

RX210 and RX21A Groups

MTU2 Complementary PWM Output Port Switching Using the MPC

R01AN1203EJ0102 Rev.1.02 Oct. 1, 2014

Abstract

This application note describes a sample code that changes the output ports for a three-phase complementary PWM (pulse-width modulation) output with a non-overlapping relationship between the positive and negative phases generated by multifunction timer unit 2 (MTU2) using the multifunction pin controller (MPC) in the RX210 and RX21A Groups.

Products

RX210 and RX21A Groups

When using this application note with other Renesas MCUs, careful evaluation is recommended after making modifications to comply with the alternate MCU.

Contents

1.	Specific	cations	3
2.	Confirm	ned Operating Condition	4
3.	Refere	nce Application Notes	4
4.	Hardwa	are	5
4	.1 Pin	ns Used	5
5.	Softwa	re	6
5		erational Overview	
5	•	e Composition	
5		tion Settings Memory	
5	.4 Co	nstants	8
5	5.5 Vai	riables	9
5	.6 Fur	nctions	9
5	5.7 Fur	nction Specifications 1	0
5	5.8 Flo	wcharts1	2
	5.8.1	Main Processing 1	2
	5.8.2	Peripheral Function Initialization 1	2
	5.8.3	MTU2a Initialization 1	3
	5.8.4	TGIA3 Interrupt Handler 1	7
	5.8.5	Read Switch Input 1	8
	5.8.6	Complementary PWM Output Port Switching 1	9
6.	Applyin	ng This Application Note to the RX21A Group 2	21
7.	Sample	e Code2	22
8.	Refere	nce Documents	22

1. Specifications

This sample program outputs a three-phase complementary PWM waveform using the MTU2a's complementary PWM mode functions and switches the ports that output the complementary PWM waveform according to a switch input.

An active-low complementary PWM waveform is output from MTU2a channels 3 and 4. An interrupt is generated every output period, the duty is increased or decreased in the interrupt handler, and that adjustment is reflected in the output.

The sample program also reads a switch input signal from pin P34 and changes the complementary PWM output port when the input has been confirmed.

Table 1.1 lists the peripheral functions used and their applications and figure 1.1 presents an overview of this operation.

Table 1.1	Peripheral	Functions	Used and	l Their A	pplications
-----------	------------	------------------	----------	-----------	-------------

Peripheral Function	Application
P34	Reads the switch input signal
MTU2a	Generates pulse outputs
MPC	Changes a port for complementary PWM output from the MTU2a.

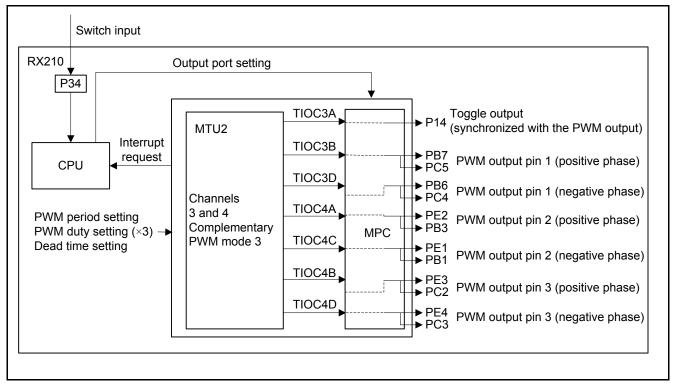


Figure 1.1 Operational Overview

2. Confirmed Operating Condition

Operation of the sample code in this application note has been verified under the following conditions.

 Table 2.1
 Confirmed Operating Condition

ltem	Description		
Microcontroller used	R5F52108ADFP (RX210 Group)		
Operating frequency	Main clock: 20.0 MHz		
	Sub-clock: 32.768 kHz		
	PLL: Main clock divided by 2 and multiplied by 10		
	System clock (ICLK): 50 MHz (PLL divided by 2)		
	Peripheral module clock B (PCLKB): 25 MHz (PLL divided by 4)		
Operating voltage	5.0 V is supplied from E1.		
Integrated development	Renesas Electronics Corporation		
environment	High-performance Embedded Workshop Version 4.09.00.007		
C compiler	RX Family C/C++ Compiler V.1.02		
	-cpu=rx200 -output=obj="\$(CONFIGDIR)\\$(FILELEAF).obj" -debug –nologo		
	(The integrated development environment default settings are used.)		
iodefine.h version	Version 1.0B		
Endian order	Little endian		
Operating mode	Single-chip mode		
Processor mode	Supervisor mode		
Sample code version	Version 1.00		
Board used	Renesas Starter Kit for RX210 (Product number: R0K505210C000BE)		

3. Reference Application Notes

For additional information associated with this document, refer to the following application notes.

- RX210 Group Initial Setting Rev. 1.00 (R01AN1002EJ)
- RX21A Group Initial Setting Rev. 1.10 (R01AN1486EJ)

The initial setting functions in the reference application notes are used in the sample code in this application note. The revision numbers of the reference application notes are current as of when this application note was made. However the latest version is always recommended. Visit the Renesas Electronics Corporation website to check and download the latest version.

4. Hardware

4.1 Pins Used

Table 4.1 lists the pins used and their functions.

Table 4.1 Pin Functions

Pin	I/O	Function
PB7/MTIOC3B Output		Complementary PWM output
PB6/MTIOC3D	Output	Complementary PWM output
PE2/MTIOC4A	Output	Complementary PWM output
PE1/MTIOC4C	Output	Complementary PWM output
PE3/MTIOC4B	Output	Complementary PWM output
PE4/MTIOC4D	Output	Complementary PWM output
PC5/MTIOC3B	Output	Complementary PWM output
PC4/MTIOC3D	Output	Complementary PWM output
PB3/MTIOC4A	Output	Complementary PWM output
PB1/MTIOC4C	Output	Complementary PWM output
PC2/MTIOC4B	Output	Complementary PWM output
PC3/MTIOC4D	Output	Complementary PWM output
P34	Input	Complementary PWM output pin switching input (SW3 on RSK board)

5. Software

5.1 Operational Overview

During initialization, the sample program performs complementary PWM output from the MTIOC3B, MTIOC3D, MTIOC4A, MTIOC4C, MTIOC4B, and MTIOC4D pins using the MTU2a output. The output ports for these pins are set to PB7, PB6, PE2, PE1, PE3, and PE4, respectively.

The complementary PWM output is disabled at the time the SW3 input is confirmed on the RSK.

After the output is disabled, the complementary PWM output ports (MTIOC3B, MTIOC3D, MTIOC4A, MTIOC4C, MTIOC4B, and MTIOC4D) are switched to PC5, PC4, PB3, PB1, PC2, and PC3, respectively, and then complementary PWM output is enabled again.

After that, each time a new value of the SW3 input is confirmed, the output ports are switched alternately between one set (PC5, PC4, PB3, PB1, PC2, and PC3) and the other set (PB7, PB6, PE2, PE1, PE3, and PE4).

Switching ports is performed using the following procedure.

- MTU output is disabled.
- The port modes for the current MTU output pins are set to "not used as peripheral function pins".
- The port functions for the current MTU output pins are set to the general-purpose I/O pin function.
- The port functions for the new MTU output pins are set to the peripheral function pins.
- The port modes for the new MTU output pins are set to MTU output pins.
- MTU output is enabled.

Figure 5.1 shows the timing chart for this operation.

Switc	h input confirmed
	▼
PB7/MTIOC3B 1	
PB6/MTIOC3D 1	
PC5/MTIOC3B 1 pin 0	
PC4/MTIOC3D 1 pin 0	
PE2/MTIOC4A 1	
PE1/MTIOC4C 1	
PB3/MTIOC4A 1 pin 0	
PB1/MTIOC4C 1 pin 0	
PE3/MTIOC4B 1	
PE4/MTIOC4D 1	
PC2/MTIO43B 1 pin 0	
PC3/MTIOC4D 1 pin 0	
Output disable	d Output enabled
Processi	ing to switch output ports

Figure 5.1 Timing Chart

5.2 File Composition

Table 5.1 lists the files used for the sample code. Note that the files generated automatically by the integrated development environment are not shown.

File	Overview	Remarks
main.c	Main processing	
non_existent_port_init.c	Nonexistent port initialization	
non_existent_port_init.h	External reference include header for nonexistent port initialization	
clock_init.c	Clock initialization	
clock_init.h	External reference include header for clock initialization	
intprg.c	Interrupt handling	
pwm.c	Sets up PWM output	

5.3 Option Settings Memory

Table 5.2 lists the states of the option settings memory used by the sample code. Set these locations to appropriate values for your user system as required.

Table 5.2	Option Settings Memory Set by the Sample Code
-----------	---

Symbol	Address	Set value	Description
OFS0	FFFF FF8Fh – FFFF FF8Ch	FFFF FFFFh	Stops IWDT after a reset
			Stops WDT after a reset
OFS1	FFFF FF8Bh – FFFF FF88h	FFFF FFFFh	Disables voltage monitoring resets after a reset
			Disables HOCOC oscillation after a reset
MDES	FFFF FF83h – FFFF FF80h	FFFF FFFFh	Little endian (in single-chip mode)

5.4 Constants

Table 5.3 lists the constants used in the sample code.

Table 5.3	Constants	Used in	the Sample Code
-----------	-----------	---------	-----------------

Constant Set Value		Description	
LOW	0	Output value for low	
HIGH	1	Output value for high	
OUT1	0	Complementary PWM output port setting: output 1	
OUT2	1	Complementary PWM output port setting: output 2	
DEAD_TIME	25	Dead time	
CYCLE	1250	Carrier period	
C_CYCLE	625	Carrier half period	
PUL_CYCLE 650		Carrier half period + dead time	

5.5 Variables

Table 5.4 lists the global variables.

Table 5.4Global Variables

Туре	Name	Description	Function
unsigned char	sw3_fix	Confirmed value of the complementary PWM	input_read
		output port switching input	chg_out_port
unsigned char	c_loop	Time measurement counter used in main loop	main
int	Duty_select	Output duty increment/decrement direction	int_mtu2_tgia3
unsigned short	Pul_pwm_duty1	Set value for the complementary PWM output duty (MTIOC3B and MTIOC3D)	int_mtu2_tgia3
unsigned short	Pul_pwm_duty2	Set value for the complementary PWM output duty (MTIOC4A and MTIOC4C)	int_mtu2_tgia3
unsigned short	Pul_pwm_duty3	Set value for the complementary PWM output duty (MTIOC4B and MTIOC4D)	int_mtu2_tgia3

5.6 Functions

Table 5.5 lists the functions.

Table 5.5 Functions

Function	Description
main	Main processing
port_init	Port initialization
non_existent_port_init	Nonexistent port initialization
clock_init	Clock initialization
peripheral_init	Peripheral function initialization
mtu2_init	MTU2a initialization
int_mtu2_tgia3	TGIA3 interrupt handler
input_read	Reads the switch input.
chg_out_port	Switches the complementary PWM output ports.

5.7 Function Specifications

This section lists the specifications of the functions in the sample code.

main		
Overview	Main processing	
Header	None	
Declaration	void main(void)	
Description	Initializes the SFRs and peripheral functions.	
	Reads the switch input and switches the complementary PWM output ports every	
	5 ms.	
Arguments	None	
Return values	None	

non_existent_port_in	nit		
Overview	Nonexistent port initialization		
Header	non_existent_port_init.h		
Declaration	void non_existent_port_init(void)		
Description	Initializes the nonexistent ports.		
Arguments	None		
Return values	None		
Remarks	For details on this function, refer to the Initial Setting application note for the produused.		
	There are cases where ports that do not exist must be initialized due to the number of pins in the particular microcontroller product used. This processing is not required for products that include the RSK used by this system.		

clock_init		
Overview	Clock initialization	
Header	clock_init.h	
Declaration	void clock_init(void)	
Description	Initializes the clocks.	
Arguments	None	
Return values	values None	
Remarks	For details on this function, refer to the Initial Setting application note for the product used.	

peripheral_init			
Overview	Peripheral function initialization		
Header	None		
Declaration	void peripheral_init(void)		
Description	Initializes the used peripheral functions.		
Arguments	None		
Return values	es None		

mtu2_init			
Overview	MTU2a initialization		
Header	None		
Declaration	void mtu2_init(void)		
Description	Sets the complementary PWM output ports to high-level output.		
	Sets channels 3 and 4 to complementary PWM mode 3.		
	Sets the output period to 200 μ s and the dead time to 4 μ s.		
	Sets MTU3.TGRD, MTU4.TGRC, and MTU4.TGRD to be the buffer registers for		
	MTU3.TGRB, MTU4.TGRA, and MTU4.TGRB, respectively.		
Arguments	None		
Return values	None		

int_mtu2_tgia3	TCIA2 interrupt handler	
Overview	TGIA3 interrupt handler	
Header	None	
Declaration	void int_mtu2_tgia3(void)	
Description Sets the output duty increase/decrease direction and increments or decrement duty by 1.		
Arguments	None	
Return values	None	

input_read		
Overview	Read switch input	
Header	None	
Declaration	void input_read(void)	
Description	Description Reads the input state of the SW3 on the RSK and confirms the input value if the input level matches four times consecutively.	
Arguments	None	
Return values	None	

Overview	Change complementary PWM output ports		
Header	None		
Declaration	void chg_out_port(void)		
Description	Switches the complementary PWM output ports.		
Arguments None			
Return values	None		

5.8 Flowcharts

5.8.1 Main Processing

Figure 5.2 shows the flowchart for the main processing.

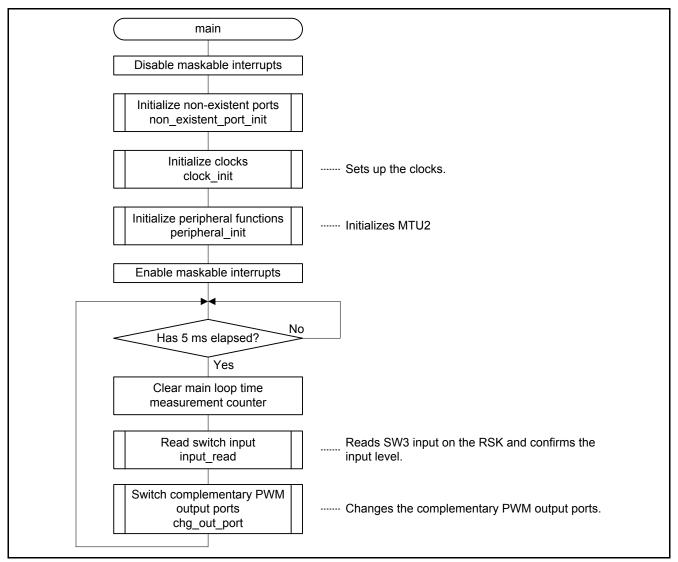


Figure 5.2 Main Processing

5.8.2 Peripheral Function Initialization

Figure 5.3 shows the flowchart for peripheral function initialization.

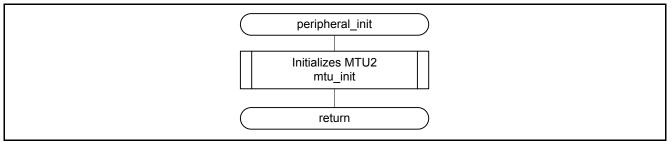


Figure 5.3 Peripheral Function Initialization

5.8.3 MTU2a Initialization

Figure 5.4 to 5.7 show the flowchart for MTU2a initialization.

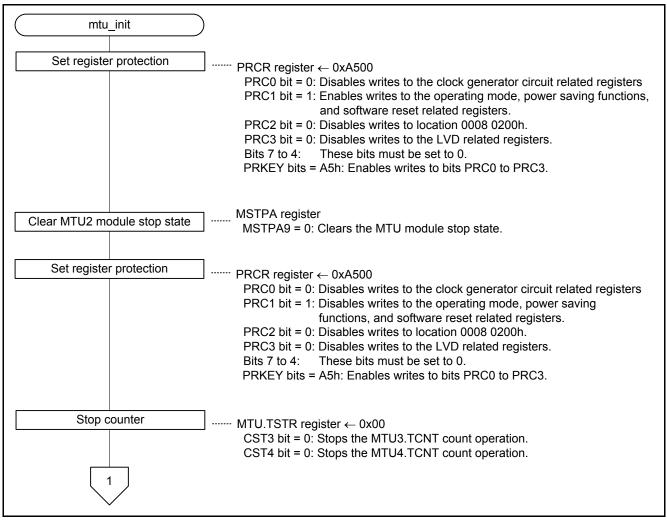


Figure 5.4 MTU2a Initialization (1/4)

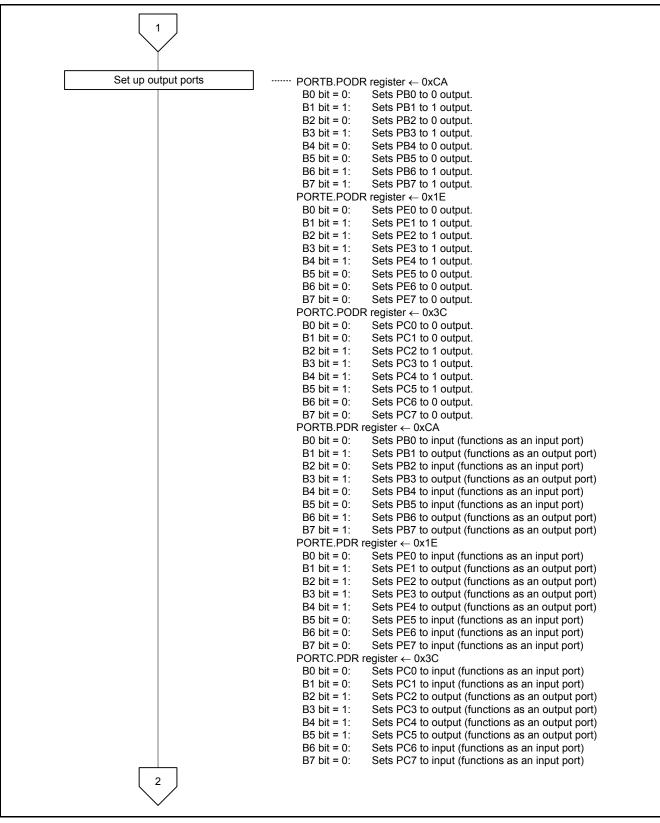


Figure 5.5 MTU2a Initialization (2/4)

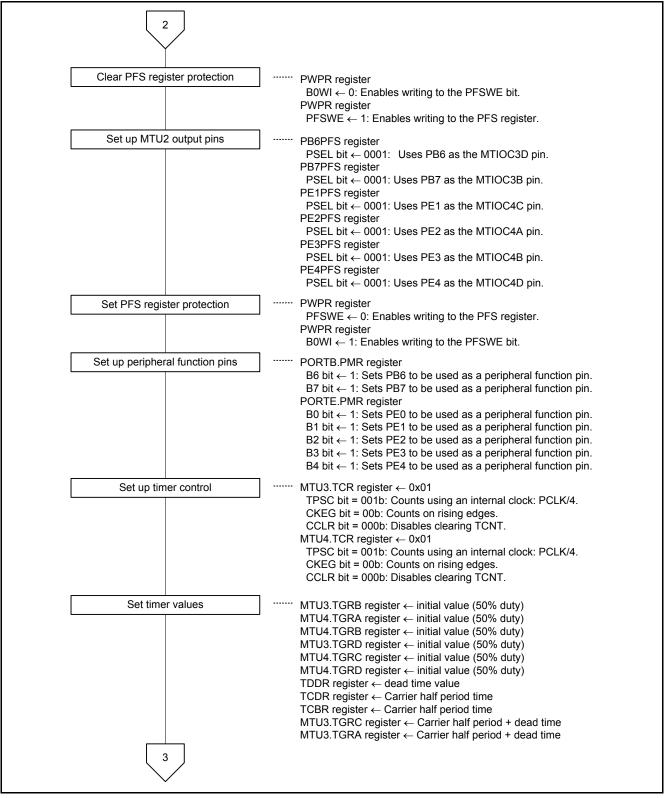


Figure 5.6 MTU2a Initialization (3/4)

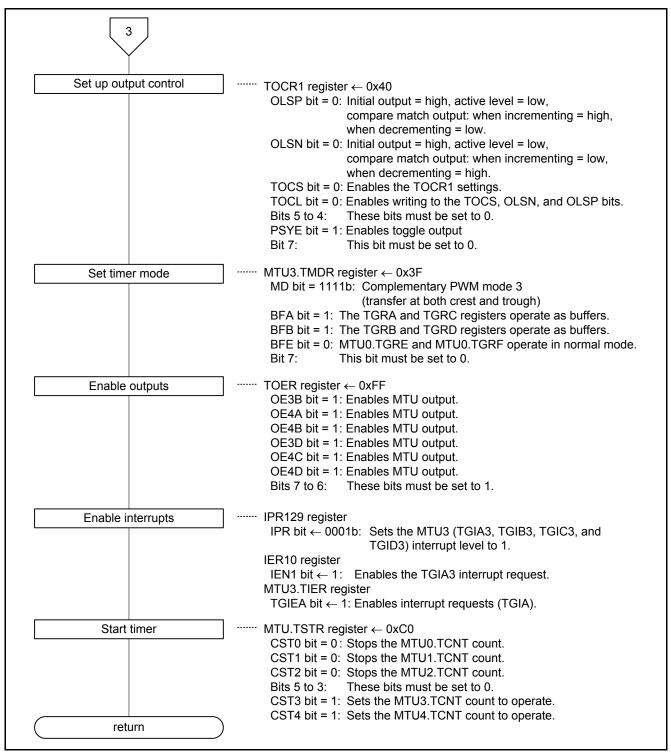


Figure 5.7 MTU2a Initialization (4/4)

5.8.4 TGIA3 Interrupt Handler

Figure 5.8 shows the flowchart for the TGIA3 interrupt handler.

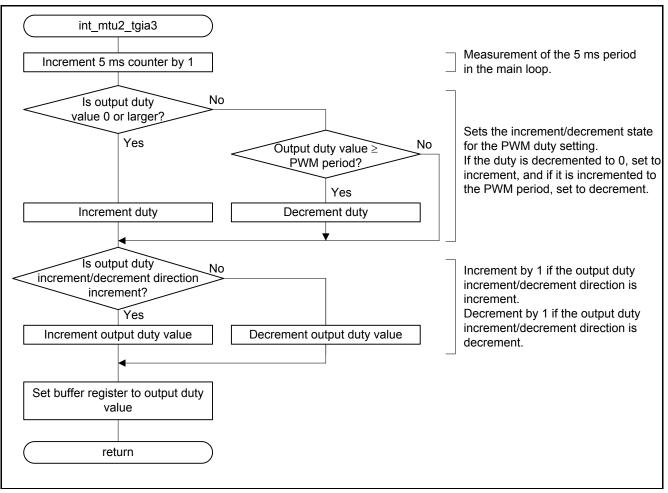


Figure 5.8 TGIA3 Interrupt Handler

5.8.5 Read Switch Input

Figure 5.9 shows the flowchart for reading switch input.

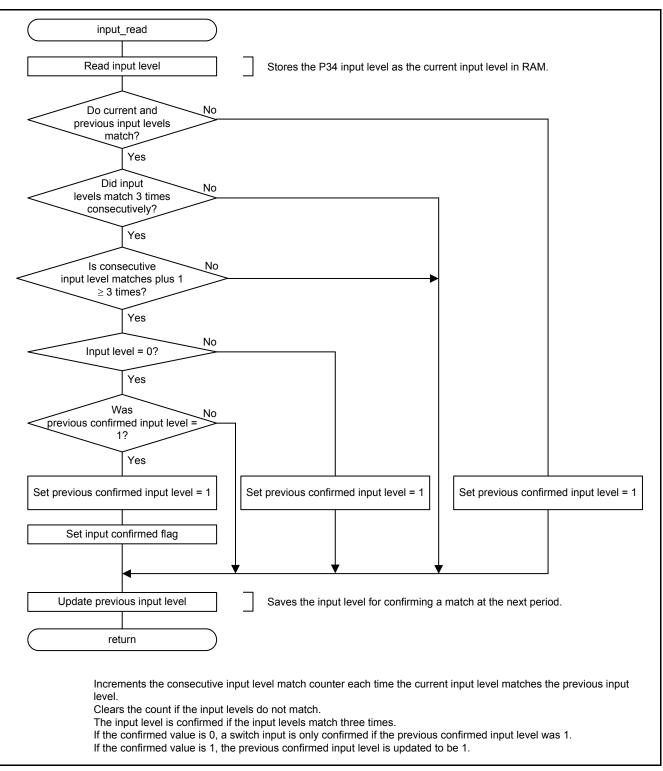


Figure 5.9 Reading Switch Input

5.8.6 Complementary PWM Output Port Switching

Figure 5.10 and 5.11 shows the flowchart for complementary PWM output port switching.

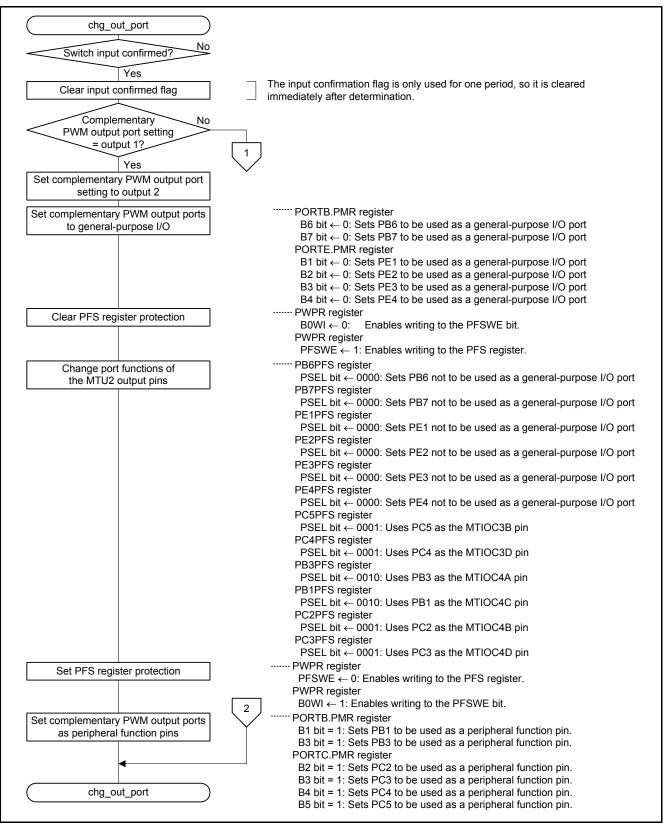
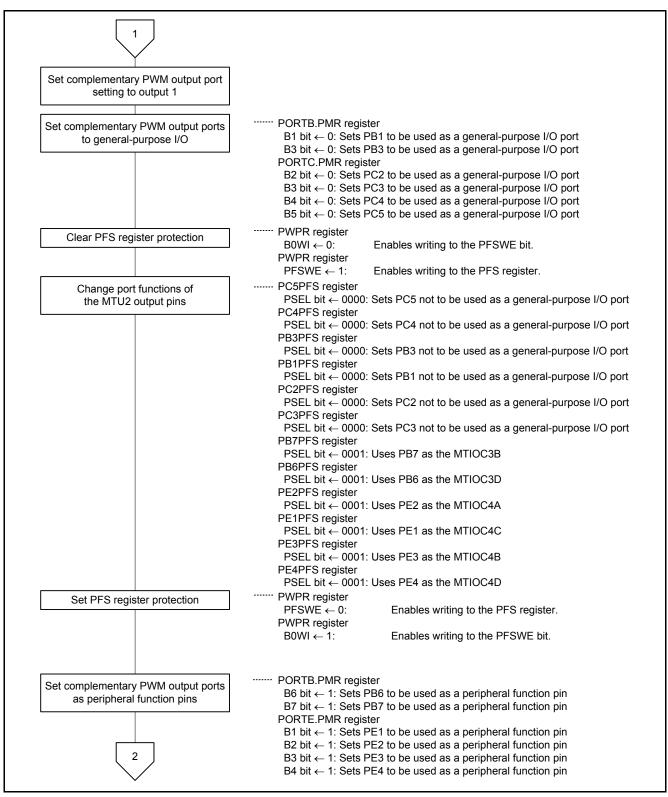



Figure 5.10 Complementary PWM Output Port Switching (1/2)

RX210 and RX21A Groups

6. Applying This Application Note to the RX21A Group

The sample code accompanying this application note has been confirmed to operate with the RX210 Group. To make the sample code operate with the RX21A Group, use this application note in conjunction with the RX21A Initial Setting application note.

To use this application note with the RX21A Group, modify the main.c and pwm.c files accompanying this application note as shown steps (1) to (5) below, and then refer to "5. Applying the RX200 Series Application Note to the RX21A Group" in the RX21A Group Initial Setting application note.

- (1) Change the #include for "iodefine.h" to "../iodefine.h" in main.c and pwm.c.
- (2) Add a #include for "r_init_stop_module.h" in main.c.
- (3) In main.c, change the #includes for "clock_init.h" and "non_existent_port_init.h" to "r_init_clock.h" and "r_init_non_existent_port.h", respectively.

11	/**************************************
12	#include <machine.h></machine.h>
13	#include "/iodefine_h"
14	include ″r_init_clock.h″
15	include ″r_init_stop_module.h″
16	#include "r_init_non_existent_port h"
17 1	

- (4) In main.c, add a call for the R_INIT_StopModule() function in the main function.
- (5) In main.c, change the calls for "non_existent_port_init()" and "clock_init()" in the main function to calls for "R_INIT_NonExistentPort()" and "R_INIT_Clock()", respectively.

```
40
41
       void main(void)
{
42
43
            /* ---- Disable maskable interrupts ---- */
44
45
46
47
48
49
50
51
52
53
55
55
56
57
58
50
60
            clrpsw_i();
            R_INIT_StopModule();
            /* ---- Initialize non-existent ports ---- */
R_INIT_NonExistentPort();
            /¥ ---- Initialize the clock ---- */
            R_INIT_Clock();

/* peripheral initialize */

peripheral_init();

/* ---- Disable maskable interrupts ---- */
            setpsw_i();
            while(1){
                 while(c_loop <= 25);
c_loop = 0;</pre>
                                                             /* 5ms wait */
61
                 input read();
                                                             /* read input information */
62
                 chg_out_port();
                                                            /* change output port */
            }
63
```

οā

7. Sample Code

Sample code can be downloaded from the Renesas Electronics website.

8. Reference Documents

User's Manual: Hardware RX210 Group User's Manual: Hardware Rev.1.50 (R01UH0037EJ) RX21A Group User's Manual: Hardware Rev.1.00 (R01UH0251EJ) The latest versions can be downloaded from the Renesas Electronics website.

Technical updates and technical news

(The latest technical information can be downloaded from the Renesas Electronics Corporation website.)

C compiler manual

RX210 C Compiler Package, Version 1.02 C Compiler User's Manual, Revision 1.00 (Download the latest version of this manual from the Renesas Electronics Corporation website.)

Website and Support

Renesas Electronics website <u>http://www.renesas.com</u>

Inquiries

http://www.renesas.com/contact/

REVISION HISTORY

RX210 and RX21A Groups Application Note MTU2 Complementary PWM Output Port Switching Using the MPC

Rev.	Date		Description	
		Page	Summary	
1.00	Sep. 25, 2012	_	First edition issued	
1.01	July 1, 2014	1	Products: Added the RX21A and RX220 Groups.	
		4	3. Reference Application Notes: Added the Initial Setting application notes for the RX21A and RX220 Groups.	
		10	Modified the description of reference application note in the following functions: non_existent_port_init and clock_init.	
		21	6. Applying This Application Note to the RX21A or RX220 Group: Added.	
		22	8. Reference Documents: Added the User's Manual: Hardware for the RX21A and RX220 Groups.	
1.02	Oct. 1, 2014	_	Deleted the RX220 Group from the target products. (Refer to the "RX220 Group Application Example of Exclusive Operation of Two Motors by One Set of Complementary PWM Outputs Rev.1.00" application note (R01AN2234JJ) for the RX220 Group. It also provides the sample code.)	

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the manual.

- The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.
 In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.
- 3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm that the change will not lead to problems.

— The characteristics of an MPU or MCU in the same group but having a different part number may differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

- contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries. (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

RENESAS

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information. Renesas Electronics America Inc. 2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited 1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-308-588-5441, Fax: +1-905-898-3220 Renesas Electronics Europe Limited Dukes Meadow, Millocard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +4-40-528-555-100, Fax: +44-1625-559-00 Renesas Electronics Europe Chinal Co., Ltd. Renesas Electronics Chinal Co., Ltd. Renesas Electronics (Shanghai) Co., Ltd. Renesas Electronics (Shanghai) Co., Ltd. Renesas Electronics (Shanghai) Co., Ltd. Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333 Tel: +46-21-2226-0888, Fax: +86-21-2226-0990 Road, Putuo District, Shanghai, P. R. China 200333 Tel: +86-21-2226-0888, Fax: +86-21-2226-0990 Road, Putuo District, Shanghai, P. R. China 200333 Tel: +86-21-2226-0888, Fax: +86-21-2226-0990 Road, Putuo District, Shanghai, P. R. China 200333 Tel: +86-21-2226-0888, Fax: +86-21-2226-0990 Road, Putuo District, Shanghai, P. R. China 200333 Tel: +86-21-2226-0888, Fax: +86-21-2226-0990 Road, Putuo District, Shanghai, P. R. China 200333 Tel: +86-21-2226-0888, Fax: +86-21-2226-0990 Road, Putuo District, Shanghai, P. R. China 200333 Tel: +86-21-2226-0888, Fax: +86-21-2226-0990 Road, Putuo District, Shanghai, P. R. China 200333 Tel: +86-21-2226-0888, Fax: +86-21-3226-0990 Road, Putuo District, Shanghai, P. R. China 200333 Tel: +86-21-2226-0888, Fax: +86-21-3226-0990 Road, Putuo District, Shanghai, P. R. China 200333 Tel: +86-21-2226-0888, Fax: +86-21-30-2004 Renesas Electronics Taiwan Co., Ltd. 13F, No. 36S, Fuex, Taiwan Tel, Hall, Taiwan Tel: +886-21-37-5900 Renesas Electronics Singapore Pte. Ltd. 80 Bendemer Road, Unit 906-02 Hythytix Innovation Centre, Singapore 33949 Tel: +86-317-59000, Fax: +862-2175-5900 Renesas Electronics Korea Co., Ltd. Unit 906, Block B,