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 Application Note

 

Abstract
This application note describes calculating amplifier circuit noise by using the noise parameters from the op-amp 
datasheet; for engineers new to the subject of op-amp noise, the document guides you in calculating the possible 
output noise for common amplifier circuits.
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Noise Calculations of Op-Amp Circuits

1. Introduction
Due to its random nature, noise is computed using root-mean-square (rms) values of noise voltages and noise 
currents. However, op-amp data sheets commonly specify noise voltage and current in the form of spectral 
densities. This application note provides the necessary equations to convert noise spectral densities into rms 
noise.

To distinguish between signal and noise quantities as well as between rms noise and spectral densities, this 
document uses the following nomenclature:

VS = rms signal voltage

En = rms noise voltage
en = noise voltage spectral density
In = rms noise current

in = noise current spectral density

2. Inherent Circuit Noise
An op-amp circuit exhibits internal noise, randomly, because (1) the random generation and recombination of 
electron-hole pairs in semi-conductors and (2) the thermal agitation of electrons in resistors. From thermal 
agitation, each vibrating electron inside a resistor constitutes a minuscule current; these currents add up to a net 
current and, therefore, a net voltage. This voltage, although zero on average, is constantly fluctuating because of 
the random distribution of the instantaneous magnitudes and directions of the individual currents. As a result, 
each node voltage and branch current in a circuit is constantly fluctuating around its desired nominal value.

2.1 Signal-to-Noise Ratio (SNR)
Noise degrades the quality of a signal by posing a limit on the size of the signal that can be successfully detected. 
A measure of specifying the signal quality in the presence of noise is the signal-to-noise ratio (SNR). The SNR is 
commonly defined as the ratio of the rms signal voltage, to the rms noise voltage in dB: 

In sensor applications, voltage amplifiers amplify small sensor signals to a level where they can be processed by 
analog-to-digital converters (ADCs). In this case, you must know the SNR because it determines the required 
resolution of the ADC. Evidently, the lower the SNR value, the lower the ADC resolution, and the more difficult it is 
to rescue the useful signal from noise.

2.2 Noise Gain
In op-amp circuits, noise is commonly assigned to the non-inverting op-amp input, so for the inverting amplifier 
configuration, the noise gain differs from the signal gain; for the non-inverting amplifier, both gains are identical 
(Figure 1).

Figure 1. Noise and Signals Gains for the Inverting and Non-Inverting Amplifier
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2.3 Noise Summation
An amplifier circuit contains multiple noise sources, generated by the op-amp and its surrounding resistors. Due 
to the random nature of noise, finding the total circuit input requires adding the individual noise sources 
quadratically:

and

3. Receiver Functional Principle
Op-amp noise is modeled by a noiseless op-amp equipped with two equivalent noise sources at the input: a 
voltage source with spectral density en and a current source with density (Figure 2). Op-amp noise is a mixture of 
1/f noise and broadband or white noise. The spectral densities of 1/f noise, denoted as enf and inf, decline with 
frequency at a rate of 0.5dec/dec. The spectral densities of white noise, denoted as enw and inw, remain constant 
versus frequency (Figure 3).

To find the total rms input noise of an op-amp for a given bandwidth, the spectral densities in Figure 3 must be 
converted into the rms noise voltage and current using Equation 4 and Equation 5:

and

where n · fH − fL is the white noise equivalent bandwidth (see White Noise Equivalent Bandwidth (NEB)), and fce 
and fci are the corner frequencies, where the op-amp noise transitions from the 1/f noise region to the white noise 
region. The corner frequencies can be calculated with:

and

Figure 2. Op-Amp Noise Model Figure 3. Voltage and Current Noise Spectral Densities
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where the enf(fx) and inf(fx) are the 1/f spectral densities at an arbitrary frequency, fx.

Note: The rms noise current, In, is converted into an rms noise voltage, En, when flowing through a resistor:

3.1 White Noise Equivalent Bandwidth (NEB)
An interesting phenomenon occurs when running white noise through a first order low-pass filter with fH as its 
-3dB frequency. In this case, the noise behaves as if filtered by a brick-wall filter with a higher cutoff frequency of 
fc = 1.57fH (Figure 4). 

This increased noise bandwidth is known as the white noise equivalent bandwidth (NEB). With increasing filter 
order, fc decreases and approaches fH, because the steeper roll-off of higher filter orders approaches the 
brick-wall equivalent. Mathematically, the NEB is expressed through:

where n is the brick-wall factor for a given filter order. The higher the filter order, the closer the value of n 
approaches 1. Figure 5 lists the values of n for the first five orders of passive low-pass filters.

For amplifiers with purely resistive feedback, the closed-loop gain represents a first order low-pass with a -3dB 
bandwidth, fH. (Figure 6). These amplifiers pass white noise with a cutoff frequency of fc = 1.57 · fH. 

Note: Find fH by taking the unity-gain bandwidth, fT, from the op-amp data sheet and dividing it by the noise-gain, 
1/β:

Figure 4. Noise Equivalent Bandwidth (NEB) for 1st Order Low-Pass Filter

Figure 5. Values of n for Higher Order Filters Figure 6. NEB of Amplifier with Resistive Feedback
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4. Thermal Noise in Resistors
Resistor noise is thermal noise due to the random thermal motion of electrons. It is present in standard resistors 
as well as in the stray resistances of practical inductors and capacitors. Resistor noise can be modeled either by a 
noise voltage of spectral density, eR, in series, or by a noise current of spectral density, iR, in parallel with a 
noiseless resistor (Figure 7).

The spectral densities of thermal noise are defined through:

and

where k = 1.38 · 10−23 J/K is Boltzmann's constant, T is the absolute temperature in kelvins, and R is the 
resistance in ohms.

Equation 11 and Equation 12 show that the spectral densities of thermal noise, eR and iR, are constant with 
frequency, therefore indicating that thermal noise is a type of white noise with its upper bandwidth limit at 
fc = n · fH.

Thermal noise is commonly represented as an rms noise voltage. Whether using the eR or iR spectral density, the 
resulting rms noise voltage is always:

Note: The equation holds true for resistors connected in series or parallel. For example, if two resistors are 
connected in series, R = R1 + R2, if they are parallel connected, R = R1 || R2.

If resistors are connected in parallel, use the iR-model. In this case, each noise current flows through the parallel 
resistance RP = R1 || R2, therefore producing the individual noise voltages.

Figure 7. Thermal (Resistor) Noise Models 

R

eR

(noiseless)

R iR
(noiseless)

(EQ. 11)
Re 4k TR=

(EQ. 12)

R
4k Ti

R
=

(EQ. 13) ( )R H LE 4kTR n f f= ⋅ −



Operational Amplifiers

R13AN0010EU0100 Rev.1.00 Page 6 of 11
Aug.4.20

 

Noise Calculations of Op-Amp Circuits

5. Total RMS Input Noise, Eni
When calculating the total rms input noise of a voltage amplifier, Eni, convert the initial circuit schematic (Figure 8) 
into a noise equivalent circuit diagram (Figure 9) and apply the equations from the previous sections. 

Starting with the thermal noise calculation: noise-wise, R1 and R2 are parallel connected, therefore generating an 
rms noise voltage:

The other thermal noise source is R3, with the following rms value:

Next, calculate the rms voltages that are due to op-amp current noise. At the negative input, this voltage, denoted 
as Enn, is the product of the rms noise current, In, and the parallel resistance R1 || R2:

At the positive input, the rms noise voltage, denoted as Enp, is the product of In, and R3:

Finally, calculate the rms input noise of the op-amp itself with the following:

Summing up all rms noise voltages above in rms fashion yields the total input noise, Eni, of the circuit:

Figure 8. Inverting Amplifier Figure 9. Spectral Noise Equivalent Circuit
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Writing Equation 19 in detailed form results in a huge expression:

However, you can simplify the above equation by making the following realistic assumptions that apply to the 
majority of amplifier circuits:

fH > 10 · fce: The upper bandwidth limit is more than 10 times the corner frequency of 1/f and white noise, which 
makes the term neglectable, therefore leaving only n · fH − fL under the square root.

fH >> fL: The upper bandwidth limit is much larger than the lower bandwidth limit of 0.1Hz typically, which makes 
fL neglectable, therefore reducing the (n · fH − fL) term to n · fH.

n = 1.57: Due to a 1st order low-pass response, either because of purely resistive feedback, or a simple output 
filter.

R3 = R1 || R2 = RP: To minimize the offset due to bias current.

Applying the above assumptions and after factoring out and collecting terms, results in the following:

Next, multiplying Eni with the noise gain yields the total rms output noise, Eno, of the circuit:

6. Calculation Example 1
Calculate the output signal-to-noise ratio of an inverting amplifier using the op-amp ISL28136.

From the AC specification in the op-amp datasheet we take the following data:

GBW = 5MHz, enw = 15nV ⁄ √Hz, inw = 0.35pA ⁄ √Hz. The corner frequencies of the voltage and current noise 
densities are calculated with Equation 6 and Equation 7, yielding fce = 30Hz and fci = 521Hz (see Figure 11): 

Figure 10. Inverting Amplifier with ISL28136
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Figure 11. Inverting Amplifier with ISL28136

Table 1. Detailed Calculations
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The dominant noise source in the highlighted Eni term is the 4.2µV, which is caused by the high input noise 
voltage, enw, of the op-amp. A rule-of-thumb states that if a dominant noise source is three-times higher than the 
other noise sources in the system, the other noise sources can be neglected, and noise reduction efforts should 
focus on the dominant noise source. In other words, to get a higher SNR, you need an op-amp with lower voltage 
noise. When this is achieved, further noise reduction can be obtained by reducing the resistor values.

7. Calculation Example 2
To reduce the output noise from the previous circuit example without narrowing the overall bandwidth, select the 
dual low-noise op-amp ISL28218 for a two-stage amplifier design. This allows you to use symmetrical lower 
gains, and each stage has a gain of 10 and also lower resistor values.

The key parameters of the ISL28218 are: GBW = 3.2MHz, enw = 5.5nV ⁄ √Hz, inw = 0.38pA ⁄ √Hz. 

The closed-loop bandwidth of each stage is:

Total Input Noise per Equation 19

Total RMS Input Noise if Equation 19 is applied with 
R3 = R1 || R2.

Total Input Noise using simplified Equation 20

Total RMS Input Noise if simplified Equation 20 is 
applied. Error is only 0.23%.

Total Output Noise

Total RMS Output Noise

Output SNR

Output SNR for Output FSR = 4VPP

Figure 12. Two-Stage Amplifier with ISL28218

Table 1. Detailed Calculations (Continued)
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The external low-pass filters however, provide an earlier cutoff at:

And therefore, determine the equivalent noise bandwidth, NEB. 
Note: The NEB of the two gain stages differ, because the noise of the first stage experiences two low-pass 
functions (of Filter 1 and Filter 2), while the second stage sees only one low-pass. The NEB is therefore:

The 2nd stage faces only one low-pass function, therefore making the NEB:

To reduce the mathematical effort, apply Equation 20 using to calculate the rms input noise for each stage under 
the condition that:

Each input noise contributes individually to the overall output noise. We denote Eno21 as the output noise due to 
Eni1, and Eno22, as the output noise due to Eni2:

The total rms output noise is:

While maintaining the same signal bandwidth, of about 48kHz, we have reduced the rms output noise from 453µV 
down to 238µV. Assuming the same 4Vpp full scale voltage range at the output, the new SNR is:

which is an improvement of nearly 6dB, or twice the resolution.
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8. Conclusion
Noise calculations can be tedious. Applying correct, realistic assumptions drastically reduces the mathematical 
effort. While this application note is not a replacement for the vast amount of technical documentation on noise, 
this document helps engineers new to the subject of op-amp noise quickly assess the possible output noise for 
common amplifier circuits.
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