specify the angle in radian. The definition expression is

as follows.

x x2 1–+()ln

x 1 x2++()lnsign(x) x

ex e x–+()
2

274 User’s Manual U18513EJ1V0UM

CHAPTER 6 LIBRARY FUNCTION

sinhf(float x)

This function calculates the hyperbolic sine of x. Specify the angle in radian. The definition expression is as

follows.

tanhf(float x)

This function calculates the hyperbolic tangent of x. Specify the angle in radian. The definition expression is

as follows.

sinh(x) / cosh(x)

[Return value]

The error processing of these functions can be changed by using the matherr function.

[Example]

acoshf Returns the inverse hyperbolic cosine of x (x is a numeric number of 1 or greater).
acoshf returns a non-numeric value if x is less than 1. Macro EDOM is set to global
variable errno.

asinhf Returns the inverse hyperbolic sine of x.

atanhf Returns the inverse hyperbolic tangent of x.
atanhf returns a non-numeric value and sets macro EDOM to global variable errno if the
absolute value of x is greater than 1.

coshf Returns the hyperbolic cosine of x.
coshf returns HUGE_VAL and sets macro ERANGE to global variable errno if an
overflow occurs.

sinhf Returns the hyperbolic sine of x.
sinhf returns HUGE_VAL and sets macro ERANGE to global variable errno if an
overflow occurs.

tanhf Returns the hyperbolic tangent of x.

#include <math.h>

float func(float x)

{

float ret;

ret = acoshf(x); /* Returns value of inverse hyperbolic cosine of x to ret. */

:

return(ret);

}

ex e x––()
2

CHAPTER 6 LIBRARY FUNCTION

User’s Manual U18513EJ1V0UM 275

TRIG

[Overview]

Trigonometric functions

acosf, asinf, atanf, atan2f, cosf, sinf, tanf

[Syntax]

#include <math.h>

float acosf(float x)

float asinf(float x)

float atanf(float x)

float atan2f(float y, float x)

float cosf(float x)

float sinf(float x)

float tanf(float x)

[Description]

acosf(float x)

This function calculates the inverse cosine (arcosine) of x. Specify x as, -1<= x <= 1.

asinf(float x)

This function calculates the inverse sine (arcsine) of x. Specify x as, -1<= x <= 1.

atanf(float x)

This function calculates the inverse tangent (arctangent) of x.

atan2f(float y, float x)

This function calculates the inverse tangent of y/x. atan2f calculates the correct result even if the angle is in

the vicinity of π/2 or - π/2(if x is close to 0).

cosf(float x)

This function calculates the cosine of x. Specify the angle in radian.

sinf(float x)

This function calculates the sine of x. Specify the angle in radian.

tanf(float x)

This function calculates the cosine of x. Specify the angle in radian.

276 User’s Manual U18513EJ1V0UM

CHAPTER 6 LIBRARY FUNCTION

[Return value]

The error processing of these functions can be changed by using the matherr function.

[Example]

acosf Returns the inverse cosine (arccosine) of x. The returned value is in radian and in a
range of 0 to π.
If x is not between -1 and 1, a non-numeric value is returned, and macro EDOM is set to
global variable errno.

asinf Returns the inverse sine (arcsine) of x. The returned value is in radian and in a range of
-π/2 to π/2.
If x is not between -1 and 1, a non-numeric value is returned, and macro EDOM is set to
global variable errno.

atanf Returns the inverse tangent (arctangent) of x. The returned value is in radian and in a
range of -π/2 to π/2.

atan2f Returns the inverse tangent (arctangent) of y/x. The returned value is in radian and in a
range of -π to π.
atan2f returns a non-numeric value and sets macro EDOM to global variable errno if
both x and y are 0.0. If the solution vanished approaching zero, atan2f returns +0 and
sets macro ERANGE to global variable errno. If the solution is a non-normalized
number, atan2f sets macro ERANGE to global variable errno.

cosf Returns the cosine of x.

sinf Returns the sine of x.

tanf Returns the tangent of x.

#include <math.h>

float func(float x)

{

float ret;

ret = atanf(x); /* Returns value of arctangent of x to ret. */

:

return(ret);

}

CHAPTER 6 LIBRARY FUNCTION

User’s Manual U18513EJ1V0UM 277

6.12 Runtime Library

This section explains the runtime library.

The microcontroller architecture of the V850 microcontrollers does not have instructions for multiplying or

dividing and performing floating-point operations on 32-bit data. Therefore, to satisfy the language specifications

of the ANSI standards, the CA850 performs multiplication, division, residue calculations, and all floating-point

operations on 32-bit data by calling the runtime library contained in the libc.a file. The runtime library can also be

called when creating a new assembler for the V850 microcontrollers.

However, with the V850Ex, the compiler does not use the runtime library for multiplying, dividing, and residue

calculating 32-bit data. It uses the runtime library for floating-point operations.

The runtime library is a routine automatically used when the compiler executes compiling. This library is

included in the libc.a file along with the standard library. The header file does not need to be included.

When using the runtime library for an application program, libc.a must be referenced by ld850 when an

executable object file is created.

Figure 6 - 1 Image of Using Runtime Library

.s Floating-point
operation

jarl xxx

.o
a.out

libc.a

as850 ld850

Runtime Library

278 User’s Manual U18513EJ1V0UM

CHAPTER 6 LIBRARY FUNCTION

[Cautions]

(1) The runtime library is originally used by code generation part (cgen) and is not assumed to be used

alone.Therefore, preprocessing to call the runtime library is necessary when it is used for an assembly-

language source program.

(2) The runtime library cannot be used with a C language source program.

(3) The default processing of the compiler does not use the runtime library’s ___mul/___mulu functions for

multiplication and ___div/___divu functions for division to process integer data of 16 bits or shorter.

Instead, the mulh and divh instructions are used. If the -Xe option is specified with the compiler, the runtime

library is used to process integer data of 16 bits or shorter.

In this case, if the runtime library is used, multiplication/division processing strictly conforming to the ANSI

standards is executed, but the execution speed is slower than when using the mulh and divh instructions.

Table 6 - 25 Runtime Library

Classification Function Name Outline

ADDF.S ___addf.s Addition of single-precision floating-point

CMPF.S ___cmpf.s Comparison of single-precision floating-point and change of flag

CVT.WS ___cvt.ws Conversion from integer to single-precision floating-point number

DIV ___div Division of signed 32-bit integer

___divu Division of unsigned 32-bit integer

DIVF.S ___divf.s Division of single-precision floating-point

MOD ___mod Remainder of signed 32-bit integer

___modu Remainder of unsigned 32-bit integer

MUL ___mul Multiplication of signed 32-bit integer

___mulu Multiplication of unsigned 32-bit integer

MULF.S ___mulf.s Multiplication of single-precision floating-point

SUBF.S ___subf.s Subtraction of single-precision floating-point

TRNC.SW ___trnc.sw Conversion from single-precision floating-point number to integer

CHAPTER 6 LIBRARY FUNCTION

User’s Manual U18513EJ1V0UM 279

ADDF.S

[Overview]

Addition of single-precision floating-point

___addf.s

[Syntax]

jarl ___addf.s, lp

[Description]

___addf.s

This function adds single-precision floating-points.

This function is used by the ca850 as the entity of arithmetic operator "+" of the C language for a single-

precision floating-point number. It is not used for addition of integers.

[Preprocessing]

When using this function for an assembler, general-purpose registers r6 and r7 must be saved, and values

must be substituted into r6 and r7 as arguments.

[Argument setting register]

r6, r7

[Return value]

The result of the addition is set to r6.

[Example]

In the case of "value of reg2 + value of reg1" (reg2 is other than r6 and r7)

add -8, sp

st.w r6,[sp] -- Saves r6 and r7.

st.w r7, 4[sp]

mov reg1, r6 -- Substitutes value as argument.

mov reg2, r7

jarl ___addf.s,lp -- Calls function.

mov r6, reg2 -- Stores result of addition in reg2.

ld.w 4[sp], r7 -- Restores r6 and r7.

ld.w [sp], r6

add 8, sp

280 User’s Manual U18513EJ1V0UM

CHAPTER 6 LIBRARY FUNCTION

CMPF.S

[Overview]

Comparison of single-precision floating-point and change of flag

___cmpf.s

[Syntax]

jarl ___cmpf.s, lp

[Description]

___cmpf.s

This function compares single-precision floating-point numbers, and changes flags S and Z according to the

result of the comparison. Changes to the flags are then reflected in the passed PSW, and the PSW is

changed.

[Preprocessing]

When using this function for an assembler, general-purpose registers r6 through r8 must be saved, and

values to be compared as arguments must be substituted into r6 and r7. Moreover, the value of the PSW must

be passed to r8.

This function changes the flags depending on the result of "r7 - r6".

[Argument setting register]

r6, r7, r8

[Return value]

The contents of the PSW are changed depending on the result of the comparison, and the value of the PSW

is set to r6.

[Flag]

CY 1 if the result of comparison is negative; otherwise, 0

OV 0

S 1 if the result of comparison is negative; otherwise, 0

Z 1 if the result of comparison is zero; otherwise, 0

CHAPTER 6 LIBRARY FUNCTION

User’s Manual U18513EJ1V0UM 281

[Example]

In the case of "comparing value of reg2 and value of reg1" (reg2 is other than r6 through r8)

add -12, sp

st.w r6, [sp] -- Saves r6 through r8.

st.w r7, 4[sp]

st.w r8, 8[sp]

mov reg1, r6 -- Substitutes value as argument.

mov reg2, r7

stsr 5, r8 -- Passes value of PSW to r8.

jarl ___cmpf.s,lp -- Calls function

mov r6, reg2 -- Stores changed PSW value in reg2.

ld.w 8[sp], r8 -- Restores r6 through r8.

ld.w 4[sp], r7

ld.w [sp], r6

add 12, sp

282 User’s Manual U18513EJ1V0UM

CHAPTER 6 LIBRARY FUNCTION

CVT.WS

[Overview]

Conversion from integer to single-precision floating-point number

___cvt.ws

[Syntax]

jarl ___cvt.ws, lp

[Description]

___cvt.ws

This function converts an integer to a single-precision floating-point number.

[Preprocessing]

When using this function for an assembler instruction, general-purpose register r6 must be saved and a

value to be converted as an argument must be saved to r6.

[Argument setting register]

r6

[Return value]

The converted value is set to r6.

[Example]

In the case of "converting value of reg1 and storing the result of conversion in reg2" (reg2 is other than r6)

add -4, sp

st.w r6, [sp] -- Saves r6.

mov reg1, r6 -- Substitutes function as argument.

jarl ___cvt.ws,lp -- Calls function

mov r6, reg2 -- Stores value resulting from conversion in reg2.

ld.w [sp], r6 -- Restores r6.

add 4, sp

CHAPTER 6 LIBRARY FUNCTION

User’s Manual U18513EJ1V0UM 283

DIV

[Overview]

Division of 32-bit integer

___div, ___divu

[Syntax]

jarl ___div, lp

jarl ___divu, lp

[Description]

___div

This function executes division of signed 32-bit integers.

___divu

This function executes division of unsigned 32-bit integers.

These functions are used by the CA850 as the entities of the arithmetic operator "/" of the C language.

[Preprocessing]

When these functions are used for an assembler instruction, general-purpose registers r6 and r7 must be

saved, and values must be substituted into r6 and r7 as arguments. These functions execute division,

assuming that "r7/r6".

[Argument setting register]

r6, r7

[Return value]

The lower 32 bits of the result of division are set to r6. The remainder is ignored.

284 User’s Manual U18513EJ1V0UM

CHAPTER 6 LIBRARY FUNCTION

[Example]

In the case of "value of reg2/value of reg1" (reg2 is other than r6 and r7

add -8, sp

st.w r6, [sp] -- Saves r6 and r7.

st.w r7, 4[sp]

mov reg1, r6 -- Substitutes value as argument.

mov reg2, r7

jarl ___div, lp -- Calls function.

mov r6, reg2 -- Stores result of division in reg2.

ld.w 4[sp], r7 -- Restores r6 and r7.

ld.w [sp], r6

add 8, sp

CHAPTER 6 LIBRARY FUNCTION

User’s Manual U18513EJ1V0UM 285

DIVF.S

[Overview]

Division of single-precision floating-point

___divf.s

[Syntax]

jarl ___divf.s, lp

[Description]

___divf.s

This function executes division of single-precision floating-points.

This function is used by the CA850 as the entity of the arithmetic operator "/" of the C language in single-

precision floating-point numbers. It is not used for division of integers.

[Preprocessing]

When this function is used for an assembler instruction, general-purpose registers r6 and r7 must be saved,

and values must be substituted into r6 and r7 as arguments. This function executes division, assuming that

"r7/r6".

[Argument setting register]

r6, r7

[Return value]

The result of division is set to r6.

[Example]

In the case of "value of reg2/value of reg1" (reg2 is other than r6 and r7

add -8, sp

st.w r6, [sp] --Saves r6 and r7.

st.w r7, 4[sp]

mov reg1, r6 -- Substitutes value as argument.

mov reg2, r7

jarl ___divf.s,lp -- Calls function.

mov r6, reg2 --Stores result of division in reg2.

ld.w 4[sp], r7 -- Restores r6 and r7.

ld.w [sp], r6

add 8, sp

286 User’s Manual U18513EJ1V0UM

CHAPTER 6 LIBRARY FUNCTION

MOD

[Overview]

Remainder of 32-bit integer

___mod, ___modu

[Syntax]

jarl ___mod, lp

jarl ___modu, lp

[Description]

___mod

This function calculates the remainder resulting from division of signed 32-bit integers.

___modu

This function calculated the remainder resulting from division of unsigned 32-bit integers.

These functions are used by the CA850 as the entities of the arithmetic operator "%" of the C language.

[Preprocessing]

When these functions are used for an assembler instruction, general-purpose registers r6 and r7 must be

saved, and values must be substituted into r6 and r7 as arguments. These functions execute division,

assuming that "r7%r6".

[Argument setting register]

r6, r7

[Return value]

The remainder resulting from division is set to r6.

CHAPTER 6 LIBRARY FUNCTION

User’s Manual U18513EJ1V0UM 287

[Example]

In the case of "value of reg2%value of reg1" (reg2 is other than r6 and r7)

add -8, sp

st.w r6, [sp] -- Saves r6 and r7.

st.w r7, 4[sp]

mov reg1, r6 -- Substitutes value as argument.

mov reg2, r7

jarl ___mod, lp -- Calls function.

mov r6, reg2 -- Stores remainder resulting from division in reg2.

ld.w 4[sp], r7 -- Restores r6 and r7.

ld.w [sp], r6

add 8, sp

288 User’s Manual U18513EJ1V0UM

CHAPTER 6 LIBRARY FUNCTION

MUL

[Overview]

Multiplication of 32-bit integer

___mul, ___mulu

[Syntax]

jarl ___mul, lp

jarl ___mulu, lp

[Description]

___mul

This function executes multiplication of signed 32-bit integers.

___mulu

This function executes multiplication of unsigned 32-bit integers.

These functions are used by the CA850 as the entities of the arithmetic operator "*" of the C language.

[Preprocessing]

When these functions are used for an assembler struction, general-purpose registers r6 and r7 must be

saved, and values must be substituted into r6 and r7 as arguments.

[Argument setting register]

r6, r7

[Return value]

The lower 32 bits of the result of multiplication are set to r6. The higher 32 bits are invalid.

[Example]

In the case of "value of reg1 * value of reg2" (reg2 is other than r6 and r7)

add -8, sp

st.w r6, [sp] -- Saves r6 and r7.

st.w r7, 4[sp]

mov reg1, r6 -- Substitutes value as argument.

mov reg2, r7

jarl ___mul, lp -- Calls function.

mov r6, reg2 -- Stores result of multiplication in reg2.

ld.w 4[sp], r7 -- Restores r6 and r7.

ld.w [sp], r6

add 8, sp

CHAPTER 6 LIBRARY FUNCTION

User’s Manual U18513EJ1V0UM 289

MULF.S

[Overview]

Multiplication of single-precision floating-point

___mulf.s

[Syntax]

jarl ___mulf.s, lp

[Description]

___mulf.s

This function executes multiplication of single-precision floating-points.

This function is used by the CA850 as the entity of the arithmetic operator "*" of the C language in single-

precision floating-point numbers. It is not used for multiplication of integers.

[Preprocessing]

When this function is used for an assembler instruction, general-purpose registers r6 and r7 must be saved,

and values must be substituted into r6 and r7 as arguments.

[Argument setting register]

r6, r7

[Return value]

The result of multiplication is set to r6.

[Example]

In the case of "value of reg2 * value of reg1" (reg2 is other than r6 and r7)

add -8, sp

st.w r6, [sp] -- Saves r6 and r7.

st.w r7, 4[sp]

mov reg1, r6 -- Substitutes value as argument.

mov reg2, r7

jarl ___mulf.s ,lp -- Calls function.

mov r6, reg2 -- Stores result of multiplication in reg2.

ld.w 4[sp], r7 -- Restores r6 and r7.

ld.w [sp], r6

add 8, sp

290 User’s Manual U18513EJ1V0UM

CHAPTER 6 LIBRARY FUNCTION

SUBF.S

[Overview]

Subtraction of single-precision floating-point

___subf.s

[Syntax]

jarl ___subf.s, lp

[Description]

___subf.s

This function executes subtraction of single-precision floating-points.

This function is used by the CA850 as the entity of the arithmetic operator "-" of the C language is single-

precision floating-point numbers. It is not used for subtraction of integers.

[Preprocessing]

When this function is used for an assembler instruction, general-purpose registers r6 and r7 must be saved,

and values must be substituted into r6 and r7 as arguments. This function executes subtraction, assuming that

"r7 - r6".

[Argument setting register]

r6, r7

[Return value]

The result of subtraction is set to r6.

[Example]

In the case of "value of reg2 - value of reg1" (reg2 is other than r6 and r7)

add -8, sp

st.w r6, [sp] -- Saves r6 and r7.

st.w r7, 4[sp]

mov reg1, r6 -- Substitutes value as argument.

mov reg2, r7

jarl ___subf.s ,lp -- Calls function.

mov r6, reg2 -- Stores result of subtraction in reg2.

ld.w 4[sp], r7 -- Restores r6 and r7.

ld.w [sp], r6

add 8, sp

CHAPTER 6 LIBRARY FUNCTION

User’s Manual U18513EJ1V0UM 291

TRNC.SW

[Overview]

Conversion from single-precision floating-point number to integer

___trnc.sw

[Syntax]

jarl ___trnc.sw, lp

[Description]

___trnc.sw

This function executes conversion from a single-precision floating-point number to an integer.

The result of conversion is rounded toward 0.

[Preprocessing]

When this function is used for an assembler instruction, general-purpose register r6 must be saved, and a

value must be substituted into r6 as an argument.

[Argument setting register]

r6

[Return value]

The value resulting from conversion is set to r6.

[Example]

To "convert value of reg1 and store result in reg2" (reg2 is other than r6)

add -4, sp

st.w r6, [sp] -- Saves r6.

mov reg1, r6 -- Substitutes value as argument.

jarl ___trnc.sw ,lp -- Calls function.

mov r6, reg2 -- Stores result of conversion in reg2.

ld.w [sp], r6 -- Restores r6.

add 4, sp

292 User’s Manual U18513EJ1V0UM

CHAPTER 7 FOR EFFICIENT USE

CHAPTER 7 FOR EFFICIENT USE

This chapter explains the programming method and how to use the expansion functions for more efficient use

of the CA850.

7.1 volatile Qualifier

When a variable is declared with the volatile qualifier, the variable is not optimized and is not assigned to

registers. Therefore, keep volatile declaration at the minimum required level.

If it is clear that the value of a variable with volatile declared is not changed externally in a specific section, the

variable can be optimized by assigning the unchanged value to a variable for which volatile not declared and

referencing it, which may increase the execution speed.

CHAPTER 7 FOR EFFICIENT USE

User’s Manual U18513EJ1V0UM 293

7.2 Declaration of Function Without Return Value

If a function without a return value is not declared as void type, an unwanted return processing code is

generated.

Be sure to declare functions without return values as void type

294 User’s Manual U18513EJ1V0UM

CHAPTER 7 FOR EFFICIENT USE

7.3 Pointers and Optimization

The CA850 executes analysis of pointers when the -Og/-O/-Os/-Ot options are specified and optimization is

executed. If the optimization level is lower than that, pointer analysis is not executed. Consequently, if indirect

memory access using a pointer exists, processing is performed on the assumption that all the variables are

accessed by this indirect memory access, and optimization and register allocation cannot be executed efficiently.

Even for size priority optimization or execution speed priority optimization, the same phenomenon may occur

when this indirect memory access using a global pointer or a pointer argument exists. Use the global pointer as

locally as possible.

For example, optimization is not executed in the case of Example 1 below, but optimization is executed

efficiently when a local variable is used as shown in Example 2.

Example 1

int* sp;

int s1, s2, s3;

void func(void)

{

int a = 0;

int b = 1;

*sp = s1 / s2 * 100;

if(s1 == 0){

s3 = *sp + a ;

}

else {

s3 = *sp - b;

}

}

CHAPTER 7 FOR EFFICIENT USE

User’s Manual U18513EJ1V0UM 295

Example 2

int* sp;

int s1, s2, s3;

void func(void)

{

int a = 0;

int b = 1;

register int tmp = s1 / s2 * 100;

if(s1 == 0) {

s3 = tmp + a; /* a is replaced by 0 */

}

else {

s3 = tmp - b; /* b is replaced by 1 */

}

*sp = tmp;

}

296 User’s Manual U18513EJ1V0UM

CHAPTER 7 FOR EFFICIENT USE

7.4 Assembler Code and Optimization

If descriptions of assembler directives (refer to "3.4 Describing Assembler Instruction") are included,

processing is performed on the assumption that the values of all the variables are used and changed in that

code. Therefore, optimization is not performed beyond the assembler code.

To avoid a drop in the processing efficiency, use functions including assembler code as little as possible. If the

execution speed priority optimization is specified, and if a function including assembler code that defines a label

is used, the same label will be defined at the parts of function definition and inline expansion. In this case, a label

multiple definition error will occur

CHAPTER 7 FOR EFFICIENT USE

User’s Manual U18513EJ1V0UM 297

7.5 Registers

7.5.1 Register specifier

When the debug priority optimization (-Od) option is specified, a variable declared with the register specifier is

assigned to a register variable register, taking precedence over a variable without the register specifier. Even a

variable declared with the register specifier, however, is not assigned to a register if the variable is not referenced

many times. Therefore, the code efficiency will not deteriorate.

Even if a variable is defined with the register specifier and referenced by the debugger, the expected value

may not be obtained. This is due to the number of variables declared with the register specifier or optimization by

the CA850. If the number of register variables is less than the number of variables declared with the register

specifier, the variables are not assigned to registers.

The number of register variable registers in each mode is as follows.

- 22-register mode: 5 (r25 - r29)

- 26-register mode: 7 (r23 - r29)

- 32-register mode: 10 (r20 - r29)

For example, even if six or more variables are declared with the register specifier in the 22-register mode, all

the variables are not stored in registers.

The debug priority optimization (-Od) option gives priority to the variables declared with the register specifier

and assigns these variables to register variable registers. However, a variable for which the register specifier is

specified is not assigned to register if it is referenced only a few times. If an option other than the -Od option is

specified, variables that are relatively frequently referenced are assigned to registers.

Because the variables are assigned to different places in this way, the symbol information may be affected and

therefore the variables cannot be referenced from the debugger. If there is no problem in the result of an

operation that uses variables that cannot be referenced, it is considered that the operation is performed correctly.

7.5.2 Static variables and external variables

When the debug priority optimization (-Od) option or default optimization (-Ob) option is specified, a static

variable or external variable is not assigned to a register when registers are allocated. When these variables are

frequently used in a function and when the values of these variables are not changed by a function call or asm

declaration in that function, the registers are used more frequently and the speed is expected to increase if the

value of that static variable or external variable is substituted at the beginning of the function to an automatic

variable declared with the register specifier and if the value is returned to the variable at the end of the function.

By specifying the following options, even static variables and external variables can be assigned to registers if

they are relatively frequently referenced.

- Default optimization (-Ob) option

- Standard optimization (-Og) option

- Level 1 advanced optimization (-O) option

- Level 2 advanced optimization (object size) [-Os] option

- Level 2 advanced optimization (execution speed) [-Ot] option

298 User’s Manual U18513EJ1V0UM

CHAPTER 7 FOR EFFICIENT USE

7.5.3 Argument of function in K&R format

If an argument with a type smaller in size that int type exists in a function definition in the K&R format, the

argument is not allocated to a register, even if object size priority optimization or execution speed priority

optimization is executed, unless a dummy argument is declared with the register specifier. To allocate this

argument to a register, make a declaration with the register specifier. To describe a function definition in the K&R

format, avoid using char, signed char, unsigned char, short, signed short, and unsigned short as the type of the

argument.

7.5.4 Optimum number of local variables to be assigned

Keep the number of local variables (auto variables) to within 10; or preferably to six or seven. Local variables

are assigned to registersNote. The CA850 allows a total of 20 registers, 10 work registers and 10 register variable

registers, to be used for variables (in the 32-bit register mode). It is recommended to use many local variables if

processing in one function takes time. If processing does not take much time, use only the 10 work registers

whenever possible.

The register variable registers require overhead when they are saved or restored. The CA850 automatically

judges whether register variables are to be used or not. Therefore, the efficiency can be enhanced if six to seven

registers are used for local variables and the other three to four registers are used for work by the CA850.

Note Non-volatile variables that do not use addresses are subject to assignment. Therefore, the local vari-

ables that use addresses are secured in the stack area.

7.5.5 Optimum number of arguments to be used for function

Four argument registers, r6 to r9, are available. If the number of arguments is five or more, the stack is used

for the fifth and subsequent arguments. Therefore, keep the number of arguments to within four whenever

possible. If five or more arguments must be used, pass the arguments using the pointer of a structure, in order to

enhance the efficiency.

CHAPTER 7 FOR EFFICIENT USE

User’s Manual U18513EJ1V0UM 299

7.5.6 Other

If a path exists in which a variable may be referenced before a value is set (Example 3), an unwanted transfer

code from memory to register may be generated. Use a variable after setting a value (Example 4).

Example 3

Example 4

int s;

void func(int x)

{

int y;

int i;

for(i = x; i < 10; i++) {

if(i == 3) {

y = 10;

}

}

s = y * y * x;

}

int s;

void func(int x)

{

int y = 0;

int i;

for(i = x; i < 10; i++) {

if(i == 3) {

y = 10;

}

}

s = y * y * x;

}

300 User’s Manual U18513EJ1V0UM

CHAPTER 7 FOR EFFICIENT USE

7.6 Stack Size

The compiler allocates one variable to one stack area. Two or more variables cannot be allocated to the same

area. By selecting and using variables for specific purposesNote, the stack size can be reduced.

Note In this case, however, the program may become difficult to read.

CHAPTER 7 FOR EFFICIENT USE

User’s Manual U18513EJ1V0UM 301

7.7 Aligning Data

Declare data definitions collectively starting from the longest data.

With the V850 microcontrollers, word data such as int type must be aligned at a word boundary, and halfword

data such as short type must be aligned at a halfword boundary.

Consequently, a padding area is generated to enable alignment for the following source.

To prevent the generation of a padding area like this, declare data starting from the longest data.

char c = 'a';

short s = 0;

int i = 1;

char d = 'b';

int j = 2;

Higher address

Lower address

j

d

c

i

s -

int i = 1;

int j = 2;

short s = 0;

char c = 'a';

char d = 'b';

Higher address

Lower address

j

i

d c s

302 User’s Manual U18513EJ1V0UM

CHAPTER 7 FOR EFFICIENT USE

7.8 Data Type

The V850 microcontrollers sign-extends byte data or halfword data to word length depending on the value of

the most significant bit, when the byte data or halfword data is loaded from memory to a register. Consequently,

a code that masks the higher bits may be generatedNote as a result of operating data of unsigned char or

unsigned short type. Use word data as much as possible. When using byte data or halfword data, use a signed

type.

Note This mask code is not generated by an operation in which data is already stored in registers.

Caution When the V850Ex is used as the target device with the CA850, mask codes are not created because

the architecture of the V850Ex has unsigned load instructions and type conversion instructions.

In the case of a register variable, a shift instruction is generated to extend the sign because an operation of

signed byte data or signed halfword data integer-expands the operandNote.

When storing the result of the operation in a register variable, a shift instruction is generated in the case of

signed byte data or signed halfword data, or a code that masks the higher bits is generated in the case of

unsigned byte data or unsigned halfword data. To prevent generation of this code, use word data (int, long,

unsigned int, or unsigned long type data) as much as possible when using a register variable.

Note "Integer-expansion" converts values into int type if all the values of the original type can be expressed

by int type; otherwise, the values are converted into unsigned int type.

Using mask register function

With a program in which word data cannot be used and therefore mask codes are generated, the code
size can be reduced by using the mask register function (refer to "2.5 Mask Register").

CHAPTER 7 FOR EFFICIENT USE

User’s Manual U18513EJ1V0UM 303

Examples of instruction generation in the case of byte data, halfword data, and word data are shown below.

Example (Written in C)

int i, j, k;

unsigned short s, t, u;

unsigned char c, d, e;

void f(void)

{

register int ri, rj, rk;

register short rs, rt, ru;

register unsigned char ruc, rud, rue;

c = d + e;

s = t + u;

i = j + k;

rs = rt + ru;

ruc = rud + rue;

ri = rj + rk;

}

304 User’s Manual U18513EJ1V0UM

CHAPTER 7 FOR EFFICIENT USE

(Output instructions)

Byte data:

ld.b $_d, r10

andi 0xff, r10, r10 -- Mask code

ld.b $_e, r11

andi 0xff, r11, r11 -- Mask code

add r11, r10

st.b r10, $_c

Halfword data:

ld.h $_t, r12

andi 0xffff, r12, r12 -- Mask code

ld.h $_u, r13

andi 0xffff, r13, r13 -- Mask code

add r13, r12

st.h r12, $_s

Word data:

ld.w $_j, r14

ld.w $_k, r15

add r15, r14

st.w r14, $_i

Signed halfword data (register variable):

mov r25,r16

shl 16, r16 -- Shift instruction(integer-expansion)

sar 16, r16 -- Shift instruction(integer-expansion)

mov r24, r17

shl 16, r17 -- Shift instruction(integer-expansion)

sar 16, r17 -- Shift instruction(integer-expansion)

add r17, r16

shl 16, r16 -- Shift instruction(sign-expansion of operation result)

sar 16, r16 -- Shift instruction(sign-expansion of operation result)

Unsigned byte data (register variable):

mov r22, r18

add r21, r18

addi 0xff, r18, r18 -- Mask code

mov r18, r23

Word data (register variable):

mov r28, r19

add r27, r19

mov r19, r29

st.w r14, $_i

APPENDIX A EXPANDED FUNCTIONS OF CC78Kx

User’s Manual U18513EJ1V0UM 305

APPENDIX A EXPANDED FUNCTIONS OF CC78Kx

This appendix explains the expanded functions of the CC78Kx.

A.1 #pragma Directive

The following #pragma directive compatible with the CC78Kx can be specified in the CA850.

The [78K-compatible] mark indicates as follows:

(1) Specifying device type

[78K-compatible]

Specify to reference a device file that defines information dependent on the device to be used.

This directive functions in the same manner as the "#pragma cpu device-name" specification and the device

specification option (-cpu) of the CA850.

(2) Validating peripheral I/O register name

[78K-compatible]

A peripheral I/O register of the device is accessed using the specified peripheral I/O register name.

This directive functions in the same manner as the #pragma ioreg directive of the CA850.

(3) Disabling interrupts

[78K-compatible]

The function DI() is treated as the embedded function __DI().

[78K-compatible]

The function EI() is treated as the embedded function __EI().

[78K-compatible]

Invalid unless -cc78K option is specified

Uppercase and lowercase characters of keywords following #pragma are not
distinguished.

#pragma pc(device-name)

#pragma sfr

#pragma di

#pragma ei

306 User’s Manual U18513EJ1V0UM

APPENDIX A EXPANDED FUNCTIONS OF CC78Kx

(4) Specifying CPU stop function

[78K-compatible]

The function HALT() is treated as the embedded function __halt().

(5) Specifying no-operation function

[78K-compatible]

The function NOP() is treated as the function __nop().

(6) #pragma directives of CC78Kx

The following directives are not compatible with the 78K.

These directives are treated as the #pragma directive in the CA850.

(a) Specifying interrupt/exception handler

[78K-compatible]

"#pragma interrupt" and "#pragma vect" of the CC78Kx are treated as "#pragma interrupt interrupt-

request-name function-name [allocation-method]" in the CA850.

The following message is output if description is made after "[stack selection]" and if that description can-

not be.

(b) Specifying section

[78K-compatible]

This directive is treated as "#pragma section section-type ["section-name"] [begin | end]" in the CA850.

The following message is output if it is not recognized by the CA850.

#pragma halt

#pragma nop

#pragma interrupt interrupt-request-name function-name [stack selection] ...

#pragma vect interrupt-request-name function-name [stack selection] ...

W2150: unexected character(s) following directive ’directive’

#pragma section ...

W2162: unrecognized pragma directive ’#pragma directive’, ignored

APPENDIX A EXPANDED FUNCTIONS OF CC78Kx

User’s Manual U18513EJ1V0UM 307

(c) Specification related to memory manipulation

[78K-compatible]

The CC78Kx expands memcpy, memset, memchr, and memcmp inline, but the CA850 attempts to

expand the specified function inline, so the following message is output.

(d) Specifying module name

[78K-compatible]

The CA850 outputs the following message.

(e) Specifying data insertion function

[78K-compatible]

Corresponding embedded function

The CA850 outputs the following message and stops compiling.

(f) Specifying byte address insertion/generation function

[78K-compatible]

Corresponding embedded function

The CA850 outputs the following message and stops compiling.

#pragma inline

W2162: unrecognized pragma directive ’#pragma inline’, ignored

#pragma name module-name

W2162: unrecognized pragma directive ’#pragma name’, ignored

#pragma opc

__OPC();

W2162: unrecognized pragma directive ’#pragma opc’, ignored

E2752: cannot call opc function

#pragma addraccess

FP_SEG(); FP_OFF(); MK_FP();

W2162: unrecognized pragma directive ’#pragma addraccess’, ignored

E2752: cannot call addraccess function

308 User’s Manual U18513EJ1V0UM

APPENDIX A EXPANDED FUNCTIONS OF CC78Kx

(g) Specifying function directly referencing register

[78K-compatible]

Corresponding embedded function

The CA850 outputs the following message and stops compiling.

(h) Specifying function directly calling self-writing subroutine of firmware

[78K-compatible]

Corresponding embedded function

The CA850 outputs the following message and stops compiling.

#pragma realregister

__absa(); __ashra(); __clr1cy(); __coma(); __deca(); __geta();

__getax(); __getcy(); __inca(); __nega(); __not1cy(); __rola();

__rolca(); __rora(); __rorca(); __set1cy(); __seta(); __setax();

__setcy(); __shla(); __shra();

W2162: unrecognized pragma directive ’#pragma realregister’, ignored

E2752: cannot call realregister function

#pragma hromcall

__FlashAreaBlankCheck();__FlashAreaErase(); __FlashAreaIVerify();

__FlashAreaPreWrite(); __FlashAreaWriteBack(); __FlashBlockBlankCheck();

__FlashBlockErase(); __FlashBlockIVerify(); __FlashBlockPreWrite();

__FlashBlockWriteBack();__FlashByteRead(); __FlashByteWrite();

__FlashEnv(); __FlashGetInfo(); __FlashSetEnv();

__FlashWordWrite(); __hromcall(); __hromcalla();

__setsp();

W2162: unrecognized pragma directive ’#pragma hromcall’, ignored

E2752: cannot call hromcall function

APPENDIX A EXPANDED FUNCTIONS OF CC78Kx

User’s Manual U18513EJ1V0UM 309

A.2 Assembler Control Instructions

[78K-compatible]

This instruction is treated as "#pragma asm" - "#pragma endasm" in the CA850.

The following message is output for each instruction.

A.3 Specifying Interrupt/Exception Handler

An interrupt/exception handler is specified in a C-source program by the following #pragma directive and

qualifier (refer to "3.7 Interrupt/Exception Processing Handler").

[78K-compatible]

The function qualifier __interrupt_brk is treated as specification of the __interrupt function in the CA850.

Note C description

A.4 Expanded Functions Not Supported

The CA850 outputs a message if an expanded specification of the CC78Kx that is not supported is specified.

[78K-compatible]

The CA850 outputs the following message.

#asm

assembler instructions

#endasm

W2166: recognized pragma directive ’#pragma asm’

W2166: recognized pragma directive ’#pragma endasm’

#pragma interrupt interrupt-request-name function-nameNote [allocation method]

__interrupt_brk function-definition, or function-declaration

__banked1 __banked2 __banked3 __banked4 __banked5

__banked6 __banked7 __banked8 __banked9 __banked10

__banked11 __banked12 __banked13 __banked14 __banked15

callf __callf callt __callt noauto

norec __pascal sreg __sreg __sreg1

__temp

W2761: unrecognized specifier ’specifier’, ignored

310 User’s Manual U18513EJ1V0UM

APPENDIX B CAUTIONS

APPENDIX B CAUTIONS

This chapter explains the points to be noted when using the CA850.

(1) Delimiting Folder Path

Both "\" and "/" are regarded as the delimiters of a folder.

(2) Option Specification Sequence

The CA850 has the following restriction concerning the sequence of an option specified when the driver is

started on the command line:

The actual sequence in which an argument passed to a specific module using the -W option and an argument

of an option recognized by the driver are passed during the module startup is not guaranteedNote.

Note When ld850 is started from the CA850, -lm -lc is passed to ld850 as the default assumption even if the

-W option is not specified. If ld850 is started from the CA850, startup module crtN.o/crtE.o is passed to

ld850 as the default assumption.

Example

The ld850 passed as follows on starting.

However, it is assumed that ld850 has already been placed in Install Folder\bin.

Caution When starting the Id850 directly, allocate "-lc" after "-lm" because the mathematical library references

the standard library (refer to "6.11 Mathematical Functions").

(3) Mixing with K&R Format in Function Declaration/Definition

If the K&R format and ANSI standard format exist together in the declaration and definition of a function, an

error may occur on compilation by the CA850 as a result of argument expansion processing in the K&R format.

For example, a function is declared according to the ANSI standard in the example below, but the function is

defined in the K&R format. Consequently, the types of the arguments do not match, and the CA850 outputs a

"function redeclaration" error.

> ca850 -cpu 3201 file.o -Wl,-D,dfile.dir -m

ld850 \Install Folder\lib850\r32\crtN.o -o a.out file.o -lm -lc -D dfile.dir -

m

APPENDIX B CAUTIONS

User’s Manual U18513EJ1V0UM 311

Example of error

In the above example, compilation is performed normally if the K&R format is uniformly used by specifying

"void func();" for the function declaration, or if the ANSI standard format is used by specifying "void func(int a, int

b, float c)" for the function definition.

Note, however, that use of the ANSI standard format is recommended in the CA850.

(4) Output of Other Than Position-Independent Codes

Basically, the CA850 outputs codes not dependent on positions (position-independent codes). However, it

outputs the following codes in response to the "initialization statement with an initial value other than a numeric

value for a pointer type variable other than an automatic variable".

Example

When the -Xd option is specified, the CA850 outputs the following warning message and continues compiling

if an initialization statement with an initial value other than a numeric value for a pointer type variable other than

an automatic variable appears.

void func(int a, int b, float c);

/* Declared in ANSI standard format. */

/* Third argument is declared to be of float type. */

:

void func(a, b, c)

int a, b;

float c;

{

/* Defined in K&R format. */

/* Third argument is the expanded default of K&R

 and so becomes double type.*/

:

}

/* Described in C */

char *ptr = "test\n";

Output codes

.size LL20, 6

LL20 :

.str "test\n\0"

.align 4

.globl _ptr, 4

_ptr :

.word #LL20

-- Absolute address reference of label

W2231:Initialization of non-auto pointer using non-number initializer is not

position independent.

312 User’s Manual U18513EJ1V0UM

APPENDIX B CAUTIONS

(5) Count of Derivative Type Qualification for Type Configuration

The CA850 outputs the following error message and continues compiling if derivative type qualificationNote is

performed 17 times or more for the type configuration

However, compiling may be stopped depending on the number of times the error has occurred.

Note *(pointer), [] (array), and function declarator included in a declarator.

(6) Length of Identifier and Valid Number of Characters

The CA850 outputs the following error message and continues compiling if an external identifier of 1023

characters or more, or an internal identifier of 1024 characters or more is described.

However, compiling may be stopped depending on the number of times the error has occurred.

The valid number of characters for an identifier name is 1022 from the beginning of the identifier in the case of

an external identifier and 1023 from the beginning in the case of an internal identifier.

(7) Number of Times of Block Nesting

The CA850 outputs the following message if a pair of "{" and "}" are nested 128 times or more.

(8) Number of case Labels in switch Statement

The CA850 outputs the following error message and stops compiling if 1026 or more case labels are described

in one switch statement

Depending on the number of nesting switch statements, however, the above message is output and compiling is

stopped even if the number of case labels is less than 1025.

(9) Floating-Point Operation Exception in Operation of Constant Expression

The CA850 outputs the following error message and continues compiling if a floating-point operation exception

occurs during the operation of a constant expression.

However, compiling may be stopped depending on the number of errors that have occurred.

Moreover, depending on the type of exception, inexact, underflow, overflow, division-by-0, or others is output

for exception.

E2260: compiler limit : complicated type modifiers [16]

E2117: compiler limit:too long identifier 'symbol' [1022 / 1023]

F2020: compiler limit : scope level too deep [127]

F2410: compiler limit : too many case labels [1025]

E2519: exception has occurred at compile time.

APPENDIX B CAUTIONS

User’s Manual U18513EJ1V0UM 313

(10) Merging Vast/Large-Quantity File

The CA850 merges intermediate language files according to the optimization level.

At this time, the pre-optimizer (popt850) performs processing on memory to speed up the compiling

processing. To merge a vast or large-quantity intermediate language file, therefore, the following error message

may be output because the memory runs short, and the compiler may be abnormally terminated.

In this case, re-compile on the command line by specifying an option that allows the pre-optimizer to perform

processing to reduce the memory consumption (-Wp, -D).

(11) Optimization of Vast File

If object size priority optimization or execution speed priority optimization is executed, the CA850 analyzes the

data flow in function units inside the global optimization module (opt850) for global optimization.

Because this optimization requires a large amount of the memory, if a source file including a vast function is to

be optimized, the CA850 may output the following error message and be abnormally terminated.

If execution speed priority optimization is performed, inline expansion of a function may result in a function with

a vast size. In such a case, lower the optimization level and execute compilation again.

(12) Library File Search by Specifying Option

The CA850 does not display a message even if a specified library file has not been found as a result of a

library file searchNote initiated by an option (-L or -I). However, if the library file name has been directly specified

on the command line or in the command file, a message is displayed.

Note If the -L option is not specified, the standard folder (folder \lib850 to which CA850 has been installed,

and each register mode folder below that folder) is searched.

Example

F7009: out of memory

F5104: out of memory

> ca850 -cpu 3201 a.c usr.a

F4002: can not open input file "usr.a".

314 User’s Manual U18513EJ1V0UM

APPENDIX B CAUTIONS

(13) volatile qualifier

When a variable is declared with the volatile qualifier, the variable is not optimized and optimization for

assigning the variable to a register is no longer performed. When a variable with volatile specified is

manipulated, a code that always reads the value of the variable from memory and writes the value to memory

after the variable is manipulated is output. The access width of the variable with volatile specified is not changed.

A variable for which volatile is not specified is assigned to a register as a result of optimization and the code

that loads the variable from the memory may be deleted. When the same value is assigned to variables for which

volatile is not specified, the instruction may be deleted as a result of optimization because it is interpreted as a

redundant instruction. The volatile qualifier must be specified especially for variables that access a peripheral I/O

register, variables whose value is changed by interrupt servicing, or variables whose value is changed by an

external source. When a peripheral I/O register is accessed using the #pragma ioreg directive, however, the

CA850 internally outputs a code for which volatile is specified. Therefore, volatile declaration is not necessary.

The following problem may occur if volatile is not specified where it should.

- The correct calculation result cannot be obtained.

- Execution cannot exit from a loop if the variable is used in a for loop.

If it is clear that the value of a variable with volatile specified is changed in a specific section, the variable can

be optimized by assigning the unchanged value to a variable for which volatile not specified and referencing it,

which may increase the execution speed.

[Example of source and output code if volatile is not specified]

If volatile is not specified for "variable a", "variable b", and "variable c", these variables are assigned to

registers and optimized. Even if an interrupt occurs in the meantime and the variable value is changed by the

interrupt, for example, the changed value is not reflected.

int a;

int b;

int c;

void func(void)

{

if (a <= 0) {

b++;

} else {

c++;

}

b++;

c++;

}

_func:

#@B_PROLOGUE

#@E_PROLOGUE

ld.w $_a, r12

cmp r0, r12

jgt .L2

ld.w $_b, r11

ld.w $_c, r10

add 1, r11

jbr .L3

.L2:

ld.w $_c, r10

ld.w $_b, r11

add 1, r10

.L3:

addi 1, r11, r13

st.w r13, $_b

addi 1, r10, r14

st.w r14, $_c

#@B_EPILOGUE

jmp [lp]

#@E_EPILOGUE

APPENDIX B CAUTIONS

User’s Manual U18513EJ1V0UM 315

[Example of source and output code if volatile is specified]

If volatile is specified for "variable a", "variable b", and "variable c", a code that always reads the values of

these variables from memory and writes them to memory after the variables are manipulated is output. Even if

an interrupt occurs in the meantime and the values of the variables are changed by the interrupt, for example,

the result in which the change is reflected can be obtained. (In this case, interrupts may have to be disabled

while the variables are manipulated, depending on the timing of the interrupt.)

When volatile is specified, the code size increases compared with when volatile is not specified because the

memory has to be read and written.

volatile int a;

volatile int b;

volatile int c;

void func(void)

{

if (a <= 0) {

b++;

} else {

c++;

}

b++;

c++;

}

_func:

#@B_PROLOGUE

#@E_PROLOGUE

.option volatile

ld.w $_a, r10

.option novolatile

cmp r0, r10

jgt .L2

.option volatile

ld.w $_b, r11

.option novolatile

add 1, r11

.option volatile

st.w r11, $_b

.option novolatile

jbr .L3

.L2:

.option volatile

ld.w $_c, r12

.option novolatile

add 1, r12

.option volatile

st.w r12, $_c

.option novolatile

.L3:

.option volatile

ld.w $_b, r13

.option novolatile

add 1, r13

.option volatile

st.w r13, $_b

.option novolatile

.option volatile

ld.w $_c, r14

.option novolatile

add 1, r14

.option volatile

st.w r14, $_c

.option novolatile

#@B_EPILOGUE

jmp [lp]

#@E_EPILOGUE

316 User’s Manual U18513EJ1V0UM

APPENDIX B CAUTIONS

(14) Extra Brackets in Function Declaration

If extra brackets "()" are described in the function declaration, ANSI-C prescribes their handling as shown

below, but the CA850 outputs an error.

Example

[Prescription in ANSI-C]

In a parameter declaration, a single typedef name in parentheses is taken to be an abstract declarator that

specifies a function with a single parameter, not as redundant parentheses around the identifier for a

declarator.

The above example is therefore interpreted according to ANSI-C.

If the code includes extra brackets, delete the unnecessary brackets as shown below.

Example

typedef int Int;

void f1((Int));

void f(int (*)(int));

typedef int Int;

void f1(Int);

APPENDIX C INDEX

User’s Manual U18513EJ1V0UM 317

APPENDIX C INDEX

Symbols
#pragma Directive ... 305
#pragma section Directive ... 58

Example ... 65

A
abs ... 185, 237
acosf ... 189, 275
acoshf ... 188, 273
___addf.s ... 191, 279
Aligning Data ... 301
Alignment Condition ... 39
ANSI ... 33
Array Type ... 36
asinf ... 189, 275
asinhf ... 188, 273
Assembler Code ... 296
Assembler Control Instruction ... 309
Assembler Function ... 136
Assembler Instruction ... 29, 75
atan2f ... 189, 275
atanf ... 189, 275
atanhf ... 189, 273
atoff ... 186, 250
atoi ... 186, 252
atol ... 186, 252

B
Basic Language Specification ... 17
bcmp ... 182, 207
bcopy ... 182, 207
Binary constants ... 123
Bit Field ... 38, 117
BPC ... 170
bsearch ... 185, 238
bsh ... 107
bss ... 164
bsw ... 108

C
C Function ... 136
calloc ... 185, 246
Cast ... 26
cbrtf ... 188, 263
ceilf ... 188, 265
char Type ... 23
Character Indication ... 19
Character Set ... 19
Character String ... 24
___cmpf.s ... 191, 280
Comment ... 24
cosf ... 275
coshf ... 189, 273
CTBP ... 169
___cvt.ws ... 191, 282

D
Data Type ... 18, 302

Device ... 29
Device File ... 48
Diagnosis Message ... 18
Disabling Interrupt ... 81
___div ... 191, 283
div ... 185, 240
___divf.s ... 191, 285
Division ... 26
___divu ... 191, 283
double Type ... 25

E
ecvtf ... 185, 242
Embedded Functions ... 104
Enumerate Type ... 36
Enumerate Type Specifier ... 27
erfcf ... 188, 262
erff ... 188, 262
Executing Program ... 19
expf ... 188, 263

F
fabsf ... 188, 265
far jump ... 144
fcvtf ... 185, 242
fgetc ... 184, 219
fgets ... 184, 219
float Type ... 25
Floating-point ... 25
Floating-point Constant ... 23
Floating-point Type ... 35
floorf ... 188, 265
fmodf ... 188, 265
fprintf ... 184, 227
fputc ... 184, 221
fputs ... 184, 221
fread ... 184, 217
free ... 185, 246
Free-standing Environment ... 18
frexpf ... 188, 267
fscanf ... 185, 234
Function Call ... 125
fwrite ... 184, 217

G
gammaf ... 188, 269
gcvtf ... 185, 242
General Integer ... 25
General-Purpose Register ... 41
getc ... 184, 219
getchar ... 184, 219
gets ... 184, 219
gp ... 157

H
halt ... 106
Header File ... 24
hsw ... 108

318 User’s Manual U18513EJ1V0UM

APPENDIX C INDEX

hypotf ... 188, 270

I
Identifier ... 23
index ... 182, 203
Inline Expansion ... 29, 96
Integer Type ... 34
Interrupt Control ... 105
Interrupt Disable ... 30
Interrupt Level ... 78
Interrupt/Exception ... 29
Interrupt/Exception Handler

Example ... 95
Note ... 93

Interrupt/Exception Processing Handler ... 84
isalnum ... 183, 212
isalpha ... 183, 212
isascii ... 183, 212
iscntrl ... 183, 212
isdigit ... 183, 212
isgraph ... 183, 212
islower ... 183, 212
isprint ... 183, 212
ispunct ... 183, 212
isspace ... 183, 212
isupper ... 184, 212
isxdigit ... 184, 212
itoa ... 185, 244

J
j0f ... 188, 260
j1f ... 188, 260
jnf ... 188, 260

L
labs ... 185, 237
ldexpf ... 188, 267
ldiv ... 185, 240
log10f ... 188, 263
log2f ... 188, 263
logf ... 188, 263
longjmp ... 186, 256
ltoa ... 185, 244

M
Macro Name ... 31
main ... 155, 171
malloc ... 185, 246
Mask Register ... 45, 159
matherr ... 188, 271
memchr ... 182, 207
memcmp ... 182, 207
memcpy ... 182, 207
memmove ... 182, 207
Memory Allocation ... 29
memset ... 182, 207
___mod ... 191, 286
modff ... 188, 267
___modu ... 191, 286
___mul ... 191, 288
mul ... 110
___mulf.s ... 191, 289
Multi-byte Character ... 19

___mulu ... 191, 288
mulu ... 111

N
nop ... 105

P
Peripheral I/O Register ... 29, 73, 160
perror ... 184, 216
Pointer Type ... 36
Pointers ... 294
powf ... 188, 263
printf ... 184, 227
Prologue/Epilogue ... 140
putc ... 184, 221
putchar ... 184, 221
puts ... 184, 221

Q
qsort ... 185, 238
Quantitative Limit ... 21

R
rand ... 186, 249
_rcopy ... 192
_rcopy1 ... 192
_rcopy2 ... 192
_rcopy4 ... 192
realloc ... 185, 246
Real-Time OS ... 102, 173
Referencing Data ... 42
Register ... 297
Register Mode ... 43, 153
RESET ... 152
rewind ... 184, 219
rindex ... 182, 203

S
sasf ... 112
satadd ... 106
satsub ... 107
sbss ... 163
scan ... 185
scanf ... 234
sebss ... 165
__set_il ... 78
setjmp ... 186, 256
Shift Operator ... 26
sibss ... 168
sinf ... 275
sinhf ... 189, 273
sizeof ... 25
Software Register Bank ... 43
Special Data Type ... 32
sprintf ... 184, 223
sqrtf ... 188, 263
srand ... 186, 249
sscanf ... 185
sscanff ... 230
Stack Frame ... 125
Stack Pointer ... 154
Stack Size ... 300
Startup Routine ... 150

APPENDIX C INDEX

User’s Manual U18513EJ1V0UM 319

Example ... 174
Storage Area Class Specifier ... 26
strcat ... 182, 203
strchr ... 182, 203
strcmp ... 182, 203
strcpy ... 182, 203
strcspn ... 182, 203
strerror ... 182, 203
strlen ... 182, 203
strncat ... 182, 203
strncmp ... 182, 203
strncpy ... 182, 203
strpbrk ... 182, 203
strrchr ... 182, 203
strspn ... 182, 203
strstr ... 183, 203
strtodf ... 186, 250
strtok ... 183, 203
strtol ... 186, 252
strtoul ... 186, 252
Structure ... 25
Structure Type ... 37
Structure Type Packing ... 30
___subf.s ... 191, 290
Supplied Library ... 180
sxb ... 109
sxh ... 109

T
tanf ... 189, 275
tanhf ... 189, 273
Task Specification ... 30
tibss.byte ... 166
tibss.word ... 167
toascii ... 183, 210
_tolower ... 183, 210
tolower ... 183, 210
_toupper ... 183, 210
toupper ... 183, 210
tp ... 156
Translation Limit ... 20
Translation Stage ... 18
___trnc.sw ... 191, 291
Type Qualifier ... 27

U
ultoa ... 185, 244
ungetc ... 184, 219
Union ... 25, 116
Union Type ... 37
User Target ... 162

V
va_arg ... 181, 200
va_end ... 181, 200
va_start ... 181, 200
vfprintf ... 184, 227
volatile Qualifier ... 292
vprintf ... 227
vsprintf ... 184, 185, 223

Y
y0f ... 188, 260

y1f ... 188, 260
ynf ... 188, 260

NEC Electronics Corporation
1753, Shimonumabe, Nakahara-ku,
Kawasaki, Kanagawa 211-8668,
Japan
Tel: 044-435-5111
http://www.necel.com/

[America]

NEC Electronics America, Inc.
2880 Scott Blvd.
Santa Clara, CA 95050-2554, U.S.A.
Tel: 408-588-6000
 800-366-9782
http://www.am.necel.com/

[Asia & Oceania]

NEC Electronics (China) Co., Ltd
7th Floor, Quantum Plaza, No. 27 ZhiChunLu Haidian
District, Beijing 100083, P.R.China
Tel: 010-8235-1155
http://www.cn.necel.com/

NEC Electronics Shanghai Ltd.
Room 2511-2512, Bank of China Tower,
200 Yincheng Road Central,
Pudong New Area, Shanghai P.R. China P.C:200120
Tel: 021-5888-5400
http://www.cn.necel.com/

NEC Electronics Hong Kong Ltd.
Unit 1601-1613, 16/F., Tower 2, Grand Century Place,
193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: 2886-9318
http://www.hk.necel.com/

NEC Electronics Taiwan Ltd.
7F, No. 363 Fu Shing North Road
Taipei, Taiwan, R. O. C.
Tel: 02-8175-9600
http://www.tw.necel.com/

NEC Electronics Singapore Pte. Ltd.
238A Thomson Road,
#12-08 Novena Square,
Singapore 307684
Tel: 6253-8311
http://www.sg.necel.com/

NEC Electronics Korea Ltd.
11F., Samik Lavied’or Bldg., 720-2,
Yeoksam-Dong, Kangnam-Ku,
Seoul, 135-080, Korea
Tel: 02-558-3737
http://www.kr.necel.com/

For further information,
please contact:

G07.1A

[Europe]

NEC Electronics (Europe) GmbH
Arcadiastrasse 10
40472 Düsseldorf, Germany
Tel: 0211-65030
http://www.eu.necel.com/

Hanover Office
Podbielskistrasse 166 B
30177 Hannover
Tel: 0 511 33 40 2-0

Munich Office
Werner-Eckert-Strasse 9
81829 München
Tel: 0 89 92 10 03-0

Stuttgart Office
Industriestrasse 3
70565 Stuttgart
Tel: 0 711 99 01 0-0

United Kingdom Branch
Cygnus House, Sunrise Parkway
Linford Wood, Milton Keynes
MK14 6NP, U.K.
Tel: 01908-691-133

Succursale Française
9, rue Paul Dautier, B.P. 52
78142 Velizy-Villacoublay Cédex
France
Tel: 01-3067-5800

Sucursal en España
Juan Esplandiu, 15
28007 Madrid, Spain
Tel: 091-504-2787

Tyskland Filial
Täby Centrum
Entrance S (7th floor)
18322 Täby, Sweden
Tel: 08 638 72 00

Filiale Italiana
Via Fabio Filzi, 25/A
20124 Milano, Italy
Tel: 02-667541

Branch The Netherlands
Steijgerweg 6
5616 HS Eindhoven
The Netherlands
Tel: 040 265 40 10

	COVER
	INTRODUCTION
	CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1 BASIC LANGUAGE SPECIFICATIONS
	1.1 Dependent on Processing System Stipulated
	1.1.1 Data type and size
	1.1.2 Translation stages
	1.1.3 Diagnosis message
	1.1.4 Free-standing environment
	1.1.5 Executing program
	1.1.6 Character set
	1.1.7 Multi-byte characters
	1.1.8 Meaning of character indication
	1.1.9 Translation limit
	1.1.10 Quantitative limit
	1.1.11 Identifier
	1.1.12 char type
	1.1.13 Floating-point constants
	1.1.14 Character constants
	1.1.15 Character string
	1.1.16 Header file name
	1.1.17 Comment
	1.1.18 Signed constants and unsigned constants
	1.1.19 Floating-points and general integers
	1.1.20 double type and float type
	1.1.21 Signed type in operator in bit units
	1.1.22 Members of structures and unions
	1.1.23 sizeof operator
	1.1.24 Cast operator
	1.1.25 Division/remainder operator
	1.1.26 Addition and subtraction operators
	1.1.27 Shift operator in bit units
	1.1.28 Storage area class specifier
	1.1.29 Structure and union specifier
	1.1.30 Enumerate type specifier
	1.1.31 Type qualifier
	1.1.32 Condition embedding
	1.1.33 Loading header file
	1.1.34 #pragma directives
	1.1.35 Predefined macro names
	1.1.36 Definition of special data type

	1.2 ANSI Option

	CHAPTER 2 COMPILATION ENVIRONMENT
	2.1 Internal Representation and Value Area of Data
	2.1.1 Integer type
	2.1.2 Floating-point type
	2.1.3 Pointer type
	2.1.4 Enumerate type
	2.1.5 Array type
	2.1.6 Structure type
	2.1.7 Union type
	2.1.8 Bit field
	2.1.9 Alignment conditions

	2.2 General-Purpose Registers
	2.3 Referencing Data
	2.4 Software Register Bank
	2.4.1 Register modes
	2.4.2 Register mode and library

	2.5 Mask Register
	2.5.1 Setting mask values
	2.5.2 Using mask register function

	2.6 Device File
	2.6.1 Specifying device file
	2.6.2 Notes on specifying device file

	CHAPTER 3 C LANGUAGE EXPANSION
	3.1 Allocation of Data to Section
	3.1.1 #pragma section directive
	3.1.2 Specifying link directive of specific data section
	3.1.3 Notes on section allocation
	3.1.4 Example of #pragma section directive

	3.2 Allocating Functions to Sections
	3.2.1 #pragma text directive
	3.2.2 Specifying link directive of specific text section
	3.2.3 Notes on #pragma text directive

	3.3 Peripheral I/O Register
	3.3.1 Accessing
	3.3.2 Bit access

	3.4 Describing Assembler Instruction
	3.5 Controlling Interrupt Level
	3.5.1 __set_il function
	3.5.2 __set_il function and interrupt control register

	3.6 Disabling Interrupts
	3.6.1 Locally disabling interrupt in function
	3.6.2 Disabling interrupts in entire function
	3.6.3 Notes on disabling interrupts in entire function

	3.7 Interrupt/Exception Processing Handler
	3.7.1 Occurrence of interrupt/exception
	3.7.2 Processing necessary in case of interrupt/exception
	3.7.3 Describing interrupt/exception handler
	3.7.4 Notes on describing interrupt/exception handler
	3.7.5 Description example of interrupt/exception handler

	3.8 Inline Expansion
	3.8.1 Inline expansion
	3.8.2 Conditions of inline expansion
	3.8.3 Controlling inline expansion via options
	3.8.4 Execution speed priority optimization and inline expansion
	3.8.5 Examples of differences in inline expansion operation depending on option specification

	3.9 Real-Time OS Support Function
	3.9.1 Description of task

	3.10 Embedded Functions
	3.10.1 Interrupt control (DI/EI)
	3.10.2 nop
	3.10.3 halt
	3.10.4 Saturated addition (satadd)
	3.10.5 Saturated subtraction (satsub)
	3.10.6 Halfword data byte swap (bsh) [V850E]
	3.10.7 Word data byte swap (bsw) [V850E]
	3.10.8 Word data halfword swap (hsw) [V850E]
	3.10.9 Byte data sign extension (sxb) [V850E]
	3.10.10 Halfword data sign extension (sxh) [V850E]
	3.10.11 Instruction that assigns higher 32 bits of multiplication result to variable using mul in...
	3.10.12 Instruction that assigns higher 32 bits of unsigned multiplication result to variable usi...
	3.10.13 Flag condition setting with logical left shift (sasf) [V850E]

	3.11 Structure Packing Function
	3.11.1 Structure packing specified
	3.11.2 Rules of structure packing
	3.11.3 Union
	3.11.4 Bit field
	3.11.5 Alignment condition of top structure object
	3.11.6 Size of structure objects
	3.11.7 Size of structure array
	3.11.8 Area between objects
	3.11.9 Notes concerning structure packing function

	3.12 Binary Constants

	CHAPTER 4 CALLING PROGRAM
	4.1 Calling Between C Functions
	4.1.1 Stack frame/function call

	4.2 Calling Between C Function and Assembler Function
	4.2.1 Calling assembler function from C function
	4.2.2 Calling C function from assembler function

	4.3 Prologue/Epilogue Processing of Function
	4.3.1 Specifying use of runtime library function for prologue/epilogue of function
	4.3.2 Calling runtime library for prologue/epilogue of function in V850Ex
	4.3.3 Notes on calling runtime library for prologue/epilogue of function

	4.4 Far Jump Function
	4.4.1 Specifying far jump
	4.4.2 File listing functions to be called by far jump function
	4.4.3 Examples of using far jump function

	CHAPTER 5 STARTUP ROUTINE
	5.1 Operation of Startup Routine
	5.1.1 Setting RESET handler when reset is input
	5.1.2 Setting register mode of startup routine
	5.1.3 Securing stack area and setting stack pointer (sp)
	5.1.4 Securing argument area for main function
	5.1.5 Setting text pointer (tp)
	5.1.6 Setting global pointer (gp)
	5.1.7 Setting element pointer (ep)
	5.1.8 Setting mask value to mask registers (r20 and r21)
	5.1.9 Initializing peripheral I/O registers that must be initialized before execution of main fun...
	5.1.10 Initializing user target that must be initialized before execution of main function
	5.1.11 Clearing sbss area to 0
	5.1.12 Clearing bss area to 0
	5.1.13 Clearing sebss area to 0
	5.1.14 Clearing tibss.byte area to 0
	5.1.15 Clearing tibss.word area to 0
	5.1.16 Clearing sibss area to 0
	5.1.17 Setting CTBP value for prologue/epilogue runtime library of functions
	5.1.18 Setting BPC value of programmable peripheral I/O register
	5.1.19 Setting r6 and r7 as argument of main function
	5.1.20 Branching to main function
	5.1.21 Branching to initialization routine of real-time OS

	5.2 Example of Startup Routine

	CHAPTER 6 LIBRARY FUNCTION
	6.1 Supplied Libraries
	6.1.1 Standard library
	6.1.2 Mathematical library
	6.1.3 Runtime library
	6.1.4 ROMization library
	6.1.5 Prologue/epilogue runtime library of functions

	6.2 Header Files
	6.3 Object Names Linked
	6.4 Explanation of Format
	6.5 Definition of Function with Variable Number of Arguments
	STDARG

	6.6 Management of Character String and Memory
	STRING
	MEMORY

	6.7 Character Type Macros and Functions
	CONV
	CTYPE

	6.8 Standard Input/Output
	ERROR
	FILEIO
	GETS
	PUTS
	SPRINTF
	PRINTF
	SSCANF
	SCANF

	6.9 Standard Utility Functions
	ABS
	BSEARCH
	DIV
	ECVTF
	ITOA
	MALLOC
	RAND
	STRTODF
	STRTOL

	6.10 Non-Local Jump Functions
	SETJMP

	6.11 Mathematical Functions
	BESSEL
	ERFF
	EXPF
	FLOORF
	FREXPF
	GAMMAF
	HYPOTF
	MATHERR
	SINHF
	TRIG

	6.12 Runtime Library
	ADDF.S
	CMPF.S
	CVT.WS
	DIV
	DIVF.S
	MOD
	MUL
	MULF.S
	SUBF.S
	TRNC.SW

	CHAPTER 7 FOR EFFICIENT USE
	7.1 volatile Qualifier
	7.2 Declaration of Function Without Return Value
	7.3 Pointers and Optimization
	7.4 Assembler Code and Optimization
	7.5 Registers
	7.5.1 Register specifier
	7.5.2 Static variables and external variables
	7.5.3 Argument of function in K&R format
	7.5.4 Optimum number of local variables to be assigned
	7.5.5 Optimum number of arguments to be used for function
	7.5.6 Other

	7.6 Stack Size
	7.7 Aligning Data
	7.8 Data Type

	APPENDIX A EXPANDED FUNCTIONS OF CC78Kx
	A.1 #pragma Directive
	A.2 Assembler Control Instructions
	A.3 Specifying Interrupt/Exception Handler
	A.4 Expanded Functions Not Supported

	APPENDIX B CAUTIONS
	APPENDIX C INDEX

