
 APPLICATION NOTE

R01AN3184EJ0110 Rev.1.10 Page 1 of 38

Apr. 10, 2017

RL78 Family C compiler CC-RL

Programming Techniques

Introduction

This application note describes how to reduce the code size, increase the execution speed, and programming
techniques to avoid bugs when using the C compiler CC-RL.

The following versions of the integrated development environments are supported.
• CS+ V4.01.00
• e2 studio V4.0.0.26
• RL78 Family C compiler CC-RL V1.03.00

Target Device

RL78 Family

R01AN3184EJ0110
Rev.1.10

Apr. 10, 2017

RL78 Family C compiler CC-RL Programming Techniques

R01AN3184EJ0110 Rev.1.10 Page 2 of 38

Apr. 10, 2017

Contents

1. Code Size Reduction .. 3
1.1 Size of Variables .. 3
1.2 Unsigned Variables ... 4
1.3 saddr Area ... 5
1.4 callt Function.. 6
1.5 Alignment of Structure Members ... 7
1.6 Bit Fields and 1-Byte Variable ... 8
1.7 Type Conversion ... 9
1.8 Deleting Induction Variables .. 10
1.9 Loop Fusion ... 12
1.10 Memory Models ... 13

2. Faster Execution Speed ... 14
2.1 Consecutive Access to Array ... 14
2.2 Access to Global Variable ... 15
2.3 if Statement in Loop ... 16
2.4 End Condition for Loop .. 18
2.5 Optimizing Pointer Variables ... 19
2.6 Faster Execution Using Level of optimization in Integrated Development Environment 21
2.6.1 Settings in e2 studio Integrated Development Environment .. 21
2.6.2 Settings in CS+ Integrated Development Environment ... 24

3. Programming Techniques to Avoid Bugs ... 29
3.1 Writing Conditional Expression’s Value on Left Side of Operator ... 29
3.2 Magic Number ... 30
3.3 Calculation That Might Cause Information Loss .. 30
3.4 Type Conversion to Remove const and volatile .. 31
3.5 Prohibition of Recursive Call ... 31
3.6 Localizing Access Range and Related Data ... 32
3.7 Exception Processing of Branch Condition ... 34
3.8 Consideration for Special Description ... 36
3.9 Deleting Unused Description ... 37

4. Sample Code .. 38

5. Reference Documents .. 38

RL78 Family C compiler CC-RL Programming Techniques

R01AN3184EJ0110 Rev.1.10 Page 3 of 38

Apr. 10, 2017

1. Code Size Reduction

1.1 Size of Variables
When using variables, specify the type having the minimum allowable size.
This is because the RL78 devices excel in handling small-type variables.

Before Change After Change

void main(void)
{
 signed int i;

 for (i=0; i < 10; i++)
 {
 NOP();
 }
}

void main(void)
{
 signed char i;

 for (i=0; i < 10; i++)
 {
 NOP();
 }
}

Figure 1.1 C Source Code

Before Change After Change
movw ax, #0x000A

.BB@LABEL@1_1:
nop
addw ax, #0xFFFF
bnz $.BB@LABEL@1_1

.BB@LABEL@1_2:
ret

3

1
3
2

1

 mov a, #0x0A
.BB@LABEL@1_1:
 nop
 dec a
 bnz $.BB@LABEL@1_1
.BB@LABEL@1_2:
 ret

2

1
1
2

1

10 bytes 7 bytes

Figure 1.2 Output Assembler

RL78 Family C compiler CC-RL Programming Techniques

R01AN3184EJ0110 Rev.1.10 Page 4 of 38

Apr. 10, 2017

1.2 Unsigned Variables
Add “unsigned” for all data that never handle negative values.
This is because the RL78 devices excel in handling unsigned variables.

Before Change After Change

signed int data0;
signed int data1;

void main(void)
{
 if (data0 > 10)
 {
 data1++;
 }
}

unsigned int data0;
unsigned int data1;

void main(void)
{
 if (data0 > 10)
 {
 data1++;
 }
}

Figure 1.3 C Source Code

Before Change After Change
movw ax, !LOWW(_data0)
xor a, #0x80
cmpw ax, #0x800B
skc

.BB@LABEL@1_1:
incw !LOWW(_data1)

3
2
3
2

3

movw ax, !LOWW(_data0)

 cmpw ax, #0x000B
 skc
.BB@LABEL@1_1:
 incw !LOWW(_data1)

3

3
2

3

13 bytes 11 bytes
Figure 1.4 Output Assembler

RL78 Family C compiler CC-RL Programming Techniques

R01AN3184EJ0110 Rev.1.10 Page 5 of 38

Apr. 10, 2017

1.3 saddr Area

Use the __saddr qualifier or #pragma saddr declaration for frequently used external variables and static variables
within functions.

Allocating variables in the saddr area improves the code.
For a one-bit field especially, the __saddr qualifier or #pragma saddr declaration can be expected to have a large

effect.
Alternatively, the variables/functions information file can be used to allocate variables to the saddr area.

Before Change After Change

typedef struct
{
 unsigned char b0:1;
 unsigned char b1:1;
 unsigned char b2:1;
 unsigned char b3:1;
 unsigned char b4:1;
 unsigned char b5:1;
 unsigned char b6:1;
 unsigned char b7:1;
} BITF;

BITF data0, data1;

void main(void)
{
 data0.b4 = data1.b1;
}

typedef struct
{
 unsigned char b0:1;
 unsigned char b1:1;
 unsigned char b2:1;
 unsigned char b3:1;
 unsigned char b4:1;
 unsigned char b5:1;
 unsigned char b6:1;
 unsigned char b7:1;
} BITF;

__saddr BITF data0, data1;

void main(void)
{
 data0.b4 = data1.b1;
}

Figure 1.5 C Source Code

Before Change After Change
 movw hl, #LOWW(_data1)
 mov1 CY, [hl].1
 movw hl, #LOWW(_data0)
 mov1 [hl].4, CY

3
2
3
2

 mov1 CY, _data1.1

 mov1 _data0.4, CY

3

3

10 bytes 6 bytes
Figure 1.6 Output Assembler

RL78 Family C compiler CC-RL Programming Techniques

R01AN3184EJ0110 Rev.1.10 Page 6 of 38

Apr. 10, 2017

1.4 callt Function

Use the __callt qualifier or #pragma callt declaration for frequently called functions.
The addresses of the functions to be called are stored in the callt table area [80H-BFH], and the functions are called

with a smaller-size code than for direct function calls.

Before Change After Change
void func_sub(void)
{
 …
}

void func(void)
{

func_sub();
:

func_sub();
}

__callt void func_sub(void)
{
 …
}

void func()
{

func_sub();
:

func_sub();
}

Figure 1.7 C Source Code

Before Change After Change

 .SECTION .textf,TEXTF
_func:
 call $!_func_sub

 call $!_func_sub

4

4

 .SECTION .callt0,CALLT0
@_func_sub:
 .DB2 _func_sub

 .SECTION .textf,TEXTF
_func:
 callt [@_func_sub]

 callt [@_func_sub]

2

2

2

8 bytes 6 bytes
Figure 1.8 Output Assembler

Notes:
• A table of addresses for function calls in generated (.callt0).
• Due to generation of this table, code size reduction is effective for a function called only once.
• The CALLT instruction requires more clock cycles for execution that the CALL instruction.
• Alternatively, the variables/functions information file can be used to specify declarations of the functions of the

functions to be called through the CALLT instruction.

RL78 Family C compiler CC-RL Programming Techniques

R01AN3184EJ0110 Rev.1.10 Page 7 of 38

Apr. 10, 2017

1.5 Alignment of Structure Members

In the RL78family of devices, reading or writing in word units cannot start from an odd address;
Data for alignment is inserted by the default option setting so that 2-bytes or larger members are allocated to even

addresses.
Therefore, take care regarding the alignment of structure members and do not leave unused space between members.

Before Change After Change

struct
{
 signed char a;
 signed int b;
 signed char c;
 struct

{
signed int d;

 signed int e;
 } f;
} data;

struct
{
 signed char a;
 signed char c;
 signed int b;
 struct

{
signed int d;

 signed int e;
 } f;
} data;

Figure 1.9 C Source Code

e
 (Upper address)

d

e

d

c

b

b

 c

a a (Lower address)
Before Change After Change Data for alignment

Figure 1.10 Data Allocation in Memory

RL78 Family C compiler CC-RL Programming Techniques

R01AN3184EJ0110 Rev.1.10 Page 8 of 38

Apr. 10, 2017

1.6 Bit Fields and 1-Byte Variable
When the size of bit-field member is two or more bits, use the char type instead of a bit field (two or more bits).
Note that the size of RAM area used will increase when this is done.

Before Change After Change

struct
{
 unsigned char b0:1;
 unsigned char b1:2;
} data;

unsigned char dummy;

if (data.b1)
{
 dummy++;
}

unsigned char data;
unsigned char dummy;

if (data)
{
 dummy++;
}

Figure 1.11 C Source Code

Before Change After Change
 mov a, #0x06
 and a, !LOWW(_data)
 sknz
 ret
 inc, !LOWW(_dummy)
 ret

2
3
2
1
3
1

 comp0, !LOWW(_data)
 sknz
 ret
 inc, !LOWW(_dummy)
 ret

3
2
1
3
1

12 bytes 10 bytes

Figure 1.12 Output Assembler

RL78 Family C compiler CC-RL Programming Techniques

R01AN3184EJ0110 Rev.1.10 Page 9 of 38

Apr. 10, 2017

1.7 Type Conversion

The short type and char type variables are extended to the int type when calculated, and the unsigned short type and
unsigned char type variables are extended to the unsigned int type when calculated. Therefore, many instructions that
perform type conversion are generated in a program that uses these variables. When type conversion is performed in
programming, instructions that perform type conversion are not generated and thus the code size is reduced.

Before Change After Change
void main(void)
{
 unsigned char i;

 for (i = 0; i <4; i++)
 {
 array[2 + i] = *(p + i);
 }
}

void main(void)
{
 int i;

 for (i = 0; i <4; i++)
 {
 array[2 + i] = *(p + i);
 }

}
Figure 1.13 C Source Code

Remark: array[] and *p are global variables.

Before Change After Change

 clrb a
.BB@LABEL@1_1:
 mov x, #0x02
 mov b, a
 mulu x
 movw de, ax
 addw ax, #LOWW(_array+0x00004)
 movw hl, ax
 movw ax, de
 addw ax, !LOWW(_p)
 movw de, ax
 movw ax, [de]
 movw [hl], ax
 inc b
 mov a, b
 cmp a, #0x04
 bnz $.BB@LABEL@1_1

1
2
2
1
2
2
2
2
3
2
1
1
1
2
3
2

 movw de, #LOWW(_array+0x00004)
 clrw ax
.BB@LABEL@1_1:
 movw bc, ax
 addw ax, !LOWW(_p)
 movw hl, ax
 movw ax, [hl]
 movw [de], ax
 incw bc
 incw bc
 movw ax, bc
 cmpw ax, #0x0008
 incw de
 incw de
 bnz $.BB@LABEL@1_1

3
1

2
3
1
1
1
1
1
2
3
1
1
2

29 bytes 23 bytes

Figure 1.14 Output Assembler

RL78 Family C compiler CC-RL Programming Techniques

R01AN3184EJ0110 Rev.1.10 Page 10 of 38

Apr. 10, 2017

1.8 Deleting Induction Variables
A variable that controls a loop is called an induction variable. When loops are controlled using other variables,

induction variables are eliminated, and thus the code size is reduced.

Before Change After Change
int main(void)
{
 int i;

 for (i = 0; *(table + i) != 0; ++i)
 {
 if (x== (*(table + i) & 0xFF))
 {
 return(*(table +i) & 0xFF00);
 }
 }
}

int main(void)
{
 const unsigned short *p;

 for (p = table; *p != 0; ++p)
 {
 if (x == (*p & 0xFF))
 {
 return(*p & 0xFF00);
 }

 }
}

Figure 1.15 C Source Code

Remark: x and *table are global variables.

RL78 Family C compiler CC-RL Programming Techniques

R01AN3184EJ0110 Rev.1.10 Page 11 of 38

Apr. 10, 2017

Before Change After Change

 subw sp, #0x06
 movw hl, sp
 clrw ax
 movw [hl], ax
 movw [sp+0x02], ax
.BB@LABEL@1_1:
 movw bc, !LOWW(_table)
 movw ax, bc
 movw [sp+0x04], ax
 movw ax, [hl]
 addw ax, bc
 movw de, ax
 movw ax, [de]
 cmpw ax, #0x0000
 bz $.BB@LABEL@1_5
.BB@LABEL@1_2:
 clrb a
 cmpw ax, !LOWW(_x)
 bz $.BB@LABEL@1_4
.BB@LABEL@1_3:
 movw ax, [hl]
 incw ax
 incw ax
 movw [hl], ax
 incw [hl+0x02]
 br $.BB@LABEL@1_1
.BB@LABEL@1_4:
 movw ax, [sp+0x02]
 movw bc, ax
 shlw bc, 0x01
 movw ax, [sp+0x04]
 addw ax, bc
 movw de, ax
 movw ax, [de]
 clrb x
 addw sp, #0x06
 ret
.BB@LABEL@1_5:
 clrw ax
 addw sp, #0x06

2
3
1
1
2

3
1
2
1
1
3
1
3
2

1
3
2

1
1
1
1
3
2

2
1
2
2
1
3
1
1
2
1

1
2

 movw de, !LOWW(_table)
.BB@LABEL@1_1:
 movw ax, [de]
 movw bc, ax

 cmpw ax, #0x0000
 bz $.BB@LABEL@1_5
.BB@LABEL@1_2:
 clrb a
 cmpw ax, !LOWW(_x)
 bz $.BB@LABEL@1_4
.BB@LABEL@1_3:

 incw de
 incw de

 br $.BB@LABEL@1_1
.BB@LABEL@1_4:

 movw ax, bc
 clrb x

 ret
.BB@LABEL@1_5:
 clrw ax

3

1
1

3
2

1
3
2

1
1

2

1
1

1

1

60 bytes 24 bytes

Figure 1.16 Output Assembler

RL78 Family C compiler CC-RL Programming Techniques

R01AN3184EJ0110 Rev.1.10 Page 12 of 38

Apr. 10, 2017

1.9 Loop Fusion
Loop fusion refers to integrating different loop statements in the same function into a single one, thus reducing the

number of loop statements. Loop fusion reduces the code size and makes code run faster as well by eliminating the loop
iteration overhead.

Before Change After Change
void main(void)
{
 uint8_t i = 0;
 uint8_t total = 0;
 uint8_t test[10] = {0};

 for (i = 0; i < 10; i++)
 {
 test[i] = CSS;
 }
 for (i = 0; i < 10; i++)
 {
 total += test[i];
 }
}

void main(void)
{
 uint8_t i = 0;
 uint8_t total = 0;
 uint8_t test[10] = {0};

 for (i = 0; i < 10; i++)
 {
 test[i] = CSS;
 total += test[i];
 }
}

Figure 1.17 C Source Code

Before Change After Change
 subw sp, #0x0C
 movw de, #0x000A
 clrw bc
 movw ax, sp
 incw ax
 incw ax
 movw [sp+0x00], ax
 call !!_memset
 mov [sp+0x02], #0x00
 clrb b
.BB@LABEL@1_1:
 mov a, 0xFFFA4
 shr a, 0x06
 and a, #0x01
 mov c, a
 pop hl
 push hl
 mov a, c
 mov [hl+b], a
 inc b
 mov a, b
 cmp a, #0x0A
 bnz $.BB@LABEL@1_1
.BB@LABEL@1_2:
 mov a, #0x0A
.BB@LABEL@1_3:
 dec a
 bnz $.BB@LABEL@1_3
.BB@LABEL@1_4:
 addw sp, #0x0C
 ret

2
3
1
2
1
1
2
4
3
1

3
2
2
1
1
1
1
2
1
1
2
2

2

1
2

2
1

 subw sp, #0x0C
 movw de, #0x000A
 clrw bc
 movw ax, sp
 incw ax
 incw ax
 movw [sp+0x00], ax
 call !!_memset
 mov [sp+0x02], #0x00
 clrb b
.BB@LABEL@1_1:
 mov a, 0xFFFA4
 shr a, 0x06
 and a, #0x01
 mov c, a
 pop hl
 push hl
 mov a, c
 mov [hl+b], a
 inc b
 mov a, b
 cmp a, #0x0A
 bnz $.BB@LABEL@1_1

.BB@LABEL@1_2:
 addw sp, #0x0C
 ret

2
3
1
2
1
1
2
4
3
1

3
2
2
1
1
1
1
2
1
1
2
2

2
1

47 bytes 42 bytes

Figure 1.18 Output Assembler

RL78 Family C compiler CC-RL Programming Techniques

R01AN3184EJ0110 Rev.1.10 Page 13 of 38

Apr. 10, 2017

1.10 Memory Models
The RL78 Family includes a small model that generates code with 16-bit address length and a medium model that

generates code with 20-bit address length.

Model Size Functions Variables
Small model Program: 64Kbytes or smaller; Data 64Kbytes or smaller near near
Medium model Program: 64Kbytes or larger; Data: 64Kbytes or smaller far near

Figure 1.19 Memory Model Type

If a program exceeds 64Kbytes, select the medium model. Adding the __near modifier to a frequently called function
during programming reduces the code size.

However, when the __near modifier and the __far modifier are added, a pointer variable type handling them must
match.

RL78 Family C compiler CC-RL Programming Techniques

R01AN3184EJ0110 Rev.1.10 Page 14 of 38

Apr. 10, 2017

2. Faster Execution Speed

2.1 Consecutive Access to Array
When accessing an array consecutively in a loop, use a pointer variable. Without the use of a pointer variable, the

process to obtain a real address from an array subscript may be output every time and thus the execution speed may
slow down.

Note: The execution times of the programs in this chapter are all measured by using the RL78 simulator in the CS+

integrated development environment.

Before Change After Change
int i;

sum = 0;

for (i = 0; i < 10; i++)
{
 sum += array[i];
}

int i;
int *p;

sum = 0;
p = &array[0];

for (i = 0; i < 10; i++)
{
 sum += *p++;
}

Figure 2.1 C Source Code Example

Remark: sum and array[] are global variables.

Before Change After Change
 clrb a
 mov c, a
 mov b, a
.BB@LABEL@1_1:
 mov a, c
 shrw ax, 8+0x00000
 addw ax, #LOWW(_array)
 movw hl, ax
 mov a, b
 add a, [hl]
 mov b, a
 mov !LOWW(_sum), a
 mov a, c
 inc a
 mov c, a
 cmp a, #0x0A
 bnz $.BB@LABEL@1_1
.BB@LABEL@1_2:
 ret

1
1
1

1
2
3
3
1
1
1
3
1
1
1
2
2

1

 mov d, #0x00
 movw hl, #LOWW(_array)
 movw bc, #0x000A
.BB@LABEL@1_1:
 mov a, d

 add a, [hl]
 mov d, a
 mov !LOWW(_sum), a
 movw ax, bc
 addw ax, #0xFFFF
 movw bc, ax
 incw hl
 bnz $.BB@LABEL@1_1
.BB@LABEL@1_2:
 ret

2
3
3

1

1
1
3
1
3
3
1
2

1

26 bytes 25 bytes

Execution Time: 636 cycles / 19.875 µs (at 32MHz) Execution Time: 476 cycles / 14.875 µs (at 32MHz)

Figure 2.2 Output Assembler

RL78 Family C compiler CC-RL Programming Techniques

R01AN3184EJ0110 Rev.1.10 Page 15 of 38

Apr. 10, 2017

2.2 Access to Global Variable

Do not use a global variable in a loop if possible.
If used, the address calculation and memory access (load/store instruction) may be output every time; replace a global

variable with a local variable.

Before Change After Change
int i;
int *p;

sum = 0;
p = &array[0];

for (i = 0; i < 10; i++)
{
 sum += *p++;
}

int i;
int *p;
int tmp;

tmp = 0;
p = &array[0];

for (i = 0; i < 10; i++)
{
 tmp += *p++;
}

sum = tmp;

Figure 2.3 C Source Code Example

Remark: sum and array[] are global variables.

Before Change After Change
 mov d, #0x00
 movw hl, #LOWW(_array)
 movw bc, #0x000A
.BB@LABEL@1_1:
 mov a, d
 add a, [hl]
 mov d, a
 mov !LOWW(_sum), a
 movw ax, bc
 addw ax, #0xFFFF
 movw bc, ax
 incw hl
 bnz $.BB@LABEL@1_1
.BB@LABEL@1_2:

 ret

2
3
3

1
1
1
3
1
3
3
1
2

1

 mov d, #0x00
 movw hl, #LOWW(_array)
 movw bc, #0x000A
.BB@LABEL@1_1:
 mov a, d
 add a, [hl]
 mov d, a

 movw ax, bc
 addw ax, #0xFFFF
 movw bc, ax
 incw hl
 bnz $.BB@LABEL@1_1
.BB@LABEL@1_2:
 mov a, d
 mov !LOWW(_sum), a
 ret

2
3
3

1
1
1

1
3
3
1
2

1
3
1

25 bytes 26 bytes

Execution Time: 476 cycles / 14.875 µs (at 32MHz) Execution Time:444 cycles / 13.875 µs (at 32MHz)

Figure 2.4 Output Assembler

RL78 Family C compiler CC-RL Programming Techniques

R01AN3184EJ0110 Rev.1.10 Page 16 of 38

Apr. 10, 2017

2.3 if Statement in Loop

The use of an if statement in the loop processing should be avoided if possible.
The execution speed may slow down due to the if statement processing output for each loop.

Before Change After Change

int i = 0;
int j = 0;

for (i = 0; i < N; i++)
{

for (j = 0; j < N; j++)
 {
 if (i != j)
 {
 A[i][j] = B[i][j];
 }
 else
 {
 A[i][j] = 1;
 }
 }
}

int i = 0;
int j = 0;

for (i = 0; i < N; i++)
{

for (j = 0; j < N; j++)
 {
 A[i][j] = B[i][j];
 }
}

for (i=0; i < N; i++)
{
 A[i][i] = 1U;
}

Figure 2.5 C Source Code Example

Remark: A[][] and B[][] are global variables and N is 10.

RL78 Family C compiler CC-RL Programming Techniques

R01AN3184EJ0110 Rev.1.10 Page 17 of 38

Apr. 10, 2017

Before Change After Change

 push hl
 clrb a
 br $.BB@LABEL@1_9
.BB@LABEL@1_1: ; bb44
 cmp a, !LOWW(_N)
 bnc $.BB@LABEL@1_10
.BB@LABEL@1_2:
 clrb a
.BB@LABEL@1_3:
 mov e, a
.BB@LABEL@1_4:
 cmp a, !LOWW(_N)
 bnc $.BB@LABEL@1_8
.BB@LABEL@1_5:
 mov a, d
 mov x, #0x0A
 mulu x
 movw bc, ax
 mov a, e
 shrw ax, 8+0x00000
 addw ax, bc
 movw [sp+0x00], ax
 mov a, e
 cmp d, a
 oneb b
 bz $.BB@LABEL@1_7
.BB@LABEL@1_6:
 pop bc
 push bc
 mov a, LOWW(_B)[bc]
 mov b, a
.BB@LABEL@1_7:
 movw ax, [sp+0x00]
 xchw ax, bc
 mov LOWW(_A)[bc], a
 mov a, e
 inc a
 br $.BB@LABEL@1_3
.BB@LABEL@1_8:
 mov a, d
 inc a
.BB@LABEL@1_9
 mov d, a
 br $.BB@LABEL@1_1
.BB@LABEL@1_10:
 pop hl
 ret

1
1
2

3
2

1

1

3
2

1
2
1
3
1
2
1
2
1
2
1
2

1
1
3
1

2
1
3
1
1
2

1
1

1
2

1
1

 mov d, #0x00
.BB@LABEL@1_1:
 mov a, !LOWW(_N)
 mov h, a
 cmp d, a
 bc $.BB@LABEL@1_6
.BB@LABEL@1_2:
 clrb a
.BB@LABEL@1_3:
 mov l, a
.BB@LABEL@1_4:
 cmp a, h
 bnc $.BB@LABEL@1_11
.BB@LABEL@1_5
 shrw ax, 8+0x00000
 movw de, ax
 push de
 pop bc
 shlw bc, 0x03
 movw ax, de
 addw ax, ax
 addw ax, bc
 addw ax, #LOWW(_A)
 addw ax, de
 movw de, ax
 mov [de+0x00], #0x01
 mov a, l
 inc a
 br $.BB@LABEL@1_3
.BB@LABEL@1_6:
 clrb a
.BB@LABEL@1_7:
 mov e, a
.BB@LABEL@1_8:
 cmp a, !LOWW(_N)
 bnc $.BB@LABEL@1_10
.BB@LABEL@1_9:
 mov a, d
 mov x, #0x0A
 mulu x
 movw bc, ax
 mov a, e
 shrw ax, 8+0x00000
 addw ax, bc
 movw bc, ax
 mov a, LOWW(_B)[bc]
 mov LOWW(_A)[bc], a
 mov a, e
 inc a
 br $.BB@LABEL@1_7
.BB@LABEL@1_10:
 inc d
 br $.BB@LABEL@1_1
.BB@LABEL@1_11:
 ret

2

3
1
2
2

1

1

2
2

2
3
1
1
2
2
1
1
3
1
2
3
1
1
2

1

1

3
2

1
2
1
3
1
2
1
3
3
3
1
1
2

1
2

1

58 bytes 77 bytes

Execution Time: 12600 cycles / 393.75 µs (at 32MHz) Execution Time: 9596 cycles / 299.875 µs (at 32MHz)

Figure 2.6 Output Assembler

RL78 Family C compiler CC-RL Programming Techniques

R01AN3184EJ0110 Rev.1.10 Page 18 of 38

Apr. 10, 2017

2.4 End Condition for Loop

If a comparison expression with 0 is used as an end condition for a loop, the calculation of the end condition for one
loop may become faster. In addition, the number of registers used may decrease.

Before Change After Change
int i;
int Height;
int Width;
int *p;
int s;

p = &array[0][0];
s = Height * Width;
for (i = 0; i < s; i++)
{
 *p++ = 0;
}

int i;
int Height
int Width
int *p;

p = &array[0][0];
for (i = Height * Width; i > 0; i--)
{

*p++ = 0;
}

Figure 2.7 C Source Code Example

Remark: array[][] is a global variable.

Before Change After Change
 movw de, #LOWW(_array)
 clrw ax
.BB@LABEL@1_1:
 cmpw ax, #0x0032
 bz $.BB@LABEL@1_3
.BB@LABEL@1_2:
 mov [de+0x00], #0x00
 incw ax
 incw de
 br $.BB@LABEL@1_1
.BB@LABEL@1_3:
 ret

3
1

3
2

3
1
1
2

1

 movw de, #LOWW(_array)

 movw ax, #0x0032

.BB@LABEL@1_1:
 mov [de+0x00], #0x00
 addw ax, #0xFFFF
 incw de
 bnz $.BB@LABEL@1_1
.BB@LABEL@1_2:
 ret

3

3

3
3
1
2

1

17 bytes 16 bytes
Execution Time: 1812 cycles / 56.625 µs (at 32MHz) Execution Time: 1392 cycles / 43.5 µs (at 32MHz)

Figure 2.8 Output Assembler

RL78 Family C compiler CC-RL Programming Techniques

R01AN3184EJ0110 Rev.1.10 Page 19 of 38

Apr. 10, 2017

2.5 Optimizing Pointer Variables
Optimizing pointer variables speeds up the calculation.

Before Change After Change

int i;
int *p;

p = array;
for (i = N >> 2; i > 0; i--)
{

*p++ = 0;
*p++ = 0;
*p++ = 0;
*p++ = 0;

}
for (i = N & 3; i > 0; i--)
{
 *p++ =0;
}

int i;
int *p;

p = array;
for (i = N >> 2; i > 0; i--)
{

*(p+0) = 0;
*(p+1) = 0;
*(p+2) = 0;
*(p+3) = 0;

}
for (i = N & 3; i > 0; i--)
{
 *p++ =0;
}

Figure 2.9 C Source Code Example

Remark: array[] is a global variable and N is 10.

RL78 Family C compiler CC-RL Programming Techniques

R01AN3184EJ0110 Rev.1.10 Page 20 of 38

Apr. 10, 2017

Before Change After Change

 subw sp, #0x06
 mov a, !LOWW(_N)
 mov [sp+0x02], a
 shr a, 0x02
 shrw ax, 8+0x00000
 movw hl, ax
 clrw bc
 movw ax, #LOWW(_array)
 movw [sp+0x00], ax
.BB@LABEL@1_1:
 movw ax, bc
 shlw ax, 0x02
 movw [sp+0x04], ax
 movw ax, bc
 cmpw ax, hl
 bz $.BB@LABEL@1_3
.BB@LABEL@1_2:
 pop de
 push de
 mov [de+0x00], #0x00
 incw de
 mov [de+0x00], #0x00
 incw de
 mov [de+0x00], #0x00
 movw ax, [sp+0x00]
 addw ax, #0x0003
 movw de, ax
 mov [de+0x00], #0x00
 movw ax, [sp+0x00]
 addw ax, #0x0004
 movw [sp+0x00], ax
 incw bc
 br $.BB@LABEL@1_1
.BB@LABEL@1_3:
 mov a, [sp+0x02]
 and a, #0x03
 shrw ax, 8+0x00000
 movw hl, ax
 clrw ax
 movw de, ax
.BB@LABEL@1_4:
 movw ax, de
 cmpw ax, hl
 bz $.BB@LABEL@1_6
.BB@LABEL@1_5:
 movw ax, [sp+0x04]
 addw ax, de
 movw bc, ax
 mov LOWW(_array)[bc], #0x00
 incw de
 br $.BB@LABEL@1_4
.BB@LABEL@1_6:
 addw sp, #0x06
 ret

2
3
2
2
2
3
1
4
2

1
2
2
2
1
2

1
1
3
1
3
1
3
2
3
1
3
2
3
2
1
2

2
2
2
1
1
1

1
1
2

2
1
1
4
1
2

2
1

 mov a, !LOWW(_N)
 mov b, a
 shr a, 0x02
 mov x, a
 clrb a
.BB@LABEL@1_1:
 cmp a, x
 bz $.BB@LABEL@1_3
.BB@LABEL@1_2:
 clrb !LOWW(_array)
 clrb !LOWW(_array+0x00001)
 clrb !LOWW(_array+0x00002)
 clrb !LOWW(_array+0x00003)
 inc a
 br $.BB@LABEL@1_1
.BB@LABEL@1_3:
 mov a, b
 and a, #0x03
 shrw ax, 8+0x00000
 movw bc, ax
 movw de, #LOWW(_array)
 clrw ax
.BB@LABEL@1_4:
 cmpw ax, bc
 bz $.BB@LABEL@1_6
.BB@LABEL@1_5:
 mov [de+0x00], #0x00
 incw ax
 incw de
 br $.BB@LABEL@1_4
.BB@LABEL@1_6:
 ret

3
1
2
1
1

2
2

3
3
3
3
1
2

1
2
2
1
3
1

1
2

3
1
1
2

1

90 bytes 48 bytes
Execution Time: 400 cycles / 12.5 µs (at 32MHz) Execution Time: 228 cycles / 7.125 µs (at 32MHz)

Figure 2.10 Output Assembler

RL78 Family C compiler CC-RL Programming Techniques

R01AN3184EJ0110 Rev.1.10 Page 21 of 38

Apr. 10, 2017

2.6 Faster Execution Using Level of optimization in Integrated Development
Environment

The execution speed can be improved by using the appropriate level of optimization in the integrated development
environment.

2.6.1 Settings in e2 studio Integrated Development Environment
1 Select a project from Project Explorer in the e2 studio integrated development environment and right-click the

project to show the menu, and then click [Properties].

Figure 2.11 Project Explorer

RL78 Family C compiler CC-RL Programming Techniques

R01AN3184EJ0110 Rev.1.10 Page 22 of 38

Apr. 10, 2017

2 Click [Settings] in [C/C++ Build] and open the Settings window. Choose [Compiler] [Optimization] and change
the [Level of optimization] item to [Speed Precedence].

3 Execution Example

The following shows the output assembler codes, as reference examples, when the level of optimization in the e2
studio integrated development environment is actually changed for the same source code (Figure 2.13 C Source
Code) and the build is performed.

Source Code Used

int i;
int Height;
int Width;
int *p;
int s;

p = &array[0][0];
s = Height * Width;
for (i = 0; i < s; i++)
{
 *p++ = 0;
}

Figure 2.13 C Source Code Example

Remark: array[][] is a global variable.

Figure 2.12 Properties

RL78 Family C compiler CC-RL Programming Techniques

R01AN3184EJ0110 Rev.1.10 Page 23 of 38

Apr. 10, 2017

Code Size Precedence Speed Precedence Debug Precedence

 movw de, #0xf900
 clrw ax
 cmpw ax, #50
 bz $0x220 <main+16>
 mov [de], #0
 incw ax
 incw de
 br $0x214 <main+4>
 ret

3
1
3
2
3
1
1
2
1

 push hl
 movw ax, #0xf900
 movw [sp], ax
 movw bc, #25
 pop de
 push de
 mov [de], #0
 incw de
 mov [de], #0
 movw ax, [sp]
 addw ax, #2
 movw [sp], ax
 movw ax, bc
 addw ax, #0xffff
 movw bc, ax
 bnz $0x219 <main+9>
 pop hl
 ret

1
3
2
4
1
1
3
1
3
2
3
2
1
3
1
2
1
1

 subw sp, #6
 mov [sp], #0
 mov [sp+2], #10
 mov [sp+3], #5
 mov [sp+1], #0
 movw ax, #0xf900
 movw [sp+4], ax
 mov a, [sp+3]
 mov x, a
 mov a, [sp+2]
 mulu x
 mov a, x
 mov [sp+1], a
 mov [sp], #0
 br $0x26e <main+49>
 movw ax, [sp+4]
 movw de, ax
 mov [de], #0
 movw ax, [sp+4]
 incw ax
 movw [sp+4], ax
 mov a, [sp]
 inc a
 mov [sp], a
 mov a, [sp+1]
 shrw ax, 8
 movw bc, ax
 mov a, [sp]
 shrw ax, 8
 cmpw ax, bc
 bc $0x25e <main+33>
 addw sp, #6
 ret

2
3
3
3
3
3
2
2
2
2
1
2
2
3
2
2
1
3
2
1
2
2
1
2
2
2
1
2
2
1
2
2
1

17 bytes 35 bytes 66 bytes

Execution Time: 1802 cycles /
56.3125 µs (at 32MHz)

Execution Time: 1694 cycles /
52.9375 µs (at 32MHz)

Execution Time: 2942 cycles /
91.9375 µs (at 32MHz)

Figure 2.14 Output Assembler

RL78 Family C compiler CC-RL Programming Techniques

R01AN3184EJ0110 Rev.1.10 Page 24 of 38

Apr. 10, 2017

2.6.2 Settings in CS+ Integrated Development Environment

1 .Select [CC-RL (Build Tool)] from Project Tree in the CS+ integrated development environment and right-click it to
show the menu, and then click [Property].

Figure 2.15 Project Tree

RL78 Family C compiler CC-RL Programming Techniques

R01AN3184EJ0110 Rev.1.10 Page 25 of 38

Apr. 10, 2017

2 .Select the [Compile Options] tab in [Property] of CC-RL and change the [Level of optimization] item in
[Optimization] to [Speed precedence(-Ospeed)].

Figure 2.16 Compile Option

3 .The level of optimization for each file can also be individually changed by setting [Level of optimization] to other
than [Perform the default optimization(None)] in the setting of 2.

RL78 Family C compiler CC-RL Programming Techniques

R01AN3184EJ0110 Rev.1.10 Page 26 of 38

Apr. 10, 2017

4 .Select a file of which you want to change the level of optimization from Project Tree and right-click the file to show
the menu, and then click [Property].

Figure 2.17 Project Tree

5 .In the [Build Settings] tab, set a build item of [Set individual compile option] to [Yes].

Figure 2.18 File Property

RL78 Family C compiler CC-RL Programming Techniques

R01AN3184EJ0110 Rev.1.10 Page 27 of 38

Apr. 10, 2017

6 .Select the added [Individual Compile Options] tab and change the [Level of optimization] item in [Optimization] to
[Speed precedence(-Ospeed)].

Figure 2.19 Individual Compile Option

7 .Execution Example

The following shows the output assembler codes, as reference examples, when the compile option in the CS+
integrated development environment is actually changed for the same source code (Figure 2.20) and the build is
performed.

Source Code Used

int i;
int Height;
int Width;
int *p;
int s;

p = &array[0][0];
s = Height * Width;
for (i = 0; i < s; i++)
{
 *p++ = 0;
}

Figure 2.20 C Source Code Example

Remark: array[][] is a global variable.

RL78 Family C compiler CC-RL Programming Techniques

R01AN3184EJ0110 Rev.1.10 Page 28 of 38

Apr. 10, 2017

Code Size Precedence Speed Precedence Debug Precedence

 movw de, #LOWW(_array)
 clrw ax
.BB@LABEL@1_1:
 cmpw ax, #0x0032
 bz $.BB@LABEL@1_3
.BB@LABEL@1_2:
 mov [de+0x00], #0x00
 incw ax
 incw de
 br $.BB@LABEL@1_1
.BB@LABEL@1_3:
 ret

3
1

3
2

3
1
1
2

1

 push hl
 movw ax, #LOWW(_array)
 movw [sp+0x00], ax
 movw bc, #0x0032
.BB@LABEL@1_1:
 pop de
 push de
 mov [de+0x00], #0x00
 incw de
 mov [de+0x00], #0x00
 movw ax, [sp+0x00]
 addw ax, #0x0002
 movw [sp+0x00], ax
 movw ax, bc
 addw ax, #0xFFFF
 movw bc, ax
 bnz $.BB@LABEL@1_1
.BB@LABEL@1_2:
 pop hl
 ret

1
3
2
4

1
1
3
1
3
2
3
2
1
3
1
2

1
1

 subw sp, #0x06
 mov [sp+0x00], #0x00
.BB@LABEL@1_1:
 mov [sp+0x02], #0x05
.BB@LABEL@1_2:
 mov [sp+0x03], #0x0A
.BB@LABEL@1_3:
 mov [sp+0x01], #0x00
.BB@LABEL@1_4:
 movw ax, #LOWW(_array)
 movw [sp+0x04], ax
.BB@LABEL@1_5:
 mov a, [sp+0x03]
 mov x, a
 mov a, [sp+0x02]
 mulu x
 mov a, x
 mov [sp+0x01], a
.BB@LABEL@1_6:
 mov [sp+0x00], #0x00
 br $.BB@LABEL@1_8
.BB@LABEL@1_7:
 movw ax, [sp+0x04]
 movw de, ax
 mov [de+0x00], #0x00
 movw ax, [sp+0x04]
 incw ax
 movw [sp+0x04], ax
 mov a, [sp+0x00]
 inc a
 mov [sp+0x00], a
.BB@LABEL@1_8:
 mov a, [sp+0x01]
 shrw ax, 8+0x00000
 movw bc, ax
 mov a, [sp+0x00]
 shrw ax, 8+0x00000
 cmpw ax, bc
 bc $.BB@LABEL@1_7
.BB@LABEL@1_9:
 addw sp, #0x06
 ret

2
3

3

3

3

3
2

2
2
2
1
2
2

3
2

2
1
3
2
1
2
2
1
2

2
2
1
2
2
1
2

2
1

17 bytes 35 bytes 66 bytes

Execution Time: 1812 cycles /
56.625 µs (at 32MHz)

Execution Time: 1500 cycles /
46.875 µs (at 32MHz)

Execution Time: 4088 cycles /
127.75 µs (at 32MHz)

Figure 2.21 Output Assembler

RL78 Family C compiler CC-RL Programming Techniques

R01AN3184EJ0110 Rev.1.10 Page 29 of 38

Apr. 10, 2017

3. Programming Techniques to Avoid Bugs

3.1 Writing Conditional Expression’s Value on Left Side of Operator
It is not recommended to write a variable on the left side of the operator in the conditional expression as in Figure

3.1.

#define VAL_OK 1

if (ret == VAL_OK)
{

sub();
}

Figure 3.1 Bad Description Example (1)

This is because a description mistake may be overlooked. As in Figure 3.2, even if the assignment operator (=) is
placed instead of the equality operator (==), a compile error does not occur during compilation (a warning occurs) and
an execution file is generated.

#define VAL_OK 1

if (ret = VAL_OK)
{
 sub();
}

Figure 3.2 Bad Description Example (2)

In order to avoid a case like the above, it is recommended to write a value for the conditional expression on the left
side of the operator.

#define VAL_OK 1

if (VAL_OK == ret)
{
 sub();
}
Figure 3.3 Good Description Example

If written as in Figure 3.3, a change from the equality operator (==) to the assignment operator (=) can be noticed as a
programming mistake because a compile error is produced during compilation.

RL78 Family C compiler CC-RL Programming Techniques

R01AN3184EJ0110 Rev.1.10 Page 30 of 38

Apr. 10, 2017

3.2 Magic Number

It is recommended to define a constant that has meaning as a macro and use it and not to use a magic number
(immediate value). The meaning of a constant can be clearly indicated by defining it as a macro. Especially, when
changing a constant used in multiple locations, only one macro needs to be changed. This prevents a mistake from
happening in advance.

Before Change After Change
if (8 == cnt)
{
 cnt++;
}

#define CNTMAX 8
if (CNTMAX == cnt)
{
 cnt++:
}

Figure 3.4 C Source Code Example

3.3 Calculation That Might Cause Information Loss
Attention is required when variables of different types are calculated. A variable value may be changed (information

might be lost). When intentionally assigning a value to a different type, write a type conversion to explicitly indicate
that intention.

If the calculation results in a value outside the value range that can be expressed in the type, an unintended value may
be produced. It is recommended to confirm before the calculation that the calculation result is within the value range
that can be expressed in the type. Or convert to a type that can handle a bigger value before the calculation.

Before Change After Change
/* Assignment example */
short s;
long l;

void main(void)
{
 s = l;
 s = s + 1;
}

/* Calculation example */
unsigned int n;
unsigned int m;

n = 0x8000;
m = 0x8000;

if (0xffff < (n + m))
{
 …
}

/* Assignment example */
short s;
long l;

void main(void)
{
 s = (short)l;
 s = (short)(s + 1);
}

/* Calculation example */
unsigned int n
unsigned int m;

n = 0x8000;
m = 0x8000;

if (0xffff < ((long)n + m))
{
 …
}

Figure 3.5 C Source Code Example

RL78 Family C compiler CC-RL Programming Techniques

R01AN3184EJ0110 Rev.1.10 Page 31 of 38

Apr. 10, 2017

3.4 Type Conversion to Remove const and volatile

Because the areas modified by const or volatile are the areas that are only referenced and are not allowed to be
optimized, attention is required when accessing these areas. If a cast is performed on pointer variables pointing to these
areas to remove const or volatile, the compiler may not be able to check a program for erroneous descriptions, or
unintended optimization may be performed.

Before Change After Change
void sub(char *);
const char *p;
void main(void)
{
 sub((char*)p);
 …
}

void sub(char *);
const char *p;
void main(void)
{
 sub(p);
 …
}

Figure 3.6 C Source Code Example

3.5 Prohibition of Recursive Call
A function is not allowed to call the function itself irrespective of whether it is direct or indirect (prohibition of

recursive call). Because the stack size to be used during execution cannot be predicted for a recursive call, it may cause
a stack overflow.

unsigned int calc(unsigned int n)
{
 if (1 >= n)

{
 return (1);
}
else
{

return (n * calc(n-1));
 }

}
Figure 3.7 Bad Description Example

RL78 Family C compiler CC-RL Programming Techniques

R01AN3184EJ0110 Rev.1.10 Page 32 of 38

Apr. 10, 2017

3.6 Localizing Access Range and Related Data

1 .Declare a variable accessed from multiple functions in the same file as a static variable.

The fewer the number of global functions is, the more the readability in understanding the entire program improves.

Include a static specifier so that the number of global functions do not increase unnecessarily.

Before Change After Change
int n;
void func1(void)
{
 …
 n = 0;
 …
}

void func2(void)
{
 if (0 == n)
 {

 n++;
}
…

}

static int n;
void func1(void)
{
 …
 n = 0;
 …
}

void func2(void)
{
 if (0 == n)
 {

 n++;
}
…

}
Figure 3.8 C Source Code Example

Remark: n is a variable that cannot be accessed from other files.

2 .If a function is referenced only by a function defined in the same file, write it as a static function.

The fewer the number of global functions is, the more the readability in understanding the entire program improves.

Include a static specifier so that the number of global functions do not increase unnecessarily.

Before Change After Change
void sub(void)
{
 …
 …
}

void main(void)
{

…
sub();
…

}

static void sub(void)
{
 …
 …
}

void main(void)
{

…
sub();
…

}
Figure 3.9 C Source Code Example

Remark: sub is a function that is not called by other files.

RL78 Family C compiler CC-RL Programming Techniques

R01AN3184EJ0110 Rev.1.10 Page 33 of 38

Apr. 10, 2017

3 .When defining a related constant, use enum rather than #define.

If each related constant is defined with the enum type, an undefined usage can be checked by a compiler or other

software.
The macro name defined by #define is expanded as a macro and is not turned into a name processed by a compiler.

On the other hand, the enum constant defined by the enum declaration is tuned into a name processed by a compiler.
The name processed by a compiler can be referenced during debugging, which makes debugging easier.

Before Change After Change
#define JANUALY 0
#define FEBRUALY 1
#define SUNDAY 0
#define MONDAY 1
int month;
int day;

…
if (JANUALY == month)
{
 …
 if (MONDAY == day)

{
 …
 …
}

}

if (SUNDAY == month) Does not cause an error
{

…
…

}

typedef enum
{
 JANUALY, FEBRUALY, …
} month;
typedef enum
{
 SUNDAY, MONDAY, …
} day;
…
if (JANUALY == month)
{
 …
 if (MONDAY == day)

{
 …
 …
}

}

if (SUNDAY == month) Causes an error
{

…
…

}
Figure 3.10 C Source Code Example

RL78 Family C compiler CC-RL Programming Techniques

R01AN3184EJ0110 Rev.1.10 Page 34 of 38

Apr. 10, 2017

3.7 Exception Processing of Branch Condition

1 .Place the else clause at the end of the if-else if statement. Especially when a condition of else does not usually occur,
include the exception processing or a comment that was predefined by a project in the else clause.

If the else clause is not included in the if-else statement, it is not clear whether inclusion of the else clause is forgotten
or whether the else clause does not occur. Even when it is known beforehand that an else condition does not occur, the
program operation when an unexpected condition occurs can be predicted by including the else clause.

Before Change After Change
if (0 == var)
{
 …
}
else if (0 < var)
{
 …
}

if (0 == var)
{
 …
}
else if (0 < var)
{
 …
}
else
{
 /* Description of exception processing or comment */
}

Figure 3.11 C Source Code Example

RL78 Family C compiler CC-RL Programming Techniques

R01AN3184EJ0110 Rev.1.10 Page 35 of 38

Apr. 10, 2017

2 .Place the default clause at the end of the switch statement. Especially when a default condition does not usually occur,
include the exception processing or a comment that was predefined by a project in the default clause.

If the default clause is not included in the switch statement, it is not clear whether inclusion of the default clause is

forgotten or whether the default clause does not occur. Even when it is known beforehand that a default condition does
not occur, the program operation when an unexpected condition occurs can be predicted by including the default clause.

Before Change After Change
switch (var)
{
 case 0:
 …
 break;

 case 1:
 …
 break;
}

switch (var)
{
 case 0:
 …
 break;

 case 1:
 …
 break;

 default:
 /* Description of exception processing or comment */
 break;
}

Figure 3.12 C Source Code Example

3 .Do not use an equality operator (==) or an inequality operator (!=) for comparing a loop counter.

If the value of a loop counter change is not 1, an infinite loop may be entered.

Before Change After Change
void main(void)
{
 int i = 0;
 for (i = 0; i != 11; i += 2)
 {
 …
 …
 }
}

void main(void)
{
 int i = 0;
 for (i = 0; i < 11; i += 2)
 {
 …
 …
 }
}

Figure 3.13 C Source Code Example

RL78 Family C compiler CC-RL Programming Techniques

R01AN3184EJ0110 Rev.1.10 Page 36 of 38

Apr. 10, 2017

3.8 Consideration for Special Description
1 .If intentionally writing statements that do nothing, use a comment or an empty macro to indicate the intention.

Before Change After Change
for (;;)
{
}

i = CNT;
while (0 < (--i));

/* Example of using comment */
for (;;)
{
 /* Interrupt wait time */
}

/* Example of using empty macro */
#define NO_OPERATION
i = CNT;
while (0 < (--i))
{
 NO_OPERATION;
}

Figure 3.14 C Source Code Example

2 .Specify how to write an infinite loop.

Specify how to write an infinite loop and make the writing style consistent.

Example:
- Make an infinite loop consistent using for (;;).
- Make an infinite loop consistent using while (1).
- Make an infinite loop consistent using do … while (1).
- Use an infinite loop written as a macro.

Including infinite loops written in different writing styles in the same project may deteriorate maintainability.

RL78 Family C compiler CC-RL Programming Techniques

R01AN3184EJ0110 Rev.1.10 Page 37 of 38

Apr. 10, 2017

3.9 Deleting Unused Description

1 .Do not define a function, variable, argument, typedef, label, macro, etc. that are not used.

As it is difficult to determine whether the definition of an unused function (such as variable/argument/label) is a

description error or not, maintainability is reduced.

Before Change After Change
void main(int n)
{
 /* n is not used in the main function */
 …
}

void main(void)
{
 …
}

Figure 3.15 C Source Code Example

2 .Do not comment out code.

Avoid use of invalid code if possible because the code readability is lost.
However, if code needs to be disabled for debugging, etc., write code according to the predefined rule (such as

enclosing with #if 0) instead of commenting out.

Before Change After Change
…
// i++
…

…
#if 0 /* Temporarily disabled for debugging */
 i++
#endif
…

Figure 3.16 C Source Code Example

RL78 Family C compiler CC-RL Programming Techniques

R01AN3184EJ0110 Rev.1.10 Page 38 of 38

Apr. 10, 2017

4. Sample Code

Sample code can be downloaded from the Renesas Electronics website.

5. Reference Documents

RL78 family User’s Manual: Software (R01US0015E)

RL78 Compiler CC-RL User’s Manual (R20UT3123E)

CC-RL C Compiler for RL78 Family Coding Techniques (R02UT3569E)

(The latest information can be downloaded from the Renesas Electronics website.)

Website and Support

Renesas Electronics website
http://japan.renesas.com/

Inquiries

http://japan.renesas.com/inquiry

A-1

Revision Record
RL78 Family C compiler CC-RL

Programming Technique

Rev. Date
Description

Page Summary

1.00 Sep. 20, 2016 — First edition issued.
1.10 Apr. 10, 2017 14-28 Execution Time modification.

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas.
For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well
as any technical updates that have been issued for the products.

1. Handling of Unused Pins
Handle unused pins in accordance with the directions given under Handling of Unused Pins in the
manual.
¾ The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
¾ The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
¾ The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.
¾ When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to a product with a different part number, confirm
that the change will not lead to problems.
¾ The characteristics of Microprocessing unit or Microcontroller unit products in the same group but

having a different part number may differ in terms of the internal memory capacity, layout pattern,
and other factors, which can affect the ranges of electrical characteristics, such as characteristic
values, operating margins, immunity to noise, and amount of radiated noise. When changing to a
product with a different part number, implement a system-evaluation test for the given product.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by

you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other disputes involving patents, copyrights, or other intellectual property rights of third parties, by or

arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawing, chart, program, algorithm, application

examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages

incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics products.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the

product’s quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

 Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (space and undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas

Electronics disclaims any and all liability for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas

Electronics.

6. When using the Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the

reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat radiation

characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions or failure or accident arising out of the use of Renesas Electronics products beyond such specified

ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics such as the occurrence of failure at a

certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please ensure to implement safety measures to guard them

against the possibility of bodily injury, injury or damage caused by fire, and social damage in the event of failure or malfunction of Renesas Electronics products, such as safety design for hardware and

software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures by your own responsibility as warranty

for your products/system. Because the evaluation of microcomputer software alone is very difficult and not practical, please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please investigate applicable laws and

regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive carefully and sufficiently and use Renesas Electronics products in compliance with all

these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws

or regulations. You shall not use Renesas Electronics products or technologies for (1) any purpose relating to the development, design, manufacture, use, stockpiling, etc., of weapons of mass destruction,

such as nuclear weapons, chemical weapons, or biological weapons, or missiles (including unmanned aerial vehicles (UAVs)) for delivering such weapons, (2) any purpose relating to the development,

design, manufacture, or use of conventional weapons, or (3) any other purpose of disturbing international peace and security, and you shall not sell, export, lease, transfer, or release Renesas Electronics

products or technologies to any third party whether directly or indirectly with knowledge or reason to know that the third party or any other party will engage in the activities described above. When exporting,

selling, transferring, etc., Renesas Electronics products or technologies, you shall comply with any applicable export control laws and regulations promulgated and administered by the governments of the

countries asserting jurisdiction over the parties or transactions.

10. Please acknowledge and agree that you shall bear all the losses and damages which are incurred from the misuse or violation of the terms and conditions described in this document, including this notice,

and hold Renesas Electronics harmless, if such misuse or violation results from your resale or making Renesas Electronics products available any third party.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2017 Renesas Electronics Corporation. All rights reserved.
Colophon 6.0

(Rev.3.0-1 November 2016)

http://www.renesas.com
http://www.renesas.com/

