

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Note that the following URLs in this document are not available: http://www.necel.com/http://www2.renesas.com/ Please refer to the following instead:Development Tools | http://www.renesas.com/toolsDownload | http://www.renesas.com/tool_download For any inquiries or feedback, please contact your region.http://www.renesas.com/inquiry

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

CA850 Ver. 3.20
C Compiler Package

Assembly Language

User’s Manual

Target Device
 V850 Series

Printed in Japan

Document No. U18514EJ1V0UM00 (1st edition)
Date Published May 2007 CP(K)
© NEC Electronics Corporation 2007

User’s Manual U18514EJ1V0UM 2

[MEMO]

User’s Manual U18514EJ1V0UM 3

Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States
and/or other countries.

User’s Manual U18514EJ1V0UM 4

The information in this document is current as of May, 2007. The information is subject to change
without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or
data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all
products and/or types are available in every country. Please check with an NEC Electronics sales
representative for availability and additional information.
No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may
appear in this document.
NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from the use of NEC Electronics products listed in this document
or any other liability arising from the use of such products. No license, express, implied or otherwise, is
granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of a customer's equipment shall be done under the full
responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by
customers or third parties arising from the use of these circuits, software and information.
While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products,
customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To
minimize risks of damage to property or injury (including death) to persons arising from defects in NEC
Electronics products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment and anti-failure features.
NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and
"Specific".
The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-
designated "quality assurance program" for a specific application. The recommended applications of an NEC
Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of
each NEC Electronics product before using it in a particular application.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC
Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications
not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to
determine NEC Electronics' willingness to support a given application.

(Note)

•

•

•

•

•

•

M8E 02. 11-1

(1)

(2)

"NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its
majority-owned subsidiaries.
"NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as
defined above).

Computers, office equipment, communications equipment, test and measurement equipment, audio
and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots.
Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support).
Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

"Standard":

"Special":

"Specific":

User’s Manual U18514EJ1V0UM 5

[MEMO]

6 User’s Manual U18514EJ1V0UM

INTRODUCTION

Target devices The V850 Series C compiler package generates object code for the NEC
Electronics’s V850 Series RISC microcontrollers.
This manual explains the CA850 C compiler package.

Readers This manual is intended for user engineers who wish to develop an application

system using the V850 Series C compiler package.

Purpose This manual explains the assembly language specifications supported by the

assembler (as850) included in the CA850 C compiler package.

Organization This manual contains the following information:

• OVERVIEW
• ASSEMBLY LANGUAGE SPECIFICATIONS
• INSTRUCTION SET
• THE INSTRUCTION OF THE ASSENBLY LANGUAGE
• QUASI DIRECTIVES

Note on reading this manual

• Each program name of the C compiler package is described in this manual
as follows:

 C compiler package → CA850
 Assembler → as850
 C compiler → ca850
• The functions and features specific to the V850E in the V850 Series are

identified in the title or by [V850E], whereas the functions and features
specific to the V850E2 are identified in the title or by [V850E2].

 User’s Manual U18514EJ1V0UM 7

Related Documents Read this manual together with the following documents.
 The related documents indicated in this publication may include preliminary

versions. However, preliminary versions are not marked as such.

Documents related to development tools (user’s manuals)

Document Name Document No.

Operation U18512E

C Language U18513E

Assembly Language This manual

CA850 Ver. 3.20 C Compiler Package

Link Directives U18515E

PM+ Ver. 6.30 Project Manager U18416E

ID850 Ver. 3.00 Integrated Debugger Operation U17358E

ID850NW Ver. 3.10 Integrated Debugger Operation U17369E

ID850QB Ver. 3.20 Integrated Debugger Operation U17964E

Operation U17246E SM+ System Simulator

User Open Interface U18212E

SM850 Ver. 2.50 System Simulator Operation U16218E

SM850 Ver. 2.00 or Later System Simulator External Part User Open Interface Specifications U14873E

Basics U13430E

Installation U17419E

Technical U13431E

RX850 Ver. 3.20 or Later Real-Time OS

Task Debugger U17420E

Basics U18165E

Internal Structure U18164E

RX850 Pro Ver. 3.21 Real-Time OS

Task Debugger U17422E

Functionalities U16643E

Internal Structure U16644E

RX850V4 Ver. 4.22 Real-Time OS

Task Debugger U16811E

AZ850 Ver. 3.30 System Performance Analyzer U17423E

AZ850V4 Ver. 4.10 System Performance Analyzer U17093E

TW850 Ver. 2.00 Performance Analysis Tuning Tool U17241E

8 User’s Manual U18514EJ1V0UM

[MEMO]

User’s Manual U18514EJ1V0UM 9

 CONTENTS

CHAPTER 1 ASSEMBLY LANGUAGE SPECIFICATIONS ... 15

1.1 Organization of Assembly Language Statements ... 15
1.1.1 Label ... 16
1.1.2 Mnemonic and operands ... 17
1.1.3 Comment ... 18
1.1.4 Character set ... 19
1.1.5 Example of assembly language statement ... 20

1.2 Organization of Assembly Language Program ... 21
1.2.1 Symbol ... 21
1.2.2 Label ... 22
1.2.3 Macro ... 24
1.2.4 Reserved words ... 25
1.2.5 Constants ... 26
1.2.6 Expressions ... 29
1.2.7 Operators ... 32

1.3 Identifiers ... 37

CHAPTER 2 INSTRUCTION SET ... 38

2.1 Description of Symbols ... 38

2.2 Operand ... 39
2.2.1 Registers ... 39
2.2.2 Constants ... 41
2.2.3 Symbols ... 41
2.2.4 Label references ... 42
2.2.5 ep offset reference ... 47
2.2.6 gp offset reference ... 50
2.2.7 hi()/lo()/hi1() ... 54

2.3 Runtime Library ... 57

2.4 Macro Operators ... 58
2.4.1 Tilde symbol ... 58
2.4.2 Dollar symbol ... 59

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS ... 60

3.1 Description of Format ... 60

3.2 Load/Store Instructions ... 61
ld ... 62
sld ... 65
sst ... 67
st ... 69

3.3 Arithmetic Operation Instructions ... 72
add ... 73
addi ... 76
cmov ... 80
cmp ... 85
div ... 88
divh ... 90
divhu ... 95
divu ... 98
mov ... 100
mov32 ... 104
movea ... 105
movhi ... 108

10 User’s Manual U18514EJ1V0UM

mul ... 110
mulh ... 113
mulhi ... 117
mulu ... 122
mac ... 125
macu ... 126
sasf ... 127
setf ... 130
sub ... 133
subr ... 136
adf ... 139
sbf ... 142

3.4 Saturation Operation Instructions ... 145
satadd ... 146
satsub ... 150
satsubi ... 154
satsubr ... 159

3.5 Logical Instructions ... 163
and ... 164
andi ... 167
bsh ... 172
bsw ... 173
hsh ... 174
hsw ... 175
not ... 176
or ... 179
ori ... 182
sar ... 186
shl ... 188
shr ... 190
sxb ... 192
sxh ... 193
tst ... 194
xor ... 197
xori ... 200
zxb ... 204
zxh ... 205
sch0l ... 206
sch0r ... 207
sch1l ... 208
sch1r ... 209

3.6 Branch Instructions ... 210
jarl ... 211
jarl22 ... 213
jarl32 ... 215
jcond ... 216
jmp ... 220
jmp32 ... 222
jr ... 223
jr22 ... 225
jr32 ... 227

3.7 Bit Manipulation Instructions ... 228
clr1 ... 229
not1 ... 232
set1 ... 235
tst1 ... 238

3.8 Stack Manipulation Instructions ... 241
pop ... 242
popm ... 243
push ... 244
pushm ... 245

User’s Manual U18514EJ1V0UM 11

3.9 Special Instructions ... 246
callt ... 247
ctret ... 248
dbret ... 249
dbtrap ... 250
di ... 251
dispose ... 252
ei ... 255
halt ... 256
ldsr ... 257
nop ... 261
prepare ... 262
reti ... 265
stsr ... 266
switch ... 270
trap ... 271

CHAPTER 4 QUASI DIRECTIVES ... 272

4.1 Description of Format ... 272

4.2 Section Definition Quasi Directives ... 273
.bss ... 274
.const ... 275
.data ... 276
.previous ... 277
.sbss ... 278
.sconst ... 279
.sdata ... 280
.sebss ... 281
.section ... 282
.sedata ... 285
.sibss ... 286
.sidata ... 287
.text ... 288
.tibss ... 289
.tibss.byte ... 290
.tibss.word ... 291
.tidata ... 292
.tidata.byte ... 293
.tidata.word ... 294
.vdbstrtab ... 295
.vdebug ... 296
.vline ... 297

4.3 Symbol Control Quasi Directives ... 298
.ext_ent_size ... 299
.ext_func ... 300
.file ... 301
.frame ... 302
.set ... 303
.size ... 304

4.4 Location Counter Control Quasi Directives ... 305
.align ... 306
.org ... 307

4.5 Area Allocation Quasi Directives ... 308
.byte ... 309
.float ... 310
.hword ... 311
.lcomm ... 312
.shword ... 313
.space ... 314
.str ... 315
.word ... 316

12 User’s Manual U18514EJ1V0UM

4.6 Program Linkage Quasi Directives ... 317
.comm ... 318
.extern ... 322
.globl ... 323

4.7 Assembler Control Quasi Directive ... 324
.option ... 325

4.8 File Input Control Quasi Directives ... 329
.binclude ... 330
.include ... 331

4.9 Repetitive Assembly Quasi Directives ... 332
.irepeat ... 333
.repeat ... 335

4.10 Conditional Assembly Quasi Directives ... 336
.else ... 337
.elseif ... 338
.elseifn ... 340
.endif ... 342
.if ... 343
.ifdef ... 345
.ifn ... 347
.ifndef ... 348

4.11 Skip Quasi Directives ... 350
.exitm ... 351
.exitma ... 353

4.12 Macro Quasi Directives ... 355
.endm ... 356
.local ... 357
.macro ... 358

APPENDIX A INSTRUCTION SUMMARY ... 360

APPENDIX B INDEX ... 366

User’s Manual U18514EJ1V0UM 13

 LIST OF FIGURES

Figure No. Title Page

1 - 1 Organization of Assembly Language Statement ... 15
1 - 2 Mnemonic and Operands ... 17
2 - 1 Memory Location Image of Internal RAM ... 47
2 - 2 Memory Allocation Image for External RAM (.sedata Section) ... 48
2 - 3 Memory Location Image of gp Offset Reference Section ... 50
4 - 1 Example of Allocation with Bit Width Specified ... 309

14 User’s Manual U18514EJ1V0UM

 LIST OF TABLES

Table No. Title Page

1 - 1 Character Set and Usage of Characters ... 19
1 - 2 Value and Meaning of Escape Sequences ... 27
1 - 3 Operators ... 32
1 - 4 Priority of Operators ... 35
1 - 5 Operation Rules for Binary Operation ... 36
2 - 1 Meanings of Symbols ... 38
2 - 2 Label Referencing ... 42
2 - 3 Memory Reference Instructions ... 44
2 - 4 Operation Instructions ... 45
2 - 5 Branch Instructions ... 45
2 - 6 Area Allocation Quasi Directives ... 46
2 - 7 Meanings of hi() /lo() /hi1() ... 56
3 - 1 Load/Store Instructions ... 61
3 - 2 Arithmetic Operation Instructions ... 72
3 - 3 cmovcond Instruction List ... 81
3 - 4 sasfcond Instruction List ... 128
3 - 5 setfcond Instruction List ... 131
3 - 6 adfcond Instruction List ... 140
3 - 7 sbfcond Instruction List ... 143
3 - 8 Saturation Operation Instructions ... 145
3 - 9 Logical Instructions ... 163
3 - 10 Branch Instructions ... 210
3 - 11 jcond Instruction List ... 217
3 - 12 Bit Manipulation Instructions ... 228
3 - 13 Stack Manipulation Instructions ... 241
3 - 14 Special Instructions ... 246
3 - 15 System Register Numbers (ldsr) ... 257
3 - 16 System Register Numbers [V850E/MS1] (ldsr) ... 258
3 - 17 System Register Numbers [V850E1] (ldsr) ... 259
3 - 18 System Register Numbers (ldsr) ... 266
3 - 19 System Register Numbers [V850E/MS1] (stsr) ... 267
3 - 20 System Register Numbers [V850E1] (stsr) ... 268
4 - 1 Section Definition Quasi Directives ... 273
4 - 2 Section Types ... 282
4 - 3 Correspondence between These Reserved Section Names and The Section Types ... 283
4 - 4 Symbol Control Quasi Directives ... 298
4 - 5 Location Counter Control Quasi Directives ... 305
4 - 6 Area Allocation Quasi Directives ... 308
4 - 7 Program Linkage Quasi Directives ... 317
4 - 8 Assembler Control Quasi Directive ... 324
4 - 9 File Input Control Quasi Directives ... 329
4 - 10 Repetitive Assembly Quasi Directives ... 332
4 - 11 Conditional Assembly Quasi Directives ... 336
4 - 12 Skip Quasi Directives ... 350
4 - 13 Macro Quasi Directives ... 355
A - 1 Instruction Mnemonics List ... 360
A - 2 Quasi Directives List ... 364

CHAPTER 1 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U18514EJ1V0UM 15

CHAPTER 1 ASSEMBLY LANGUAGE SPECIFICATIONS

This chapter explains the assembly language specifications supported by the CA850 assembler (as850).

1.1 Organization of Assembly Language Statements

An assembly language statement consists of a "label", a "mnemonic", "operands", and a "comment".

It is irrelevant whether blanks are used or not in the following cases (1) to (4).

(1) Between the label name and colon

(2) Between the colon and mnemonic

(3) Before the second and subsequent operands

(4) Before "--" that indicates the beginning of a comment

One or more blank is necessary in the following case.

(5) Between the mnemonic and the first operand

Figure 1 - 1 Organization of Assembly Language Statement

Basically, one assembly language statement is described on one line, with a line feed (return) at the end of the

statement. Two or more statements can be described on one line by using ";" (semicolon).

[label]: [mnemonic] [operand], [operand] -- [comment]

Label1 : add 0x10, r19 -- For example

label

mnemonic

operand comment

(1) (2) (3) (4)(5)

16 User’s Manual U18514EJ1V0UM

CHAPTER 1 ASSEMBLY LANGUAGE SPECIFICATIONS

1.1.1 Label

A label is a "name plate" that can be described on any line of a program.

A label can be used as the name of a branch destination if a conditional branch is executed or if execution

branches to a subroutine.

For example, when the "jr" instruction, one of the branch instructions, is used, describe a label as follows.

When this instruction is executed, execution branches to the location of Label1.

When a label is described as name Label1, describe as follows.

Different labels can be defined over several lines.

However, two or more labels must not be specified on one line.

It is irrelevant whether blanks are inserted between the label name and colon.

Before using a label, a "definition" or "declaration" must be made. For how to make a definition or declaration,

refer to "1.2.2 Label".

jr Label1

Label1 :

Label1 :

Label2 :

Label1: Label2: -- Two or more labels must not be specified on one line.

CHAPTER 1 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U18514EJ1V0UM 17

1.1.2 Mnemonic and operands

A mnemonic is a character string assigned to each instruction (V850 machine code).

Machine codes are hard for human beings to understand as is. Therefore, a name is assigned to each

machine code. This name is a "mnemonic". A mnemonic means the instruction itself. A mnemonic is expressed

in close to word notation (based on English) so that the operation it stands for can be easily inferred.

For example, the mnemonic "add" means "addition", and "mul" means "multiplication".

An operand is an object to be manipulated by each instruction. If the mnemonic is "add" (addition), the

operand is subject to the operation of addition. An operand must be described next to (on the right of) a

mnemonic.

One or more blank is necessary between the mnemonic and the first operand.

Figure 1 - 2 Mnemonic and Operands

An assembly instruction consists of a "mnemonic" and "operand(s)". The number of operands differs from one

mnemonic to another.

For the list of the assembly instructions provided in the V850 microcontrollers and their specifications, refer to

"CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS".

add 0x10, r19

Mnemonic

Operands

Meaning:

Adds 0x010 to the value stored in r19 and

then stores the result in r19.

18 User’s Manual U18514EJ1V0UM

CHAPTER 1 ASSEMBLY LANGUAGE SPECIFICATIONS

1.1.3 Comment

Comments can be described in an assembly language program.

The as850 recognizes the description after the following marks to the end of the line as a comment.

In the case of "#", however, the statement to the end of the line is recognized as a comment only if "#" is at the

beginning of the statementNote.

Note The blank at the beginning of the line is not regarded as a part of it. When there is a blank in front of

the "#", the comment is composed of the characters from the "#" to the end of the statement.

--

#

comment

add 0x10, r19 -- comment-1

sub r18, r19 -- comment-2

CHAPTER 1 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U18514EJ1V0UM 19

1.1.4 Character set

The character set that can be used in a source program (assembly language) supported by the as850, and the

use for the characters are as follows.

Table 1 - 1 Character Set and Usage of Characters

Character Usage

Lowercase letter (a-z) Constitutes a mnemonic, identifier, and constant

Uppercase letter (A-Z) Constitutes an identifier and constant

_ (underscore) Constitutes an identifier

. (period) Constitutes an identifier and constant

Numeral Constitutes an identifier and constant

: (colon) End of label

, (comma) Delimits an operand

- (hyphen) Indicates a negative sign, subtraction operator, and the beginning of a
comment

References the absolute address of a label and indicates the beginning of a
comment

; (semicolon) End of statement

' (single quotate) Start and end of character constant

" (double quotate) Start and end of string constant

$ References the gp offset of label

[] Specifies the base register

+ Addition operator

* Multiplication operator

/ Division operator

% Offset reference of label in section (without instruction expansion) or
remainder operator

<< Left shift operator

>> Right shift operator

! Absolute address reference of label (without instruction expansion) or
negation operator

& Logical product operator

| Logical sum operator

^ Exclusive OR operator

() Specifies an operation sequence

20 User’s Manual U18514EJ1V0UM

CHAPTER 1 ASSEMBLY LANGUAGE SPECIFICATIONS

1.1.5 Example of assembly language statement

Here is a simple example of an assembly language program.

sample program

.extern __tp_TEXT, 4

.extern __gp_DATA, 4

.extern _main

.section "RESET", text -- Reset Handler address

jr __boot -- Jump to __boot

.text -- Text section

.align 4 -- Code alignment

.globl __boot -- Alignment

__boot:

mov #__tp_TEXT, tp -- Set tp

mov #__gp_DATA, gp -- Set gp

.extern __ssbss, 4

.extern __esbss, 4

start of bss initialize

mov #__ssbss, r13

mov #__esbss, r13

cmp r12, r13

jnl sbss_init_end

sbss_init_loop:

st.w r0, 0[r13]add 4, r13

cmp r12, r13

jl sbss_init_loop

sbss_init_end:

end of bss initialize

jarl _main, lp -- Call main function

.data

.align 4

data_area:

.word 0x00 -- data1

.hword 0x01 -- data2

.byte 0xff ; .byte 0xfe -- data3, data4

CHAPTER 1 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U18514EJ1V0UM 21

1.2 Organization of Assembly Language Program

1.2.1 Symbol

A symbol is a name having a value (integer value) which is defined by the user.

The ".set" quasi directive is used to define a symbol.

The as850 assumes a reference to a symbol appearing between the beginning of a file and the first .set quasi

directive as a "reference to a symbol undefined at that point", and distinguishes this symbol from a reference to a

defined symbol (also refer to "(1) Absolute expression" in "1.2.6 Expressions").

(1) Characters usable in symbol

The following characters shown in "1.1.4 Character set" can be used in symbols.

- Lowercase letters

- Uppercase letters

- _ (underscore)

- . (period)

- Numerals

However, a numeral cannot be used at the beginning of a symbol. If a symbol that begins with a numeral is

specified, the as850 outputs the following message and stops assembling.

Moreover, the reserved words shown in "1.2.4 Reserved words" cannot be used in symbols.

Caution Note that a symbol starting with "_" (underscore) may match a symbol name output by the compiler,

and may therefore cause an unexpected operation. Also, avoid using symbols that start with "."

(period) as much as possible because such symbols may be reserved in the future.

(2) Maximum number of characters of symbol and maximum number of symbols

A symbol consists of up to 1,037 characters. If a symbol of 1,038 or more characters is specified, the as850

outputs the following message and stops assembling.

The maximum number of symbols that can be defined depends on the size of the available memory area.

.set sym1, 0x10 -- sym1 is a symbol having the value 0x10.

mov sym1, r10 -- Stores the value(0x10) of sym1 in a register.

E3249: illegal syntax

E3260: token too long

22 User’s Manual U18514EJ1V0UM

CHAPTER 1 ASSEMBLY LANGUAGE SPECIFICATIONS

1.2.2 Label

A label is a name that can be described on any line of a program and is defined by the user.

A label is defined or declared as follows.

(1) Defining label

A label may be defined in two ways.

(a) Defined as local label when ":" is suffixed to a name at the beginning of a statement

This method is generally used to define a local label, and is hereafter referred to as "normal label definition".

(b) Defined as local label by the .lcomm quasi directive

The above statement means 'allocates size of "0x100 bytes" from an address aligned to 4 bytes and uses

the first label of that area as "label1"'.

(2) Declaring label

A label may be declared in four ways.

(a) Declared as an undefined external label by the .comm quasi directive

This statement means 'undefined external label "label1" of size "4 bytes" is declared in an alignment

condition of 4 bytes'.

(b) Declared as an external label by the .extern quasi directive (label not having a definition in a specified file)

(c) Declared as an external label by the .globl quasi directive (label having a definition in a specified file)

(d) Declared as an external label by not making a definition in a file

If the definition of label1 is not in the same file, label1 is regarded as an external label.

label1:

.lcomm label1, 0x100, 4

.comm label1, 4, 4

.extern label1

.globl label1

.mov label1, r10

CHAPTER 1 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U18514EJ1V0UM 23

(3) Characters that may be used in labels

The following characters shown in "1.1.4 Character set" can be used in labels.

- Lowercase letters

- Uppercase letters

- _ (underscore)

- . (period)

- Numerals

However, a numeral cannot be used at the beginning of a label. If a label that begins with a numeral is

specified, the as850 outputs the following message and stops assembling.

Moreover, the reserved words shown in "1.2.4 Reserved words" cannot be used in symbols.

Caution Note that a symbol starting with "_" (underscore) may match a symbol name output by the compiler,

and may therefore cause an unexpected operation. Also, avoid using symbols that start with "."

(period) as much as possible because such symbols may be reserved in the future.

(4) Maximum number of characters of label and maximum number of labels

A label consists of up to 1,037 characters. If a label of 1,038 or more characters is specified, the as850 outputs

the following message and stops assembling.

The maximum number of labels that can be defined depends on the size of the available memory area.

(5) Normal label definition in sbss/bss-attribute section

If a normal label definition is made in the sbss/bss-attribute section, the as850 outputs the following message

and stops assembling.

If this error is output, use the .lcomm quasi directive to define a label.

E3249: illegal syntax

E3260: token too long

E3246: illegal section

24 User’s Manual U18514EJ1V0UM

CHAPTER 1 ASSEMBLY LANGUAGE SPECIFICATIONS

1.2.3 Macro

A macro is described by registering a pattern with a set sequence and by using this pattern.

A macro is defined by the user. A macro is defined as follows.

The macro body is enclosed by ".macro" and ".endm". If the following description is made after the above

definition has been made, the macro is replaced by a code that "stores r19 in the stack".

In other words, the macro is expanded into the following codes.

.macro PUSH REG -- The following two statements constitute the macro body.

add -4, sp

st,w REG, 0x0[sp]

.endm

PUSH r19

add -4, sp

st,w r19, 0x0[sp]

CHAPTER 1 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U18514EJ1V0UM 25

1.2.4 Reserved words

The as850 has reserved words. Reserved words cannot be used in symbols, labels, and section names.

If a reserved word is specified, the as850 outputs the following message and stops assembling.

The reserved words are as follows.

- Instructions (such as add, sub, and mov)

- QUASI DIRECTIVES(such as .section, .lcomm, and .globl)

- hi, lo, hi1 (because they are used as hi(), lo(), and hi1(). Refer to "2.2.7 hi()/lo()/hi1()".)

- Register names

E3245:identifier is reserved word

26 User’s Manual U18514EJ1V0UM

CHAPTER 1 ASSEMBLY LANGUAGE SPECIFICATIONS

1.2.5 Constants

The as850 can handle "Numerical constants", "Character constant", and "String constant" as constants.

(1) Numerical constants

Numerical constants are divided into "Integer constants" and "Floating-point constant".

(a) Integer constants

An integer constant has a width of 32 bits. A negative value is expressed as a 2's complement. If an integer

value that exceeds the range of the values that can be expressed by 32 bits is specified, the as850 uses the

value of the lower 32 bits of that integer value and continues processing (it does not output any message).

(i) Binary constants

A binary constant consists of "0b" or "0B" followed by a numeric string of one or more "0" or "1" digits.

Example

(ii) Octal constant

An octal constant consists of "0" followed by a numeric string of one or more "0" to "7" digits.

Example

(iii) Decimal constant

A decimal constant consists of one or more numerals starting with other than "0".

Example

(iv) Hexadecimal constant

A hexadecimal constant consists of "0x" or "0X" followed by a numeric string of one or more "0" to "9"

digits, and a character string of "a" to "f" or "A" to "F".

Example

(b) Floating-point constant

A floating-point constant has a 32-bit width and consists of the following elements.

(i) Sign of mantissa ("+" can be omitted.)

(ii) Mantissa

(iii) "e" or "E" indicating exponent

(iv) Sign of exponent ("+" can be omitted.)

(v) Exponent

The exponent and mantissa are specified as decimal constants. If no exponent is used, however, (iii), (iv),

and (v) are not used.

0b00010110111101010111111010010111

02675277227

385187479

0x16f57e97

CHAPTER 1 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U18514EJ1V0UM 27

Example

A floating-point constant can also be indicated by placing "0f" or "0F" at the beginning of a mantissa (for

example, the as850 regards 10 as being an integer constant but 0f10 as being a floating-point constant).

A numeric string that starts with "0" and which has no decimal point, such as "060", must not be specified

(only "0" can be specified).

(2) Character constant

A character constant consists of a single character enclosed by a pair of single quotation marks (' ') and

indicates the value of the enclosed characterNote. If any of the escape sequences listed in Table 1 - 2 is enclosed

in single quotation marks, the as850 regards the sequence as being a single character.

Example

Note If a character constant is specified, the as850 assumes that an integer having the value of that

character constant is specified.

123.4

-100.

10e-2

-100.2E+5

'a'

'\0'

'\012'

'\x0a'

Table 1 - 2 Value and Meaning of Escape Sequences

Escape Sequence Value Meaning

\0 0x00 null character

\a 0x07 Alert

\b 0x08 Backspace

\f 0x0c Form feed

\n 0x0a New line

\r 0x0d Carriage return

\t 0x09 Horizontal tab

\v 0x0b Vertical tab

\\ 0x5c Backslash

\' 0x27 Single quotation mark

\'' 0x22 Double quotation mark

\? 0x3f Question mark

\ddd 0 - 0377 Octal number of up to 3 digits (0 ≤ d ≤ 7) Note

\xhh 0 - 0xff Hexadecimal number of up to 2 digits
(0 ≤ h ≤ 9, a ≤ h ≤ f, or A ≤ h ≤ F)

28 User’s Manual U18514EJ1V0UM

CHAPTER 1 ASSEMBLY LANGUAGE SPECIFICATIONS

Note If a value exceeding "\377" is specified, the value of the escape sequence becomes the lower 1 byte.

An octal number exceeding 0377 thus cannot be specified. For example, "\777" is assumed to be

0377.

(3) String constant

A string constant consists of a character string enclosed by a pair of double quotation marks ("") and indicates

the enclosed string. If any of the escape sequences listed in Table 1 - 2 is enclosed in double quotation marks,

the as850 regards the sequence as being a single character. If a numeral other than "0" to "7" is used as the

escape sequence in "\ddd" format, the as850 regards the characters immediately before that numeral as an

escape sequence of this format.

Example

"abc" ’a’, ’b’, ’c’

"ABC\n" ’A’, ’B’, ’C’, ’\n’

"\033abc\t\0" ’\033’, ’a’, ’b’, ’c’, ’\t’, ’\0’

"\12345" ’\123’, ’4’, ’5’

"\12845" ’\12’, ’8’, ’4’, ’5’

CHAPTER 1 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U18514EJ1V0UM 29

1.2.6 Expressions

An expression consists of a "constant", "symbol", "label reference", "operator", and "parentheses". It indicates

a value consisting of these elements.

The as850 distinguishes between Absolute expression and Relative expressions.

(1) Absolute expression

An expression indicating a constant is called an "absolute expression".

An absolute expression can be used when an operand is specified for an instruction or when a value, size,

alignment condition, filling value, or bit width is specified for a quasi directive.

An absolute expression usually consists of a constant or symbol (refer to "2.2.3 Symbols").

The as850 treats expressions in the format described below as absolute expressions.

However, an absolute expression in a format other than "constant expression" must not be specified for quasi

directives other than the .byte, .hword, .shword [V850E], and .word quasi directives without a bit width

specification and quasi directives other than the .frame quasi directive (absolute expressions in all formats below

can be specified for the .byte, .hword, .shword [V850E], and .word quasi directives without a bit width

specification to specify a value, while absolute expressions in "symbol" format can be specified for the .frame

quasi directive to specify size, in addition to the "constant expression" format).

(a) Constant expression

Example

If a reference to a previously defined symbol is specified, the as850 assumes that the constant of the value

defined for the symbol has been specified.

Therefore, a defined symbol reference can be used in a constant expression.

(b) Symbol

The expressions related to symbols are the following ("+" is either "+" or "-").

- Symbol

- Symbol + constant expression

- Symbol - symbol

- Symbol - symbol + constant expression

A "symbol" here means an undefined symbol reference at that point. If a reference to a previously defined

symbol is specified, the as850 assumes that the "constant" of the value defined for the symbol has been

specified.

Example

.set sym1, 0x100 -- Defines the symbol sym1.

mov sym1, r10 -- sym1, already defined, is treated as a constant expression.

add SYM1 + 0x100, r11 -- SYM1 is an undefined symbol at this point.

.set SYM1, 0x10 -- Defines SYM1.

30 User’s Manual U18514EJ1V0UM

CHAPTER 1 ASSEMBLY LANGUAGE SPECIFICATIONS

(c) Label reference

The following expressions are used to reference a label ("+" is either "+" or "- ").

- Label reference - label reference

- Label reference - label reference + constant expression

Here is an example of an expression related to a label reference.

Example

A "reference to two labels" as shown in this example must be referenced as follows.

- The same section has a definition in the specified file.

- Same reference method (such as $label and $label, and #label and #label)

If a reference to a label having no definition in the specified file is specified, the as850 outputs the following

message and stops assembling.

If a reference to two labels having no definition in the same section is specified, the as850 outputs the

following message and stops assembling.

If a reference to two labels by different reference methods is specified, the as850 outputs the following

message and stops assembling.

However, if a reference to the absolute address of a label not having a definition in the specified file is

specified as label reference on one side of "- label reference" in an "expression related to label reference", it is

assumed that the same reference method as that of the label on the other side is used, because of the current

organization of the assembler.

Note that an absolute expression in this format cannot be specified for a branch instruction. If such an

expression is specified, the as850 outputs the following message and stops assembling.

mov $label1-$label2, r11

E3209:illegal expression(labels must be defined)

E3209:illegal expression(labels in different sections)

E3209:illegal expression(labels have different reference types)

E3221:illegal operand(label-label)

CHAPTER 1 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U18514EJ1V0UM 31

(2) Relative expressions

An expression indicating an offset from a specific addressNote 1 is called a "relative expression".

A relative expression is used to specify an operand by an instruction or to specify a value by the .byte, .hword,

or .word quasi directive.

A relative expression usually consists of a label reference (refer to "2.2.4 Label references").

The as850 regards expressions in the following formatsNote 2 as being relative expressions.

(a) Label reference

The following expressions are related to label reference ("+" is either "+" or "-").

- Label reference

- Label reference + constant expression

- Label reference - symbol

- Label reference - symbol + constant expression

Here is an example of an expression related to label reference.

Example

Notes 1 This address is determined when the linker (ld850) in the CA850 is executed. Therefore, the value

of this offset may also be determined when the linker is executed.

2 The as850 can regard an expression in the format of "-symbol + label reference", for example, as

being an expression in the format of "label reference - symbol," but it cannot regard an expression in

the format of "label reference - (+symbol)" as being an expression in the format of "label reference -

symbol" (the same applies to an absolute expression). Therefore, use parentheses only in constant

expressions.

add #labe11 + 0x10, r10

add #label2 - SIZE, r10

.set SIZE, 0x10

32 User’s Manual U18514EJ1V0UM

CHAPTER 1 ASSEMBLY LANGUAGE SPECIFICATIONS

1.2.7 Operators

An operator can be used to specify the operation to be performed by an expression.

(1) Types of operators

Operators are classified into four types: "Arithmetic operators", "Shift operators", "Bitwise logical operators",

and "Comparison operators".

"-" can be used as either a unary or binary operator.

In the description below, the operand to the left of the operator is called the first operand, while the operand to

the right of the operator is called the second operand. The operand for a unary operator is simply called an

operand.

(a) Arithmetic operators

(i) +

Calculates the sum of the first and second operands.

(ii) -

Calculates the difference between the first and second operands.

If this operator is used as a unary operator, it calculates the 2's complement of the operand.

(iii) *

Calculates the product of the first and second operands.

(iv) /

Calculates the quotient of the first and second operands.

(v) %

Calculates the remainder resulting from dividing the first operand by the second operand.

(b) Shift operators

(i) <<

Shifts the first operand to the left by the number of bits specified by the second operand.

As many 0s as the specified number of bits are inserted on the right side (LSBNote 1) of the first operand.

Example

Table 1 - 3 Operators

Type Operator

Arithmetic operators + - * / %

Shift operators << >>

Bitwise logical operators ! | & ^

Comparison operators == < <= != > >= && ||

0x12345678 << 4 0x23456780

CHAPTER 1 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U18514EJ1V0UM 33

(ii) >>

Shifts the first operand to the right by the number of bits specified by the second operand. If the first

operand is positive (MSB is 0), as many 0s as the specified number of bits are inserted on the left side of the

first operand (MSBNote 2). If the first operand is negative (MSB is 1), as many 1s as the specified number of

bits are inserted on the left side of the first operand.

Example

Notes 1 LSB is an abbreviation of Least Significant Bit (bit corresponding to the lowest digit).

2 MSB is an abbreviation of Most Significant Bit (bit corresponding to the highest digit).

(c) Bitwise logical operators

(i) !

Logically negates each bit of the operand value.

Example

(ii) |

Calculates the logical sum of the first and second operands.

Example

(iii) &

Calculates the logical product of the first and second operands.

Example

(iv) ^

Calculates the exclusive OR of the first and second operands.

Example

(d) Comparison operators

(i) ==

Compares the first operand with the second operand. If the two operands are equal, returns 1. Otherwise,

returns 0.

Example

0x12345678 >> 4 0x01234567

0x87654321 >> 4 0xF8765432

!0x12345678 0xEDCBA987

0x1234 | 0x5678 0x567C

0x1234 & 0x5678 0x1230

0x1234 ^ 0x5678 0x444C

1 == 1 1

1 == 0 0

34 User’s Manual U18514EJ1V0UM

CHAPTER 1 ASSEMBLY LANGUAGE SPECIFICATIONS

(ii) <

Compares the first and second operands. Returns 1 if the first operand is less than or equal to the second

operand, and returns 0 if the first operand is greater than the second operand.

Example

(iii) <=

Compares the first and second operands. Returns 1 if the first operand is less than or equal to the second

operand, and returns 0 if the first operand is greater than the second operand.

Example

(iv) !=

Compares the first and second operands. Returns 0 if both the operands are equal, and returns 1

otherwise.

Example

(v) >

Compares the first and second operands. Returns 1 if the first operand is greater than the second

operand, and returns 0 if the first operand is less than or equal to the second operand.

Example

(vi) >=

Compares the first and second operands. Returns 1 if the first operand is greater than or equal to the

second operand, and returns 0 if the first operand is less than the second operand.

Example

1 < 10 1

10 < 1 0

1 <= 1 1

1 <= 2 1

1 <= 0 0

1 != 0 1

1 != 1 0

1 > 0 1

1 > 2 0

1 >= 1 1

1 >= 0 1

1 >= 2 0

CHAPTER 1 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U18514EJ1V0UM 35

(vii) &&

Calculates the logical product of the logical value of the first and second operands.

Example

(viii) ||

Calculates the logical sum of the logical value of the first and second operands.

Example

(2) Priority of operators

Table below shows the priorities of the operators. If two operators having the same priority are specified, and if

either is enclosed in parentheses, the operator in parentheses is executed first. If neither operator is enclosed in

parentheses, or if both are enclosed in parentheses, the one on the left is executed firstNote.

Note However, use parentheses only for constant expressions (refer to "1.2.6 Expressions").

1 != 3 && 1 <= 3 1

1 == 1 && 1 != 1 0

1 != 1 && 3 <= 1 0

1 != 3 || 1 <= 3 1

1 == 1 || 1 != 1 1

1 != 1 || 3 <= 1 0

Table 1 - 4 Priority of Operators

Priority Operator

- ! (unary operator)

* / << >> %

& | ^

+ -

== < <= != > >=

&& ||

↑

High

Low

↓

36 User’s Manual U18514EJ1V0UM

CHAPTER 1 ASSEMBLY LANGUAGE SPECIFICATIONS

(3) Operation rules

The operation rules of the as850 are as followsNote.

Note However, the rule explained in "1.2.6 Expressions" takes precedence for an expression including a

reference to a symbol or label that has not yet been defined at that point.

(a) Unary operation

Only an absolute expression can be specified as the operand of a unary operator.

An expression that handles a floating-point value cannot be specified as the operand of the unary operator !.

(b) Binary operation

Table 1 - 5 lists the valid combinations of integer value expressions that can be specified as the operands of

binary operators.

In this table, the following symbols are used in expressions consisting of operators and operands.

For floating-point values, however, the operation must be between floating-point values, and a floating-point

value must not exist together with a relative expression in the same expression.

Note For details, refer to "1.2.6 Expressions".

abs Absolute expression

rel Relative expression "referencing a label with a definition in the specified file"

ext Relative expression "referencing a label with no definition in the specified file"

--- Indicates that the specified combination of the operator and operand is not supported by the
as850

Table 1 - 5 Operation Rules for Binary Operation

Operand
Operator

+ - *, / Other

Second operand abs rel ext abs rel ext abs rel ext abs rel ext

First
operand

abs abs rel ext abs --- --- abs --- --- abs --- ---

rel rel - - - - - - rel absNote --- -- - - - - - -- -- - - - - - - -

ext ext --- -- - ext --- -- - - - - - - - - -- -- - - - - - - -

CHAPTER 1 ASSEMBLY LANGUAGE SPECIFICATIONS

User’s Manual U18514EJ1V0UM 37

1.3 Identifiers

An identifier is a name used for a symbol, label, or macro.

The following characters shown in "1.1.4 Character set" can be used in identifiers.

- Lowercase letters

- Uppercase letters

- _ (underscore)

- . (period)

- Numerals

However, a numeral must not be used at the beginning of a name.

Note that a symbol starting with "_" (underscore) may match a label name output by the compiler, and may

therefore cause an unexpected operation. Also, avoid using identifiers that start with "." (period) as much as

possible because such identifiers may be reserved in the future.

38 User’s Manual U18514EJ1V0UM

CHAPTER 2 INSTRUCTION SET

CHAPTER 2 INSTRUCTION SET

This chapter describes the instruction set supported by the CA850 assembler (as850).

2.1 Description of Symbols

Next table lists the meanings of the symbols used in this chapter and those that follow.

Table 2 - 1 Meanings of Symbols

Symbol Meaning

reg, reg1, reg2 Register

r0, R0 Zero register

R1 Assembler-reserved register (r1)

gp Global pointer (r4)

ep Element pointer (r30)

[reg] Base register

disp Displacement (32 bits unless otherwise stated)

imm Immediate (32 bits unless otherwise stated)

bit#3 3-bit data for bit number specification

#label Absolute address reference of label

label Offset reference of label in section or PC offset reference
For a section allocated to a segment for which a tp symbol is to be generated,
however, offset from the tp symbol instead of offset reference in section

$label gp offset reference of label

!label Absolute address reference of label (without instruction expansion)

%label Offset reference of label in section (without instruction expansion)

hi (value) Higher 16 bits of value

lo (value) Lower 16 bits of value

hi1 (value) Higher 16 bits of value + value of bit 15 of value
value : LSB(Least Significant Bit) is bit 0.

addr Address

PC Program counter

PSW Program status word

regID System register number (0 to 31)

vector Trap vector (0 to 31)

BITIO Peripheral I/O register (for 1-bit manipulation only)

CHAPTER 2 INSTRUCTION SET

User’s Manual U18514EJ1V0UM 39

2.2 Operand

This section describes the description formats of the operands of the as850. With the as850, registers,

constants, symbols, label reference, reference of constants, symbols, and labels, operators (refer to "1.2.7

Operators"), and expressions enclosed in parentheses (refer to "1.2.6 Expressions") can be specified as the

operands of instructions and quasi directives.

2.2.1 Registers

The registers that can be specified with the as850 are listed belowNote.

Note For the ldsr and stsr instructions, the PSW and system registers are specified using numbers. With the

as850, PC cannot be specified as an operand

r0 and zero (zero register), r2 and hp (handler stack pointer), r3 and sp (stack pointer), r4 and gp (global

pointer), r5 and tp (text pointer), r30 and ep (element pointer), and r31 and lp (link pointer) are the same

registers, respectively.

(1) r0

r0 always has a value of 0. This register does not substitute the result of an operation even if used as a

destination register. If r0 is specified as a destination register, the as850 outputs the following messageNote, then

continues assembling.

Note Output of this message can be suppressed by specifying the warning suppression (-w) option upon

starting the as850.

r0, zero, r1, r2, hp, r3, sp, r4, gp, r5, tp, r6, r7, r8, r9,

r10, r11, r12, r13, r14, r15, r16, r17, r18, r19,

r20, r21, r22, r23, r24, r25, r26, r27, r28, r29,

r30, ep, r31, lp

mov 0x10, r0

W3013: register r0 used as destination register

40 User’s Manual U18514EJ1V0UM

CHAPTER 2 INSTRUCTION SET

(a) If r0 is specified in any of the following instructions as a destination register when the V850Ex is used as

the target device, the as850 outputs an error message, not a warning message.

dispose,Syntaxes (1) and (2) in divh instruction,ld.bu,

ld.hu, Syntax (2) in mov instruction, movea, movhi,

mulh, mulhi, satadd, satsub, satsubi, satsubr,

sld.bu, sld.hu

(b) If r0 is specified in any of the following instructions as a source register when the V850Ex is used as the

target device, the as850 outputs an error message, not a warning message.

Syntaxes (1) in divh instruction, switch

(2) r1

The assembler-reserved register (r1) is used as a temporary register when instruction expansion is performed

using the as850. If r1 is specified as a source or destination register, the as850 outputs the following

messageNote, then continues assembling.

Note Output of this message can be suppressed by specifying the warning suppression (-w) option upon

starting the as850.

divh r10, r0

E3240: illegal operand (can not use r0 as destination in V850E mode)

mov 0x10, r1

W3013: register r1 used as destination register

mov r1, r10

W3013: register r1 used as source register

CHAPTER 2 INSTRUCTION SET

User’s Manual U18514EJ1V0UM 41

2.2.2 Constants

As the constituents of the absolute expressions or relative expressions that can be used to specify the

operands of the instructions and quasi directives in the as850, integer constants and character constants can be

used.

For the ld/st and bit manipulation instructions, a peripheral I/O register name, defined in the device file, can

also be specified as an operand, thus enabling input/output of a port address.

Moreover, floating-point constants can be used to specify the operand of the .float quasi directive, and string

constants can be used to specify the operand of the .str quasi directive.

2.2.3 Symbols

The as850 supports the use of symbols as the constituents of the absolute expressions or relative expressions

that can be used to specify the operands of instructions and quasi directives.

42 User’s Manual U18514EJ1V0UM

CHAPTER 2 INSTRUCTION SET

2.2.4 Label references

With the as850, label references can be used as the constituents of the relative expressions that can be used

to specify the operand of the following instructions/quasi directive:

- Memory reference instructions (load/store and bit manipulation instructions)

- Operation instructions (arithmetic instructions, logical instructions, and saturation operation instructions)

- Branch instructions

- Area allocation quasi directive (only .word/.hword/.byte quasi directive)

The meaning of a label reference varies with the reference method and the differences in the instructions/

quasi directives. Detail is shown below.

Table 2 - 2 Label Referencing

Reference
Method Instruction Used Meaning

#label Memory reference instructions,
operation instructions,
jmp instruction

The absolute address of the position at which the
definition of the label label exists (the offset from
address 0Note 1).
This has a 32-bit address and must be expanded
into two instructions.

Area allocation quasi directives
(.word/.hword/.byte)

The absolute address of the position at which the
definition of the label label exists (the offset from
address 0Note 1).
Note that the 32-bit address is a value masked in
accordance with the size of the area secured.

label Memory reference instructions,
operation instructions

The offset in the section at the position at which the
definition of the label label exists (the offset from the
first address of the section where the definition of
the label label existsNote 2).
This has a 32-bit offset and must be expanded into
two instructions.
Note that for a section allocated to a segment for
which a tp symbol is to be generated, the offset is
referenced from the tp symbol.

Branch instructions except jmp
instruction

The PC offset at the position at which the definition
of the label label exists (the offset from the first
address of the instruction using the reference of the
label label).

Area allocation quasi directives
(.word/.hword/.byte)

The offset in the section at the position at which the
definition of the label label exists (the offset from the
first address of the section where the definition of
the label label existsNote 2).
Note that the 32-bit offset is a value masked in
accordance with the size of the area secured.

$label Memory reference instructions,
operation instructions

The gp offset at the position at which the definition
of the label label exists (the offset from the address
pointed to by the global pointerNote 3)

CHAPTER 2 INSTRUCTION SET

User’s Manual U18514EJ1V0UM 43

Notes 1 The offset from address 0 in linked object file

2 The offset from the first address of the section (output section) to which the section in which the

definition of label label exists is allocated in the linked object file

3 The offset from the address indicated by the value of the text pointer symbol + value of the global

pointer for the segment to which the above output section is allocated.

!label Memory reference instructions,
operation instructions

The absolute address at the position at which the
definition of the label label exists (the offset from
address 0Note 1).
This has a 16-bit address and cannot be instruction
expanded if instructions with 16-bit displacement or
immediate data are specified. If any other
instructions are specified, expansion into
appropriate 1-instruction units is possible.
If the address defined by the label label is not within
a range expressible by 16 bits, an error will be
output at linking.

Area allocation quasi directives
(.word/.hword/.byte)

The absolute address of the position at which the
definition of the label label exists (the offset from
address 0Note 1).
Note that the 32-bit address is a value masked in
accordance with the size of the area secured.

%label Memory reference instructions,
operation instructions

The offset in the section at the position at which the
definition of the label label exists (the offset from the
first address of the section where the definition of
the label label existsNote 2).
This has a 16-bit address and cannot be instruction
expanded if instructions with 16-bit displacement or
immediate data are specified. If any other
instructions are specified, expansion into
appropriate 1-instruction units is possible.
If the address defined by the label label is not within
a range expressible by 16 bits, an error will be
output at linking.
The ep offset at the position at which the definition
of the label label exists (the offset from the address
pointed to by the element pointer).

Area allocation quasi directives
(.word/.hword/.byte)

The offset in the section at the position at which the
definition of label label exists (the offset from the
first address of the section where the definition of
the label label existsNote 2).
Note that the 32-bit offset is a value masked in
accordance with the size of the area secured.

Table 2 - 2 Label Referencing

Reference
Method Instruction Used Meaning

44 User’s Manual U18514EJ1V0UM

CHAPTER 2 INSTRUCTION SET

The meanings of label references for memory reference instructions, operation instructions, branch

instructions, and area allocation quasi directives are shown below.

Note Refer to "2.2.6 gp offset reference".

Table 2 - 3 Memory Reference Instructions

Reference
Method Meaning

#label [reg] The absolute address of the label label is regarded as a displacement. This has a 32-bit
value and must be expanded into two instructions. By setting #label[r0], referencing by
an absolute address can be specified. [reg] can be omitted. If omitted, the as850
assumes that [r0] has been specified.

label [reg] The offset in the section of the label label is regarded as a displacement. This has a 32-
bit value and must be expanded into two instructions. By specifying a register indicating
the first address of the section as reg and thereby setting label[reg], general register
relative referencing can be specified.
For a section allocated to a segment for which a tp symbol is to be generated, however,
the offset from the tp symbol is regarded as a displacement.

$label [reg] The gp offset of the label label is regarded as a displacement. This has either a 32-bit or
16-bit value, depending on the section defined by the label label, and its instruction
expansion pattern changes accordinglyNote . If an instruction with a 16-bit value is
expanded and the offset calculated by the address defined by the label label is not
within a range that can be expressed in 16 bits, an error is output at linking. By setting
$label[gp], relative referencing of the gp register (called a gp offset reference) can be
specified. [reg] can be omitted. If omitted, the as850 assumes that [gp] has been
specified.

!label [reg] The absolute address of the label label is regarded as a displacement. This has a 16-bit
value and is not instruction expanded. If the address defined by the label label cannot be
expressed in 16 bits, an error is output at linking. By setting !label[r0], referencing by an
absolute address can be specified. [reg] can be omitted. If omitted, the as850 assumes
that [r0] is specified.
Unlike #label[reg] referencing, however, instruction expansion is not executed.

%label [reg] The offset in the section of the label label is regarded as a displacement. If the label
label is allocated to a section that is the ep symbol, the offset from the ep symbol is
regarded as a displacement. This has either a 16-bit value, or depending on the
instruction a value lower than this, and if it is not a value that can be expressed within
this range, an error is output at linking. [reg] can be omitted. If omitted, the as850
assumes that [ep] has been specified.

CHAPTER 2 INSTRUCTION SET

User’s Manual U18514EJ1V0UM 45

Notes 1 Refer to "2.2.6 gp offset reference".

2 The instructions for which a 16-bit value can be specified as immediate are the addi, andi, movea,

mulhi, ori, satsubi, and xori instructions.

Table 2 - 4 Operation Instructions

Reference
Method Meaning

#label The absolute address of the label label is regarded as an immediate value.
This has a 32-bit value and must be expanded into two instructions.

label The offset in the section of the label label is regarded as an immediate value.
This has a 32-bit value and must be expanded into two instructions.
For a section allocated to a segment for which a tp symbol is to be generated, however,
the offset from the tp symbol is regarded as an immediate value.

$label The gp offset of the label label is regarded as an immediate value.
This has a 32-bit value and must be expanded into two instructions. This has either a
32-bit or 16-bit value, depending on the section defined by the label label, and its
instruction expansion pattern changes accordinglyNote 1. If an instruction with a 16-bit
value is expanded and the offset calculated by the address defined by the label label is
not within a range that can be expressed in 16 bits, an error is output at linking.

!label The absolute address of the label label is regarded as an immediate value.
This has a 16-bit value, and if operation instructions of an architecture for which a 16-bit
value can be specifiedNote 2 as immediate are specified, instruction expansion is not
executed. If the add, mov, and mulh instructions are specified, expansion into
appropriate 1-instruction units is possible. No other instructions can be specified. If the
value is not within a range that can be expressed in 16 bits, an error is output at linking.

%label The offset in the section of the label label is regarded as an immediate value.
If the label label is allocated to a section that is a target of the ep symbol, the offset from
the ep symbol is regarded as a displacement.
This has a 16-bit value, and if operation instructions of an architecture for which a 16-bit
value can be specifiedNote 2 as immediate are specified, instruction expansion is not
executed.
Unlike label referencing, however, instruction expansion is not executed. This
referencing method can be specified only for operation instructions of an architecture for
which a 16-bit value can be specified as immediate, as well as the add, mov, and mulh
instructions. Note that if the add, mov, and mulh instructions are specified, expansion
into appropriate 1-instruction units is possible. No other instructions can be specified. If
the value is not within a range that can be expressed in 16 bits, an error is output at
linking.

Table 2 - 5 Branch Instructions

Reference
Method Meaning

#label The absolute address of the label label for the jmp instruction is regarded as the jump
destination address. This has a 32-bit value and must be expanded into three
instructions.

label The PC offset of the label label for branch instructions other than the jmp instruction is
regarded as being a displacement. This is a 22-bit value, and if it is not within a range
that can be expressed in 22 bits, an error is output at linking.

46 User’s Manual U18514EJ1V0UM

CHAPTER 2 INSTRUCTION SET

Table 2 - 6 Area Allocation Quasi Directives

Reference
Method Meaning

#label
!label

The absolute address of the label label for the .word/.hword/.byte quasi instructions is
regarded as a value. This has a 32-bit value, but is masked in accordance with the bit
width of the relevant quasi directive.

label
%label

The offset in the section defined by the label label for the .word/.hword/.byte quasi
instructions is regarded as a value. This has a 32-bit value, but is masked in accordance
with the bit width of the relevant quasi directive.

$label The gp offset of the label label for the .word/.hword/.byte quasi instructions is regarded
as a value. This has a 32-bit value, but is masked in accordance with the bit width of the
relevant quasi directive.

CHAPTER 2 INSTRUCTION SET

User’s Manual U18514EJ1V0UM 47

2.2.5 ep offset reference

This section describes the ep offset reference. The CA850 assumes that data explicitly stored in internal RAM

is shown below.

Data in the internal RAM is divided into the following two groups.

(1) .tidata/.tibss/.tidata.byte/.tibss.byte/.tidata.word/.tibss.word section

Data referenced by memory reference instructions (sld/sst) and having a small code size

(2) .sidata/.sibss section

Data referenced by memory reference instructions (ld/st) and having a large code size

Figure 2 - 1 Memory Location Image of Internal RAM

Referenced by the offset from the address indicated by the element pointer (ep).

ep

Higher address

.sibss section

Internal RAM

Lower address

.sidata section

.tibss section

.tidata section

.tidata.word section

.tibss.word section

.tibss.byte section

.tidata.byte section

48 User’s Manual U18514EJ1V0UM

CHAPTER 2 INSTRUCTION SET

(1) Data allocation

Data is allocated to the sections in internal RAM as follows:

(a) When developing a program in C

(i) Allocate data by specifying the tidata or sidata section in the #pragma section command.

(ii) Allocate data by specifying the tidata or sidata section in the section file. Input the section file during

compilation using a C compiler option.

(b) When developing a program in assembly language

Data is allocated to the .tidata, .tibss, .tidata.byte, .tibss.byte, .tidata.word, .tibss.word, .sidata, or .sibss

section by a section definition quasi directive.

ep offset reference can also be executed with respect to data in a specific range of external RAM by

allocating the data to sections .sedata and .sebss in the same manner as above.

Figure 2 - 2 Memory Allocation Image for External RAM (.sedata Section)

(2) Data reference

Using the data allocation method explained above, the as850 generates a machine instruction string that

performs as follows:

(a) .Reference by ep offset for %label reference to data allocated to the .tidata, .tidata.byte, .tidata.word, .tibss,

.tibss.byte, .tibss.word, .sidata, .sibss, .sedata, or .sebss section

(b) Reference by inter-section offset for %label reference to data allocated to other than that above

Example

.sidata

sidata: .hword 0xfff0

.data

data: .hword 0xfff0

.text

ld.h %sidata, r20 -- (1)

ld.h %data, r20 -- (2)

Higher address

Lower address

ep

Internal RAM

External RAM

.tibss.byte section

.tidata.byte section

.sebss section

.sedata section

CHAPTER 2 INSTRUCTION SET

User’s Manual U18514EJ1V0UM 49

The as850 generates a machine instruction string for %label reference because:

- The as850 regards the code in (1) as being a reference by ep offset because the defined data is allocated

to the .sidata section

- The as850 regards the code in (2) as being a reference by in-section offset

The as850 performs processing, assuming that the data is allocated to the correct section. If the data is

allocated to other than the correct section, it cannot be detected by the as850.

Example

Instructions are coded to allocate a label to the .sidata section and to perform reference by ep offset. Here,

however, label is allocated to the .data section because of the allocation error. In this case, the as850 loads the

data in the base register ep symbol value + offset value in the .data section of label.

- For (1), reference by ep offset or by in-section offset is performed according to the section in which the

defined data is allocated (default).

- For (2), reference by ep offset is performed regardless of the section in which the defined data is allocated,

because label is within the range specified by the .option ep_label quasi directive.

- For (3), the operation is the same as (1) because label is within the range specified by the .option

no_ep_label quasi directive.

.text

ld.h %label[ep], r20

.text

ld.h %label1[r10], r20 --(1)

.option ep_label

ld.h %label2[ep], r21 --(2)

.option no_ep_label

ld.h %label3[r10], r22 --(3)

50 User’s Manual U18514EJ1V0UM

CHAPTER 2 INSTRUCTION SET

2.2.6 gp offset reference

This section describes gp offset reference.

The CA850 assumes that data stored in external RAM (other than the .sedata or .sebss section explained on

the previous page) is basically shown below.

If r0-relative memory allocation for internal ROM or RAM is not done with the #pragma section command of C,

the section file to be input to the C compiler, or an assembly language section definition quasi directive, all data

is subject to gp offset reference.

(1) Data allocation

The memory reference instruction (ld/st) of the machine instruction of the V850 microcontrollers can only

accept 16-bit immediate as a displacement. For this reason, the CA850 classifies data into the following two

types:

(a) Data allocated to a memory range that can be referenced by using the global pointer (gp) and a 16-bit

displacement

(b) Data allocated to a memory range that can be referenced by the global pointer (gp) and a 32-bit

displacement (consisting of two or more instructions). Data of the former type is allocated to the sdata- or

sbss-attribute section, while that of the latter type is allocated to the data- or bss-attribute section.

Data having an initial value is allocated to the sdata/data-attribute section, while data without an initial

value is allocated to the sbss/bss-attribute section. By default, the CA850 allocates data to the data-, sdata-

, sbss-, then bss-attribute sections, starting from the lowest address. Moreover, it is assumed that the

global pointer (gp) is set by a start up module to point to the address resulting from addition of 32 KB to the

first address of the sdata-attribute section.

Figure 2 - 3 Memory Location Image of gp Offset Reference Section

Remark The sum of sdata- and sbss-attribute sections is 64 KB. gp is 32 KB below the first byte of the sdata-

attribute section.

Referenced by the offset from the address indicated by the global pointer (gp).

64KB

32KB

gp

Data having no initial value

Data having initial value

Lower address

Higher address

bss attribute section

sbss attribute section

sdata attribute section

data attribute section

CHAPTER 2 INSTRUCTION SET

User’s Manual U18514EJ1V0UM 51

Data in the sdata- and sbss-attribute sections can be referenced by using a single instruction. To reference

data in the data- and bss-attribute sections, however, two or more instructions are necessary.

Therefore, the more data allocated to the sdata- and sbss-attribute sections, the higher the execution

efficiency and object efficiency of the generated machine instructions.

However, the size of the memory range that can be referenced with a 16-bit displacement is limited. If all the

data cannot be allocated to the sdata- and sbss-attribute sections, it becomes necessary to determine which

data is to be allocated to the sdata- and sbss-attribute sections.

The CA850 "allocates as much data as possible to the sdata- and sbss-attribute sections." . By default, all data

items are allocated to the sdata- and sbss-attribute sections. The data to be allocated can be selected as follows:

(i) When the -Gnum option is specified

By specifying the -Gnum option upon starting the C compiler (ca850) or assembler (as850), data of less

than num bytes is allocated to the sdata- and sbss-attribute sections.

(ii) When using a program to specify the section to which data will be allocated

Explicitly allocate data that will be frequently referenced to the sdata- and sbss-attribute sections. For

allocation, use a section definition quasi directive when using the assembly language, or the #pragma

section command when using C.

(iii) Specifying with the section file

In C, allocate data by specifying the sdata section in the section file. Input the section file during

compilation with a C compiler option.

(2) Data reference

Using the data allocation method explained above, the as850 generates a machine instruction string that

performs:

(a) Reference by using a 16-bit displacement for gp offset reference to data allocated to the sdata- and sbss-

attribute sections

(b) Reference by using a 32-bit displacement (consisting of two or more machine instructions) for gp offset

reference to data allocated to the data- and bss-attribute sections

Example

The as850 generates a machine instruction string, equivalent to the following instruction string for the ld.w

instruction in (2), that performs gp offset reference of the data defined in (1)Note.

Note For details of hi1()/lo(), refer to "2.2.7 hi()/lo()/hi1()".

.data

data: .word 0xfff00010 --(1)

.text

ld.w $data[gp], r20 --(2)

movhi hi1($data), gp, r1

ld.w lo($data)[r1], r20

52 User’s Manual U18514EJ1V0UM

CHAPTER 2 INSTRUCTION SET

The as850 processes files on a one-by-one basis. Consequently, it can identify to which attribute section

data having a definition in a specified file has been allocated, but cannot identify the section to which data not

having a definition in a specified file has been allocated.

Therefore, the as850 generates machine instructions as followsNote 2, when the -Gnum option is

specifiedNote 1 at start-up, assuming that the allocation policy described above (i.e., data smaller than a

specific size is allocated to the sdata- and sbss-attribute sections) is observed.

Notes 1 If the as850 is started from the ca850, the -Gnum option, specified upon starting the ca850, is

passed to the as850.

2 The data, for which data or sdata is specified by the .option quasi directive, is assumed to be

allocated in the .data or .sdata section regardless of its size.

(c) Generates machine instructions that perform reference by using a 16-bit displacement for gp offset

reference to data not having a definition in a specified file and which consists of less than num bytes.

(d) Generates a machine instruction string that performs reference by using a 32-bit displacement (consisting

of two or more machine instructions) for gp offset reference to data having no definition in a specified file

and which consists of more than num bytes.

To identify these conditions, however, the size of the data not having a definition in a specified file, and which

is referenced by a gp offset, must be identified.

To develop a program in an assembly language, therefore, specify the size of the data (actually, a label for

which there is no definition in a specified file and which is referenced by a gp offset) for which there is no

definition in a specified file, by using the .extern quasi directive.

Example

When -G2 is specified upon starting the as850, the as850 generates a machine instruction string, equivalent

to the following instruction string, for the ld.w instruction in (2) that performs gp offset reference to the data

declared in (1)Note.

Note For hi1()/lo(), refer to "2.2.7 hi()/lo()/hi1()".

To develop a program in C, the C compiler (ca850) of the CA850 automatically generates the .extern quasi

directive, thus outputting code which specifies the size of data not having a definition in the specified file

(actually, a label for which there is no definition in a specified file and which is referenced by a gp offset).

.extern data, 4 --(1)

.text

ld.w $data [gp], r20 --(2)

movhi hi1($data), gp, r1

ld.w lo($data)[r1], r20

CHAPTER 2 INSTRUCTION SET

User’s Manual U18514EJ1V0UM 53

[Summary]

The handling of gp offset reference (specifically, memory reference instructions that use a relative expression

having the gp offset of a label as their displacement) by the as850 is summarized below:

(1) If the data has a definition in a specified file

(a) If the data is to be allocated to the sdata- or sbss-attribute sectionNote

Generates a machine instruction that performs reference by using a 16-bit displacement.

(b) If the data is not allocated to the sdata- or sbss-attribute section

Generates a machine instruction string that performs reference by using a 32-bit displacement.

Note If the value of the constant expression of a relative expression in the form of "label + constant

expression" exceeds 16 bits, the as850 generates a machine instruction string that performs

reference using a 32-bit displacement.

(2) If the data does not have a definition in a specified file

(a) If the -Gnum option is specified upon starting the assembler

If a size of other than 0, but less than num bytes is specified for the data (label referenced by gp offset) by

the .comm, .extern, .globl, .lcomm, or .size quasi directive.

Assumes that the data is to be allocated to the sdata- or sbss-attribute section and generates a machine

instruction that performs reference by using a 16-bit displacement.

Other than above, assumes that the data is not allocated to the sdata- or sbss-attribute section and

generates a machine instruction string that performs reference using a 32-bit displacement.

(b) If the -Gnum option is not specified upon starting the assembler

Assumes that the data is to be allocated to the sdata- or sbss-attribute section and generates a machine

instruction that performs reference using a 16-bit displacement.

54 User’s Manual U18514EJ1V0UM

CHAPTER 2 INSTRUCTION SET

2.2.7 hi() /lo() /hi1()

(1) To store 32-bit constant value in a register

The V850 microcontrollers does not support a machine instruction that can store a 32-bit constant value in a

register with a single instruction. To store a 32-bit constant value in a register, therefore, the as850 performs

instruction expansion, and generates an instruction string, by using the movhi and movea instructions. These

divide the 32-bit constant value into the higher 16 bits and lower 16 bits.

Example

At this time, the movea instruction, used to store the lower 16 bits in the register, sign-extends the specified

16-bit value to a 32-bit valueNote. To adjust the sign-extended bits, the as850 does not merely store the higher 16

bits in a register when using the movhi instruction, instead it stores the value of "the higher 16 bits + the most

significant bit (i.e., bit 15) of the lower 16 bits" in the register.

mov 0x18000, r11 movhi hi1(0x18000), r0, r1

movea lo(0x18000), r1, r11

00000000 00000001 10000000 00000000

00000000 00000001 00000000 00000000

11111111 11111111 10000000 00000000

00000000 00000000 10000000 00000000

Higher 16 bits Lower 16 bits

(If not adjusted)

+

=

movhi

Sign-extends lower 16 bits by movea

Does not return to original value

00000000 00000010 00000000 00000000

0000000000000001+1=0000000000000010

11111111 11111111 10000000 00000000

00000000 00000001 10000000 00000000

(If adjusted)

+

=

movhi

Sign-extends lower 16 bits by movea

Returns to original value

hi1

CHAPTER 2 INSTRUCTION SET

User’s Manual U18514EJ1V0UM 55

(2) To reference memory by using 32-bit displacement

The memory reference instruction (Load/store and bit manipulation instructions) of the machine instructions of

the V850 microcontrollers can take only a 16-bit immediate as a displacement. Consequently, the as850

performs instruction expansion to reference the memory by using a 32-bit displacement, and generates an

instruction string that performs the reference, by using the movhi and memory reference instructions and thereby

constituting a 32-bit displacement from the higher 16 bits and lower 16 bits of the 32-bit displacement.

Example

At this time, the memory reference instruction that uses the lower 16 bits as a displacement sign-extends the

specified 16-bit displacement to a 32-bit value. To adjust the sign-extended bits, the as850 does not merely

configure the displacement of the higher 16 bits by using the movhi instruction, instead it configures the

displacement of "the higher 16 bits + most significant bit (i.e., bit 15) of the lower 16 bits".

ld.w 0x18000[r11], r12 movhi hi1(0x18000), r11, r1

ld.w lo(0x18000)[r1], r12

00000000 00000001 10000000 00000000

00000000 00000001 00000000 00000000

11111111 11111111 10000000 00000000

00000000 00000000 10000000 00000000

Higher 16 bits Lower 16 bits

(If not adjusted)

+

=

movhi

Sign-extends lower 16 bits by ld.w

Not correct address

00000000 00000010 00000000 00000000

0000000000000001+1=0000000000000010

11111111 11111111 10000000 00000000

00000000 00000001 10000000 00000000

(If adjusted)

+

=

movhi

Sign-extends lower 16 bits by ld.w

Correct address

hi1

56 User’s Manual U18514EJ1V0UM

CHAPTER 2 INSTRUCTION SET

(3) hi() /lo() /hi1()

In the next table, the as850 can specify the higher 16 bits of a 32-bit value, the lower 16 bits of a 32-bit value,

and the value of the higher 16 bits + bit 15 of a 32-bit value by using hi() , lo() , and hi1() Note .

Note If this information cannot be internally resolved by the assembler, it is reflected in the relocation

information and subsequently resolved by the link editor (ld850).

Example

Table 2 - 7 Meanings of hi() /lo() /hi1()

hi() /lo() /hi1() Meaning

hi(value) Higher 16 bits of value

lo(value) Lower 16 bits of value

hi1(value) Higher 16 bits of value + value of bit 15 of value

.data

L1 :

:

.text

movhi hi($L1), r0, r10 -- Stores the higher 16 bits of the gp offset

-- value of L1 in the higher 16 bits of r10,

-- and the lower 16 bits to 0

movea lo($L1), r0, r10 -- Sign-extends and stores the lower 16 bits of

-- gp offset value of L1 in r10

:

movhi hi1($L1), r0, r1 -- Stores the gp offset value of L1 in r10

movea lo($L1), r1, r10

CHAPTER 2 INSTRUCTION SET

User’s Manual U18514EJ1V0UM 57

2.3 Runtime Library

The architecture of the V850 microcontrollers does not support floating-point operation instructions. To satisfy

the ANSI standard language specifications, therefore, the CA850 executes all floating-point operations by calling

from the runtime library of the libc.a file.

Because the devices in the V850 microcontrollers other than the V850Ex do not have 32-bit data

multiplication, division, and remainder instructions, these instructions are called from the runtime library in the

same manner as floating-point operations.

The runtime library is a routine that is used when the ca850 compiles a C language source program. It can

also work with source programs in assembly language. In this case, libc.a must be linked with the ld850 when an

executable object file is generated.

58 User’s Manual U18514EJ1V0UM

CHAPTER 2 INSTRUCTION SET

2.4 Macro Operators

This section describes a tilde (~), used as a zero-length delimiter in a macro body, and a dollar ($), used to

specify a symbol value as an argument in a macro call.

2.4.1 Tilde symbol

The as850 handles a tilde (~) in a macro body as a zero-length delimiter. If, however, the tilde appears in a

string constant or comment, it is not regarded as being a delimiter, but as a normal tilde (~).

Example1

The expansion result of the above example is shown below:

Example2

The expansion result of the above example is shown below:

Example3

The expansion result of the above example is shown below:

.macro abc x

abc~x:
mov r10, r20

sub def~x, r20
.endm

abc NECEL

abcNECEL:

mov r10, r20

sub defNECEL, r20

.macro abc x, xy

a_~xy: mov r10, r20

a_~x~y: mov r20, r10

.endm

abc necel, NECEL

a_NECEL: mov r10, r20

a_necely: mov r20, r10

.macro abc x, xy

~ab: mov r10, r20

.endm

abc necel, NECEL

ab: mov r10, r20

CHAPTER 2 INSTRUCTION SET

User’s Manual U18514EJ1V0UM 59

2.4.2 Dollar symbol

If a symbol prefixed with a dollar symbol ($) is specified as an actual argument for a macro call, the as850

assumes the symbol to be specified as an actual argument.

If, however, an identifier other than a symbol or an undefined symbol name is specified immediately after the

dollar symbol ($), the as850 outputs the following message then stops assembling.

The expansion result of the above example is shown below:

$ must be followed by defined symbol

.macro mac1 x

mov x, r10

.endm

.macro mac2

.set value, 10

mac1 value

mac1 $value

.endm

mac2

.set value, 10

mov value, r10

mov 10, r10

60 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

This section describes the instructions of the assembly language supported by the CA850 assembler (as850).

3.1 Description of Format

This section describes the instructions of the assembly language supported by the CA850 assembler (as850).

For details of the machine instructions generated by the as850, refer to the Relevant Device’s Architecture

User’s Manual of the V850 microcontrollers.

Instruction

[Overview]

Indicates the meaning of the instruction.

[Syntax]

Indicates the syntax of the instruction.

[Function]

Indicates the function of the instruction.

[Description]

Indicates the operation performed by the instruction.

[Flag]

Indicates the flag value after the execution of the instruction. Note, however, that the value of the flag before

execution is indicated for the clr1, not1, and set1 instructions.

"---" indicates that the flag value is not affected by instruction execution.

[Caution]

Indicates the points to be noted when using the instruction.

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 61

3.2 Load/Store Instructions

This section describes the load/store instructions.

Next table lists the instructions described in this section

Table 3 - 1 Load/Store Instructions

Instruction Meaning

ld ld.b Load (byte)

ld.bu Load (unsigned byte) [V850E]

ld.h Load (halfword)

ld.hu Load (unsigned halfword) [V850E]

ld.w Load (word)

sld sld.b Byte data load (short format)

sld.bu Unsigned byte data load (short format) [V850E]

sld.h Halfword data load (short format)

sld.hu Unsigned halfword data load (short format) [V850E]

sld.w Word data load (short format)

sst sst.b Byte data store (short format)

sst.h Halfword data store (short format)

sst.w Word data store (short format)

st st.b Byte data store

st.h Halfword data store

st.w Word data store

62 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

ld

[Overview]

Data load

[Syntax]

(1) ld.b disp[reg1], reg2

(2) ld.h disp[reg1], reg2

(3) ld.w disp[reg1], reg2

(4) ld.bu disp[reg1], reg2 [V850E]

(5) ld.hu disp[reg1], reg2 [V850E]

The following can be specified for displacement (disp):

- Absolute expression having a value of up to 32 bits

- Relative expression

- Either of the above expressions with hi() , lo() , or hi1() applied

[Function]

The ld.b, ld.bu, ld.h, ld.hu, and ld.w instructions load data of 1 byte, 1 halfword, and 1 word, from the

address specified by the first operand, int the register specified by the second operand.

[Description]

- If any of the following is specified for disp, the as850 generates one ld machine instructionNote.

In the following explanations, ld denotes the ld.b / ld.h / ld.w / ld.bu / ld.hu instructions.

(a) Absolute expression having a value in the range of -32,768 to +32,767

(b) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(c) Relative expression having !label or %label

ld disp16[reg1], reg2 ld disp16[reg1], reg2

ld $label[reg1], reg2 ld $label[reg1], reg2

ld !label[reg1], reg2 ld !label[reg1], reg2

ld %label[reg1], reg2 ld %label[reg1], reg2

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 63

(d) Expression with hi() , lo() , or hi1()

Note The ld machine instruction takes an immediate value in the range of -32,768 to +32,767 (0xffff8000

to 0x7fff) as the displacement.

- If any of the following is specified for disp, the as850 performs instruction expansion to generate multiple

machine instructions.

(a) Absolute expression having a value exceeding the range of -3,2768 to +32,767

(b) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

- If disp is omitted, the as850 assumes 0.

- If a relative expression having #label, or a relative expression having #label and with hi() , lo() , or hi1()

applied is specified as disp, [reg1] can be omitted. If omitted, the as850 assumes that [r0] is specified.

- If a relative expression having $label, or a relative expression having $label and with hi() , lo() , or hi1()

applied, is specified as disp, [reg1] can be omitted. If omitted, the as850 assumes that [gp] is specified.

- If a peripheral I/O register name defined in the device file is specified as disp, [reg1] can be omitted. If

omitted, the as850 assumes that [r0] is specified.

ld disp16[reg1], reg2 ld disp16[reg1], reg2

ld disp[reg1], reg2 movhi hi1(disp), reg1, r1

ld lo(disp)[r1], reg2

ld #label[reg1], reg2 movhi hi1(#label), reg1, r1

ld lo(#label)[r1], reg2

ld label[reg1], reg2 movhi hi1(label), reg1, r1

ld lo(#label)[r1], reg2

ld $label[reg1], reg2 movhi hi1($label), reg1, r1

ld lo($label)[r1], reg2

64 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

[Flag]

[Caution]

- ld.b and ld.h sign-extend the data of 1 byte and 1 halfword, respectively, and load the data into a register as

1 word.

- ld.bu and ld.hu zero-extend the data of 1 byte and 1 halfword, respectively, and load the data into a register

as 1 word.

- If a value that is not a multiple of 2 is specified as disp of ld.h, ld.w, or ld.hu, the as850 aligns disp with 2

and generates a code. Then, the as850 outputs either one of the messages below.

- If r0 is specified as the second operand of ld.bu and ld.hu, the as850 outputs the following message and

stops assembling

CY ---

OV ---

S ---

Z ---

SAT ---

W3010: illegal displacement in inst instruction.

W4659: relocated value(value) of relocation entry (symbol: symbol, file: file,

section: section, offset: offset, type: relocation type) for load/store com-

mand become odd value.

E3240: illegal operand (can not use r0 as destination in V850E mode)

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 65

sld

[Overview]

Short format Load

[Syntax]

(1) sld.b disp7[ep], reg2

(2) sld.h disp8[ep], reg2

(3) sld.w disp8[ep], reg2

(4) sld.bu disp4[ep], reg2 [V850E]

(5) sld.hu disp5[ep], reg2 [V850E]

The following can be specified for displacement (disp4/5/7/8):

- Absolute expression having a value of up to 7 bits for sld.b, 8 bits for sld.h and sld.w, 4 bits for sld.bu,

and 5 bits for sld.hu.

- Relative expression

[Function]

The sld.b, sld.bu, sld.h, sld.hu, and sld.w instructions load the data of 1 byte, 1 halfword, and 1 word, from

the address obtained by adding the displacement specified by the first operand to the contents of register ep,

to the register specified by the second operand.

[Description]

- The as850 generates one sld machine instruction.

Base register specification "[ep]" can be omitted.

[Flag]

CY ---

OV ---

S ---

Z ---

SAT ---

66 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

[Caution]

- sld.b and sld.h sign-extend and store data of 1 byte and 1 halfword, respectively, in the register as 1 word.

- sld.bu and sld.hu zero-extend and store data of 1 byte and 1 halfword, respectively, in the register as 1

word.

- If a value that is not a multiple of 2 is specified as disp8 of sld.h or disp5 of sld.hu, and if a value that is not

a multiple of 4 is specified as disp8 of sld.w, the as850 aligns disp8 or disp5 with multiples of 2 and 4,

respectively, and generates a code. Then, the as850 outputs either one of the messages below.

- If a value exceeding 127 is specified for disp7 of sld.b, a value exceeding 255 is specified for disp8 of sld.h

and sld.w, a value exceeding 16 is specified for disp4 of sld.bu, and a value exceeding 32 is specified for

disp5 of sld.hu, the as850 outputs the following message, and generates code in which disp7, disp8, disp4,

and disp5 are masked with 0x7f, 0xff, 0xf, and 0x1f, respectively.

- If r0 is specified as the second operand of the sld.bu and sld.hu, the as850 outputs the following message

and stops assembling.

W3010: illegal displacement in inst instruction.

W4659: relocated value(value) of relocation entry (symbol: symbol, file: file,

section: section, offset: offset, type: relocation type) for load/store com-

mand become odd value.

W3011: illegal operand (range error in immediate)

E3240: illegal operand (can not use r0 as destination in V850E mode)

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 67

sst

[Overview]

Short format Store

[Syntax]

(1) sst.b reg2, disp7[ep]

(2) sst.h reg2, disp8[ep]

(3) sst.w reg2, disp8[ep]

The following can be specified for displacement (disp7/8):

- Absolute expression having a value of up to 7 bits for sst.b or 8 bits for sst.h and sst.w

- Relative expression

[Function]

The sst.b, sst.h, and sst.w instructions store the data of the lower 1 byte, lower 1 halfword, and 1 word,

respectively, of the register specified by the first operand to the address obtained by adding the displacement

specified by the second operand to the contents of register ep.

[Description]

- The as850 generates one sst machine instruction.

Base register specification "[ep]" can be omitted.

[Flag]

CY ---

OV ---

S ---

Z ---

SAT ---

68 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

[Caution]

- If a value that is not a multiple of 2 is specified as disp8 of sst.h, and if a value that is not a multiple of 4 is

specified as disp8 of sst.w, the as850 aligns disp8 with multiples of 2 and 4, respectively, and generates a

code. Then, the as850 outputs either one of the messages below.

- If a value exceeding 127 is specified as disp7 of sst.b, and if a value exceeding 255 is specified as disp8 of

sst.h and sst.w, the as850 outputs the following message, and generates codes disp7 and disp8, masked

with 0x7f and 0xff, respectively.

W3010: illegal displacement in inst instruction.

W4659: relocated value(value) of relocation entry (symbol: symbol, file: file,

section: section, offset: offset, type: relocation type) for load/store com-

mand become odd value.

W3011: illegal operand (range error in immediate)

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 69

st

[Overview]

Store

[Syntax]

(1) st.b reg2, disp[reg1]

(2) st.h reg2, disp[reg1]

(3) st.w reg2, disp[reg1]

The following can be specified as a displacement (disp):

- Absolute expression having a value of up to 32 bits

- Relative expression

- Either of the above expressions with hi() , lo() , or hi1() applied

[Function]

The st.b, st.h, and st.w instructions store the data of the lower 1 byte, lower 1 halfword, and 1 word,

respectively, of the register specified by the first operand to the address specified by the second operand.

[Description]

- If any of the following is specified as disp, the as850 generates one st machine instructionNote.

In the following explanations, st denotes the st.b/st.h instructions.

(a) Absolute expression having a value in the range of -32,768 to +32,767

(b) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(c) Relative expression having !label or %label

st reg2, disp16[reg1] st reg2, disp16[reg1]

st reg2, $label[reg1] st reg2, $label[reg1]

st reg2, !label[reg1] st reg2, !label[reg1]

st reg2, %label[reg1] st reg2, %label[reg1]

70 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

(d) Expression with hi() , lo() , or hi1() applied

Note The st machine instruction takes an immediate value in the range of -32,768 to +32,767 (0xffff8000

to 0x7fff) as the displacement.

- If any of the following is specified as disp, the as850 executes instruction expansion to generate two or

more machine instructions.

(a) Absolute expression having a value exceeding the range of -32,768 to +32,767

(b) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section.

- If disp is omitted, the as850 assumes 0.

- If a relative expression with #label, or a relative expression with #label and with hi() , lo() , or hi1() applied

is specified as disp, [reg1] can be omitted. If omitted, the as850 assumes that [r0] is specified.

- If a relative expression with $label, or a relative expression with $label and with hi() , lo() , or hi1() applied

is specified as disp, [reg1] can be omitted. If omitted, the as850 assumes that [gp] is specified.

- If a peripheral I/O register name defined in the device file is specified as disp, [reg1] can be omitted. If

omitted, the as850 assumes that [r0] is specified.

st reg2, disp16[reg1] st reg2, disp16[reg1]

st reg2, disp[reg1] movhi hi1(disp), reg1, r1

st reg2, lo(disp)[r1]

st reg2, #label[reg1] movhi hi1(#label), reg1, r1

st reg2, lo(#label)[r1]

st reg2, label[reg1] movhi hi1(label), reg1, r1

st reg2, lo(label)[r1]

st reg2, $label[reg1] movhi hi1($label), reg1, r1

st reg2, lo($label)[r1]

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 71

[Flag]

[Caution]

- If a value that is not a multiple of 2 is specified as the disp of st.h or st.w, the as850 aligns disp with 2 and

generates a code. Then, the as850 outputs either one of the messages below.

CY ---

OV ---

S ---

Z ---

SAT ---

W3010: illegal displacement in inst instruction.

W4659: relocated value(value) of relocation entry (symbol: symbol, file: file,

section: section, offset: offset, type: relocation type) for load/store com-

mand become odd value.

72 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

3.3 Arithmetic Operation Instructions

This section describes the arithmetic operation instructions. Next table lists the instructions described in this

section.

Table 3 - 2 Arithmetic Operation Instructions

Instruction Meaning

add Addition

addi Addition (immediate)

cmov Transfers data depending on the flag condition [V850E]

cmp Comparison

div Signed division (word)) [V850E]

divh Signed division (halfword)

divhu Unsigned division (halfword) [V850E]

divu Unsigned division (word) [V850E]

mov Moves data

mov32 Moves data (32-bit) [V850E]

movea Addition (32-bit immediate)

movhi Addition (16-bit immediate)

mul Signed multiplication (word) [V850E]

mulh Signed multiplication (halfword)

mulhi Signed multiplication (halfword immediate)

mulu Unsigned multiplication [V850E]

mac Signed word data multiply and add [V850E2]

macu Unsigned word data multiply and add [V850E2]

sasf Sets the flag condition after a logical left shift [V850E]

setf Sets flag condition

sub Subtraction

subr Reverse subtraction

adf Add with condition flag [V850E2]

sbf Subtract with condition flag [V850E2]

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 73

add

[Overview]

Add

[Syntax]

(1) add reg1, reg2

(2) add imm, reg2

The following can be specified for imm:

- Absolute expression having a value of up to 32 bits

- Relative expression

[Function]

- Syntax (1)

Adds the value of the register specified by the first operand to the value of the register specified by the

second operand, and stores the result into the register specified by the second operand.

- Syntax (2)

Adds the value of the absolute expression or relative expression specified by the first operand to the value

of the register specified by the second operand, and stores the result in the register specified by the second

operand.

[Description]

- If this instruction is executed in syntax (1), the as850 generates one add machine instruction.

- If the following is specified as imm in syntax (2), the as850 generates one add machine instructionNote.

(a) Absolute expression having a value in the range of -16 to +15

Note The add machine instruction takes a register or immediate value in the range of -16 to +15 (0xfffffff0

to 0xf) as the first operand.

- If the following is specified for imm in syntax (2), the as850 executes instruction expansion to generate one

or more machine instructions

(a) Absolute expression having a value exceeding the range of -16 to +15

add imm15, reg add imm5, reg

add imm16, reg addi imm16, reg, reg

74 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

(b) Absolute expression having a value exceeding the range of -32,768 to +32,767

If all the lower 16 bits of the value of imm are 0

Else

(c) Absolute expression having a value exceeding the range of -32,768 to +32,767 [V850E]

If all the lower 16 bits of the value of imm are 0

Else

(d) Relative expression having !label or %label, or that having $label for a label with a definition in the sdata/

sbss-attribute section

(e) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

add imm, reg movhi hi(imm), r0, r1

add r1, reg

add imm, reg movhi hi1(imm), r0, r1

movea lo(imm), r1, r1

add r1, reg

add imm, reg movhi hi(imm), r0, r1

add r1, reg

add imm, reg mov imm, r1

add r1, reg

add $label, reg addi !label, reg, reg

add %label, reg addi %label, reg, reg

add $label, reg addi $label, reg, reg

add #label, reg movhi hi1(#label), r0, r1

movea lo(#label), r1, r1

add r1, reg

add label, reg movhi hi1(label), r0, r1

movea lo(label), r1, r1

add r1, reg

add $label, reg movhi hi1($label), r0, r1

movea lo($label), r1, r1

add r1, reg

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 75

(f) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section [V850E]

[Flag]

add #label, reg mov #label, r1

add r1, reg

add label, reg mov label, r1

add r1, reg

add $label, reg mov $label, r1

add r1, reg

CY 1 if a carry occurs from MSB (Most Significant Bit), 0 if not

OV 1 if Integer-Overflow occurs, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

76 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

addi

[Overview]

Add Immediate

[Syntax]

(1) addi imm, reg1, reg2

The following can be specified for imm:

- Absolute expression having a value of up to 32 bits

- Relative expression

- Either of the above expressions with hi() , lo() , or hi1() applied

[Function]

Adds the value of the absolute expression, relative expression, or expression with hi() , lo() , or hi1()

applied, specified by the first operand, to the value of the register specified by the second operand, and stores

the result into the register specified by the third operand.

[Description]

- If the following is specified for imm, the as850 generates one addi machine instructionNote.

(a) Absolute expression having a value in the range of -32,768 to +32,767

(b) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(c) Relative expression having !label or %label

(d) Expression with hi() , lo() , or hi1()

addi imm16, reg1, reg2 addi imm16, reg1, reg2

addi $label, reg1, reg2 addi $label, reg1, reg2

addi !label, reg1, reg2 addi !label, reg1, reg2

addi %label, reg1, reg2 addi %label, reg1, reg2

addi imm16, reg1, reg2 addi imm16, reg1, reg2

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 77

Note The addi machine instruction takes an immediate value in the range of -32,768 to +32,767 as the

first operand.

- If the following is specified for imm, the as850 executes instruction expansion to generate two or more

machine instructions.

(a) Absolute expression having a value exceeding the range of -32,768 to +32,767

If all the lower 16 bits of the value of imm are 0

If all the lower 16 bits of the value of imm are 0 and when reg2 is r0

Else

Other than above and when reg2 is r0

(b) Absolute expression having a value exceeding the range of -32,768 to +32,767 [V850E]

If all the lower 16 bits of the value of imm are 0

If all the lower 16 bits of the value of imm are 0 and when reg2 is r0

Else

Other than above and when reg2 is r0

addi imm, reg1, reg2 movhi hi(imm), r0, reg2

add reg1, reg2

addi imm, reg1, r0 movhi hi(imm), r0, r1

add reg1, r1

addi imm, reg1, reg2 movhi hi1(imm), r0, r1

movea lo(imm), r1, reg2

add reg1, reg2

addi imm, reg1, r0 movhi hi1(imm), r0, r1

movea lo(imm), r1, r1

add reg1, r1

addi imm, reg1, reg2 movhi hi(imm), r0, reg2

add reg1, reg2

addi imm, reg1, r0 movhi hi(imm), r0, r1

add reg1, r1

addi imm, reg1, reg2 mov imm, reg2

add reg1, reg2

addi imm, reg1, r0 mov imm, r1

add reg1, r1

78 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

(c) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

If reg2 is r0

Else

addi #label, reg1, r0 movhi hi1(#label), r0, r1

movea lo(#label), r1, r1

add reg1, r1

addi label, reg1, r0 movhi hi1(label), r0, r1

movea lo(label), r1, r1

add reg1, r1

addi $label, reg1 r0 movhi hi1($label), r0, r1

movea lo($label), r1, r1

add reg1, r1

addi #label, reg1, reg2 movhi hi1(#label), r0, r1

movea lo(#label), r1, reg2

add reg1, reg2

addi label, reg1, reg2 movhi hi1(label), r0, r1

movea lo(label), r1, reg2

add reg1, reg2

addi $label, reg1 reg2 movhi hi1($label), r0, r1

movea lo($label), r1, reg2

add reg1, reg2

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 79

(d) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section [V850E]

If reg2 is r0

Else

[Flag]

addi #label, reg1, r0 mov #label, r1

addi reg1, r1

addi label, reg1, r0 mov label, r1

add reg1, r1

addi $label, reg1, r0 mov $label, r1

add reg1, r1

addi #label, reg1, reg2 mov #label, reg2

addi reg1, reg2

addi label, reg1, reg2 mov label, reg2

add reg1, reg2

addi $label, reg1, reg2 mov $label, reg2

add reg1, reg2

CY Most Significant Bit) , 0 if not

OV 1 if Integer-Overflow occurs, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

80 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

cmov

[V850E]

[Overview]

Conditional Move

[Syntax]

(1) cmov imm4, reg1, reg2, reg3

(2) cmov imm4, imm, reg2, reg3

(3) cmovcond reg1, ret2, reg3

(4) cmovcond imm, reg2, reg3

The following can be specified for imm4:

- Constant expression having a value of up to 4 bitsNote

The following can be specified for imm:

- Absolute expression having a value of up to 32 bits

Note The cmov machine instruction takes an immediate value in the range of 0 to 15 (0x0 to 0xf) as the

first operand.

[Function]

- Syntax (1)

Compares the flag condition indicated by the value of the lower 4 bits of the value of the constant

expression specified by the first operand with the current flag condition. If a match is found, the register

value specified by the second operand is stored in the register specified by the fourth operand; otherwise,

the register value specified by the third operand is stored in the register specified by the fourth operand.

- Syntax (2)

Compares the flag condition indicated by the value of the lower 4 bits of the constant expression specified

by the first operand with the current flag condition. If a match is found, the value of the absolute expression

specified by the second operand is stored in the register specified by the fourth operand; otherwise, the

register value specified by the third operand is stored in the register specified by the fourth operand.

- Syntax (3)

Compares the flag condition indicated by string cond with the current flag condition. If a match is found,

the register value specified by the first operand is stored in the register specified by the third operand;

otherwise, the register value specified by the second operand is stored in the register specified by the third

operand.

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 81

- Syntax (4)

Compares the flag condition indicated by string cond with the current flag condition. If a match is found,

the value of the absolute expression specified by the first operand is stored in the register specified by the

third operand; otherwise, the register value specified by the second operand is stored in the register

specified by the third operand.

[Description]

- If the instruction is executed in syntax (1), the as850 generates one cmov machine instructionNote.

Note The cmov machine instruction takes an immediate value in the range of -16 to +15 as the second

operand.

Table 3 - 3 cmovcond Instruction List

Instruction Flag Condition Meaning of Flag Condition Instruction
Expansion

cmovgt ((S xor OV) or Z) = 0 Greater than (signed) cmov 0xf

cmovge (S xor OV) = 0 Greater than or equal (signed) cmov 0xe

cmovlt (S xor OV) = 1 Less than (signed) cmov 0x6

cmovle ((S xor OV) or Z) = 1 Less than or equal (signed) cmov 0x7

cmovh (CY or Z) = 0 Higher (Greater than) cmov 0xb

cmovnl CY = 0 Not lower (Greater than or equal) cmov 0x9

cmovl CY = 1 Lower (Less than) cmov 0x1

cmovnh (CY or Z) = 1 Not higher (Less than or equal) cmov 0x3

cmove Z = 1 Equal cmov 0x2

cmovne Z = 0 Not equal cmov 0xa

cmovv OV = 1 Overflow cmov 0x0

cmovnv OV = 0 No overflow cmov 0x8

cmovn S = 1 Negative cmov 0x4

cmovp S = 0 Positive cmov 0xc

cmovc CY = 1 Carry cmov 0x1

cmovnc CY = 0 No carry cmov 0x9

cmovz Z = 1 Zero cmov 0x2

cmovnz Z = 0 Not zero cmov 0xa

cmovt always 1 Always 1 cmov 0x5

cmovsa SAT = 1 Saturated cmov 0xd

82 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

- If the following is specified as imm in syntax (2), the as850 generates one cmov machine instruction.

(a) Absolute expression having a value in the range of -16 to +15

- If the following is specified as imm in syntax (2), the as850 executes instruction expansion to generate two

or more machine instructions.

(a) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

(b) Absolute expression having a value exceeding the range of -32,768 to +32,767

If all the lower 16 bits of the value of imm are 0

Else

(c) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(d) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

cmov imm4, imm5, reg2, reg3 cmov imm4, imm5, reg2, reg3

cmov imm4, imm16, reg2, reg3 movea imm16, r0, r1

cmov imm4, r1, reg2, reg3

cmov imm4, imm, reg2, reg3 movhi hi(imm), r0, r1

cmov imm4, r1, reg2, reg3

cmov imm4, imm, reg2, reg3 mov imm, r1

cmov imm4, r1, reg2, reg3

cmov imm4, $label, reg2, reg3 movea $label, r0, r1

cmov imm4, r1, reg2, reg3

cmov imm4, #label, reg2, reg3 mov #label, r1

cmov imm4, r1, reg2, reg3

cmov imm4, label, reg2, reg3 mov label, r1

cmov imm4, r1, reg2, reg3

cmov imm4, $label, reg2, reg3 mov $label, r1

cmov imm4, r1, reg2, reg3

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 83

- If the instruction is executed in syntax (3), the as850 generates the corresponding cmov instruction (refer to

Table 3 - 3) and expands it to syntax (1).

- If the following is specified as imm in syntax (4), the as850 generates the corresponding cmov instruction

(refer to Table 3 - 3) and expands it to syntax (2).

(a) Absolute expression having a value in the range of -16 to +15

- If the following is specified as imm in syntax (4), the as850 executes instruction expansion to generate two

or more machine instructions.

(a) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

(b) Absolute expression having a value exceeding the range of -32,768 to +32,767

If all the lower 16 bits of the value of imm are 0

Else

(c) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(d) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

cmovcond imm16, reg2, reg3 movea imm16, r0, r1

cmovcond r1, reg2, reg3

cmovcond imm, reg2, reg3 movhi hi(imm), r0, r1

cmovcond r1, reg2, reg3

cmovcond imm, reg2, reg3 mov imm, r1

cmovcond r1, reg2, reg3

cmovcond $label, reg2, reg3 movea $label, r0, r1

cmovcond r1, reg2, reg3

cmovcond #label, reg2, reg3 mov #label, r1

cmovcond r1, reg2, reg3

cmovcond label, reg2, reg3 mov label, r1

cmovcond r1, reg2, reg3

cmovcond $label, reg2, reg3 mov $label, r1

cmovcond r1, reg2, reg3

84 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

[Flag]

[Caution]

- If a constant expression having a value exceeding 4 bits is specified as imm4 of the cmov instruction, the

as850 outputs the following message. If the value exceeds 4 bits, the as850 masks the value with 0xf and

continues assembling.

- If anything other than a constant expressionNote is specified as imm4 of the cmov instruction, the as850

outputs the following message and stops assembling.

Note Undefined symbol and label reference.

CY ---

OV ---

S ---

Z ---

SAT ---

W3011: illegal operand (range error in immediate)

E3249: illegal syntax

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 85

cmp

[Overview]

Compare

[Syntax]

(1) cmp reg1, reg2

(2) cmp imm, reg2

The following can be specified for imm:

- Absolute expression having a value of up to 32 bits

- Relative expression

[Function]

- Syntax (1)

Compares the value of the register specified by the first operand with the value of the register specified by

the second operand, and indicates the result using a flag. Comparison is performed by subtracting the value

of the register specified by the first operand from the value of the register specified by the second operand.

- Syntax (2)

Compares the value of the absolute expression or relative expression specified by the first operand with

the value of the register specified by the second operand, and indicates the result using a flag. Comparison

is performed by subtracting the value of the register specified by the first operand from the value of the

register specified by the second operand.

[Description]

- If the instruction is executed in syntax (1), the as850 generates one cmp machine instruction.

- If the following is specified as imm in syntax (2), the as850 generates one cmp machine instructionNote.

(a) Absolute expression having a value in the range of -16 to +15

Note The cmp machine instruction takes a register or immediate value in the range of -16 to +15 as the

first operand.

cmp imm5, reg cmp imm5, reg

86 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

- If the following is specified as imm in syntax (2), the as850 executes instruction expansion to generate one

or more machine instructions

(a) Absolute expression having a value exceeding the range of -16 to +15

(b) Absolute expression having a value exceeding the range of -32,768 to +32,767

If all the lower 16 bits of the value of imm are 0

Else

(c) Absolute expression having a value exceeding the range of -32,768 to +32,767 [V850E]

If all the lower 16 bits of the value of imm are 0

Else

(d) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

cmp imm16, reg movea imm16, r0, r1

cmp r1, reg

cmp imm, reg movhi hi(imm), r0, r1

cmp r1, reg

cmp imm, reg movhi hi1(imm), r0, r1

movea lo(imm), r1, r1

cmp r1, reg

cmp imm, reg movhi hi(imm), r0, r1

cmp r1, reg

cmp imm, reg mov imm, r1

cmp r1, reg

cmp $label, reg movea $label, r0, r1

cmp r1, reg

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 87

(e) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

(f) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section [V850E]

[Flag]

cmp #label, reg movhi hi1(#label), r0, r1

movea lo(#label), r1, r1

cmp r1, reg

cmp label, reg movhi hi1(label), r0, r1

movea lo(label), r1, r1

cmp r1, reg

cmp $label, reg movhi hi1($label), r0, r1

movea lo($label), r1, r1

cmp r1, reg

cmp #label, reg mov #label, r1

cmp r1, reg

cmp label, reg mov label, r1

cmp r1, reg

cmp $label, reg mov $label, r1

cmp r1, reg

CY 1 if a borrow occurs from MSB (Most Significant Bit) , 0 if not

OV 1 if Integer-Overflow occurs, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is negative, 0 if not

SAT ---

88 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

div

[V850E]

[Overview]

Divide Word

[Syntax]

(1) div reg1, reg2, reg3

(2) div imm, reg2, reg3

The following can be specified for imm:

- Absolute expression having a value of up to 32 bits

- Relative expression

[Function]

- Syntax (1)

Divides the register value specified by the second operand by the register value specified by the first

operand as a signed value and stores the quotient in the register specified by the second operand, and the

remainder in the register specified by the third operand. If the same register is specified by the second and

third operands, the remainder is stored in that register.

- Syntax (2)

Divides the register value specified by the second operand by the value of the absolute or relative

expression specified by the first operand as a signed value and stores the quotient in the register specified

by the second operand, and the remainder in the register specified by the third operand. If the same register

is specified by the second and third operands, the remainder is stored in that register.

[Description]

- If the instruction is executed in syntax (1), the as850 generates one div machine instructionNote.

- If the instruction is executed in syntax (2), the as850 executes instruction expansion to generate two or

more machine instructionsNote.

(a) 0

(b) Absolute expression having a value of other than 0 whithin the range of -16 to +15

div 0, reg2, reg3 div r0, reg2, reg3

div imm5, reg2, reg3 mov imm5, r1

div r1, reg2, reg3

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 89

(c) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

(d) Absolute expression having a value exceeding the range of -32,768 to +32,767

If all the lower 16 bits of the value of imm are 0

Else

(e) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(f) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

Note The div machine instruction does not take an immediate value as an operand.

[Flag]

div imm16, reg2, reg3 movea imm16, r0, r1

div r1, reg2, reg3

div imm, reg2, reg3 movhi hi(imm), r0, r1

div r1, reg2, reg3

div imm, reg2, reg3 mov imm, r1

div r1, reg2, reg3

div $label, reg2, reg3 movea $label, r0, r1

div r1, reg2, reg3

div #label, reg2, reg3 mov #label, r1

div r1, reg2, reg3

div label, reg2, reg3 mov label, r1

div r1, reg2, reg3

div $label, reg2, reg3 mov $label, r1

div r1, reg2, reg3

CY ---

OV 1 if an Integer-Overflow occurs, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

90 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

divh

[Overview]

Divide Half-word

[Syntax]

(1) divh reg1, reg2

(2) divh imm, reg2

(3) divh reg1, reg2, reg3 [V850E]

(4) divh imm, reg2, reg3 [V850E]

The following can be specified for imm16:

- Absolute expressionNote having a value of up to 16 bits

- Relative expression

Note The as850 does not check whether the value of the expression exceeds 16 bits. The generated

machine instruction performs execution using the lower 16 bits.

[Function]

- Syntax (1)

Divides the register value specified by the second operand by the value of the lower halfword data of the

register specified by the first operand as a signed value, and stores the quotient in the register specified by

the second operand.

- Syntax (2)

Divides the register value specified by the second operand by the value of the lower halfword data of the

absolute or relative expression specified by the first operand as a signed value and stores the quotient in the

register specified by the second operand.

- Syntax (3)

Divides the register value specified by the second operand by the value of the lower halfword data of the

register specified by the first operand as a signed value and stores the quotient in the register specified by

the second operand, and the remainder in the register specified by the third operand. If the same register is

specified by the second and third operands, the remainder is stored in that register.

- Syntax (4)

Divides the register value specified by the second operand by the value of the lower halfword data of the

absolute or relative expression specified by the first operand as a signed value and stores the quotient in the

register specified by the second operand, and the remainder in the register specified by the third operand. If

the same register is specified by the second and third operands, the remainder is stored in that register.

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 91

[Description]

- If the instruction is executed in syntaxes (1) and (3), the as850 generates one divh machine instruction.

- If the instruction is executed in syntax (2), the as850 executes instruction expansion to generate one or

more machine instructionsNote.

(a) 0

(b) Absolute expression having a value of other than 0 whithin the range of -16 to +15

(c) Absolute expression having a value of other than 0 whithin the range of -16 to +15 [V850E]

(d) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

(e) Absolute expression having a value exceeding the range of -32,768 to +32,767

If all the lower 16 bits of the value of imm are 0

Else

(f) Absolute expression having a value exceeding the range of -32,768 to +32,767 [V850E]

If all the lower 16 bits of the value of imm are 0

Else

divh 0, reg divh r0, reg

divh imm5, reg mov imm5, r1

divh r1, reg

divh imm5, reg mov imm5, r1

divh r1, reg

divh imm16, reg movea imm16, r0, r1

divh r1, reg

divh imm, reg movhi hi(imm), r0, r1

divh r1, reg

divh imm, reg movhi hi1(imm), r0, r1

movea lo(imm), r1, r1

divh r1, reg

divh imm, reg movhi hi(imm), r0, r1

divh r1, reg

divh imm, reg mov imm, r1

divh r1, reg

92 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

(g) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(h) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

(i) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section [V850E]

Note The divh machine instruction does not take an immediate value as an operand.

- If the instruction is executed in syntax (4), the as850 executes instruction expansion to generate one or

more machine instructions

(a) 0

divh $label, reg movea $label, r0, r1

divh r1, reg

divh #label, reg movhi hi1(#label), r0, r1

movea lo(#label), r1, r1

divh r1, reg

divh label, reg movhi hi1(label), r0, r1

movea lo(label), r1, r1

divh r1, reg

divh $label, reg movhi hi1($label), r0, r1

movea lo($label), r1, r1

divh r1, reg

divh #label, reg mov #label, r1

divh r1, reg

divh label, reg mov label, r1

divh r1, reg

divh $label, reg mov $label, r1

divh r1, reg

divh 0, reg2, reg3 divh r0, reg2, reg3

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 93

(b) Absolute expression having a value of other than 0 whithin the range of -16 to +15

(c) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

(d) Absolute expression having a value exceeding the range of -32,768 to +32,767

If all the lower 16 bits of the value of imm are 0

Else

(e) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(f) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

[Flag]

divh imm5, reg2, reg3 mov imm5, r1

divh r1, reg2, reg3

divh imm16, reg2, reg3 movea imm16, r0, r1

divh r1, reg2, reg3

divh imm, reg2, reg3 movhi hi(imm), r0, r1

divh r1, reg2, reg3

divh imm, reg2, reg3 mov imm, r1

divh r1, reg2, reg3

divh $label, reg2, reg3 movea $label, r0, r1

divh r1, reg2, reg3

divh #label, reg2, reg3 mov #label, r1

divh r1, reg2, reg3

divh label, reg2, reg3 mov label, r1

divh r1, reg2, reg3

divh $label, reg2, reg3 mov $label, r1

divh r1, reg2, reg3

CY ---

OV 1 if an Integer-Overflow occurs, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

94 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

[Caution]

- If r0 is specified by the first operand in syntax (1) when the V850Ex is used as the target device, the as850

outputs the following message and stops assembling.

With a device other than the V850Ex, the as850 outputs the following message and continues

assembling.

- If r0 is specified by the second operand in syntaxes (1) and (2) when the V850Ex is used as the target

device, the as850 outputs the following message and stops assembling.

With a device other than the V850Ex, the as850 outputs the following message and continues

assembling.

SAT ---

E3239: illegal operand (can not use r0 as source in V850E mode)

W3013: register r0 used as source register

E3240: illegal operand (can not use r0 as destination in V850E mode)

W3013: register r0 used as destination register

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 95

divhu

[V850E]

[Overview]

Divide Half-word Unsigned

[Syntax]

(1) divhu reg1, reg2, reg3

(2) divhu imm, reg2, reg3

The following can be specified for imm:

- Absolute expression having a value of up to 16 bitsNote

- Relative expression

Note The as850 does not check whether the value of the expression exceeds 16 bits.

The generated machine instruction uses only the lower 16 bits for execution.

[Function]

- Syntax (1)

Divides the register value specified by the second operand by the value of the lower halfword data of the

register value specified by the first operand as an unsigned value and stores the quotient in the register

specified by the second operand, and the remainder in the register specified by the third operand. If the

same register is specified by the second and third operands, the remainder is stored in that register.

- Syntax (2)

Divides the register value specified by the second operand by the value of the lower halfword data of the

absolute or relative expression specified by the first operand as an unsigned value and stores the quotient in

the register specified by the second operand, and the remainder in the register specified by the third

operand. If the same register is specified by the second and third operands, the remainder is stored in that

register.

[Description]

- If the instruction is executed in syntax (1), the as850 generates one divhu machine instruction.

- If the instruction is executed in syntax (2), the as850 executes instruction expansion to generate one or

more machine instructionsNote.

(a) 0

divhu 0, reg2, reg3 divhu r0, reg2, reg3

96 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

(b) Absolute expression having a value of other than 0 whithin the range of -16 to +15

(c) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

(d) Absolute expression having a value exceeding the range of -32,768 to +32,767

If all the lower 16 bits of the value of imm are 0

Else

(e) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(f) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

Note The divhu machine instruction does not take an immediate value as an operand.

divhu imm5, reg2, reg3 mov imm5, r1

divhu r1, reg2, reg3

divhu imm16, reg2, reg3 movea imm16, r0, r1

divhu r1, reg2, reg3

divhu imm, reg2, reg3 movhi hi(imm), r0, r1

divhu r1, reg2, reg3

divhu imm, reg2, reg3 mov imm, r1

divhu r1, reg2, reg3

divhu $label, reg2, reg3 movea $label, r0, r1

divhu r1, reg2, reg3

divhu #label, reg2, reg3 mov #label, r1

divhu r1, reg2, reg3

divhu label, reg2, reg3 mov label, r1

divhu r1, reg2, reg3

divhu $label, reg2, reg3 mov $label, r1

divhu r1, reg2, reg3

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 97

[Flag]

CY ---

OV 1 if an Integer-Overflow occurs, 0 if not

S 1 if the word data MSB of the result is 1, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

98 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

divu

[V850E]

[Overview]

Divide Word Unsigned

[Syntax]

(1) divu reg1, reg2, reg3

(2) divu imm, reg2, reg3

The following can be specified for imm:

- Absolute expression having a value of up to 32 bits

- Relative expression

[Function]

- Syntax (1)

Divides the register value specified by the second operand by the register value specified by the first

operand as an unsigned value and stores the quotient in the register specified by the second operand, and

the remainder in the register specified by the third operand. If the same register is specified by the second

and third operands, the remainder is stored in that register.

- Syntax (2)

Divides the register value specified by the second operand by the value of the absolute or relative

expression specified by the first operand as an unsigned value and stores the quotient in the register

specified by the second operand, and the remainder in the register specified by the third operand. If the

same register is specified by the second and third operands, the remainder is stored in that register.

[Description]

- If the instruction is executed in syntax (1), the as850 generates one divu machine instruction.

- If the instruction is executed in syntax (2), the as850 executes instruction expansion to generate one or

more machine instructionsNote .

Note The divu machine instruction does not take an immediate value as an operand.

(a) 0

(b) Absolute expression having a value of other than 0 whithin the range of -16 to +15

divu 0, reg2, reg3 divu r0, reg2, reg3

divu imm5, reg2, reg3 mov imm5, r1

divu r1, reg2, reg3

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 99

(c) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

(d) Absolute expression having a value exceeding the range of -32,768 to +32,767

If all the lower 16 bits of the value of imm are 0

Else

(e) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(f) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

[Flag]

divu imm16, reg2, reg3 movea imm16, r0, r1

divu r1, reg2, reg3

divu imm, reg2, reg3 movhi hi(imm), r0, r1

divu r1, reg2, reg3

divu imm, reg2, reg3 mov imm, r1

divu r1, reg2, reg3

divu $label, reg2, reg3 movea $label, r0, r1

divu r1, reg2, reg3

divu #label, reg2, reg3 mov #label, r1

divu r1, reg2, reg3

divu label, reg2, reg3 mov label, r1

divu r1, reg2, reg3

divu $label, reg2, reg3 mov $label, r1

divu r1, reg2, reg3

CY ---

OV 1 if an Integer-Overflow occurs, 0 if not

S 1 if the word data MSB of the result is 1, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

100 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

mov

[Overview]

Move

[Syntax]

(1) mov reg1, reg2

(2) mov imm, reg2

The following can be specified for imm:

- Absolute expression having a value of up to 32 bits

- Relative expression

[Function]

- Syntax (1)

Stores the value of the register specified by the first operand in the register specified by the second

operand.

- Syntax (2)

Stores the value of the absolute expression or relative expression specified by the first operand in the

register specified by the second operand.

[Description]

- If the instruction is executed in syntax (1), the as850 generates one mov machine instruction.

- If the following is specified as imm in syntax (2), the as850 generates one mov machine instructionNote.

(a) Absolute expression having a value in the range of -16 to +15

Note The mov machine instruction for the V850 is in 16-bit format. A 48-bit format is supported with the

V850Ex. For the V850, therefore, this instruction takes a register or immediate value in the range of

-16 to +15 (0xfffffff0 to 0xf) as the first operand. For the V850Ex, in addition to these register and

immediate values, mov takes an immediate value in the range of -2,147,483,648 to -2,147,483,647

(0x80000000 to 0x7fffffff).

- If the following is specified as imm in syntax (2), the as850 executes instruction expansion to generate one

or more machine instructions.

(a) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

mov imm5, reg mov imm5, reg

mov imm16, reg movea imm16, r0, reg

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 101

(b) Absolute expression having a value exceeding the range of -32,768 to +32,767

If all the lower 16 bits of the value of imm are 0

Else

(c) Absolute expression having a value exceeding the range of -32,768 to +32,767 [V850E]

If all the lower 16 bits of the value of imm are 0

ElseNote

Note A 16-bit mov instruction is replaced by a 48-bit mov instruction.

(d) Relative expression having !label or %label, or that having $label for a label with a definition in the sdata/

sbss-attribute section

mov imm, reg movhi hi(imm), r0, reg

mov imm, reg movhi hi1(imm), r0, r1

movea lo(imm), r1, reg

mov imm, reg movhi hi(imm), r0, reg

mov imm, reg mov imm, reg

mov %label, reg movea !label, r0, reg

mov %label, reg movea %label, r0, reg

mov $label, reg movea $label, r0, reg

102 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

(e) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

(f) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute sectionNote [V850E]

Note A 16-bit mov instruction is replaced by a 48-bit mov instruction.

[Flag]

mov #label, reg movhi hi1(#label), r0, r1

movea lo(#label), r1, reg

mov label, reg movhi hi1(label), r0, r1

movea lo(label), r1, reg

mov $label, reg movhi hi1($label), r0, r1

movea lo($label), r1, reg

mov #label, reg mov #label, reg

mov label, reg mov label, reg

mov $label, reg mov $label, reg

CY ---

OV ---

S ---

Z ---

SAT ---

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 103

[Caution]

- If r0 is specified by both the first and the second operand of syntax(1), the result of assembly becomes a

nop instruction code.

- When the V850Ex is used as the target device, if an absolute expression having a value in the range

between -6 and 15 is specified by the first operand and r0 is specified by the second operand of syntax (2),

the as850 outputs the following message and stops assembling.

- If an absolute expression having a value exceeding the range of -32,768 to +32,767, #label, or a relative

expression having label, and a relative expression having $label without a definition in the sdata/sbss

attribute section are specified as the first operand of an instruction in syntax (2), and if instruction

expansion is suppressed with quasi directive .option nomacro specified, when the target device is the

V850Ex, the as850 outputs the following message and stops assembling.

In this case, use the mov32 instruction.

E3240: illegal operand (can not use r0 as destination in V850E mode)

E3249: illegal syntax

104 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

mov32

[V850E]

[Overview]

32bit Move

[Syntax]

(1) mov32 imm, reg2

The following can be specified for imm:

- Absolute expression having a value of up to 32 bits

- Relative expression

[Function]

Stores the value of the absolute or relative expression specified as the first operand in the register specified

as the second operand.

[Description]

- The as850 generates one 48-bit machine language mov instruction.

[Flag]

CY ---

OV ---

S ---

Z ---

SAT ---

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 105

movea

[Overview]

Move Effective Address

[Syntax]

(1) movea imm, reg1, reg2

The following can be specified for imm:

- Absolute expression having a value of up to 32 bits

- Relative expression

- Either of the above expressions with hi() , lo() , or hi1() applied

[Function]

Adds the value of the absolute expression, relative expression, or expression with hi() , lo() , or hi1()

applied, specified by the first operand, to the value of the register specified by the second operand, and stores

the result in the register specified by the third operand.

[Description]

- If the following is specified for imm, the as850 generates one movea machine instructionNote.

(a) Absolute expression having a value in the range of -32,768 to +32,767

(b) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(c) Relative expression having !label or %label

movea imm16, reg1, reg2 movea imm16, reg1, reg2

movea $label, reg1, reg2 movea $label, reg1, reg2

movea !label, reg1, reg2 movea !label, reg1, reg2

movea %label, reg1, reg2 movea %label, reg1, reg2

106 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

(d) Expression with hi() , lo() , or hi1()

Note The movea machine instruction takes an immediate value in a range of -32,768 to +32,767

(0xffff8000 to 0x7fff) as the first operand.

- If the following is specified for imm, the as850 executes instruction expansion to generate one or more

machine instructions.

(a) Absolute expression having a value exceeding the range of -32,768 to +32,767

If all the lower 16 bits of the value of imm are 0

Else

(b) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

[Flag]

movea imm16, reg1, reg2 movea imm16, reg1, reg2

movea imm, reg1, reg2 movhi hi(imm), reg1, reg2

movea imm, reg1, reg2 movhi hi1(imm), reg1, r1

movea lo(imm), r1, reg2

movea #label, reg1, reg2 movhi hi1(#label), reg1, r1

movea lo(#label), r1, reg2

movea label, reg1, reg2 movhi hi1(label), reg1, r1

movea lo(label), r1, reg2

movea $label, reg1, reg2 movhi hi1($label), reg1, r1

movea lo($label), r1, reg2

CY ---

OV ---

S ---

Z ---

SAT ---

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 107

[Caution]

- If r0 is specified by the third operand when the V850Ex is used as the target device, the as850 outputs the

following message and stops assembling.

With a device other than the V850Ex, the as850 outputs the following message and continues assembling

E3240: illegal operand (can not use r0 as destination in V850E mode)

W3013: register r0 used as destination register

108 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

movhi

[Overview]

Move High half-word

[Syntax]

(1) movhi imm16, reg1, reg2

The following can be specified for imm16:

- Absolute expression having a value of up to 16 bits

- Relative expression

- Either an absolute expression or relative expression with hi() , lo() , or hi1() applied

[Function]

Adds word data for which the higher 16 bits are specified by the first operand and the lower 16 bits are 0, to

the value of the register specified by the second operand, and stores the result in the register specified by the

third operand.

[Description]

- The as850 generates one movhi machine instruction.

[Flag]

CY ---

OV ---

S ---

Z ---

SAT ---

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 109

[Caution]

- If an absolute expression having a value exceeding the range of 0 to 65,535 is specified as imm16, the

as850 outputs the following message and stops assembling.

- If r0 is specified by the third operand when the V850Ex is used as the target device, the as850 outputs the

following message and stops assembling.

With a device other than the V850Ex, the as850 outputs the following message and continues

assembling.

E3231: illegal operand (range error in immediate)

E3240: illegal operand (can not use r0 as destination in V850E mode)

W3013: register r0 used as destination register

110 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

mul

[V850E]

[Overview]

Multiply Word

[Syntax]

(1) mul reg1, reg2, reg3

(2) mul imm, reg2, reg3

The following can be specified for imm:

- Absolute expression having a value of up to 32 bits

- Relative expression

[Function]

- Syntax (1)

Multiplies the register value specified by the first operand by the register value specified by the second

operand as a signed value and stores the lower 32 bits of the result in the register specified by the second

operand, and the higher 32 bits in the register specified by the third operand. If the same register is specified

by the second and third operands, the higher 32 bits of the multiplication result are stored in that register.

- Syntax (2)

Multiplies the value of the absolute or relative expression specified by the first operand by the register

value specified by the second operand as a signed value and stores the lower 32 bits of the result in the

register specified by the second operand, and the higher 32 bits in the register specified by the third

operand. If the same register is specified by the second and third operands, the higher 32 bits of the

multiplication result are stored in that register.

[Description]

- If the instruction is executed in syntax (1), the as850 generates one mul machine instruction.

- If the instruction is executed in syntax (2), the as850 executes instruction expansion to generate one or

more machine instructions.

(a) 0

(b) Absolute expression having a value of other than 0 whithin the range of -256 to +255

mul 0, reg2, reg3 mul r0, reg2, reg3

mul imm9, reg2, reg3 mul imm9, reg2, reg3

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 111

(c) Absolute expression exceeding the range of -256 to +255, but within the range of -32,768 to +32,767

(d) Absolute expression having a value exceeding the range of -32,768 to +32,767

If all the lower 16 bits of the value of imm are 0

Else

(e) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(f) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

[Flag]

mul imm16, reg2, reg3 movea imm16, r0, r1

mul r1, reg2, reg3

mul imm, reg2, reg3 movhi hi(imm), r0, r1

mul r1, reg2, reg3

mul imm, reg2, reg3 mov imm, r1

mul r1, reg2, reg3

mul $label, reg2, reg3 movea $label, r0, r1

mul r1, reg2, reg3

mul #label, reg2, reg3 mov #label, r1

mul r1, reg2, reg3

mul label, reg2, reg3 mov label, r1

mul r1, reg2, reg3

mul $label, reg2, reg3 mov $label, r1

mul r1, reg2, reg3

CY ---

OV ---

S ---

Z ---

SAT ---

112 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

[Caution]

- If these three conditions for the instructions in syntax (1) are met: reg1 and reg3 are the same register, reg2

is a different register from reg1 and reg3, and reg1 and reg3 are neither r0 nor r1, the as850 performs

instruction expansion and generates multiple machine-language instructions.

- If these three conditions for the instructions in syntax (1) are met: reg1 and reg3 are the same register, reg2

is a different register from reg1 and reg3, and reg1 and reg3 are r1, the as850 outputs the following

messages and stops assembling.

- If these two conditions for the instructions in syntax (2) are met: reg2 and reg3 are the same register, and

reg3 is r1, the as850 outputs the following message and stops assembling.

If the warning message suppressing option -wr1- is specified, the as850 outputs the following message

and stops assembling.

mov reg1, r1

mul r1, reg2, reg3

W3013: register r1 used as source register

W3013: register r1 used as destination register

E3259: can not use r1 as destination in mul/mulu

W3013: register r1 used as destination register

E3259: can not use r1 as destination in mul/mulu

E3259: can not use r1 as destination in mul/mulu

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 113

mulh

[Overview]

Multiply Half-word

[Syntax]

(1) mulh reg1, reg2

(2) mulh imm, reg2

The following can be specified for imm:

- Absolute expression having a value of up to 16 bitsNote

- Relative expression

Note The as850 does not check whether the value of the expression exceeds 16 bits. The generated

mulh instruction performs the operation by using the lower 16 bits.

[Function]

- Syntax (1)

Multiplies the value of the lower halfword data of the register specified by the first operand by the value of

the lower halfword data of the register specified by the second operand as a signed value, and stores the

result in the register specified by the second operand.

- Syntax (2)

Multiplies the value of the lower halfword data of the absolute expression or relative expression specified

by the first operand by the value of the lower halfword data of the register specified by the second operand

as a signed value, and stores the result in the register specified by the second operand.

[Description]

- If the instruction is executed in syntax (1), the as850 generates one mulh machine instruction.

- If the following is specified as imm in syntax (2), the as850 generates one mulh machine instructionNote.

(a) Absolute expression having a value in the range of -16 to +15

Note The mulh machine instruction takes a register or immediate value in the range of -16 to +15

(0xfffffff0 to 0xf) as the first operand.

mulh imm15, reg mulh imm5, reg

114 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

- If the following is specified for imm in syntax (2), the as850 executes instruction expansion to generate one

or more machine instructions

(a) Absolute expression having a value exceeding the range of -16 to +15

(b) Absolute expression having a value exceeding the range of -32,768 to +32,767

If all the lower 16 bits of the value of imm are 0

Else

(c) Absolute expression having a value exceeding the range of -32,768 to +32,767 [V850E]

If all the lower 16 bits of the value of imm are 0

Else

(d) Relative expression having !label or %label, or that having $label for a label with a definition in the sdata/

sbss-attribute section

mulh imm16, reg mulhi imm16, reg, reg

mulh imm, reg movhi hi(imm), r0, r1

mulh r1, reg

mulh imm, reg movhi hi1(imm), r0, r1

movea lo(imm), r1, r1

mulh r1, reg

mulh imm, reg movhi hi(imm), r0, r1

mulh r1, reg

mulh imm, reg mov imm, r1

mulh r1, reg

mulh $label, reg mulhi !label, reg, reg

mulh %label, reg mulhi %label, reg, reg

mulh $label, reg mulhi $label, reg, reg

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 115

(e) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

(f) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section [V850E]

[Flag]

mulh #label, reg movhi hi1(#label), r0, r1

movea lo(#label), r1, r1

mulh r1, reg

mulh label, reg movhi hi1(label), r0, r1

movea lo(label), r1, r1

mulh r1, reg

mulh $label, reg movhi hi1($label), r0, r1

movea lo($label), r1, r1

mulh r1, reg

mulh #label, reg mov #label, r1

mulh r1, reg

mulh label, reg mov label, r1

mulh r1, reg

mulh $label, reg mov $label, r1

mulh r1, reg

CY ---

OV ---

S ---

Z ---

SAT ---

116 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

[Caution]

- If r0 is specified by the second operand when the V850Ex is used as the target device, the as850 outputs

the following message and stops assembling.

With a device other than the V850Ex, the as850 outputs the following message and continues

assembling.

E3240: illegal operand (can not use r0 as destination in V850E mode)

W3013: register r0 used as destination register

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 117

mulhi

[Overview]

Multiply Half-word Immediate

[Syntax]

(1) mulhi imm, reg1, reg2

The following can be specified for imm:

- Absolute expression having a value of up to 16 bitsNote

- Relative expression

- Either of the above expressions with hi() , lo() , or hi1() applied

Note The as850 does not check whether the value of the expression exceeds 16 bits. The generated

mulhi machine instruction performs the operation by using the lower 16 bits.

[Function]

Multiplies the value of the absolute expression, relative expression, or expression with hi() , lo() , or hi1()

applied specified by the first operand by the value of the register specified by the second operand, and

stores the result in the register specified by the third operand.

[Description]

- If the following is specified for imm, the as850 generates one mulhi machine instructionNote.

(a) Absolute expression having a value in the range of -32,768 to +32,767

(b) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(c) Relative expression having !label or %label

mulhi imm16, reg1, reg2 mulhi imm16, reg1, reg2

mulhi $label, reg1, reg2 mulhi $label, reg1, reg2

mulhi !label, reg1, reg2 mulhi !label, reg1, reg2

mulhi %label, reg1, reg2 mulhi %label, reg1, reg2

118 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

(d) Expression with hi() , lo() , or hi1()

Note The mulhi machine instruction takes an immediate value in the range of -32,768 to +32,767

(0xffff8000 to 0x7fff) as the first operand.

- If the following is specified for imm, the as850 executes instruction expansion to generate two or more

machine instructions

(a) Absolute expression having a value exceeding the range of -32,768 to +32,767

If all the lower 16 bits of the value of imm are 0

If all the lower 16 bits of the value of imm are 0 and when reg2 is r0

Else

Other than above and when reg2 is r0

(b) Absolute expression having a value exceeding the range of -32,768 to +32,767 [V850E]

If all the lower 16 bits of the value of imm are 0

Else

mulhi imm16, reg1, reg2 mulhi imm16, reg1, reg2

mulhi imm, reg1, reg2 movhi hi(imm), r0, reg2

mulh reg1, reg2

mulhi imm, reg1, r0 movhi hi(imm), r0, r1

mulh reg1, r1

mulhi imm, reg1, reg2 movhi hi1(imm), r0, r1

movea lo(imm), r1, reg2

mulh reg1, reg2

mulhi imm, reg1, r0 movhi hi1(imm), r0, r1

movea lo(imm), r1, r1

mulh reg1,r1

mulhi imm, reg1, reg2 movhi hi(imm), r0, reg2

mulh reg1, reg2

mulhi imm, reg1, reg2 mov imm, reg2

mulh reg1, reg2

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 119

(c) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

If reg2 is r0

Else

(d) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section [V850E]

mulhi #label, reg1, r0 movhi hi1(#label), r0, r1

movea lo(#label), r1, r1

mulh reg1, reg2

mulhi label, reg1, r0 movhi hi1(label), r0, r1

movea lo(label), r1, r1

mulh reg1, r1

mulhi $label, reg1 r0 movhi hi1($label), r0, r1

movea lo($label), r1, r1

mulh reg1, r1

mulhi #label, reg1, reg2 movhi hi1(#label), r0, r1

movea lo(#label), r1, reg2

mulh reg1, reg2

mulhi label, reg1, reg2 movhi hi1(label), r0, r1

movea lo(label), r1, reg2

mulh reg1, reg2

mulhi $label, reg1 reg2 movhi hi1($label), r0, r1

movea lo($label), r1, reg2

mulh reg1, reg2

mulhi #label, reg1, reg2 mov #label, reg2

mulhi reg1, reg2

mulhi label, reg1, reg2 mov label, reg2

mulh reg1, reg2

mulhi $label, reg1, reg2 mov $label, reg2

mulh reg1, reg2

120 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

[Flag]

CY ---

OV ---

S ---

Z ---

SAT ---

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 121

[Caution]

- If r0 is specified by the second operand when the V850Ex is used as the target device, the as850 outputs

the following message and stops assembling.

With a device other than the V850Ex, the as850 outputs the following message and continues

assembling.

E3240: illegal operand (can not use r0 as destination in V850E mode)

W3013: register r0 used as destination register

122 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

mulu

[V850E]

[Overview]

Multiply Word Unsigned

[Syntax]

(1) mulu reg1, reg2, reg3

(2) mulu imm, reg2, reg3

The following can be specified for imm:

- Absolute expression having a value of up to 32 bits

- Relative expression

[Function]

- Syntax (1)

Multiplies the register value specified by the first operand by the register value specified by the second

operand as an unsigned value and stores the lower 32 bits of the result in the register specified by the

second operand, and the higher 32 bits in the register specified by the third operand. If the same register is

specified by the second and third operands, the higher 32 bits of the multiplication result are stored in that

register.

- Syntax (2)

Multiplies the value of the absolute or relative expression specified by the first operand by the register

value specified by the second operand as an unsigned value and stores the lower 32 bits of the result in the

register specified by the second operand, and the higher 32 bits in the register specified by the third

operand. If the same register is specified by the second and third operands, the higher 32 bits of the

multiplication result are stored in that register.

[Description]

- If the instruction is executed in syntax (1), the as850 generates one mulu machine instruction.

- If the instruction is executed in syntax (2), the as850 executes instruction expansion to generate one or

more machine instructions.

(a) 0

(b) Absolute expression having a value in the range of 1 to +511

mulu 0, reg2, reg3 mulu r0, reg2, reg3

mulu imm9, reg2, reg3 mulu imm9, reg2, reg3

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 123

(c) Absolute expression exceeding the range of 0 to +511, but within the range of -32,768 to +32,767

(d) Absolute expression having a value exceeding the range of -32,768 to +32,767

If all the lower 16 bits of the value of imm are 0

Else

(e) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(f) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

[Flag]

mulu imm16, reg2, reg3 movea imm16, r0, r1

mulu r1, reg2, reg3

mulu imm, reg2, reg3 movhi hi(imm), r0, r1

mulu r1, reg2, reg3

mulu imm, reg2, reg3 mov imm, r1

mulu r1, reg2, reg3

mulu $label, reg2, reg3 movea $label, r0, r1

mulu r1, reg2, reg3

mulu #label, reg2, reg3 mov #label, r1

mulu r1, reg2, reg3

mulu label, reg2, reg3 mov label, r1

mulu r1, reg2, reg3

mulu $label, reg2, reg3 mov $label, r1

mulu r1, reg2, reg3

CY ---

OV ---

S ---

Z ---

SAT ---

124 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

[Caution]

- If these three conditions for the instructions in syntax (1) are met: reg1 and reg3 are the same register, reg2

is a different register from reg1 and reg3, and reg1 and reg3 are neither r0 nor r1, the as850 performs

instruction expansion and generates multiple machine-language instructions.

- If these three conditions for the instructions in syntax (1) are met: reg1 and reg3 are the same register, reg2

is a different register from reg1 and reg3, and reg1 and reg3 are r1, the as850 outputs the following

messages and stops assembling.

- If these two conditions for the instructions in syntax (2) are met: reg2 and reg3 are the same register, and

reg3 is r1, the as850 outputs the following message and stops assembling.

If the warning message suppressing option -wr1- is specified, the as850 outputs the following message

and stops assembling.

mov reg1, r1

mulu r1, reg2, reg3

W3013: register r1 used as source register

W3013: register r1 used as destination register

E3259: can not use r1 as destination in mul/mulu

W3013: register r1 used as destination register

E3259: can not use r1 as destination in mul/mulu

E3259: can not use r1 as destination in mul/mulu

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 125

mac

[V850E2]

[Overview]

Signed Word Data Multiply and Add (Multiply Word and Add)

[Syntax]

(1) mac reg1, reg2, reg3, reg4

[Function]

Adds the multiplication result of the general-purpose register reg2 word data and the general-purpose

register reg1 word data with the 64-bit data made up of general-purpose register reg3 as the lower 32 bits and

general-purpose register reg3+1 (for example, if reg3 were r6, "reg3+1" would be r7) as the upper 32 bits, and

stores the upper 32 bits of that result (64-bit data) in general-purpose register reg4+1 and the lower 32 bits in

general-purpose register reg4.

The contents of general-purpose registers reg1 and reg2 are treated as 32-bit signed integers.

General-purpose registers reg1, reg2, reg3, and reg3+1 are unaffected.

[Description]

- The as850 generates one mac machine instruction.

[Flag]

[Caution]

The general-purpose registers that can be specified to reg3 or reg4 are limited to even numbered registers

(r0, r2, r4, ..., r30). When specifying an odd numbered register, the following message is output, and assembly

continues, specifying the register as an even numbered register (r0, r2, r4, ..., r30).

CY ---

OV ---

S ---

Z ---

SAT ---

W3026: illegal register number, aligned odd register(rXX) to be even register(rYY).

126 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

macu

[V850E2]

[Overview]

Unsigned Word Data Multiply and Add (Multiply Word Unsigned and Add)

[Syntax]

(1) macu reg1, reg2, reg3, reg4

[Function]

Adds the multiplication result of the general-purpose register reg2 word data and the general-purpose

register reg1 word data with the 64-bit data made up of general-purpose register reg3 as the lower 32 bits and

general-purpose register reg3+1 (for example, if reg3 were r6, "reg3+1" would be r7) as the upper 32 bits, and

stores the upper 32 bits of that result (64-bit data) in general-purpose register reg4+1 and the lower 32 bits in

general-purpose register reg4.

The contents of general-purpose registers reg1 and reg2 are treated as 32-bit unsigned integers.

General-purpose registers reg1, reg2, reg3, and reg3+1 are unaffected.

[Description]

- The as850 generates one macu machine instruction.

[Flag]

[Caution]

The general-purpose registers that can be specified to reg3 or reg4 are limited to even numbered registers

(r0, r2, r4, ..., r30). When specifying an odd numbered register, the following message is output, and assembly

continues, specifying the register as an even numbered register (r0, r2, r4, ..., r30).

CY ---

OV ---

S ---

Z ---

SAT ---

W3026: illegal register number, aligned odd register(rXX) to be even register(rYY).

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 127

sasf

[V850E]

[Overview]

Shift And Set Flag Condition

[Syntax]

(1) sasf imm4, reg

(2) sasfcond reg

The following can be specified for imm4:

- Absolute expression having a value of up to 4 bits

[Function]

- Syntax (1) (sasf)

Compares the flag condition indicated by the value of the lower 4 bits of the absolute expression specified

by the first operand (refer to Table 3 - 4) with the current flag condition. If a match is found, the contents of

the register specified by the second operand are shifted logically 1 bit to the left and ORed with 1, and the

result stored in the register specified by the second operand; otherwise, the contents of the register

specified by the second operand are logically shifted 1 bit to the left and the result stored in the register

specified by the second operand.

- Syntax (2) (sasfcond)

Compares the flag condition indicated by string cond with the current flag condition. If a match is found,

the contents of the register specified by the second operand are shifted logically 1 bit to the left and ORed

with 1, and the result stored in the register specified by the second operand; otherwise, the contents of the

register specified by the second operand are shifted logically 1 bit to the left and the result stored in the

register specified by the second operand.

[Description]

- If the instruction is executed in syntax (1), the as850 generates one sasf machine instruction.

- If the instruction is executed in syntax (2), the as850 generates the corresponding sasf instruction (refer to

Table 3 - 4) and expands it to syntax (1).

128 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

[Flag]

Table 3 - 4 sasfcond Instruction List

Instruction Flag Condition Meaning of Flag Condition Instruction
Expansion

sasfgt ((S xor OV) or Z) = 0 Greater than (signed) sasf 0xf

sasfge (S xor OV) = 0 Greater than or equal (signed) sasf 0xe

sasflt (S xor OV) = 1 Less than (signed) sasf 0x6

sasfle ((S xor OV) or Z) = 1 Less than or equal (signed) sasf 0x7

sasfh (CY or Z) = 0 Higher (Greater than) sasf 0xb

sasfnl CY = 0 Not lower (Greater than or equal) sasf 0x9

sasfl CY = 1 Lower (Less than) sasf 0x1

sasfnh (CY or Z) = 1 Not higher (Less than or equal) sasf 0x3

sasfe Z = 1 Equal sasf 0x2

sasfne Z = 0 Not equal sasf 0xa

sasfv OV = 1 Overflow sasf 0x0

sasfnv OV = 0 No overflow sasf 0x8

sasfn S = 1 Negative sasf 0x4

sasfp S = 0 Positive sasf 0xc

sasfc CY = 1 Carry sasf 0x1

sasfnc CY = 0 No carry sasf 0x9

sasfz Z = 1 Zero sasf 0x2

sasfnz Z = 0 Not zero sasf 0xa

sasft always 1 Always 1 sasf 0x5

sasfsa SAT = 1 Saturated sasf 0xd

CY ---

OV ---

S ---

Z ---

SAT ---

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 129

[Caution]

- If an absolute expression having a value exceeding 4 bits is specified as imm4 of the sasf instruction, the

as850 outputs the following message and continues assembling using four low-order bits of a specified

value.

W3011: illegal operand (range error in immediate).

130 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

setf

[Overview]

Set Flag Condition

[Syntax]

(1) setf imm4, reg

(2) setfcond reg

The following can be specified for imm4:

- Absolute expression having a value of up to 4 bits

[Function]

- Syntax (1) (setf)

Compares the status of the flag specified by the value of the lower 4 bits of the absolute expression

specified by the first operand with the current flag condition. If they are found to match, 1 is stored in the

register specified by the second operand; otherwise, 0 is stored in the register specified by the second

operand.

- Syntax (2) (setfcond)

Compares the status of the flag indicated by string cond (refer to Table 3 - 5) with the current flag

condition. If they are found to match, 1 is stored in the register specified by the second operand; otherwise,

0 is stored in the register specified by the second operand.

[Description]

- If the instruction is executed in syntax (1), the as850 generates one sasf machine instruction.

- If the instruction is executed in syntax (2), the as850 generates the corresponding setf instruction (refer to

Table 3 - 5) and expands it to syntax (1).

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 131

[Flag]

Table 3 - 5 setfcond Instruction List

Instruction Flag Condition Meaning of Flag Condition Instruction
Expansion

setfgt ((S xor OV) or Z) = 0 Greater than (signed) setf 0xf

setfge (S xor OV) = 0 Greater than or equal (signed) setf 0xe

setflt (S xor OV) = 1 Less than (signed) setf 0x6

setfle ((S xor OV) or Z) = 1 Less than or equal (signed) setf 0x7

setfh (CY or Z) = 0 Higher (Greater than) setf 0xb

setfnl CY = 0 Not lower (Greater than or equal) setf 0x9

setfl CY = 1 Lower (Less than) setf 0x1

setfnh (CY or Z) = 1 Not higher (Less than or equal) setf 0x3

setfe Z = 1 Equal setf 0x2

setfne Z = 0 Not equal setf 0xa

setfv OV = 1 Overflow setf 0x0

setfnv OV = 0 No overflow setf 0x8

setfn S = 1 Negative setf 0x4

setfp S = 0 Positive setf 0xc

setfc CY = 1 Carry setf 0x1

setfnc CY = 0 No carry setf 0x9

setfz Z = 1 Zero setf 0x2

setfnz Z = 0 Not zero setf 0xa

setft always 1 Always 1 setf 0x5

setfsa SAT = 1 Saturated setf 0xd

CY ---

OV ---

S ---

Z ---

SAT ---

132 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

[Caution]

- If an absolute expression having a value exceeding 4 bits is specified as imm4 of the setf instruction, the

as850 outputs the following message and continues assembling using four low-order bits of a specified

value.

W3011: illegal operand (range error in immediate).

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 133

sub

[Overview]

Subtract

[Syntax]

(1) sub reg1, reg2

(2) sub imm, reg2

The following can be specified for imm:

- Absolute expression having a value of up to 32 bits

- Relative expression

[Function]

- Syntax (1)

Subtracts the value of the register specified by the first operand from the value of the register specified by

the second operand, and stores the result in the register specified by the second operand.

- Syntax (2)

Subtracts the value of the absolute expression or relative expression specified by the first operand from

the value of the register specified by the second operand, and stores the result into the register specified by

the second operand.

[Description]

- If the instruction is executed in syntax (1), the as850 generates one sub machine instruction.

- If the instruction is executed in syntax (2), the as850 executes instruction expansion and generates one or

more machine instructionsNote .

(a) 0

(b) Absolute expression having a value of other than 0 whithin the range of -16 to +15

(c) Absolute expression having a value of other than 0 whithin the range of -16 to +15 [V850E]

sub 0, reg sub r0, reg

sub imm5, reg mov imm5, r1

sub r1, reg

sub imm5, reg mov imm5, r1

sub r1, reg

134 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

(d) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

(e) Absolute expression having a value exceeding the range of -32,768 to +32,767

If all the lower 16 bits of the value of imm are 0

Else

(f) Absolute expression having a value exceeding the range of -32,768 to +32,767 [V850E]

If all the lower 16 bits of the value of imm are 0

Else

(g) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

sub imm16, reg movea imm16, r0, r1

sub r1, reg

sub imm, reg movhi hi(imm), r0, r1

sub r1, reg

sub imm, reg movhi hi1(imm), r0, r1

movea lo(imm), r1, r1

sub r1, reg

sub imm, reg movhi hi(imm), r0, r1

sub r1, reg

sub imm, reg mov imm, r1

sub r1, reg

sub $label, reg movea $label, r0, r1

sub r1, reg

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 135

(h) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

(i) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section [V850E]

Note The sub machine instruction does not take an immediate value as an operand.

[Flag]

sub #label, reg movhi hi1(#label), r0, r1

movea lo(#label), r1, r1

sub r1, reg

sub label, reg movhi hi1(label), r0, r1

movea lo(label), r1, r1

sub r1, reg

sub $label, reg movhi hi1($label), r0, r1

movea lo($label), r1, r1

sub r1, reg

sub #label, reg mov #label, r1

sub r1, reg

sub label, reg mov label, r1

sub r1, reg

sub $label, reg mov $label, r1

sub r1, reg

CY 1 if a borrow occurs from MSB (Most Significant Bit) , 0 if not

OV 1 if an Integer-Overflow occurs, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

136 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

subr

[Overview]

Subtract Reverse

[Syntax]

(1) subr reg1, reg2

(2) subr imm, reg2

The following can be specified for imm:

- Absolute expression having a value of up to 32 bits

- Relative expression

[Function]

- Syntax (1)

Subtracts the value of the register specified by the first operand from the value of the register specified by

the second operand, and stores the result in the register specified by the second operand.

- Syntax (2)

Subtracts the value of the absolute expression or relative expression specified by the first operand from

the value of the register specified by the second operand, and stores the result into the register specified by

the second operand.

[Description]

- If the instruction is executed in syntax (1), the as850 generates one subr machine instruction.

- If the instruction is executed in syntax (2), the as850 executes instruction expansion and generates one or

more machine instructionsNote .

(a) 0

(b) Absolute expression having a value of other than 0 whithin the range of -16 to +15

(c) Absolute expression having a value of other than 0 whithin the range of -16 to +15 [V850E]

subr 0, reg subr r0, reg

subr imm5, reg mov imm5, r1

subr r1, reg

subr imm5, reg mov imm5, r1

subr r1, reg

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 137

(d) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

(e) Absolute expression having a value exceeding the range of -32,768 to +32,767

If all the lower 16 bits of the value of imm are 0

Else

(f) Absolute expression having a value exceeding the range of -32,768 to +32,767 [V850E]

If all the lower 16 bits of the value of imm are 0

Else

(g) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

subr imm16, reg movea imm16, r0, r1

subr r1, reg

subr imm, reg movhi hi(imm), r0, r1

subr r1, reg

subr imm, reg movhi hi1(imm), r0, r1

movea lo(imm), r1, r1

subr r1, reg

subr imm, reg movhi hi(imm), r0, r1

subr r1, reg

subr imm, reg mov imm, r1

subr r1, reg

subr $label, reg movea $label, r0, r1

subr r1, reg

138 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

(h) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

(i) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section [V850E]

Note The subr machine instruction does not take an immediate value as an operand.

[Flag]

subr #label, reg movhi hi1(#label), r0, r1

movea lo(#label), r1, r1

subr r1, reg

subr label, reg movhi hi1(label), r0, r1

movea lo(label), r1, r1

subr r1, reg

subr $label, reg movhi hi1($label), r0, r1

movea lo($label), r1, r1

subr r1, reg

subr #label, reg mov #label, r1

subr r1, reg

subr label, reg mov label, r1

subr r1, reg

subr $label, reg mov $label, r1

subr r1, reg

CY 1 if a borrow occurs from MSB (Most Significant Bit) , 0 if not

OV 1 if an Integer-Overflow occurs, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 139

adf

[V850E2]

[Overview]

Add with Condition Flag (Add on Condition Flag)

[Syntax]

(1) adf imm4, reg1, reg2, reg3

(2) adfcond reg1, reg2, reg3

The following can be specified for imm4:

- Absolute expression having a value up to 4 bits (0xd cannot be specified)

[Function]

- adf

Adds the word data of the register specified by the second operand to the word data of the register

specified by the third operand.

It then compares the flag condition of the addition result with the flag condition indicated by the value of

the lower 4 bits of the absolute expression (refer to Table 3 - 6) specified by the first operand. If the values

match, 1 is added to the addition result and that result is stored in the register specified by the fourth

operand; otherwise, 0 is added to the addition result and that result is stored in the register specified by the

fourth operand.

- adfcond

Adds the word data of the register specified by the first operand to the word data of the register specified

by the second operand.

It then compares the flag condition of the addition result with the flag condition indicated by the string in

the cond"part. If the values match, 1 is added to the addition result and that result is stored in the register

specified by the third operand; otherwise, 0 is added to the addition result and that result is stored in the

register specified by the third operand.

[Description]

- For the adf instruction, the as850 generates one adf machine instruction.

- For the adcond instruction, the as850 generates the corresponding adf instruction (refer to Table 3 - 6) and

expands it to syntax (1).

140 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

[Flag]

Table 3 - 6 adfcond Instruction List

Instruction Flag Condition Meaning of Flag Condition Instruction Expansion

adfgt ((S xor OV)or Z) = 0 Greater than (signed) adf 0xf

adfge (S xor OV)= 0 Greater than or equal (signed) adf 0xe

adflt (S xor OV)= 1 Less than (signed) adf 0x6

adfle ((S xor OV)or Z) = 1 Less than or equal (signed) adf 0x7

adfh (CY or Z) = 0 Higher (Greater than) adf 0xb

adfnl CY = 0 Not lower (Greater than or equal) adf 0x9

adfl CY = 1 Lower (Less than) adf 0x1

adfnh (CY or Z) = 1 Not higher (Less than or equal) adf 0x3

adfe Z = 1 Equal adf 0x2

adfne Z = 0 Not equal adf 0xa

adfv OV = 1 Overflow adf 0x0

adfnv OV = 0 No overflow adf 0x8

adfn S = 1 Negative adf 0x4

adfp S = 0 Positive adf 0xc

adfc CY = 1 Carry adf 0x1

adfnc CY = 0 No carry adf 0x9

adfz Z = 1 Zero adf 0x2

adfnz Z = 0 Not zero adf 0xa

adft always 1 Always 1 adf 0x5

CY 1 if there is carry from MSB, 0 if not

OV 1 if overflow occurred, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 141

[Caution]

- If an absolute expression having a value exceeding 4 bits is specified as imm4 of the adf instruction, the

following message is output, and assembly continues using the lower 4 bits of the specified value.

- If 0xd is specified as imm4 of the adf instruction, the following message is output, and assembly is stopped.

W3011: illegal operand (range error in immediate).

E3261: illegal condition code

142 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

sbf

[V850E2]

[Overview]

Subtract with Condition Flag (Subtract on Condition Flag)

[Syntax]

(1) sbf imm4, reg1, reg2, reg3

(2) sbfcond reg1, reg2, reg3

The following can be specified for imm4:

- Absolute expression having a value up to 4 bits (0xd cannot be specified)

[Function]

- sbf

Subtracts the word data of the register specified by the second operand from the word data of the register

specified by the third operand.

It then compares the flag condition of the subtraction result with the flag condition indicated by the value of

the lower 4 bits of the absolute expression (refer to Table 3 - 7) specified by the first operand. If the values

match, 1 is subtracted from the subtraction result and that result is stored in the register specified by the

fourth operand; otherwise, 0 is subtracted from the subtraction result and that result is stored in the register

specified by the fourth operand.

- sbfcond

Subtracts the word data of the register specified by the first operand from the word data of the register

specified by the second operand.

It then compares the flag condition of the subtraction result with the flag condition indicated by the string in

the "cond" part. If the values match, 1 is subtracted from the subtraction result and that result is stored in the

register specified by the third operand; otherwise, 0 is subtracted from the subtraction result and that result

is stored in the register specified by the third operand.

[Description]

- For the sbf instruction, the as850 generates one sbf machine instruction.

- For the adcond instruction, the as850 generates the corresponding sbf instruction (refer to Table 3 - 7) and

expands it to syntax (1).

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 143

[Flag]

Table 3 - 7 sbfcond Instruction List

Instruction Flag Condition Meaning of Flag Condition Instruction Expansion

sbfgt ((S xor OV)or Z) = 0 Greater than (signed) sbf 0xf

sbfge (S xor OV)= 0 Greater than or equal (signed) sbf 0xe

sbflt (S xor OV)= 1 Less than (signed) sbf 0x6

sbfle ((S xor OV)or Z) = 1 Less than or equal (signed) sbf 0x7

sbfh (CY or Z) = 0 Higher (Greater than) sbf 0xb

sbfnl CY = 0 Not lower (Greater than or equal) sbf 0x9

sbfl CY = 1 Lower (Less than) sbf 0x1

sbfnh (CY or Z) = 1 Not higher (Less than or equal) sbf 0x3

sbfe Z = 1 Equal sbf 0x2

sbfne Z = 0 Not equal sbf 0xa

sbfv OV = 1 Overflow sbf 0x0

sbfnv OV = 0 No overflow sbf 0x8

sbfn S = 1 Negative sbf 0x4

sbfp S = 0 Positive sbf 0xc

sbfc CY = 1 Carry sbf 0x1

sbfnc CY = 0 No carry sbf 0x9

sbfz Z = 1 Zero sbf 0x2

sbfnz Z = 0 Not zero sbf 0xa

sbft always 1 Always 1 sbf 0x5

CY 1 if a borrow occurs from MSB (Most Significant Bit) , 0 if not

OV 1 if overflow occurred, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

144 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

[Caution]

- If an absolute expression having a value exceeding 4 bits is specified as imm4 of the sbf instruction, the

following message is output, and assembly continues using the lower 4 bits of the specified value.

- If 0xd is specified as imm4 of the sbf instruction, the following message is output, and assembly is stopped.

W3011: illegal operand (range error in immediate).

E3261: illegal condition code

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 145

3.4 Saturation Operation Instructions

This section describes the saturation operation instructions.

Next table lists the instructions described in this section.

Table 3 - 8 Saturation Operation Instructions

Instruction Meaning

satadd Saturated addition

satsub Saturated subtraction

satsubi Saturated subtraction (immediate)

satsubr Reverse subtraction with saturation

146 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

satadd

[Overview]

Saturated Add

[Syntax]

(1) satadd reg1, reg2

(2) satadd imm, reg2

(3) satadd reg1, reg2, reg3 [V850E2]

The following can be specified for imm:

- Absolute expression having a value of up to 32 bits

- Relative expression

[Function]

- Syntax (1)

Adds the value of the register specified by the first operand to the value of the register specified by the

second operand, and stores the result in the register specified by the second operand.

If the result exceeds the maximum positive value of 0x7fffffff, however, 0x7fffffff is stored in the register

specified by the second operand. Likewise, if the result exceeds the maximum negative value of

0x80000000, 0x80000000 is stored in the register specified by the second operand. In both cases, the SAT

flag is set to 1.

- Syntax (2)

Adds the value of the absolute expression or relative expression specified by the first operand to the value

of the register specified by the second operand, and stores the result in the register specified by the second

operand.

If the result exceeds the maximum positive value of 0x7fffffff, however, 0x7fffffff is stored in the register

specified by the second operand. Likewise, if the result exceeds the maximum negative value of

0x80000000, 0x80000000 is stored in the register specified by the second operand. In both cases, the SAT

flag is set to 1.

- Syntax (3)

Adds the value of the register specified by the first operand to the value of the register specified by the

second operand, and stores the result in the register specified by the third operand.

If the result exceeds the maximum positive value of 0x7fffffff, however, 0x7fffffff is stored in the register

specified by the second operand. Likewise, if the result exceeds the maximum negative value of

0x80000000, 0x80000000 is stored in the register specified by the third operand. In both cases, the SAT flag

is set to 1.

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 147

[Description]

- If the instruction is executed in syntax (1) or (3), the as850 generates one satadd machine instruction.

- If the following is specified for imm in syntax (2), the as850 generates one satadd machine instructionNote.

(a) Absolute expression having a value in the range of -16 to +15

Note The satadd machine instruction takes a register or immediate value in the range of -16 to +15

(0xfffffff0 to 0xf) as the first operand.

- If the following is specified for imm in syntax (2), the as850 executes instruction expansion to generate one

or more machine instructions.

(a) Absolute expression having a value exceeding the range of -16 to +15

(b) Absolute expression having a value exceeding the range of -32,768 to +32,767

If all the lower 16 bits of the value of imm are 0

Else

(c) Absolute expression having a value exceeding the range of -32,768 to +32,767 [V850E]

If all the lower 16 bits of the value of imm are 0

Else

(d) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

satadd imm5, reg satadd imm5, reg

satadd imm16, reg movea imm16, r0, r1

satadd r1, reg

satadd imm, reg movhi hi(imm), r0, r1

satadd r1, reg

satadd imm, reg movhi hi1(imm), r0, r1

movea lo(imm), r1, r1

satadd r1, reg

satadd imm, reg movhi hi(imm), r0, r1

satadd r1, reg

satadd imm, reg mov imm, r1

satadd r1, reg

satadd $label, reg movea $label, r0, r1

satadd r1, reg

148 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

(e) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

(f) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section [V850E]

[Flag]

satadd #label, reg movhi hi1(#label), r0, r1

movea lo(#label), r1, r1

satadd r1, reg

satadd label, reg movhi hi1(label), r0, r1

movea lo(label), r1, r1

satadd r1, reg

satadd $label, reg movhi hi1($label), r0, r1

movea lo($label), r1, r1

satadd r1, reg

satadd #label, reg mov #label, r1

satadd r1, reg

satadd label, reg mov label, r1

satadd r1, reg

satadd $label, reg mov $label, r1

satadd r1, reg

CY 1 if a carry occurs from MSB (Most Significant Bit) , 0 if not

OV 1 if an Integer-Overflow occurs, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT 1 if OV = 1, - if not

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 149

[Caution]

- If the instruction is executed in syntax (1) or (2), if the target device is V850Ex and r0 is specified as the

second operand, the following message is output and assembly is stopped.

With a device other than the V850Ex, the as850 outputs the following message and continues

assembling.

E3240: illegal operand (can not use r0 as destination in V850E mode)

W3013: register r0 used as destination register

150 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

satsub

[Overview]

Saturated Subtract

[Syntax]

(1) satsub reg1, reg2

(2) satsub imm, reg2

(3) satsub reg1, reg2, reg3 [V850E2]

The following can be specified for imm:

- Absolute expression having a value of up to 32 bits

- Relative expression

[Function]

- Syntax (1)

Subtracts the value of the register specified by the first operand from the value of the register specified by

the second operand, and stores the result in the register specified by the third operand.

If the result exceeds the maximum positive value of 0x7fffffff, however, 0x7fffffff is stored in the register

specified by the second operand. Likewise, if the result exceeds the maximum negative value of

0x80000000, 0x80000000 is stored in the register specified by the second operand. In both cases, the SAT

flag is set to 1.

- Syntax (2)

Subtracts the value of the absolute expression or relative expression specified by the first operand from

the value of the register specified by the second operand, and stores the result in the register specified by

the second operand.

If the result exceeds the maximum positive value of 0x7fffffff, however, 0x7fffffff is stored in the register

specified by the second operand. Likewise, if the result exceeds the maximum negative value of

0x80000000, 0x80000000 is stored in the register specified by the second operand. In both cases, the SAT

flag is set to 1.

- Syntax (3)

Subtracts the value of the register specified by the first operand from the value of the register specified by

the second operand, and stores the result in the register specified by the second operand.

If the result exceeds the maximum positive value of 0x7fffffff, however, 0x7fffffff is stored in the register

specified by the second operand. Likewise, if the result exceeds the maximum negative value of

0x80000000, 0x80000000 is stored in the register specified by the third operand. In both cases, the SAT flag

is set to 1.

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 151

[Description]

- If the instruction is executed in syntax (1) or (3), the as850 generates one satsub machine instruction.

- If the instruction is executed in syntax (2), the as850 executes instruction expansion to generate one or

more machine instructionsNote

(a) 0

(b) Absolute expression having a value in the range of -32,768 to +32,767

(c) Absolute expression having a value exceeding the range of -32,768 to +32,767

If all the lower 16 bits of the value of imm are 0

Else

(d) Absolute expression having a value exceeding the range of -32,768 to +32,767 [V850E]

If all the lower 16 bits of the value of imm are 0

Else

(e) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(f) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

satsub 0, reg satsub r0, reg

satsub imm16, reg satsubi imm16, reg, reg

satsub imm, reg movhi hi(imm), r0, r1

satsub r1, reg

satsub imm, reg movhi hi1(imm), r0, r1

movea lo(imm), r1, r1

satsub r1, reg

satsub imm, reg movhi hi(imm), r0, r1

satsub r1, reg

satsub imm, reg mov imm, r1

satsub r1, reg

satsub $label, reg satsubi $label, reg, reg

satsub #label, reg movhi hi1(#label), r0, r1

movea lo(#label), r1, r1

satsub r1, reg

152 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

(g) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section [V850E]

Note The satsub machine instruction does not take an immediate value as an operand.

[Flag]

satsub label, reg movhi hi1(label), r0, r1

movea lo(label), r1, r1

satsub r1, reg

satsub $label, reg movhi hi1($label), r0, r1

movea lo($label), r1, r1

satsub r1, reg

satsub #label, reg mov #label, r1

satsub r1, reg

satsub label, reg mov label, r1

satsub r1, reg

satsub $label, reg mov $label, r1

satsub r1, reg

CY 1 if a carry occurs from MSB (Most Significant Bit) , 0 if not

OV 1 if an Integer-Overflow occurs, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT 1 if OV = 1, - if not

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 153

[Caution]

- If the instruction is executed in syntax (1) or (2), if the target device is V850Ex and r0 is specified as the

second operand, the following message is output and assembly is stopped.

With a device other than the V850Ex, the as850 outputs the following message and continues

assembling.

E3240: illegal operand (can not use r0 as destination in V850E mode)

W3013: register r0 used as destination register

154 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

satsubi

[Overview]

Saturated Subtract Immediate

[Syntax]

(1) satsubi imm, reg1, reg2

The following can be specified for imm:

- Absolute expression having a value of up to 32 bits

- Relative expression

- Either of the above expressions with hi() , lo() , or hi1() applied

[Function]

Subtracts the value of the absolute expression, relative expression, or expression with hi() , lo() , or hi1()

applied specified by the first operand from the value of the register specified by the second operand, and

stores the result in the register specified by the third operand.

If the result exceeds the maximum positive value of 0x7fffffff, however, 0x7fffffff is stored in the register

specified by the third operand. Likewise, if the result exceeds the maximum negative value of 0x80000000,

0x80000000 is stored in the register specified by the third operand. In both cases, the SAT flag is set to 1.

[Description]

- If the following is specified for imm, the as850 generates one satsubi machine instructionNote.

(a) Absolute expression having a value in the range of -32,768 to +32,767

(b) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(c) Relative expression having !label or %label

satsubi imm16, reg1, reg2 satsubi imm16, reg1, reg2

satsubi $label, reg1, reg2 satsubi $label, reg1, reg2

satsubi !label, reg1, reg2 satsubi !label, reg1, reg2

satsubi %label, reg1, reg2 satsubi %label, reg1, reg2

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 155

(d) Expression with hi() , lo() , or hi1()

Note The satsubi machine instruction takes an immediate value, in the range of -32,768 to +32,767

(0xffff8000 to 0x7fff), as the first operand.

- If the following is specified for imm, the as850 executes instruction expansion to generate one or more

machine instructions.

(a) Absolute expression having a value exceeding the range of -32,768 to +32,767

If all the lower 16 bits of the value of imm are 0

If all the lower 16 bits of the value of imm are 0 and when reg2 is r0

Else

Other than above and when reg2 is r0

(b) Absolute expression having a value exceeding the range of -32,768 to +32,767 [V850E]

If all the lower 16 bits of the value of imm are 0

If all the lower 16 bits of the value of imm are 0 and when reg2 is r0

Else

Other than above and when reg2 is r0

satsubi imm16, reg1, reg2 satsubi imm16, reg1, reg2

satsubi imm, reg1, reg2 movhi hi(imm), r0, reg2

satsubr reg1, reg2

satsubi imm, reg1, r0 movhi hi(imm), r0, r1

satsubr reg1, r1

satsubi imm, reg1, reg2 movhi hi1(imm), r0, r1

movea lo(imm), r1, reg2

satsubr reg1, reg2

satsubi imm, reg1, r0 movhi hi1(imm), r0, r1

movea lo(imm), r1, r1

satsubr reg1, r1

satsubi imm, reg1, reg2 movhi hi(imm), r0, reg2

satsubr reg1, reg2

satsubi imm, reg1, r0 movhi hi(imm), r0, r1

satsubr reg1, r1

satsubi imm, reg1, reg2 mov imm, reg2

satsubr reg1, reg2

satsubi imm, reg1, r0 mov imm, r1

satsubr reg1, r1

156 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

(c) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

If reg2 is r0

Else

satsubi #label, reg1, r0 movhi hi1(#label), r0, r1

movea lo(#label), r1, r1

satsubr reg1, r1

satsubi label, reg1, r0 movhi hi1(label), r0, r1

movea lo(label), r1, r1

satsubr reg1, r1

satsubi $label, reg1, r0 movhi hi1($label), r0, r1

movea lo($label), r1, r1

satsubr reg1, r1

satsubi #label, reg1, reg2 movhi hi1(#label), r0, r1

movea lo(#label), r1, reg2

satsubr reg1, reg2

satsubi label, reg1, reg2 movhi hi1(label), r0, r1

movea lo(label), r1, reg2

satsubr reg1, reg2

satsubi $label, reg1, reg2 movhi hi1($label), r0, r1

movea lo($label), r1, reg2

satsubr reg1, reg2

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 157

(d) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section [V850E]

If reg2 is r0

Else

[Flag]

satsubi #label, reg1, r0 movhi #label, r1

satsubr reg1, r1

satsubi label, reg1, r0 mov label, r1

satsubr reg1, r1

satsubi $label, reg1, r0 mov $label, r1

satsubr reg1, r1

satsubi #label, reg1, reg2 movhi #label, reg2

satsubr reg1, reg2

satsubi label, reg1, reg2 mov label, reg2

satsubr reg1, reg2

satsubi $label, reg1, reg2 mov $label, reg2

satsubr reg1, reg2

CY 1 if a carry occurs from MSB (Most Significant Bit) , 0 if not

OV 1 if an Integer-Overflow occurs, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT 1 if OV = 1, - if not

158 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

[Caution]

- If r0 is specified by the second operand when the V850Ex is used as the target device, the as850 outputs

the following message and stops assembling.

With a device other than the V850Ex, the as850 outputs the following message and continues

assembling.

E3240: illegal operand (can not use r0 as destination in V850E mode)

W3013: register r0 used as destination register

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 159

satsubr

[Overview]

Saturated Subtract Reverse

[Syntax]

(1) satsubr reg1, reg2

(2) satsubr imm, reg2

The following can be specified for imm:

- Absolute expression having a value of up to 32 bits

- Relative expression

[Function]

- Syntax (1)

Subtracts the value of the register specified by the second operand from the value of the register specified

by the first operand, and stores the result in the register specified by the second operand.

If the result exceeds the maximum positive value of 0x7fffffff, however, 0x7fffffff is stored in the register

specified by the second operand. Likewise, if the result exceeds the maximum negative value of

0x80000000, 0x80000000 is stored in the register specified by the second operand. In both cases, the SAT

flag is set to 1.

- Syntax (2)

Subtracts the value of the register specified by the second operand from the value of the absolute

expression or relative expression specified by the first operand, and stores the result in the register specified

by the second operand.

If the result exceeds the maximum positive value of 0x7fffffff, however, 0x7fffffff is stored in the register

specified by the second operand. Likewise, if the result exceeds the maximum negative value of

0x80000000, 0x80000000 is stored in the register specified by the second operand. In both cases, the SAT

flag is set to 1.

[Description]

- If the instruction is executed in syntax (1), the as850 generates one satsubr machine instruction.

- If the instruction is executed in syntax (2), the as850 executes instruction expansion to generate one or

more machine instructionsNote.

(a) 0

satsubr 0, reg satsubr r0, reg

160 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

(b) Absolute expression having a value of other than 0 whithin the range of -16 to +15

(c) Absolute expression having a value of other than 0 whithin the range of -16 to +15 [V850E]

(d) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

(e) Absolute expression having a value exceeding the range of -32,768 to +32,767

If all the lower 16 bits of the value of imm are 0

Else

(f) Absolute expression having a value exceeding the range of -32,768 to +32,767 [V850E]

If all the lower 16 bits of the value of imm are 0

Else

(g) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

satsubr imm5, reg mov imm5, r1

satsubr r1, reg

satsubr imm5, reg mov imm5, r1

satsubr r1, reg

satsubr imm16, reg movea imm16, r0, r1

satsubr r1, reg

satsubr imm, reg movhi hi(imm), r0, r1

satsubr r1, reg

satsubr imm, reg movhi hi1(imm), r0, r1

movea lo(imm), r1, r1

satsubr r1, reg

satsubr imm, reg movhi hi(imm), r0, r1

satsubr r1, reg

satsubr imm, reg mov imm, r1

satsubr r1, reg

satsubr $label, reg movea $label, r0, r1

satsubr r1, reg

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 161

(h) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

(i) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section [V850E]

Note The satsubr machine instruction does not take an immediate value as an operand.

[Flag]

satsubr #label, reg movhi hi1(#label), r0, r1

movea lo(#label), r1, r1

satsubr r1, reg

satsubr label, reg movhi hi1(label), r0, r1

movea lo(label), r1, r1

satsubr r1, reg

satsubr $label, reg movhi hi1($label), r0, r1

movea lo($label), r1, r1

satsubr r1, reg

satsubr #label, reg mov #label, r1

satsubr r1, reg

satsubr label, reg mov label, r1

satsubr r1, reg

satsubr $label, reg mov $label, r1

satsubr r1, reg

CY 1 if a carry occurs from MSB (Most Significant Bit) , 0 if not

OV 1 if an Integer-Overflow occurs, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT 1 if OV = 1, - if not

162 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

[Caution]

- If r0 is specified by the second operand when the V850Ex is used as the target device, the as850 outputs

the following message and stops assembling.

- If r0 is specified by the second operand when the V850Ex is used as the target device, the as850 outputs

the following message and stops assembling.

E3240: illegal operand (can not use r0 as destination in V850E mode)

W3013: register r0 used as destination register

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 163

3.5 Logical Instructions

This section describes the logical instructions.

Next tablelists the instructions described in this section.

Table 3 - 9 Logical Instructions

Instruction Meaning

and Logical product

andi Logical product (immediate)

bsh Byte swap of halfword data [V850E]

bsw Byte swap of word data [V850E]

hsh Half-word data half-word swap [V850E2]

hsw Halfword swap of word data [V850E]

not Logical negation (takes 1’s complement)

or Logical sum

ori Logical sum (immediate)

sar Arithmetic right shif

shl Logical left shift

shr Logical right shif

sxb Sign extension of byte data [V850E]

sxh Sign extension of halfword data [V850E]

tst Test

xor Exclusive OR

xori Exclusive OR (immediate)

zxb Zero extension of byte data [V850E]

zxh Zero extension of halfword data [V850E]

sch0l Bit (0) search from MSB side [V850E2]

sch0r Bit (0) search from LSB side [V850E2]

sch1l Bit (1) search from MSB side [V850E2]

sch1r Bit (1) search from LSB side [V850E2]

164 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

and

[Overview]

And

[Syntax]

(1) and reg1, reg2

(2) and imm, reg2

The following can be specified for imm:

- Absolute expression having a value of up to 32 bits

- Relative expression

[Function]

- Syntax (1)

ANDs the value of the register specified by the first operand with the value of the register specified by the

second operand, and stores the result in the register specified by the second operand.

- Syntax (2)

ANDs the value of the absolute expression or relative expression specified by the first operand with the

value of the register specified by the second operand, and stores the result in the register specified by the

second operand.

[Description]

- When this instruction is executed in syntax (1), the as850 generates one and machine instruction.

- When this instruction is executed in syntax (2), the as850 executes instruction expansion to generate one

or more machine instructionNote

(a) 0

(b) Absolute expression having a value in the range of +1 to +65,535

(c) Absolute expression having a value in the range of -16 to -1

and 0, reg and r0, reg

and imm16, reg andi imm16, reg, reg

and imm5, reg mov imm5, r1

and r1, reg

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 165

(d) Absolute expression having a value in the range of -32,768 to -17

(e) Absolute expression exceeding the above ranges

If all the lower 16 bits of the value of imm are 0

Else

(f) Absolute expression exceeding the above ranges [V850E]

If all the lower 16 bits of the value of imm are 0

Else

(g) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

and imm16, reg movea imm16, r0, r1

and r1, reg

and imm, reg movhi hi(imm), r0, r1

and r1, reg

and imm, reg movhi hi1(imm), r0, r1

movea lo(imm), r1, r1

and r1, reg

and imm, reg movhi hi(imm), r0, r1

and r1, reg

and imm, reg mov imm, r0, r1

and r1, reg

and $label, reg movea $label, r0, r1

and r1, reg

166 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

(h) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

(i) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section [V850E]

Note The and machine instruction does not take an immediate value as an operand.

[Flag]

and #label, reg movhi hi1(#label), r0, r1

movea lo(#label), r1, r1

and r1, reg

and label, reg movhi hi1(label), r0, r1

movea lo(label), r1, r1

and r1, reg

and $label, reg movhi hi1($label), r0, r1

movea lo($label), r1, r1

and r1, reg

and #label, reg mov #label, r1

and r1, reg

and label, reg mov label, r1

and r1, reg

and $label, reg mov $label, r1

and r1, reg

CY ---

OV 0

S 1 if the word data MSB of the result is 1, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 167

andi

[Overview]

And Immediate

[Syntax]

(1) andi imm, reg1, reg2

The following can be specified for imm:

- Absolute expression having a value of up to 32 bits

- Relative expression

- Either of the above expressions with hi() , lo() , or hi1() applied

[Function]

ANDs the value of the absolute expression, relative expression, or expression with hi() , lo() , or hi1()

applied specified by the first operand with the value of the register specified by the second operand, and

stores the result into the register specified by the third operand.

[Description]

- If the following is specified as imm, the as850 generates one andi machine instructionNote.

(a) Absolute expression having a value in the range of 0 to 65,535

(b) Relative expression having !label or %label

(c) Expression with hi() , lo() , or hi1()

Note The andi machine instruction takes an immediate value of 0 to 65,535 (0 to 0xffff) as the first

operand

andi imm16, reg1, reg2 andi imm16, reg1, reg2

andi !label, reg1, reg2 andi !label, reg1, reg2

andi %label, reg1, reg2 andi %label, reg1, reg2

andi imm16, reg1, reg2 andi imm16, reg1, reg2

168 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

- If the following is specified for imm, the as850 executes instruction expansion to generate one or more

machine instructions.

(a) Absolute expression having a value in the range of -16 to -1

(b) Absolute expression having a value in the range of -32,768 to -17

If reg2 is r0

Else

(c) Absolute expression exceeding the above ranges

If all the lower 16 bits of the value of imm are 0

If all the lower 16 bits of the value of imm are 0 and when reg2 is r0

Else

Other than above and when reg2 is r0

andi imm5, reg1, reg2 mov imm5, reg2

and reg1, reg2

andi imm16, reg1, r0 movea imm16, r0, r1

and reg1, r1

andi imm16, reg1, reg2 movea imm16, r0, reg2

and reg1, reg2

andi imm, reg1, reg2 movhi hi(imm), r0, reg2

and reg1, reg2

andi imm, reg1, r0 movhi hi(imm), r0, r1

and reg1, r1

andi imm, reg1, reg2 movhi hi1(imm), r0, r1

movea lo(imm), r1, reg2

and reg1, reg2

andi imm, reg1, r0 movhi hi1(imm), r0, r1

movea lo(imm), r1, r1

and reg1, r1

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 169

(d) Absolute expression exceeding the above ranges [V850E]

If all the lower 16 bits of the value of imm are 0

If all the lower 16 bits of the value of imm are 0 and when reg2 is r0

Else

Other than above and when reg2 is r0

(e) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

If reg2 is r0

Else

(f) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

If reg2 is r0

andi imm, reg1, reg2 movhi hi(imm), r0, reg2

and reg1, reg2

andi imm, reg1, r0 movhi hi(imm), r0, r1

and reg1, r1

andi imm, reg1, reg2 mov imm, reg2

and reg1, reg2

andi imm, reg1, r0 mov imm, r1

and reg1, r1

andi $label, reg1, r0 movea $label, r0, r1

and reg1, r1

andi $label, reg1, reg2 movea $label, r0, reg2

and reg1, reg2

andi #label, reg1, r0 movhi hi1(#label), r0, r1

movea lo(#label), r1, r1

and reg1, reg2

andi label, reg1, r0 movhi hi1(label), r0, r1

movea lo(label), r1, r1

and reg1, r1

andi $label, reg1, r0 movhi hi1(label), r0, r1

movea lo(label), r1, r1

and reg1, r1

170 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

Else

(g) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section [V850E]

If reg2 is r0

Else

andi #label, reg1, reg2 movhi hi1(#label), r0, r1

movea lo(#label), r1, reg2

and reg1, reg2

andi label, reg1, reg2 movhi hi1(label), r0, r1

movea lo(label), r1, reg2

and reg1, reg2

andi $label, reg1, reg2 movhi hi1($label), r0, r1

movea lo($label), r1, reg2

and reg1, reg2

andi #label, reg1, r0 mov #label, r1

and reg1, r1

andi label, reg1, r0 mov label, r1

and reg1, r1

andi $label, reg1, r0 mov $label, r1

and reg1, r1

andi #label, reg1, reg2 mov #label, reg2

and reg1, reg2

andi label, reg1, reg2 mov label, reg2

and reg1, reg2

andi $label, reg1, reg2 mov $label, reg2

and reg1, reg2

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 171

[Flag]

CY ---

OV 0

S 1 if the result MSB is 1, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

172 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

bsh

[V850E]

[Overview]

Byte Swap Half-word

[Syntax]

(1) bsh reg1, reg2

[Function]

Byte-swaps the register value specified by the first operand in halfword units and stores the result in the

register specified by the second operand.

[Description]

- The as850 generates one bsh machine instruction.

[Flag]

CY 1 if either or both of the bytes in the lower halfword of the register is 0, 0 if not

OV 0

S 1 if the word data MSB of the result is 1, 0 if not

Z 1 if the lower half-word data of the result is 0, 0 if not

SAT ---

reg2 23-16 31-24 7-0 15-8

Byte-swap of reg1 in halfword units
 (numbers indicate bit numbers)

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 173

bsw

[V850E]

[Overview]

Byte Swap Word

[Syntax]

(1) bsw reg1, reg2

[Function]

Byte-swaps the register value specified by the first operand and stores the result in the register specified by

the second operand.

[Description]

- The as850 generates one bsw machine instruction.

[Flag]

CY 1 if one or more bytes of the word in the register is 0, 0 if not

OV 0

S 1 if the word data MSB of the result is 1, 0 if not

Z 1 if the word data of the result is 1, 0 if not

SAT ---

reg2 7-0 15-8 23-16 31-24

Byte-swap of reg1 for entire word
 (numbers indicate bit numbers)

174 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

hsh

[V850E2]

[Overview]

Half-word Data Half-word Swap (Half-word Swap Half-word)

[Syntax]

(1) hsh reg2, reg3

[Function]

Stores the register value specified by the first operand in the register specified by the second operand, and

stores the flag assessment result in the PSW register.

[Description]

- The as850 generates one hsh machine instruction.

[Flag]

CY 1 if the lower half-word data of the result is 0, 0 if not

OV 0

S 1 if the word data MSB of the result is 1, 0 if not

Z 1 if the lower half-word data of the result is 0, 0 if not

SAT ---

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 175

hsw

[V850E]

[Overview]

Half-word Swap Word

[Syntax]

(1) hsw reg1, reg2

[Function]

Halfword-swaps the register value specified by the first operand and stores the result in the register

specified by the second operand.

[Description]

- The as850 generates one hsw machine instruction.

[Flag]

CY 1 if one or more halfwords in the word of the register is 0, 0 if not

OV 0

S 1 if the word data MSB of the result is 1, 0 if not

Z 1 if the word data of the result is 1, 0 if not

SAT ---

reg2 15-0 13-16

Halfword swap of reg1
 (numbers indicate bit numbers)

176 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

not

[Overview]

Not

[Syntax]

(1) not reg1, reg2

(2) not imm, reg2

The following can be specified for imm:

- Absolute expression having a value of up to 32 bits

- Relative expression

[Function]

- Syntax (1)

NOTs (1's complement) the value of the register specified by the first operand, and stores the result in the

register specified by the second operand.

- Syntax (2)

NOTs (1's complement) the value of the absolute expression or relative expression specified by the first

operand, and stores the result in the register specified by the second operand.

[Description]

- When this instruction is executed in syntax (1), the as850 generates one not machine instruction.

- When this instruction is executed in syntax (2), the as850 executes instruction expansion to generate one

or more machine instructionsNote

(a) 0

(b) Absolute expression having a value of other than 0 whithin the range of -16 to +15

(c) Absolute expression having a value of other than 0 whithin the range of -16 to +15 [V850E]

not 0, reg not r0, reg

not imm5, reg mov imm5, r1

not r1, reg

not imm5, reg mov imm5, r1

not r1, reg

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 177

(d) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

(e) Absolute expression having a value exceeding the range of -32,768 to +32,767

If all the lower 16 bits of the value of imm are 0

Else

(f) Absolute expression having a value exceeding the range of -32,768 to +32,767 [V850E]

If all the lower 16 bits of the value of imm are 0

Else

(g) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

not imm16, reg movea imm16, r0, r1

not r1, reg

not imm, reg movhi hi(imm), r0, r1

not r1, reg

not imm, reg movhi hi1(imm), r0, r1

movea lo(imm), r1, r1

not r1, reg

not imm, reg movhi hi(imm), r0, r1

not r1, reg

not imm, reg mov imm, r1

not r1, reg

not $label, reg movea $label, r0, r1

not r1, reg

178 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

(h) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

(i) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section [V850E]

Note The not machine instruction does not take an immediate value as an operand.

[Flag]

not #label, reg movhi hi1(#label), r0, r1

movea lo(#label), r1, r1

not r1, reg

not label, reg movhi hi1(label), r0, r1

movea lo(label), r1, r1

not r1, reg

not $label, reg movhi hi1($label), r0, r1

movea lo($label), r1, r1

not r1, reg

not #label, reg mov #label, r1

not r1, reg

not label, reg mov label, r1

not r1, reg

not $label, reg mov $label, r1

not r1, reg

CY ---

OV 0

S 1 if the word data MSB of the result is 1, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 179

or

[Overview]

Or

[Syntax]

(1) or reg1, reg2

(2) or imm, reg2

The following can be specified for imm:

- Absolute expression having a value of up to 32 bits

- Relative expression

[Function]

- Syntax (1)

ORs the value of the register specified by the first operand with the value of the register specified by the

second operand, and stores the result in the register specified by the second operand.

- Syntax (2)

ORs the value of the absolute expression or relative expression specified by the first operand with the

value of the register specified by the second operand, and stores the result in the register specified by the

second operand.

[Description]

- When this instruction is executed in syntax (1), the as850 generates one or machine instruction.

- When this instruction is executed in syntax (2), the as850 executes instruction expansion to generate one

or more machine instructionsNote

(a) 0

(b) Absolute expression having a value in the range of 1 to 65,535

(c) Absolute expression having a value in the range of -16 to -1

or 0, reg or r0, reg

or imm16, reg ori imm16, reg, reg

or imm5, reg mov imm5, r1

or r1, reg

180 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

(d) Absolute expression having a value in the range of -32,768 to -17

(e) Absolute expression exceeding the above ranges

If all the lower 16 bits of the value of imm are 0

Else

(f) Absolute expression exceeding the above ranges [V850E]

If all the lower 16 bits of the value of imm are 0

Else

(g) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(h) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

or imm16, reg movea imm16, r0, r1

or r1, reg

or imm, reg movhi hi(imm), r0, r1

or r1, reg

or imm, reg movhi hi1(imm), r0, r1

movea lo(imm), r1, r1

or r1, reg

or imm, reg movhi hi(imm), r0, r1

or r1, reg

or imm, reg mov imm, r0, r1

or r1, reg

or $label, reg movea $label, r0, r1

or r1, reg

or #label, reg movhi hi1(#label), r0, r1

movea lo(#label), r1, r1

or r1, reg

or label, reg movhi hi1(label), r0, r1

movea lo(label), r1, r1

or r1, reg

or $label, reg movhi hi1($label), r0, r1

movea lo($label), r1, r1

or r1, reg

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 181

(i) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section [V850E]

Note The or machine instruction does not take an immediate value as an operand.

[Flag]

or #label, reg mov #label, r1

or r1, reg

or label, reg mov label, r1

or r1, reg

or $label, reg mov $label, r1

or r1, reg

CY ---

OV 0

S 1 if the word data MSB of the result is 1, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

182 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

ori

[Overview]

Or Immediate

[Syntax]

(1) ori imm, reg1, reg2

The following can be specified for imm:

- Absolute expression having a value of up to 32 bits

- Relative expression

- Either of the above expressions with hi() , lo() , or hi1() applied

[Function]

ORs the value of the absolute expression, relative expression, or expression with hi() , lo() , or hi1() applied

specified by the first operand with the value of the register specified by the second operand, and stores the

result in the register specified by the third operand.

[Description]

- If the following is specified for imm, the as850 generates one ori machine instructionNote.

(a) Absolute expression having a value in the range of 0 to 65,535

(b) Relative expression having !label or %label

(c) Expression with hi() , lo() , or hi1()

Note The ori machine instruction takes an immediate value of 0 to 65,535 (0 to 0xffff) as the first operand.

ori imm16, reg1, reg2 ori imm16, reg1, reg2

ori !label, reg1, reg2 ori !label, reg1, reg2

ori %label, reg1, reg2 ori %label, reg1, reg2

ori imm16, reg1, reg2 ori imm16, reg1, reg2

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 183

- If the following is specified for imm, the as850 executes instruction expansion to generate one or more

machine instructions.

(a) Absolute expression having a value in the range of -16 to -1

(b) Absolute expression having a value in the range of -32,768 to -17

If reg2 is r0

Else

(c) Absolute expression exceeding the above ranges

If all the lower 16 bits of the value of imm are 0

If all the lower 16 bits of the value of imm are 0 and when reg2 is r0

Else

Other than above and when reg2 is r0

ori imm5, reg1, reg2 mov imm5, reg2

or reg1, reg2

ori imm16, reg1, r0 movea imm16, r0, r1

or reg1, r1

ori imm16, reg1, reg2 movea imm16, r0, reg2

or reg1, reg2

ori imm, reg1, reg2 movhi hi(imm), r0, reg2

or reg1, reg2

ori imm, reg1, r0 movhi hi(imm), r0, r1

or reg1, r1

ori imm, reg1, reg2 movhi hi1(imm), r0, r1

movea lo(imm), r1, reg2

or reg1, reg2

ori imm, reg1, r0 movhi hi1(imm), r0, r1

movea lo(imm), r1, r1

or reg1, r1

184 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

(d) Absolute expression exceeding the above ranges [V850E]

If all the lower 16 bits of the value of imm are 0

If all the lower 16 bits of the value of imm are 0 and when reg2 is r0

Else

Other than above and when reg2 is r0

(e) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

If reg2 is r0

Else

(f) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

If reg2 is r0

ori imm, reg1, reg2 movhi hi(imm), r0, reg2

or reg1, reg2

ori imm, reg1, r0 movhi hi(imm), r0, r1

or reg1, r1

ori imm, reg1, reg2 mov imm, reg2

or reg1, reg2

ori imm, reg1, r0 mov imm, r1

or reg1, r1

ori $label, reg1, r0 movea $label, r0, r1

or reg1, r1

ori $label, reg1, reg2 movea $label, r0, reg2

or reg1, reg2

ori #label, reg1, r0 movhi hi1(#label), r0, r1

movea lo(#label), r1, r1

or reg1, r1

ori label, reg1, r0 movhi hi1(label), r0, r1

movea lo(label), r1, r1

or reg1, r1

ori $label, reg1, r0 movhi hi1(label), r0, r1

movea lo(label), r1, r1

or reg1, r1

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 185

Else

(g) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section [V850E]

If reg2 is r0

Else

[Flag]

ori #label, reg1, reg2 movhi hi1(#label), r0, r1

movea lo(#label), r1, reg2

or reg1, reg2

ori label, reg1, reg2 movhi hi1(label), r0, r1

movea lo(label), r1, reg2

or reg1, reg2

ori $label, reg1, reg2 movhi hi1(label), r0, r1

movea lo(label), r1, reg2

or reg1, reg2

ori #label, reg1, r0 mov #label, r1

or reg1, r1

ori label, reg1, r0 mov label, r1

or reg1, r1

ori $label, reg1, r0 mov $label, r1

or reg1, r1

ori #label, reg1, reg2 mov #label, reg2

or reg1, reg2

ori label, reg1, reg2 mov label, reg2

or reg1, reg2

ori $label, reg1, reg2 mov $label, reg2

or reg1, reg2

CY ---

OV 0

S 1 if the word data MSB of the result is 1, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

186 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

sar

[Overview]

Shift Arithmetic Right

[Syntax]

(1) sar reg1, reg2

(2) sar imm5, reg2

(3) sar reg1, reg2, reg3 [V850E2]

The following can be specified for imm5:

- Absolute expression having a value of up to 5 bits

[Function]

- Syntax (1)

Arithmetically shifts to the right the value of the register specified by the second operand by the number of

bits indicated by the lower 5 bits of the register value specified by the first operand, then stores the result in

the register specified by the second operand.

- Syntax (2)

Arithmetically shifts to the right the value of the register specified by the second operand by the number of

bits specified by the value of the absolute expression specified by the first operand, then stores the result in

the register specified by the second operand.

- Syntax (3)

Arithmetically shifts to the right the value of the register specified by the second operand by the number of

bits indicated by the lower 5 bits of the register value specified by the first operand, then stores the result in

the register specified by the third operand.

[Description]

- The as850 generates one sar machine instruction.

[Flag]

CY 1 if the value of the bit shifted out last is 1, 0 if not
(0 if the specified number of bits is 0)

OV 0

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 187

[Caution]

- If an absolute expression having a value exceeding the range of 0 to 31 is specified for imm5 in syntax (2),

the as850 outputs the following message, and continues assembling using the lower 5 bitsNote of the

specified value

Note The sar machine instruction takes an immediate value of 0 to 31 (0x0 to 0x1f) as the first operand.

W3011: illegal operand (range error in immediate).

188 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

shl

[Overview]

Shift Logical Left

[Syntax]

(1) shl reg1, reg2

(2) shl imm5, reg2

(3) shl reg1, reg2, reg3 [V850E2]

The following can be specified for imm5:

- Absolute expression having a value of up to 5 bits

[Function]

- Syntax (1)

Logically shifts to the left the value of the register specified by the second operand by the number of bits

indicated by the lower 5 bits of the register value specified by the first operand, then stores the result in the

register specified by the second operand.

- Syntax (2)

Logically shifts to the left the value of the register specified by the second operand by the number of bits

specified by the value of the absolute expression specified by the first operand, then stores the result in the

register specified by the second operand.

- Syntax (3)

Logically shifts to the left the value of the register specified by the second operand by the number of bits

indicated by the lower 5 bits of the register value specified by the first operand, then stores the result in the

register specified by the third operand.

[Description]

- The as850 generates one shl machine instruction.

[Flag]

CY 1 if the value of the bit shifted out last is 1, 0 if not
(0 if the specified number of bits is 0)

OV 0

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 189

[Caution]

- If an absolute expression having a value exceeding the range of 0 to 31 is specified for imm5 in syntax (2),

the as850 outputs the following message, and continues assembling by using the lower 5 bitsNote of the

specified value.

Note The shl machine instruction takes an immediate value of 0 to 31 (0x0 to 0x1f) as the first operand.

W3011: illegal operand (range error in immediate).

190 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

shr

[Overview]

Shift Logical Right

[Syntax]

(1) shr reg1, reg2

(2) shr imm5, reg2

(3) shr reg1, reg2, reg3 [V850E2]

The following can be specified for imm5:

- Absolute expression having a value of up to 5 bits

[Function]

- Syntax (1)

Logically shifts to the right the value of the register specified by the second operand by the number of bits

indicated by the lower 5 bits of the register value specified by the first operand, then stores the result in the

register specified by the second operand.

- Syntax (2)

Logically shifts to the right the value of the register specified by the second operand by the number of bits

specified by the value of the absolute expression specified by the first operand, then stores the result in the

register specified by the second operand.

- Syntax (3)

Logically shifts to the right the value of the register specified by the second operand by the number of bits

indicated by the lower 5 bits of the register value specified by the first operand, then stores the result in the

register specified by the third operand.

[Description]

- The as850 generates one shr machine instruction.

[Flag]

CY 1 if the value of the bit shifted out last is 1, 0 if not
(0 if the specified number of bits is 0)

OV 0

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 191

[Caution]

- If an absolute expression having a value exceeding the range of 0 to 31 is specified as imm5 in syntax (2),

the as850 outputs the following message, and continues assembling by using the lower 5 bitsNote of the

specified value

Note The shr machine instruction takes an immediate value of 0 to 31 (0x0 to 0x1f) as the first operand.

W3011: illegal operand (range error in immediate).

192 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

sxb

[V850E]

[Overview]

Sign Extend Byte

[Syntax]

(1) sxb reg

[Function]

Sign-extends the data of the lowermost byte of the register specified by the first operand to word length.

[Description]

- The as850 generates one sxb machine instruction.

[Flag]

CY ---

OV ---

S ---

Z ---

SAT ---

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 193

sxh

[V850E]

[Overview]

Sign Extend Half-word

[Syntax]

(1) sxh reg

[Function]

Sign-extends the data of the lower 2 bytes of the register specified by the first operand to word length.

[Description]

- The as850 generates one sxh machine instruction.

[Flag]

CY ---

OV ---

S ---

Z ---

SAT ---

194 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

tst

[Overview]

Test

[Syntax]

(1) tst reg1, reg2

(2) tst imm, reg2

The following can be specified for imm:

- Absolute expression having a value of up to 32 bits

- Relative expression

[Function]

- Syntax (1)

ANDs the value of the register specified by the second operand with the value of the register specified by

the first operand, and sets only the flags without storing the result.

- Syntax (2)

ANDs the value of the register specified by the second operand with the value of the absolute expression

or relative expression specified by the first operand, and sets only the flags without storing the result.

[Description]

- When this instruction is executed in syntax (1), the as850 generates one tst machine instruction.

- When this instruction is executed in syntax (2), the as850 executes instruction expansion to generate two

or more machine instructionsNote.

(a) 0

(b) Absolute expression having a value of other than 0 whithin the range of -16 to +15

(c) Absolute expression having a value of other than 0 whithin the range of -16 to +15 [V850E]

tst 0, reg tst r0, reg

tst imm5, reg mov imm5, r1

tst r1, reg

tst imm5, reg mov imm5, r1

tst r1, reg

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 195

(d) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

(e) Absolute expression having a value exceeding the range of -32,768 to +32,767

If all the lower 16 bits of the value of imm are 0

Else

(f) Absolute expression having a value exceeding the range of -32,768 to +32,767 [V850E]

If all the lower 16 bits of the value of imm are 0

Else

(g) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

tst imm16, reg movea imm16, r0, r1

tst r1, reg

tst imm, reg movhi hi(imm), r0, r1

tst r1, reg

tst imm, reg movhi hi1(imm), r0, r1

movea lo(imm), r1, r1

tst r1, reg

tst imm, reg movhi hi(imm), r0, r1

tst r1, reg

tst imm, reg mov imm, r1

tst r1, reg

tst $label, reg movea $label, r0, r1

tst r1, reg

196 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

(h) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

(i) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section [V850E]

[Flag]

tst #label, reg movhi hi1(#label), r0, r1

movea lo(#label), r1, r1

tst r1, reg

tst label, reg movhi hi1(#label), r0, r1

movea lo(#label), r1, r1

tst r1, reg

tst $label, reg movhi hi1($label), r0, r1

movea lo($label), r1, r1

tst r1, reg

tst #label, reg mov #label, r1

tst r1, reg

tst label, reg mov label, r1

tst r1, reg

tst $label, reg mov $label, r1

tst r1, reg

CY ---

OV 0

S 1 if the word data MSB of the result is 1, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 197

xor

[Overview]

Exclusive Or

[Syntax]

(1) xor reg1, reg2

(2) xor imm, reg2

The following can be specified for imm:

- Absolute expression having a value of up to 32 bits

- Relative expression

[Function]

- Syntax (1)

Exclusive-ORs the value of the register specified by the first operand with the value of the register

specified by the second operand, and stores the result in the register specified by the second operand.

- Syntax (2)

Exclusive-ORs the value of the absolute expression or relative expression specified by the first operand

with the value of the register specified by the second operand, and stores the result in the register specified

by the second operand.

[Description]

- When this instruction is executed in syntax (1), the as850 generates one xor machine instruction.

- When this instruction is executed in syntax (2), the as850 executes instruction expansion to generate two

or more machine instructionsNote

(a) 0

(b) Absolute expression having a value in the range of 1 to 65,535

(c) Absolute expression having a value in the range of -16 to -1

xor 0, reg xor r0, reg

xor imm16, reg xori imm16, reg, reg

xor imm5, reg mov imm5, r1

xor r1, reg

198 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

(d) Absolute expression having a value in the range of -32,768 to -17

(e) Absolute expression exceeding the above ranges

If all the lower 16 bits of the value of imm are 0

Else

(f) Absolute expression exceeding the above ranges [V850E]

If all the lower 16 bits of the value of imm are 0

Else

(g) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

xor imm16, reg movea imm16, r0, r1

xor r1, reg

xor imm, reg movhi hi(imm), r0, r1

xor r1, reg

xor imm, reg movhi hi1(imm), r0, r1

movea lo(imm), r1, r1

xor r1, reg

xor imm, reg movhi hi(imm), r0, r1

xor r1, reg

xor imm, reg mov imm, r0, r1

xor r1, reg

xor $label, reg movea $label, r0, r1

xor r1, reg

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 199

(h) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

(i) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section [V850E]

Note The xor machine instruction does not take an immediate value as an operand.

[Flag]

xor #label, reg movhi hi1(#label), r0, r1

movea lo(#label), r1, r1

xor r1, reg

xor label, reg movhi hi1(label), r0, r1

movea lo(label), r1, r1

xor r1, reg

xor $label, reg movhi hi1($label), r0, r1

movea lo($label), r1, r1

xor r1, reg

xor #label, reg mov #label, r1

xor r1, reg

xor label, reg mov label, r1

xor r1, reg

xor $label, reg mov $label, r1

xor r1, reg

CY ---

OV 0

S 1 if the word data MSB of the result is 1, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

200 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

xori

[Overview]

Exclusive Or Immediate

[Syntax]

(1) xori imm, reg1, reg2

The following can be specified for imm:

- Absolute expression having a value of up to 32 bits

- Relative expression

- Either of the above expressions with hi() , lo() , or hi1() applied

[Function]

Exclusive-ORs the value of the absolute expression, relative expression, or expression with hi() , lo() , or

hi1() applied specified by the first operand with the value of the register specified by the second operand, and

stores the result in the register specified by the third operand.

[Description]

- If the following is specified for imm, the as850 generates one xori machine instructionNote.

(a) Absolute expression having a value in the range of 0 to 65,535

(b) Relative expression having !label or %label

(c) Expression with hi() , lo() , or hi1()

Note The xori machine instruction takes an immediate value of 0 to 65,535 (0 to 0xffff) as the first

operand.

xori imm16, reg1, reg2 xori imm16, reg1, reg2

xori !label, reg1, reg2 xori !label, reg1, reg2

xori %label, reg1, reg2 xori %label, reg1, reg2

xori imm16, reg1, reg2 xori imm16, reg1, reg2

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 201

- If the following is specified for imm, the as850 executes instruction expansion to generate one or more

machine instructions

(a) Absolute expression having a value in the range of -16 to -1

(b) Absolute expression having a value in the range of -32,768 to -17

If reg2 is r0

Else

(c) Absolute expression exceeding the above ranges

If all the lower 16 bits of the value of imm are 0

If all the lower 16 bits of the value of imm are 0 and when reg2 is r0

Else

Other than above and when reg2 is r0

xori imm5, reg1, reg2 mov imm5, reg2

xor reg1, reg2

xori imm16, reg1, r0 movea imm16, r0, r1

xor reg1, r1

xori imm16, reg1, reg2 movea imm16, r0, reg2

xor reg1, reg2

xori imm, reg1, reg2 movhi hi(imm), r0, reg2

xor reg1, reg2

xori imm, reg1, r0 movhi hi(imm), r0, r1

xor reg1, r1

xori imm, reg1, reg2 movhi hi1(imm), r0, r1

movea lo(imm), r1, reg2

xor reg1, reg2

xori imm, reg1, r0 movhi hi1(imm), r0, r1

movea lo(imm), r1, r1

xor reg1, r1

202 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

(d) Absolute expression exceeding the above ranges [V850E]

If all the lower 16 bits of the value of imm are 0

If all the lower 16 bits of the value of imm are 0 and when reg2 is r0

Else

Other than above and when reg2 is r0

(e) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

If reg2 is r0

Else

(f) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

If reg2 is r0

xori imm, reg1, reg2 movhi hi(imm), r0, reg2

xor reg1, reg2

xori imm, reg1, r0 movhi hi(imm), r0, r1

xor reg1, r1

xori imm, reg1, reg2 mov imm, reg2

xor reg1, reg2

xori imm, reg1, r0 mov imm, r1

xor reg1, r1

xori $label, reg1, reg2 movea $label, r0, reg2

xor reg1, reg2

xori $label, reg1, reg2 movea $label, r0, reg2

xor reg1, reg2

xori #label, reg1, r0 movhi hi1(#label), r0, r1

movea lo(#label), r1, r1

xor reg1, r1

xori label, reg1, r0 movhi hi1(label), r0, r1

movea lo(label), r1, r1

xor reg1, r1

xori $label, reg1, r0 movhi hi1($label), r0, r1

movea lo($label), r1, r1

xor reg1, r1

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 203

Else

(g) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section [V850E]

If reg2 is r0

Else

[Flag]

xori #label, reg1, reg2 movhi hi1(#label), r0, r1

movea lo(#label), r1, reg2

xor reg1, reg2

xori label, reg1, reg2 movhi hi1(label), r0, r1

movea lo(label), r1, reg2

xor reg1, reg2

xori $label, reg1, reg2 movhi hi1($label), r0, r1

movea lo($label), r1, reg2

xor reg1, reg2

xori #label, reg1, r0 mov #label, r1

xor reg1, r1

xori label, reg1, r0 mov label, r1

xor reg1, r1

xori $label, reg1, r0 mov $label, r1

xor reg1, r1

xori #label, reg1, reg2 mov #label, reg2

xor reg1, reg2

xori label, reg1, reg2 mov label, reg2

xor reg1, reg2

xori $label, reg1, reg2 mov $label, reg2

xor reg1, reg2

CY ---

OV 0

S 1 if the word data MSB of the result is 1, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

204 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

zxb

[V850E]

[Overview]

Zero Extend Byte

[Syntax]

(1) zxb reg

[Function]

Zero-extends the data of the lowermost byte of the register specified by the first operand to word length.

[Description]

- The as850 generates one zxb machine instruction.

[Flag]

CY ---

OV ---

S ---

Z ---

SAT ---

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 205

zxh

[V850E]

[Overview]

Zero Extend Half-word

[Syntax]

(1) zxh reg

[Function]

Zero-extends the data of the lower halfword of the register specified by the first operand to word length.

[Description]

- The as850 generates one zxh machine instruction.

[Flag]

CY ---

OV ---

S ---

Z ---

SAT ---

206 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

sch0l

[V850E2]

[Overview]

Bit (0) Search from MSB Side (Search zero from left)

[Syntax]

(1) sch0l reg2, reg3

[Function]

Searches the word data of the register specified by the first operand, from the left (MSB side), and stores the

position of the first bit (0) found in the register specified by the second operand in hexadecimal. (For example,

if bit 31 of the register specified by the first operand is 0, 01H is stored in the register specified by the second

operand.)

If no bit (0) is found, 0 is written into the register specified by the second operand, and the Z flag is

simultaneously set (1). If a bit (0) is found at the end, the CY flag is set (1).

[Description]

- The as850 generates one sch0l machine instruction.

[Flag]

CY 1 if a bit (0) is found at the end, 0 if not

OV 0

S 0

Z 1 if a bit (0) is not found, 0 if not

SAT ---

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 207

sch0r

[V850E2]

[Overview]

Bit (0) Search from LSB Side (Search zero from right)

[Syntax]

(1) sch0r reg2, reg3

[Function]

Searches the word data of the register specified by the first operand, from the right (LSB side), and stores

the position of the first bit (0) found in the register specified by the second operand in hexadecimal. (For

example, if bit 0 of the register specified by the first operand is 0, 01H is stored in the register specified by the

second operand.)

If no bit (0) is found, 0 is written into the register specified by the second operand, and the Z flag is

simultaneously set (1). If a bit (0) is found at the end, the CY flag is set (1).

[Description]

- The as850 generates one sch0r machine instruction.

[Flag]

CY 1 if a bit (0) is found at the end, 0 if not

OV 0

S 0

Z 1 if a bit (0) is not found, 0 if not

SAT ---

208 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

sch1l

[V850E2]

[Overview]

Bit (1) Search from MSB Side (Search one from left)

[Syntax]

(1) sch1l reg2, reg3

[Function]

Searches the word data of the register specified by the first operand, from the left (MSB side), and stores the

position of the first bit (1) found in the register specified by the second operand in hexadecimal. (For example,

if bit 31 of the register specified by the first operand is 1, 01H is stored in the register specified by the second

operand.)

If no bit (1) is found, 0 is written into the register specified by the second operand, and the Z flag is

simultaneously set (1). If a bit (0) is found at the end, the CY flag is set (1).

[Description]

- The as850 generates one sch1l machine instruction.

[Flag]

CY 1 if a bit (1) is found at the end, 0 if not

OV 0

S 0

Z 1 if a bit (1) is not found, 0 if not

SAT ---

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 209

sch1r

[V850E2]

[Overview]

Bit (1) Search from LSB Side (Search zero from right)

[Syntax]

(1) sch1r reg2, reg3

[Function]

Searches the word data of the register specified by the first operand, from the right (LSB side), and stores

the position of the first bit (1) found in the register specified by the second operand in hexadecimal. (For

example, if bit 0 of the register specified by the first operand is 1, 01H is stored in the register specified by the

second operand.)

If no bit (1) is found, 0 is written into the register specified by the second operand, and the Z flag is

simultaneously set (1). If a bit (1) is found at the end, the CY flag is set (1).

[Description]

- The as850 generates one sch1r machine instruction.

[Flag]

CY 1 if a bit (1) is found at the end, 0 if not

OV 0

S 0

Z 1 if a bit (1) is not found, 0 if not

SAT ---

210 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

3.6 Branch Instructions

This section describes the branch instructions.

Next table lists the branch instructions described in this section.

Table 3 - 10 Branch Instructions

Instruction Meaning

jarl Jump and register link

jarl22 Jump and register link [V850E2]

jarl32 Jump and register link [V850E2]

jcond Conditional branch

jmp Unconditional branch

jmp32 Unconditional branch (jump) [V850E2]

jr Unconditional branch (PC relative)

jr22 Unconditional branch (PC relative) [V850E2]

jr32 Unconditional branch (PC relative) [V850E2]

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 211

jarl

[Overview]

Jump and Register Link

[Syntax]

(1) jarl disp22, reg2

(2) jarl disp32, reg1 [V850E2]

The following can be specified as the displacement (disp22):

- Absolute expression having a value of up to 22 bits

- Relative expression having a PC offset reference of label

[Function]

- Syntax (1)

Transfers control to the address attained by adding the current program counter (PC) value and the

relative or absolute expression value specified by the first operand.

The return address is stored in the register specified by the second operand.

- Syntax (2)

Transfers control to the address attained by adding the current program counter (PC) value and the

relative or absolute expression value specified by the first operand.

The return address is stored in the register specified by the second operand.

[Description]

- If the instruction is executed in syntax (1), the as850 generates one jarl machine instructionNote if any of the

following expressions are specified for disp22.

(a) Absolute value in the range of -2,097,152 to +2,097,151

(b) Relative expression that has a PC offset reference of label having a definition in the same section and

the same file as this instruction, and which has a value in the range of -2,097,152 to +2,097,151

(c) Relative expression having a PC offset reference of a label having no definition in the same file or

section as this instruction

Note The jarl machine instruction takes an immediate value in the range of -2,097,152 to +2,097,151

(0xfe00000 to 0x1fffff) as the displacement.

- If the instruction is executed in syntax (2), the as850 generates one jarl machine instruction (6-byte long

instruction).

212 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

[Flag]

[Caution]

- If an absolute expression that exceeds the range of -2,097,152 to +2,097,151, or a relative expression

having a PC offset reference of label with a definition in the same section and the same file as this

instruction and having a value that falls outside the range of -2,097,152 to +2,097,151 is specified as

disp22, the as850 outputs the following message and stops assembling.

- If an absolute expression having an odd-numbered value, or a relative expression having a PC offset

reference of a label with a definition in the same section and the same file as this instruction and having an

odd-numbered value, is specified as disp22, the as850 outputs the following message and stops

assembling.

- When the assembler option -Xfar_jump is not specified, and an absolute expression outside of the range -

2,097,152 to +2,097,151 or a relative expression outside of the range -2,097,152 to +2,097,151, having a

label PC offset reference with a definition in the same file and same section as this instruction, is specified

as disp32, the following message is output and assembly is stopped.

CY ---

OV ---

S ---

Z ---

SAT ---

E3230: illegal operand (range error in displacement)

E3226: illegal operand (must be even displacement)

E3230: illegal operand (range error in displacement)

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 213

jarl22

[V850E2]

[Overview]

Jump and Register Link

[Syntax]

(1) jarl22 disp22, reg1

The following can be specified as the displacement (disp22):

- Absolute expression having a value of up to 22 bits

- Relative expression having a PC offset reference of label

[Function]

Transfers control to the address attained by adding the current program counter (PC) value and the relative

or absolute expression value specified by the first operand.

The return address is stored in the register specified by the second operand.

[Description]

- If the following is specified for disp22, the as850 generates one jarl machine instructionNote.

(a) Absolute value in the range of -2,097,152 to +2,097,151

(b) Relative expression that has a PC offset reference of label having a definition in the same section and

the same file as this instruction, and which has a value in the range of -2,097,152 to +2,097,151

(c) Relative expression having a PC offset reference of a label having no definition in the same file or

section as this instruction

Note The jarl machine instruction takes an immediate value in the range of -2,097,152 to +2,097,151

(0xfe00000 to 0x1fffff) as the displacement.

[Flag]

CY ---

OV ---

S ---

Z ---

SAT ---

214 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

[Caution]

- If an absolute expression that exceeds the range of -2,097,152 to +2,097,151, or a relative expression

having a PC offset reference of label with a definition in the same section and the same file as this

instruction and having a value that falls outside the range of -2,097,152 to +2,097,151 is specified as

disp22, the as850 outputs the following message and stops assembling.

- If an absolute expression having an odd-numbered value, or a relative expression having a PC offset

reference of a label with a definition in the same section and the same file as this instruction and having an

odd-numbered value, is specified as disp22, the as850 outputs the following message and stops

assembling.

E3230: illegal operand (range error in displacement)

E3226: illegal operand (must be even displacement)

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 215

jarl32

[V850E2]

[Overview]

Jump and Register Link

[Syntax]

(1) jarl32 disp32, reg1

[Function]

Transfers control to the address attained by adding the current program counter (PC) value and the relative

or absolute expression value specified by the first operand.

The return address is stored in the register specified by the second operand.

[Description]

- The as850 generates one jarl machine instruction (6-byte long instruction).

[Flag]

CY ---

OV ---

S ---

Z ---

SAT ---

216 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

jcond

[Overview]

Jump on Condition

[Syntax]

(1) jcond disp22

The following can be specified as the displacement (disp22):

- Absolute expression having a value of up to 22 bits

- Relative expression having a PC offset reference of label

[Function]

Compares the flag condition indicated by string cond (refer to Table 3 - 11) with the current flag condition. If

they are found to be the same, transfers control to the address obtained by adding the value of the absolute

expression or relative expression specified by the operand to the current value of the program counter

(PC)Note.

Note Mnemonic bcond can be used for the jcond instruction other than jbr. Mnemonic br can be used for

the jbr instruction (there is no functional difference).

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 217

Table 3 - 11 jcond Instruction List

Instruction Flag Condition Meaning of Flag Condition

jgt ((S xor OV) or Z) = 0 Greater than (signed)

jge (S xor OV) = 0 Greater than or equal (signed)

jlt (S xor OV) = 1 Less than (signed)

jle ((S xor OV) or Z) = 1 Less than or equal (signed)

jh (CY or Z) = 0 Higher (Greater than)

jnl CY = 0 Not lower (Greater than or equal)

jl CY = 1 Lower (Less than)

jnh (CY or Z) = 1 Not higher (Less than or equal)

je Z = 1 Equal

jne Z = 0 Not equal

jv OV = 1 Overflow

jnv OV = 0 No overflow

jn S = 1 Negative

jp S = 0 Positive

jc CY = 1 Carry

jnc CY = 0 No carry

jz Z = 1 Zero

jnz Z = 0 Not zero

jbr - Always (Unconditional)

jsa SAT = 1 Saturated

218 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

[Description]

- If the following is specified for disp22, the as850 generates one bcond machine instructionNote.

(a) Absolute expression having a value in the range of -256 to +255

(b) Relative expression having a PC offset reference for a label with a definition in the same section and the

same file as this instruction and having a value in the range of -256 to +255

Note The bcond machine instruction takes an immediate value in the range of -256 to +255 (0xffffff00 to

0xff) as the displacement.

- If the following is specified as disp22, the as850 executes instruction expansion and generates two or more

machine instructions.

(a) Absolute expression having a value exceeding the range of -256 to +255 but within the range of -

2,097,150 to +2,097,153Note

(b) Relative expression having a PC offset reference of label with a definition in the same section of the

same file as this instruction and having a value exceeding the range of -256 to +255 but within the range

of -2,097,150 to +2,097,153

(c) Relative expression having a PC offset reference of label without a definition in the same file or section

as this instruction

Note The range of -2,097,150 to +2,097,153 applies to instructions other than jbr and jsa. The range for

the jbr instruction is from -2,097,152 to +2,097,151, and that for the jsa instruction is from -2,097,148

to +2,097,155.

Note bncond denotes an instruction that effects control branches under opposite conditions, for example,

bnz for bz or ble for bgt.

jcond disp9 bcond disp9

jbr disp22 jr disp22

jsa disp22 bsa Label1

br Label2

Label1:

jr disp22 - 4

Label2:

jcond disp22 bncond LabelNote

jr disp22 - 2

Label:

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 219

[Flag]

[Caution]

- If an absolute expression having a value exceeding the range of -2,097,150 to +2,097,153, or a relative

expression having a PC offset reference of a label with a definition in the same section and the same file as

this instruction, and having a value exceeding the range of -2,097,150 to +2,097,153, is specified as

disp22, the as850 outputs the following message and stops assembling.

- If an absolute expression having an odd-numbered value, or a relative expression having a PC offset

reference of a label with a definition in the same section and the same file as this instruction, and having an

odd-numbered value, is specified as disp22, the as850 outputs the following message and stops

assembling.

CY ---

OV ---

S ---

Z ---

SAT ---

E3230: illegal operand (range error in displacement)

E3226: illegal operand (must be even displacement)

220 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

jmp

[Overview]

Jump

[Syntax]

(1) jmp [reg]

(2) jmp disp32[reg] [V850E2]

(3) jmp addr

The following can be specified for addr:

- Relative expression having the absolute address reference of a label

[Function]

- Syntax (1)

Transfers control to the address indicated by the value of the register specified by the operand.

- Syntax (2)

Transfers control to the address attained by adding the displacement specified by the operand and the

register content.

- Syntax (3)

Transfers control to the address indicated by the value of the relative expression specified by the operand.

[Description]

- When this instruction is executed in syntax (1), the as850 generates one jmp machine instruction.

- When this instruction is executed in syntax (2), the as850 generates one jmp (6-byte long instruction)

machine instructions

- When this instruction is executed in syntax (3), the as850 executes instruction expansion and generates

two or more machine instructions

[V850E]

[Flag]

jmp #label movhi hi1(#label), r0, r1

movea lo(#label), r1, r1

jmp [r1]

jmp #label mov #label, r1

jmp [r1]

CY ---

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 221

[Caution]

- If an expression other than a relative expression having the absolute address reference of a label is

specified as addr in syntax (3), the as850 outputs the following message and stops assembling.

OV ---

S ---

Z ---

SAT ---

E3224: illegal operand (label reference for jmp must be #label)

222 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

jmp32

[V850E2]

[Overview]

Unconditional Branch (Jump)

[Syntax]

(1) jmp32 disp32[reg]

[Function]

Transfers control to the address attained by adding the displacement specified by the operand and the

register content.

[Description]

- The as850 generates one jmp machine instruction (6-byte long instruction).

[Flag]

CY ---

OV ---

S ---

Z ---

SAT ---

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 223

jr

[Overview]

Jump Relative

[Syntax]

(1) jr disp22

(2) jr disp32 [V850E2]

The following can be specified as the displacement (disp22):

- Absolute expression having a value of up to 22 bits

- Relative expression having a PC offset reference of label

[Function]

- Syntax (1)

Transfers control to the address attained by adding the current program counter (PC) value and the

relative or absolute expression value specified by the first operand.

- Syntax (2)

Transfers control to the address attained by adding the current program counter (PC) value and the

relative or absolute expression value specified by the first operand.

[Description]

- If the instruction is executed in syntax (1), the as850 generates one jr machine instructionNote if any of the

following expressions are specified for disp22.

(a) Absolute expression having a value in the range of -2,097,152 to +2,097,151

(b) Relative expression that has a PC offset reference of label having a definition in the same section of the

same file as this instruction, and having a value in the range of -2,097,152 to +2,097,151

(c) Relative expression having a PC offset reference of a label with no definition in the same file or section

as this instruction

Note The jr machine instruction takes an immediate value in the range of -2,097,152 to +2,097,151

(0xfe00000 to 0x1fffff) as the displacement.

- If the instruction is executed in syntax (2), the as850 generates one jr machine instruction (6-byte long

instruction).

224 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

[Flag]

[Caution]

- If an absolute expression having a value exceeding the range of -2,097,152 to +2,097,151, or a relative

expression having a PC offset reference of a label with a definition in the same section and the same file as

this instruction, and having a value exceeding the range of -2,097,152 to +2,097,151, is specified as

disp22, the as850 outputs the following message and stops assembling.

- If an absolute expression having an odd-numbered value or a relative expression having a PC offset

reference of a label with a definition in the same section and the same file as this instruction, and having an

odd-numbered value, is specified as disp22, the as850 outputs the following message and stops

assembling.

- When the assembler option -Xfar_jump is not specified, and an absolute expression outside of the range -

2,097,152 to +2,097,151 or a relative expression outside of the range -2,097,152 to +2,097,151, having a

label PC offset reference with a definition in the same file and same section as this instruction, is specified

as disp32, the following message is output and assembly is stopped.

CY ---

OV ---

S ---

Z ---

SAT ---

E3230: illegal operand (range error in displacement)

E3226: illegal operand (must be even displacement)

E3230: illegal operand (range error in displacement)

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 225

jr22

[V850E2]

[Overview]

Unconditional Branch (PC Relative) (Jump Relative)

[Syntax]

(1) jr22 disp22

The following can be specified as the displacement (disp22):

- Absolute expression having a value of up to 22 bits

- Relative expression having a PC offset reference of label

[Function]

Transfers control to the address attained by adding the current program counter (PC) value and the relative

or absolute expression value specified by the operand.

[Description]

- If the following is specified for disp22, the as850 generates one jr machine instructionNote.

(a) Absolute value in the range of -2,097,152 to +2,097,151

(b) Relative expression that has a PC offset reference of label having a definition in the same section and

the same file as this instruction, and which has a value in the range of -2,097,152 to +2,097,151

(c) Relative expression having a PC offset reference of a label having no definition in the same file or

section as this instruction

Note The jr machine instruction takes an immediate value in the range of -2,097,152 to +2,097,151

(0xfe00000 to 0x1fffff) as the displacement.

[Flag]

CY ---

OV ---

S ---

Z ---

SAT ---

226 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

[Caution]

- If an absolute expression that exceeds the range of -2,097,152 to +2,097,151, or a relative expression

having a PC offset reference of label with a definition in the same section and the same file as this

instruction and having a value that falls outside the range of -2,097,152 to +2,097,151 is specified as

disp22, the as850 outputs the following message and stops assembling.

- If an absolute expression having an odd-numbered value, or a relative expression having a PC offset

reference of a label with a definition in the same section and the same file as this instruction and having an

odd-numbered value, is specified as disp22, the as850 outputs the following message and stops

assembling.

E3230: illegal operand (range error in displacement)

E3226: illegal operand (must be even displacement)

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 227

jr32

[V850E2]

[Overview]

Unconditional Branch (PC relative) (Jump Relative)

[Syntax]

(1) jr32 disp32

[Function]

Transfers control to the address attained by adding the current program counter (PC) value and the relative

or absolute expression value specified by the first operand.

[Description]

- The as850 generates one jr machine instruction (6-byte long instruction).

[Flag]

CY ---

OV ---

S ---

Z ---

SAT ---

228 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

3.7 Bit Manipulation Instructions

This section describes the bit manipulation instructions.

Next table lists the instructions described in this section.

Table 3 - 12 Bit Manipulation Instructions

Instruction Meaning

clr1 Bit clear

not1 Bit negation

set1 Bit set

tst1 Bit test

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 229

clr1

[Overview]

Clear Bit

[Syntax]

(1) clr1 bit# 3, disp[reg1]

(2) clr1 reg2, [reg1] [V850E]

(3) clr1 BITIO

The following can be specified as a displacement (disp):

- Absolute expression having a value of up to 32 bits

- Relative expression

- Either of the above expressions with hi() , lo() , or hi1() applied

The disp cannot be specified in syntax (2).

[Function]

- Syntax (1)

Clears the bit specified by the first operand of the data indicated by the address specified by the second

operand. The bits other than the one specified are not affected.

- Syntax (2)

Clears the bit specified by the lower 3 bits of the register value specified by the first operand of the data

indicated by the address specified by the register value of the second operand. The bits other than the one

specified are not affected.

- Syntax (3)

Clears the bit specified by the peripheral I/O register bit name (only reserved words defined in the device

file) in the data indicated by the address specified by the first operand.

[Description]

- If the following is specified as disp, the as850 generates one clr1 machine instructionNote.

(a) Absolute expression having a value in the range of -32,768 to +32,767

(b) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

clr1 disp16[reg1], reg2 clr1 disp16[reg1], reg2

clr1 $label[reg1], reg2 clr1 $label[reg1], reg2

230 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

(c) Relative expression having !label or %label

(d) Expression with hi() , lo() , or hi1()

Note The clr1 machine instruction takes an immediate value in the range of -32,768 to +32,767

(0xffff8000 to 0x7fff) as the displacement.

- If the following is specified as disp, the as850 executes instruction expansion and generates two or more

machine instructions.

(a) Absolute expression having a value exceeding the range of -32,768 to +32,767

(b) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

clr1 !label[reg1], reg2 clr1 !label[reg1], reg2

clr1 !label[reg1], reg2 clr1 %label[reg1], reg2

clr1 disp16[reg1], reg2 clr1 disp16[reg1], reg2

clr1 disp[reg1], reg2 movhi hi1(disp), reg1, r1

clr1 lo(disp)[r1], reg2

clr1 #label[reg1], reg2 movhi hi1(#label), reg1, r1

clr1 lo(#label)[r1], reg2

clr1 label[reg1], reg2 movhi hi1(label), reg1, r1

clr1 lo(label)[r1], reg2

clr1 $label[reg1], reg2 movhi hi1($label), reg1, r1

clr1 lo($label)[r1], reg2

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 231

[Flag]

Note The flag values shown here are those existing prior to the execution of this instruction, not those

after the execution.

[Caution]

- If disp is omitted, the as850 assumes 0.

- If a relative expression with #label or a relative expression with #label and with hi() , lo() , or hi1() applied

is specified as disp, [reg1] that follows the expression can be omitted. If omitted, the as850 assumes [r0] to

be specified.

- If a relative expression having $label or a relative expression having $label and with hi() , lo() , or hi1()

applied is specified as disp, [reg1] that follows the expression can be omitted. If omitted, the as850

assumes that [gp] is specified.

- If a peripheral I/O register name that is defined in the device file is specified as disp, [reg1] that follows the

name can be omitted. If omitted, the as850 assumes that [r0] is specified.

CY ---

OV ---

S ---

Z 1 if the specified bit is 0, 0 if notNote

SAT ---

232 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

not1

[Overview]

Not Bit

[Syntax]

(1) not1 bit# 3, disp[reg1]

(2) not1 reg2, [reg1] [V850E]

(3) not1 BITIO

The following can be specified as a displacement (disp):

- Absolute expression having a value of up to 32 bits

- Relative expression

- Either of the above expressions with hi() , lo() , or hi1() applied

The disp cannot be specified in syntax (2).

[Function]

- Syntax (1)

Inverts the bit specified by the first operand (0 to 1 or 1 to 0) of the data indicated by the address specified

by the second operand. The bits other than the one specified are not affected.

- Syntax (2)

Inverts the bit specified by the lower 3 bits of the register value specified by the first operand (0 to 1 or 1 to

0) of the data indicated by the address specified by the register value of the second operand. The bits other

than the one specified are not affected.

- Syntax (3)

Inverts (from 0 to 1 or 1 to 0) the bit specified by the peripheral I/O register bit name (only reserved words

defined in the device file) in the data indicated by the address specified by the first operand.

[Description]

- If the following is specified for disp, the as850 generates one not1 machine instructionNote.

(a) Absolute expression having a value in the range of -32,768 to +32,767

(b) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

not1 disp16[reg1], reg2 not1 disp16[reg1], reg2

not1 $label[reg1], reg2 not1 $label[reg1], reg2

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 233

(c) Relative expression having !label or %label

(d) Expression with hi() , lo() , or hi1()

Note The not1 machine instruction takes an immediate value in the range of -32,768 to +32,767

(0xffff8000 to 0x7fff) as the displacement.

- If the following is specified as disp, the as850 executes instruction expansion and generates two or more

machine instructions

(a) Absolute expression having a value exceeding the range of -32,768 to +32,767

(b) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

not1 !label[reg1], reg2 not1 !label[reg1], reg2

not1 !label[reg1], reg2 not1 %label[reg1], reg2

not1 disp16[reg1], reg2 not1 disp16[reg1], reg2

not1 disp[reg1], reg2 movhi hi1(disp), reg1, r1

not1 lo(disp)[r1], reg2

not1 #label[reg1], reg2 movhi hi1(#label), reg1, r1

not1 lo(#label)[r1], reg2

not1 label[reg1], reg2 movhi hi1(label), reg1, r1

not1 lo(label)[r1], reg2

not1 $label[reg1], reg2 movhi hi1($label), reg1, r1

not1 lo($label)[r1], reg2

234 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

[Flag]

Note The flag values shown here are those existing prior to the execution of this instruction, not those

after the execution.

[Caution]

- If disp is omitted, the as850 assumes 0.

- If a relative expression with #label or a relative expression with #label and with hi() , lo() , or hi1() applied

is specified as disp, [reg1] that follows the expression can be omitted. If omitted, the as850 assumes [r0] to

be specified.

- If a relative expression having $label or a relative expression having $label and with hi() , lo() , or hi1()

applied is specified as disp, [reg1] that follows the expression can be omitted. If omitted, the as850

assumes that [gp] is specified.

- If a peripheral I/O register name that is defined in the device file is specified as disp, [reg1] that follows the

name can be omitted. If omitted, the as850 assumes that [r0] is specified.

CY ---

OV ---

S ---

Z 1 if the specified bit is 0, 0 if notNote

SAT ---

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 235

set1

[Overview]

Set Bit

[Syntax]

(1) set1 bit #3, disp[reg1]

(2) set1 reg2, [reg1] [V850E]

(3) set1 BITIO

The following can be specified as a displacement (disp):

- Absolute expression having a value of up to 32 bits

- Relative expression

- Either of the above expressions with hi() , lo() , or hi1() applied

The disp cannot be specified in syntax (2).

[Function]

- Syntax (1)

Sets the bit specified by the first operand of the data indicated by the address specified by the second

operand. The bits other than the one specified are not affected.

- Syntax (2)

Sets the bit specified by the lower 3 bits of the register value specified by the first operand of the data

indicated by the address specified by the register value of the second operand. The bits other than the one

specified are not affected.

- Syntax (3)

Sets the bit specified by the peripheral I/O register bit name (only reserved words defined in the device

file) in the data indicated by the address specified by the first operand.

[Description]

- If the following is specified for disp, the as850 generates one set1 machine instructionNote.

(a) Absolute expression having a value in the range of -32,768 to +32,767

(b) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

set1 disp16[reg1], reg2 set1 disp16[reg1], reg2

set1 $label[reg1], reg2 set1 $label[reg1], reg2

236 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

(c) Relative expression having !label or %label

(d) Expression with hi() , lo() , or hi1()

Note The set1 machine instruction takes an immediate value in the range of -32,768 to +32,767

(0xffff8000 to 0x7fff) as the displacement.

- If the following is specified for disp, the as850 executes instruction expansion, then generates two or more

machine instructions.

(a) Absolute expression having a value exceeding the range of -32,768 to +32,767

(b) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

set1 !label[reg1], reg2 set1 !label[reg1], reg2

set1 !label[reg1], reg2 set1 %label[reg1], reg2

set1 disp16[reg1], reg2 set1 disp16[reg1], reg2

set1 disp[reg1], reg2 movhi hi1(disp), reg1, r1

set1 lo(disp)[r1], reg2

set1 #label[reg1], reg2 movhi hi1(#label), reg1, r1

set1 lo(#label)[r1], reg2

set1 label[reg1], reg2 movhi hi1(label), reg1, r1

set1 lo(label)[r1], reg2

set1 $label[reg1], reg2 movhi hi1($label), reg1, r1

set1 lo($label)[r1], reg2

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 237

[Flag]

Note The flag values shown here are those existing prior to the execution of this instruction, not those

after the execution.

[Caution]

- If disp is omitted, the as850 assumes 0.

- If a relative expression with #label or a relative expression with #label and with hi() , lo() , or hi1() applied

is specified as disp, [reg1] that follows the expression can be omitted. If omitted, the as850 assumes [r0] to

be specified.

- If a relative expression having $label or a relative expression having $label and with hi() , lo() , or hi1()

applied is specified as disp, [reg1] that follows the expression can be omitted. If omitted, the as850

assumes that [gp] is specified.

- If a peripheral I/O register name that is defined in the device file is specified as disp, [reg1] that follows the

name can be omitted. If omitted, the as850 assumes that [r0] is specified.

CY ---

OV ---

S ---

Z 1 if the specified bit is 0, 0 if notNote

SAT ---

238 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

tst1

[Overview]

Test Bit

[Syntax]

(1) tst1 bit# 3, disp[reg1]

(2) tst1 reg2, [reg1] [V850E]

(3) tst1 BITIO

The following can be specified as a displacement (disp):

- Absolute expression having a value of up to 32 bits

- Relative expression

- Either of the above expressions with hi() , lo() , or hi1() applied

The disp cannot be specified in syntax (2).

[Function]

- Syntax (1)

Sets only a flag according to the value of the bit specified by the first operand of the data indicated by the

address specified by the second operand. The value of the second operand and the specified bit are not

changed.

- Syntax (2)

Sets only a flag according to the value of the bit of the lower 3 bits of the register value specified by the

first operand of the data indicated by the address specified by the second operand. The value of the second

operand and the specified bit are not changed.

- Syntax (3)

Sets only the flag in accordance with the value of the bit specified by the peripheral I/O register bit name

(only reserved words defined in the device file) in the data indicated by the address specified by the first

operand. The value of the peripheral I/O register bit is not affected.

[Description]

- If the following is specified for disp, the as850 generates one tst1 machine instructionNote.

(a) Absolute expression having a value in the range of -32,768 to +32,767

(b) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

tst1 disp16[reg1], reg2 tst1 disp16[reg1], reg2

tst1 $label[reg1], reg2 tst1 $label[reg1], reg2

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 239

(c) Relative expression having !label or %label

(d) Expression with hi() , lo() , or hi1()

Note The tst1 machine instruction takes an immediate value in the range of -32,768 to +32,767 (0xffff8000 to

0x7fff) as the displacement.

- If the following is specified for disp, the as850 executes instruction expansion, then generates two or more

machine instructions.

(a) Absolute expression having a value exceeding the range of -32,768 to +32,767

(b) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

tst1 !label[reg1], reg2 tst1 !label[reg1], reg2

tst1 !label[reg1], reg2 tst1 %label[reg1], reg2

tst1 disp16[reg1], reg2 tst1 disp16[reg1], reg2

tst1 disp[reg1], reg2 movhi hi1(disp), reg1, r1

tst1 lo(disp)[r1], reg2

tst1 #label[reg1], reg2 movhi hi1(#label), reg1, r1

tst1 lo(#label)[r1], reg2

tst1 label[reg1], reg2 movhi hi1(label), reg1, r1

tst1 lo(label)[r1], reg2

tst1 $label[reg1], reg2 movhi hi1($label), reg1, r1

tst1 lo($label)[r1], reg2

240 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

[Flag]

Note The flag values shown here are those existing prior to the execution of this instruction, not those

after the execution.

[Caution]

- If disp is omitted, the as850 assumes 0.

- If a relative expression with #label or a relative expression with #label and with hi() , lo() , or hi1() applied

is specified as disp, [reg1] that follows the expression can be omitted. If omitted, the as850 assumes [r0] to

be specified.

- If a relative expression having $label or a relative expression having $label and with hi() , lo() , or hi1()

applied is specified as disp, [reg1] that follows the expression can be omitted. If omitted, the as850

assumes that [gp] is specified.

- If a peripheral I/O register name that is defined in the device file is specified as disp, [reg1] that follows the

name can be omitted. If omitted, the as850 assumes that [r0] is specified.

CY ---

OV ---

S ---

Z 1 if the specified bit is 0, 0 if notNote

SAT ---

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 241

3.8 Stack Manipulation Instructions

This section describes the stack manipulation instructions.

Next table lists the instructions described in this section.

Table 3 - 13 Stack Manipulation Instructions

Instruction Meaning

pop Pop from stack area (single register)

popm Pop from stack area (multiple registers)

push Push to stack area (single register)

pushm Push to stack area (multiple registers)

242 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

pop

[Overview]

Pop

[Syntax]

(1) pop reg

[Function]

Pops the value of the register specified by the operand from the stack area.

[Description]

- When the pop instruction is executed, the as850 executes instruction expansion to generate two or more

machine instructions.

[Flag]

Set by the add instruction.

pop reg ld.w [sp], reg

add 4, sp

CY 1 if a carry occurs from MSB (Most Significant Bit) , 0 if not

OV 1 if Integer-Overflow occurs, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 243

popm

[Overview]

Pop Multiple

[Syntax]

(1) popm reg1, reg2, ..., regN

[Function]

Pops the values of the registers specified by the operand from the stack area in the sequence in which the

registers are specified.

Up to 32 registers can be specified by the operand.

[Description]

- When the popm instruction is executed, the as850 executes instruction expansion to generate two or more

machine instructions.

When there are three or fewer registers

When there are four or more registers

[Flag]

Set by the add/addi instruction.

popm reg1,..., regN ld.w 4 * 0[sp], reg1

:

ld.w 4 * (N - 1)[sp], regN

add 4 * N, sp

popm reg1, reg2, ..., regN ld.w 4 * 0[sp], reg1

ld.w 4 * 1[sp], reg2

:

ld.w 4 * (N - 1)[sp], regN

addi 4 * N, sp, sp

CY 1 if a carry occurs from MSB (Most Significant Bit) , 0 if not

OV 1 if Integer-Overflow occurs, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

244 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

push

[Overview]

Push

[Syntax]

(1) push reg

[Function]

Pushes the value of the register specified by the operand to the stack area.

[Description]

- When the push instruction is executed, the as850 executes instruction expansion to generate two or more

machine instructions.

[Flag]

Set by the add instruction.

push reg add -4. sp

st.w reg, [sp]

CY 1 if a carry occurs from MSB (Most Significant Bit) , 0 if not

OV 1 if Integer-Overflow occurs, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 245

pushm

[Overview]

Push Multiple

[Syntax]

(1) pushm reg1, reg2, ..., regN

[Function]

Pushes the values of the registers specified by the operand to the stack area.

Up to 32 registers can be specified by the operand.

[Description]

- When the pushm instruction is executed, the as850 executes instruction expansion to generate two or

more machine instructions.

When there are three or fewer registers

When there are four or more registers

[Flag]

Set by the add/addi instruction.

pushm reg1, reg2, ..., regN add -4 * N, sp

st.w regN, 4 * (N - 1)[sp]

:

st.w reg2, 4 * 1[sp]

st.w reg1, 4 * 0[sp]

pushm reg1, reg2, ..., regN addi -4 * N, sp, sp

st.w regN, 4 * (N - 1)[sp]

:

st.w reg2, 4 * 1[sp]

st.w reg1, 4 * 0[sp]

CY 1 if a carry occurs from MSB (Most Significant Bit), 0 if not

OV 1 if Integer-Overflow occurs, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

246 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

3.9 Special Instructions

This section describes the special instructions.

Next table lists the instructions described in this section.

Table 3 - 14 Special Instructions

Instruction Meaning

callt Table reference call [V850E]

ctret Returns from callt [V850E]

dbret Returns from debug trap [V850E]

dbtrap Debug trap [V850E]

di Disables maskable interrupt

dispose Deletes stack frame (postprocessing of function) [V850E]

ei Enables maskable interrupt

halt Stops the processor

ldsr Loads to system register

nop No operation

prepare Generates stack frame (preprocessing of function) [V850E]

reti Returns from trap or interrupt routine

stsr Stores contents of system register

switch Table reference branch [V850E]

trap Software trap

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 247

callt

[V850E]

[Overview]

Call With Table Look Up

[Syntax]

(1) callt imm6

The following can be specified as imm6:

- Absolute expression having a value of up to 6 bits

[Function]

- Performs processing in the following sequenceNote.

(1) Saves the values of the return PC and PSW to CTPC and CTPSW.

(2) Generates a table entry address by shifting the value specified by the operand 1 bit to the left as an

offset value from CTBP(CALLT Base Pointer) and by adding it to the CTBP value.

(3) Loads unsigned halfword data from the generated table entry address.

(4) Adds the loaded value to the CTBP value to generate an address.

(5) Branches to the generated address.

Note For details of the system registers, refer to the Relevant Device’s Architecture User’s Manual of

each device.

[Flag]

CY ---

OV ---

S ---

Z ---

SAT ---

248 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

ctret

[V850E]

[Overview]

Return From Callt

[Syntax]

(1) ctret

[Function]

- Returns from the processing by callt. Performs the processing in the following sequenceNote:

(1) Extracts the return PC and PSW from CTPC and CTPSW.

(2) Sets the extracted values in the PC and PSW and transfers control.

Note For details of the system registers, refer to the Relevant Device’s Architecture User’s Manual of

each device.

[Flag]

CY Extracted value

OV Extracted value

S Extracted value

Z Extracted value

SAT Extracted value

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 249

dbret

[V850E]

[Overview]

Return From Debug Trap

[Syntax]

(1) dbret

[Function]

- Returns from debug trapNote.

Note For details of the function, refer to the Relevant Device’s Architecture User’s Manual of each device.

[Flag]

CY Extracted value

OV Extracted value

S Extracted value

Z Extracted value

SAT Extracted value

250 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

dbtrap

[V850E]

[Overview]

Debug Trap

[Syntax]

(1) dbtrap

[Function]

- Causes debug trapNote.

Note For details of the function, refer to the Relevant Device’s Architecture User’s Manual of each device.

[Flag]

CY ---

OV ---

S ---

Z ---

SAT ---

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 251

di

[Overview]

Disable Interrupt

[Syntax]

(1) di

[Function]

- Sets the ID bit of the PSW to 1 and disables acknowledgement of maskable interrupts since this instruction

has already been executed.

[Flag]

CY ---

OV ---

S ---

Z ---

SAT ---

ID 1

252 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

dispose

[V850E]

[Overview]

Function Dispose

[Syntax]

(1) dispose imm, list

(2) dispose imm, list, [reg]

The following can be specified for imm:

- Absolute expression having a value of up to 32 bits

The following can be specified as list. list specifies the 12 registers that can be popped by the dispose

instruction.

- Register

Specify the registers (r20 to r31) to be popped, delimiting each with a comma.

- Constant expression having a value of up to 12 bits

The 12 bits and 12 registers correspond as follows:

The following two specifications are equivalent.

[Function]

The dispose instruction performs the postprocessing of a function.

- Syntax (1)

(1) Adds the value of the absolute expression specified by the first operand to the stack pointer (sp)Note and

sets sp in the register saving area.

(2) Pops one of the registers specified by the second operand and adds 4 to sp.

(3) Repeatedly executes (2) until all the registers specified by the second operand have been popped.

Note Since the value actually added to sp by the machine instruction is imm shifted 2 bits to the left, the

assembler shifts the specified imm 2 bits to the right in advance and reflects it in the code.

dispose 0x10, r26, r29, r31 dispose 0x10, 0x103

bit11

r30 r24 r25 r26 r27 r20 r21 r22 r23 r28 r29 r31

bit0

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 253

- Syntax (2)

(1) Adds the value of the absolute expression specified by the first operand to the stack pointer (sp)Note and

sets sp in the register saving area.

(2) Pops one of the registers specified by the second operand and adds 4 to sp.

(3) [Repeatedly executes (2) until all the registers specified by the second operand have been popped.

(4) Sets the register value specified by the third operand in the program counter (PC).

Note Undefined symbol and label reference.

[Description]

- If the following is specified for imm, the as850 generates one dispose machine instruction.

(1) Absolute expression having a value in the range of 0 to 127

If anything other than a constant expression is specified as list, the as850 outputs the following message

and stops assembling.

- When the following is specified as imm, the as850 executes instruction expansion to generate two or more

machine instructions.

(a) Absolute expression exceeding the range of 0 to 127, but within the range of 0 to 32,767

(b) Absolute expression having a value exceeding the range of 0 to 32,767

dispose imm, list dispose imm, list

dispose imm, list, [reg] dispose imm, list, [reg]

E3249: illegal syntax

dispose imm, list movea imm, sp, sp

dispose 0, list

dispose imm, list, [reg] movea imm, sp, sp

dispose 0, list, [reg]

dispose imm, list mov imm, r1

add r1, sp

dispose 0, list

dispose imm, list, [reg] mov imm, r1

add r1, sp

dispose 0, list, [reg]

254 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

[Flag]

Note If the add instruction is generated as a result of instruction expansion, the flag value may be

affected.

[Caution]

- An address consisting of the two lower bits specified by sp is masked to 0 even though misalign access is

enabled. In sp, set a value which is aligned with a four-byte boundary.

- If r0 is specified by the [reg] in syntax (2), the as850 outputs the following message and stops assembling.

CY ---

OV ---

S ---

Z ---

SAT ---

E3240: illegal operand (can not use r0 as destination in V850E mode)

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 255

ei

[Overview]

Enable Interrupt

[Syntax]

(1) ei

[Function]

- Sets the ID bit of the PSW to 0, and enables acknowledgment of maskable interrupt from the next

instruction.

[Flag]

CY ---

OV ---

S ---

Z ---

SAT ---

ID 0

256 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

halt

[Overview]

Halt

[Syntax]

(1) halt

[Function]

- Stops the processor and sets it in the HALT status. The HALT status can be released by a maskable

interrupt, NMI, or reset.

[Flag]

CY ---

OV ---

S ---

Z ---

SAT ---

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 257

ldsr

[Overview]

Load System Register

[Syntax]

(1) ldsr reg, regID

The following can be specified as regID:

- Absolute expression having a value of up to 5 bits

[Function]

- Stores the value of the register specified by the first operand in the system registerNote indicated by the

system register number specified by the second operand.

Note For details of the system registers, refer to the Relevant Device’s Hardware User’s Manual provided

with the each device and the table below.

Note The interrupt source register cannot be specified by an operand and accessing it is prohibited.

Table 3 - 15 System Register Numbers (ldsr)

Number System Register

0 Status saving register for interrupt EIPC

1 Status saving register for interrupt EIPSW

2 Status saving register for NMI FEPC

3 Status saving register for NMI FEPSW

4 Interrupt source registerNote ECR

5 Program status word PSW

6-31 Reserved

258 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

Note The interrupt source register cannot be specified by an operand and accessing it is prohibited.

Table 3 - 16 System Register Numbers [V850E/MS1] (ldsr)

Number System Register

0 Status saving register for interrupt EIPC

1 Status saving register for interrupt EIPSW

2 Status saving register for NMI FEPC

3 Status saving register for NMI FEPSW

4 Interrupt source registerNote ECR

5 Program status word PSW

6-15 Reserved

16 Status saving register for CALLT execution CTPC

17 Status saving register for CALLT execution CTPSW

18 Status saving register for exception/debug trap DBPC

19 Status saving register for exception/debug trap DBPSW

20 CALLT base pointer CTBP

21-31 Reserved

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 259

Notes 1 The interrupt source register cannot be specified by an operand and accessing it is prohibited.

2 Access is enabled only in the debug mode.

3 The register actually accessed is specified by the CS bit of the DIR register.

Table 3 - 17 System Register Numbers [V850E1] (ldsr)

Number System Register

0 Status saving register for interrupt EIPC

1 Status saving register for interrupt EIPSW

2 Status saving register for NMI FEPC

3 Status saving register for NMI FEPSW

4 Interrupt source registerNote 1 ECR

5 Program status word PSW

6-15 Reserved

16 Status saving register for CALLT execution CTPC

17 Status saving register for CALLT execution CTPSW

18 Status saving register for exception/debug trapNote 2 DBPC

19 Status saving register for exception/debug trapNote 2 DBPSW

20 CALLT base pointer CTBP

21 Debug interface registerNote 2 DIR

22 Break point control registers 0, 1Notes 2, 3 BPC0, BPC1

23 Program ID register ASID

24 Break point address set registers 0, 1Notes 2, 3 BPAV0, BPAV1

25 Break point address mask registers 0, 1Notes 2, 3 BPAM0, BPAM1

26 Break point data set registers 0, 1Notes 2, 3 BPDV0, BPDV1

27 Break point data mask registers 0, 1Notes 2, 3 BPDM0, BPDM1

28-31 Reserved

260 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

[Flag]

If the program status word (PSW) is specified as the system register, the value of the corresponding bit of

reg is set as each flag.

[Caution]

- When returning by the reti instruction after setting (1) bit 0 of EIPC, FEPC, or CTPC to 0 by the ldsr

instruction, the value of bit 0 is ignored (because bit 0 of PC is fixed to 0). When setting a value to EIPC,

FEPC, or CTPC, set an even value (bit 0 = 0).

- If an absolute expression having a value exceeding the range of 0 to 31 is specified as regID, the as850

outputs the following message, then continues assembling using the lower 5 bitsNote of the specified value.

Note The ldsr machine instruction takes an immediate value in the range of 0 to 31 (0x0 to 0x1f) as the

second operand.

- If a reserved register number, the number of a register which cannot be accessed (such as ECR) or the

number of a register which can be accessed only in the debug mode is specified as regID, the as850

outputs the following message and continues assembling as is

CY ---

OV ---

S ---

Z ---

SAT ---

W3011: illegal operand (range error in immediate)

W3018: illegal regID for ldsr

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 261

nop

[Overview]

No Operation

[Syntax]

(1) nop

[Function]

- Nothing is executed. This instruction can be used to allocate an area during an instruction sequence or to

insert a delay cycle during instruction execution.

[Flag]

CY ---

OV ---

S ---

Z ---

SAT ---

262 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

prepare

[V850E]

[Overview]

Function Prepare

[Syntax]

(1) prepare list, imm1

(2) prepare list, imm1, imm2

(3) prepare list, imm1, sp

The following can be specified as imm1/imm2.

- Absolute expression having a value of up to 32 bits

list specifies the 12 registers that can be pushed by the prepare instruction.The following can be specified as

list.

- Register

Specify the registers (r20 to r31) to be pushed, delimiting each with a comma.

- Constant expression having a value of up to 12 bits

The 12 bits and 12 registers correspond as follows:

The following two specifications are equivalent.

prepare r26, r29, r31, 0x10 prepare 0x103, 0x10

bit11

r30 r24 r25 r26 r27 r20 r21 r22 r23 r28 r29 r31

bit0

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 263

[Function]

The prepare instruction performs the preprocessing of a function.

- Syntax (1)

(1) Pushes one of the registers specified by the first operand and subtracts 4 from the stack pointer (sp).

(2) Repeatedly performs (1) until all the registers specified by the first operand have been pushed.

(3) Subtracts the value of the absolute expression specified by the second operand from spNote and sets sp

in the register saving area.

- Syntax (2)

(1) Pushes one of the registers specified by the first operand and subtracts 4 from sp.

(2) Repeatedly performs (1) until all the registers specified by the first operand have been pushed.

(3) Subtracts the value of the absolute expression specified by the second operand from spNote and sets sp

to the register saving area.

(4) Sets the value of the absolute expression specified by the third operand in ep.

- Syntax (3)

(1) Pushes one of the registers specified by the first operand and subtracts 4 from sp.

(2) Repeatedly performs (1) until all the registers specified by the first operand have been pushed.

(3) Subtracts the value of the absolute expression specified by the second operand from spNote and sets sp

in the register saving area.

(4) Sets the value of sp specified by the third operand in ep.

Note Since the value actually subtracted from sp by the machine instruction is imm1 shifted 2 bits to the

left, the assembler shifts the specified imm1 2 bits to the right in advance and reflects it in the code.

[Description]

- If the following is specified for imm1, the as850 generates one prepare machine instruction.

(a) Absolute expression having a value in the range of 0 to 127

If anything other than a constant expression is specified as list, the as850 outputs the following message

and stops assembling.

prepare list, imm1 prepare list, imm1

prepare list, imm1, imm2 prepare list, imm1, imm2

prepare list, imm1, sp prepare list, imm1, sp

E3249: illegal syntax

264 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

- When the following is specified as imm1, the as850 executes instruction expansion to generate two or

more machine instructions.

(a) Absolute expression exceeding the range of 0 to 127, but within the range of 0 to 32,767

(b) Absolute expression having a value exceeding the range of 0 to 32,767

[Flag]

Note If a sub instruction is generated as a result of instruction expansion, the flag value may be affected.

[Caution]

- An address consisting of the two lower bits specified by sp is masked to 0 even though misalign access is

enabled. In sp, set a value which is aligned with a four-byte boundary.

prepare list, imm1 prepare list, 0

movea -imm1, sp, sp

prepare list, imm1, imm2 prepare list, 0, imm2

movea -imm1, sp, sp

prepare list, imm1, sp prepare list, 0, sp

movea -imm1, sp, sp

prepare list, imm1 prepare list, 0

mov imm1, r1

sub r1, sp

prepare list, imm1, imm2 prepare list, 0, imm2

mov imm1, r1

sub r1, sp

prepare list, imm1, sp prepare list, 0, sp

mov imm1, r1

sub r1, sp

CY ---

OV ---

S ---

Z ---

SAT ---

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 265

reti

[Overview]

Return from Trap or Interrupt

[Syntax]

(1) reti

[Function]

- Returns from a trap or interrupt routineNote.

Note For details of the function, refer to the Relevant Device’s Architecture User’s Manual of each device.

[Flag]

CY Extracted value

OV Extracted value

S Extracted value

Z Extracted value

SAT Extracted value

266 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

stsr

[Overview]

Store System Register

[Syntax]

(1) stsr regID, reg

The following can be specified as regID:

- Absolute expression having a value of up to 5 bits

[Function]

- Stores the value of the system registerNote indicated by the system register number specified by the first

operand, to the register specified by the second operand.

Note For details of the system registers, refer to the Relevant Device’s Hardware User’s Manual provided

with the each device and the table below.

Table 3 - 18 System Register Numbers (ldsr)

Number System Register

0 Status saving register for interrupt EIPC

1 Status saving register for interrupt EIPSW

2 Status saving register for NMI FEPC

3 Status saving register for NMI FEPSW

4 Interrupt source registerNote ECR

5 Program status word PSW

6-31 Reserved

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 267

Table 3 - 19 System Register Numbers [V850E/MS1] (stsr)

Number System Register

0 Status saving register for interrupt EIPC

1 Status saving register for interrupt EIPSW

2 Status saving register for NMI FEPC

3 Status saving register for NMI FEPSW

4 Interrupt source register ECR

5 Program status word PSW

6-15 Reserved

16 Status saving register for CALLT execution CTPC

17 Status saving register for CALLT execution CTPSW

18 Status saving register for exception/debug trap DBPC

19 Status saving register for exception/debug trap DBPSW

20 CALLT base pointer CTBP

21-31 Reserved

268 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

Notes 1 Access is enabled only in the debug mode.

2 The register actually accessed is specified by the CS bit of the DIR register.

Table 3 - 20 System Register Numbers [V850E1] (stsr)

Number System Register

0 Status saving register for interrupt EIPC

1 Status saving register for interrupt EIPSW

2 Status saving register for NMI FEPC

3 Status saving register for NMI FEPSW

4 Interrupt source register ECR

5 Program status word PSW

6-15 Reserved

16 Status saving register for CALLT execution CTPC

17 Status saving register for CALLT execution CTPSW

18 Status saving register for exception/debug trapNote 1 DBPC

19 Status saving register for exception/debug trapNote 1 DBPSW

20 CALLT base pointer CTBP

21 Debug interface registerNote 1 DIR

22 Break point control registers 0, 1Notes 1,2 BPC0, BPC1

23 Program ID register ASID

24 Break point address set registers 0, 1Notes 1,2 BPAV0, BPAV1

25 Break point address mask registers 0, 1Notes 1,2 BPAM0, BPAM1

26 Break point data set registers 0, 1Notes 1,2 BPDV0, BPDV1

27 Break point data mask registers 0, 1Notes 1,2 BPDM0, BPDM1

28-31 Reserved

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 269

[Flag]

[Caution]

- When returning by the reti instruction after setting (1) bit 0 of EIPC, FEPC, or CTPC to 0 by the ldsr

instruction, the value of bit 0 is ignored (because bit 0 of PC is fixed to 0). When setting a value to EIPC,

FEPC, or CTPC, set an even value (bit 0 = 0).

- If an absolute expression having a value exceeding the range of 0 to 31 is specified as regID, the as850

outputs the following message, then continues assembling using the lower 5 bitsNote of the specified value.

Note The ldsr machine instruction takes an immediate value in the range of 0 to 31 (0x0 to 0x1f) as the

second operand.

- If a reserved register number or the number of a register which can be accessed only in the debug mode is

specified as regID, the as850 outputs the following message and continues assembling as is

CY ---

OV ---

S ---

Z ---

SAT ---

W3011: illegal operand (range error in immediate)

W3018: illegal regID for stsr

270 User’s Manual U18514EJ1V0UM

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

switch

[V850E]

[Overview]

Jump With Table Look Up

[Syntax]

(1) switch reg

[Function]

- Performs processing in the following sequence.

(1) Adds the value resulting from logically shifting the value specified by the operand 1 bit to the left to the

first address of the table (address following the switch instruction) to generate a table entry address.

(2) Loads signed halfword data from the generated table entry address.

(3) Logically shifts the loaded value 1 bit to the left and sign-extends it to word length. Then adds the first

address of the table to it to generate an address.

(4) Branches to the generated address.

[Flag]

[Caution]

- If r0 is specified by reg, the as850 outputs the following message and stops assembling.

CY ---

OV ---

S ---

Z ---

SAT ---

E3240: illegal operand (can not use r0 as source in V850E mode)

CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS

User’s Manual U18514EJ1V0UM 271

trap

[Overview]

Trap

[Syntax]

(1) trap vector

The following can be specified for vector:

- Absolute expression having a value of up to 5 bits

[Function]

- Causes a software trapNote.

Note For details of the function, refer to the Relevant Device’s Architecture User’s Manual of each device.

[Flag]

[Caution]

- If an absolute expression having a value falling outside the range of 0 to 31 is specified as vector, the

as850 outputs the following message, continuing assembling using the lower 5 bitsNote of the specified

value.

Note The trap machine instruction takes an immediate value in the range of 0 to 31 (0x0 to 0x1f) as an

operand.

CY ---

OV ---

S ---

Z ---

SAT ---

W3011: illegal operand (range error in immediate)

272 User’s Manual U18514EJ1V0UM

CHAPTER 4 QUASI DIRECTIVES

CHAPTER 4 QUASI DIRECTIVES

This section describes the assembly language quasi directives supported by the CA850 assembler (as850).

4.1 Description of Format

The quasi directive of the assembly language supported by as850 are described in the following format.

A quasi directive performs the preprocessing necessary for the assembler to generate machine instructions

and directs the assembler to define a section or input a file. It can also direct processing of output code and

macro replacement.

Quasi directive

[Syntax]

Indicates the function of quasi directive syntax.

[Function]

Indicates the function of the quasi directive.

[Description]

Provides a supplementary description of the function of the quasi directive.

[Caution]

Describes the points to be noted when using the quasi directive.

[Example]

Provides an example of using the quasi directive.

CHAPTER 4 QUASI DIRECTIVES

User’s Manual U18514EJ1V0UM 273

4.2 Section Definition Quasi Directives

Using a section definition quasi directive, the as850 can allocate a code, generated for a source program

(assembly language), to a specified sectionNote.

Next table lists the section definition quasi directives described in this section.

Note The CA850 handles machine instructions and data in units called sections

If the assembler source program does not contain a section definition quasi directive, all sections generated by

that program will become .text sections.

Table 4 - 1 Section Definition Quasi Directives

Quasi directive Meaning

.bss Allocation to .bss section

.const Allocation to .const section

.data Allocation to .data section

.previous (Re-)definition of section definition quasi directive preceding the section definition
quasi directive that specifies the current section definition quasi directive

.sbss Allocation to .sbss section

.sconst Allocation to .sconst section

.sdata Allocation to .sdata section

.sebss Allocation to .sebss section

.section Allocation to section of specified type

.sedata Allocation to .sedata section

.sibss Allocation to .sibss section

.sidata Allocation to .sidata section

.text Allocation to .text section

.tibss Allocation to .tibss section

.tibss.byte Allocation to .tibss.byte section

.tibss.word Allocation to .tibss.word section

.tidata Allocation to .tidata section

.tidata.byte Allocation to .tidata.byte section

.tidata.word Allocation to .tidata.word section

.vdbstrtab Allocation to .vdbstrtab section

.vdebug Allocation to .vdebug section

.vline Allocation to .vline section

274 User’s Manual U18514EJ1V0UM

CHAPTER 4 QUASI DIRECTIVES

.bss

[Syntax]

.bss

[Function]

Allocates, to the .bss sectionNote, a code generated for the assembly language source program, between

this quasi directive and the subsequent section definition quasi directive. Or, if there is no subsequent section

definition quasi directive, allocates it between this pquasi directive and the end of the assembler source file.

Note Reserved section having section name .bss, section type NOBITS, and section attribute AW.

[Description]

The .bss section is allocated to a memory range which can be referenced by using gp and a 32-bit

displacement, specified by two instructions. This section has no initial value.

[Example]

Used as .bss section until the next section definition quasi directive.

.bss

.lcomm __stack, 0x100, 4

CHAPTER 4 QUASI DIRECTIVES

User’s Manual U18514EJ1V0UM 275

.const

[Syntax]

.const

[Function]

Allocates, to the .const sectionNote, a code generated for the assembly language source program, between

this quasi directive and the next section definition quasi directive. Or, if there is no subsequent section

definition quasi directive, allocates it between this quasi directive and the end of the assembler source file.

Note Reserved section having section name .const, section type PROGBITS, and section attribute A.

[Description]

The .const section is allocated to a memory range which can be referenced by using r0 and a 32-bit

displacement, specified by two instructions. This section is used for constant data (read-only).

[Example]

Used as .const section until the next section definition quasi directive.

.const

.align 4

.globl _p, 4

_p:

.word 10

276 User’s Manual U18514EJ1V0UM

CHAPTER 4 QUASI DIRECTIVES

.data

[Syntax]

.data

[Function]

Allocates, to the .data sectionNote, a code generated for the assembly language source program, between

this quasi directive and the next section definition quasi directive. Or, if there is no subsequent section

definition quasi directive, allocates it between this quasi directive and the end of the assembler source file.

Note Reserved section having section name .data, section type PROGBITS, and section attribute AW.

[Description]

The .data section is allocated to a memory range which can be referenced by using gp and a 32-bit

displacement, specified by two instructions. This section has an initial value.

[Example]

Used as .data section until the next section definition quasi directive.

.data

.align 4

.globl _p, 4

_p:

.word 10

CHAPTER 4 QUASI DIRECTIVES

User’s Manual U18514EJ1V0UM 277

.previous

[Syntax]

.previous

[Function]

(Re-)specifies the section definition quasi directive preceding the section definition quasi directive specifying

the current section definition quasi directive.

For example, if quasi directives .data, .text, then .previous are specified, the specification of the .previous

quasi directive is equivalent to specifying the .data quasi directive.

[Example]

.previous is equivalent to .data.

.data

.align 4

.globl _p, 4

_p:

.word 10

.text

lab:

jbr LL

.previous

278 User’s Manual U18514EJ1V0UM

CHAPTER 4 QUASI DIRECTIVES

.sbss

[Syntax]

.sbss

[Function]

Allocates, to the .sbss sectionNote, a code generated for the assembly language source program, between

this quasi directive and the next section definition quasi directive. Or, if there is no subsequent section

definition quasi directive, allocates it between this quasi directive and the end of the assembler source file.

Note Reserved section having section name .sbss, section type NOBITS, and section attribute AWG.

[Description]

The .sbss section is allocated to a memory range which can be referenced with a single instruction by using

gp and a 16-bit displacement (up to 64 KB, including the size of the .sdata section). This section has no initial

value.

[Example]

Used as .sbss section until the next section definition quasi directive.

.sbss

.globl _1, 4

.lcomm _1, 4, 4

CHAPTER 4 QUASI DIRECTIVES

User’s Manual U18514EJ1V0UM 279

.sconst

[Syntax]

.sconst

[Function]

Allocates, to the .sconst sectionNote, a code generated for the assembly language source program, between

this quasi directive and the next section definition quasi directive. Or, if there is no subsequent section

definition quasi directive, allocates it between this quasi directive and the end of the assembler source file.

Note Reserved section having section name .sconst, section type PROGBITS, and section attribute A.

[Description]

The .sconst section is allocated to a memory range which can be referenced with a single instruction by

using r0 and a 16-bit displacement (up to 32 KB in the positive direction, relative to r0). This section is used for

constant data (read-only).

[Example]

Used as .sconst section until the next section definition quasi directive.

.sconst

.align 4

.globl _p, 4

_p:

.word 10

280 User’s Manual U18514EJ1V0UM

CHAPTER 4 QUASI DIRECTIVES

.sdata

[Syntax]

.sdata

[Function]

Allocates, to the .sdata sectionNote, a code generated for the assembly language source program, between

this quasi directive and the next section definition quasi directive. Or, if there is no subsequent section

definition quasi directive, allocates it between this quasi directive and the end of the assembler source file.

Note Reserved section having section name .sdata, section type PROGBITS, and section attribute AWG.

[Description]

The .sdata section is allocated to a memory range which can be referenced with a single instruction by using

gp and a 16-bit displacement (up to 64 KB, including the size of the .sbss section). This section has an initial

value.

[Example]

Used as .sdata section until the next section definition quasi directive.

.sdata

.align 4

.globl _p, 4

_p:

.word 10

CHAPTER 4 QUASI DIRECTIVES

User’s Manual U18514EJ1V0UM 281

.sebss

[Syntax]

.sebss

[Function]

Allocates, to the .sebss sectionNote, a code generated for the assembly language source program, between

this quasi directive and the next section definition quasi directive. Or, if there is no subsequent section

definition quasi directive, allocates it between this quasi directive and the end of the assembler source file.

Note Reserved section having section name .sebss, section type NOBITS, and section attribute AW.

[Description]

The .sebss section is allocated to a memory range which can be referenced with a single instruction by

using ep and a 16-bit displacement (up to 32 KB in the negative direction, relative to ep). It cannot be

allocated, however, to the lower addresses used for the .sedata section within that range. This section has no

initial value.

[Example]

Used as .sebss section until the next section definition quasi directive.

.sebss

.globl _1, 4

.lcomm _1, 4, 4

282 User’s Manual U18514EJ1V0UM

CHAPTER 4 QUASI DIRECTIVES

.section

[Syntax]

.section "section-name"[, section-type]

[Function]

Allocates, to a section of the type specified by the second operand in the section name specified by the first

operand, a code generated for the assembly language source program, between this quasi directive and the

next section definition quasi directive. Or, if there is no subsequent section definition quasi directive, allocates

it between this quasi directive and the end of the assembler source file.

Seven section types are supported. These are listed in Table 3-19Note.

Note Uppercase characters can also be used to specify a section type (for example, TEXT can be

specified instead of text).

[Example]

Defines a data-attribute section named sec

Table 4 - 2 Section Types

Type Meaning

bss bss-attribute section
Section having section type NOBITS and section attribute AW

const const-attribute section
Section having section type PROGBITS and section attribute A

data data-attribute section
Section having section type PROGBITS and section attribute AW

sbss sbss-attribute section
Section having section type NOBITS and section attribute AWG

sdata sdata-attribute section
Section having section type PROGBITS and section attribute AWG

text text-attribute section
Section having section type PROGBITS and section attribute AX

comment comment-attribute section
Section with section type PROGBITS and without any section attribute

.section "sec", data

.align 4

.globl _p, 4

_p:

.word 10

CHAPTER 4 QUASI DIRECTIVES

User’s Manual U18514EJ1V0UM 283

[Caution]

- Section names .pro_epi_runtime, .text, .data, .bss, .sdata, .sbss, .sconst, .const, .sidata, .sibss, .sedata,

.sebss, .tidata, .tibss, .tidata.byte, .tibss.byte, .tidata.word, .tibss.word, and .version are reserved for use by

the CA850. The correspondence between these reserved section names and the section types is detailed

in the table below.

If these section names are specified by the first operand, therefore, either the second operand must be

omitted or the section type corresponding to each reserved section must be specified. If a type other than

the corresponding type is specified, the as850 outputs the following message then stops assembling.

- If a name other than that of one of the above reserved sections is specified by the first operand, and if the

second operand is omitted, it is assumed that text is specified as the section type.

- If two or more different section types are specified for a single section having a specific name, the as850

outputs the following message then stops assembling.

Table 4 - 3 Correspondence between These Reserved Section Names and The Section Types

Reserved Section Name Section Type

.pro_epi_runtime

.text
text

.data

.sedata

.sidata

.tidata

.tidata.byte

.tidata.word

data

.bss

.sebss

.sibss

.tibss

.tibss.byte

.tibss.word

bss

.sdata sdata

.sbss sbss

.const

.sconst
const

.version comment

F3504: illegal section kind

F3504: illegal section kind

284 User’s Manual U18514EJ1V0UM

CHAPTER 4 QUASI DIRECTIVES

- If an interrupt request name defined in the device file is specified as the first operand, the link editor

automatically allocates the section to the corresponding handler address. The allocation address,

therefore, cannot be specified by using the link editor for a section for which an interrupt request name has

been specified. An interrupt request name must not be specified for other than an interrupt handler section.

Example of using interrupt request name

.section "RESET", text

jr __start

CHAPTER 4 QUASI DIRECTIVES

User’s Manual U18514EJ1V0UM 285

.sedata

[Syntax]

.sedata

[Function]

Allocates, to the .sedata sectionNote, a code generated for the assembly language source program, between

this quasi directive and the next section definition quasi directive. Or, if there is no subsequent section

definition quasi directive, allocates it between this quasi directive and the end of the assembler source file.

Note Reserved section having section name .sedata, section type PROGBITS, and section attribute AW.

[Description]

The .sedata section is allocated to a memory range which can be referenced with a single instruction by

using ep and a 16-bit displacement (up to 32 KB in the negative direction, relative to ep). It cannot be

allocated, however, to the higher addresses used for the .sebss section within that range. This section has an

initial value.

[Example]

Used as .sedata section until the next section definition quasi directive.

.sedata

.align 4

.globl _p, 4

_p:

.word 10

286 User’s Manual U18514EJ1V0UM

CHAPTER 4 QUASI DIRECTIVES

.sibss

[Syntax]

.sibss

[Function]

Allocates, to the .sibss sectionNote, a code generated for the assembly language source program, between

this quasi directive and the next section definition quasi directive. Or, if there is no subsequent section

definition quasi directive, allocates it between this quasi directive and the end of the assembler source file.

Note Reserved section having section name .sibss, section type NOBITS, and section attribute AW.

[Description]

The .sibss section is allocated to a memory range that can be referenced with a single instruction by using

ep and a 16-bit displacement (up to 32 KB in the positive direction from ep). It is allocated at an address higher

by the size of the .tidata.byte, .tibss.byte, .tidata.word, .tibss.word, .tidata, .tibss, or .sidata section within that

range. This section does not have an initial value (refer to Figure 2 - 1).

[Example]

Used as .sibss section until the next section definition quasi directive.

.sibss

.globl _1, 4

.lcomm _1, 4, 4

CHAPTER 4 QUASI DIRECTIVES

User’s Manual U18514EJ1V0UM 287

.sidata

[Syntax]

.sidata

[Function]

Allocates, to the .sidata sectionNote, a code generated for the assembly language source program, between

this quasi directive and the next section definition quasi directive. Or, if there is no subsequent section

definition quasi directive, allocates it between this quasi directive and the end of the assembler source file.

Note Reserved section having section name .sidata, section type PROGBITS, and section attribute AW

[Description]

The .sidata section is allocated to a memory range which can be referenced with a single instruction by

using ep and a 16-bit displacement (up to 32 KB in the positive direction, relative to ep). It is allocated at an

address higher by the size of the .tidata.byte, .tibss.byte, .tidata.word, .tibss.word, .tidata, or .tibss section

within that range (refer to Figure 2 - 1).

[Example]

Used as .sidata section until the next section definition quasi directive.

.sidata

.align 4

.globl _p, 4

_p:

.word 10

288 User’s Manual U18514EJ1V0UM

CHAPTER 4 QUASI DIRECTIVES

.text

[Syntax]

.text

[Function]

Allocates, to the .text sectionNote 1, a code generated for the assembly language source program, between

this quasi directive and the next section definition quasi directive.

Or, if there is no subsequent section definition quasi directive, allocates it between this quasi directive and

the end of the assembler source fileNote 2.

Notes 1 Reserved section having section name .text, section type PROGBITS, and section attribute AX.

2 The as850 assumes .text to be specified two times before the assembly-language source program

in a single assembler source file (for example, if ".word 1" is specified prior to a section definition

quasi directive, it is allocated to the .text section). If, however, the .text section is not explicitly

specified, and if a label definition, instruction, location counter control quasi directive, or area

allocation quasi directive are not specified for the .text section that is specified as being the default

section, the as850 does not generate the .text section.

[Example]

Used as .text section until the next section definition quasi directive.

.text

.align 4

.globl __start

__start:

mov #__tp_TEXT, tp

CHAPTER 4 QUASI DIRECTIVES

User’s Manual U18514EJ1V0UM 289

.tibss

[Syntax]

.tibss

[Function]

Allocates, to the .tibss sectionNote, a code generated for the assembly language source program between

this quasi directive and the next section definition quasi directive. Or, if there is no subsequent section

definition quasi directive, allocates it between this quasi directive and the end of the assembler source file.

Note Reserved section having section name .tibss, section type NOBITS, and section attribute AW.

[Description]

The .tibss section is data without an initial value that is located in internal RAM of the V850 microcontrollers.

Access to it is assumed to be by relative addressing using ep and the sld/sst instruction. The as850 and ld850

position .tibss at the address indicated by ep when none of .tidata.byte, .tibss.byte, .tidata.word, .tibss.word,

and .tidata sections are used. When any of these sections is used, .tibss is positioned at the address obtained

by adding the size of the .tidata.byte/.tibss.byte/.tidata.word/.tibss.word section used to the address indicated

by ep (refer to Figure 2 - 1).

The range to be accessed when the sld and sst instructions are used varies with the data size. To effectively

use the sld and sst instructions, therefore, it is recommended that byte data be allocated to the .tidata.byte/

.tibss.byte section and that halfword or larger data be allocated to the .tidata.word/.tibss.word section. If,

however, the quantity of data to be stored in internal RAM is small, making such careful preparations for

access areas unnecessary, this quasi directive can be used to allocate data to the .tibss section, thus

eliminating the necessity to classify data by size.

[Example]

Used as .tibss section until the next section definition quasi directive.

.tibss

.globl _1, 4

.lcomm _1, 4, 4

290 User’s Manual U18514EJ1V0UM

CHAPTER 4 QUASI DIRECTIVES

.tibss.byte

[Syntax]

.tibss.byte

[Function]

Allocates, to the .tibss.byte sectionNote, a code generated for the assembly language source program

between this quasi directive and the next section definition quasi directive. Or, if there is no subsequent

section definition quasi directive, allocates it between this quasi directive and the end of the assembler source

file.

Note Reserved section having section name .tibss.byte, section type NOBITS, and section attribute AW.

[Description]

The .tibss.byte section is located in internal RAM of the V850 microcontrollers. Access to it is assumed to be

by relative addressing using ep and the sld/sst instruction. The sld/sst instruction can access

- Area of up to 128 bytes when byte data is accessed

- Area of up to 256 bytes when halfword or larger data is accessed

The as850 and ld850 classify sections into either .tidata.byte/.tibss.byte or .tidata.word/.tibss.word,

depending on the size of the data, to position .tibss.byte at the address obtained by adding the size of the

.tidata.byte section used to the address indicated by ep. This enables the area that can be accessed by the

sld/sst instruction to be used effectively (refer to Figure 2 - 1).

It is recommended, therefore, that byte data without an initial value to be stored in internal RAM be allocated

to the .tibss.byte section with this quasi directiveNote.

Note Byte data can be accessed even if allocated to the .tibss.word section.

[Example]

Used as .tibss.byte section until the next section definition quasi directive.

.tibss.byte

.globl _1, 4

.lcomm _1, 4, 4

CHAPTER 4 QUASI DIRECTIVES

User’s Manual U18514EJ1V0UM 291

.tibss.word

[Syntax]

.tibss.word

[Function]

Allocates, to the .tibss.word sectionNote, a code generated for the assembly language source program

between this quasi directive and the next section definition quasi directive. Or, if there is no subsequent

section definition quasi directive, allocates it between this quasi directive and the end of the assembler source

file.

Note Reserved section having section name .tibss.word, section type NOBITS, and section attribute AW

[Description]

The .tibss.word section is located in internal RAM of the V850 microcontrollers. Access to it is assumed to

be by relative addressing using ep and the sld/sst instruction. The sld/sst instruction can access

- Area of up to 128 bytes when byte data is accessed

- Area of up to 256 bytes when halfword or larger data is accessed

The as850 and ld850 classify sections into either .tidata.byte/.tibss.byte or .tidata.word/.tibss.word,

depending on the size of the data, to position .tibss.word at the address obtained by adding the size of the

.tidata.byte/.tibss.byte/.tidata.word section used to the address indicated by ep. This enables the area that can

be accessed by the sld/sst instruction to be used effectively (refer to Figure 2 - 1).

It is recommended, therefore, that halfword or larger data without an initial value to be stored in internal

RAM be allocated to the .tibss.word section with this quasi directive.

[Example]

Used as .tibss.word section until the next section definition quasi directive.

.tibss.word

.globl _1, 4

.lcomm _1, 100000, 4

292 User’s Manual U18514EJ1V0UM

CHAPTER 4 QUASI DIRECTIVES

.tidata

[Syntax]

.tidata

[Function]

Allocates, to the .tidata sectionNote, a code generated for the assembly language source program, between

this quasi directive and the next section definition quasi directive. Or, if there is no subsequent section

definition quasi directive, allocates it between this quasi directive and the end of the assembler source file.

Note Reserved section having section name .tidata, section type PROGBITS, and section attribute AW.

[Description]

The .tidata section is located in internal RAM of the V850 microcontrollers and is assumed to be accessed

by relative addressing, using ep and the sld/sst instruction. The as850 and ld850 position .tidata at the address

indicated by ep when none of .tidata.byte, .tibss.byte, .tidata.word, and .tibss.word sections are used. When

any of these sections is used, .tidata is positioned at the address obtained by adding the size of the

.tidata.byte/.tibss.byte/.tidata.word/.tibss.word section used to the address indicated by ep (refer to Figure 2 -

1).

For the sld and sst instructions, the range to be accessed varies with the data size. To effectively use the sld

and sst instructions, therefore, it is recommended that byte data be allocated to the .tidata.byte/.tibss.byte

section and that halfword or larger data be allocated to the .tidata.word/.tibss.word section. If, however, the

amount of data to be stored in internal RAM is small, making such careful consideration for access areas

unnecessary, this quasi directive can be used to allocate data to the .tidata section, thus eliminating the

necessity to classify data by size.

[Example]

Used as .tidata section until the next section definition quasi directive.

.tidata

.align 4

.globl _p, 4

_p:

.word 10

CHAPTER 4 QUASI DIRECTIVES

User’s Manual U18514EJ1V0UM 293

.tidata.byte

[Syntax]

.tidata.byte

[Function]

Allocates, to the .tidata.byte sectionNote, a code generated for the assembly language source program,

between this quasi directive and the next section definition quasi directive. Or, if there is no subsequent

section definition quasi directive, allocates it between this quasi directive and the end of the assembler source

file.

Note Reserved section having section name .tidata.byte, section type PROGBITS, and section attribute

AW.

[Description]

The .tidata.byte section is located in internal RAM of the V850 microcontrollers and is assumed to be

accessed by relative addressing, using ep and the sld/sst instruction. The sld/sst instruction can access

- Area of up to 128 bytes when byte data is accessed.

- Area of up to 256 bytes when halfword or larger data is accessed.

The as850 and ld850 classify sections into either .tidata.byte/.tibss.byte or .tidata.word/.tibss.word,

depending on the size of the data, to position .tidata.byte to the address indicated by ep, enabling effective use

of the area that can be accessed by the sld/sst instruction (refer to Figure 2 - 1).

It is recommended, therefore, that byte data having an initial value to be stored in internal RAM be allocated

to the .tidata.byte section by using this quasi directiveNote.

Note Byte data having an initial value can be accessed even if allocated to the .tidata.word section.

[Example]

Used as .tidata.byte section until the next section definition quasi directive.

.tidata.byte

.globl _p, 1

_p:

.byte 1

294 User’s Manual U18514EJ1V0UM

CHAPTER 4 QUASI DIRECTIVES

.tidata.word

[Syntax]

.tidata.word

[Function]

Allocates, to the .tidata.word sectionNote, a code generated for the assembly language source program,

between this quasi directive and the next section definition quasi directive. Or, if there is no subsequent

section definition quasi directive, allocates it between this quasi directive and the end of the assembler source

file.

Note Reserved section having section name .tidata.word, section type PROGBITS, and section attribute

AW.

[Description]

The .tidata.word section is located in internal RAM of the V850 microcontrollers and is assumed to be

accessed by relative addressing, using ep and the sld/sst instruction. The sld/sst instruction can access

- Area of up to 128 bytes when byte data is accessed.

- Area of up to 256 bytes when halfword or larger data is accessed.

The as850 and ld850 classify sections into either .tidata.byte/.tibss.byte or .tidata.word/.tibss.word,

depending on the size of the data, to position .tidata.word at the address obtained by adding the size of the

.tidata.byte/.tibss.byte section used to the address indicated by ep. This enables the area that can be

accessed by the sld/sst instruction to be used effectively (refer to Figure 2 - 1).

It is recommended, therefore, that halfword or larger data having an initial value to be stored in internal RAM

be allocated to the .tidata.word section by using this quasi directive.

[Example]

Used as .tidata.word section until the next section definition quasi directive.

.tidata.word

.align 4

.globl _p, 4

_p:

.word 100000

CHAPTER 4 QUASI DIRECTIVES

User’s Manual U18514EJ1V0UM 295

.vdbstrtab

[Syntax]

.vdbstrtab

[Function]

Allocates, to the .vdbstrtab sectionNote, a code generated for the assembly language source program,

between this quasi directive and the next section definition quasi directive. Or, if there is no subsequent

section definition quasi directive, allocates it between this quasi directive and the end of the assembler source

file.

Note Reserved section having section name .vdbstrtab and section type STRTAB.

296 User’s Manual U18514EJ1V0UM

CHAPTER 4 QUASI DIRECTIVES

.vdebug

[Syntax]

.vdebug

[Function]

Allocates, to the .vdebug sectionNote, a code generated for the assembly language source program,

between this quasi directive and the next section definition quasi directive. Or, if there is no subsequent

section definition quasi directive, allocates it between this quasi directive and the end of the assembler source

file.

Note Reserved section having section name .vdebug and section type PROGBITS.

CHAPTER 4 QUASI DIRECTIVES

User’s Manual U18514EJ1V0UM 297

.vline

[Syntax]

.vline

[Function]

Allocates, to the .vline sectionNote, a code generated for the assembly language source program, between

this quasi directive and the next section definition quasi directive. Or, if there is no subsequent section

definition quasi directive, allocates it between this quasi directive and the end of the assembler source file.

Note Reserved section having section name .vline and section type PROGBITS.

298 User’s Manual U18514EJ1V0UM

CHAPTER 4 QUASI DIRECTIVES

4.3 Symbol Control Quasi Directives

Using the symbol control quasi directives, the as850 can generate a symbol table entry, define symbols, and

specify the size of the data indicated by a label.

Next table lists the symbol control quasi directives described in this section.

Maintain the value of sizeNote, as specified by the symbol control quasi directive, within 231. If a value of 231 or

more is specified, the as850 outputs the following message then stops assembling.

Table 4 - 4 Symbol Control Quasi Directives

Quasi directive Meaning

.ext_ent_size Flash table entry size

.ext_func Generates a flash table entry

.file Generates a symbol table entry (FILE type)

.frame Generates a symbol table entry (FUNC type)

.set Defines a symbol

.size Specifies the size of the data indicated by label

E3247: illegal size value

CHAPTER 4 QUASI DIRECTIVES

User’s Manual U18514EJ1V0UM 299

.ext_ent_size

[Syntax]

.ext_ent_size size

[Function]

Sets the value specified by the operand as the flash table entry size when an object file is generated.

Specify this instruction to use the function for relinking a flash area or external ROM.

[Description]

To specify a branch from an area that cannot be rewritten or replaced (boot area) to a rewritable or

replaceable area (flash area), a branch table is generated at a specified address in the flash area by specifying

this quasi directive and two-stage branch is performed via the table.

The entry size of this table is 4 bytes by default. A jr instruction is generated and execution can branch in a

range of 22 bits from the branch instruction. If it is necessary to branch to an address exceeding the range of

22 bits from the branch instruction in this table, execution can branch over the entire 32-bit address space

when 10 is specified by this instruction as the entry size in the case of the V850 core, and 8 is specified in the

case of the V850Ex core.

[Caution]

- This quasi directive must be described in a source file which contains a relevant branch instruction (in the

boot area) and a source file which contains a relevant label definition (in the flash area).

- The size specified by this quasi directive is the only value for the entire area, including the boot area and

flash area. If a different size is specified, the as850 outputs the following message and stops assembling.

If a different size is specified for two or more relocatable object files, an error occurs when linking is

executed.

- It is recommended that all relevant label names be described in a single file and included in the source files

of the boot area and flash area using the .include quasi directive. This prevents the contradictions

described above.

- Specify 4 (default), 8 [V850E], or 10 [V850] as the size. When a common object is created (when the -cn

option is specified), 8 [V850E] must not be specified because the object must operate with both the V850

and V850Ex.

W3021: .ext_ent_size already specified, ignored.

300 User’s Manual U18514EJ1V0UM

CHAPTER 4 QUASI DIRECTIVES

.ext_func

[Syntax]

.ext_func label-name, ID-value

[Function]

Generates a flash table entry having a label name and ID value specified by the operands when an object

file is generated.

Specify this instruction to use the function for relinking a flash area or external ROM.

[Description]

To specify a branch from an area that cannot be rewritten or replaced (boot area) to a rewritable or

replaceable area (flash area), a branch table is generated to a specified address in a flash area by specifying

this quasi directive and two-stage branch is performed via the table.

[Caution]

This quasi directive must be written in a source file which contains a relevant branch instruction (in the boot

area) and a source file which contains a relevant label definition (in the flash area).

- If the same label name is specified with a different ID value, the as850 outputs the following message then

stops assembling

- If the same ID value is specified with a different label name, the as850 outputs the following message then

stops assembling.

- It is recommended that all relevant label names be written in a single file and included into source files of

the boot area and flash area using the .include quasi directive. This prevents contradictions described

above.

- The ID value must be a positive number. The size of a branch table to be allocated depends on the

maximum ID value. NEC recommends that the ID value be specified without spaces.

E3253: symbol "identifier" already defined as another id

E3252: id already defined as symbol "identifier"

CHAPTER 4 QUASI DIRECTIVES

User’s Manual U18514EJ1V0UM 301

.file

[Syntax]

.file "file-name"

[Function]

Generates a symbol table entryNote having a file name specified by the operand and type FILE when an

object file is generated.

If this quasi directive does not exist in the input source file, it is assumed that ".file "input file name""has been

specified, and a symbol table entry with the input file name and type FILE is generated.

Note The binding class is LOCAL.

302 User’s Manual U18514EJ1V0UM

CHAPTER 4 QUASI DIRECTIVES

.frame

[Syntax]

.frame label-name, size

[Function]

Generates a symbol table entry of a size specified by the second operand and type FUNC when the symbol

table entry for the label specified by the first operand is generated upon the generation of the object fileNote.

Note This quasi directive is used for debugging at C language source level. Specify 0 in size to code for

debugging at assembler level.

CHAPTER 4 QUASI DIRECTIVES

User’s Manual U18514EJ1V0UM 303

.set

[Syntax]

.set symbol-name, value

[Function]

Defines a symbol having a symbol name specified by the first operand and a value(Integer value) specified

by the second operand.

If the .set quasi directive is specified for a given symbol more than once within a single assembler source

file, reference to that symbol will have the following value, depending on the position of that reference.

- If the reference appears between the beginning of the file and the first .set quasi directive for that symbol

Value specified with the last .set quasi directive for that symbol

- If the reference does not appear between a certain .set quasi directive and the next .set quasi directive, or

if there is no subsequent .set quasi directive, between the first .set quasi directive and the end of the

assembler source file

Value specified by that .set quasi directive

[Caution]

- Any label reference or undefined symbol reference must not be used to specify a value. Otherwise, the

as850 outputs the following message then stops assembling.

- If a label name, a macro name defined by the .macro quasi directive, or a symbol of the same name as a

formal parameter of a macro is specified, the as850 outputs the following message and stops assembling.

[Example]

Defines the value of symbol sym1 as 0x10

E3203: illegal expression (string)

E3212: symbol already define as string

.set sym1, 0x10

304 User’s Manual U18514EJ1V0UM

CHAPTER 4 QUASI DIRECTIVES

.size

[Syntax]

.size label-name, size

[Function]

Specifies the size specified by the second operand as the size of the data indicated by the label specified by

the first operandNote.

Note If the size has already been set, the previously specified value is overwritten.

[Caution]

If the -A option of the link editor of the CA850 is used, set the size of the data to be allocated to the sdata-

attribute section (actually, the label subject to gp offset reference) by using this quasi directive or the .globl

quasi directive when defining the dataNote.

Note Otherwise, valid information cannot be obtained by specifying the -A option of the link editor.

[Example]

Assumes size of label1 to be 15

.size label1, 15

CHAPTER 4 QUASI DIRECTIVES

User’s Manual U18514EJ1V0UM 305

4.4 Location Counter Control Quasi Directives

Using the location counter control quasi directive, the as850 can align or advance the value of the location

counterNote.

Next table lists the location counter control quasi directives described in this section.

Note A location counter exists in each section and is initialized to 0 when the first section definition quasi

directive for the corresponding section in that file appears.

If the location counter control quasi directive is specified in the sbss- or bss-attribute section, the as850

outputs the following message then stops assembling.

Table 4 - 5 Location Counter Control Quasi Directives

Quasi Directive Meaning

.align Aligns the value of the location counter

.org Advances the value of the location counter

E3246: illegal section

306 User’s Manual U18514EJ1V0UM

CHAPTER 4 QUASI DIRECTIVES

.align

[Syntax]

.align alignment-condition[, fill-value]

[Function]

Aligns the value of the location counter for the current section, specified by the previously specified section

definition quasi directive under the alignment condition specified by the first operand.

If a hole results from aligning the value of the location counter, it is filled with the fill value specified by the

second operand, or with the default value of 0.

For example, if .align 4 is specified while the current value of the location counter is 3, the value of the

location counter is aligned, according to the alignment condition of 4 (word boundary), to 4, and the 1-byte

hole that results is filled with the default value of 0.

[Caution]

- Specify an even number of 2 or more, but less than 231, as the alignment condition. Otherwise, the as850

outputs the following message then stops assembling.

- Specify a 1-byte value as the fill value. If a value of more than 1 byte is specified, the lowermost 1-byte is

used.

- If this quasi directive is used with an alignment condition of 4 or more, as specified by the sdata-attribute

section, valid information may not be obtained when a guideline value for determining the size of the data

to be allocated to the sdata/sbss-attribute section is displayed (by using the -A option of the ld850).

- This quasi directive merely aligns the value of the location counter in a specified file for the section. It does

not align an absolute addressNote 1 or an offset in a sectionNote 2.

Notes 1 Offset from address 0 in linked object file

2 Offset from the first address of the section (output section) to which that section is allocated in a

linked object file

[Example]

Aligns at 16 bytes

E3200: illegal alignment value

.align 16

CHAPTER 4 QUASI DIRECTIVES

User’s Manual U18514EJ1V0UM 307

.org

[Syntax]

.org value

[Function]

Advances the value of the location counter for the current section, specified by the previously specified

section definition quasi directive, to the value(Less than 231) specified by the operand.

If a hole results from advancing the value of the location counter, it is filled with 0.

[Caution]

- If a value that is smaller than the current value of the location counter is specified, the as850 outputs the

following message then stops assembling.

- If this quasi directive is used in the sdata-attribute section, valid information may not be obtained when a

guideline value for determining the size of the data to be allocated to the sdata/sbss-attribute section is

displayed (by using the -A option of the ld850).

- This quasi directive merely advances the value of the location counter in a specified file for the section. It

does not specify either an absolute addressNote 1 or an offset in a sectionNote 2.

Notes 1 Offset from address 0 in a linked object file.

2 Offset from the first address of the section (output section) to which that section is allocated in a

linked object file.

[Example]

Advances the location counter value 16 bytes

E3244: illegal origin value value

.org 16

308 User’s Manual U18514EJ1V0UM

CHAPTER 4 QUASI DIRECTIVES

4.5 Area Allocation Quasi Directives

Using area allocation quasi directives, the as850 can allocate an area and set a value for that area.

Next table lists the area allocation quasi directives described in this section.

If an area allocation quasi directive other than the .lcomm quasi directive is specified in the sbss- or bss-

attribute section, the as850 outputs the following message then stops assembling.

Maintain the values of size (Number of bytes) and alignment condition, specified with the area allocation quasi

directive, within 231. If a value of 231 or more is specified, the as850 outputs the following message then stops

assembling.

Table 4 - 6 Area Allocation Quasi Directives

Quasi Directive Meaning

.byte Allocates a 1-byte area

.float Sets a floating-point value

.hword Allocates a 1-halfword area

.lcomm Defines a label that allocates an area

.shword Allocates a 1-halfword area [V850E]

.space Allocates an area for size

.str Allocates an area for string

.word Allocates a 1-word area

E3246: illegal section

E3247: illegal size value

or

E3200: illegal alignment value

CHAPTER 4 QUASI DIRECTIVES

User’s Manual U18514EJ1V0UM 309

.byte

[Syntax]

.byte value[, value] ...

.byte bit-width:value[, bit-width:value] ...

[Function]

- The first part of this quasi directive instructs the allocation of a 1-byte area for each operand, and the

storing of the value of the lowermost byte of the specified value in the allocated area.

- The second part instructs the allocation of an area of the specified bit width and stores the specified value

into the allocated area.

(1) Specify the bit width as a value between 0 and 8.

(2) If the specified bit width exceeds the byte width, it is masked by the byte width.

(3) A value specified first and having the bit width is allocated starting from the least significant bit of the byte

area. If the area exceeds the byte boundary as a result of allocating an area immediately after the area to

which the value with the previous bit width has been allocated, the second value is allocated starting

from the byte boundary (refer to Figure 4 - 1).

(4) If a hole results, it is filled with 0.

Figure 4 - 1 Example of Allocation with Bit Width Specified

- The above two specifications can be made together with one .byte quasi directive (refer to Figure 4 - 1).

[Example]

Allocates 1 byte and stores 1

.tidata.byte

.align 4

.globl _p, 4

_p:

.byte 1

.byte 4 : 2 , 3 : 1 , 5 : 6 , 0x20

0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1 0

310 User’s Manual U18514EJ1V0UM

CHAPTER 4 QUASI DIRECTIVES

.float

[Syntax]

.float value [, value] ...

[Function]

Allocates a 1-word area for each operand, and stores the specified floating-point value in the allocated

areaNote.

Note If an integer constant is specified, a 1-word area is allocated, and the specified integer constant is

stored in the allocated area.

[Example]

Allocates 1 word and stores 1.2345

.sidata

.align 4

.globl _p, 4

_p:

.float 1.2345

CHAPTER 4 QUASI DIRECTIVES

User’s Manual U18514EJ1V0UM 311

.hword

[Syntax]

.hword value[, value] ...

.hword bit-width:value[, bit-width:value] ...

[Function]

- The first part of this quasi directive instructs the allocation of a 1-halfword area (2 bytes) for each operand,

and the storing of the value of the lower 1 halfword of the specified value into the allocated area.

- The second part of this instruction instructs the allocation of an area of the specified bit width, and the

storing of the specified value into the allocated area.

(1) Specify the bit width as a value between 0 and 16.

(2) If the specified value exceeds the halfword width, it is masked by the halfword width.

(3) A value declared first and having the bit width is allocated from the least significant bit position in the

halfword area. If the halfword boundary of the area is exceeded as a result of allocating an area

immediately after the area to which the value having the previous bit width has been allocated, the value

having the bit width is allocated starting from the halfword boundary.

(4) If a hole results, it is filled with 0.

- The above two specifications can be made together for each .hword quasi directive.

[Example]

Allocates 1 halfword and stores 100

.tidata

.align 4

.globl _p, 4

_p:

.hword 100

312 User’s Manual U18514EJ1V0UM

CHAPTER 4 QUASI DIRECTIVES

.lcomm

[Syntax]

.lcomm label-name, size, alignment-condition

[Function]

Aligns the value of the location counter for the current section, specified by the previously specified section

definition quasi directive, under the alignment condition specified by the third operand, allocates an area of the

size specified by the second operand, and defines a local labelNote, having a label name specified by the first

operand, at the first address of the allocated area.

Note Local symbol (symbol having binding class LOCAL).

[Caution]

- The current section, specified by the previously specified section definition quasi directive, must be an

sbss- or bss-attribute section (refer to Table 4 - 2). If this quasi directive is specified for any other section,

the as850 outputs the following message then stops assembling.

- If this quasi directive is used by specifying an alignment condition of 4 or greater in the sbss-attribute

section, valid information may not be obtained when a guideline value for determining the size of the data

to be allocated to the sdata/sbss-attribute section is displayed (by using the -A option of the ld850).

[Example]

Assumes size of __stack label to be 0x100 for 4-byte alignment.

E3246: illegal section

.bss

.lcomm __stack, 0x100, 4

CHAPTER 4 QUASI DIRECTIVES

User’s Manual U18514EJ1V0UM 313

.shword

[V850E]

[Syntax]

.shword value[, value] ...

.shword bit-width:value[, bit-width:value] ...

[Function]

- The first part of the .shword quasi directive allocates an area of 1 halfword to each operand, shifts a

specified value 1 bit to the right, and stores it in the allocated area.

- The second part of the .shword quasi directive allocates an area of the specified bit width, shifts a specified

value 1 bit to the right, and stores it in the allocated area.

(1) Specify the bit width as a value between 0 and 16.

(2) If the specified value exceeds the halfword width, it is masked by the halfword width.

(3) A value that is declared first and has the bit width is allocated from the least significant bit position in the

halfword area. If the halfword boundary of the area is exceeded as a result of allocating an area

immediately after the area to which the value with the previous bit width has been allocated, that value is

allocated starting at the halfword boundary.

(4) If a hole results, it is filled with 0.

- The above two specifications can be made together for each .shword quasi directive.

- This quasi directive is suitable for creating a table for the switch instruction.

[Example]

Allocates an area for a string constant and stores a value in it

.sdata

.align 4

.globl _t, 4

_t:

.shword 10

314 User’s Manual U18514EJ1V0UM

CHAPTER 4 QUASI DIRECTIVES

.space

[Syntax]

.space size[, fill-value]

[Function]

Allocates an area of the size specified by the first operand and fills the allocated area with the fill value

specified by the second operand (the default is 0).

- Specify a 1-byte fill value.

If a larger value than this is specified, the 1 byte corresponding to the lowermost digit is used.

[Example]

Fills 4 bytes with 0

.sidata

.globl _p, 4

_p:

.space 4

CHAPTER 4 QUASI DIRECTIVES

User’s Manual U18514EJ1V0UM 315

.str

[Syntax]

.str "string-constant"[, "string-constant"] ...

[Function]

Allocates an area for the specified string constant for each operand and stores the specified string in the

allocated areaNote.

Note Unlike in the case of C, ’\0’ is not loaded as the default value at the end of a string.

[Example]

Allocates an area for a string constant and stores a value in it.

.str "hello"

316 User’s Manual U18514EJ1V0UM

CHAPTER 4 QUASI DIRECTIVES

.word

[Syntax]

.word value[, value] ...

.word bit-width:value[, bit-width:value] ...

[Function]

- The first part of this quasi directive instructs the allocation of a 1-word area for each operand, and the

storing of the specified value in the allocated area.

- The second part of this quasi directive instructs the allocation of an area of a specified bit width, and the

storing of the specified value in the allocated area.

(1) Specify the bit width as a value between 0 and 32.

(2) If the value exceeds the word width, it is masked by the word width.

(3) A value for which the bit width is declared first is allocated starting from the least significant bit position of

the word area. If the word boundary of the area is exceeded as a result of allocating an area immediately

after the area to which the value having a bit width has been allocated, the value having the bit width is

allocated starting from the word boundary.

(4) If a hole results, it is filled with 0.

- The above two specifications can be made together for each .word quasi directive.

[Example]

Allocates an area of 1 word and fills it with 0xa.

.sidata

.align 4

.globl _p, 4

_p:

.word 0xa

CHAPTER 4 QUASI DIRECTIVES

User’s Manual U18514EJ1V0UM 317

4.6 Program Linkage Quasi Directives

Using the program linkage quasi directive, the as850 can declare an undefined external labelNote 1 or external

labelNote 2 of a specified size, together with an alignment condition.

Next table lists the program linkage quasi directives described in this section.

Notes 1 Undefined external symbol (symbol having binding class GLOBAL and section header table index

GPCOMMON or COMMON)

2 External symbol (symbol having binding class GLOBAL).

Maintain the values of the size (Number of bytes) and alignment condition, specified for a program linkage

quasi directive, within 231. If a larger value than this is specified, the as850 outputs the following message then

stops assembling.

Table 4 - 7 Program Linkage Quasi Directives

Quasi Directive Meaning

.comm Declares an undefined external label

.extern Declares an external label

.globl Declares an external label

E3247: illegal size value

or

E3200: illegal alignment value

318 User’s Manual U18514EJ1V0UM

CHAPTER 4 QUASI DIRECTIVES

.comm

[Syntax]

.comm label-name, size, alignment-condition

[Function]

Declares an undefined external labelNote having a label name specified by the first operand, a size specified

by the second operand, and an alignment condition specified by the third operand.

Note Undefined external symbol (symbol having binding class GLOBAL and section header table index

GPCOMMON or COMMON). If a definition for the undefined external symbol does not exist, the link

editor (ld) of the CA850 allocates an area of the specified size, aligned under the specified

alignment condition, to the .sbss section for an undefined external symbol having section header

table index GPCOMMON, or to the .bss section for an undefined external symbol having section

header table index COMMON. If two or more undefined external symbols of different sizes exist, the

ld uses the larger size. If a definition already exists, it takes precedence.

- If the -Gnum option is specified upon starting the as850

(1) If the specified size is 1 or more, but no more than num bytes

Generates a symbol table entry having section header table index GPCOMMON upon generating the

symbol table entry for the label when the object file is generated.

(2) If the specified size is 0 or more than num bytes

Generates a symbol table entry having section header table index COMMON upon generating the symbol

table entry for the label when the object file is generated.

- If the -Gnum option is not specified upon starting the as850

Generates a symbol table entry having section header table index GPCOMMON upon generating the

symbol table entry for the label when the object file is generated.

CHAPTER 4 QUASI DIRECTIVES

User’s Manual U18514EJ1V0UM 319

[Caution]

- If the same label name as that specified by the first operand is defined by means of normal label definition

in the same file as this quasi directive

(a) If the label is declared as having symbol table entry index GPCOMMON and is defined by means of

normal label definition in the data-attribute section, or if it is declared as having symbol table entry index

COMMON by this quasi directive and is defined by means of normal label definition in the sdata-attribute

section.

The as850 outputs the following message then stops assembling.

(b) Else

The label defined by means of normal label definition is regarded as being an external label and the

specification of this quasi directive is ignored. Generates a symbol table entry having binding class GLOBAL

upon generating the symbol table entry for the label when the object file is generated.

- If a label having the same name as that specified by the first operand is defined by the .lcomm quasi

directive in the same file as this quasi directive

(a) If the size or alignment condition specified by the .lcomm quasi directive differs from the size or

alignment condition specified by this quasi directive.

The as850 outputs the following message then stops assembling.

.comm lab1, 4, 4 -- GPCOMMON if assembly is executed without -G

:

.data

lab1: -- Normal label definition in .sdata section

E3213: label identifier redefined

.comm lab1, 4, 4 -- GPCOMMON if assembly is executed without -G

:

.sdata

lab1: -- Normal label definition in .sdata section

.comm lab1, 4, 4

:

.sbss

.lcomm lab1, 4, 2 -- Alignment condition differs

E3213: label identifier redefined

320 User’s Manual U18514EJ1V0UM

CHAPTER 4 QUASI DIRECTIVES

(b) If the label is declared, by this quasi directive, as having section header table index GPCOMMON and is

defined in the bss-attribute section by the .lcomm quasi directive, or if it is declared by this quasi directive

as having section header table index COMMON and is defined in the sbss-attribute section by the

.lcomm quasi directive.

The as850 outputs the following message then stops assembling.

(c) Else

The as850 regards the label defined by .lcomm as being an external labelNote, ignoring the specification

made by this quasi directive. Generates a symbol table entry having binding class GLOBAL upon generating

the symbol table entry for the label when the object file is generated.

- If a label having the same name as that specified by the first operand is (re-)defined by this quasi directive

in the same file as this quasi directive.

(a) If the size or boundary condition is differen

The as850 outputs the following message then stops assembling.

(b) When the size and boundary conditions are the same

The as850 assumes the .comm quasi directive to be specified once only.

.comm lab1, 4, 4 -- GPCOMMON if assembly is executed without -G

:

.bss

.lcomm lab1, 4, 4 -- Definition in .bss section

E3213: label identifier redefined

.comm lab1, 4, 4 -- GPCOMMON if assembly is executed without -G

:

.sbss

.lcomm lab1, 4, 4 -- Definition in .bss section

.comm lab1, 4, 4

:

.comm lab1, 2, 4 -- Size differs

E3213: label identifier redefined

CHAPTER 4 QUASI DIRECTIVES

User’s Manual U18514EJ1V0UM 321

[Example]

Declares undefined external label of size 4 with alignment condition 4.

.sbss

.comm _p, 4, 4

322 User’s Manual U18514EJ1V0UM

CHAPTER 4 QUASI DIRECTIVES

.extern

[Syntax]

.extern label-name[, size]

[Function]

Declares a label having the same name as that specified by the first operand as an external labelNote. If the

second operand is specified, specifies a value as the size indicated by the data of the label.

This quasi directive is the same as the .globl quasi directive in that both declare an external label. However,

use this quasi directive to declare a label that does not have a definition in the specified file as an external

label, and use the .globl quasi directive to declare a label having a definition in the specified file as an external

label.

Note External symbol (symbol having binding class GLOBAL).

[Caution]

- aWith the as850, by default, a label is declared as an external label if it does not have a definition in the

specified file.

Consequently, if a label having the same name as the label specified by the first operand does not have a

definition in the specified file, this quasi directive specifies only the size of the data indicated by that label.

- Because the as850 judges whether to generate "a machine instruction that performs reference using 16-bit

displacement" or "a machine instruction string (consisting of two or more machine instructions) that

performs reference using 32-bit displacement" when executing gp offset reference to data that does not

have a definition in the specified file, based on the size of the data, specify the size of the label that has no

definition in the specified file and which is subject to gp offset reference, using this quasi directive.

[Example]

Declares external label _main (_main is not defined in file).

.extern _main

CHAPTER 4 QUASI DIRECTIVES

User’s Manual U18514EJ1V0UM 323

.globl

[Syntax]

.globl label-name[, size]

[Function]

Declares a label having the same name as that specified by the first operand as an external labelNote. If the

second operand is specified, a value is specified as the size of the data indicated by the label.

This quasi directive is the same as the .extern quasi directive in that both declare an external label.

However, use this quasi directive to declare a label having a definition in the specified file as an external label,

and use the .extern quasi directive to declare a label that does not have a definition in the specified file as an

external label.

Note External symbol (symbol having binding class GLOBAL).

[Caution]

- If a label having the same name as that of the label specified by the first operand is defined by this

declaration, that label can be referenced from other assembler source files.

- When a guideline value for determining the size of the data to be allocated to the sdata/sbss-attribute

section is to be displayed (by using the -A option of the ld850), the size of the data to be allocated to the

sdata-attribute section (actually, the label subject to gp offset reference) must be specified by using either

this or the .size quasi directiveNote.

Note Otherwise, valid information may not be obtained.

[Example]

Declares external label _func (_func is defined in file).

.globl _func

324 User’s Manual U18514EJ1V0UM

CHAPTER 4 QUASI DIRECTIVES

4.7 Assembler Control Quasi Directive

The assembler control quasi directive can be used to control the processing performed by the as850.

Next table lists the assembler control quasi directive described in this section.

Table 4 - 8 Assembler Control Quasi Directive

Quasi Directive Meaning

.option Controls the assembler according to specified options

CHAPTER 4 QUASI DIRECTIVES

User’s Manual U18514EJ1V0UM 325

.option

[Syntax]

.option option

[Function]

Controls the assembler according to the options specified with the operand.

The following options can be specifiedNote:

Note Uppercase characters can also be used to specify the option (for example, NOMACRO can be

specified instead of nomacro).

asm

This cancels c option specification for a syntax error that occurs after this quasi directive.

az_info_j

The address of the instruction immediately after this quasi directive is output to the address information

section for AZ850 (The section name is az_info_j) . This option is specified to collect the address information

for an instruction that calls a function.

az_info_r

The address of the instruction immediately after this quasi directive is output to the address information

section for AZ850 (The section name is az_info_r) . This option is specified to collect the address information

for an instruction which causes a return from a function.

az_info_ri

The address of the instruction immediately after this quasi directive is output to the address information

section for AZ850 (The section name is az_info_ri) . This option is specified to collect the address information

for an instruction which causes a return from an interrupt function.

C linenum ["filename"]

The line number of the error message and the file name for the syntax error subsequent to this quasi

directive are overwritten by the specified items and output.

Second and subsequent "filename" specifications in the assembler source file can be omitted. If omitted, the

file name is processed as the one specified for the preceding quasi directive. In this case, the presence of the

asm option between this quasi directive and the preceding one is not checked.

If the first "filename" is omitted in the assembler source file, as850 outputs the following message then stops

assembling.

E3249: illegal syntax

326 User’s Manual U18514EJ1V0UM

CHAPTER 4 QUASI DIRECTIVES

callt

A quasi directive which is reserved for the compiler

Caution Do not delete a callt instruction when it exists in the assembler source file output by the compiler. If it

is deleted, the prologue epilogue runtime linking cannot be checked.

cpu devicename

Reads the device file on the target device specified by devicename.

To specify a device name to read the device file, the -cpu option can also be specified when starting the

as850. A device name must always be specified when generating an object file. If a device name is not

specified with the -cpu option, or with this quasi directive, the as850 outputs the following message then stops

processing.

If a device name is specified by both the -cpu option and quasi directive, the as850 outputs a warning

message. In this case, the specification made with the option takes precedence over that made with the quasi

directive.

If two or more devices are specified by the option or quasi directive, the as850 outputs the following error

message stops processing.

Example

Specifies V850ES/SA2 as device to be used.

To specify the device file to be used, specify the standard folder of the device file or the folder containing

the device file with the -F option of the as850.

F3522: unknown cpu type

F3523: duplicated cpu type

.option cpu 3201

CHAPTER 4 QUASI DIRECTIVES

User’s Manual U18514EJ1V0UM 327

data extern_symbol

Assumes that external data having symbol name extern_symbol has been allocated to the data or bss

attribute section, regardless of the size specified with the -G option of the ca850 or as850, and expands the

instructions which reference that data.

This format is used when a variable for which "data" is specified in #pragma section or section file is

externally referenced by an assembler source file.

Example

_d is used as the .data section regardless of the option and is expanded into instructions when

referenced.

ep_label

Performs a label reference by %label as a reference by ep offset for the subsequent instructions.

macro

Cancels the specification made with the nomacro option for the subsequent instructions.

mask_reg

Embeds information, which indicates the mask register function is used, in the relocatable object file

generated by the as850.

This option is effective when, for example, an assembler source file output by an earlier C compiler that

does not support the mask register function is used to specify the mask register function.

Since use of this option assumes that the mask register function is used, no error occurs when an object

compiled with the mask register function specified is linked.

Caution When the mask register function is used, the C compiler uses r20 and r21 as mask registers. Do not

allow the assembler source program to change the mask values set in these registers.

new_fcall

Embeds information, which indicates the new function call formatNote is used, in the relocatable object file

generated by the as850.

This option is effective when, for example, an assembler source file output by an earlier C compiler with

different calling specifications is used with an object created by the current version of the C compiler.

Specifying this option assumes that the new call format is met, resulting in no error during a link with an

object created in the default new call format of the C compiler.

no_ep_label

Cancels the specification made with the ep_label option for the subsequent instructions.

nomacro

Does not expand the subsequent instructions, other than the setfcond/jcond/jmp/cmovcond[V850E] /

sasfcond [V850E] instructions.

.option data _d

.text

mov $_d, r11

328 User’s Manual U18514EJ1V0UM

CHAPTER 4 QUASI DIRECTIVES

nooptimize

Does not optimize instruction rearrangement for the subsequent instructions.

novolatile

Cancels the specification made with the nooptimize/volatile option for the subsequent instructions.

nowarning

Does not output warning messages for the subsequent instructions.

optimize

Has the same function as the novolatile option.

reg_mode tnum pnum

Embeds a register mode information section in the relocatable object file generated by the as850.

The register mode information section contains information relating to the number of work registers, and

registers for register variables, used by the compiler. This instruction sets the number of work registers, and

registers for register variables, as tnum, pnum.

When 22-register mode is used, tnum and pnum indicate five registers each. In 26-register mode, they

indicate seven registers each.

Example

22-register mode is used.

sdata extern_symbol

Assumes that external data having symbol name extern_symbol has been allocated to the sdata or sbss

attribute section, regardless of the size specified with the -G option of the ca850 or as850, and does not

expand the instructions which reference that data.

This format is used when a variable for which "sdata" is specified in the #pragma section or section file is

externally referenced by an assembler source file.

Example

The _d is used as the .sdata section regardless of the option and is not expanded into instructions when

referenced.

volatile

Has the same function as the nooptimize option.

warning

Outputs warning messages for the subsequent instructions.

.option reg_mode 5 5

.option sdata _d

.text

mov $_d, r11

CHAPTER 4 QUASI DIRECTIVES

User’s Manual U18514EJ1V0UM 329

4.8 File Input Control Quasi Directives

Using the file input control quasi directive, the as850 can input an assembler source file or binary file to a

specified position.

Next table lists the file input control quasi directives described in this section.

Table 4 - 9 File Input Control Quasi Directives

Quasi Directive Meaning

.binclude Inputs a binary file

.include Inputs an assembler source file

330 User’s Manual U18514EJ1V0UM

CHAPTER 4 QUASI DIRECTIVES

.binclude

[Syntax]

.binclude "file-name"

[Function]

Assumes the contents of the binary file specified by the operand to be the result of assembling the source

file at the position of this quasi directive.

The specified file is searched in the folder in which the source file including this quasi directive is placed.

"file-name" can also be described with the relative path from the folder including the source file. When a folder

is specified by the assembler option -I, the folder is searched first.

When there is no file in the folder in which the source file is placed, the folder in which C language source

file is placed (specified by the .file quasi directive) and the current folder are searched.

[Caution]

- This quasi directive handles the entire contents of the binary files. When a relocatable file is specified, this

quasi directive handles files configured in ELF format. Note that it is not just the contents of the .text

selection, etc. that are handled.

- Enclose the file name to be specified with ".

- If a non-existent file is specified, the as850 outputs the following message then stops assembling.

[Example]

Includes aa.bin file.

F3503: can not open file file

.binclude "aa.bin"

CHAPTER 4 QUASI DIRECTIVES

User’s Manual U18514EJ1V0UM 331

.include

[Syntax]

.include "file-name"

[Function]

ssumes that the contents of the file specified by the operand to be at the position of this quasi directive.

The specified file is searched in the folder in which the source file including this quasi directive is placed.

"file-name" can also be described with the relative path from the folder including the source file. When a folder

is specified by the assembler option -I, the folder is searched first.

When there is no file in the folder in which the source file is placed, the folder in which C language source

file is placed (specified by the .file quasi directive and the current folder are searched.

[Caution]

- Enclose the file name to be specified with ".

- If a non-existent file is specified, the as850 outputs the following message then stops assembling.

- If the .include statement is nested 9 or more levels deep, the as850 outputs the following message then

stops assembling.

[Example]

Includes aa.s file.

F3503: can not open file file

F3517: include nest over

.include "aa.s"

332 User’s Manual U18514EJ1V0UM

CHAPTER 4 QUASI DIRECTIVES

4.9 Repetitive Assembly Quasi Directives

The as850 can repeatedly assemble an arrangement of statements (block) enclosed within a repetitive

assembly quasi directive and corresponding .endm quasi directive, at the position of the repetitive assembly

quasi directive.

Next table lists the repetitive assembly quasi directives described in this section.

Table 4 - 10 Repetitive Assembly Quasi Directives

Quasi Directive Meaning

.irepeat Repetition according to the parameter specification

.repeat Repetition by the specified number of times

CHAPTER 4 QUASI DIRECTIVES

User’s Manual U18514EJ1V0UM 333

.irepeat

[Syntax]

.irepeat formal-parameter actual-parameter[, actual-parameter] ...

[Function]

Repeatedly assembles the arrangement of statements (block) enclosed within this quasi directive and the

.endm quasi directive corresponding to this quasi directive, replacing the formal parameter specified by the

first operand appearing in that block with the actual parameters specified by the second operands and those

that follow. If the formal parameter is replaced by all the actual parameters specified by the second operand

and those that follow, repetition is stopped.

[Caution]

- Always specify .irepeat and .endm as a pair. If .endm is omitted, the as850 outputs the following message

then stops assembling.

- If 33 or more actual parameters are specified, the as850 outputs the following message then stops

assembling.

- If the same parameter name is specified for a formal parameter and an actual parameter, the as850

outputs the following message and stops assembling.

- If a parameter defined by a label or other quasi directive is specified for a formal parameter and an actual

parameter, the as850 outputs the following message and stops assembling.

F3513: unexpected EOF in .repeat/.irepeat

F3514: paramater table overflow

F3238: illegal operand (.irepeat parameter)

F3238: illegal operand (.irepeat parameter)

334 User’s Manual U18514EJ1V0UM

CHAPTER 4 QUASI DIRECTIVES

[Example]

The expansion result of the above example is shown below:

.irepeat x a, b, c, d

.word x

.endm

.word a

.word b

.word c

.word d

CHAPTER 4 QUASI DIRECTIVES

User’s Manual U18514EJ1V0UM 335

.repeat

[Syntax]

.repeat absolute-value-expression

[Function]

Repeatedly assembles the arrangement of statements (block) enclosed within this quasi directive and the

corresponding .endm quasi directive by the number of times specified by the absolute expression of the first

operand.

[Caution]

- Always specify .repeat and .endm as a pair. If .endm is omitted, the as850 outputs the following message

then stops assembling.

- The value is evaluated as a 32-bit signed integer.

- If there is no arrangement of statements (block), nothing is executed.

- If the result of evaluating the expression is negative, the as850 outputs the following message, and

continues assembling.

[Example]

The expansion result of the above example is shown below:

F3513: unexpected EOF in .repeat/.irepeat

E3225: illegal operand (must be evaluated positive or zero)

.repeat 2

nop

.endm

nop

nop

336 User’s Manual U18514EJ1V0UM

CHAPTER 4 QUASI DIRECTIVES

4.10 Conditional Assembly Quasi Directives

Using conditional assembly quasi directives, the as850 can control the range of assembly according to the

result of evaluating a conditional expression.

Next table lists the conditional assembly quasi directives described in this section.

If a conditional assembly quasi directive is nested 17 or more levels deep, the as850 outputs the following

message then stops assemblin.

Table 4 - 11 Conditional Assembly Quasi Directives

Quasi Directive Meaning

.else Control based on absolute expression/symbol

.elseif Control based on absolute expression
(assembly performed when the value is true)

.elseifn Control based on absolute expression
(assembly performed when the value is false)

.endif End of control range

.if Control based on absolute expression
(assembly performed when the value is true)

.ifdef Control based on symbol
(assembly performed when the symbol is defined)

.ifn Control based on absolute expression
assembly performed when the value is false)

.ifndef Control based on symbol
(assembly performed when the symbol is not defined)

F3512: .if, .ifn, etc. too deeply nested

CHAPTER 4 QUASI DIRECTIVES

User’s Manual U18514EJ1V0UM 337

.else

[Syntax]

.else

[Function]

If the absolute expression of the .if, .elseif, or .ifdef quasi directive is evaluated as being false (= 0), or

if the absolute expression of the .ifn, .elseifn, or .ifndef quasi directive corresponding to this quasi directive is

evaluated as being true (≠0), assembles the arrangement of statements (block) enclosed within this quasi

directive and the corresponding .endif quasi directive.

[Caution]

- If the .if, .ifn, .elseif, .elseifn, .ifdef, or .ifndef quasi directive corresponding to this quasi directive does not

exist, the as850 outputs the following message then stops assembling.

[Example]

The expansion result of the above example is shown below:

F3510: .else unexpected

.if 0

.word 10

.else

.str "a"

.endif

.if 10 > 20

.word 20

.else

.str "b"

.endif

.set expr, 0

.if expr

.word expr

.else

.str "c"

.endif

.str "a"

.str "b"

.str "c"

338 User’s Manual U18514EJ1V0UM

CHAPTER 4 QUASI DIRECTIVES

.elseif

[Syntax]

.elseif absolute-value-expression

[Function]

- If the absolute expression specified by the operand is evaluated as being true (≠0)

(1) If this quasi directive and the corresponding .else, .elseif, or .elseifn quasi directive exist, assembles the

block enclosed within this quasi directive and the corresponding quasi directive.

(2) If none of the corresponding quasi directives detailed above exist, assembles the block enclosed within

this quasi directive and the corresponding .endif quasi directive.

- If the absolute expression is evaluated as being false (= 0)

Skips to the .else, .elseif, .elseifn, or .endif quasi directive corresponding to this quasi directive.

[Caution]

- If a corresponding quasi directive does not exist, the as850 outputs the following message then stops

assembling.

F3511: .endif unmatched

CHAPTER 4 QUASI DIRECTIVES

User’s Manual U18514EJ1V0UM 339

[Example]

The expansion result of the above example is shown below:

.if 0

.word 10

.elseif 10

.str "a"

.endif

.if 10 > 20

.word 20

.elseif 10 == 20

.str "b"

.endif

.set expr, 0

.if expr

.word expr

.elseifn expr - 10

.str "c"

.endif

.str "a"

340 User’s Manual U18514EJ1V0UM

CHAPTER 4 QUASI DIRECTIVES

.elseifn

[Syntax]

.elseifn absolute-value-expression

[Function]

- If the absolute expression specified by the operand is evaluated as being true (≠0)

Skips to the .else, .elseif, .elseifn, or .endif quasi directive corresponding to this quasi directive.

- If the absolute expression is evaluated as being false (= 0)

(1) If this quasi directive and the corresponding .else, .elseif, or .elseifn quasi directive exist, assembles the

block enclosed within this quasi directive and the corresponding quasi directive.

(2) If none of the corresponding quasi directives detailed above exist, assembles the block enclosed within

this quasi directive and the corresponding .endif quasi directive.

[Caution]

- If the corresponding quasi directive does not exist, the as850 outputs the following message then stops

assembling.

F3511: .endif unmatched

CHAPTER 4 QUASI DIRECTIVES

User’s Manual U18514EJ1V0UM 341

[Example]

The expansion result of the above example is shown below:

.if 0

.word 10

.elseifn 10

.str "a"

.endif

.if 10 > 20

.word 20

.elseifn 10 >= 20

.str "b"

.endif

.set expr, 0

.if expr

.word expr

.elseif expr - 10

.str "c"

.endif

.str "b"

.str "c"

342 User’s Manual U18514EJ1V0UM

CHAPTER 4 QUASI DIRECTIVES

.endif

[Syntax]

.endif

[Function]

Indicates the end of the control range of a conditional assembly quasi directive.

[Caution]

- If the .if, .ifn, .elseif, .elseifn, .ifdef, or .ifndef quasi directive corresponding to this quasi directive does not

exist, the as850 outputs the following message then stops assembling.

F3510: .endif unexpected

CHAPTER 4 QUASI DIRECTIVES

User’s Manual U18514EJ1V0UM 343

.if

[Syntax]

.if absolute-value-expression

[Function]

- If the absolute expression specified by the operand is evaluated as being true (≠0)

(1) If this quasi directive and a corresponding .else, .elseif, or .elseifn quasi directive exist, assembles the

block enclosed within this quasi directive and the corresponding quasi directive.

(2) If none of the corresponding quasi directives detailed above exist, assembles the block enclosed within

this quasi directive and the corresponding .endif quasi directive.

- If the absolute expression is evaluated as being false (= 0)

Skips to the .else, .elseif, .elseifn, or .endif quasi directive corresponding to this quasi directive.

[Caution]

- If an undefined symbol is specified by the operand, the as850 outputs the following message then stops

assembling.

- If a corresponding quasi directive does not exist, the as850 outputs the following message then stops

assembling.

E3202: illegal expression

F3511: .endif unmatched

344 User’s Manual U18514EJ1V0UM

CHAPTER 4 QUASI DIRECTIVES

[Example]

The expansion result of the above example is shown below:

.if 10

.word 10

.endif

.if 10 < 20

.word 20

.endif

.set expr, 30

.if expr

.word expr

.endif

.word 10

.word 20

.word 30

CHAPTER 4 QUASI DIRECTIVES

User’s Manual U18514EJ1V0UM 345

.ifdef

[Syntax]

.ifdef name

[Function]

- If the name specified by the operand is defined

(1) If this quasi directive and the corresponding .else, .elseif, or .elseifn quasi directive exist, assembles the

block enclosed within this quasi directive and the corresponding quasi directive.

(2) If none of the corresponding quasi directives detailed above exist, assembles the block enclosed within

this quasi directive and the corresponding .endif quasi directive.

- If the specified name is not defined

Skips to the .else, .elseif, .elseifn, or .endif quasi directive corresponding to this quasi directive.

[Caution]

- A symbol, label, or macro name can be specified as the name, but a reserved word must not be specified.

If a reserved word is specified, the as850 outputs the following message then stops assembling.

- If the corresponding quasi directive does not exist, the as850 outputs the following message then stops

assembling.

E3220: illegal operand (identifier is reserved word)

F3511: .endif unmatched

346 User’s Manual U18514EJ1V0UM

CHAPTER 4 QUASI DIRECTIVES

[Example]

The expansion result of the above example is shown below:

define_symbol:

.ifdef define_symbol

.word 10

.endif

.ifdef undef_symbol

.word 20

.else

.ifde define_symbol

.str "x"

.endif

.endif

.set expr, 20

.ifdef expr

.word expr

.endif

.word 10

.str "x"

.word 20

CHAPTER 4 QUASI DIRECTIVES

User’s Manual U18514EJ1V0UM 347

.ifn

[Syntax]

.ifn absolute-value-expression

[Function]

- If the absolute expression specified by the operand is evaluated as being true (≠0)

Skips to the .else, .elseif, .elseifn, or .endif quasi directive corresponding to this quasi directive.

- If the absolute expression is evaluated as being false (= 0)

(1) If this quasi directive and the corresponding .else, .elseif, or .elseifn quasi directive exist, assembles the

block enclosed within this quasi directive and the corresponding quasi directive.

(2) If none of the corresponding quasi directives detailed above exist, assembles the block enclosed within

this quasi directive and the corresponding .endif quasi directive.

[Caution]

- If the corresponding quasi directive does not exist, the as850 outputs the following message then stops

assembling.

[Example]

The expansion result of the above example is shown below:

F3511: .endif unmatched

.ifn 0

.word 10

.endif

.ifn 10 > 20

.word 20

.endif

.set expr, 0

.ifn expr

.word expr

.endif

.word 10

.word 20

.word 0

348 User’s Manual U18514EJ1V0UM

CHAPTER 4 QUASI DIRECTIVES

.ifndef

[Syntax]

.ifndef name

[Function]

- If the name specified by the operand is defined

Skips to the .else, .elseif, .elseifn, or .endif quasi directive corresponding to this quasi directive.

- If the specified name is not defined

(1) If this quasi directive and the corresponding .else, .elseif, or .elseifn quasi directive exist, assembles the

block enclosed within this quasi directive and the corresponding quasi directive.

(2) If none of the corresponding quasi directives detailed above exist, assembles the block enclosed within

this quasi directive and the corresponding .endif quasi directive.

[Caution]

- A symbol, label, or macro name can be specified as the name, but a reserved word must not be specified.

If a reserved word is specified, the as850 outputs the following message then stops assembling.

- If the corresponding quasi directive does not exist, the as850 outputs the following message then stops

assembling.

E3220: illegal operand (identifier is reserved word)

F3511: .endif unmatched

CHAPTER 4 QUASI DIRECTIVES

User’s Manual U18514EJ1V0UM 349

[Example]

The expansion result of the above example is shown below:

define_symbol:

.ifndef define_symbol

.word 10

.else

.str "a"

.endif

.ifndef undef_symbol

.word 20

.else

.ifndef define_symbol

.str "x"

.endif

.endif

.set expr, 20

.ifndef expr

.word expr

.endif

.str "a"

.word 20

350 User’s Manual U18514EJ1V0UM

CHAPTER 4 QUASI DIRECTIVES

4.11 Skip Quasi Directives

Using the skip quasi directives, the as850 can skip the remaining repetitions of a repetitive assembly quasi

directive.

Next table lists the skip quasi directives described in this section.

Table 4 - 12 Skip Quasi Directives

Quasi Directive Meaning

.exitm Skips outwards by one

.exitma Skips to the outmost repetition

CHAPTER 4 QUASI DIRECTIVES

User’s Manual U18514EJ1V0UM 351

.exitm

[Syntax]

.exitm

[Function]

This quasi directive skips the repetitive assembly of the repetitive assembly quasi directives enclosing this

quasi directive at the innermost position.

[Caution]

- If this quasi directive is not enclosed by repetitive assembly quasi directives, the as850 outputs the

following message then stops assembling.

F3515: .exitm not in .repeat/.irepeat

352 User’s Manual U18514EJ1V0UM

CHAPTER 4 QUASI DIRECTIVES

[Example]

The expansion result of the above example is shown below:

.repeat 2

.set expr, 1

.word 10

.repeat 10

.if expr < 5

.byte expr

.set expr, expr + 1

.else

.ifdef undefine_symbol

.byte expr

.set expr, expr + 1

.else

.exitm

.endif

.endif

.endm

.hword 20

.hword 30

.endm

.word expr

.word 10

.byte 1

.byte 2

.byte 3

.byte 4

.hword 20

.hword 30

.word 10

.byte 1

.byte 2

.byte 3

.byte 4

.hword 20

.hword 30

.word 5

CHAPTER 4 QUASI DIRECTIVES

User’s Manual U18514EJ1V0UM 353

.exitma

[Syntax]

.exitma

[Function]

This quasi directive skips the repetitive assembly of the repetitive assembly quasi directives enclosing this

quasi directive at the outermost position.

[Caution]

- If this quasi directive is not enclosed by repetitive assembly quasi directives, the as850 outputs the

following message then stops assembling.

F3515: .exitma not in .repeat/.irepeat

354 User’s Manual U18514EJ1V0UM

CHAPTER 4 QUASI DIRECTIVES

[Example]

The expansion result of the above example is shown below:

.repeat 2

.set expr, 1

.word 10

.repeat 10

.if expr < 5

.byte expr

.set expr, expr + 1

.else

.ifdef undefine_symbol

.byte expr

.set expr, expr + 1

.else

.exitma

.endif

.endif

.endm

.hword 20

.hword 30

.endm

.word expr

.word 10

.byte 1

.byte 2

.byte 3

.byte 4

.word 5

CHAPTER 4 QUASI DIRECTIVES

User’s Manual U18514EJ1V0UM 355

4.12 Macro Quasi Directives

Using a macro quasi directive, the as850 can define any arrangement of statements as a macro body

corresponding to a specified macro name. By referencing this macro name in the source program, it can be

assumed that the arrangement of statements corresponding to the macro name is described at the position of

reference.

Next table lists the macro quasi directives described in this section.

Table 4 - 13 Macro Quasi Directives

Quasi Directive Meaning

.endm End of repetitive zone or end of macro definition

.local Definition of local symbol

.macro Beginning of macro definition

356 User’s Manual U18514EJ1V0UM

CHAPTER 4 QUASI DIRECTIVES

.endm

[Syntax]

.endm

[Function]

Indicates the end of a repetitive zone or a macro body.

[Caution]

- If the .repeat, .irepeat, or .macro quasi directive corresponding to this quasi directive does not exist, the

as850 outputs the following message then stops assembling.

F3510: .endm unexpected

CHAPTER 4 QUASI DIRECTIVES

User’s Manual U18514EJ1V0UM 357

.local

[Syntax]

.local local-symbol[, local-symbol] ...

[Function]

Declares a specified string as a local symbol that is replaced by a specific identifier.

[Caution]

- If 33 or more local symbols are specified for the formal parameter of this quasi directive, the as850 outputs

the following message then stops assembling.

-The local symbol name is generated by the assembler in the range between .??0000 and ??FFFF.

[Example]

The expansion result of the above example is shown below:

F3514: paramater table overflow

.macro m1 x

.local a, b

a: .word a

b: .word x

.endm

m1 10

m1 20

.??0000: .word .??0000

.??0001: .word 10

.??0002: .word .??0002

.??0003: .word 20

358 User’s Manual U18514EJ1V0UM

CHAPTER 4 QUASI DIRECTIVES

.macro

[Syntax]

.macro macro-name [formal-parameter,] ...

[Function]

Defines the arrangement of the statements, enclosed within this quasi directive and the .endm quasi

directive, as the macro body for the macro name specified by the first operand. If this macro name is

referenced (a process referred to as "macro call"), it is assumed that the macro body corresponding to the

macro name is described at the position of the macro call .

[Caution]

- If the .endm quasi directive corresponding to this quasi directive does not exist, the as850 outputs the

following message then stops assembling.

- If a macro name is re-defined, and if this macro is subsequently called, the re-defined macro body

becomes the macro body of the macro name.

- If 33 or more formal parameters are specified, the as850 outputs the following message then stops

assembling.

- Any excess formal parameters that are not referenced in the macro body are ignored. Note that, in this

case, the as850 outputs no message.

- If a shortage of actual parameters for macro call occurs, the as850 outputs the following message then

stops assembling.

- If an undefined macro is called in a macro body, the as850 outputs the following message then stops

assembling.

F3513: unexpected EOF in .macro

F3514: paramater table overflow

F3519: argument mismatch

E3249: illegal syntax

CHAPTER 4 QUASI DIRECTIVES

User’s Manual U18514EJ1V0UM 359

- If a currently defined macro is called in a macro body, the as850 outputs the following message then stops

assembling.

- If a parameter defined by a label or quasi directive is specified for a formal parameter, the as850 outputs

the following message and stops assembling.

- When calling a macro, only a label name, symbol name, numeric value, register, and instruction mnemonic

can be specified for an actual parameter. If a label expression (LABEL-1), reference method specification

label (#LABEL), or base register specification ([gp]) is specified, the as850 outputs a message dependent

on the specified actual parameter and stops assembling.

[Example]

The expansion result of the above example is shown below:

F3518: unreasonable macro_call nesting

E3212: symbol already defined as string

.macro PUSH REG

add -4, sp

st.w REG, 0x0[sp]

.endm

.macro POP REG

ld.w 0x0[sp],REG

add 0x4, sp

.endm

PUSH r10

mov 10, r10

add r10, r20

POP r10

add -4, sp

st.w r10, 0x0[sp]

mov 10, r10

add r10, r20

ld.w 0x0[sp], r10

add 0x4, sp

360 User’s Manual U18514EJ1V0UM

APPENDIX A INSTRUCTION SUMMARY

APPENDIX A INSTRUCTION SUMMARY

In the next table, this appendix lists the instruction mnemonics and quasi directives supported by the CA850

assembler (as850), in alphabetical order.

Table A - 1 Instruction Mnemonics List

Instruction Mnemonics Meaning

add Addition

addi Addition (immediate)

adf Add with condition flag [V850E2]

and Logical product

andi Logical product (immediate)

bsh Byte swap halfword [V850E]

bsw Byte swap word [V850E]

callt Table reference call [V850E]

clr1 Bit clear

cmov Transfers data depending on the flag condition [V850E]

cmp Comparison

ctret Returns from callt [V850E]

dbret Returns from debug trap [V850E]

dbtrap Debug trap [V850E]

di Disables maskable interrupt

dispose Postprocessing of function (dispose) [V850E]

div Signed division (word) [V850E]

divh Signed division (halfword)

divhu Unsigned division (halfword) [V850E]

divu Unsigned division (word) [V850E]

ei Enables maskable interrupt

halt Stops the processor

hsh Half-word data half-word swap [V850E2]

hsw Halfword swap word [V850E]

jarl Jump and register link

jarl22 Jump and register link [V850E2]

jarl32 Jump and register link [V850E2]

APPENDIX A INSTRUCTION SUMMARY

User’s Manual U18514EJ1V0UM 361

jcond Conditional branch

jmp Unconditional branch

jmp32 Unconditional branch (jump) [V850E2]

jr Unconditional branch (PC relative)

jr22 Unconditional branch (PC relative) [V850E2]

jr32 Unconditional branch (PC relative) [V850E2]

ld.b Load (byte)

ld.bu Load (unsigned byte) [V850E]

ld.h Load (halfword)

ld.hu Load (unsigned halfword) [V850E]

ld.w Load (word)

ldsr Loads to system register

mac Signed word data multiply and add [V850E2]

macu Unsigned word data multiply and add [V850E2]

mov Moves data

mov32 Moves data (32-bit) [V850E]

movea Addition (32-bit immediate)

movhi Addition (16-bit immediate)

mul Signed multiplication (word) [V850E]

mulh Signed multiplication (halfword)

mulhi Signed multiplication (immediate)

mulu Unsigned multiplication (word) [V850E]

nop No operation

not Logical negation (takes 1's complement)

not1 Bit negation

or Logical sum

ori Logical sum (immediate)

pop Pop from stack area (single register)

popm Pop from stack area (multiple registers)

prepare Preprocessing of function (prepare) [V850E]

push Push to stack area (single register)

pushm Push to stack area (multiple registers)

Table A - 1 Instruction Mnemonics List

Instruction Mnemonics Meaning

362 User’s Manual U18514EJ1V0UM

APPENDIX A INSTRUCTION SUMMARY

reti Returns from trap or interrupt routine

sar Arithmetic right shift

sasf Set the flag condition after a logical left shift [V850E]

satadd Saturated addition

satsub Saturated subtraction

satsubi Saturated subtraction (immediate)

satsubr Reverse subtraction with saturation

sch0l Bit (0) search from MSB side [V850E2]

sch0r Bit (0) search from MSB side [V850E2]

sch1l Bit (1) search from MSB side [V850E2]

sch1r Bit (1) search from MSB side [V850E2]

sbf Subtract with condition flag [V850E2]

set1 Bit set

setf Sets flag condition

shl Logical left shift

shr Logical right shift

sld.b Byte data load (short format)

sld.bu Unsinged byte data load (short format) [V850E]

sld.h Halfword data load (short format)

sld.hu Unsinged halfword data load (short format) [V850E]

sld.w Word data load (short format)

sst.b Byte data store (short format)

sst.h Halfword data store (short format)

sst.w Word data store (short format)

st.b Byte data store

st.h Halfword data store

st.w Word data store

stsr Stores contents of system register

sub Subtraction

subr Reverse subtraction

switch Table reference jump [V850E]

sxb Sign extension byte [V850E]

Table A - 1 Instruction Mnemonics List

Instruction Mnemonics Meaning

APPENDIX A INSTRUCTION SUMMARY

User’s Manual U18514EJ1V0UM 363

sxh Sign extension halfword [V850E]

trap Software trap

tst Test

tst1 Bit test

xor Exclusive OR

xori Exclusive OR (immediate)

zxb Zero extension byte [V850E]

zxh Zero extension halfword [V850E]

Table A - 1 Instruction Mnemonics List

Instruction Mnemonics Meaning

364 User’s Manual U18514EJ1V0UM

APPENDIX A INSTRUCTION SUMMARY

Table A - 2 Quasi Directives List

Quasi Directive Meaning

.align Aligns the value of the location counter

.binclude Inputs a binary file

.bss Allocation to .bss section

.byte Allocates a 1-byte area

.comm Declares an undefined external label

.const Allocation to .const section

.data Allocation to .data section

.else Control based on absolute expression/symbol

.elseif Control based on absolute expression
(assembly performed when the value is true)

.elseifn Control based on absolute expression
(assembly performed when the value is false)

.endif End of control range

.endm End of repetitive zone or end of macro definition

.exitm Skips outwards by one

.exitma Skips to the outmost repetition

.extern Declares an external label

.ext_ent_size Flash table entry size

.ext_func Generates a flash table entry

.file Generates a symbol table entry (FILE type)

.float Sets a floating-point value

.frame Generates a symbol table entry (FUNC type)

.globl Declares an external label

.hword Allocates a 1-halfword area

.if Control based on absolute expression (assembly performed when the value is true)

.ifdef Control based on symbol (assembly performed when the symbol is defined)

.ifn Control based on absolute expression (assembly performed when the value is false)

.ifndef Control based on symbol (assembly performed when the symbol is not defined)

.include Inputs an assembler source file

.irepeat Repetition according to the parameter specification

.lcomm Defines a label that allocates an area

.local Definition of local symbol

.macro Beginning of macro definition

APPENDIX A INSTRUCTION SUMMARY

User’s Manual U18514EJ1V0UM 365

.option Controls the assembler according to specified options

.org Advances the value of the location counter

.previous (Re-)definition of section definition quasi directive preceding the section definition
quasi directive that specifies the current section definition quasi directive

.repeat Repetition by the specified number of times

.sbss Allocation to .sbss section

.sconst Allocation to .sconst section

.sdata Allocation to .sdata section

.sebss Allocation to .sebss section

.section Allocation to section of specified type

.sedata Allocation to .sedata section

.set Defines a symbol

.shword Allocate a 1 halfword area (for switch instruction) [V850E]

.sibss Allocation to .sibss section

.sidata Allocation to .sidata section

.size Specifies the size of the data indicated by label

.space Allocates an area for size

.str Allocates an area for string

.text Allocation to .text section

.tibss Allocation to .tibss section

.tibss.byte Allocation to .tibss.byte section

.tibss.word Allocation to .tibss.word section

.tidata Allocation to .tidata section

.tidata.byte Allocation to .tidata.byte section

.tidata.word Allocation to .tidata.word section

.vdbstrtab Allocation to .vdbstrtab section

.vdebug Allocation to .vdebug section

.vline Allocation to .vline section

.word Allocates a 1-word area

Table A - 2 Quasi Directives List

Quasi Directive Meaning

366 User’s Manual U18514EJ1V0UM

APPENDIX B INDEX

APPENDIX B INDEX

Symbols
.const ... 275
.data ... 276
.exitma ... 353
.sedata ... 285
.sibss ... 286
.sidata ... 287
.tidata.byte ... 293
.tidata.word ... 294
.vdbstrtab ... 295

A
Absolute Expression ... 29
add ... 73
addi ... 76
adf ... 139
.align ... 306, 307
and ... 164
andi ... 167
Area Allocation Quasi Directive ... 46, 308
Arithmetic Operation Instruction ... 72
Arithmetic Operators ... 32
Assembler Control Quasi Directive ... 324
Assembly Language Specification ... 15

B
Binary Constants ... 26
.binclude ... 330
Bit Manipulation Instruction ... 228
Bitwise Logical Operator ... 33
Branch Instruction ... 45, 210
bsh ... 172
.bss ... 274
bss ... 282
bsw ... 173
.byte ... 309

C
callt ... 247
Character Constant ... 27
Character Set ... 19
clr1 ... 229
cmov ... 80
cmovc ... 81
cmove ... 81
cmovge ... 81
cmovgt ... 81
cmovh ... 81
cmovl ... 81
cmovle ... 81
cmovlt ... 81
cmovn ... 81
cmovnc ... 81
cmovne ... 81
cmovnh ... 81
cmovnl ... 81
cmovnv ... 81
cmovnz ... 81

cmovp ... 81
cmovsa ... 81
cmovt ... 81
cmovv ... 81
cmovz ... 81
cmp ... 85
.comm ... 318
Comment ... 18, 282
Comparison Operator ... 33
Conditional Assembly Quasi Directive ... 336
const ... 282
Constant Expression ... 29
Constants ... 26, 41
ctret ... 248

D
data ... 282
dbret ... 249
dbtrap ... 250
Decimal Constant ... 26
di ... 251
dispose ... 252
div ... 88
divh ... 90
divhu ... 95
divu ... 98
Dollar Symbol ... 59

E
ei ... 255
.else ... 337
.elseif ... 338
.endm ... 356
ep Offset Reference ... 47
.exitm ... 351
Expression ... 29
.ext_ent_size ... 299
.ext_func ... 300

F
File Input Control Quasi Directive ... 329
.float ... 310
Floating-point Constant ... 26
.frame ... 302, 303

H
halt ... 256
Hexadecimal Constant ... 26
hsh ... 174
hsw ... 175
.hword ... 311

I
Identifiers ... 37
.if ... 343, 345, 347
.ifndef ... 348
Instruction ... 360
Instruction Mnemonic ... 360

APPENDIX B INDEX

User’s Manual U18514EJ1V0UM 367

Instruction Set ... 38
.irepeat ... 333

J
jarl ... 211
jarl22 ... 213
jarl32 ... 215
jc ... 217
jcond ... 216
je ... 217
jge ... 217
jgt ... 217
jh ... 217
jl ... 217
jle ... 217
jlt ... 217
jmp ... 220
jmp32 ... 222
jn ... 217
jnc ... 217
jne ... 217
jnh ... 217
jnl ... 217
jnv ... 217
jnz ... 217
jp ... 217
jr ... 223
jr22 ... 225
jr32 ... 227
jsa ... 217
jv ... 217
jz ... 217

L
Label ... 16, 22
Label Reference ... 30
.lcomm ... 312
ld ... 62
ld.b ... 62
ld.bu ... 62
ld.h ... 62
ld.hu ... 62
ld.w ... 62
ldsr ... 257
Load/Store Instruction ... 61
.local ... 357
Location Counter Control Quasi Directive ... 305
Logical Instruction ... 163

M
mac ... 125
Macro ... 24
.macro ... 358
Macro Operator ... 58
Macro Quasi Directive ... 355
macu ... 126
Memory Reference Instruction ... 44
Mnemonic ... 17
mov ... 100
mov32 ... 104
movea ... 105
movhi ... 108
mul ... 110

mulh ... 113
mulhi ... 117
mulu ... 122

N
nop ... 261
not ... 176
not1 ... 232

O
Octal Constant ... 26
Operand ... 39
Operands ... 17
Operation Instruction ... 45
Operators ... 32
.option ... 325

new_fcall ... 327
no_ep_label ... 327
nomacro ... 327
reg_mode ... 328
sdata ... 328
volatile ... 328
warning ... 328

or ... 179
ori ... 182

P
popm ... 243
prepare ... 262
.previous ... 277
Program Linkage Quasi Directive ... 317
push ... 244
pushm ... 245

Q
Quasi Directive ... 272, 364

R
Registers ... 39
Relative Expression ... 31
.repeat ... 335
Repetitive Assembly Quasi Directive ... 332
Reserved Word ... 25
reti ... 265

S
sar ... 186
sasf ... 127
sasfc ... 128
sasfe ... 128
sasfge ... 128
sasfgt ... 128
sasfh ... 128
sasfl ... 128
sasfle ... 128
sasflt ... 128
sasfn ... 128
sasfnc ... 128
sasfne ... 128
sasfnh ... 128
sasfnl ... 128
sasfnv ... 128
sasfnz ... 128

368 User’s Manual U18514EJ1V0UM

APPENDIX B INDEX

sasfp ... 128
sasfsa ... 128
sasft ... 128
sasfv ... 128
sasfz ... 128
satadd ... 146
satsub ... 150
satsubi ... 154
satsubr ... 159
Saturation Operation Instruction ... 145
sbf ... 142
.sbss ... 278
sbss ... 282
sch0l ... 206
sch0r ... 207
sch1l ... 208
sch1r ... 209
.sdata ... 280
sdata ... 282
.sebss ... 281
.section ... 282
Section Definition Quasi Directive ... 273
.set ... 303
set1 ... 235
setf ... 130
setfc ... 131
setfe ... 131
setfge ... 131
setfgt ... 131
setfh ... 131
setfl ... 131
setfle ... 131
setflt ... 131
setfn ... 131
setfnc ... 131
setfne ... 131
setfnh ... 131
setfnl ... 131
setfnv ... 131
setfnz ... 131
setfp ... 131
setfsa ... 131
setft ... 131
setfv ... 131
setfz ... 131
Shift Operator ... 32
shl ... 188
shr ... 190
.shword ... 313
.size ... 304
Skip Quasi Directives ... 350
sld ... 65
sld.b ... 65
sld.bu ... 65
sld.h ... 65
sld.hu ... 65
sld.w ... 65
.space ... 314
Special instruction ... 246
sst ... 67
sst.b ... 67
sst.h ... 67
sst.w ... 67

st ... 69
st.b ... 69
st.h ... 69
st.w ... 69
Stack Manipulation Instruction ... 241
.str ... 315
String Constant ... 28
stsr ... 266
sub ... 133
subr ... 136
switch ... 270
sxb ... 192
sxh ... 193
Symbol ... 21, 29, 41
Symbol Control Quasi Directive ... 298

T
text ... 282
.tibss ... 289
.tibss.byte ... 290
.tibss.word ... 291
.tidata ... 292
Tilde Symbol ... 58
trap ... 271
tst ... 194
tst1 ... 238

V
.vdebug ... 296
.vline ... 297

W
.word ... 316

X
xor ... 197
xori ... 200

Z
zxb ... 204
zxh ... 205

NEC Electronics Corporation
1753, Shimonumabe, Nakahara-ku,
Kawasaki, Kanagawa 211-8668,
Japan
Tel: 044-435-5111
http://www.necel.com/

[America]

NEC Electronics America, Inc.
2880 Scott Blvd.
Santa Clara, CA 95050-2554, U.S.A.
Tel: 408-588-6000
 800-366-9782
http://www.am.necel.com/

[Asia & Oceania]

NEC Electronics (China) Co., Ltd
7th Floor, Quantum Plaza, No. 27 ZhiChunLu Haidian
District, Beijing 100083, P.R.China
Tel: 010-8235-1155
http://www.cn.necel.com/

NEC Electronics Shanghai Ltd.
Room 2511-2512, Bank of China Tower,
200 Yincheng Road Central,
Pudong New Area, Shanghai P.R. China P.C:200120
Tel: 021-5888-5400
http://www.cn.necel.com/

NEC Electronics Hong Kong Ltd.
Unit 1601-1613, 16/F., Tower 2, Grand Century Place,
193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: 2886-9318
http://www.hk.necel.com/

NEC Electronics Taiwan Ltd.
7F, No. 363 Fu Shing North Road
Taipei, Taiwan, R. O. C.
Tel: 02-8175-9600
http://www.tw.necel.com/

NEC Electronics Singapore Pte. Ltd.
238A Thomson Road,
#12-08 Novena Square,
Singapore 307684
Tel: 6253-8311
http://www.sg.necel.com/

NEC Electronics Korea Ltd.
11F., Samik Lavied’or Bldg., 720-2,
Yeoksam-Dong, Kangnam-Ku,
Seoul, 135-080, Korea
Tel: 02-558-3737
http://www.kr.necel.com/

For further information,
please contact:

G07.1A

[Europe]

NEC Electronics (Europe) GmbH
Arcadiastrasse 10
40472 Düsseldorf, Germany
Tel: 0211-65030
http://www.eu.necel.com/

Hanover Office
Podbielskistrasse 166 B
30177 Hannover
Tel: 0 511 33 40 2-0

Munich Office
Werner-Eckert-Strasse 9
81829 München
Tel: 0 89 92 10 03-0

Stuttgart Office
Industriestrasse 3
70565 Stuttgart
Tel: 0 711 99 01 0-0

United Kingdom Branch
Cygnus House, Sunrise Parkway
Linford Wood, Milton Keynes
MK14 6NP, U.K.
Tel: 01908-691-133

Succursale Française
9, rue Paul Dautier, B.P. 52
78142 Velizy-Villacoublay Cédex
France
Tel: 01-3067-5800

Sucursal en España
Juan Esplandiu, 15
28007 Madrid, Spain
Tel: 091-504-2787

Tyskland Filial
Täby Centrum
Entrance S (7th floor)
18322 Täby, Sweden
Tel: 08 638 72 00

Filiale Italiana
Via Fabio Filzi, 25/A
20124 Milano, Italy
Tel: 02-667541

Branch The Netherlands
Steijgerweg 6
5616 HS Eindhoven
The Netherlands
Tel: 040 265 40 10

	COVER
	INTRODUCTION
	CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1 ASSEMBLY LANGUAGE SPECIFICATIONS
	1.1 Organization of Assembly Language Statements
	1.1.1 Label
	1.1.2 Mnemonic and operands
	1.1.3 Comment
	1.1.4 Character set
	1.1.5 Example of assembly language statement

	1.2 Organization of Assembly Language Program
	1.2.1 Symbol
	1.2.2 Label
	1.2.3 Macro
	1.2.4 Reserved words
	1.2.5 Constants
	1.2.6 Expressions
	1.2.7 Operators

	1.3 Identifiers

	CHAPTER 2 INSTRUCTION SET
	2.1 Description of Symbols
	2.2 Operand
	2.2.1 Registers
	2.2.2 Constants
	2.2.3 Symbols
	2.2.4 Label references
	2.2.5 ep offset reference
	2.2.6 gp offset reference
	2.2.7 hi()/lo()/hi1()

	2.3 Runtime Library
	2.4 Macro Operators
	2.4.1 Tilde symbol
	2.4.2 Dollar symbol

	CHAPTER 3 ASSEMBLY LANGUAGE INSTRUCTIONS
	3.1 Description of Format
	3.2 Load/Store Instructions
	ld
	sld
	sst
	st

	3.3 Arithmetic Operation Instructions
	add
	addi
	cmov
	cmp
	div
	divh
	divhu
	divu
	mov
	mov32
	movea
	movhi
	mul
	mulh
	mulhi
	mulu
	mac
	macu
	sasf
	setf
	sub
	subr
	adf
	sbf

	3.4 Saturation Operation Instructions
	satadd
	satsub
	satsubi
	satsubr

	3.5 Logical Instructions
	and
	andi
	bsh
	bsw
	hsh
	hsw
	not
	or
	ori
	sar
	shl
	shr
	sxb
	sxh
	tst
	xor
	xori
	zxb
	zxh
	sch0l
	sch0r
	sch1l
	sch1r

	3.6 Branch Instructions
	jarl
	jarl22
	jarl32
	jcond
	jmp
	jmp32
	jr
	jr22
	jr32

	3.7 Bit Manipulation Instructions
	clr1
	not1
	set1
	tst1

	3.8 Stack Manipulation Instructions
	pop
	popm
	push
	pushm

	3.9 Special Instructions
	callt
	ctret
	dbret
	dbtrap
	di
	dispose
	ei
	halt
	ldsr
	nop
	prepare
	reti
	stsr
	switch
	trap

	CHAPTER 4 QUASI DIRECTIVES
	4.1 Description of Format
	4.2 Section Definition Quasi Directives
	.bss
	.const
	.data
	.previous
	.sbss
	.sconst
	.sdata
	.sebss
	.section
	.sedata
	.sibss
	.sidata
	.text
	.tibss
	.tibss.byte
	.tibss.word
	.tidata
	.tidata.byte
	.tidata.word
	.vdbstrtab
	.vdebug
	.vline

	4.3 Symbol Control Quasi Directives
	.ext_ent_size
	.ext_func
	.file
	.frame
	.set
	.size

	4.4 Location Counter Control Quasi Directives
	.align
	.org

	4.5 Area Allocation Quasi Directives
	.byte
	.float
	.hword
	.lcomm
	.shword
	.space
	.str
	.word

	4.6 Program Linkage Quasi Directives
	.comm
	.extern
	.globl

	4.7 Assembler Control Quasi Directive
	.option

	4.8 File Input Control Quasi Directives
	.binclude
	.include

	4.9 Repetitive Assembly Quasi Directives
	.irepeat
	.repeat

	4.10 Conditional Assembly Quasi Directives
	.else
	.elseif
	.elseifn
	.endif
	.if
	.ifdef
	.ifn
	.ifndef

	4.11 Skip Quasi Directives
	.exitm
	.exitma

	4.12 Macro Quasi Directives
	.endm
	.local
	.macro

	APPENDIX A INSTRUCTION SUMMARY
	APPENDIX B INDEX

