To our customers,

Old Company Name in Catalogs and Other Documents

On April 1!, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESAS

8.

10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,

especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

ENESANS
Application Note

CA850 Ver.2.50

C Compiler Package
Coding Technique

Target Devices
V850 Series™

Document No. U16076EJ1VOANOO (1st edition)
Date Published August 2002 N CP(K)

© NEC Corporation 2002
Printed in Japan

[MEMO]

2 Application Note U16076EJ1VOAN

V850 Series, V853, V850/SA1, V850/SB1, V850/SB2, V850/SF1, V850/SV1, V850E/MS1, V850E/MA1,
V850E/MA2, V850E/IA1, and V850E/IA2 are trademarks of NEC Corporation.

Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States
and/or other countries.

¢ The information in this document is current as of May, 2002. The information is subject to change
without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data
books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products
and/or types are available in every country. Please check with an NEC sales representative for
availability and additional information.

* No part of this document may be copied or reproduced in any form or by any means without prior
written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.

* NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
third parties by or arising from the use of NEC semiconductor products listed in this document or any other
liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
patents, copyrights or other intellectual property rights of NEC or others.

* Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of customer's equipment shall be done under the full
responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
parties arising from the use of these circuits, software and information.

* While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
risks of damage to property or injury (including death) to persons arising from defects in NEC
semiconductor products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment, and anti-failure features.

* NEC semiconductor products are classified into the following three quality grades:

"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products

developed based on a customer-designated "quality assurance program" for a specific application. The

recommended applications of a semiconductor product depend on its quality grade, as indicated below.

Customers must check the quality grade of each semiconductor product before using it in a particular

application.

"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio
and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots

"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's
data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not
intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness
to support a given application.

(Note)

(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.

(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for

NEC (as defined above).

M8E 00.4

Application Note U16076EJ1VOAN

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC
product in your application, please contact the NEC office in your country to obtain a list of authorized

representatives and distributors. They will verify:
«» Device availability
« Ordering information

Product release schedule

Availability of related technical literature

« Development environment specifications (for example, specifications for third-party tools and
components, host computers, power plugs, AC supply voltages, and so forth)

Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary

from country to country.

NEC Electronics Inc. (U.S.) ¢ Filiale Italiana

Santa Clara, California Milano, Italy

Tel: 408-588-6000 Tel: 02-66 75 41
800-366-9782 Fax: 02-66 75 42 99

Fax: 408-588-6130
800-729-9288 ¢ Branch The Netherlands

Eindhoven, The Netherlands
NEC do Brasil S.A. Tel: 040-244 58 45
Electron Devices Division Fax: 040-244 45 80
Guarulhos-SP, Brasil
Tel: 11-6462-6810
Fax: 11-6462-6829

e Branch Sweden
Taeby, Sweden
Tel: 08-63 80 820

NEC Electronics (Europe) GmbH Fax: 08-63 80 388

Duesseldorf, Germany
Tel: 0211-65 03 01
Fax: 0211-65 03 327

¢ United Kingdom Branch
Milton Keynes, UK
Tel: 01908-691-133

« Sucursal en Espafa Fax: 01908-670-290

Madrid, Spain
Tel: 091-504 27 87
Fax: 091-504 28 60

e Succursale Francaise
Vélizy-Villacoublay, France
Tel: 01-30-67 58 00
Fax: 01-30-67 58 99

4 Application Note U16076EJ1VOAN

NEC Electronics Hong Kong Ltd.
Hong Kong

Tel: 2886-9318

Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.
Seoul Branch

Seoul, Korea

Tel: 02-528-0303

Fax: 02-528-4411

NEC Electronics Shanghai, Ltd.
Shanghai, P.R. China

Tel: 021-6841-1138

Fax: 021-6841-1137

NEC Electronics Taiwan Ltd.
Taipei, Taiwan

Tel: 02-2719-2377

Fax: 02-2719-5951

NEC Electronics Singapore Pte. Ltd.
Novena Square, Singapore

Tel: 253-8311

Fax: 250-3583

J02.4

Target Readers

Purpose

Organization

How to Read
This Manual

Conventions

INTRODUCTION

This manual is intended for users who wish to design and develop application systems using
the V850 Series.

This manual is intended to give users an understanding of the coding techniques for
increasing execution speed or reducing code size after specifying an optimization option
using the V850 Series C compiler CA850.

This manual is divided into the following parts.

e Overview

e Reducing code size

e Increasing execution speed
e Defining variables

It is assumed that the reader of this manual has general knowledge in the fields of electrical
engineering, logic circuits, microcontrollers, C language, and assembler programming.

To know the hardware functions of the V850 Series
— Refer to the hardware user’s manual of each product

To know the instruction functions of the V850 Series
— Refer to V850 Series Architecture User’s Manual

Data significance: Higher digits on the left and lower digits on the right
Note: Footnote for item marked with Note in the text
Caution: Information requiring particular attention

Remark: Supplementary information

Numeric representation: Binary ... XXXX or XXXXB
Decimal ... XXXX
Hexadecimal ... XXXXH
Prefix indicating the power of 2 (address space, memory capacity):
K (kilo): 2"°=1024
M (mega): 2% =1024°
G (giga): 2% =1024°

Application Note U16076EJ1VOAN 5

Related Documents Refer to the following manuals when using this manual.

The related documents indicated in this publication may include preliminary versions.

However, preliminary versions are not marked as such.

Documents related to the V850 Series (user’s manuals)

Document Name

Document No.

IE-703002-MC (In-Circuit Emulator for v853™, vas0/sA1™, vaso/sB1™, vasorss2™, vaso/sF1™, U11595E
v850/SV1™)
IE-V850E-MC (In-Circuit Emulator for V850E/IA1"", V850E/1A2™) U14487E
IE-V850E-MC-A (In-Circuit Emulator for V850E/MA1 ", V850E/MA2"™")
IE-703003-MC-EM1 (In-Circuit Emulator Option Board for V853) U11596E
IE-703017-MC-EM1 (In-Circuit Emulator Option Board for V850/SA1) U12898E
IE-703037-MC-EM1 (In-Circuit Emulator Option Board for V850/SB1, V850/SB2) U14151E
IE-703040-MC- EM1 (In-Circuit Emulator Option Board for V850/SV1) U14337E
IE-703079-MC- EM1 (In-Circuit Emulator Option Board for V850/SF1) U15447E
IE-703102-MC (In-Circuit Emulator for V850E/MS1™) U13875E
IE-703102-MC-EM1, |E-703102-MC-EM1-A (In-Circuit Emulator Option Board for V850E/MS1) U13876E
IE-703107-MC-EM1 (In-Circuit Emulator Option Board for VB50E/MA1) U14481E
IE-703116-MC-EM1 (In-Circuit Emulator Option Board for V850E/IA1) U14700E
CAB850 Ver.2.50 C Compiler Package Operation U16053E
C Language U16054E
PM plus U16055E
Assembly Language U16042E
ID850 Ver.2.40 Integrated Debugger Operation Windows ™ Based U15181E
SM850 Ver.2.40 System Emulator Operation Windows Based U15182E
SM850 Ver.2.00 or Later System Emulator External Part User Open Interface Specifications U14873E
RX850 Ver.3.13 or Later Real-time OS Basics U13430E
Installation U13410E
Technical U13431E
RX850 Pro Ver.3.13 or Later Real-time OS Basics U13773E
Installation U13774E
Technical U13772E
RD850 Ver.3.01 Task Debugger U13737E
RD850 Pro Ver.3.01 Task Debugger U13916E
AZ850 Ver.3.10 System Performance Analyzer U14410E
PG-FP4 Flash Memory Programmer U15260E
CAB850 Ver.2.50 C Compiler Package (Application Note) Coding Technique This manual

6 Application Note U16076EJ1VOAN

CONTENTS

CHAPTER 1 OVERVIEW. ... cceicercerrnssscerssssscersssssmesessssmessssssmsseasssmenesssnmenesssnmenesssnmenesssnmenssssannnnsssannnnes 9
CHAPTER 2 REDUCING CODE SIZE..........cccoccerirsemerrsssmerrsssmesssssmsssssssmsssssssmsssessamssssssansssssssnmssessmnnns 10
2.1 Using the if~else Statement Instead of the switch Statement.........cccoccmiiriccmircnccs e 10
2.2 Making Assignments to the Same External Variable Via a Temporary Variable at the Branch
Destinations of the switch Statement or if~else Statement.........cccccricemrisinccnrscc . 13
2.3 Moving One Assignment Statement in Front of the if Statement When the Branch Destinations
of the if~else Statement Are Only Assignment Statements to the Same Variable...........c.cocvenrnenee 15
2.4 Replacing an Access to an External Variable with an Access to a Temporary Variable..................... 16
2.5 Moving the Same Statement From After the Branch Clauses to Before the Branching Begins......... 18
2.6 Moving the Same Statement From Before the Control Logic Merges Together to After It Merges
LI T T3 {0 21
2.7 Using a Temporary Variable to Consolidate the Calls to the Same Function with Different
Arguments That Appear After Each Branch Clause at the Location After the Control Logic
L= o =T o T T T Y 23
2.8 Replacing a Complex if Statement with One That Is Logically Equivalent..........cccccouismiiinrisnnisnninnns 25
2.9 Transforming a for or while LOOP INt0 @ GO0 LOOP.....ciiircumrrrismmrmsssmsinssmssmsssmssssssamsssssssnssssmnssssssmsnssssnnes
b8 L0 U1 T e 111 0T TN oo
2.11 Shortening the Lifespan of a Variable ... s s s ssssssnsssnnes
2.12 Eliminating an Induction Variablecccccciiieeimeimesssssssss s s s
2.13 Setting (unsigned) int Type for (unsigned) short or char Type Variables
2.14 Consolidating in a Single Statement When an Assigned Value Is Referenced in the Statement
Following the Assighment Statement ... ———— 39
2.15 Eliminating the if~else Statement When the Branch Destinations of the if~else Statement
Are return Statements That Return the Result of the Branch Condition........ccccvemrvmnimrisnnnceninnnns 40
2.16 Changing the Condition and Setting the Operand to 15 or —16 When One of the Operands of a
Comparison Operation Is the Constant 16 Or —17..........ccriierrccccerrrr e sssme e e smmm e e nnnas 41
2.17 Initializing @ Variable ... s s e 42
2.18 Declaring void for a Function Having No Return Valueccccviiimminnsmsmnnmssnsssnnsess s s ssssnnns 44
2.19 Consolidating Common case Processing in a switch Statement..........cccocciiiciniciiicinccnsss s 45
2.20 Consolidating return Statements Having Identical Valuescccciiremmiiimsnnsisnnnnsss s e 48
2.21 Making an Expanded Inline Function into a static FUNCtiON........cccccccmiviiimiisennes s 50
CHAPTER 3 INCREASING EXECUTION SPEEDcccocmmiinmnninmnsnissmsssssssmsssssssmsssssssmsssssssmssssssansnss 52
3.1 Using a Pointer for Consecutive ACCESSES t0 an Arrayccccceerissmrrsssssnmssssssmmsssssssssssssssssssssassmssssssas 52
3.2 Replacing an Access to an External Variable with an Access to a Temporary Variable..................... 54
3.3 Not Using a Variable Expression for a Loop Ending Conditioncccciiimmminiscnmincssnnnsssnssnnnnsnnns 56
3.4 Using a Comparison with Zero for the Loop Ending Conditionccevmivmrnsminsnnsenisenssesssesssnenns 57
R I U 15T € T 1T T = T IR Yo o 59
3.6 Optimizing @ POINTErcoiiiiiics s e R e e R e e e an R e 61
3.7 Outputting a setf Instruction to Output 0 or 1 According to the Result of a Conditional
L0 110 T= 1 =T 63
3.8 Using at Most FOUr ArgumeNnts........ccccccuiiiimmiiimnsnniss s sasss s s sass s s ssss s sas s e ssss s sassms s snssans snssnnnns 64
3.9 Using at Most 10 Local Variables (auto Variables) and Only 6 or 7 If Possible...........ccccecmrriniienrnnnnne 64

Application Note U16076EJ1VOAN 7

3.10 Rearranging an EXpression in AAVANCEccccuicmmiiiimsiniisnnnsss s s s sasssssssssmssssssssssassnss s 64

3.11 Replacing a Multiplication or Division Involving a Power of 2 with a Shift Operationcccceuune. 66
CHAPTER 4 DEFINING VARIABLESccoootiiiiimiiienninsssss s ssssssss s s ssssssssssms s sassamsssnssamnnnas 67
41 [T2 = Y e 1T 14T 67
4.2 volatile SPECIHfICAtION.....ccviiericirrcie i ——————————————————————— 68
L T =T T B0 1 T = = 70
4.4 Reducing Alignment Between Filesccccimiiniiis s s s 70
L 3T 0T 4 E=T] [T F- L[g Ve =T = 71
4.6 Reducing Nesting Levels of FUNCLIONS.......ccccceiiiiiimineiiessssnsss s s s s s ssss s ssssss s 71
N o o 1 L G |11 0. 72

Application Note U16076EJ1VOAN

CHAPTER 1 OVERVIEW

This application note explains the coding techniques for further decreasing the code size or increasing the effective
execution speed after an optimization option was specified using the CA850, which is the C compiler for the V850
Series.

For details concerning the CA850, refer to CA850-related user's manuals.

The amount that the coding size is reduced for the examples in each section is specific to those examples. The
amount that the coding size will be reduced when that technique is applied elsewhere will differ somewhat depending
on the individual case.

Also, the following points should be noted when modifying source code.

Since the register usage conditions will vary depending on the source code modification, register transfers that
remain without having been eliminated by the optimization up to that point may be removed or, conversely,
optimization that was performed may no longer be effective and lengthy register transfers may remain.

By adding temporary variables, registers for the new register variables may be used and this may cause coding for
saving/restoring those registers to be added at function entries/exits. In this case, the code size will be increased by
the amount of code required for saving/restoring the registers.

The output assembly list for the examples that appear in this application note shows assembler source code that

was compiled by specifying size-priority optimization (-Os). Note that the results will differ when optimization other
than size priority optimization is specified.

Application Note U16076EJ1VOAN 9

CHAPTER 2 REDUCING CODE SIZE

This chapter introduces coding techniques for reducing the code size.
Note that reducing the code size may also increase the effective execution speed.

2.1 Using the if~else Statement Instead of the switch Statement

If the following two conditions are satisfied simultaneously, the CA850 generates table branching format code for
the switch statement.

e The number of case labels is at least four.
o The difference between the upper and lower limits of the label value is at most three times the number of case
labels.

In this case, if the number of case labels is roughly 16 or less (however, this number differs according to the format
of the switch expression or the distribution of label values), switching to the equivalent if~else statements and
arranging a sequence of compare and branch instructions will produce a smaller code size.

If the switch expression is an external variable reference or complicated expression, you must assign a value to a
temporary variable and change to a reference of that temporary variable in the if expression.

Note, however, that since the switch instruction is output for the V850E, the switch statement will produce a smaller
code size.

Caution Even if the source description is not change the expansion code of a switch statement can be
specified per file using the -Xcase option.

A sample program is shown below.

Remark xis assumed to be an auto variable.

Before Modification After Modification

int x; int x;

switch(x) { if (x == 0)

case 0: return (0) ;
return (0) ; else if (x == 1)

case 1: return (1) ;
return (1) ; else if (x == 2)

case 2: return(2) ;
return(2) ; else if (x == 3)

case 3: return (3) ;
return (3) ; else if (x == 4)

case 4: return (4) ;
return (4) ; else if (x == 5)

case 5: return (5) ;
return (5) ;

}

10 Application Note U16076EJ1VOAN

CHAPTER 2 REDUCING CODE SIZE

[Output Assembly List for the V850]

Before Modification After Modification
Program Size Program Size
[bytes] [bytes]
1d.w -8+0x8[spl, rlo0 4 1d.w -8+0x8[sp], rlo0 4
cmp 5, rlo 2 cmp r0, rlo0 2
jh L1 2 jne L2 2
shl 1, rlo 2 st.w r0, -4+0x8[spl] 4
add tp, rlo 2 jbr Ll 2
1d.h .L10[r10], rl1 8 L2
add .L10, ril1l 10 cmp 1, rlo 2
add tp, rll 2 jne L4 2
jmp [r11] 2 mov 1, rll 2
.L10: st.w rll, -4+0x8[sp] 4
.hword .L4-.L10 2 jbr L1 2
.hword .L5-.L10 2 L4
.hword .L6-.L10 2 cmp 2, rlo 2
.hword .L7-.L10 2 jne .L6 2
.hword .L8-.L10 2 mov 2, rl2 2
.hword .L9-.L10 2 st.w rl2, -4+0x8[sp] 4
L4: jbr L1 2
st.w r0, -4+0x8[sp] 4 L6
jbr Ll 2 cmp 3, rlo 2
.L5: jne .L8 2
mov 1, rl2 2 mov 3, rl3 2
st.w rl2, -4+0x8[sp] 4 st.w rl3, -4+0x8[sp] 4
jbr L1 2 jbr L1 2
.L6: .L8:
mov 2, rl3 2 cmp 4, rl0 2
st.w rl3, -4+0x8[sp] 4 jne .L10 2
Jjbr L1 2 mov 4, rla 2
VL7 st.w rld, -4+0x8[sp] 4
mov 3, rl4d 2 jbr Ll 2
st.w rl4, -4+0x8[sp] 4 .L10:
jbr Ll 2 cmp 5, rlo 2
.L8: jne L1 2
mov 4, rls 2 mov 5, rl5s 2
st.w rl5, -4+0x8[sp] 4 st.w rl5, -4+0x8[sp] 4
jbr L1 2 .Ll:
.L9: 1d.w -4+0x8[sp], rlo0 4
mov 5, rile 2
st.w rl6e, -4+0x8[sp] 4
Ll
1d.w -4+0x8[spl, rlo0 4
Total code size 94 bytes | Total code size 76 bytes
Application Note U16076EJ1VOAN 11

CHAPTER 2 REDUCING CODE SIZE

[Output Assembly List for the V850E]

Before Modification

After Modification

Program Size Program Size
[bytes] [bytes]
1d.w -8+0x8 [sp]l, rlo 4 1d.w -8+0x8[spl, rlo0 4
cmp 5, rlo 2 cmp r0, rl0 2
jh L1 2 jne L2 2
switch rl0 2 st.w r0, -4+0x8[sp] 4
.L10: jbr L1 2
.shword .L4-.L10 2 .L2:
.shword .L5-.L10 2 cmp 1, rilo 2
.shword .L6-.L10 2 jne .L4 2
.shword .L7-.L10 2 mov 1, rili 2
.shword .L8-.L10 2 st.w rll, -4+0x8[sp] 4
.shword .L9-.L10 2 jbr L1 2
L4 .L4:
st.w r0, -4+0x8[sp] 4 cmp 2, rlo 2
jbr L1 2 jne .L6 2
.L5: mov 2, rl2 2
mov 1, ril2 2 st.w rl2, -4+0x8[sp] 4
st.w rl2, -4+0x8[spl] 4 jbr L1 2
jbr L1 2 .L6:
L6 cmp 3, rlo 2
mov 2, rl3 2 jne .L8 2
st.w rl3, -4+0x8[spl] 4 mov 3, rl3 2
jbr L1 2 st.w rl3, -4+0x8[sp] 4
.L7: jbr L1 2
mov 3, rl4 2 .L8:
st.w rl4, -4+0x8[spl] 4 cmp 4, rl0 2
jbr L1 2 jne .L1o 2
.L8: mov 4, rla 2
mov 4, rls 2 st.w rld, -4+0x8[sp] 4
st.w rl5, -4+0x8[spl] 4 Jjbr L1 2
jbr L1 2 L10
.L9: cmp 5, rlo 2
mov 5, rleé 2 jne L1 2
st.w rlée, -4+0x8[spl] 4 mov 5, rl5 2
Ll st.w rl5, -4+0x8[sp] 4
1d.w -4+0x8 [sp], rlo 4 Ll
1d.w -4+0x8[sp], rlo0 4
Total code size 70 bytes | Total code size 76 bytes

12

Application Note U16076EJ1VOAN

CHAPTER 2 REDUCING CODE SIZE

2.2 Making Assignments to the Same External Variable Via a Temporary Variable at the Branch
Destinations of the switch Statement or if~else Statement

To assign a different value to the same external variable at each branch destination of the switch statement or
if~else statement, the code size can be reduced by assigning a temporary variable at each location, and then
assigning the value to the original external variable from the temporary variable after the control logic has merged
together again.

The code size is reduced for the following reason. Since external variables are rarely allocated to registers, an
assignment to an external variable becomes a store instruction to memory (4 bytes). However, an assignment to a
temporary variable often becomes a register transfer (2 bytes).

A sample program is shown below.

Remark s is assumed to be an external variable.

Before Modification After Modification

int x; int x;
int tmp;
switch (x) {
case 0: if (x == 0) {
s = 0; tmp = 0;
break; }
case 1000: else if (x == 1000) {
s = 0x5555; tmp = 0x5555;
break; }
case 2000: else if (x == 2000) {
s = O0xAAAA; tmp = OXAAAA;
break; }
case 3000: else if (x == 3000) {
s = OxXFFFF; tmp = OXFFFF;
} }
else {
goto label;
}
s = tmp;
label:

7

Application Note U16076EJ1VOAN 13

CHAPTER 2 REDUCING CODE SIZE
[Output Assembly List for the V850]
Before Modification After Modification
Program Size Program Size
[bytes] [bytes]
1d.w -4+0x4 [sp]l, rlo0 4 1d.w -4+0x4 [sp], rlo0 4
cmp r0, rlo 2 cmp r0, rl0 2
je .14 2 jne .L2 2
addi -1000, rl0, xO 4 mov r0, rl0 2
je .L5 2 jbr .L3 2
addi -2000, rlo, xO0 4 L2
je .L6 2 addi -1000, rl0, rO 4
addi -3000, rl0, xO 4 jne L4 2
je .L7 2 mov 21845, rl0 4
jbr .L3 2 jbr .L3 2
.L4: .L4:
st.w r0, $_ s 4 addi -2000, rl0, roO 4
jbr .L3 2 jne .L6 2
.L5: mov 43690, rlo 8
mov 21845, rll 4 jbr .13 2
st.w rll, $_s 4 .L6:
jbr L3 2 addi -3000, rl0, ro0 4
.L6: jne .L10 2
mov 43690, rl2 8 mov 65535, rlo0 8
st.w rl2, $_s 4 L3
jbr L3 2 st.w rl0, $_s 4
L7 .L10:
mov 65535, rl3 8
st.w rl3, $_ s 4
.L3:
Total code size 70 bytes | Total code size 58 bytes
[Output Assembly List for the V850E]
Before Modification After Modification
Program Size Program Size
[bytes] [bytes]
1d.w -4+0x4 [sp]l, rlo0 4 1d.w -4+0x4 [sp], rlo0 4
cmp r0, rlo 2 cmp r0, rlo 2
je .L4 2 jne L2 2
addi -1000, rl0, xO 4 mov r0, rl0 2
je .L5 2 jbr .13 2
addi -2000, rl1io, xO 4 .L2:
je .L6 2 addi -1000, rl0, rO 4
addi -3000, rlo, roO 4 jne L4 2
je L7 2 mov 21845, rlo0 4
jbr .L3 2 jbr .L3 2
.L4: L4
st.w ro, $_s 4 addi -2000, rl0, ro0 4
jbr .L3 2 jne .L6 2
.L5: mov 43690, rilo0 6
mov 21845, rlil 4 jbr L3 2
st.w rll, $_s 4 .L6:
jbr L3 2 addi -3000, rl0, roO 4
.L6: jne .L10 2
mov 43690, rl2 6 mov 65535, rlo0 6
st.w rl2, $ s 4 L3
jbr L3 2 st.w rlo, $_s 4
L7 L10
mov 65535, rl3 6
st.w rl3, $_s 4
.L3:
Total code size 66 bytes | Total code size 54 bytes

14

Application Note U16076EJ1VOAN

CHAPTER 2 REDUCING CODE SIZE

2.3 Moving One Assignment Statement in Front of the if Statement When the Branch Destinations
of the if~else Statement Are Only Assignment Statements to the Same Variable

When the branch destinations of the if~else statement are only statements that assign different values to the same
variable, the code size can be reduced by moving one of the assignment statements in front of the if statement and
removing the else block, which eliminates the jump statement to the location following the else block from the if block.

A sample program is shown below.

Remark s is assumed to be an external variable.

Before Modification After Modification

int x; int x;

if (x == 10) { s - 0

s =1 if (x == 10) {

} s = 1;
else { }

s = 0;

1

[Output Assembly List for the V850]

Before Modification After Modification
Program Size Program Size
[bytes] [bytes]
1d.w -4+0x4 [sp]l, rlo0 4 st.w ro, $_s 4
cmp 10, rlo 2 1ld.w -4+0x4 [sp], rlo0 4
jne L2 2 cmp 10, rlo 2
mov 1, rll 2 jne L2 2
st.w rll, $_s 4 mov 1, rll 2
jbr .13 2 st.w rll, $_s 4
.L2: .L2:
st.w ro, $_ s 4
.L3:
Total code size 20 bytes | Total code size 18 bytes
[Output Assembly List for the V850E]
Before Modification After Modification
Program Size Program Size
[bytes] [bytes]
1d.w -4+0x4 [sp]l, rlo0 4 st.w ro, $_s 4
cmp 10, rlo 2 1ld.w -4+0x4 [sp], rlo0 4
jne L2 2 cmp 10, rlo 2
mov 1, rll 2 jne L2 2
st.w rll, $_s 4 mov 1, rll 2
jbr L3 2 st.w rll, $_s 4
.L2: L2
st.w ro, $_ s 4
.L3:
Total code size 20 bytes | Total code size 18 bytes

Application Note U16076EJ1VOAN 15

CHAPTER 2 REDUCING CODE SIZE

2.4 Replacing an Access to an External Variable with an Access to a Temporary Variable

Since an external variable access requires 4 bytes for both loading and storing, if the value of an external variable
is assigned to a temporary variable and that temporary variable is used even in cases other than assignments like
those described in Section 2.2, the code size can be reduced because the memory access is changed to a register

access.

A sample program is shown below.

Remark s is assumed to be an external variable.

Before Modification After Modification
int x; int x;
unsigned int tmp = s;
if (x != 0) {
if ((s & 0x00FO0F00) != O0x00E00E00) { if (x 1= 0) {
return; if ((tmp & O0xO00FOOFO00) != Ox00EOOEO0O0) {
} return;
s >>= 12; }
s &= OXFF; tmp >>= 12;
} tmp &= OXFF;
else { }
if ((s & 0x00FF0000) != O0x00EE0000) { else {
return; if ((tmp & O0xO00FF0000) != Ox00EE0000) {
return;
S >>= 24; }
} tmp >>= 24;
}
s = tmp;

16 Application Note U16076EJ1VOAN

CHAPTER 2 REDUCING CODE SIZE

[Output Assembly List for the V850]

Before Modification

After Modification

Program Size Program Size
[bytes] [bytes]
1d.w -4+0x4 [sp], rill 4 1d.w $ s, rlo 4
cmp ro, rll 2 1ld.w -4+0x4 [sp], rll 4
je L2 2 cmp r0, rll 2
1d.w $ s, rlo 4 je L2 2
andi 0xf00£f00, rlo, ril2 10 andi 0xf00f00, rlo, ril2 10
cmp 14683648, rl2 10 cmp 14683648, rl2 10
jne L1 2 jne L1 2
shr 12, rlo 2 shr 12, rlo0 2
andi oxff, rlo, rl3 4 and oxff, rio 4
st.w rl3, $ s 4 jbr L4 2
jbr L1 2 JL2:
L2 andi 0xf£f0000, rl0, rl3 6
1d.w $ s, rlo 4 cmp 15597568, rl3 6
andi 0oxf£f0000, rl0, rl4 6 jne Ll 2
cmp 15597568, rl4 6 shr 24, rlo0 2
jne L1 2 .L4:
sar 24, rlo 2 st.w rl0, $_s 4
st.w rlo, $_s 4 Ll
Ll
Total code size 70 bytes | Total code size 62 bytes
[Output Assembly List for the V850E]
Before Modification After Modification
Program Size Program Size
[bytes] [bytes]
1d.w -4+0x4 [sp]l, rll 4 ld.w $ s, rlo 4
cmp r0, rll 2 1ld.w -4+0x4 [sp], rll 4
je L2 2 cmp r0, rill 2
ld.w $ s, rlo 4 je L2 2
andi 0xf00£00, rl1l0, rl2 8 andi 0xf00f00, rl0o, rl2 8
cmp 14683648, rl2 8 cmp 14683648, rl2 8
jne L1 2 jne L1 2
shr 12, rlo 2 shr 12, rlo 2
zxb rlo 2 zZXb rlo 2
st.w rlo, $_s 4 jbr .L4 2
jbr L1 2 JL2:
L2 andi 0xf£0000, rl0, rl3 6
1d.w $ s, rlo 4 cmp 15597568, rl3 6
andi 0xf£0000, rl0, rl4 6 jne L1 2
cmp 15597568, rl4 6 shr 24, rlo0 2
jne .L1 2 .L4:
sar 24, rlo 2 st.w rlo, $_s 4
st.w rlo, $_s 4 LL1:
.L1l:
Total code size 64 bytes | Total code size 56 bytes
Application Note U16076EJ1VOAN 17

CHAPTER 2 REDUCING CODE SIZE

2.5 Moving the Same Statement From After the Branch Clauses to Before the Branching Begins

If the same assignment statement or function call exists after each branch clause, move it in front of where the
branching begins if it can be moved there.
If the evaluation result of that statement is referenced, assign it to a temporary variable and reference that

temporary variable.

A sample program is shown below.

Remark s is assumed to be an external variable.

Before Modification

int x;

if (x »>= 0) {
if (x > func(0, 1, 2)) {

S++;

}

else {
if (x < -func(0, 1, 2)) {

s--;

After Modification
int x;
int tmp;
tmp = func(0, 1, 2);

if (x >= 0) {
if (x > tmp)

S++;

}

else {
if (x < -tmp) {

s--;

18

Application Note U16076EJ1VOAN

CHAPTER 2 REDUCING CODE SIZE

[Output Assembly List for the V850]

Before Modification

After Modification

Program Size Program Size
[bytes] [bytes]

1d.w -4+0x4 [sp]l, r29 4 mov 1, ¥7 2
cmp r0, r29 2 mov 2, r8 2
jlt LL12 2 mov r0, r6 2
mov 1, r7 2 jarl _func, 1p 4
mov 2, r8 2 1ld.w -4+0x4 [sp], rll 4
mov r0, r6 2 cmp r0, rll 2
jarl _func, 1p 4 mov rl0o, ril2 2
cmp rl0, r29 2 jlt L2 2
jle .L4 2 cmp rlz2, rll 2
1d.w $ s, rlo 4 jle L4 2
add 1, rlo 2 1ld.w $ s, rlo 4
st.w rlo, $ s 4 add 1, rlo 2
jbr L4 2 st.w rl0, $_s 4

.L12: jbr L4 2
mov 1, r7 2 L2:
mov 2, r8 2 not rl2, ril3 2
mov r0, r6 2 add 1, rl3 2
jarl _func, 1p 4 cmp rll, ril3 2
not rlo, ril2 2 jle L4 2
add 1, ril2 2 1ld.w $ s, rl4 4
cmp r29, ril2 2 add 4294967295, rl4 2
jle L4 2 st.w rl4, $_ s 4
1d.w $ s, rl3 4 L4
add 4294967295, rl3 2
st.w rl3, $_ s 4

.L4:

Total code size 62 bytes | Total code size 54 bytes

Application Note U16076EJ1VOAN 19

CHAPTER 2 REDUCING CODE SIZE

[Output Assembly List for the V850E]

Before Modification

After Modification

Program Size Program Size
[bytes] [bytes]

1d.w -4+0x4 [sp]l, r29 4 mov 1, r7 2
cmp r0, r29 2 mov 2, r8 2
jlt LL12 2 mov r0, r6 2
mov 1, r7 2 jarl _func, 1p 4
mov 2, r8 2 1d.w -4+0x4 [sp], rll 4
mov r0, r6 2 cmp r0, rill 2
jarl _func, 1lp 4 mov rl0, rl2 2
cmp rl0o, r29 2 jlt L2 2
jle L4 2 cmp rl2, rill 2
1d.w $ s, rlo 4 jle L4 2
add 1, rlo 2 1d.w $ s, rlo 4
st.w rlo, $_s 4 add 1, rlo 2
jbr L4 2 st.w rl0, $_s 4

.L12: jbr L4 2
mov 1, r7 2 L2
mov 2, r8 2 not rl2, ril3 2
mov r0, r6 2 add 1, rl3 2
jarl _func, 1lp 4 cmp rll, ril3 2
not rlo, rl2 2 jle L4 2
add 1, ril2 2 1d.w $ s, rl4 4
cmp r29, rl2 2 add 4294967295, rl4d 2
jle L4 2 st.w rl4, $_ s 4
1d.w $ s, rl3 4 L4
add 4294967295, rl3 2
st.w rl3, $ s 4

L4

Total code size 62 bytes | Total code size 54 bytes

20

Application Note U16076EJ1VOAN

CHAPTER 2 REDUCING CODE SIZE

2.6 Moving the Same Statement From Before the Control Logic Merges Together to After It

Merges Together

If the same assignment statement or function call exists after each branch clause and it cannot be moved in front of
where the branching begins as described in Section 2.5, then move it after the control logic merges together if it can

be moved there.

A sample program is shown below.

Remark s andtare assumed to be external variables.

Before Modification

After Modification

int tmp;

if (tmp & 0xff00££00) {

int tmp;

if (tmp & Oxff00f£00)

s T++;
S++; }
} else {
else { t--i
)
S++ Sti
}
[Output Assembly List for the V850]
Before Modification After Modification
Program Size Program Size
[bytes] [bytes]
1d.w $ s, rlo 4 1d.w -4+0x4 [sp]l, rlo0 4
add 1, rlo 2 and 0xff00££00, rloO 10
1d.w -4+0x4 [sp], rl2 4 je L2 2
and 0xff00££00, rl2 10 1ld.w $ t, ril 4
je L2 2 add 1, rll 2
1d.w $ t, rl3 4 st.w rll, $_t 4
add 1, rl3 2 jbr L3 2
st.w rl3, $_t 4 L2
st.w rlo, $_s 4 ld.w $ t, ri2 4
jbr L3 2 add 4294967295, rl2 2
L2 st.w rl2, $_t 4
1d.w $ t, rl4 4 LL3:
add 4294967295, rl4 2 1d.w $ s, rl3 4
st.w rl4, $_t 4 add 1, rl3 2
st.w rlo, $_s 4 st.w rl3, $_s 4
.L3:
Total code size 52 bytes | Total code size 48 bytes
Application Note U16076EJ1VOAN 21

CHAPTER 2 REDUCING CODE SIZE

[Output Assembly List for the V850E]

Before Modification

After Modification

Program Size Program Size
[bytes] [bytes]
1d.w $ s, rlo 4 1d.w -4+0x4 [sp]l, rlo0 4
add 1, rlo 2 and 0xff00££00, rlo 8
1d.w -4+0x4 [sp]l, ril2 4 je L2 2
and 0xff00££00, rl2 8 1d.w $ t, rll 4
je .L2 2 add 1, ri1 2
1d.w $ t, rl3 4 st.w rll, $_ t 4
add 1, ril3 2 jbr L3 2
st.w rl3, $ t 4 L2
st.w rl0o, $_ s 4 1d.w $ t, ri2 4
jbr L3 2 add 4294967295, rl2 2
L2 st.w rl2, $ t 4
1d.w $ t, rl4 4 L3
add 4294967295, rl4 2 1d.w $ s, ril3 4
st.w rl4, $ t 4 add 1, rl3 2
st.w rlo, $_s 4 st.w rl3, $ s 4
L3
Total code size 50 bytes | Total code size 46 bytes

22

Application Note U16076EJ1VOAN

CHAPTER 2 REDUCING CODE SIZE

2.7 Using a Temporary Variable to Consolidate the Calls to the Same Function with Different
Arguments That Appear After Each Branch Clause at the Location After the Control Logic

Merges Together

If a different argument is used when calling the same function after each branch clause, move the function call after

the location where the control logic merges together again if it can be moved there. At this time, at each call location,

assign the argument that differs to a temporary variable and use that temporary variable as the argument in the

function call.

A sample program is shown below.

Remark s is assumed to be an external variable.

Before Modification

After Modification
int tmp;
if (s) {
tmp = 2;
}
else {
tmp = 3;

[Output Assembly List for the V850]

Before Modification After Modification
Program Size Program Size
[bytes] [bytes]
1d.w $ s, rlo 4 ld.w $ s, rlo 4
cmp r0, rl0 2 cmp r0, rlo 2
je .L9 2 je L2 2
mov 1, r7 2 mov 2, rll 2
mov 2, r8 2 jbr L7 2
mov r0, ré6 2 L2
jarl _func, 1lp 4 mov 3, rll 2
jbr .L3 2 .L7:
.L9: mov 1, r7 2
mov 1, r7 2 mov r0, r6 2
mov 3, r8 2 mov rll, r8 2
mov r0, r6 2 jarl _func, 1p 4
jarl _func, 1lp 4
.L3:
Total code size 30 bytes | Total code size 24 bytes

Application Note U16076EJ1VOAN

23

CHAPTER 2 REDUCING CODE SIZE

[Output Assembly List for the V850E]

Before Modification After Modification
Program Size Program Size
[bytes] [bytes]
1d.w $ s, rlo 4 1d.w $ s, rlo 4
cmp r0, rlo 2 cmp r0, rlo 2
je .L9 2 je L2 2
mov 1, r7 2 mov 2, rill 2
mov 2, r8 2 jbr L7 2
mov r0, r6 2 L2
jarl _func, 1p 4 mov 3, rill 2
jbr L3 2 LL7:
.L9: mov 1, r7 2
mov 1, r7 2 mov r0, r6 2
mov 3, r8 2 mov rll, rs8 2
mov r0, r6 2 jarl _func, 1lp 4
jarl _func, 1p 4
L3
Total code size 30 bytes | Total code size 24 bytes

24 Application Note U16076EJ1VOAN

CHAPTER 2 REDUCING CODE SIZE

2.8 Replacing a Complex if Statement with One That Is Logically Equivalent

When the same processing is executed according to multiple cases in a combination of if~else statements, if the
"multiple cases" can be consolidated by using a separate condition, consolidate them and remove the excess
portions.

A sample program is shown below.
Remark When the conditions that the initial value of x is 0 and the values of s and t are either 0 or 1 are

consolidated, they can be transformed as shown in this example. s, t, u, and v are assumed to be
external variables.

Before Modification After Modification
int x; int x;
if (!s) { if (! (s * 1)) {
if (t) | if ((++u) >= v) {
x = 1; u = 0;
} x = 1;
} }
else { }
if (1e)
x = 1;
}
}
if (x) |
if ((++u) >= v) {
u = 0;
}
else {
x = 0;
}
}

Application Note U16076EJ1VOAN 25

CHAPTER 2 REDUCING CODE SIZE

[Output Assembly List for the V850]

Before Modification After Modification
Program Size Program Size
[bytes] [bytes]

1d.w $ s, rll 4 1d.w $ s, rll 4
cmp r0, rll 2 1d.w $ t, ri2 4
jne L2 2 Xor rl2, rill 2
1d.w $ t, ril2 4 jne L2 2
cmp r0, rl2 2 1d.w $ u, rlo 4
je L4 2 add 1, rlo 2
mov 1, ril3 2 st.w rl0, $_u 4
st.w rl3, -4+0x4 [spl] 4 1d.w $ v, rl4 4
jbr L4 2 cmp rl4, rlo0 2

.L2: jit L2 2
1d.w S t, rl4 4 st.w ro, $ u 4
cmp r0, rl4 2 L2
jne .L4 2
mov 1, rls 2
st.w rl5, -4+0x4 [sp] 4

.L4:
1d.w -4+0x4 [sp]l, rle 4
cmp r0, rlé 2
je .L6 2
1d.w $ u, rlo 4
add 1, rlo 2
1d.w $ v, rls 4
cmp rlg8, rlo 2
jlt .L7 2
st.w r0, S u 4
jbr .L6 2

L7
st.w rl0, $_u 4

L6

Total code size 70 bytes | Total code size 34 bytes

26

Application Note U16076EJ1VOAN

CHAPTER 2 REDUCING CODE SIZE

[Output Assembly List for the V850E]

Before Modification After Modification
Program Size Program Size
[bytes] [bytes]
1d.w $ s, rll 4 1ld.w $ s, rll 4
cmp ro, rll 2 1ld.w S t, ri2 4
jne L2 2 Xor rl2, rll 2
1d.w $ t, ri2 4 jne L2 2
cmp ro, ril2 2 1ld.w $ u, rlo 4
je L4 2 add 1, rlo 2
mov 1, rl3 2 st.w rl0, $_u 4
st.w rl3, -4+0x4 [sp] 4 1d.w S v, rl4 4
jbr .L4 2 cmp rl4, rlo0 2
LL2: jlt L2 2
1d.w $ t, rl4 4 st.w ro, $ u 4
cmp r0, rl4 2 L2:
jne .L4 2
mov 1, rls 2
st.w rl5, -4+0x4 [sp] 4
L4
1d.w -4+0x4 [spl, rleé 4
cmp r0, rleé 2
je .L6 2
1d.w $ u, rlo 4
add 1, rlo 2
1d.w $ v, rils 4
cmp rl8, rlo0 2
jlt .L7 2
st.w ro, S u 4
jbr .L6 2
L7
st.w rl0, $ u 4
.L6:
Total code size 70 bytes | Total code size 34 bytes
Application Note U16076EJ1VOAN 27

CHAPTER 2 REDUCING CODE SIZE

2.9 Transforming a for or while Loop Into a goto Loop

When a loop begins with a conditional decision expression such as a for or while loop, the CA850 generates the
conditional decision expression twice as shown in the following image diagram.

This kind of loop transformation is performed by the front end (syntax analyzer), which is the initial phase of the
compiler. The initial conditional decision is often eliminated by the subsequent optimization, but this kind of
transformation is performed because it is advantageous from the viewpoint of increasing execution speed. However,
when this description is not eliminated, the code size is increased.

[Image diagram]

Syntax Image
for (statement-1; expression-2; statement-3) { statement-1;
loop-body if (expression-2) {
1 do {
loop-body

statement-3 ;
} while (expression-2) ;

}
while (expression-1) { if (expression-1) {
loop-body do {
} loop-body
} while (expression-1) ;
}

Therefore, if the first conditional decision expression is not eliminated by the optimization, transforming to a loop
formed by goto statements as follows enables the number of conditional decision expressions to be reduced to one.
Write the coding as shown in the following image diagram.

[Image diagram]

for loop statement-1;
loop bgn:
if (! expression-2) goto loop end;
loop-body
statement-3 ;
goto loop bgn;
loop_end:

while loop loop bgn:

if (! expression-1) goto loop end;
loop-body

goto loop bgn;

loop_end:

28 Application Note U16076EJ1VOAN

CHAPTER 2 REDUCING CODE SIZE

A sample program is shown below.

Remark s and array[] are assumed to be external variables.

Before Modification

After Modification

int i;

for (i = i< s; ++1) |

0;
array[i] = arrayl[i+l];

int i;
i = 0;
bgn_loop:
if (i >= s) goto end loop;
array[i] = arrayl[i+l];
++1;

goto bgn_loop;

end_loop:
[Output Assembly List for the V850]
Before Modification After Modification
Program Size Program Size
[bytes] [bytes]

1d.w $ s, ri2 4 mov r0, rlo 2
cmp ro, ril2 2 .Ll6:
jle .L18 2 1d.w $ s, rll 4
movea $ _array, gp, rl0 4 cmp rll, rlo0 2
mov r0, rll 2 jge .L20 2

.L16: mov rl0, ril2 2
mov rll, ril3 2 shl 2, ril2 2
shl 2, rl3 2 movea $_array, gp, rl3 4
add rl0, rl3 2 add rl2, rl3 2
1d.w 4[r13], rl4 4 1d.w 4 [r13], rl4 4
st.w rl4, [r13] 4 st.w rld4, [r13] 4
add 1, rili 2 add 1, rlo 2
1d.w $ s, rils 4 jbr .L1l6 2
cmp rl5, rll 2 .L20:
jlt .L1l6 2

.L18:

Total code size 38 bytes | Total code size 32 bytes
Application Note U16076EJ1VOAN 29

CHAPTER 2 REDUCING CODE SIZE

[Output Assembly List for the V850E]

Before Modification

After Modification

Program Size Program Size
[bytes] [bytes]
ld.w $ s, ril2 4 mov r0, rl0 2
cmp r0, rl2 2 .Ll6:
jle .L18 2 1ld.w $ s, rll 4
movea $_array, gp, rl0 4 cmp rll, rlo0 2
mov r0, rill 2 jge .L20 2
L16 mov rl0o, rl2 2
mov rll, rl3 2 shl 2, rl2 2
shl 2, rl3 2 movea $_array, gp, rl3 4
add rl0o, rl3 2 add rl2, rl3 2
1d.w 4[r13], rl4 4 1d.w 4[rl3], rl4 4
st.w rl4d, [rl3] 4 st.w rl4, [rl3] 4
add 1, rll 2 add 1, rlo 2
ld.w $ s, rls 4 jbr .Ll6 2
cmp rl5, rll 2 .L20:
jlt .L16 2
.L18:
Total code size 38 bytes | Total code size 32 bytes

30

Application Note U16076EJ1VOAN

CHAPTER 2 REDUCING CODE SIZE

2.10 Unrolling a Loop

When the execution count is small and the loop body is small, the coding size of the unrolled loop may be smaller.
In this case, the execution speed is also increased.

A sample program is shown below.

Remark array[] is assumed to be an external variable.

Before Modification After Modification
int i; int *p;
for (1 = 0; 1 < 4; i++) { p = array;
array[i] = 0; *p o= 0;
} *(p+l) = 0;
*(p+2) = 0;
*(p+3) = 0;

[Output Assembly List for the V850]

Before Modification After Modification
Program Size Program Size
[bytes] [bytes]
movea $ _array, gp, rl0 4 st.w r0, $_array 4
mov r0, rll 2 st.w r0, $ array+4 4
.L15: st.w r0, $ _array+8 4
mov rll, rl2 2 st.w r0, $_array+12 4
shl 2, ril2 2
add rl0, rl2 2
st.w r0, [ril2] 4
add 1, ri1 2
cmp 4, rll 2
jlt .L15 2
Total code size 22 bytes | Total code size 16 bytes
[Output Assembly List for the V850E]
Before Modification After Modification
Program Size Program Size
[bytes] [bytes]
movea $_array, gp, rlo0 4 st.w r0, $_array 4
mov r0, rll 2 st.w r0, $_array+4 4
.L15: st.w r0, $_array+8 4
mov rll, rl2 2 st.w r0, $_array+12 4
shl 2, rl2 2
add rl0, rl2 2
st.w r0, [rl2] 4
add 1, rll 2
cmp 4, rll 2
jlt .L15 2
Total code size 22 bytes | Total code size 16 bytes

Application Note U16076EJ1VOAN 31

CHAPTER 2 REDUCING CODE SIZE

2.11 Shortening the Lifespan of a Variable

If there is an interval between the location where a value is assigned to a stack variable and the location where that
value is actually referenced, a register is occupied during that interval and the opportunities for other variables being
allocated to that register are reduced. Although the assignment of values is often moved to the end of the interval by
the compiler optimization, this optimization may not be performed if the interval contains a function call.

In this case, changing the coding so that the assignment is performed immediately before the value is actually
referenced will increase the register allocation opportunities of other variables, reduce memory accesses, and
decrease the code size.

A sample program is shown below.

Remark s1, s2, s3, and array[] are assumed to be external variables.

Before Modification After Modification
int i =0, j =0, k=0, m=0; int i, j, k, m;
while ((k & OxFF) != OxFF) ({ i=0;
k = s1; j = 0;
if (k & OxFF00) { k =0;
if (m 1= 1) | m=0;
82 += 2; while ((k & OxFF) != OxFF) ({
m=1; k = s1;
array [15+i+j] = OxFF; if (k & OxFF00) {
J4+; if (m 1= 1) |
} 82 += 2;
} m = 1;
} array [15+i+j] = OxFF;
J++;
1
1
1

32 Application Note U16076EJ1VOAN

CHAPTER 2 REDUCING CODE SIZE

[Output Assembly List for the V850]

Before Modification

After Modification

Program Size Program Size
[bytes] [bytes]

1d.w $ s1, ri2 4 ld.w $ sl, rl4 4
and oxff0oo0, ri2 4 andi o0xff00, rl4, rll 4
mov r0, r29 2 and oxff, rl4 4
mov r0, r28 2 mov r0, rl3 2

.L21: mov r0, rl2 2
1d.w $ s1, ril 4 .L22:
cmp r0, rl2 2 cmp r0, rll 2
je .L27 2 je .L28 2
cmp 1, r29 2 cmp 1, ril2 2
je .L27 2 je .L28 2
ld.w $ s2, ril3 4 1d.w $ s2, rils 4
add 2, rl3 2 add 2, rls 2
st.w rl3, $_s2 4 st.w rl5, $_s2 4
mov 1, r29 2 mov 1, rl2 2
mov r28, rl4 2 mov rl3, rile 2
shl 2, rl4 2 shl 2, rlé6 2
movea $_array, gp, rl5 4 movea $_array, gp, rl7 4
add rl4, rl5 2 add rle, rl7 2
mov 255, rlé6 4 mov 255, rls 4
st.w rlée, 60[rl5] 4 st.w rl8, 60[rl7] 4
add 1, r28 2 add 1, rl3 2

.L27: .L28:
andi oxff, rll, rl7 4 addi -255, rl4, x0 4
addi -255, rl7, 0 4 jne .L22 2
jne .L21 2

Total code size 66 bytes | Total code size 62 bytes
Application Note U16076EJ1VOAN 33

CHAPTER 2 REDUCING CODE SIZE

[Output Assembly List for the V850E]

Before Modification

After Modification

Program Size Program Size
[bytes] [bytes]
ld.w $ sl, rl2 4 1d.w $ sl, rl4 4
and o0xffoo0, ri2 4 andi oxff00, rl4, rll 4
mov r0, r29 2 zxb rl4 2
mov r0, r28 2 mov r0, rl3 2
.L21: mov r0, rl2 2
1d.w $ s1, rill 4 .L22:
cmp r0, rl2 2 cmp r0, rll 2
je .L27 2 je .L28 2
cmp 1, r29 2 cmp 1, rl2 2
je .L27 2 je .L28 2
1ld.w $ s2, rl3 4 1d.w $ s2, rils 4
add 2, rl3 2 add 2, rls 2
st.w rl3, $_s2 4 st.w rl5, $_s2 4
mov 1, r29 2 mov 1, rl2 2
mov r28, rl4 2 mov rl3, rileé 2
shl 2, rl4 2 shl 2, rlé6 2
movea $_array, gp, rl5 4 movea $_array, gp, rl7 4
add rld, rls 2 add rlé, rl7 2
mov 255, rle6 4 mov 255, rls8 4
st.w rl6e, 60[rl5] 4 st.w rl8, 60[rl7] 4
add 1, r28 2 add 1, rl3 2
.L27: .L28:
zxb rll 2 addi -255, rl4, 0 4
addi -255, rll, xo0 4 jne .L22 2
jne .L21 2
Total code size 64 bytes | Total code size 60 bytes

34

Application Note U16076EJ1VOAN

CHAPTER 2 REDUCING CODE SIZE

2.12 Eliminating an Induction Variable

A variable that controls a loop is called an induction variable, and optimization that eliminates an induction variable

by changing the loop control so that another variable is used is referred to as "eliminating an induction variable."
Although this optimization is also included in the CA850, since the conditions for which it is applied are limited, not

all cases can be optimized.

Therefore, perform this optimization "manually" by altering the program as follows.

A sample program is shown below.

Remark x and *table are assumed to be external variables.

Before Modification After Modification
int i; const unsigned short *p;
for (i = 0; *(table + i) != NULL; ++i) { for (p = table; *p != NULL; ++p)
if ((*(table + i) & OxFF) == x) ({ if ((*p & OXFF) == x) {
return (* (table + i) & OxFF00) ; return(*p & OxFFO00) ;
} }
} }
[Output Assembly List for the V850]
Before Modification After Modification
Program Size Program Size
[bytes] [bytes]
1d.w $_table, ril2 4 ld.w $_table, ril2 4
1d.h [r12], rl3 4 1d.h [r12], r1l3 4
and oxffff, ril3 4 and oxffff, ril3 4
je L1 2 je L1 2
1d.h [r12], rlo0 4 1d.h [r12], rlo0 4
mov r0, rll 2 mov rlza, rll 2
L2 L2
andi oxff, rlo, rl4 4 andi oxff, rlo, rl4 4
1d.h $ x, rls 4 1d.h $ x, rls 4
and oxffff, rls 4 and oxffff, rls 4
cmp rl4, rl5 2 cmp rl4, rl5 2
jne .L5 2 jne .L5 2
andi 0xff00, rl0, rlé6 4 andi 0xff00, rlo, rilé6 4
st.w rl6e, -4+0x4 [sp] 4 st.w rlé, -4+0x4 [sp] 4
jbr .L1 2 jbr L1 2
.L5: .L5:
add 1, rll 2 add 2, rll 2
mov rll, rlo0 2 1d.h [r11], rilo0 4
shl 1, rlo 2 and oxffff, rlo 4
add rl2, rlo 2 jne L2 2
1d.h [r10], rlo0 4 LL1:
and oxffff, ri1o 4 1d.w -4+0x4 [sp]l, rlo0 4
jne L2 2
.Ll:
l1d.w -4+0x4 [sp], rlo0 4
Total code size 68 bytes | Total code size 62 bytes
Application Note U16076EJ1VOAN 35

CHAPTER 2 REDUCING CODE SIZE

[Output Assembly List for the V850E]

Before Modification

After Modification

Program Size Program Size
[bytes] [bytes]

1d.w $ table, ril2 4 1d.w $ table, ril2 4
1d.hu [r12], r13 4 1d.hu [r12], r13 4
cmp r0, rl3 2 cmp r0, rl3 2
je L1 2 je L1 2
1d.hu [r12], rilo0 4 1d.hu [r12], rlo0 4
mov r0, rll 2 mov rl2, rill 2

L2 L2
mov rlo, rl4 2 mov rl0, rl4 2
zxb rl4 2 zxb rl4 2
ld.hu $_x, rl5 4 ld.hu $ x, rl5 4
cmp rl4, rls 2 cmp rl4, rl5 2
jne .L5 2 jne .L5 2
andi oxffoo0, rlo, rlé6 4 andi 0xff00, rl0, rilé 4
st.w rle, -4+0x4 [sp] 4 st.w rl6e, -4+0x4 [sp] 4
jbr L1 2 jbr L1 2

.L5: .L5:
add 1, rili 2 add 2, rll 2
mov rll, rlo 2 1d.hu [r11], rilo0 4
shl 1, rlo 2 cmp r0, rlo0 2
add rl2, rlo0 2 jne L2 2
1d.hu [r10], rilo0 4 Ll
cmp r0, rlo 2 1d.w -4+0x4 [sp], rlo0 4
jne .L2 2

L1
1d.w -4+0x4 [sp]l, rl0 4

Total code size 60 bytes | Total code size 54 bytes

36

Application Note U16076EJ1VOAN

CHAPTER 2 REDUCING CODE SIZE

2.13 Setting (unsigned) int Type for (unsigned) short or char Type Variables

According to the (unsigned) ANSI-C specifications, since (unsigned) short or (unsigned) char type variables are
extended to int type or unsigned int type when calculations are performed, type conversion instructions often are
generated for programs that use these kinds of variables (in particular, when these kinds of variables are allocated to
registers).

Since this type conversion will be unnecessary if (unsigned) int type is set, the code size is reduced.

In particular, (unsigned) int type should be used as much as possible for stack variables, which are allocated to
registers relatively often.

A sample program is shown below.

Remark array[] and *p are assumed to be external variables.

Before Modification After Modification
unsigned char i; int i;
for(i = 0; 1 < 4; i++) { for(i = 0; 1 < 4; i++) {
array[2 + 1] = *(p + 1i); array[2 + 1] = *(p + 1i);
1 1

[Output Assembly List for the V850]

Before Modification After Modification
Program Size Program Size
[bytes] [bytes]
movea $_array, gp, rlo0 4 movea $_array, gp, rl0 4
mov r0, rl2 2 mov r0, rl2 2
L2 L2
mov rl2, rll 2 mov rlza, rll 2
shl 2, rll 2 shl 2, rll 2
mov rl0o, rl3 2 mov rl0o, rl3 2
add rll, rl3 2 add rll, rl3 2
1d.w $ p, rls 4 ld.w $ p, rls 4
add rll, rl5 2 add rll, rl5 2
1d.w [r15], rl5 4 ld.w [r15], rl5 4
st.w rl5, 8[rl3] 4 st.w rl5, 8([rl3] 4
add 1, rl2 2 add 1, ril2 2
and oxff, rl2 4 cmp 4, rl2 2
cmp 4, ril2 2 jlt L2 2
jlt L2 2
Total code size 38 bytes | Total code size 34 bytes

Application Note U16076EJ1VOAN 37

CHAPTER 2 REDUCING CODE SIZE

[Output Assembly List for the V850E]

Before Modification

After Modification

Program Size Program Size
[bytes] [bytes]
movea $_array, dgp, rl0 4 movea $_array, gp, rl0 4
mov r0, ril2 2 mov r0o, ril2 2
L2 L2
mov rl2, rilil 2 mov ril2, rill 2
shl 2, rll 2 shl 2, rill 2
mov rl0, rl3 2 mov rl0, rl3 2
add rll, rl3 2 add rll, ril3 2
1d.w $ p, rls 4 1d.w $ p, rls 4
add rll, rl5 2 add rll, ril5 2
1d.w [r15], rls 4 1d.w [r15], rls 4
st.w rl5, 8[r13] 4 st.w rl5, 8[r13] 4
add 1, ril2 2 add 1, rl2 2
zxb rl2 2 cmp 4, ril2 2
cmp 4, rl2 2 jlt L2 2
jlt .L2 2
Total code size 36 bytes | Total code size 34 bytes

38

Application Note U16076EJ1VOAN

CHAPTER 2 REDUCING CODE SIZE

2.14 Consolidating in a Single Statement When an Assigned Value Is Referenced in the Statement
Following the Assignment Statement

When an assigned value is referenced in the statement following an assignment statement, consolidating the two
statements in a single statement by replacing the referencing location with the assignment statement may eliminate an
extra register transfer and reduce the code size. However, in many cases, the code size will not change because the
extra register transfer has been eliminated by the compiler optimization.

A sample program is shown below.

Remark s andtare assumed to be external variables.

Before Modification After Modification

--s; if (--s == 0) {
if (s == 0) { Cei
t++; }

In this example, the same code size will be produced by compiler optimization.

Application Note U16076EJ1VOAN 39

CHAPTER 2 REDUCING CODE SIZE

2.15 Eliminating the if~else Statement When the Branch Destinations of the if~else Statement Are
return Statements That Return the Result of the Branch Condition

When each of the branch destinations of an if~else statement contains only a return statement and the
corresponding return values are the branch condition results themselves, eliminate the if~else statement and make

the program return the value of the branch condition expression.

A sample program is shown below.

Remark s1 and s2 are assumed to be external variables.

Before Modification After Modification
if (s1 == s2) { return (sl == s2);
return (1) ;
1
return (0) ;
[Output Assembly List for the V850]
Before Modification After Modification
Program Size Program Size
[bytes] [bytes]
ld.w $ sl, rll 4 1d.w $ s1, rll 4
ld.w $ s2, ril2 4 1d.w $ s2, ri2 4
cmp rlz, rll 2 cmp rlz, rll 2
jne L2 2 setfe rlo0 4
mov 1, rlo 2
jbr L1 2
.L2:
mov r0, rl0 2
L1
Total code size 18 bytes | Total code size 14 bytes
[Output Assembly List for the V850E]
Before Modification After Modification
Program Size Program Size
[bytes] [bytes]
1d.w $ sl, rill 4 1d.w $ sl, rill 4
1d.w $ s2, ril2 4 1d.w $ s2, ril2 4
cmp rl2, rilil 2 cmp rlz2, rill 2
jne .L2 2 setfe rlo0 4
mov 1, rlo 2
jbr L1 2
.L2:
mov r0, rlo 2
Ll
Total code size 18 bytes | Total code size 14 bytes

40 Application Note U16076EJ1VOAN

CHAPTER 2 REDUCING CODE SIZE

2.16 Changing the Condition and Setting the Operand to 15 or —16 When One of the Operands of a
Comparison Operation Is the Constant 16 or -17

When one of the operands of the comparison instruction cmp is not immediate data in the range —16 to 15, the
assembler performs instruction expansion and the comparison instruction will become multiple instructions.

Therefore, if the operand value is held to the range from —16 to 15 by changing the condition, the expansion will be
suppressed and the coding size will be reduced.

Specifically, change the value used for the comparison in the conditional expression of a statement such as a for or
if statement.

A sample program is shown below.

Remark s is assumed to be an external variable.

Before Modification

After Modification

int i;

for (1 = 0; 1 < 16; i++) {

S++;

int i;

for (1 = 0; 1 <= 15; i++)

S++;

In this example, the same code size will be produced by compiler optimization.

Application Note U16076EJ1VOAN

41

CHAPTER 2 REDUCING CODE SIZE

2.17 |Initializing a Variable

When an auto variable is used in a function without being initialized, the code size is increased because that
variable remains in memory without being allocated to a register.

In the example shown below, when the variable a does not correspond to either case of the switch statement, it is
referenced by the return statement without being initialized. Actually, even if it always corresponds to one of the
cases, it may be treated as if it is not initialized because its value is not known when the program is analyzed during
register allocation. In this case, no register will be allocated during CA850 register allocation.

Therefore, if the variable is allocated to a register by adding an initialization, the code size can be reduced.

A sample program is shown below.

Remark ais assumed to be an auto variable.

Before Modification After Modification
int a; int a = 0;
switch(x) { switch(x) {
case 0: case 0:
a = 0; a = 0;
break; break;
case 1: case 1:
a=1; a=1;
1 1
return a; return a;

[Output Assembly List for the V850]

Before Modification After Modification
Program Size Program Size
[bytes] [bytes]
cmp r0, ré6 2 cmp r0, ré6 2
je .L4 2 mov r0, rll 2
cmp 1, ré6 2 je .L3 2
je .L5 2 cmp 1, ré6 2
jbr .L3 2 jne .L3 2
L4 : mov 1, rll 2
st.w r0, -4+0x4 [sp] 4 L3
jbr L3 2 mov rll, rlo0 2
.L5:
mov 1, rll 2
st.w rll, -4+0x4[sp] 4
.L3:
1ld.w -4+0x4 [sp]l, rlo0 4
Total code size 26 bytes | Total code size 14 bytes

42 Application Note U16076EJ1VOAN

CHAPTER 2 REDUCING CODE SIZE

[Output Assembly List for the V850E]

Before Modification After Modification
Program Size Program Size
[bytes] [bytes]
cmp r0, r6 2 cmp r0, r6 2
je L4 2 mov r0o, rill 2
cmp 1, r6 2 je L3 2
je .L5 2 cmp 1, ré6 2
jbr .L3 2 jne .13 2
L4 mov 1, rl1 2
st.w r0, -4+0x4 [sp] 4 L3
jbr .L3 2 mov rll, rlo 2
.L5:
mov 1, rili 2
st.w rll, -4+0x4 [sp] 4
L3
1d.w -4+0x4 [spl, rl0 4
Total code size 26 bytes | Total code size 14 bytes

Application Note U16076EJ1VOAN 43

CHAPTER 2 REDUCING CODE SIZE

2.18 Declaring void for a Function Having No Return Value

Declare void for a function that has no return value.

The extra register transfer instruction will be eliminated.

A sample program is shown below.

Before Modification After Modification
func (int a) void func (int a)
{ {
switch(a) { switch(a) {
case O0: case O0:
s = 0; s = 0;
break; break;
case 1: case 1:
s = 1; s = 1;
1 1
} }
[Output Assembly List for the V850]
Before Modification After Modification
Program Size Program Size
[bytes] [bytes]
cmp r0, ré6 2 cmp r0, ré6 2
je L4 2 je .L4 2
cmp 1, ré6 2 cmp 1, ré6 2
je .L5 2 je .L5 2
jbr .13 2 jbr .13 2
L4 L4
st.w ro, $_s 4 st.w ro, $_ s 4
jbr .13 2 jbr .13 2
.L5: .L5:
mov 1, rll 2 mov 1, rlo 2
st.w rll, $_ s 4 st.w rl0, $_s 4
L3 L3
mov r0, rlo 2 jmp [1p] 2
jmp [1p] 2
Total code size 26 bytes | Total code size 24 bytes
[Output Assembly List for the V850E]
Before Modification After Modification
Program Size Program Size
[bytes] [bytes]
cmp r0, ré6 2 cmp r0, ré6 2
je L4 2 je .L4 2
cmp 1, 6 2 cmp 1, ré6 2
je .L5 2 je .L5 2
jbr .13 2 jbr .13 2
.L4: .L4:
st.w ro, $_s 4 st.w ro, $_ s 4
jbr .13 2 jbr L3 2
.L5: .L5:
mov 1, rll 2 mov 1, rlo 2
st.w rll, $_ s 4 st.w rl0, $_s 4
.L3: .L3:
mov r0, rlo 2 jmp [1p] 2
jmp [1p] 2
Total code size 26 bytes | Total code size 24 bytes

44

Application Note U16076EJ1VOAN

CHAPTER 2 REDUCING CODE SIZE

2.19 Consolidating Common case Processing in a switch Statement

If the identical case processing descriptions of a switch statement are consolidated, the code size may be reduced.

A sample program is shown below.

Remark xis assumed to be an external variable.

Before Modification

After Modification

switch(x)
case 0:
dummy1l () ;
break;
case 1:
dummy1l () ;
break;
case 2:
dummy1l () ;
break;
case 3:
dummy?2 () ;
break;
case 4:
dummy?2 () ;
break;
default:

break;

switch(x)
case 0:
case 1:
case 2:
dummy1l () ;
break;
case 3:
case 4:
dummy?2 () ;
break;
default:

break;

Application Note U16076EJ1VOAN

45

CHAPTER 2 REDUCING CODE SIZE

[Output Assembly List for the V850]

Before Modification

After Modification

Program Size Program Size
[bytes] [bytes]

1d.w -4+.A2[sp]l, rlo 4 1d.w -4+.A2[spl, rlo0 4
cmp 4, rlo 2 cmp 4, rlo 2
jh .L3 2 jh L3 2
shl 1, rlo 2 shl 1, rlo 2
add tp, rlo 2 add tp, rlo 2
1d.h .L10([r10], ril1l 8 1d.h .L10[r10], ril1l 8
add .L10, ril1 10 add .L10, rill 10
add tp, rll 2 add tp, rll 2
jmp [r11] 2 jmp [r11] 2

.L10: .L10:
.hword .L13-.L10 2 .hword .L13-.L10 2
.hword .L16-.L10 2 .hword .L13-.L10 2
.hword .L19-.L10 2 .hword .L13-.L10 2
.hword .L22-.L10 2 .hword .L16-.L10 2
.hword .L25-.L10 2 .hword .L16-.L10 2

LL13: .L13:
jarl _dummyl, 1lp 4 jarl _dummyl, 1lp 4
jbr .L3 2 jbr .L3 2

.Ll6: .L16:
jarl _dummyl, 1lp 4 jarl _dummy2, 1lp 4
jbr .L3 2 .L3:

.L19:
jarl _dummyl, 1lp 4
jbr .13 2

L22:
jarl _dummy2, lp 4
jbr .13 2

.L25:
jarl _dummy2, lp 4

L3

Total code size 72 bytes | Total code size 54 bytes

46

Application Note U16076EJ1VOAN

CHAPTER 2 REDUCING CODE SIZE

[Output Assembly List for the V850E]

Before Modification After Modification
Program Size Program Size
[bytes] [bytes]
1d.w -4+.A2[spl, rlo 4 1d.w -4+.A2[sp], 4
cmp 4, rlo 2 cmp 4, rlo 2
jh .L3 2 jh L3 2
switch rl0 2 switch r10 2
.L10: .L10:
.shword .L13-.L10 2 .shword .L13-.L10 2
.shword .L16-.L10 2 .shword .L13-.L10 2
.shword .L19-.L10 2 .shword .L13-.L10 2
.shword .L22-.L10 2 .shword .L16-.L10 2
.shword .L25-.L10 2 .shword .L16-.L10 2
.L13: LL13:
jarl _dummyl, 1lp 4 jarl _dummyl, 1p 4
jbr .L3 2 jbr .L3 2
.L16: .Ll6:
jarl _dummyl, 1lp 4 jarl _dummy2, 1lp 4
jbr .13 2 .13
.L19:
jarl _dummyl, lp 4
jbr .L3 2
.L22:
jarl _dummy2, lp 4
jbr .L3 2
.L25:
jarl _dummy2, lp 4
L3
Total code size 48 bytes | Total code size 30 bytes
Application Note U16076EJ1VOAN 47

CHAPTER 2 REDUCING CODE SIZE

2.20 Consolidating return Statements Having Identical Values

If descriptions of return statements that return the same value are consolidated, the code size may be reduced.

A sample program is shown below.

Remark s, t, and u are assumed to be external variables.

return 0x0;

Before Modification After Modification
if (s == 1)return Oxff; if((s == 1) || (¢ == 1) || (u == 1))return Oxff;
if (t == 1)return Oxff; return 0x0;
if (u == 1)return Oxff;

[Output Assembly List for the V850]

Before Modification After Modification
Program Size Program Size
[bytes] [bytes]

ld.w $ s, rll 4 1ld.w $ s, rll 4
cmp 1, rll 2 cmp 1, rll 2
jne L2 2 je .L3 2
mov 255, rlo 4 1d.w $ t, ri2 4
jbr L1 2 cmp 1, rl2 2

\L2: je L3 2
ld.w $ t, ri2 4 1d.w $ u, rl3 4
cmp 1, ril2 2 cmp 1, rl3 2
jne .L3 2 je .L3 2
mov 255, rlo 4 mov r0, rl0 2
jbr L1 2 jbr L1 2

L3 .L3:
ld.w $ u, rl3 4 mov 255, rlo 4
cmp 1, rl3 2 Ll
jne .L4 2
mov 255, rlo0 4
jbr L1 2

L4
mov r0, rlo 2

.L1:

Total code size 44 bytes | Total code size 32 bytes

48

Application Note U16076EJ1VOAN

CHAPTER 2 REDUCING CODE SIZE

[Output Assembly List for the V850E]

Before Modification

After Modification

Program Size Program Size
[bytes] [bytes]

1d.w $ s, ril 4 1d.w $ s, rll 4
cmp , rill 2 cmp 1, rl1 2
jne .L2 2 je .L3 2
mov 255, rl0 4 1d.w $ t, ri2 4
jbr L1 2 cmp 1, rl2 2

L2 je .L3 2
1d.w $ t, ri2 4 ld.w $ u, rl3 4
cmp , rl2 2 cmp 1, rl3 2
jne .L3 2 je .L3 2
mov 255, rlo 4 mov r0, rlo0 2
jbr .L1 2 jbr L1 2

L3 L3
1d.w $ u, rl3 4 mov 255, rlo0 4
cmp , rl3 2 Ll
jne .L4 2
mov 255, rl0 4
jbr L1 2

.L4:
mov r0, rlo 2

Ll

Total code size 44 bytes | Total code size 32 bytes
Application Note U16076EJ1VOAN 49

CHAPTER 2 REDUCING CODE SIZE

2.21 Making an Expanded Inline Function into a static Function

When a function for which inline expansion is specified is not referenced from another file, making it into a static
function will cause the code for the function itself to be eliminated by the optimization. As a result, the code size may
be reduced. However, when the program™* contains an assembly language description, the code for the function
itself is output because this optimization is not performed. In this case, make the function that contains the assembly
language description a separate file.

Note This refers to the program (including the include file) that is to be compiled.
Example For a static function and a normal function

Note that the function name has been changed for the sake of explanation in the Before Modification and
After Modification coding.

Before Modification After Modification

#pragma inline funclsub #pragma inline func2sub
int s,t; int s,t;
void funclsub () static void func2sub()
{ {

int tmp; int tmp;

tmp = s; tmp = s;

s = t; s = t;

t = tmp; t = tmp;
1 1
void funcl () void func2()
{ {

if (s == 1){ if (s == 1){

funclsub () ; func2sub () ;

1 1

1 1

Although the code for the function func1sub is output, no code is output for the function func2sub.

50 Application Note U16076EJ1VOAN

CHAPTER 2 REDUCING CODE SIZE

Example For a function containing an assembly language description and a function not containing an assembly

language description

Note that the function name has been changed for the sake of explanation in the Before Modification and

After Modification coding.

Before Modification

After Modification

#pragma inline func3sub

int s,t;

static void func3sub()

{

int tmp;

void func3 ()

{
if (s == 1){
func3sub () ;

void dummy (void)

{

__asm("nop") ;

}

#pragma inline func4sub

int s,t;

static void func4sub()

{

int tmp;

tmp = s;
s = t;
t = tmp;

void func4 ()

{
if(s == 1){
func4sub () ;

Since the program shown in the Before Modification coding contains an assembly language description, the code
for the function func3sub is output. However, since the program shown in the After Modification coding does not
contain an assembly language description, no code is output for the function func4sub.

Application Note U16076EJ1VOAN

51

CHAPTER 3 INCREASING EXECUTION SPEED
This chapter describes examples in which the effective speed of processing that is essentially entrusted to the
compiler can be increased when a human operator alters the description.
3.1 Using a Pointer for Consecutive Accesses to an Array

Use a pointer for consecutive accesses to an array within a loop. If a pointer is not used, processing for obtaining
the actual address from the array subscript may be output each time.

A sample program is shown below.

Remark sum and array[] are assumed to be external variables.

Before Modification After Modification
int i; int i, *p;
sum = 0; sum = 0;
for(i = 0 ; 1 < 10 ; i++){ p = &array[0];
sum += array[i]; for(i = 0 ; 1 < 10 ; i++){
} Sum += *p4+;
1

[Output Assembly List for the V850]

Before Modification After Modification
Program Size Program Size
[bytes] [bytes]
st.w r0, $_sum 4 movea $_array, gp, rl2 4
movea $_array, gp, rl0 4 st.w r0, $_sum 4
mov r0, rl2 2 mov r0, rl3 2
mov r0, rll 2 mov r0, rll 2
.Ll6: LL17:
mov rll, rl4 2 mov rl2, rl4 2
shl 2, rl4 2 add 4, rl2 2
add rl0, rl4 2 1d.w [r14], rl4 4
ld.w [r14], rl4 4 add rl4, rl3 2
add rld, rl2 2 add 1, rll 2
add 1, rll 2 st.w rl3, $_sum 4
st.w rl2, $_sum 4 cmp 10, rl1l 2
cmp 10, rl1l 2 jlt .L17 2
jlt .L16 2
Total code size 34 bytes | Total code size 32 bytes

52 Application Note U16076EJ1VOAN

CHAPTER 3

INCREASING EXECUTION SPEED

[Output Assembly List for the V850E]

Before Modification

After Modification

Program Size Program Size
[bytes] [bytes]
st.w r0, $_sum 4 movea $_array, gp, rl2 4
movea $_array, gp, rlo0 4 st.w r0, $_sum 4
mov r0, rl2 2 mov r0, rl3 2
mov r0, rll 2 mov r0, rll 2
.Ll6: .L17:
mov rll, rl4 2 mov rl2, rl4 2
shl 2, rl4 2 add 4, rl2 2
add rl0, rl4 2 ld.w [r14], rl4 4
1d.w [r14], rl4 4 add rl4, rl3 2
add rl4, ril2 2 add 1, rll 2
add 1, rll 2 st.w rl3, $_sum 4
st.w rl2, $_sum 4 cmp 10, rlil 2
cmp 10, rll 2 jlt .L17 2
jlt .L16 2
Total code size 34 bytes | Total code size 32 bytes
Application Note U16076EJ1VOAN 53

CHAPTER 3 INCREASING EXECUTION SPEED

3.2 Replacing an Access to an External Variable with an Access to a Temporary Variable

Avoid using an external variable as much as possible within a loop.

Since an address calculation or memory access (load/store instruction) may be output every time, replace the
access to an external variable with an access to a temporary variable.

A sample program is shown below.

Remark sum and array[] are assumed to be external variables.

Before Modification After Modification
int i; int i;
int *p; int *p;
int tmp;
sum = 0;
p = &arrayl[0]; tmp = 0;
for(i = 0; 1 < 10; i++){ p = &array[0];
SUm += *p++; for(i = 0; 1 < 10; i++){
} tmp += *p++;
}
sum = tmp;

[Output Assembly List for the V850]

Before Modification After Modification
Program Size Program Size
[bytes] [bytes]
movea $_array, gp, rl2 4 movea $ array, gp, rl2 4
st.w r0, $_sum 4 mov r0o, rilil 2
mov r0, rl3 2 mov r0, rl3 2
mov r0, rll 2 .L18:
LL17: mov rl2, rl4 2
mov rl2, rl4 2 add 4, ril2 2
add 4, rl2 2 1d.w [r14], rl4 4
1d.w [r14], ri14 4 add rld, rl3 2
add rl4, rl3 2 add 1, rll 2
add 1, ril 2 cmp 10, rilil 2
st.w rl3, $ sum 4 jlt .L18 2
cmp 10, ril1l 2 st.w rl3, $ sum 4
jlt .L17 2
Total code size 32 bytes | Total code size 28 bytes

54 Application Note U16076EJ1VOAN

CHAPTER 3 INCREASING EXECUTION SPEED

[Output Assembly List for the V850E]

Before Modification After Modification
Program Size Program Size
[bytes] [bytes]
movea $_array, gp, rl2 4 movea $_array, gp, rl2 4
st.w r0, $_sum 4 mov r0, rll 2
mov r0, rl3 2 mov r0, rl3 2
mov r0, rll 2 .L18:
L17: mov rl2, rl4 2
mov rl2, rl4 2 add 4, rl2 2
add 4, rl2 2 ld.w [r14], rl4 4
1d.w [r14], rl4 4 add rl4, rl3 2
add rl4, rl3 2 add 1, rll 2
add 1, rill 2 cmp 10, rlil 2
st.w rl3, $ sum 4 jlt .L18 2
cmp 10, rlil 2 st.w rl3, $_sum 4
jlt .L17 2
Total code size 32 bytes | Total code size 28 bytes

Application Note U16076EJ1VOAN 55

CHAPTER 3 INCREASING EXECUTION SPEED

3.3 Not Using a Variable Expression for a Loop Ending Condition

Avoid using a variable expression as much as possible for a loop ending condition. Use a temporary variable
instead.

If a variable expression is used, a calculation for the ending expression comparison may be output every time.

A sample program is shown below.

Remark array[][]is assumed to be an external variable.

Before Modification After Modification
int i; int i;
int nSize; int nSize;
int mSize; int mSize;
int *p; int *p;
int s;

p = &arrayl[0] [0];

for(i = 0; i < nSize * mSize; i++)({ p = &array[0] [0];
*pr+ = 0; s = nSize * mSize;
} for(i = 0; 1 < s; i++){
*p++ = 0;
1

In this example, the same code size will be produced by compiler optimization.

56 Application Note U16076EJ1VOAN

CHAPTER 3

INCREASING EXECUTION SPEED

3.4 Using a Comparison with Zero for the Loop Ending Condition

If a comparison with zero expression is used for the loop ending condition, the calculation of the ending condition

each time through the loop may become faster. Also, the number of registers that are used may be reduced.

A sample program is shown below.

Remark array[][] is assumed to be an external variable.

Before Modification After Modification
int i; int 1i;
int nSize; int nSize;
int mSize; int mSize;
int *p; int *p;
int s;
p = &array[0] [0];
p = &array[0] [0]; for(i = nSize * mSize; i > 0; i--){
s = nSize * mSize; *p++ = 0;
for(i = 0; 1 < s; 1i++){ }
*p++ = 0;
}
[Output Assembly List for the V850]
Before Modification After Modification
Program Size Program Size
[bytes] [bytes]
1d.w -4+0x8 [spl, r7 4 1ld.w -4+0x8[spl, r7 4
1d.w -8+0x8 [spl, r6 4 1ld.w -8+0x8 [spl, 6 4
jarl _mul, 1p 4 jarl _ mul, 1p 4
cmp r0, ré6 2 cmp r0, ré6 2
mov r6, rl3 2 mov r6, rl0 2
jle .L24 2 jle .L23 2
movea $_array, gp, rll 4 movea $_array, gp, rll 4
mov r0, rl2 2 mov rl0o, rl2 2
.L22: .L21:
mov rll, rlo0 2 mov rll, rlo 2
add 4, rll 2 add 4, rll 2
st.w r0, [rl0] 4 st.w r0, [rlo0] 4
add 1, ril2 2 add 4294967295, ril2 2
cmp rl2, rl3 2 cmp r0, rl2 2
jgt .L22 2 jat .L21 2
.L24: .L23:
Total code size 38 bytes | Total code size 38 bytes
Remark In this example, the total code size does not change.
Application Note U16076EJ1VOAN 57

CHAPTER 3 INCREASING EXECUTION SPEED

[Output Assembly List for the V850E]

Before Modification

After Modification

Program Size Program Size
[bytes] [bytes]
1ld.w -4+0x8[sp]l, rl3 4 1d.w -4+0x8 [sp], rlo0 4
1d.w -8+0x8[spl, rl4 4 1d.w -8+0x8 [sp], rl3 4
mul rld4, rl3, r0 4 mul rl3, rl0, r0 4
cmp r0, rl3 2 cmp r0, rl0 2
jle .L24 2 jle .1L23 2
movea $_array, gp, rll 4 movea $_array, gp, rll 4
mov r0, rl2 2 mov rl0o, rl2 2
.L22: .L21:
mov rll, rlo 2 mov rll, rlo0 2
add 4, rll 2 add 4, rll 2
st.w r0, [rlo0] 4 st.w r0, [rl0] 4
add 1, rilz 2 add 4294967295, rl2 2
cmp rlz, rl3 2 cmp r0, rl2 2
jgt .L22 2 jat .L21 2
.L24: .L23:
Total code size 36 bytes | Total code size 36 bytes

Remark In this example, the total code size does not change.

58

Application Note U16076EJ1VOAN

CHAPTER 3

INCREASING EXECUTION SPEED

3.5 Unrolling a Loop

If the looping frequency is reduced, the overhead for the branching instructions due to the loop will be reduced.

A sample program is shown below.

Remark array[] is assumed to be an external variable.

Before Modification

After Modification

int i; int i;
int *p; int *p;
p = array; p = array;
for(i = N; 1 > 0; i--){ for(i = N »>> 2; 1 > 0; i--){ /* N/4 */
*p++ = 0; *p++ = 0;
} *p++ = 0;
*p++ = 0;
*p++ = 0;
}
for(i = N & 3; i > 0; i--){ /* N mod 4 */
*p++ = 0;
}
[Output Assembly List for the V850]
Before Modification After Modification
Program Size Program Size
[bytes] [bytes]
movea $_array, gp, rl2 4 mov 2, r6 2
mov 10, rl1l 2 movea $_array, gp, rl0 4
.L16: mov r6, rll 2
mov rl2, rlo0 2 .Ll6:
add 4, ril2 2 addi 4, rlo, rl3 4
st.w r0, [rl0] 4 st.w r0, [rlo0] 4
add 4294967295, rll 2 addi 4, rl3, rl4 4
cmp r0, rll 2 st.w r0, [rl3] 4
jgt .L16 2 addi 4, rl4, r7 4
st.w r0, [rl4] 4
addi 4, r7, rlo 4
st.w r0, [r7] 4
add 4294967295, rill 2
cmp r0, rll 2
jgt .L16 2
mov r6, rl2 2
.L23:
mov rl0, rll 2
add 4, rlo 2
st.w r0, [rlll] 4
add 4294967295, rl2 2
cmp r0, rl2 2
jgt .L23 2
Total code size 20 bytes | Total code size 62 bytes
Application Note U16076EJ1VOAN 59

CHAPTER 3 INCREASING EXECUTION SPEED

[Output Assembly List for the V850E]

Before Modification

After Modification

Program Size Program Size

[bytes] [bytes]
movea $_array, gp, rl2 4 mov 2, ré6 2
mov 10, rlil 2 movea $_array, gp, rlo0 4
L16 mov r6, rll 2

mov rl2, rlo 2 .Ll6:
add 4, rl2 2 addi 4, rlo, rl3 4
st.w r0, [rl0] 4 st.w r0, [rl0] 4
add 4294967295, rill 2 addi 4, rl3, rl4 4
cmp r0, rll 2 st.w r0, [rl3] 4
jgt .L16 2 addi 4, rl4, r7 4
st.w r0, [rl4] 4
addi 4, r7, rlo 4
st.w r0, [rx7] 4
add 4294967295, rll 2
cmp r0, rll 2
jgt .L16 2
mov r6, rl2 2
.L23:

mov rl0, rll 2
add 4, rlo 2
st.w r0, [rll] 4
add 4294967295, rl2 2
cmp r0, rl2 2
jgt .L23 2

Total code size 20 bytes | Total code size 62 bytes

60

Application Note U16076EJ1VOAN

CHAPTER 3

INCREASING EXECUTION SPEED

3.6 Optimizing a Pointer

A sample program is shown below.

Remark array[] is assumed to be an external variable and N is assumed to be 10.

Before Modification After Modification
int i; int i;
int *p; int *p;
p = array; p = array;
for(i = N >> 2; i > 0; i--){ /* N/4 */ for(i = N >> 2; i > 0; i--){ /* N/4 */
*p++ = 0; *(p + 0) = 0;
*p++ = 0; *(p + 1) = 0;
*p++ = 0; *(p + 2) = 0;
*p++ = 0; *(p + 3) = 0;
1 p += 4;
for(i = N & 3; i > 0; i--){ /* N mod 4 */ }
pr+ = 0; for(i = N & 3; i > 0; i--){ / N mod 4 */
} *p++ = 0;
}
[Output Assembly List for the V850]
Before Modification After Modification
Program Size Program Size
[bytes] [bytes]
mov 2, ré6 2 mov 2, rlo 2
movea $_array, gp, rlo0 4 movea $_array, gp, rl2 4
mov r6, rll 2 mov rlo, rll 2
.Ll6: .Ll6:
addi 4, rl0, ril3 4 st.w r0, [ri2] 4
st.w r0, [rl0] 4 st.w r0, 4[rl2] 4
addi 4, rl3, rl4 4 st.w r0, 8[rl2] 4
st.w r0, [rl3] 4 st.w r0, 12[rl2] 4
addi 4, rl4, r7 4 add 16, rl2 4
st.w r0, [rl4] 4 add 4294967295, rll 2
addi 4, r7, rlo0 4 cmp r0, rll 2
st.w r0, [r7] 4 jgt .Lle6 2
add 4294967295, rll 2 mov rl0o, rll 2
cmp r0, rll 2 .L23:
jgt .Ll6 2 mov rlz, rlo 2
mov r6, rl2 2 add 4, rl2 2
.L23: st.w r0, [rl0] 4
mov rl0o, rll 2 add 4294967295, rll 2
add 4, rlo 2 cmp r0, rll 2
st.w ro, [rll] 4 jgt .L23 2
add 4294967295, rl2 2
cmp r0, rl2 2
jgt .1L23 2
Total code size 62 bytes | Total code size 50 bytes

Application Note U16076EJ1VOAN

61

CHAPTER 3 INCREASING EXECUTION SPEED

[Output Assembly List for the V850E]

Before Modification

After Modification

Program Size Program Size
[bytes] [bytes]

mov 2, r6 2 mov 2, rlo 2
movea $_array, gp, rl0 4 movea $_array, gp, rl2 4
mov r6, rll 2 mov rl0o, rll 2

.Ll6: .Ll6:
addi 4, rlo, rl3 4 st.w r0, [rl2] 4
st.w r0, [rl0] 4 st.w r0, 4[rl2] 4
addi 4, rl3, rl4 4 st.w r0, 8[rl2] 4
st.w r0, [rl3] 4 st.w r0, 12[rl2] 4
addi 4, rl4, r7 4 add 16, rl2 4
st.w r0, [rl4] 4 add 4294967295, rll 2
addi 4, r7, rl0 4 cmp r0, rll 2
st.w r0, [r7] 4 jgt .L16 2
add 4294967295, rll 2 mov rl0o, rll 2
cmp r0, rll 2 .L23:
jgt .L1l6 2 mov rl2, rlo 2
mov r6, rl2 2 add 4, rl2 2

.L23: st.w r0, [rl0] 4
mov rl0, rll 2 add 4294967295, rll 2
add 4, rlo 2 cmp r0, rll 2
st.w r0, [rll] 4 jgt .L23 2
add 4294967295, ril2 2
cmp r0, rl2 2
jgt .L23 2

Total code size 62 bytes | Total code size 50 bytes

62

Application Note U16076EJ1VOAN

CHAPTER 3 INCREASING EXECUTION SPEED

3.7 Outputting a setf Instruction to Output 0 or 1 According to the Result of a Conditional

Comparison

Branch instructions are output by the if~else statement. As a result, the pipeline, which is the greatest feature of a
RISC CPU, is disrupted. Coding that is not an if~else statement can be written so that a setf instruction (that outputs
0 or 1 according to the result of a conditional comparison) is output for assigning a variable.

A sample program is shown below.

Remark s and flag are assumed to be external variables.

It is also assumed that flag = 1 if the variable s is greater than 100, and flag = 0 if the variable s is less

than or equal to 100.

Before Modification

After Modification

if(s > 100){

flag = 1;
1
else{

flag = 0;

}

flag = (

s > 100);

[Output Assembly List for the V850]

Before Modification

After Modification

Program Size Program Size
[bytes] [bytes]
1d.w $ s, rlo 4 ld.w $ s, rlo 4
addi -100, rl0, r0 4 cmp 100, rlo 6
jle L2 2 setfgt rll 4
mov 1, ri1 2 st.w rll, $_flag 4
st.w rll, s _flag 4
jbr .13 2
L2
st.w r0o, $ flag 4
L3
Total code size 22 bytes | Total code size 18 bytes
[Output Assembly List for the V850E]
Before Modification After Modification
Program Size Program Size
[bytes] [bytes]
1d.w $ s, rlo 4 1d.w $ s, rlo 4
addi -100, rl0, ro0 4 cmp 100, rlo 6
jle .L2 2 setfgt rll 4
mov 1, rll 2 st.w rll, $_flag 4
st.w rll, $_flag 4
jbr .L3 2
.L2:
st.w r0, $_flag 4
.L3:
Total code size 22 bytes | Total code size 18 bytes

Application Note U16076EJ1VOAN

63

CHAPTER 3 INCREASING EXECUTION SPEED

3.8 Using at Most Four Arguments

A function is usually called with arguments.

The values of the first four arguments are copied to registers r6, r7, r8, and r9 to call the function. The called side
performs its processing by using the values of these registers as the first four arguments. The fifth and subsequent
arguments are loaded in the stack when the function is called.

The called side fetches the fifth and subsequent arguments from the stack. If the number of arguments is
increased from four to five, the overhead when the function is called increases because memory access is added to
processing that had been accomplished by using only registers. Therefore, remember to use at most four arguments
when designing the passing of arguments.

3.9 Using at Most 10 Local Variables (auto Variables) and Only 6 or 7 If Possible

Local variables (auto variables) are allocated to registers.

The V800 compiler (in 32-register mode) can use a total of 20 registers for variables within a single function since
10 registers are used as work registers and 10 registers for register variables.

If the processing within a single function is time consuming, many local variables should be used. All 20 registers
can even be used for local variables.

If a function does not take very much time, it should use only the 10 work registers.

If the time overhead for pushing/popping registers that are used for register variables is taken into account, the use
of register variables should be avoided. The compiler freely decides whether or not to use register variables.

Holding the number of local variables to approximately 6 or 7 is recommended.

The remaining 3 or 4 registers are used as real work registers.

3.10 Rearranging an Expression in Advance

When an expression is written, the compiler will normally expand the expression. However, the number of
calculations can be reduced depending on how the expression is written.

A sample program is shown below.

Remark x andy are assumed to be external variables.

Before Modification (7 calculations) After Modification (6 calculations)

Y = T*X*X*R+5*X*X+X; y = X* (7*x*x+5%x+1) ;

64 Application Note U16076EJ1VOAN

CHAPTER 3 INCREASING EXECUTION SPEED

[Output Assembly List for the V850]

Before Modification After Modification
Program Size Program Size
[bytes] [bytes]
1d.w $ x, r7 4 ld.w $ x, ré6 4
mov r7, 6 2 mov r6, rl3 2
mov r7, rll 2 mov r6, r7 2
jarl _ mul, 1lp 4 jarl _ mul, 1p 4
mov r6, rl4 2 mov r6, rll 2
mov r6, r7 2 shl 3, 16 2
mov rll, ré6 2 sub rll, r6 2
jarl _ mul, 1lp 4 mov rl3, r7 2
mov r6, rl3 2 shl 2, rl3 2
shl 3, rl3 2 add r7, rl3 2
sub r6, rl3 2 add rl3, r6 2
mov rl4, rlo0 2 add 1, 6 2
shl 2, rl4 2 jarl _ mul, 1p 4
add rl0, rl4 2 st.w r6, $_y 4
add rl4d, rl3 2
add rll, rl3 2
st.w rl3, $_ vy 4
Total code size 42 bytes | Total code size 36 bytes
[Output Assembly List for the V850E]
Before Modification After Modification
Program Size Program Size
[bytes] [bytes]
1d.w $ x, rll 4 1d.w $ x, ril2 4
mov rll, ril3 2 mov rl2, rilil 2
mul rll, rl3, 0 4 mul rl2, rll, r0 4
mov rl3, ril2 2 mul 7, rll, roO 4
mul rll, rl2, 0 4 mov rl2, rlo 2
mul 7, rl2, ro0 4 mul 5, rl2, ro0 4
mul 5, rl3, ro0 4 add rl2, rilil 2
add rl3, ril2 2 add 1, rill 2
add rll, ril2 2 mul rl0, rll, r0 4
st.w rl2, Sy 4 st.w rll, S vy 4
Total code size 32 bytes | Total code size 32 bytes

Remark In the V850E, the same code size will be produced by compiler optimization.

Application Note U16076EJ1VOAN 65

CHAPTER 3 INCREASING EXECUTION SPEED

3.11 Replacing a Multiplication or Division Involving a Power of 2 with a Shift Operation

If a formula contains a multiplication or division involving a power of 2 (2, 4, 8, 16, 32, ...), the execution speed can
be increased by replacing it with a shift instruction.

Although this normally should be left to the compiler, a calculation that is a power of 2 should explicitly be replaced
with a shift instruction when coding.

Note, however, that this method will create a problem if negative values are handled. Only use it when positive
values are handled. If unsigned type is used for handling positive values, no problem will occur.

A sample program is shown below.

Remark s, t, and u are assumed to be external variables (unsigned int).

Before Modification After Modification
=s / 2; s =8 > 1;
t =t * 8; t =t << 3;
u =1u * 64; u = u << 6;

In this example, the same code size will be produced by compiler optimization.

66 Application Note U16076EJ1VOAN

CHAPTER 4 DEFINING VARIABLES

This chapter summarizes precautions that should be kept in mind when defining variables.

4.1 Data Alignment

Data in memory must be aligned according to the device architecture. Therefore, the compiler places variables so
that they are aligned properly (by inserting padding areas without changing the order).
The basic alignment conditions are that char-type data is at a one-byte boundary, short-type data is at a two-byte

boundary, and int-type data is at a four-byte boundary.

When defining variables, arrange them so that they are in decreasing data length.

A sample program is shown below.

After Modification

Before Modification
struct{ struct{
char datal; long data2;
long data2; long data4;
short data3; short data3;
long data4; char datal;
}data; }data;

The memory allocation is shown below.

Before Modification (16 bytes)

After Modification (12 bytes)

Caution The shaded areas indicate padding areas.

Application Note U16076EJ1VOAN

Higher Higher
data4
data3 datai data3
data2 data4
datat data2
Lower Lower

67

CHAPTER 4 DEFINING VARIABLES

4.2 volatile Specification

When coding external 1/Os such as ports or external variables used for interrupt servicing, include a volatile
specification. If volatile is not specified, an unexpected operation may occur due to the C compiler optimization.

A sample program is shown below.

Remark ais assumed to be an external variable.

Before Modification

#define PORT1 * ((unsigned char *)0x100000) /* Address 0x100000 8 bits */
#define PORT2 * ((unsigned short *)0x100004) /* Address 0x100000 16 bits */
#define PORT3 * ((unsigned int *)0x100008) /* Address 0x100000 32 bits */
struct bitf ({ /* Bitfield */
unsigned char bit00:1;
unsigned char bit01:1;
unsigned char bit02:1;
unsigned char bit03:1;
unsigned char bit04:1;
unsigned char bit05:1;
unsigned char bit06:1;
unsigned char bit07:1;
}i
#define PORTb ((struct bitf *)0x100000)->bit00 /* Address 0x100000 0th bit */
void func ()
{
PORT1 = OXFF; /* Write to PORT1 */
a = PORT1; /* Read from PORT1 */
PORTb = 1; /* Set PORTb */
1
After Modification
#define PORT1 * ((volatile unsigned char *)0x100000) /* Address 0x100000 8 bits */
#define PORT2 * ((volatile unsigned short *)0x100004) /* Address 0x100000 16 bits */
#define PORT3 * ((volatile unsigned int *)0x100008) /* Address 0x100000 32 bits */
struct bitf /* Bit field */
unsigned char bit00:1;
unsigned char bit01:1;
unsigned char bit02:1;
unsigned char bit03:1;
unsigned char bit04:1;
unsigned char bit05:1;
unsigned char bit06:1;
unsigned char bit07:1;
}i
#define PORTb ((struct bitf *)0x100000)->bit00 /* Address 0x100000 oth bit */
void func ()
{
PORT1 = OxFF; /* Write to PORT1 */
a = PORT1; /* Read from PORT1 */
PORTb = 1; /* Set PORTb */
1

68 Application Note U16076EJ1VOAN

CHAPTER 4 DEFINING VARIABLES

[Output Assembly List for the V850]

Before Modification After Modification
Program Size Program Size
[bytes] [bytes]
mov 1048576, rlo0 4 mov 1048576, rl0 4
mov 255, rill 4 mov 255, rll 4
st.b rll, [rl0] 4 st.b rll, [rlo0] 4
st.b rll, $_a 4 1d.b [r10], rl2 4
setl 0, [rlo] 4 st.b rl2, $_a 4
setl 0, [ri1o0] 4
Total code size 20 bytes | Total code size 24 bytes
[Output Assembly List for the V850E]
Before Modification After Modification
Program Size Program Size
[bytes] [bytes]
mov 1048576, rlo0 4 mov 1048576, rl0 4
mov 255, ril2 4 mov 255, rll 4
st.b rl2, [rl0] 4 st.b rll, [rlo0] 4
sxb ril2 2 1d.b [r10], rl2 4
st.b rl2, $_a 4 st.b rl2, $_a 4
setl 0, [rilo] 4 setl 0, [rilo0] 4
Total code size 22 bytes | Total code size 24 bytes
Application Note U16076EJ1VOAN 69

CHAPTER 4 DEFINING VARIABLES

4.3 Read-Only Variables

Specify the const variable as the variable for read only.
The variable definition will be allocated to ROM, reducing the size of the RAM variable area.

4.4 Reducing Alignment Between Files

When variables are defined in multiple files, an alignment hole may be generated between files during linking.

The alignment hole between files can be avoided by gathering variable definitions in 1 file.

A sample program is shown below.

Before Modification After Modification
-- subl 1.c -- -- sub2.c --
long datal = 0; long datal = 0;
char data2 = 0; char data2 = 0;
char data3 = 0;
-~ subl 2.c -- char data4 = 0;
char data3 = 0;
char data4 = 0;
[Link map]
Before Modification
.sdata 0x00ffe00c 0x0000000a
.sdata 0x00ffe00c 0x00000005 subl 1.0
0x00ffe01l 0x00000003 * (align-hole) *
.sdata 0x00ffe014 0x00000002 subl 2.0
After Modification
.sdata 0x00ffel0c 0x00000007
.sdata 0x00ffe00c 0x00000007 sub2.0

70 Application Note U16076EJ1VOAN

CHAPTER 4 DEFINING VARIABLES

4.5 Consolidating Flags
Consolidate flags that have a capacity within a few bits in bit field.

A sample program is shown below.

Before Modification After Modification

unsigned char flagl; struct bitf

unsigned char flagz; unsigned char flagl:1;

unsigned char flags3; unsigned char flag2:1;

unsigned char flag3:1;

flagl = 1;
flag2 = 1; } flags;
flag3 = 1;

flags.flagl = 1;
flags.flag2 = 1;
flags.flag3 = 1;

The memory allocation is shown below.

Before Modification After Modification
flag3
flag2 ‘ flag3 | flag2 | flag
flag1

4.6 Reducing Nesting Levels of Functions

Reducing the nesting of functions by changing the algorithm may reduce the usage rate of the stack.
Since the operation may not be affected much by inline expansion, the algorithm must be changed.

Application Note U16076EJ1VOAN 71

APPENDIX INDEX

[A]

Y [T 0 01T o TP 67
Yo T aT=T o | 0] PN 70
LY o8 4= o PP 23, 64
1 TP 52
[B]

= 1o o R 10, 13, 15, 18, 21, 23, 40, 59, 63
[C]

o= TS 10
(7] 0] o= TaFTo] g 1] 0= = L1 [) o ST 41
(OFeTa o[} (foTgF=1 I eZe] T oF-VqT=To] o HU PP PPPPTPPRN 63
[E]

[(=T (=TI Z= =1 o] [P 10, 13, 16, 54
[F]

= T PP 71
(o N 28
[G]

o o) o PN 28
[

(L= TS IS) =1 (=10 0= o | P 10, 13, 15, 25, 40, 63
LT =1 172= 1o) o R 42
[L]

[IoTor=1 IR 7= T =1 o] = 3PP 64
10T) 28, 31, 35, 52, 54, 56, 57, 59
[P]

01 (Y PP 52, 61
L0 11T =Y o] 2N 66
[R]

L= (BT =] =1 (=T =T) PPN 40, 42, 48
[S]

EoT= a1 5] (0] (o] o R 63
£ 2= (T 11] 1o £ o T PPN 50
LT o] IS 7= L= 0 41T L P 10, 13, 42, 45
[Vl

[T 22T = o] <P 9,10, 13, 15, 16, 23, 32, 35, 37, 42, 54, 56, 63, 67

72 Application Note U16076EJ1VOAN

APPENDIX INDEX

(W]

Application Note U16076EJ1VOAN

73

[MEMO]

74

Application Note U16076EJ1VOAN

NEC

Although NEC has taken all possible steps
essage to ensure thatthe documentation supplied
to our customers is complete, bug free

and up-to-date, we readily accept that

From ;
errors may occur. Despite all the care and
precautions we've taken, you may
Name encounterproblems in the documentation.
Please complete this form whenever
Company you'd like to report errors or suggest
improvements to us.
Tel. FAX
Address
Thank you for your kind support.
North America Hong Kong, Philippines, Oceania Taiwan
NEC Electronics Inc. NEC Electronics Hong Kong Ltd. NEC Electronics Taiwan Ltd.
Corporate Communications Dept. Fax: +852-2886-9022/9044 Fax: +886-2-2719-5951

Fax: +1-800-729-9288
+1-408-588-6130

Europe Korea Asian Nations except Philippines
; NEC Electronics Hong Kong Ltd. NEC Electronics Singapore Pte. Ltd.
NEC Electronics (Europe) GmbH Seoul Branch Fax. +65-250-3583

Market Communication Dept.

Fax: +49-211-6503-274 Fax: +82-2-528-4411

South America P.R. China Japan
NEC do Brasil S.A. NEC Electronics Shanghai, Ltd. NEC Semiconductor Technical Hotline
Fax: +55-11-6462-6829 Fax: +86-21-6841-1137 Fax: +81- 44-435-9608

| would like to report the following error/make the following suggestion:

Document title:

Document number: Page number:

If possible, please fax the referenced page or drawing.

Document Rating Excellent Good Acceptable Poor
Clarity a a a a
Technical Accuracy 0 a a a
Organization a a a a

CSs 02.3

	COVER
	INTRODUCTION
	CHAPTER 1 OVERVIEW
	CHAPTER 2 REDUCING CODE SIZE
	2.1 Using the if~else Statement Instead of the switch Statement
	2.2 Making Assignments to the Same External Variable Via a Temporary Variable at the Branch Destinations of the switch Statement or if~else Statement
	2.3 Moving One Assignment Statement in Front of the if Statement When the Branch Destinations of the if~else Statement Are Only Assignment Statements to the Same Variable
	2.4 Replacing an Access to an External Variable with an Access to a Temporary Variable
	2.5 Moving the Same Statement From After the Branch Clauses to Before the Branching Begins
	2.6 Moving the Same Statement From Before the Control Logic Merges Together to After It Merges Together
	2.7 Using a Temporary Variable to Consolidate the Calls to the Same Function with Different Arguments That Appear After Each Branch Clause at the Location After the Control Logic Merges Together
	2.8 Replacing a Complex if Statement with One That Is Logically Equivalent
	2.9 Transforming a for or while Loop Into a goto Loop
	2.10 Unrolling a Loop
	2.11 Shortening the Lifespan of a Variable
	2.12 Eliminating an Induction Variable
	2.13 Setting (unsigned) int Type for (unsigned) short or char Type Variables
	2.14 Consolidating in a Single Statement When an Assigned Value Is Referenced in the Statement Following the Assignment Statement
	2.15 Eliminating the if~else Statement When the Branch Destinations of the if~else Statement Are return Statements That Return the Result of the Branch Condition
	2.16 Changing the Condition and Setting the Operand to 15 or ----16 When One of the Operands of a Comparison Operation Is the Constant 16 or ----17
	2.17 Initializing a Variable
	2.18 Declaring void for a Function Having No Return Value
	2.19 Consolidating Common case Processing in a switch Statement
	2.20 Consolidating return Statements Having Identical Values
	2.21 Making an Expanded Inline Function into a static Function

	CHAPTER 3 INCREASING EXECUTION SPEED
	3.1 Using a Pointer for Consecutive Accesses to an Array
	3.2 Replacing an Access to an External Variable with an Access to a Temporary Variable
	3.3 Not Using a Variable Expression for a Loop Ending Condition
	3.4 Using a Comparison with Zero for the Loop Ending Condition
	3.5 Unrolling a Loop
	3.6 Optimizing a Pointer
	3.7 Outputting a setf Instruction to Output 0 or 1 According to the Result of a Conditional Comparison
	3.8 Using at Most Four Arguments
	3.9 Using at Most 10 Local Variables (auto Variables) and Only 6 or 7 If Possible
	3.10 Rearranging an Expression in Advance
	3.11 Replacing a Multiplication or Division Involving a Power of 2 with a Shift Operation

	CHAPTER 4 DEFINING VARIABLES
	4.1 Data Alignment
	4.2 volatile Specification
	4.3 Read-Only Variables
	4.4 Reducing Alignment Between Files
	4.5 Consolidating Flags
	4.6 Reducing Nesting Levels of Functions

	APPENDIX INDEX

