
 APPLICATION NOTE

R01AN4307EJ0104 Rev.1.04 Page 1 of 16
Aug 31, 2020

RX Family
Renesas FreeRTOS
Introduction
This application note describes the Renesas FreeRTOS module which is based on FreeRTOS

Target Devices
• RX72M Group
• RX72N Group
• RX72T Group
• RX71M Group
• RX66T Group
• RX66N Group
• RX65N Group
• RX64M Group
• RX23W Group
• RX231 Group
• RX230 Group
• RX130 Group

Related Documents
• RX Family Board Support Package Module Using Firmware Integration Technology (R01AN1685)
• RX Family CMT Module Using Firmware Integration Technology (R01AN1856)
• Renesas e2 studio Smart Configurator User Guide (R20AN0451)

References
• FreeRTOS customization: https://www.freertos.org/a00110.html [1]
• FreeRTOS Memory Management: https://www.freertos.org/a00111.html [2]

R01AN4307EJ0104
Rev.1.04

Aug 31, 2020

https://www.freertos.org/a00110.html
https://www.freertos.org/a00111.html

RX Family Renesas FreeRTOS

R01AN4307EJ0104 Rev.1.04 Page 2 of 16
Aug 31, 2020

Contents

1. Overview ... 3

1.1 Renesas FreeRTOS Module ... 3

1.2 Creating a RTOS project with Renesas FreeRTOS .. 3

1.2.1 Creating CCRX Project ... 3

1.2.2 Creating GCC Project .. 4

1.3 BSP setting and Timer Source .. 5

1.3.1 BSP Configuration ... 5

1.3.2 Using CMT module .. 5

2. Requirements .. 6

2.1 Hardware Requirements ... 6

2.2 Software Requirements ... 6

2.3 Supported Toolchain ... 6

3. Configuration Overview ... 7

3.1 Heap Memory Management .. 7

3.1.1 heap_1.c .. 7

3.1.2 heap_2.c .. 7

3.1.3 heap_3.c .. 7

3.1.4 heap_4.c .. 7

3.2 Custom Configuration .. 8

3.3 Heap estimation .. 10

3.4 Add/Remove Objects .. 11

4. User Start Code ... 12

4.1 freertos_start.c, freertos_start.h .. 13

4.1.1 RTOS System Timer Initialization – void vApplicationSetupTimerInterrupt(void) 13

4.1.2 Idle Hook Function – void vApplicationIdleHook(void) .. 13

4.1.3 Tick Hook Function – void vApplicationTickHook(void) .. 13

4.1.4 Malloc Failed Hook Function – void vApplicationMallocFailedHook(void) .. 13

4.1.5 void Processing_Before_Start_Kernel(void) ... 13

4.2 void main_task(void *pvParameters) .. 13

5. Appendices .. 14

5.1 Confirmed Operation Environment .. 14

5.2 Notes ... 15

5.2.1 The macro configTOTAL_HEAP_SIZE_N .. 15

5.2.2 e2studio version for this application note ... 15

RX Family Renesas FreeRTOS

R01AN4307EJ0104 Rev.1.04 Page 3 of 16
Aug 31, 2020

1. Overview

1.1 Renesas FreeRTOS Module
The Renesas FreeRTOS module is FreeRTOS Kernel for RX family.

1.2 Creating a RTOS project with Renesas FreeRTOS
1.2.1 Creating CCRX Project
It is recommended to create a Renesas FreeRTOS project using e2studio, which supports CCRX RTOS
project creation. At the start of project creation, user would be able to choose the version of Renesas
FreeRTOS package, and the selected version will be imported automatically into the project. This makes it
easier for the user, so that they can focus only on FreeRTOS configuration, and writing application code.

The figure below shows how to select RTOS for CCRX project creation:

Select one of the versions

Select “FreeRTOS (kernel

Click this to check Renesas web for other

RX Family Renesas FreeRTOS

R01AN4307EJ0104 Rev.1.04 Page 4 of 16
Aug 31, 2020

1.2.2 Creating GCC Project
GCC RTOS project creation is supported. At the start of project creation, user would be able to choose the
version of Renesas FreeRTOS package, and the selected version will be imported automatically into the
project. This makes it easier for the user, so that they can focus only on FreeRTOS configuration, and writing
application code.

The figure below shows how to select RTOS for GCC project creation:

Select one of the versions
Select “FreeRTOS (kernel

Click this to check Renesas web for other

RX Family Renesas FreeRTOS

R01AN4307EJ0104 Rev.1.04 Page 5 of 16
Aug 31, 2020

1.3 BSP setting and Timer Source

1.3.1 BSP Configuration
When using the method mention in Section 1.3, the following BSP configuration will be set automatically:

 BSP_CFG_RTOS_USED is set to ‘1’

 BSP_CFG_RTOS_SYSTEM_TIMER is set to ‘0’ (this is CMT channel 0)

By default, the RTOS kernel is configured to use CMT channel 0 as system timer. In future version of
e2studio, user would be able to choose anyone of the available CMT channel

1.3.2 Using CMT module
Renesas FreeRTOS kernel requires the exclusive use of the selected CMT channel. If user would like to use
CMT module in the project for purpose other than the kernel, care must be taken not to interfere with the
operation of the CMT channel used by the kernel. It is therefore recommended that in such cases, a CMT
FIT module which supports RTOS, be used. At this moment the version of CMT FIT which supports RTOS is
v3.30

RX Family Renesas FreeRTOS

R01AN4307EJ0104 Rev.1.04 Page 6 of 16
Aug 31, 2020

2. Requirements
This FIT module has been confirmed to operate under the following conditions.

2.1 Hardware Requirements
The MCU used must support the following functions:

 CMT

2.2 Software Requirements
This Renesas FreeRTOS module is dependent upon the following FIT module:

 Renesas Board Support Package (r_bsp)

2.3 Supported Toolchain
This driver has been confirmed to work with the toolchain listed in 5.1, Confirmed Operation Environment.

RX Family Renesas FreeRTOS

R01AN4307EJ0104 Rev.1.04 Page 7 of 16
Aug 31, 2020

3. Configuration Overview

3.1 Heap Memory Management

3.1.1 heap_1.c
This is the simplest implementation of all. It does not permit memory to be freed once it has been allocated.
Despite this, heap_1.c is appropriate for a large number of embedded applications. This is because many
small and deeply embedded applications create all the tasks, queues, semaphores, etc. required when the
system boots, and then use all of these objects for the lifetime of program (until the application is switched
off again or is rebooted). Nothing ever gets deleted

For details, refer to [2]

3.1.2 heap_2.c
This scheme uses a best fit algorithm and, unlike scheme 1, allows previously allocated blocks to be freed. It
does not combine adjacent free blocks into a single large block. See heap_4.c for an implementation that
does coalescence free blocks. The total amount of available heap space is set by configTOTAL_HEAP_SIZE
- which is defined in FreeRTOSConfig.h. The configAPPLICATION_ALLOCATED_HEAP FreeRTOSConfig.h
configuration constant is provided to allow the heap to be placed at a specific address in memory.

For details, refer to [2]

3.1.3 heap_3.c
This implements a simple wrapper for the standard C library malloc() and free() functions that will, in most
cases, be supplied with your chosen compiler. The wrapper simply makes the malloc() and free() functions
thread safe

For details, refer to [2]

3.1.4 heap_4.c
This scheme uses a first fit algorithm and, unlike scheme 2, it does combine adjacent free memory blocks
into a single large block (it does include a coalescence algorithm).
The total amount of available heap space is set by configTOTAL_HEAP_SIZE - which is defined in
FreeRTOSConfig.h. The configAPPLICATION_ALLOCATED_HEAP FreeRTOSConfig.h configuration
constant is provided to allow the heap to be placed at a specific address in memory

For details, refer to [2]

https://www.freertos.org/a00110.html#configAPPLICATION_ALLOCATED_HEAP
https://www.freertos.org/a00110.html#configAPPLICATION_ALLOCATED_HEAP

RX Family Renesas FreeRTOS

R01AN4307EJ0104 Rev.1.04 Page 8 of 16
Aug 31, 2020

3.2 Custom Configuration
Renesas FreeRTOS is customized using a configuration file called FreeRTOSConfig.h. Every Renesas
FreeRTOS application must have a FreeRTOSConfig.h header file in its pre-processor include path.
FreeRTOSConfig.h tailors the RTOS kernel to the application being built. It is therefore specific to the
application, not the RTOS, and should be located in an application directory, not in one of the RTOS kernel
source code directories

Below are some typical FreeRTOSConfig.h definition. Note that some macro configuration has to refer to
parameters in BSP; the RTOS kernel will not work as expected if wrong values are set:

Configuration options in FreeRTOSConfig.h
configUSE_PREEMPTION Refer to [1]
configUSE_IDLE_HOOK Refer to [1]
configUSE_TICK_HOOK Refer to [1]

configCPU_CLOCK_HZ

This macro defines the MCU system clock speed in Hz.
It is required in order to correctly configure timer
peripherals. It should be set to BSP_ICLK_HZ, which is
defined in BSP mcu_info.h

configPERIPHERAL_CLOCK_HZ
The frequency of the peripheral module clock, used by CMT.
In the case of RX, it is PCLKB, therefore this macro should be
set to BSP_PCLKB_HZ, which is defined in mcu_info.h

configTICK_RATE_HZ

The frequency of the RTOS kernel tick interrupt. The tick
interrupt is used to measure time. Therefore a higher tick
frequency means time can be measured to a higher
resolution. However, a high tick frequency also means that the
RTOS kernel will use more CPU time so it is less efficient.
Typically this value is 1000

configMINIMAL_STACK_SIZE Refer to [1]

configTOTAL_HEAP_SIZE_N
This macro replaces existing macro
“configTOTAL_HEAP_SIZE”
Refer to 3.3

configMAX_TASK_NAME_LEN Refer to [1]
configUSE_TRACE_FACILITY Refer to [1]
configUSE_16_BIT_TICKS Refer to [1]
configIDLE_SHOULD_YIELD Refer to [1]
configUSE_CO_ROUTINES Refer to [1]
configUSE_MUTEXES Refer to [1]
configGENERATE_RUN_TIME_STATS Refer to [1]
configCHECK_FOR_STACK_OVERFLOW Refer to [1]
configUSE_RECURSIVE_MUTEXES Refer to [1]
configQUEUE_REGISTRY_SIZE Refer to [1]
configUSE_MALLOC_FAILED_HOOK Refer to [1]
configUSE_APPLICATION_TASK_TAG Refer to [1]
configUSE_QUEUE_SETS Refer to [1]
configUSE_COUNTING_SEMAPHORES Refer to [1]
configMAX_PRIORITIES Refer to [1]
configMAX_CO_ROUTINE_PRIORITIES Refer to [1]
configUSE_TIMERS Refer to [1]
configTIMER_TASK_PRIORITY Refer to [1]
configTIMER_QUEUE_LENGTH Refer to [1]
configTIMER_TASK_STACK_DEPTH Refer to [1]
configKERNEL_INTERRUPT_PRIORITY Refer to [1]
configMAX_SYSCALL_INTERRUPT_PRIORITY Refer to [1]
configTICK_VECTOR This macro should be set to the vector number of the CMT

RX Family Renesas FreeRTOS

R01AN4307EJ0104 Rev.1.04 Page 9 of 16
Aug 31, 2020

channel used. The possible values are:
_CMT0_CMI0: If CMT0 is used
_CMT1_CMI1: If CMT1 is used
_CMT2_CMI2: If CMT2 is used
_CMT3_CMI3: If CMT3 is used

configUSE_TASK_NOTIFICATIONS Refer to [1]
configRECORD_STACK_HIGH_ADDRESS Refer to [1]
configNUM_THREAD_LOCAL_STORAGE_POINTERS Refer to [1]
configSUPPORT_DYNAMIC_ALLOCATION Refer to [1]
configSUPPORT_STATIC_ALLOCATION Refer to [1]

RX Family Renesas FreeRTOS

R01AN4307EJ0104 Rev.1.04 Page 10 of 16
Aug 31, 2020

3.3 Heap estimation
From e2studio v7.7.0, the values of heap usage will be summarized and displayed in “Total Amount Heap
Usage” group in Smart Configurator. Total For Heap Usage displays the estimated total RAM usage for all
FreeRTOS objects. Total RAM usage changes when user adds or removes FreeRTOS objects. The purpose
of this feature is to estimate the total remaining heap space to save RAM usage in implement application.

Below is what heap estimation looks like in Smart Configurator:

The macro “configTOTAL_HEAP_SIZE_N” in FreeRTOSConfig.h is used to set the total available heap
space. This macro can be modified by changing “The configTOTAL_HEAP_SIZE_N” configuration in
FreeRTOS_Kernel as shown in the following picture:

Total allocated RAM size is calculated with the following expression: (configTOTAL_HEAP_SIZE_N*1024).

RX Family Renesas FreeRTOS

R01AN4307EJ0104 Rev.1.04 Page 11 of 16
Aug 31, 2020

3.4 Add/Remove Objects
User can add or remove FreeRTOS objects within the “FreeRTOS_Object” component in Smart Configurator
as shown in the following picture:

User may choose from any of the available objects to modify them. Objects can be added or removed with
the (add) or (remove) button.

User can also modify certain parameters of the object by replacing the default value as shown in the
following picture:

Modification of objects will be reflected after code generation in the following .c file.

Heap usage of modified objects will be displayed in “Total Amount Heap Usage” group after code generation.
Object heap usage exceeding the total available heap space will result in build error.

More details are mentioned in [e2studio] [Help].

RX Family Renesas FreeRTOS

R01AN4307EJ0104 Rev.1.04 Page 12 of 16
Aug 31, 2020

4. User Start Code
The following figure shows the program flow of the Renesas FreeRTOS project, starting from BSP routines,
startup of FreeRTOS kernel, and running of user’s application code:

1. 2.

5.

3.

4.

RX Family Renesas FreeRTOS

R01AN4307EJ0104 Rev.1.04 Page 13 of 16
Aug 31, 2020

4.1 freertos_start.c, freertos_start.h
Before the RTOS kernel starts, user startup functions and CMT configuration routine can be run. The
functions are provided below:

4.1.1 RTOS System Timer Initialization – void vApplicationSetupTimerInterrupt(void)
This function is provided and it readily configures the selected CMT channel (#define
BSP_CFG_RTOS_SYSTEM_TIMER) for use as RTOS kernel system tick. User can use this function readily
without any modification

4.1.2 Idle Hook Function – void vApplicationIdleHook(void)
The idle task is created automatically when the RTOS scheduler is started to ensure there is always at least
one task that is able to run. It is created at the lowest possible priority to ensure it does not use any CPU
time if there are higher priority application tasks in the ready state. The idle task can optionally call an
application defined hook function, which is the idle hook function. The idle task runs at the very lowest
priority, so such idle hook function will only get executed when there are no tasks of higher priority that are
able to run

The idle hook function will only get called if configUSE_IDLE_HOOK is set to 1 within FreeRTOSConfig.h

4.1.3 Tick Hook Function – void vApplicationTickHook(void)
The tick interrupt can optionally call an application defined hook function, which is the tick hook function. The
tick hook provides a convenient place to implement timer functionality

The tick hook will only get called if configUSE_TICK_HOOK is set to 1 within FreeRTOSConfig.h

4.1.4 Malloc Failed Hook Function – void vApplicationMallocFailedHook(void)
The memory allocation schemes implemented by heap_1.c, heap_2.c, heap_3.c, heap_4.c and heap_5.c
can optionally include a malloc() failure hook function that can be configured to get called if pvPortMalloc()
ever returns NULL

Defining the malloc() failure hook will help identify problems caused by lack of heap memory especially when
a call to pvPortMalloc() fails within an API function

The malloc failed hook will only get called if configUSE_MALLOC_FAILED_HOOK is set to 1 within
FreeRTOSConfig.h

4.1.5 void Processing_Before_Start_Kernel(void)
In this function, a main task “main_task()” is created. User can also create FreeRTOS objects (mailbox,
semaphore, mutex) if required

4.2 void main_task(void *pvParameters)
This task is created in Processing_Before_Start_Kernel(). User should create all other application tasks
within this function

RX Family Renesas FreeRTOS

R01AN4307EJ0104 Rev.1.04 Page 14 of 16
Aug 31, 2020

5. Appendices

5.1 Confirmed Operation Environment
This section describes confirmed operation environment for the Renesas FreeRTOS module.

Table 5.1 Confirmed Operation Environment

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 7.8

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.02
Compiler option: The following option is added to the default settings
of the integrated development environment.
-lang = c99

GCC for Renesas RX 4.8.4.201902
Compiler option: The following option is added to the default settings
of the integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to
the default settings of the integrated development environment, if
“Optimize size (-Os)” is used:
-WI,--no-gc-sections
This is to work around a GCC linker issue whereby the linker
erroneously discard interrupt functions declared in FIT peripheral
module

Endian Big endian/little endian
Revision of the module Renesas FreeRTOS Version 10.0.03
Board used Renesas Starter Kit+ for RX72N (product No.: RTK5572NNxSxxxxxBE)

Target Board for RX23W (product No.: RTK5RX23W0CxxxxxBJ)
Renesas Starter Kit+ for RX130 512KB (product No.: RTK5051308CxxxxxBR)
Renesas Starter Kit+ for RX72M (product No.: RTK5572MNDCxxxxxBJ)
Renesas Starter Kit+ for RX72T (product No.: RTK5572TKCCxxxxxSE)
Renesas Starter Kit+ for RX71M (product No.: R0K50571MSxxxBE)
Renesas Starter Kit+ for RX66T (product No.: RTK50566T0CxxxxxBE)
Renesas Starter Kit+ for RX65N-2M (product No.: RTK50565N2SxxxxxBE)
Renesas Starter Kit+ for RX64M (product No.: R0K50564MSxxxBE)
Renesas Starter Kit+ for RX231 (product No.: R0K505231CxxxBE)

RX Family Renesas FreeRTOS

R01AN4307EJ0104 Rev.1.04 Page 15 of 16
Aug 31, 2020

5.2 Notes
5.2.1 The macro configTOTAL_HEAP_SIZE_N

- The macro configTOTAL_HEAP_SIZE_N is the value of KB, default value = 4.
(Default heap size 4*1024 = 4096)

5.2.2 e2studio version for this application note
This application note can be used with e2stduio V.7.8 or e2studio 2020-04 or later versions.

RX Family Renesas FreeRTOS

R01AN4307EJ0104 Rev.1.04 Page 16 of 16
Aug 31, 2020

Website and Support
Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/contact/

Revision History

Rev.

Date

Description
Page Summary

1.00 Jan. 21, 2019 — First edition issued
1.01 Oct. 08. 2019 — Added supporting device.

RX130 Group, RX230 Group, RX231 Group, RX66T Group,
RX72T Group, RX72M Group

1.02 Jan. 30, 2020 — Added supporting device.
RX23W Group

1.03 Apr. 30, 2020 — Replaced macro “configTOTAL_HEAP_SIZE” with
“configTOTAL_HEAP_SIZE_N”.
Added support for GCC project creation with Smart
Configurator.

1.04 Aug. 31, 2020 P.14 Fixed Table 5.1 Confirmed Operation Environment
P.15 Added 5.2.2

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2020 Renesas Electronics Corporation. All rights reserved.

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of
these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or
other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for
each Renesas Electronics product depends on the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home
electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system;
undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims
any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is
inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for
Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products
are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury,
injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety
design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging
degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters Contact Information
TOYOSU FORESIA, 3-2-24 Toyosu,

Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

For further information on a product, technology, the most up-to-date

version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics

Corporation. All trademarks and registered trademarks are the property

of their respective owners.

http://www.renesas.com
http://www.renesas.com/contact/

	1. Overview
	1.1 Renesas FreeRTOS Module
	1.2 Creating a RTOS project with Renesas FreeRTOS
	1.2.1 Creating CCRX Project
	1.2.2 Creating GCC Project

	1.3 BSP setting and Timer Source
	1.3.1 BSP Configuration
	1.3.2 Using CMT module

	2. Requirements
	2.1 Hardware Requirements
	2.2 Software Requirements
	2.3 Supported Toolchain

	3. Configuration Overview
	3.1 Heap Memory Management
	3.1.1 heap_1.c
	3.1.2 heap_2.c
	3.1.3 heap_3.c
	3.1.4 heap_4.c

	3.2 Custom Configuration
	3.3 Heap estimation
	3.4 Add/Remove Objects

	4. User Start Code
	4.1 freertos_start.c, freertos_start.h
	4.1.1 RTOS System Timer Initialization – void vApplicationSetupTimerInterrupt(void)
	4.1.2 Idle Hook Function – void vApplicationIdleHook(void)
	4.1.3 Tick Hook Function – void vApplicationTickHook(void)
	4.1.4 Malloc Failed Hook Function – void vApplicationMallocFailedHook(void)
	4.1.5 void Processing_Before_Start_Kernel(void)

	4.2 void main_task(void *pvParameters)

	5. Appendices
	5.1 Confirmed Operation Environment
	5.2 Notes
	5.2.1 The macro configTOTAL_HEAP_SIZE_N
	5.2.2 e2studio version for this application note

