
 Application Note

R01AN2178EJ0110 Rev.1.10 Page 1 of 42

May.31.19

RX Family

Using the Exception Vector Table and Software Configurable Interrupts

Abstract

This document describes using the exception vector table and software configurable interrupts for the RX
Family MCU.

The Exception Vector Table section explains how to change addresses placed on the exception vector table.
The Software Configurable Interrupts section describes the method to generate software configurable
interrupts by assigning interrupt factors to interrupt vector numbers.

In addition, for locations where there is no specific description, about the RX65N group is explained. Refer to
“6 Porting Sample Codes to Other RX Family” and User's Manual: Hardware of each microcomputer when
another microcomputer is used.

Target Device

 RX Family MCU loaded with the exception vector table and software configurable interrupts

RX Family Using the Exception Vector Table and Software Configurable Interrupts

R01AN2178EJ0110 Rev.1.10 Page 2 of 42

May.31.19

Contents

1. Exception Vector Table and Software Configurable Interrupts ... 4

1.1 Exception Vector Table ... 4

1.2 Software Configurable Interrupts ... 5

2. Operation Confirmation Conditions .. 6

3. Reference Application Note ... 6

4. Hardware Configuration ... 7

4.1 Pins Used .. 7

5. Software .. 8

5.1 Operation Overview of the Exception Vector Table .. 8

5.1.1 Moving the Exception Vector table .. 9

5.1.2 Moving the Exception Vector Table to the RAM Area ... 10

5.2 Operation Overview of the Software Configurable Interrupts ... 12

5.2.1 Software Configurable Interrupt Handling ... 13

5.3 File Composition .. 14

5.4 Option-Setting Memory ... 14

5.5 Constants .. 15

5.6 Variables .. 16

5.7 Functions ... 16

5.8 Function Specifications ... 17

5.9 Flowcharts ... 21

5.9.1 Main Processing .. 21

5.9.2 Moving the Exception Vector Table and Setting Software Configurable Interrupts 22

5.9.3 Port Initialization .. 22

5.9.4 Moving the Exception Vector Table .. 23

5.9.5 MTU Initialization ... 24

5.9.6 Software Configurable Interrupt Setting .. 25

5.9.7 Start Incrementing the MTU .. 26

5.9.8 Stop Incrementing the MTU .. 26

5.9.9 Software Configurable Interrupt Handling (Interrupt Vector Number 208) .. 27

5.9.10 Privileged Instruction Exception Handling ... 28

5.9.11 Dummy Processing ... 28

6. Porting Sample Codes to Other RX Family .. 29

6.1 Before Porting .. 29

6.2 Porting Procedure Flow ... 29

6.3 Porting Procedure.. 30

6.3.1 Generating a Porting Destination Project .. 30

6.3.2 Copying the Source Files of Porting Destination Initial Settings Example .. 32

RX Family Using the Exception Vector Table and Software Configurable Interrupts

R01AN2178EJ0110 Rev.1.10 Page 3 of 42

May.31.19

6.3.3 Copying the Source Files of the Application Note ... 33

6.3.4 Setting Porting Destination Project.. 34

6.3.5 Changing Files... 37

6.3.6 Setting r_int_config.h ... 39

7. Sample Code ... 41

8. Reference Documents ... 41

Revision History .. 42

RX Family Using the Exception Vector Table and Software Configurable Interrupts

R01AN2178EJ0110 Rev.1.10 Page 4 of 42

May.31.19

1. Exception Vector Table and Software Configurable Interrupts

1.1 Exception Vector Table

In the exception vector table, the individual vectors for exception events are allocated to the 124-byte area
where the value indicated by the exception table register (EXTB) is used as the starting address. The
addresses where the exception vector table is allocated can be changed by setting an arbitrary address in
the EXTB register.

In this document, the EXTB register value is changed from 0xFFFFFF80 to 0x0000FF80. Figure 1.1 shows
the Exception Vector Table of RX65N Group and RX651 Group.

(Reserved)

(Reserved)

(Reserved)

(Reserved)

(Reserved)

(Reserved)

(Reserved)

(Reserved)
0x0000FF84

(Reserved)

Setting value in this application note : 0x0000FF80

Access exception

Undefined instruction exception

Floating-point exception

Non-maskable interrupt

0x0000FF88

0x0000FFF4

0x0000FFD0

0x0000FFD4

0x0000FFD8

0x0000FFDC

0x0000FFE0

0x0000FFE4

0x0000FFE8

0x0000FFEC

0x0000FFF0

0x0000FFF8

Privileged instruction exception

Exception table register (EXTB)

b31 b0

Exception vector table

Figure 1.1 Exception Vector Table of RX65N Group and RX651 Group

RX Family Using the Exception Vector Table and Software Configurable Interrupts

R01AN2178EJ0110 Rev.1.10 Page 5 of 42

May.31.19

1.2 Software Configurable Interrupts

An interrupt source selected from multiple peripheral sources can be assigned to each interrupt vector
number from 128 to 255 as a software configurable interrupt. The software configurable interrupts are
divided into software configurable interrupt B and software configurable interrupt A depending on the
peripheral operating clock.

Software configurable interrupts are assigned by setting the interrupt source numbers in registers SLIBXRn,
SLIBRn, and SLIARn.

Registers SLIBXRn and SLIBRn are used to assign interrupt vector numbers to interrupt sources for software
configurable interrupt B. The SLIBXRn register is for interrupt vector numbers 128 to 143. The SLIBRn
register is for interrupt vector numbers 144 to 207.

The SLIARn register is used to assign interrupt vector numbers from 208 to 255 to interrupt sources for
software configurable interrupt A.

In this application note, the SLIAR208 register is set to interrupt source number 1 (interrupt vector number
208 is assigned to TGIA0).

Figure 1.2 shows the Software Configurable Interrupt Assignment for RX65N Group and RX651 Group.

Interrupt vector number : 0

Interrupt vector number : 128

Interrupt vector number : 144

Interrupt vector number : 208

Interrupt vector number : 255

Peripheral interrupts

Software configurable

interrupt B

(SLIBXRn register)

Software configurable

interrupt B

(SLIBRn register)

Software configurable

interrupt A

(SLIARn register)

Interrupt vector table

Assign interrupt sources for

software configurable interrupt B

Assign interrupt sources for

software configurable interrupt A

Figure 1.2 Software Configurable Interrupt Assignment for RX65N Group and RX651 Group

RX Family Using the Exception Vector Table and Software Configurable Interrupts

R01AN2178EJ0110 Rev.1.10 Page 6 of 42

May.31.19

2. Operation Confirmation Conditions

The sample code accompanying this application note has been run and confirmed under the conditions
below.

Table 2.1 Operation Confirmation Conditions

Item Contents

MCU used R5F565NEDDFC (RX65N group)

Operating frequencies Main clock: 24 MHz

PLL: 240 MHz (main clock divided by 1 and multiplied by 10)

System clock (ICLK): 120 MHz (PLL divided by 2)

Peripheral module clock A (PCLKA): 120 MHz (PLL divided by 2)

Operating voltage 3.3 V

Integrated development

environment

Renesas Electronics Corporation

 e2 studio Version: 7.3.0

C compiler Renesas Electronics Corporation

 C/C++ Compiler Package for RX Family V3.01.00

Compile options
The rom option is used.
-rom=RAM_EXFUNC=RAM_EXFUNC_COPY

-rom=RAM_EXVECT=RAM_EXVECT_COPY

iodefine.h version 2.0a

Endian Little endian

Operating mode Single-chip mode

Processor modes User mode is used for moving the exception vector table.

Supervisor mode is used for software configurable interrupts.

Sample code version Version1.10

Board used Renesas Starter Kit+ for RX65N-2MB (part number: RTK50565N2SxxxxxBE)

3. Reference Application Note

For additional information associated with this document, refer to the following application note.

 RX65N Group, RX651 Group Initial Settings (R01AN3034)

RX Family Using the Exception Vector Table and Software Configurable Interrupts

R01AN2178EJ0110 Rev.1.10 Page 7 of 42

May.31.19

4. Hardware Configuration

4.1 Pins Used

Table 4.1 lists the Pins Used and Their Functions and Figure 4.1 shows the Connection Diagram.

Table 4.1 Pins Used and Their Functions

Pin Name I/O Function

P73 Output LED0 output (exception handling: privileged instruction exception)

PG5 Output LED3 output (software configurable interrupt: input capture/compare match

interrupt)

Renesas Starter Kit+ for RX65N-2MB

RX65N Group

PG5

P73

LED0

LED3

Board_3V3

Figure 4.1 Connection Diagram

RX Family Using the Exception Vector Table and Software Configurable Interrupts

R01AN2178EJ0110 Rev.1.10 Page 8 of 42

May.31.19

5. Software

5.1 Operation Overview of the Exception Vector Table

In this document, one program is used to introduce the following two processes: moving the exception vector
table and the software configurable interrupt handling. Set the SEL_INT constant in the r_int_config.h file to
switch the processes.

When moving the exception vector table, set EXCEP_HANDL in the SEL_INT constant. In the sample code,
the default is EXCEP_HANDL.

RX Family Using the Exception Vector Table and Software Configurable Interrupts

R01AN2178EJ0110 Rev.1.10 Page 9 of 42

May.31.19

5.1.1 Moving the Exception Vector table

When moving the exception vector table, the following processing is performed to execute exception
handling on the RAM.

(1) Moves the exception handling function to the RAM area (0x00008000).

(2) Moves the content of the exception vector table to the RAM area (0x0000FF80).

(3) Changes the EXTB value from the ROM area (default value: 0xFFFFFF80) to the RAM area

(0x0000FF80).

(4) Switches the processor mode from supervisor mode to user mode, and executes the privileged instruction

to generate an interrupt (privileged instruction interrupt)*1.

(5) Lights up LED0 by interrupt handling.

Note 1. The processor interrupt priority level is set to 2 but since the privileged instruction can only be

executed in supervisor mode, there is no change in the value.

Using this function allows exception processing to be executed on the RAM even when it is not possible to
access to the ROM during flash rewrite.

Figure 5.1 shows Address Space in this application note.

0000 0000h

Address space

Exception vector table for the ROM

Exception handling functions for the RAM (source)

Exception vector table for the RAM (destination)

Exception handling functions for the RAM (destination)

Exception handling functions for the ROM

Section: RAM_EXFUNC_COPY 0000 8000h

Section: RAM_EXVECT FFFF 0080h

Section: EXCEPTVECT FFFF FF80h

FFFF FFFFh

Section: RAM_EXVECT_COPY 0000 FF80h

Exception vector table for the RAM (source)

Section: RAM_EXFUNC FFFF 0000h

Section: PIntPRG

Mapped from the
ROM to the RAM *1

RAM area

ROM area

Note 1. Refer to 5.1.2 Moving the Exception Vector Table to the RAM Area for details on the procedure to

move the RAM exception vector table and RAM exception handling functions from the ROM to the

RAM.

Figure 5.1 Address Space

RX Family Using the Exception Vector Table and Software Configurable Interrupts

R01AN2178EJ0110 Rev.1.10 Page 10 of 42

May.31.19

5.1.2 Moving the Exception Vector Table to the RAM Area

This section describes the procedure to prepare the exception vector table and exception handling functions
for the RAM and change the addresses for allocating the exception vector table from the ROM area (default:
0xFFFFFF80) to the RAM area (0x0000FF80).

1) Set sections

1-1) Right-click the project and select “Properties”.

1-2) Select “C/C++ Build > Setting > Linker > Section” from the properties.

1-3) Click “…” displayed in the upper right corner.

1-4) Set sections for the exception vector table and exception handling functions in the RAM area and

 ROM area

1-5) Click “OK”.

1-6) Select “C/C++ Build > Setting > Symbol file” from the properties.

1-7) Use the rom option to relocate the define symbol in the ROM section to the address in the RAM

 section.

1-8) Click “Apply and Close”

RX Family Using the Exception Vector Table and Software Configurable Interrupts

R01AN2178EJ0110 Rev.1.10 Page 11 of 42

May.31.19

2) Allocate the exception vector table and exception handling functions for the RAM to the ROM

2-1) Declare #pragma section C RAM_EXVECT in the ram_except_vector_table.c file.

 Allocate the RAM exception vector table to the RAM_EXVECT section.

2-2) Declare #pragma section P RAM_EXFUNC in the ram_except_handlers.c file.

 Allocate the RAM exception handling functions to the RAM_ EXFUNC section.

3) Initialize the RAM area section

3-1) Add the section to be initialized to the section initialization table (DTBL) of the dbsct.c file.

 The section described in the initialization table (DTBL) is initialized by calling the initialization routine

 (_INITSCT). In this application note, the section declared in step (2) is initialized using this step.

 RAM_EXFUNC is copied to RAM_EXFUNC_COPY, and RAM_EXVECT is copied to

 RAM_EXVECT_COPY.

 The initialization table (DTBL) of the RX65N group and RX651 group are shown below.

4) Set the EXTB register to 0x0000FF80 (start address)

RX Family Using the Exception Vector Table and Software Configurable Interrupts

R01AN2178EJ0110 Rev.1.10 Page 12 of 42

May.31.19

5.2 Operation Overview of the Software Configurable Interrupts

In this document, one program is used to introduce the following two processes: moving the exception vector
table and the software configurable interrupt handling. Set the SEL_INT constant in the r_int_config.h file to
switch the processes.

When performing software configurable interrupt handling, set SOFTWARE_CONFIG_INT in the SEL_INT
constant. In the sample code, the default is EXCEP_HANDL.

RX Family Using the Exception Vector Table and Software Configurable Interrupts

R01AN2178EJ0110 Rev.1.10 Page 13 of 42

May.31.19

5.2.1 Software Configurable Interrupt Handling

In software configurable interrupt handling, the following processing is performed to generate software
configurable interrupts.

(1) Initial settings

The port, clock, and peripheral functions are initialized.

(2) Initialize the peripheral functions (software configurable interrupt)

The IER1A.IEN0 bit is set to “0” (interrupt request is disabled), and the SLIAR208 register (interrupt

vector number 208) is set to “01h” (TGIA0 (TGRA interrupt capture/compare match) is assigned). After

that, the SLIPRCR.WPCR bit is set to “1” (writing to the SLIARn register is disabled), and the IR208.IR

flag is set to “0”.

(3) Start the MTU0.TCNT counter

The IER1A.IEN0 bit is set to “1” (interrupt request is enabled), the TSTRA.CST0 bit is set to “1”

(MTU0.TCNT count is started).

(4) Compare match interrupt

When the MTU0.TCNT counter and MTU0.TGRA register values match, the IR208.IR flag for the TGIA0

interrupt becomes “1” and a compare match interrupt request is generated. When the MTU0.TCNT

counter and MTU0.TGRA register values match, the MTU0.TCNT counter becomes “0000h”, and starts

incrementing again. When an interrupt request is accepted, the IR208.IR flag becomes “0”. Every time a

compare match interrupt occurs at an interval of 250 ms, LED 3 switches ON/OFF.

(5) Stop the MTU0.TCNT counter

When the 20th interrupt occurs, the IER1A.IEN0 bit is set to “0” (interrupt request is disabled), and the

TSTRA.CST0 bit is set to “0” (the MTU0.TCNT counter stops).

Table 5.1 shows Peripheral Functions Used and Intended Use, and Figure 5.2 shows Timing of Software
Configurable Interrupts.

Table 5.1 Peripheral Functions Used and Intended Use

Peripheral functions Intended use

MTU Compare match

I/O port LED ON

“0”

“1”

(3)

“0”

“1”

“0”

“1”

IER1A.IEN0 bit for TGIA0

interrupt

TSTRA.CST0 bit

IR208.IR bit for TGIA0

interrupt

(1) (2)
250 ms

(4)(4) (4)

“0” (ON)

“1” (OFF)LED3

(Output of the PG5 pin)

(4) (5)(4)
250 ms250 ms250 ms

1stNumber of interrupts 2nd 3rd 4th 20th

The IR flag becomes 0 when an
interrupt request is accepted.

Figure 5.2 Timing of Software Configurable Interrupts

RX Family Using the Exception Vector Table and Software Configurable Interrupts

R01AN2178EJ0110 Rev.1.10 Page 14 of 42

May.31.19

5.3 File Composition

Table 5.2 lists the Files Used in the Sample Code. Files generated by the integrated development
environment are not included in this table.

Table 5.2 Files Used in the Sample Code

File Name Outline Remarks

main.c Main processing

r_init_stop_module.c Stop processing for active peripheral functions after a reset

r_init_stop_module.h Header file for r_init_stop_module.c

r_init_port_initialize.c Nonexistent port initialization

r_init_port_initialize.h Header file for r_init_port_initialize.c

r_init_clock.c Clock initialization

r_init_clock.h Header file for r_init_clock.c

r_int_config.c Moving the exception vector table and initial setting of

software configurable interrupts

r_int_config.h Header file for r_int_config.c

r_ram_except_handlers.c Exception handling function for RAM

r_ram_except_handlers.h Header file of exception handling function for RAM

r_ram_except_vector_table.c Exception vector table for RAM

5.4 Option-Setting Memory

Table 5.3 lists the Option-Setting Memory Configured in the Sample Code. When necessary, set a value
suited to the user system.

Table 5.3 Option-Setting Memory Configured in the Sample Code

Symbol Address Setting Value Contents

OFS0 FE7F 5D04h to FE7F 5D07h FFFF FFFFh The IWDT is stopped after a reset.
The WDT is stopped after a reset.

OFS1 FE7F 5D08h to FE7F 5D0Bh FFFF FFFFh The voltage monitor 0 reset is disabled after

a reset.

HOCO oscillation is disabled after a reset.

MDE FE7F 5D00h to FE7F 5D03h FFFF FFFFh Little endian

RX Family Using the Exception Vector Table and Software Configurable Interrupts

R01AN2178EJ0110 Rev.1.10 Page 15 of 42

May.31.19

5.5 Constants

Table 5.4 lists the Constants Used in the Sample Code.

Table 5.4 Constants Used in the Sample Code

Constant Name Setting Value Contents

EXCEP_HANDL 0 Exception handling

SOFTWARE_CONFIG_INT 1 Software configurable interrupt

SEL_INT EXCEP_HANDL Interrupt selection

EXCEP_HANDL: Exception handling

SOFTWARE_CONFIG_INT: Software

configurable

interrupt

OUTPUT_HIGH 1 High output

OUTPUT_LOW 0 Low output

LED_ON OUTPUT_LOW Output data during LED ON

OUTPUT_HIGH : High output

OUTPUT_LOW : Low output

LED_OFF OUTPUT_HIGH Output data during LED OFF

OUTPUT_HIGH : High output

OUTPUT_LOW : Low output

LED0_PODR PORT7.PODR.BIT.B3 Port output data register of the port connected to

LED0 (PODR)

LED0_PDR PORT7.PDR.BIT.B3 Port direction register of the port connected to

LED0 (PDR)

LED3_PODR PORTG.PODR.BIT.B5 Port output data register of the port connected to

LED3 (PODR)

LED3_PDR PORTG.PDR.BIT.B5 Port direction register of the port connected to

LED3 (PDR)

MTU_PCLK_HZ 120000000 Operation frequency of multi-function timer pulse

unit (MTU)

RX Family Using the Exception Vector Table and Software Configurable Interrupts

R01AN2178EJ0110 Rev.1.10 Page 16 of 42

May.31.19

5.6 Variables

Table 5.5 lists the Static Variables.

Table 5.5 Static Variables

Type Variable Name Contents Function

static uint8_t gs_int_cnt Interrupt counter mtu_init

peria_inta208

5.7 Functions

Table 5.6 lists the Functions.

Table 5.6 Functions

Function Name Outline

main Main processing
R_INIT_StopModule Stop processing for active peripheral functions after a reset
R_INIT_Port_Initialize Nonexistent port initialization
R_INIT_Clock Clock initialization

R_INT_Config Moving the exception vector table and setting software configurable

interrupts

port_init Port initialization

exception_handling_main Moving the exception vector table

mtu_init MTU initialization

software_config_int_main Software configurable interrupt setting

mtu_start Start incrementing the MTU

mtu_stop Stop incrementing the MTU

peria_inta208 Software configurable interrupt handling (interrupt vector number 208)

ram_excep_super_visor_inst Privileged instruction exception handling

ram_dummy Dummy processing

RX Family Using the Exception Vector Table and Software Configurable Interrupts

R01AN2178EJ0110 Rev.1.10 Page 17 of 42

May.31.19

5.8 Function Specifications

The following tables list the sample code function specifications.

main

Outline Main processing

Header None

Declaration void main (void)

Description Executes a privileged instruction or starts incrementing the MTU after a reset.

Arguments None

Return Value None

R_INIT_StopModule

Outline Stop processing for active peripheral functions after a reset
Header r_init_stop_module.h

Declaration void R_INIT_StopModule (void)

Description Configures the setting to enter the module-stop state.
Arguments None

Return Value None

Remarks Transition to the module-stop state is not performed in the sample code.
Refer to the “RX65N Group, RX651 Group Initial Settings” application note for

details on this function.

R_INIT_Port_Initialize

Outline Nonexistent port initialization
Header r_init_port_initialize.h

Declaration void R_INIT_Port_Initialize (void)

Description Initializes port direction registers for ports that do not exist in products.
Arguments None

Return Value None

Remarks The number of pins in the sample code is set for the 176-pin package (PIN_SIZE=
176). After this function is called, when writing in byte units to the PDR registers or
PODR registers which have nonexistent ports, set the I/O select bits for nonexistent
ports in the PDR registers to 1, and set the output data store bits for nonexistent
ports in the PODR registers to 0.
Refer to the “RX65N Group, RX651 Group Initial Settings” application note for
details on this function.

RX Family Using the Exception Vector Table and Software Configurable Interrupts

R01AN2178EJ0110 Rev.1.10 Page 18 of 42

May.31.19

R_INIT_Clock

Outline Clock initialization

Header r_init_clock.h
Declaration void R_INIT_Clock (void)
Description Performs initial setting of the clock and sets ROM wait cycle.

Arguments None

Return Value None

Remarks In the sample code, processing that does not use Sub Clock but uses 2 ROM WAIT

cycles of System Clock and PLL is used.

The set_ad_conversion_time function called by this function needs to be called

when the PSW.I bit is “0” and also the ADCSR.ADST bit is “0”. For that reason,

before calling this function, set the PSW.I bit to “0” (prohibits interrupt) and the

ADCSR.ADST bit to “0”.

Refer to the “RX65N Group, RX651 Group Initial Settings” application note for

details on this function.

R_INT_Config

Outline Moving the exception vector table and setting software configurable interrupts

Header r_int_config.h

Declaration void R_INT_Config (void)

Description Moves the exception vector table or sets software configurable interrupts.

Arguments None

Return Value None

port_init

Outline Port initialization

Header r_int_config.h

Declaration static void port_init (void)

Description Makes initial setting of the port for LED0 and LED3 blinking.

Arguments None

Return Value None

exception_handling_main

Outline Moving the exception vector table

Header r_int_config.h

Declaration static void exception_handling_main (void)

Description Moves the exception vector table.

Arguments None

Return Value None

RX Family Using the Exception Vector Table and Software Configurable Interrupts

R01AN2178EJ0110 Rev.1.10 Page 19 of 42

May.31.19

mtu_init

Outline MTU initialization

Header r_int_config.h

Declaration static void mtu_init (void)

Description Initializes the MTU.

Arguments None

Return Value None

software_config_int_main

Outline Software configurable interrupt setting

Header r_int_config.h

Declaration static void software_config_int_main (void)

Description Sets the software configurable interrupt.

Arguments None

Return Value None

mtu_start

Outline Start incrementing the MTU counter

Header r_int_config.h

Declaration static void mtu_start (void)

Description Clears the MTU0.TCNT counter, enables the TGIA0 interrupt request, and starts
incrementing the MTU0.TCNT counter.

Arguments None

Return Value None

mtu_stop

Outline Stop incrementing the MTU counter

Header r_int_config.h

Declaration static void mtu_stop (void)

Description Stops incrementing the MTU0.TCNT counter and disables the TGIA0 interrupt
request.

Arguments None

Return Value None

peria_inta208

Outline Software configurable interrupt handling (interrupt vector number: 208)

Header r_int_config.h

Declaration void peria_inta208 (void)

Description Switches LED3 between on and off. Calls the MTU incrementing stop function
when the 20th interrupt occurs.

Arguments None

Return Value None

RX Family Using the Exception Vector Table and Software Configurable Interrupts

R01AN2178EJ0110 Rev.1.10 Page 20 of 42

May.31.19

ram_excep_super_visor_inst

Outline Privileged instruction exception handling

Header r_ram_except_handlers.h

Declaration ram_excep_super_visor_inst (void)

Description Handles a privileged instruction exception. Enters an infinite loop after LED0 is
turned on.

Arguments None

Return Value None

ram_dummy

Outline Dummy processing

Header r_ram_except_handlers.h

Declaration ram_dummy (void)

Description This function performs no operation.

Arguments None

Return Value None

RX Family Using the Exception Vector Table and Software Configurable Interrupts

R01AN2178EJ0110 Rev.1.10 Page 21 of 42

May.31.19

5.9 Flowcharts

5.9.1 Main Processing

Figure 5.3 shows the Main Processing.

main

I flag  0Disable maskable interrupts

Stop processing for active

peripheral functions

after a reset

R_INIT_StopModule()

Nonexistent port

initialization

R_INIT_Port_Initialize()

Clock initialization

R_INIT_Clock()

Move the exception vector

table and set the software

configurable interrupt

R_INT_Config()

Figure 5.3 Main Processing

RX Family Using the Exception Vector Table and Software Configurable Interrupts

R01AN2178EJ0110 Rev.1.10 Page 22 of 42

May.31.19

5.9.2 Moving the Exception Vector Table and Setting Software Configurable Interrupts

Figure 5.4 shows the flow chart of Moving the Exception Vector Table and Setting Software Configurable
Interrupts.

R_INT_Config

Port initialization

port_init()

Move exception vector table

exception_handling_main()

Set the software

configurable interrupt

software_config_int_main()

When SEL_INT = EXCEP_HANDL (exception processing) is set

When SEL_INT = SOFTWARE_CONFIG_INT (software configurable interrupt) is set

return

Figure 5.4 Moving the Exception Vector Table and Setting Software Configurable Interrupts

5.9.3 Port Initialization

Figure 5.5 shows the Port Initialization.

port_init

return

Set data output from ports PORT7.PODR register

B3 bit  1 :LED0 is turned off.

PORTG.PODR register

B5 bit  1 :LED3 is turned off.

Set the port direction PORT7.PDR register

B3 bit  1 :LED0 is used as an output port.

PORTG.PDR register
B5 bit  1 :LED3 is used as an output port.

Figure 5.5 Port Initialization

RX Family Using the Exception Vector Table and Software Configurable Interrupts

R01AN2178EJ0110 Rev.1.10 Page 23 of 42

May.31.19

5.9.4 Moving the Exception Vector Table

Figure 5.6 shows Moving the Exception Vector Table.

exception_handling_main

return

Set the processor mode Switch from supervisor mode to user mode

Set the exception table register EXTB register  0000FF80h :RAM_EXVECT_COPY section

Execute a privileged instruction Set the interrupt priority level to 2 *
1

Enable maskable interrupts I flag  1

Note 1. Since the processor mode is user mode, a privileged instruction exception occurs.

Figure 5.6 Moving the Exception Vector Table

RX Family Using the Exception Vector Table and Software Configurable Interrupts

R01AN2178EJ0110 Rev.1.10 Page 24 of 42

May.31.19

5.9.5 MTU Initialization

Figure 5.7 shows the MTU Initialization.

mtu_init

Release from the module stop

state

PRCR register  A502h
PRC1 bit = 1 : Enables writing to the related register

MSTPCRA register

MSTPA9 bit  0 : Release from the MTU3 module stop state
PRCR register  A500h
PRC1 bit = 0 : Disables writing to the related register

Set the TCR register MTU0.TCR register
CCLR[2:0] bit  001b : TGRA compare match/input capture clears TCNT
CKEG[1:0] bit  00b : Counts at the rising edge
TPSC[2:0] bit  000b : Counts with PCLKA/1024

return

Clear the TGIA0 interrupt request IR208 register
IR flag  0 : There is no TGIA0 interrupt request

Set the TGRA register MTU0.TGRA register  7270h : (120MHz / 1024) / (1 / 250ms) = 29296.875

Set the TGIA0 interrupt priority
level

IPR208 register

IPR[3:0]bit  0001b : TGIA0 interrupt priority level 1

Initialize the interrupt counter Set the interrupt counter to 20

Set the TCR2 register
MTU0.TCR2 register

TPSC2[2:0] bit  101b : Counts with PCLKA/1024

Set the TIORH register
MTU0.TIORH register

IOB[3:0] bit  0000b : TGRB is the output compare register, MTIOC0B pin output is disabled
IOA[3:0] bit  0000b : TGRA is the output compare register, MTIOC0A pin output is disabled

Set the TIORL register
MTU0.TIORL register
IOD[3:0] bot  0000b : TGRD is the output compare register, MTIOC0D pin output is disabled

IOC[3:0] bot  0000b : TGRC is the output compare register, MTIOC0C pin output is disabled

Set the TIER register MTU0.TIER register
TTGE bit  0b : A/D conversion start request occurrence is disabled

TCIEV bit  0b : Interrupt request (TCIV) is disabled
TGIED bit  0b : Interrupt request (TGID) is disabled
TGIEC bit  0b : Interrupt request (TGIC) is disabled
TGIEB bit  0b : Interrupt request (TGIB) is disabled

TGIEA bit  1b : Interrupt request (TGIA) is enabled

Set the TIER2 register
MTU0.TIER2 register

TTGE2 bit  0b : A/D conversion start request by MTU0.TCNT and MTU0.TGRE compare match is disabled
TGIEF bit  0b : Interrupt request (TGIF) disabled
TGIEE bit  0b : Interrupt request (TGIE) disabled

Figure 5.7 MTU Initialization

RX Family Using the Exception Vector Table and Software Configurable Interrupts

R01AN2178EJ0110 Rev.1.10 Page 25 of 42

May.31.19

5.9.6 Software Configurable Interrupt Setting

Figure 5.8 shows Software Configurable Interrupt Setting.

software_config_int_main

return

Disable the TGIA0 interrupt request
IER1A register

IEN0 bit  0 : TGIA0 interrupt request is disabled.

Select an interrupt source for

software configurable interrupt A
SLIAR208 register  01h : TGIA0 (interrupt source number 1) is selected.

Disable writing to registers that select

interrupt sources for

 software configurable interrupts *
1

SLIPRCR register  01h

WPRC bit = 1 : Write disabled.

Enable maskable interrupts I flag  1

Start incrementing the MTU counter

mtu_start()

MTU initialization

mtu_init()

Note 1. After writing 1 to the WPRC bit, confirm that the WPRC bit is 1. Once the WPRC bit becomes 1,

software cannot set the WPRC bit to 0. When setting other software configurable interrupt source

select registers, set the registers before setting the WPRC bit to 1.

Figure 5.8 Software Configurable Interrupt Setting

RX Family Using the Exception Vector Table and Software Configurable Interrupts

R01AN2178EJ0110 Rev.1.10 Page 26 of 42

May.31.19

5.9.7 Start Incrementing the MTU

Figure 5.9 shows the procedure to Start Incrementing the MTU.

mtu_start

Enable the TGIA0 interrupt

request
IER1A register

IEN0 bit  1 : TGIA0 interrupt request is enabled .

Start the timer counter

return

Clear the timer counter MTU0.TCNT register  0000h : Clear the counter

MTU.TSTRA register  01h
CST0 bit = 1 : MTU0.TCNT count is started.

Figure 5.9 Start Incrementing the MTU

5.9.8 Stop Incrementing the MTU

Figure 5.10 shows the procedure to Stop Incrementing the MTU.

mtu_stop

Disable the TGIA0 interrupt request
IER1A register

IEN0 bit  0 : TGIA0 interrupt request is disabled.

Stop the timer counter
MTU.TSTRA register  00h

CST0 bit = 0 : MTU0.TCNT count is stopped.

return

Figure 5.10 Stop Incrementing the MTU

RX Family Using the Exception Vector Table and Software Configurable Interrupts

R01AN2178EJ0110 Rev.1.10 Page 27 of 42

May.31.19

5.9.9 Software Configurable Interrupt Handling (Interrupt Vector Number 208)

Figure 5.11 shows Software Configurable Interrupt Handling (Interrupt Vector Number 208).

peria_inta208

Decrement the interrupt counter

return

PORTG.PODR register

　B5 bit  B5 bit inverted :LED3 turns on/off.

gs_int_cnt  gs_int_cnt - 1

Has the 20th interrupt

occurred?

Yes

No

Stop incrementing the MTU
counter

mtu_stop()

Is LED3 off?

Set data output from the port

(Turn on LED3)

Set data output from the port

(Turn off LED3)

No

Yes

Figure 5.11 Software Configurable Interrupt Handling (Interrupt Vector Number 208)

RX Family Using the Exception Vector Table and Software Configurable Interrupts

R01AN2178EJ0110 Rev.1.10 Page 28 of 42

May.31.19

5.9.10 Privileged Instruction Exception Handling

Figure 5.12 shows Privileged Instruction Exception Handling.

ram_excep_super_visor_inst

Set data output from the port PORT7.PODR register

B3 bit  0 : LED0 is turned on

Figure 5.12 Privileged Instruction Exception Handling

5.9.11 Dummy Processing

Figure 5.13 shows the Dummy Processing.

ram_dummy

return

This function performs no operation.

Figure 5.13 Dummy Processing

RX Family Using the Exception Vector Table and Software Configurable Interrupts

R01AN2178EJ0110 Rev.1.10 Page 29 of 42

May.31.19

6. Porting Sample Codes to Other RX Family

Sample codes included in this application note can be ported to other RX Family loaded with the exception
vector table and software configurable interrupts. This section describes an example to port sample codes to
RX66T (Renesas Starter Kit for RX66T).

6.1 Before Porting

Confirm the following specifications before porting sample codes. If there is a difference in the specifications,
the method described in this section may not be used. After making sure of the specifications, use this
application.

 Specification of exception vector table and software configurable interrupts of the porting source and

porting destination

 The MTU specification of the porting source and porting destination

6.2 Porting Procedure Flow

Figure 6.1 shows the Porting Procedure Flow.

Start

Generate porting destination

project

Copy source files of porting

destination initial settings

example

Copy source files of this

application note

Set porting destination project

Change files

Set r_int_config.h

End

Figure 6.1 Porting Procedure Flow

RX Family Using the Exception Vector Table and Software Configurable Interrupts

R01AN2178EJ0110 Rev.1.10 Page 30 of 42

May.31.19

6.3 Porting Procedure

6.3.1 Generating a Porting Destination Project

Start e2 studio and create a new project.

1) Generating a porting destination project

1-1) Start e2 studio and click [File].

1-2) Click [C/C++ Project] of [New] to start the New C/C++ Project wizard.

1-3) Click [Renesas RX].

1-4) Click [Renesas CC-RX C/C++ Executable Project].

1-5) Click [Next >].

Click here

Click here

Click here

Click here

Click here

RX Family Using the Exception Vector Table and Software Configurable Interrupts

R01AN2178EJ0110 Rev.1.10 Page 31 of 42

May.31.19

1-6) Enter the project name.

1-7) Click [Next >].

1-8) Change [Target Device:] to [R5F566TEAxFP].

 (When porting to another RX Family, change to the porting destination RX Family.)

1-9) Select the emulator to be used.

1-10) Tick the [Create Release Configuration] check box.

1-11) Click [Finish].

1-12) Delete [<Project name>.c] in the generated project.

Click here

Enter the project name.

Select the check box.

Click here

Select the emulator to be used.

Select the porting destination RX Family.

RX Family Using the Exception Vector Table and Software Configurable Interrupts

R01AN2178EJ0110 Rev.1.10 Page 32 of 42

May.31.19

6.3.2 Copying the Source Files of Porting Destination Initial Settings Example

Copy the source files of the initial settings example application note of the porting destination RX Family to
the newly generated project.

1) Downloading the initial settings example application note

1-1) From the Renesas Electronicsʼ website, download [RX66T Group Initial Settings (R01AN4057)].

 (When porting to another RX Family, download the initial settings example application note

 corresponding to the porting destination RX Family.)

1-2) Extract the downloaded zip file to the desired folder.

2) Copying the source files of the initial settings example application note to the project

2-1) Use Explorer to open the extracted folder and copy all files from [r01an4057_rx66t] ->

 [r01an4057_src] to the generated project.

Copy (drag and drop).

RX Family Using the Exception Vector Table and Software Configurable Interrupts

R01AN2178EJ0110 Rev.1.10 Page 33 of 42

May.31.19

6.3.3 Copying the Source Files of the Application Note

Copy the source files of the application to the generated project.

1) Copying the source files of the application to the project

1-1) Copy [r_int_config.c], [r_int_config.h], [r_ram_except_handlers.c], [r_ram_except_handlers.h], and

 [r_ram_except_vector_table.c] from [r01an2178_rx65n_2m] -> [r01an2178_src] of this application to

 the project.

Copy (drag and drop).

RX Family Using the Exception Vector Table and Software Configurable Interrupts

R01AN2178EJ0110 Rev.1.10 Page 34 of 42

May.31.19

6.3.4 Setting Porting Destination Project

Change the build settings of the generated project.

1) Adding the final address section of the RAM

1-1) Right-click the generated project and click [Properties].

Click here

Right-click here

RX Family Using the Exception Vector Table and Software Configurable Interrupts

R01AN2178EJ0110 Rev.1.10 Page 35 of 42

May.31.19

1-2) Click [C/C++ Build] -> [Settings].

1-3) Click [Tool Settings] -> [Linker] -> [Section].

1-4) Click […] at the right end of [Section].

Click here

Click here

Click here

RX Family Using the Exception Vector Table and Software Configurable Interrupts

R01AN2178EJ0110 Rev.1.10 Page 36 of 42

May.31.19

1-5) Add the [End_of_RAM] section and the [End_of_ECCRAM] section.

1-6) Click [OK].

1-7) Click [Apply and Close].

2) Adding a section for the exception vector table

2-1) Refer to “5.1.2 Moving the Exception Vector Table to the RAM Area” to add a section for the

 exception vector table.

Click here

Add

RX Family Using the Exception Vector Table and Software Configurable Interrupts

R01AN2178EJ0110 Rev.1.10 Page 37 of 42

May.31.19

6.3.5 Changing Files

Change each source file copied in order to run the sample code of the application.

1) Changing the path to the include file.

1-1) The include file path of the source file differs depending on the initial settings example; review and

 change the include file path according to the porting destination project.

2) Changing [intprg.c]

2-1) To [intprg.c], add the include path to [r.int_config.h].

2-2) To the [Excep_PERIA_INTA208] function of [intprg.c], add call processing of [peria_inta208].

3) Changing [main.c]

3-1) To [main.c], add the include path to [r.int_config.h].

Add

Add

Add

RX Family Using the Exception Vector Table and Software Configurable Interrupts

R01AN2178EJ0110 Rev.1.10 Page 38 of 42

May.31.19

3-2) To the [main] function of [main.c], add call processing of the [R_INT_Config] function before the

 while statement.

Add

RX Family Using the Exception Vector Table and Software Configurable Interrupts

R01AN2178EJ0110 Rev.1.10 Page 39 of 42

May.31.19

6.3.6 Setting r_int_config.h

Change [r_int_config.h] in accordance with the porting destination environment.

The setting value when porting to RX66T (Renesas Starter Kit for RX66T) is shown below. When porting to
another RX Family, change to the setting value corresponding to the porting destination environment.

1) Setting the processing to be operated

1-1) Set the SEL_INT constant in accordance with the processing to be operated. When operating

 moving processing of exception vector table, set EXCEP_HANDL in the SEL_INT constant. When

 performing software configurable interrupt handling, set SOFTWARE_CONFIG_INT in the SEL_INT

 constant.

2) Setting port output data during LED ON/OFF

2-1) Set port output data during LED ON/OFF in the LED_ON constant and LED_OFF constant. Set

 [OUTPUT_LOW] in the LED_ON constant, and set [OUTPUT_HIGH] in the LED_OFF constant.

3) Setting the port connected to the LED

3-1) Set the port output data register connected to LED0 and LED3 in the LED0_PODR constant and

 LED3_PODR constant. Set [PORT9.PODR.BIT.B5] in the LED0_PODR constant, and set

 [PORTE.PODR.BIT.B0] in the LED3_PODR constant.

Set

Set

Set

Set

RX Family Using the Exception Vector Table and Software Configurable Interrupts

R01AN2178EJ0110 Rev.1.10 Page 40 of 42

May.31.19

3-2) Set the port direction register connected to LED0 and LED3 in the LED0_PDR constant and

 LED3_PDR constant. Set [PORT9.PDR.BIT.B5] in the LED0_PDR constant, and set

 [PORTE.PDR.BIT.B0] in the LED3_PDR constant.

4) Setting the operation frequency of the multi-function timer pulse unit (MTU)

4-1) Set the operation frequency of the multi-function timer pulse unit (MTU) in MTU_PCLK_HZ in units of

 Hz. Set [160000000].

Set

Set

Set

RX Family Using the Exception Vector Table and Software Configurable Interrupts

R01AN2178EJ0110 Rev.1.10 Page 41 of 42

May.31.19

7. Sample Code

Sample code can be downloaded from the Renesas Electronics website.

8. Reference Documents

User’s Manual: Hardware

RX65N Group, RX651 Group User's Manual: Hardware (R01UH0659)

The latest version can be downloaded from the Renesas Electronics website.

Technical Update/Technical News

The latest information can be downloaded from the Renesas Electronics website.

User’s Manual: Development Tools

RX Family Compiler CC-RX User’s Manual (R20UT3248)

The latest version can be downloaded from the Renesas Electronics website.

RX Family Using the Exception Vector Table and Software Configurable Interrupts

R01AN2178EJ0110 Rev.1.10 Page 42 of 42

May.31.19

Revision History

Rev. Date

Description

Page Summary

1.00 Dec. 1, 2014 — First edition issued

1.01 Nov. 2, 2015 — RX71M Group is added to the target device

1.10 May.31.19 — Changed the supported device to the RX Family loaded with

the exception vector table and software configurable interrupts

 4, 9, 10,

11, 23

Changed the RAM_EXFUNC_COPY address.

Changed the RAM_EXVECT_COPY address.

 5, 13, 19,

24, 25, 26

Changed the interrupt vector numbers and interrupt factor

number of the software configurable interrupts.

Changed the interrupt occurrence interval and the number of

interrupts that occur.

 6 Changed Table 2.1 Operation Confirmation Conditions.

 7 Changed the pins used for LED output.

 14 Changed Table 5.3 Option-Setting Memory Configured in the

Sample Code.

 15 Changed Table 5.4 Constants Used in the Sample Code.

 16 Changed Table 5.5 Static Variables.

 17 Changed 5.8 Function Specifications.

 21 Changed 5.9 Flowcharts.

 29 Added 6. Porting Sample Code to Other RX Family

 41 Changed 8. Reference Documents.

 Programs  Changed the target device.

 Deleted the file.

main.h

 Added files.

r_int_config.c

r_int_config.h

 Added macro definitions.

LED_ON

LED_OFF

LED0_PODR

LED0_PDR

LED3_PODR

LED3_PDR

MTU_PCLK_HZ

 Added the function.

R_INT_Config

 Changed the functions.

port_init

mtu_init

software_config_int_main

mtu_start

mtu_stop

peria_inta208

ram_excep_super_visor_inst

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2019 Renesas Electronics Corporation. All rights reserved.

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your

product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use

of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,

or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this

document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics

or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any

and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for

each Renesas Electronics product depends on the product’s quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas

Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to

human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space

system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics

disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product

that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for

Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by

Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas

Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such

specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific

characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability

product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics

products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily

injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as

safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for

aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are

responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas

Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of

controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these

applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance

with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is

prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations

promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or

transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled

subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,

Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

 For further information on a product, technology, the most up-to-date

version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/.

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics

Corporation. All trademarks and registered trademarks are the property

of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Exception Vector Table and Software Configurable Interrupts
	1.1 Exception Vector Table
	1.2 Software Configurable Interrupts

	2. Operation Confirmation Conditions
	3. Reference Application Note
	4. Hardware Configuration
	4.1 Pins Used

	5. Software
	5.1 Operation Overview of the Exception Vector Table
	5.1.1 Moving the Exception Vector table
	5.1.2 Moving the Exception Vector Table to the RAM Area

	5.2 Operation Overview of the Software Configurable Interrupts
	5.2.1 Software Configurable Interrupt Handling

	5.3 File Composition
	5.4 Option-Setting Memory
	5.5 Constants
	5.6 Variables
	5.7 Functions
	5.8 Function Specifications
	5.9 Flowcharts
	5.9.1 Main Processing
	5.9.2 Moving the Exception Vector Table and Setting Software Configurable Interrupts
	5.9.3 Port Initialization
	5.9.4 Moving the Exception Vector Table
	5.9.5 MTU Initialization
	5.9.6 Software Configurable Interrupt Setting
	5.9.7 Start Incrementing the MTU
	5.9.8 Stop Incrementing the MTU
	5.9.9 Software Configurable Interrupt Handling (Interrupt Vector Number 208)
	5.9.10 Privileged Instruction Exception Handling
	5.9.11 Dummy Processing

	6. Porting Sample Codes to Other RX Family
	6.1 Before Porting
	6.2 Porting Procedure Flow
	6.3 Porting Procedure
	6.3.1 Generating a Porting Destination Project
	6.3.2 Copying the Source Files of Porting Destination Initial Settings Example
	6.3.3 Copying the Source Files of the Application Note
	6.3.4 Setting Porting Destination Project
	6.3.5 Changing Files
	6.3.6 Setting r_int_config.h

	7. Sample Code
	8. Reference Documents
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

