
 RENESAS TOOL NEWS

R20TS0037EJ0100 Rev.1.00 Page 1 of 5

Jun. 01, 2016

[Notes]

RL78 Family C Compiler Package

Outline

When using the CC-RL C Compiler Package for the RL78 family, take note of the problems described in this note

regarding the following points.

1. Writing an instruction operand in ways which are not included in the list of instruction operations

(CCRL#008)

2. Outputting code which overwrites a register for interrupt handlers (CCRL#009)

Note: The numbers which follow the descriptions of the precautionary notes are identifying numbers for the

precautions.

1. Writing an Instruction Operand in Ways which are not Included in the List of
Instruction Operations (CCRL#008)

1.1 Applicable Products

CC-RL V1.00.00 to V1.02.00

1.2 Details

Incorrect code may be produced when an operand of a mov instruction is written in ways other than those in the list of

instruction operations by omitting the offset of the operand, since the operand is not correctly complemented in this

case.

1.3 Conditions

This problem arises if any of the following conditions are met:

(1) A mov instruction is written in the form mov [DE],#byte or mov [HL],#byte.

(2) A mov instruction is written in the form mov ES:[DE],#byte or mov ES:[HL],#byte, and the second operand #byte

is a label or a formula which includes a label.

Example:

1.4 Workaround

Write the operand without omitting the offset.

mov [DE+0],#3

mov [HL+0],#sym

mov ES:[DE+0],#sym

1.5 Schedule for Fixing the Problem

This problem will be fixed in the next version.

mov [DE],#3

mov [HL],#sym

mov ES:[DE],#sym

R20TS0037EJ0100
Rev.1.00

Jun. 01, 2016

 RENESAS TOOL NEWS

R20TS0037EJ0100 Rev.1.00 Page 2 of 5

Jun. 01, 2016

2. Outputting Code which Overwrites a Register for Interrupt Handlers (CCRL#009)

2.1 Applicable Products

CC-RL V1.00.00 to V1.02.00

2.2 Details

Code, which overwrites the value of an HL register which has been saved on the stack or of a register which has not

been saved on the stack, may be output for interrupt handlers.

2.3 Conditions

This problem may arise if both of the following conditions are met.

However, note that code which overwrites a register which has not been saved on the stack will not be output when an

interrupt handler uses fewer than 256 bytes of stack space (.STACK).

(1) An interrupt hander is written with #pragma interrupt or #pragma interrupt_brk.

(2) A register bank is not specified for the interrupt hander in (1).

(3) The interrupt handler in (1) does not include a call of an inline_asm function.

(4) The interrupt handler in (1) does not include a function call, or a function call is inline expanded by optimization so

that the assembler code does not include a call instruction.

 Example 1

A case where the value of the HL register, which has been saved on the stack, is overwritten

#pragma interrupt func /* condition(1)(2) */

typedef struct

{

 unsigned int cnt;

 unsigned char flg;

} mem_t;

mem_t mem[3];

void func(void)

{

 int i; /* Overwriting the HL register */

 for (i=0; i<3; i++) {

 mem[i].cnt--;

 if (0 == mem[i].cnt) {

 mem[i].flg = 1;

 }

 }

}

 RENESAS TOOL NEWS

R20TS0037EJ0100 Rev.1.00 Page 3 of 5

Jun. 01, 2016

Output assembler code for the example

_func:

 .STACK _func = 12

 push ax

 push bc

 push de

 push hl ; (1)

 movw ax, #LOWW(_mem)

 movw [sp+0x00], ax ; (2) Overwriting the HL register

 pop hl ; (1)

(1) In the output assembler code, push hl is at the end of the processing to save the values of registers at the top of the

interrupt handler, and pop hl is at the top of the processing to restore the value of registers at the end of the interrupt

handler.

(2) Between the push and pop instructions in (1), writing to [SP+0] proceeds while [SP+0] is holding the value of the

HL register.

 Example 2

A case where a register which has not been saved on the stack is overwritten

Output assembler code for the example

_func2:

 movw bc, ax ; (1)Overwriting the BC register

 movw ax, sp

 addw ax, #0xFD00

 movw sp, ax

 movw ax, bc

(1) A register which is not saved on or restored from the stack appears at the top and end of the interrupt handler. In the

assembler code for the example, which is shown above, this applies to the BC register, so it is overwritten.

#pragma interrupt func2

void func2(void) {

 volatile char arr[0x300];

 arr[2] = 1;

}

 RENESAS TOOL NEWS

R20TS0037EJ0100 Rev.1.00 Page 4 of 5

Jun. 01, 2016

2.4 Workarounds

To avoid this problem, do any of the following:

(1) Include a register bank specification in the #pragma directive.

(2) Include code for a call of an empty function to be written in assembly (#pragma inline_asm) within the interrupt

handler.

(3) Include a function call within the interrupt handler, and prevent inline expansion by using any of -Onothing,

-Oinline_level=0, or -Oinline_level=1.

2.5 Schedule for Fixing the Problem

This problem will be fixed in the next version.

 RENESAS TOOL NEWS

R20TS0037EJ0100 Rev.1.00 Page 5 of 5

Jun. 01, 2016

Revision History

Rev. Date

Description

Page Summary

1.00 Jun. 01, 2016 - First edition issued

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061 Japan

Renesas Electronics Corporation

■Inquiry

http://www.renesas.com/en-hq/support/contact.html

All trademarks and registered trademarks are the property of their respective owners.

© 2016. Renesas Electronics Corporation. All rights reserved.

Renesas Electronics has used reasonable care in preparing the information included in this

document, but Renesas Electronics does not warrant that such information is error free. Renesas

Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in

or omissions from the information included herein.

The past news contents have been based on information at the time of publication.

Now changed or invalid information may be included. The URLs in the Tool News also may be

subject to change or become invalid without prior notice.

	1. Writing an Instruction Operand in Ways which are not Included in the List of Instruction Operations (CCRL#008)
	1.1 Applicable Products
	1.2 Details
	1.3 Conditions
	1.4 Workaround
	1.5 Schedule for Fixing the Problem

	2. Outputting Code which Overwrites a Register for Interrupt Handlers (CCRL#009)
	2.1 Applicable Products
	2.2 Details
	2.3 Conditions
	2.4 Workarounds
	2.5 Schedule for Fixing the Problem

	Revision History

