
 Application Note

R01AN6004EJ0100 Rev.1.00 Page 1 of 78
Aug.31.21

Bluetooth LE microcomputer / module
Windows 10 Bluetooth LE Application
Introduction
This application note explains the operation and processing flow of the Bluetooth LE API of Windows® 10
API using the Windows 10 Bluetooth LE application that can wirelessly communicate with an evaluation
board equipped with a Renesas Electronics Bluetooth® Low Energy technology compatible microcomputer or
module.

Bluetooth LE applications that run on Windows 10 are created in Microsoft Visual Studio Express 2017 for
Windows Desktop as Windows Presentation Foundation (WPF) applications for the .NET Framework to pair,
connect, search for services and characteristics, and communicate data.

Target Device
Target Board for RX23W

Target Board for RX23W module

EK-RA4W1

EB-RE01B

RL78/G1D Evaluation Board (RTK0EN0001D01001BZ)

Related Documents
RX23W Group

 RX23W Group Target Board for RX23W Quick Start Guide (R20QS0014)
 RX23W Group Target Board for RX23W User's Manual (R20UT4634)
 RX23W Group Target Board for RX23W module Quick Start Guide (R20QS0022)
 RX23W Group Target Board for RX23W module User's Manual (R20UT4890)

RA4W1 Group

 RA4W1 Group Evaluation Kit for RA4W1 Microcontroller Group EK-RA4W1 Quick Start Guide
(R20QS0015)

 RA4W1 Group EK-RA4W1 User's Manual (R20UT4683)

RE01B Group

 EB-RE01B Hardware Manual (TS-TUM09734) (TESSERA TECHNOLOGY INC.)
 RE01B Group Bluetooth Low Energy Sample code (using CMSIS Driver Package) (R01AN5606)

RL78/G1D Group

 Bluetooth® Low Energy Protocol Stack Virtual UART Application (R01AN3130)
 Bluetooth® Low Energy Protocol Stack Quick Start Guide (R01AN2767)
 RL78/G1D Evaluation Board User's Manual (R30UZ0048)

The Bluetooth® word mark and logos are registered trademarks owned by Bluetooth SIG, Inc. and any use of
such marks by Renesas Electronics Corporation is under license. Other trademarks and registered
trademarks are the property of their respective owners.

Windows, Windows 10 and Visual Studio are registered trademarks or trademarks of Microsoft Corporation
in the United States and/or other countries.

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 2 of 78
Aug.31.21

Contents

1. Overview ... 5
1.1 LED Switch Service Client ... 6
1.2 Virtual UART Client ... 6

2. Operation Check .. 7
2.1 Executable File .. 7
2.1.1 LED Switch Service Client ... 7
2.1.2 Virtual UART Client ... 7
2.2 Windows Application Specification .. 8
2.2.1 LED Switch Service Client ... 8
2.2.2 Virtual UART Client ... 10
2.3 Preparation of Operation Check Environment .. 12
2.3.1 Windows PC .. 12
2.3.2 Target Board for RX23W ... 12
2.3.3 Target Board for RX23W module .. 12
2.3.4 EK-RA4W1 .. 12
2.3.5 EB-RE01B ... 12
2.3.6 RL78/G1D Evaluation Board (RTK0EN0001D01001BZ) .. 13
2.4 Operation Check .. 14
2.4.1 Operation check using LED Switch Service Client.. 14
2.4.2 Operation check using Virtual UART Client .. 20

3. Build .. 27
3.1 Build Environment Setup ... 27
3.1.1 Install Visual Studio 2017 .. 27
3.1.2 Install Windows 10 SDK .. 30
3.2 File Structure ... 33
3.2.1 LED Switch Service Client ... 33
3.2.2 Virtual UART Client ... 33
3.3 Build Windows Application .. 34

4. Implementation Details .. 35
4.1 Program file of Windows application ... 35
4.2 Use Bluetooth LE API of UWP with WPF .. 35
4.3 LED Switch Service Client ... 36
4.3.1 MainWindow class ... 36
4.3.1.1 Field (Member variable) .. 36
4.3.1.2 Constructor .. 37
4.3.1.3 Method/Event handler ... 38
4.3.2 AdvertisementWatcherInformation class ... 43
4.3.2.1 Property ... 43

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 3 of 78
Aug.31.21

4.3.2.2 Method... 43
4.3.3 DeviceWatcherInformation class ... 43
4.3.3.1 Constructor .. 43
4.3.3.2 Property ... 43
4.3.3.3 Field (Member variable) .. 43
4.3.3.4 Method... 44
4.3.4 ViewModel class .. 44
4.3.4.1 Field (Member variable) .. 44
4.3.4.2 Constructor .. 44
4.3.4.3 Property ... 44
4.3.4.4 Method... 45
4.3.5 Flowchart ... 46
4.3.5.1 Launch application .. 46
4.3.5.2 Pair/Unpair button ... 47
4.3.5.3 Connect/Disconnect button ... 49
4.3.5.4 LED Blink Rate button (Send write) .. 50
4.3.5.5 Receive SW state (Receive indication) ... 50
4.3.5.6 Disconnect from evaluation board ... 50
4.4 Virtual UART Client ... 51
4.4.1 MainWindow class ... 51
4.4.1.1 Field (Member variable) .. 51
4.4.1.2 Constructor .. 52
4.4.1.3 Method/Event handler ... 52
4.4.2 AdvertisementWatcherInformation class ... 55
4.4.2.1 Property ... 55
4.4.2.2 Method... 56
4.4.3 ViewModel class .. 56
4.4.3.1 Field (Member variable) .. 56
4.4.3.2 Constructor .. 56
4.4.3.3 Property ... 56
4.4.3.4 Method... 57
4.4.4 Flowchart ... 58
4.4.4.1 Launch application .. 58
4.4.4.2 Connect/Disconnect button ... 59
4.4.4.3 Log button ... 61
4.4.4.4 File button (Send write) ... 61
4.4.4.5 Send button (Send write)... 62
4.4.4.6 Send textbox, key down (Send write) .. 62
4.4.4.7 Receive string data (Receive indication) ... 63
4.4.4.8 Disconnect from evaluation board ... 63
4.5 Windows 10 Bluetooth LE communication .. 64

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 4 of 78
Aug.31.21

4.5.1 BluetoothLEAdvertisementWatcher .. 64
4.5.2 DeviceWatcher .. 65
4.5.3 Pairing ... 67
4.5.4 Unpairing ... 68
4.5.5 Connection .. 68
4.5.6 Search for Service ... 68
4.5.7 Search for Characteristic ... 69
4.5.8 Client Characteristic Configuration Descriptor setting... 69
4.5.9 Disconnection .. 70
4.5.10 Receive Notification ... 70
4.5.11 Send Write ... 70

5. Notes ... 71
5.1 Client Characteristic Configuration Descriptor write error ... 71

6. Appendix ... 72
6.1 Service and characteristic customization .. 72
6.2 Create a new project ... 73

Revision History .. 78

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 5 of 78
Aug.31.21

1. Overview
This application note explains the operation and processing flow of the Bluetooth LE API of Windows 10 API
using the Windows 10 Bluetooth LE application (hereinafter called "Windows application") that can wirelessly
communicate with an evaluation board equipped with a Renesas Electronics Bluetooth® Low Energy
technology compatible microcomputer or module.

There are two Windows applications that communicate with evaluation boards are shown below.

 LED Switch Service Client

Communicates with the evaluation board of RX23W Group/RA4W1 Group/RE01B Group.

 Virtual UART Client

Communicates with the evaluation board of RL78/G1D Group.

The evaluation boards and software that communicate with Windows applications are shown below.

 RX23W Group

- Evaluation Board

 Target Board for RX23W

 Target Board for RX23W module

- Software

 LED Switch Service (Software stored at the time of shipment of the evaluation board.)

 RA4W1 Group

- Evaluation Board

 EK-RA4W1

- Software

 LED Switch Service (Software stored at the time of shipment of the evaluation board.)

 RE01B Group

- Evaluation Board

 EB-RE01B

- Software

 GATT Server
(Same function as the LED Switch service.)
(This is the software included in "RE01B Group Bluetooth Low Energy Sample code (using
CMSIS Driver Package)" (R01AN5606).)

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 6 of 78
Aug.31.21

 RL78/G1D Group

- Evaluation Board

 RL78/G1D Evaluation Board (RTK0EN0001D01001BZ)

- Software

 Virtual UART Application
(This is the software included in " Bluetooth® Low Energy Protocol Stack Virtual UART
Application" (R01AN3130). (Use the Character data transmission and reception.))

1.1 LED Switch Service Client
The LED Switch Service Client Windows application can communicate with the LED Switch Service running
on the RX23W Group/RA4W1 Group/RE01B Group evaluation boards. By pairing, the information of the
evaluation board is registered in the Windows system, the LED blinking interval on the evaluation board is
controlled, and the number of times the switch is pressed is counted.

Figure 1-1 LED Switch Service Client

1.2 Virtual UART Client
The Virtual UART Client Windows application can communicate with the virtual UART application running on
the evaluation board of the RL78/G1D group. Character data is sent and received between the Windows
application and the terminal software on the PC connected to the evaluation board via USB.

Figure 1-2 Virtual UART Client

Pairing

LED Blink Rate (Write)

Switch State (Notify)

LED Sw itch Service Client

Evaluation Board

Character Data (Indicate)

Character Data (Write)

Virtual UART Client

Terminal Softw are

Evaluation Board

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 7 of 78
Aug.31.21

2. Operation Check
2.1 Executable File
You can check the communication operation with the evaluation board using the Windows application
executable file included in this application note.

2.1.1 LED Switch Service Client
Table 2-1 shows the LED Switch Service Client executable files, and Table 2-2 shows the evaluation boards
that can be used.

Table 2-1 LED Switch Service Client executable file

Folder Name File Name

r01an6004jj0100-ble-mcu-win\LED_Switch_Service_Client\exe LED_Switch_Service_Client.exe

Table 2-2 Evaluation board that can be used with the LED Switch Service Client

Windows Application File Name Evaluation Board

LED_Switch_Service_Client.exe Target Board for RX23W

 Target Board for RX23W module

 EK-RA4W1

 EB-RE01B

2.1.2 Virtual UART Client
Table 2-3 shows the Virtual UART Client executable files, and Table 2-4 shows the evaluation boards that
can be used.

Table 2-3 Virtual UART Client executable file

Folder Name File Name

r01an6004jj0100-ble-mcu-win\Virtual_UART_Client\exe Virtual_UART_Client.exe

Table 2-4 Evaluation board that can be used with the Virtual UART Client

Windows Application File Name Evaluation Board

Virtual_UART_Client.exe RL78/G1D Evaluation Board (RTK0EN0001D01001BZ)

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 8 of 78
Aug.31.21

2.2 Windows Application Specification
Describes the specifications of the LED Switch Service Client and Virtual UART Client.

2.2.1 LED Switch Service Client

Figure 2-1 LED Switch Service Client

(1) Status display textbox

Displays the operating status of the application.

(2) Pair/Unpair button

When not paired with the evaluation board, it works as a Pair button and displays "Pair". Click the button to
pair with the evaluation board.

When paired with the evaluation board, it works as an Unpair button and displays "Unpair". Click the button
to cancel the pairing with the evaluation board.

(3) Connect/Disconnect button

When not connected to the evaluation board, it operates as a Connect button and "Connect" is displayed.
Click the button to connect to the evaluation board.

When connected to the evaluation board, it operates as a Disconnect button and displays "Disconnect". Click
the button to disconnect from the evaluation board.

(4) SW Count textbox

Displays the number of notifications sent by the connected evaluation board.

(1)

(2)

(5)

(3)

(4)

(6)

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 9 of 78
Aug.31.21

(5) LED Blink Rate send button

Sends the time inputted in the LED Blink Rate input textbox to the connected evaluation board.

(6) LED Blink Rate input textbox

Input the time for the LED Blink Rate.

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 10 of 78
Aug.31.21

2.2.2 Virtual UART Client

Figure 2-2 Virtual UART Client

(1) Status display textbox

Displays the operating status of the application.

(2) Bluetooth Device Address textbox

Empty: Click the Connect button to connect to the evaluation board with the UUID of the virtual UART profile,
and then display the Bluetooth Device Address.

Inputted: Click the Connect button to connect to the input Bluetooth Device Address evaluation board.

(3) Connect/Disconnect button

When not connected to the evaluation board, it operates as a Connect button and "Connect" is displayed.
Click the button to connect to the evaluation board.

When connected to the evaluation board, it operates as a Disconnect button and "Disconnect" is displayed.
Click the button to disconnect from the evaluation board.

The Bluetooth Device Address textbox is empty:

Click the Connect button to connect to the evaluation board with the UUID of the virtual UART profile.

Bluetooth Device Address is inputted in the Bluetooth Device Address textbox:

Click the Connect button to connect to the written Bluetooth Device Address evaluation board.

(1)

(3)

(2)

(4)

(6)

(5)

(7)

(8)

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 11 of 78
Aug.31.21

(4) Receive data textbox

Receives and displays the character data sent by the connected evaluation board.

(5) Receive data save button

Receives the character data sent by the connected evaluation board and saves it in a file. "Logging" is
displayed while saving to a file.

(6) Send data textbox

Input the character data to be sent to the connected evaluation board. Character data that can be inputted is
20 characters (20 bytes).

(7) Send file button

Sends the character data in the file to the connected evaluation board.

(8) Send data button

The character data inputted in the send data textbox is sent to the connected evaluation board.

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 12 of 78
Aug.31.21

2.3 Preparation of Operation Check Environment
As an environment for checking the operation, prepare a PC running Windows 10 and one of the evaluation
boards shown in Table 2-2 and Table 2-4. Also, write the software to be used for each evaluation board.

2.3.1 Windows PC
Table 2-5 shows information on Windows 10 PC that have been confirmed to work with Windows
applications. For Windows 10 PC, use a PC equipped with Bluetooth function of Bluetooth 4.0 or later.

Windows applications may not work depending on the state of Windows 10. In this case, refer to "5. Notes".

Table 2-5 Windows information

Edition Windows 10 Home

Version 21H1

OS build 19043.1110

2.3.2 Target Board for RX23W
Target Board for RX23W uses "Factory Software (LED Switch Service)". If you have written other programs
to the Target Board for RX23W, refer to the following documents and restore to "Factory Software".

 RX23W Group Target Board for RX23W Quick Start Guide (R20QS0014)
- 5.1 Restoring to Factory Software

2.3.3 Target Board for RX23W module
Target Board for RX23W module uses "Factory Software (LED Switch Service)". If you have written other
programs to the Target Board for RX23W module, refer to the following documents and restore to "Factory
Software".

 RX23W Group Target Board for RX23W module Quick Start Guide (R20QS0022)
- 5.1 Restoring to Factory Software

2.3.4 EK-RA4W1
EK-RA4W1 uses "factory software (LED Switch Service)". If you have written other programs to the EK-
RA4W1, refer to the following documents and restore to "factory software".

 RA4W1 Group Evaluation Kit for RA4W1 Microcontroller Group EK-RA4W1 – Quick Start
Guide (R20QS0015)
- 6. Restoring Factory Settings

2.3.5 EB-RE01B
EB-RE01B uses "GATT Server". Refer to the following document and write the program of "GATT Server".

 RE01B Group Bluetooth Low Energy Sample code (using CMSIS Driver Package)
(R01AN5606)
- 2.4 Programming firmware

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 13 of 78
Aug.31.21

2.3.6 RL78/G1D Evaluation Board (RTK0EN0001D01001BZ)
RL78G1D Evaluation Board uses "Virtual UART Application (Character data transmission and reception)".
Refer to the following document and write the program of "Virtual UART Application (Character data
transmission and reception)".

 Bluetooth® Low Energy Protocol Stack Virtual UART Application (R01AN3130)
- 7.3 Preparation for Execution Environment

 Bluetooth® Low Energy Protocol Stack Quick Start Guide (R01AN2767)
- 5. Writing Programs

Character data transmission and reception of the Virtual UART Application is performed by "Communication
with response". Set the DIP switch 6-4 on the evaluation board as shown in Table 2-6. For more information
on DIP switch, refer to the following document.

 Bluetooth® Low Energy Protocol Stack Virtual UART Application (R01AN3130)
- 3.2 Selection of data communication with response or without response

Table 2-6 Dip-SW setting of RL78/G1D Evaluation Board

Number Switch Description

SW6-4 OFF (left side) With response transmission.

Client->Server: Write Request
Server->Client: Indication

Input the character data to be sent and display the received character data with the terminal software on the
PC connected to the evaluation board via USB. Refer to the following document to connect the evaluation
board to the PC and set up the terminal software.

The following document states that you should prepare two evaluation boards, but in this application note,
prepare only one.

 Bluetooth® Low Energy Protocol Stack Virtual UART Application (R01AN3130)
- 7.3 Preparation for Execution Environment

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 14 of 78
Aug.31.21

2.4 Operation Check
2.4.1 Operation check using LED Switch Service Client

(1) Power on the evaluation board. Advertising will start automatically when the power is turned on. For how
to power on the evaluation board, refer to the following documents according to the evaluation board to
be used.

 RX23W Group Target Board for RX23W Quick Start Guide (R20QS0014)
- 2.1 Power on

 RX23W Group Target Board for RX23W module Quick Start Guide (R20QS0022)
- 2.1 Power on

 RA4W1 Group Evaluation Kit for RA4W1 Microcontroller Group EK-RA4W1 Quick Start Guide
(R20QS0015)
- 3.1 Connecting and Powering Up the EK-RA4W1 Board

 RE01B Group Bluetooth Low Energy Sample code (using CMSIS Driver Package)
(R01AN5606)
- 2.2 Startup procedure

(2) Launch the LED Switch Service Client in Table 22. When it starts up, it checks whether the pairing
information with the evaluation board is registered in the Windows system.

Figure 2-3 Operation check of LED Switch Service Client (1)

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 15 of 78
Aug.31.21

(3) Click the [Pair] button to pair with the evaluation board. If the pairing is successful, the [Connect] button
will be enabled. In addition, the evaluation board (RBLE-DEV) is displayed as a paired device in
[Settings] - [Devices] - [Bluetooth & other devices] in Windows.
If the evaluation board cannot be found or pairing fails, it may be difficult to find it because a certain
amount of time has passed since the evaluation board was turned on and the advertising transmission
interval becomes longer. Press Reset Switch on the evaluation board to restart to shorten the
advertising transmission interval.

 Figure 2-4 Operation check of LED Switch Service Client (2)

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 16 of 78
Aug.31.21

Figure 2-5 Operation check of LED Switch Service Client (3)

(4) Click the [Connect] button to connect to the evaluation board. Once connected, the [LED Blink Rate]
button will be enabled.

Figure 2-6 Operation check of LED Switch Service Client (4)

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 17 of 78
Aug.31.21

(5) When you press SW on the evaluation board, a Notification will be sent and counted in the SW Count
textbox.
(Press SW1 for Target Board for RX23W/Target Board for RX23W module/EK-RA4W1. Press SW2 for
EB-RE01B.)

Figure 2-7 Operation check of LED Switch Service Client (5)

(6) Enter the LED blinking interval in the LED Blink Rate textbox and click the LED Blink Rate button. The
blinking speed of the LED on the evaluation board changes.

Figure 2-8 Operation check of LED Switch Service Client (6)

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 18 of 78
Aug.31.21

(7) Click the [Disconnect] button to disconnect from the evaluation board.

Figure 2-9 Operation check of LED Switch Service Client (7)

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 19 of 78
Aug.31.21

(8) Click the [Unpair] button to unpair. The evaluation board (RBLE-DEV) is deleted from [Settings] -
[Devices] - [Bluetooth & other devices] in Windows.

Figure 2-10 Operation check of LED Switch Service Client (8)

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 20 of 78
Aug.31.21

2.4.2 Operation check using Virtual UART Client

(1) Connect the CN3 (USB mini-B) of the RL78/G1D Evaluation board to the PC with a USB cable, and turn
on the power to the RL78/G1D Evaluation board. Advertising will start automatically when the power is
turned on.

(2) Start the terminal software on the PC to which the RL78/G1D Evaluation board is connected. In this
operation check, Tera Term is used as the terminal software.

(3) Start the Virtual UART Client in Table 2-3.

Figure 2-11 Operation check of Virtual UART Client (1)

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 21 of 78
Aug.31.21

(4) Click the [Connect] button to connect to the evaluation board. The address of the evaluation board
connected to the Bluetooth Device Address textbox is displayed, and the [Log] button, [File] button, and
[Send] button are enabled. "CONNECT" is displayed in Tera Term.
If the evaluation board cannot be found, it may be difficult to find it because a certain amount of time has
passed since the power was turned on to the evaluation board and the advertising transmission interval
becomes longer. Press Reset Switch on the evaluation board to restart to shorten the advertising
transmission interval.

Figure 2-12 Operation check of Virtual UART Client (2)

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 22 of 78
Aug.31.21

Figure 2-13 Operation check of Virtual UART Client (3)

(5) Click the [Log] button to display the "Save As" dialog. Select the folder where you want to create the file,
and enter an arbitrary name in "File name". Click the [Save] button to create a log file and start logging.

Figure 2-14 Operation check of Virtual UART Client (4)

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 23 of 78
Aug.31.21

(6) Input characters after pressing the ESC key in Tera Term to enter Virtual UART Mode.

Figure 2-15 Operation check of Virtual UART Client (5)

(7) The characters inputted in Tera Term are displayed in the "Receive" textbox of the Virtual UART Client.

Figure 2-16 Operation check of Virtual UART Client (6)

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 24 of 78
Aug.31.21

(8) Click the [Logging] button to stop logging. If you open the log file with a text editor, you can see that the
received characters are saved.

Figure 2-17 Operation check of Virtual UART Client (7)

(9) In the Virtual UART Client, input characters in the Send textbox and click the [Send] button. The
characters sent to Tera Term are displayed.

Figure 2-18 Operation check of Virtual UART Client (8)

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 25 of 78
Aug.31.21

(10) Prepare a text file in which characters are written. Click the [File] button to display the "Open" dialog.
Select the text file and click the [Open] button to send the data of the text file.

Figure 2-19 Operation check of Virtual UART Client (8)

(11) The data of the text file is displayed in Tera Term.

Figure 2-20 Operation check of Virtual UART Client (8)

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 26 of 78
Aug.31.21

(12) Click the [Disconnect] button of the Virtual UART Client to disconnect from the evaluation board.
"DISCONNECT" is displayed in Tera Term.

Figure 2-21 Operation check of Virtual UART Client (11)

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 27 of 78
Aug.31.21

3. Build
Describes how to build a build environment for Windows applications.

In this application note, "Microsoft Visual Studio Express 2017 for Windows Desktop" (hereinafter called
"Visual Studio 2017") is used for the purpose of checking the operation of Windows applications. (For
product development, please install the edition of Visual Studio that meets your requirements.)

Table 3-1 shows the build environment information for Windows applications.

Table 3-1 Build environment information

Visual Studio version Microsoft Visual Studio Express 2017 for Windows Desktop

Version 15.9.38

.NET Framework version .NET Framework 4.6.1

Project Template WPF App (.NET Framework)

Windows 10 SDK version 10.0.19041.0

3.1 Build Environment Setup
3.1.1 Install Visual Studio 2017
Download the installer from the following homepage and install Visual Studio 2017.

Visual Studio Express | Now Visual Studio Community

(1) Download the "Express 2017 for Windows Desktop" installer from the homepage.

Figure 3-1 Install Visual Studio 2017 (1)

https://visualstudio.microsoft.com/vs/express/

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 28 of 78
Aug.31.21

(2) Run the installer and click the [Continue] button.

Figure 3-2 Install Visual Studio 2017 (2)

(3) When the download of the files required for Visual Studio Installer is completed, the following window
will be launched. Click the "Install" button to start the installation.

Figure 3-3 Install Visual Studio 2017 (3)

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 29 of 78
Aug.31.21

(4) When the installation is complete, a window for signing in to your account will open. Here, click "Not
now, maybe later." If Visual Studio 2017 starts, click the "x" button in the upper right to quit Visual Studio
2017.

Figure 3-4 Install Visual Studio 2017 (4)

(5) Click the "x" button on the upper right of the installer to close the window.

Figure 3-5 Install Visual Studio 2017 (5)

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 30 of 78
Aug.31.21

3.1.2 Install Windows 10 SDK
Download the installer from the following homepage and install the Windows 10 SDK. This Windows
application uses the "Updated 12/16/20" installer.

Windows 10 SDK - Windows app development

(1) Download the installer indicated by the red line from the Windows 10 SDK home page.

Figure 3-6 Install Windows 10 SDK (1)

(2) Run the installer, select the "Install new or update ..." radio button and click the "Next" button.

Figure 3-7 Install Windows 10 SDK (2)

https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk/

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 31 of 78
Aug.31.21

(3) Accept the license agreement and click the "Accept" button.

Figure 3-8 Install Windows 10 SDK (3)

(4) Select the features you want to install. All functions are selected in the default state, so click the "Install"
button as it is.

Figure 3-9 Install Windows 10 SDK (4)

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 32 of 78
Aug.31.21

(5) When the installation is complete, click the "Close" button to close the window.

Figure 3-10 Install Windows 10 SDK (5)

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 33 of 78
Aug.31.21

3.2 File Structure
3.2.1 LED Switch Service Client
The file structure of the LED Switch Service Client is shown below.

r01an6004jj0100-ble-mcu-win
│

└───LED_Switch_Service_Client

 │ App.config Application configuration file
 │ App.xaml App class file
 │ App.xaml.cs App class file
 │ LED_Switch_Service_Client.csproj LED Switch Service Client program file
 │ LED_Switch_Service_Client.sln LED Switch Service Client program file
 │ MainWindow.xaml Project file
 │ MainWindow.xaml.cs Solution file
 │
 ├───exe
 │ LED_Switch_Service_Client.exe Executable file
 │
 └───Properties
 AssemblyInfo.cs Assembly information file
 Resources.Designer.cs Resources file
 Resources.resx Resources file
 Settings.Designer.cs Application settings file
 Settings.settings Application settings file

3.2.2 Virtual UART Client
The file structure of the Virtual UART Client is shown below.

r01an6004jj0100-ble-mcu-win
│
└───Virtual_UART_Client
 │ App.config Application configuration file
 │ App.xaml App class file
 │ App.xaml.cs App class file
 │ MainWindow.xaml Virtual UART Client program file
 │ MainWindow.xaml.cs Virtual UART Client program file
 │ Virtual_UART_Client.csproj Project file
 │ Virtual_UART_Client.sln Solution file
 │
 ├───exe
 │ Virtual_UART_Client.exe Executable file
 │
 └───Properties
 AssemblyInfo.cs Assembly information file
 Resources.Designer.cs Resources file
 Resources.resx Resources file
 Settings.Designer.cs Application settings file
 Settings.settings Application settings file

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 34 of 78
Aug.31.21

3.3 Build Windows Application
In Visual Studio 2017, build the LED Switch Service Client or Virtual UART Client executable file.

(1) Double-click the solution file (LED_Switch_Service_Client.sln or Virtual_UART_Client.sln) shown in "3.2
File Structure" to start Visual Studio 2017.

(2) Set the solution configurations to [Release].

Figure 3-11 Release build setting

(3) For LED Switch Service Client, select [Build] - [Build Solution] from the menu bar to build.
For Virtual UART Client, select [Build] - [Build Solution] from the menu bar to build.

(4) The executable file is created in the following folder.

Table 3-2 Executable file

Folder Name File Name

r01an6004jj0100-ble-mcu-win\LED_Switch_Service_Client\bin\Release LED_Switch_Service_Client.exe

r01an6004jj0100-ble-mcu-win\Virtual_UART_Client\bin\Release Virtual_UART_Client.exe

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 35 of 78
Aug.31.21

4. Implementation Details
4.1 Program file of Windows application
The user interface (hereinafter called "UI") and application processing of LED Switch Service Client and
Virtual UART Client are described in the following two files. For the folder where the files are stored, refer to
"3.2 File Structure".

 MainWindow.xaml

An XML-formatted XAML code file that describes the Window user interface. The appearance of
the window and the arrangement of controls such as buttons and textboxes are defined.

 MainWindow.xaml.cs

A C# code file that describes the processing of the application. A program that processes
pairing, connection, data communication, etc. is described.

4.2 Use Bluetooth LE API of UWP with WPF
In this application note, the LED Switch Service Client and Virtual UART Client are created as WPF
applications, but the Windows Bluetooth LE API is an API that can be used with UWP. Normally, it is not
available from WPF applications, but it uses the UWP API by referencing the Windows metadata files
(winmd) and .NET assemblies (dll) that make up the UWP API from the project.

 Windows.winmd

A Windows metadata (WinMD) file that enables you to use the Windows Runtime API (WinRT
API).

The files are stored in the following folders.

C:\Program Files (x86)\Windows Kits\10\UnionMetadata\10.0.19041.0

(10.0.19041.0 is version number of Windows 10 SDK)

 System.Runtime.WindowsRuntime.dll

A .NET assembly file that is a component of a .NET application.

The files are stored in the following folders.

C:\Program Files (x86)\Reference Assemblies\Microsoft\Framework\.NETCore\v4.5

(For Windows 10 .NET Core V4.5)

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 36 of 78
Aug.31.21

4.3 LED Switch Service Client
This section describes the classes and processing contents defined in the LED Switch Service Client.

Table 4-1 LED Switch Service Client Class Overview

Class Name Description

MainWindow A class that describes the application processing of the LED
Switch Service Client.

AdvertisementWatcherInformation A class that stores information obtained from advertising sent by
the evaluation board to be connected.

DeviceWatcherInformation A class that stores the Bluetooth LE device information listed by
DeviceWatcher.

ViewModel A class used for data exchange between the program and the UI.

4.3.1 MainWindow class

4.3.1.1 Field (Member variable)
Guid UUID_LEDSW_SERVICE

Define LED Switch Service UUID. After connecting to the evaluation board, use it to search for Services.

Guid UUID_LEDSW_SW_STATE_NOTIFICATION

Define the Switch State Characteristic UUID of the LED Switch Service. After connecting to the rating
board, use it for Characteristic search.

Guid UUID_LEDSW_LED_BLINK_RATE_WRITE

Define LED Blink Rate Characteristic UUID for LED Switch Service. After connecting to the rating board,
use it for Characteristic search.

const string DEVNAME_RBLE

It is used to find the evaluation board to be connected by comparing with the Complete Local Name of
the advertisement received by the BluetoothLEAdvertisementWatcher.

BluetoothLEAdvertisementWatcher advertisementWatcher

Saves an object of class BluetoothLEAdvertisementWatcher and uses it to perform a scan and receive
advertising.

DeviceWatcher deviceWatcher

Saves an object of the DeviceWatcher class and lists the devices registered in the Windows system and
the external devices found. This application is used to enumerate paired Bluetooth LE devices
registered in Windows and Bluetooth LE devices sending advertisements.

AdvertisementWatcherInformation peripheralDevice

Saves the object of AdvertisementWatcherInformation class and stores the information of the evaluation
board to be connected received by the scan of BluetoothLEAdvertisementWatcher class.

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 37 of 78
Aug.31.21

DeviceWatcherInformation pairedDeviceInfomation

Saves the DeviceWatcherInformation class object and stores the DeviceInformation class information of
the paired evaluation board.

ObservableCollection<DeviceWatcherInformation> RBLEDevices

A collection that stores objects of the ObservableCollection<T> class. Stores the DeviceInformation
class information of the devices listed in the DeviceWatcher class.

BluetoothLEDevice bluetoothLeConnectedDevice

Save the objects of the BluetoothLEDevice class when you start the connection with the evaluation
board.

GattDeviceService gattPrimaryService

After connecting to the evaluation board, save the object of the LED Switch Service's
BluetoothLEDevice class.

GattCharacteristic characteristicNotify

After connecting to the evaluation board, save the object of the GattCharacteristic class of Switch State
Characteristic.

GattCharacteristic characteristicWrite

After connecting to the evaluation board, save the object of the GattCharacteristic class of LED Blink
Rate Characteristic.

bool isLunchedApp

Used to determine the DeviceWatcher start position when DeviceWatcher is stopped. This flag is set
when the application is started.

bool isClickedPairButton

Used to determine the DeviceWatcher start position when DeviceWatcher is stopped.

bool isClickedConnectButton

Used to determine the DeviceWatcher start position when DeviceWatcher is stopped. This flag is set
when the Connect button is clicked.

ViewModel viewModel

Saves an object of the ViewModel class and uses it to exchange data between the program and the UI.

Timer timer

Saves an object of Timer class and uses it to stop the operation (timeout) of
BluetoothLEAdvertisementWatcher and DeviceWatcher.

int notifyCount

It is used to count the number of Notifications received from the evaluation board.

4.3.1.2 Constructor
MainWindow()

Instantiate the ViewModel class and set it in the DataContext property so that you can exchange data
with the UI.

Start DeviceWatcher to see if it is paired with the evaluation board.

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 38 of 78
Aug.31.21

4.3.1.3 Method/Event handler
void ButtonPair_Click(object sender, RoutedEventArgs e)

Click event handler for the Pair/Unpair button.

When the Pair button is clicked, pairing with the evaluation board is started. When the Unpair button is
clicked, the pairing with the evaluation board is canceled.

Parameters

object sender The object that sent the event.

RoutedEventArgs e Event parameters.

void ButtonConnect_Click(object sender, RoutedEventArgs e)

Click event handler for the Connect/Disconnect button.

When the Connect button is clicked, it connects to the paired evaluation board. When the Disconnect
button is clicked, the connection with the evaluation board is disconnected.

Parameters

object sender The object that sent the event.

RoutedEventArgs e Event parameters.

void ButtonLEDBlinkRate_Click(object sender, RoutedEventArgs e)

Click event handler for LED Blink Rate button.

The value entered in the LED Blink Rate textbox is sent to the evaluation board by Write.

Parameters

object sender The object that sent the event.

RoutedEventArgs e Event parameters.

void AdvertisementWatcher_Start(int timeout)

Run the scan with the BluetoothLEAdvertisementWatcher. BluetoothLEAdvertisementWatcher will exit if
it finds a rating board to connect to or if the rating board is not found within the timeout period.

Parameters

int timeout Timeout time. (Unit: milliseconds)

void AdvertisementWatcher_Stop()

Stop the BluetoothLEAdvertisementWatcher.

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 39 of 78
Aug.31.21

void AdvertisementWatcher_Received(BluetoothLEAdvertisementWatcher watcher,
BluetoothLEAdvertisementReceivedEventArgs eventArgs)

Advertising receive event handler for BluetoothLEAdvertisementWatcher.

Called every time an advertisement is received. If it finds the name of the evaluation board to connect
to, it starts DeviceWatcher.

Parameters

BluetoothLEAdvertisementWatcher watcher The object of the
BluetoothLEAdvertisementWatcher that
sent the event.

BluetoothLEAdvertisementReceivedEventArgs eventArgs Data of received events.

void AdvertisementWatcherTimer_Callback(object state)

Callback method for Timer.

Called when the operating time of BluetoothLEAdvertisementWatcher has expired, it stops
BluetoothLEAdvertisementWatcher.

Parameters

object state Information object for the application.

void DeviceWatcher_Start(int timeout)

Start DeviceWatcher and list the Bluetooth LE devices registered in the system and external Bluetooth
LE devices. Executes DeviceWatcher for the time specified by the timeout.

Parameters

int timeout Timeout time. (Unit: milliseconds)

void DeviceWatcher_Added(DeviceWatcher sender, DeviceInformation deviceInfo)

Added event handler for DeviceWatcher.

Called when a device is added by DeviceWatcher, it adds information to the collection of the
DeviceWatcherInformation class.

Parameters

DeviceWatcher sender The object that sent the event.

DeviceInformation deviceInfo DeviceInformation information for the added device.

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 40 of 78
Aug.31.21

void DeviceWatcher_Updated(DeviceWatcher sender, DeviceInformationUpdate deviceInfoUpdate)

Updated event handler for DeviceWatcher.

Called when the device is updated by DeviceWatcher, it updates the information stored in the collection
of the DeviceWatcherInformation class.

Parameters

DeviceWatcher sender The object that sent the event.

DeviceInformationUpdate deviceInfoUpdate DeviceInformationUpdate information for the updated
device.

void DeviceWatcher_Removed(DeviceWatcher sender, DeviceInformationUpdate deviceInfoUpdate)

Removed event handler for DeviceWatcher.

Called when the device is deleted by DeviceWatcher, it deletes the information stored in the
DeviceWatcherInformation class collection.

Parameters

DeviceWatcher sender The object that sent the event.

DeviceInformationUpdate deviceInfoUpdate DeviceInformationUpdate information for the deleted
device.

void DeviceWatcher_EnumerationCompleted(DeviceWatcher sender, object e)

EnumerationCompleted event handler for DeviceWatcher.

Called when DeviceWatcher enumeration is complete. This application does not process.

Parameters

DeviceWatcher sender The object that sent the event.

object e Event data.

void DeviceWatcher_Stopped(DeviceWatcher sender, object e)

Stopped event handler for DeviceWatcher.

Called when DeviceWatcher is stopped.

If DeviceWatcher is started when the application starts, it will check if it is already paired.

If DeviceWatcher is started by clicking the Pair button, pairing will start.

If DeviceWatcher is started by clicking the Connect button, it will start connecting.

Parameters

DeviceWatcher sender The object that sent the event.

object e Event data.

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 41 of 78
Aug.31.21

void DeviceWatcherTimer_Callback(object state)

Callback method for Timer.

Called when the operating time of DeviceWatcher has expired, it stops Timer and DeviceWatcher.

Parameters

object state Information object for the application.

DeviceWatcherInformation DeviceWatcherInformation_Search(string id)

Search the collection of DeviceWatcherInformatio classes for information that matches the device ID.

Parameters

string id Device ID.

Return Parameter

DeviceWatcherInformation An object of the DeviceWatcherInformation class.

DeviceWatcherInformation DeviceWatcherInformation_CheckBDA(string bda)

Search the collection of DeviceWatcherInformatio classes for information that matches the Bluetooth
Device Address.

Parameters

string bda Bluetooth Device Address of device.

Return Parameter

DeviceWatcherInformation An object of the DeviceWatcherInformation class.

DeviceWatcherInformation DeviceWatcherInformation_CheckPaired()

Search for paired devices in the collection of DeviceWatcherInformation class.

Return Parameter

DeviceWatcherInformation An object of the DeviceWatcherInformation class.

void Connect()

Performs connection processing. Connect to the evaluation board, search for Services and
Characteristics, and set Notification permissions on the CCCD.

void Disconnect()

Performs disconnection processing.

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 42 of 78
Aug.31.21

void ConnectionStatusChanged(BluetoothLEDevice sender, object e)

An event handler that notifies you of changes in connection status.

Called when the disconnection process with the evaluation board is completed.

Parameters

BluetoothLEDevice sender The object that sent the event.

object e Event data.

void Pair(DeviceInformation deviceInfo)

Perform pairing processing.

Parameters

DeviceInformation deviceInfo DeviceInformation information for the device to be paired.

void Unpair()

Perform unpairing processing.

void PairingRequestedHandler(DeviceInformationCustomPairing sender,
 DevicePairingRequestedEventArgs eventArgs)

Event handler for pairing.

Parameters

DeviceInformationCustomPairing sender The object that sent the event.

DevicePairingRequestedEventArgs eventArgs Event data.

void ReceiveNotification(GattCharacteristic sender, GattValueChangedEventArgs eventArgs)

Receives a Notification and displays the number of times it has been received in the SW count text box.

Parameters

GattCharacteristic sender The object that sent the event.

GattValueChangedEventArgs eventArgs Receive data.

void SendWrite(string str)

Send the value of the LED Blink Rate textbox with Write.

Parameters

string str LED Blink Rate string.

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 43 of 78
Aug.31.21

4.3.2 AdvertisementWatcherInformation class

4.3.2.1 Property
string BluetoothDeviceAddrss

Save the advertising Bluetooth Device Address. It is used to search the evaluation board to be
connected from the devices listed in Device Watcher.

string Name

Save the Advertising Local Name. It is used to determine the evaluation board to be connected.

4.3.2.2 Method
void Clear()

Initialize the property.

4.3.3 DeviceWatcherInformation class

4.3.3.1 Constructor
public DeviceWatcherInformation(DeviceInformation deviceInfo)

Set the DeviceInformation information in the deviceInformation property.

Parameters

DeviceInformation deviceInfo DeviceInformation information.

4.3.3.2 Property
DeviceInformation DeviceInformation

Saves Device Information information.

4.3.3.3 Field (Member variable)
string Id

Saves the IDs of the listed devices.

string Name

Saves the names of the listed devices.

bool IsPaired

Indicates whether the enumerated devices are paired.

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 44 of 78
Aug.31.21

4.3.3.4 Method
void Update(DeviceInformationUpdate deviceInfoUpdate)

Update the deviceInformation property.

Parameters

DeviceInformationUpdate deviceInfoUpdate Device Information Update information for the updated
device.

4.3.4 ViewModel class

4.3.4.1 Field (Member variable)
event PropertyChangedEventHandler PropertyChanged

Declare the PropertyChanged event.

4.3.4.2 Constructor
ViewModel()

Initialize the property.

4.3.4.3 Property
string textbox_status

It is used to display characters in the Status textbox and to get characters.

The string _textbox_status field is used to hold data.

string button_pair_content

It is used to display characters on the Pair/Unpair button and to acquire characters.

The string _button_pair_content field is used to hold data.

string button_connect_content

It is used to display characters on the Connect/Disconnect button and to get characters.

The string _button_connect_content field is used to hold the data.

string textbox_sw_count

It is used to display characters in the SW Count textbox and to get characters.

The string _textbox_sw_count field is used to hold data.

string textbox_led_blink_rate

It is used to display characters in the LED Blink Rate textbox and acquire characters.

The string _textbox_led_blink_rate field is used to hold data.

bool button_pair_isenabled

It is used to enable or disable the Pair/Unpair button.

The bool _button_pair_isenabled field is used to hold data.

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 45 of 78
Aug.31.21

bool button_connect_isenabled

It is used to enable or disable the Connect/Disconnect button.

The bool _button_connect_isenabled field is used to hold data.

bool button_led_blink_rate_isenabled

It is used to enable or disable the LED Blink Rate send button.

The bool _button_led_blink_rate_isenabled field is used to hold data.

4.3.4.4 Method
void NotifyPropertyChanged(string propName)

The PropertyChanged event notifies the UI that is bound to each property of the data change.

Parameters

string propName Property name string.

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 46 of 78
Aug.31.21

4.3.5 Flowchart
The operation when starting the LED Switch Service Client and operating the UI is explained using a
flowchart.

4.3.5.1 Launch application

Figure 4-1 Flowchart of Launch application

When you launch the application, it checks if it has been paired with the evaluation board. Use the
DeviceWatcher class to enumerate the devices registered in the Windows system and search for saved
pairing information with the evaluation board.

If pairing information is not found, enable the Pair button.

If pairing information is found, enable the Connect button to connect to the evaluation board and the Unpair
button to unpair.

Main ｓymbols
Method:

Event handler:

Event source:

Event source
DeviceWather: DW

Timer: TM

Device Watcher Proccess

DeviceWatcher_Stopped()

Launch
LED Switch Service Client

MainWindow()

DeviceWatcher_Start()

DeviceWatcher_Added()

DeviceWatcher_Updated()

DeviceWatcher_Removed()

DeviceWatcher_EnumerationCompleted()

DeviceWatcherInformation_CheckPaired()

Start DeviceWatcher

End

DeviceWatcherTimer_Callback()

Start Timer

Stop Timer

Stop DeviceWatcher

Yes
DW

DW

DW

DW

DW

TM

Timer expired?

No

Paired?

End

YesNo

Already paired.Not paired.

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 47 of 78
Aug.31.21

4.3.5.2 Pair/Unpair button

Figure 4-2 Flowchart of Pair/Unpair button (1)

Main ｓymbols
Method:

Event handler:

Event source:

Event source
Button: BT

BluetoothLEAdvertisementWatcher: AW
DeviceWather: DW

Timer: TM
DeviceInformation: DI

Button
Pair/Unpair

ButtonPair_Click()BT

Unpair()

AdvertisementWatcher_Start()

Paired?

AdvertisementWatcher_Received()

Start BluetoothLEAdvertisementWatcher

Start Timer

AW Yes

Found name of the
Evaluation Board?

Stop BluetoothLEAdvertisementWatcher

AdvertisementWatcher_Stop()

Yes

DeviceWatcher_Start()

Stop Timer

DeviceWatcher
Proccess

DeviceWatcher_Stopped()DW

DeviceWatcherInformation_CheckBDA()

AdvertisementWatcherTimer_Callback()TM

AdvertisementWatcher_Stop()

Stop Timer

PairedNot paired

1

End

No

Timer expired?

Pairing information was deleted.

2

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 48 of 78
Aug.31.21

Figure 4-3 Flowchart of Pair/Unpair button (2)

It operates as a Pair button when not paired with the evaluation board, and as an Unpair button when paired
with the evaluation board.

When the Pair button is clicked, it starts scanning using the BluetoothLEAdvertisementWatcher class to find
the evaluation board and receives the advertisements sent by the evaluation board. When it finds the name
of the evaluation board in the advertising data, it uses the DeviceWatcher class to list peripheral devices and
devices registered on the Windows system. If a device that matches the Bluetooth Device Address of the
evaluation board found by scanning is found among the listed, pairing will start. Pairing uses the PairAsync
method of the DeviceInformation class. As the pairing process progresses, the PairingRequested event
occurs and the registered PairingRequestedHandler event handler is called. When the Accept method of the
DevicePairingRequestedEventArgs class passed in the event parameter is executed, pairing with the
evaluation board is completed and the pairing information is registered in the Windows system.

When the Unpair button is clicked, the UnpairAsync method of the DeviceInformation class is used to
remove the pairing information from the Windows system.

Found BDA of the
Evaluation Board?

Pair()

Yes

End

No

PairingRequestedHandler()DI

Pairing finished?

Yes

End

Paired. Pairing device was not found.

End

No

Pairing failed.

1 2

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 49 of 78
Aug.31.21

4.3.5.3 Connect/Disconnect button

Figure 4-4 Flowchart of Connect/Disconnect button

It operates as a Connect button when not connected to the evaluation board, and as a Disconnect button
when connected to the evaluation board.

When the Connect button is clicked, it starts DeviceWatcher, updates the pairing information of the
DeviceWatcherInformation class, and connects to the evaluation board using the updated pairing
information. Once connected, it searches for LED Switch Service, Notify characteristic, and Write
characteristic, and saves Service and Characteristic objects in fields for use in data communication. It also
writes a enable notirication to the Client Characteristic Configuration Descriptor so that the evaluation board
can send Notifications.

When the Disconnect button is clicked, Dispose is executed in the order of Characteristic, Service, and
BluetoothLEDevice to release resources. When the resource is released, the ConnectionStatusChanged
event of the BluetoothLEDevice class occurs and the connection with the evaluation board is disconnected.
As a process after disconnection, unregister the ConnectionStatusChanged event handler and initialize the
field that stores Service and Characteristic.

Main ｓymbols
Method:

Event handler:

Event source:

Event source
Button: BT

DeviceWather: DW
BluetoothLEDevice: BD

Button
Connect/Disconnect

ButtonConnect_Click()BT

Disconnect()DeviceWatcher_Start()

Connected?
ConnectedNot connected

End

ConnectionStatusChanged()BDDeviceWatcher
Proccess

DeviceWatcher_Stopped()DW

Connect()

Success?

End

Yes

No

Connected. Disconnected.

End

Connection failed.

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 50 of 78
Aug.31.21

4.3.5.4 LED Blink Rate button (Send write)

Figure 4-5 Flowchart of LED Blink Rate button (Send write)

Sends the data inputted in the LED Blink Rate textbox to the evaluation board. Data is sent by the
WriteValueAsync method of the GattCharacteristic class.

4.3.5.5 Receive SW state (Receive indication)

Figure 4-6 Flowchart of Receive SW state (Receive indication)

Receiving a Notification from the evaluation board, the ValueChanged event of the GattCharacteristic class
occurs. Receives SW State data as an event parameter and displays the number of Notifications received in
the SW Count textbox.

4.3.5.6 Disconnect from evaluation board

Figure 4-7 Flowchart of Disconnect from evaluation board

The ConnectionStatusChanged event of the BluetoothLEDevice class occurs when communication is not
possible due to the power of the evaluation board being turned off or the evaluation board being reset.

As a disconnection process, unregister the ConnectionStatusChanged event handler and initialize the fields
that store the Service and Characteristic.

Main ｓymbols
Method:

Event handler:

Event source:

Event source
Button: BT

Button
LED Blink Rate

ButtonLEDBlinkRate_Click()BT

SendWrite()

End

Main ｓymbols
Event handler:

Event source:

Event source
GattCharacteristic: GC

Receive
Notify

ReceiveNotification()GC

End

Main ｓymbols
Event handler:

Event source:

Event source
BluetoothLEDevice: BD

Disconnect
from Peripheral

ConnectionStatusChanged()BD

End

Disconnected.

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 51 of 78
Aug.31.21

4.4 Virtual UART Client
This section describes the classes and processing contents defined in the LED Switch Service Client.

Table 4-2 Virtual UART Client Class Overview

Class Name Description

MainWindow A class that describes the application processing of the Virtual
UART Client.

AdvertisementWatcherInformation A class that stores information obtained from advertising sent by
the evaluation board to be connected.

ViewModel A class used for data exchange between the program and the UI.

4.4.1 MainWindow class

4.4.1.1 Field (Member variable)
Guid UUID_VUART_SERVICE

Define the Primary Service UUID of the Virtual UART Profile. After connecting to the evaluation board,
use it to search for Services.

Guid UUID_VUART_INDICATION

Define the Indication Characteristic UUID of the Virtual UART Profile. After connecting to the evaluation
board, use it for Characteristic search.

Guid UUID_VUART_WRITE

Define the Write Characteristic UUID of the Virtual UART Profile. After connecting to the evaluation
board, use it for Characteristic search.

const int VUART_WRITE_LENGTH

Used to determine the number of data transmitted from the Virtual UART Client to the evaluation board.

BluetoothLEAdvertisementWatcher advertisementWatcher

Saves the object of BluetoothLEAdvertisementWatcher class and uses it to perform a scan and receive
advertising.

AdvertisementWatcherInformation vuartDevice

Saves the object of AdvertisementWatcherInformation class and stores the information of the evaluation
board equipped with the virtual UART profile.

BluetoothLEDevice bluetoothLeConnectedDevice

Save the objects of the BluetoothLEDevice class when you start the connection with the evaluation
board.

GattDeviceService gattPrimaryService

After connecting to the evaluation board, save the object of the BluetoothLEDevice class of the Virtual
UART Profile Primary Service.

GattCharacteristic characteristicIndicate

After connecting to the evaluation board, save the object of the GattCharacteristic class of the Virtual
UART Profile Indication Characteristic.

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 52 of 78
Aug.31.21

GattCharacteristic characteristicWrite

After connecting to the evaluation board, save the object of the GattCharacteristic class of the Virtual
UART Profile Write Characteristic.

bool isFoundVuartDevice

It is used to judge the transition to connection processing when BluetoothLEAdvertisementWatcher is
stopped. This flag is set when the Connect button is clicked.

ViewModel viewModel

Save the ViewModel class object and use it to exchange data between the program and the UI.

Timer timer

Saves an object of Timer class and uses it to stop the operation (timeout) of
BluetoothLEAdvertisementWatcher.

StreamWriter streamWriter

Saves an object of the StreamWriter class that writes to the log file.

string pathLogFile

Saves the path information of the log file.

StreamWriter streamReader

Saves the StreamReader class object that reads from the send file.

string pathSendFile

Saves the path information of the send file.

4.4.1.2 Constructor
MainWindow()

Instantiate the ViewModel class and set it in the DataContext property so that you can exchange data
with the UI.

4.4.1.3 Method/Event handler
void ButtonConnect_Click(object sender, RoutedEventArgs e)

Click event handler for the Connect/Disconnect button.

When the Connect button is clicked, BluetoothLEAdvertisementWatcher is started to search for the
evaluation board to be connected. When the Disconnect button is clicked, the connection with the
evaluation board is disconnected.

Parameters

object sender The object that sent the event.

RoutedEventArgs e Event parameters.

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 53 of 78
Aug.31.21

void ButtonLog_Click(object sender, RoutedEventArgs e)

Click event handler for the Log button.

Displays a file save dialog and creates an instance of the StreamWrite class for the specified file.

Parameters

object sender The object that sent the event.

RoutedEventArgs e Event parameters.

void ButtonFile_Click(object sender, RoutedEventArgs e)

Click event handler for File button.

Displays the file open dialog and sends the character data of the specified file to the evaluation board.

Parameters

object sender The object that sent the event.

RoutedEventArgs e Event parameters.

void ButtonSend_Click(object sender, RoutedEventArgs e)

Click event handler for the Send button.

The character data inputted in the Send Data input textbox is sent to the evaluation board.

Parameters

object sender The object that sent the event.

RoutedEventArgs e Event parameters.

void TextBoxSend_KeyDown(object sender, RoutedEventArgs e)

Keydown event handler for Send Data input textbox.

If you press the Enter (Return) key in the Send Data input textbox, the character data inputted in the
textbox will be sent to the evaluation board.

Parameters

object sender The object that sent the event.

RoutedEventArgs e Event parameters.

void SendTextBoxData()

Check the number of characters in the data inputted in the Send Data input textbox and send.

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 54 of 78
Aug.31.21

void AdvertisementWatcher_Start(int timeout)

Run the scan with the BluetoothLEAdvertisementWatcher. BluetoothLEAdvertisementWatcher will exit if
it finds a evaluation board to connect to or if the evaluation board is not found within the timeout period.

Parameters

int timeout Timeout time. (Unit: milliseconds)

void AdvertisementWatcher_Stop()

Stop the BluetoothLEAdvertisementWatcher. If it finds an evaluation board to connect to, it will start
connecting with the evaluation board.

void AdvertisementWatcher_Received(BluetoothLEAdvertisementWatcher watcher,
BluetoothLEAdvertisementReceivedEventArgs eventArgs)

Advertising receive event handler for BluetoothLEAdvertisementWatcher.

Called every time an advertisement is received. If you find an evaluation board with the address entered
in the Bluetooth Device Address textbox or an evaluation board with the UUID of the Virtual UART
Profile, stop BluetoothLEAdvertisementWatcher.

Parameters

BluetoothLEAdvertisementWatcher watcher The object of the
BluetoothLEAdvertisementWatcher
that sent the event.

BluetoothLEAdvertisementReceivedEventArgs eventArgs Data of received events.

void AdvertisementWatcherTimer_Callback(object state)

Callback method for Timer.

Called when the operating time of BluetoothLEAdvertisementWatcher has expired, it stops
BluetoothLEAdvertisementWatcher.

Parameters

object state Information object for the application.

void Connect()

Perform connection processing, search for Service and Characteristic, and set Indicate permission to
CCCD.

void Disconnect()

Performs disconnection processing.

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 55 of 78
Aug.31.21

void ConnectionStatusChanged(BluetoothLEDevice sender, object e)

An event handler that notifies you of changes in connection status.

Called when the disconnection process with the evaluation board is completed.

Parameters

BluetoothLEDevice sender The object that sent the event.

object e Event data.

void ReceiveIndiation(GattCharacteristic sender, GattValueChangedEventArgs eventArgs)

Receives Indicate and displays the received character string data in the Receive data display textbox.

Parameters

GattCharacteristic sender The object that sent the event.

GattValueChangedEventArgs eventArgs Receive data.

void SendWrite(string str)

Send character data with Write.

Parameters

string str String data.

void FileAppend(string str)

Add the string to the file.

Parameters

string str A string to add to the file.

void FileSend()

Read the character string data from the file and send it to the evaluation board by Write.

4.4.2 AdvertisementWatcherInformation class

4.4.2.1 Property
string BluetoothDeviceAddrss

Saves the advertising Bluetooth Device Address (string). It is used to determine the evaluation board to
be connected.

string Name

Save the Advertising Local Name.

Guid ServiceUuid

Saves the advertising 128bit UUID. It is used to determine the evaluation board to be connected.

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 56 of 78
Aug.31.21

ulong BluetoothDeviceAddrss_ulong

Save the advertising Bluetooth Device Address (ulong). It is used as a parameter to specify the
connection target at the start of connection.

4.4.2.2 Method
void Clear()

Initialize the property.

4.4.3 ViewModel class

4.4.3.1 Field (Member variable)
event PropertyChangedEventHandler PropertyChanged

Declare the PropertyChanged event.

4.4.3.2 Constructor
ViewModel()

Initialize the property.

4.4.3.3 Property
string textbox_status

It is used to display characters in the Status textbox and to get characters.

The string _textbox_status field is used to hold data.

string textbox_bdaddress

It is used to display characters in the Bluetooth Device Address textbox and to get characters.

The string _textbox_bdaddress field is used to hold data.

string textbox_receive_text

It is used to display characters in the Receive Data textbox and to get characters.

The string _textbox_receive_text field is used to hold data.

string button_connect_content

It is used to display characters on the Connect/Disconnect button and to get characters.

The string _button_connect_content field is used to hold the data.

string button_log_content

It is used to display characters on the Receive Data Save button and to get characters.

The string _button_log_content field is used to hold data.

bool button_connect_isenabled

It is used to enable or disable the Connect/Disconnect button.

The bool _button_connect_isenabled field is used to hold data.

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 57 of 78
Aug.31.21

bool button_log_isenabled

It is used to enable or disable the Receive Data Save button.

The bool _button_log_isenabled field is used to hold data.

bool button_file_isenabled

It is used to enable or disable the Send File button.

The bool _button_file_isenabled field is used to hold data.

bool button_send_isenabled

It is used to enable or disable the Send Data button.

The bool _button_send_isenabled field is used to hold data.

4.4.3.4 Method
void NotifyPropertyChanged(string propName)

The PropertyChanged event notifies the UI that is bound to each property of the data change.

Parameters

string propName Property name string.

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 58 of 78
Aug.31.21

4.4.4 Flowchart
The operation when starting the Virtual UART Client and operating the UI is explained using a flowchart.

4.4.4.1 Launch application

Figure 4-8 Flowchart of Launch application

When you launch the application, it will be in a state waiting for the Connect button to be clicked.

Main ｓymbols
Method:

Launch
Virtual UART Client

MainWindow()

End

Not connected.

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 59 of 78
Aug.31.21

4.4.4.2 Connect/Disconnect button

Figure 4-9 Flowchart of Connect/Disconnect button (1)

Main ｓymbols
Method:

Event handler:

Event source:

Event source
Button: BT

BluetoothLEDevice: BD
BluetoothLEAdvertisementWatcher: AW

Timer: TM

Button
Connect/Disconnect

ButtonConnect_Click()BT

AdvertisementWatcher_Start()

Connected?
ConnectedNot connected

Disconnect()

End

ConnectionStatusChanged()BDStart BluetoothLEAdvertisementWatcher

Start Timer

AdvertisementWatcher_Received()AW
Timer expired?

Yes

Found BDA of the
Evaluation Board?

Yes

Found Service UUID of
the Evaluation Board?

AdvertisementWatcher_Stop()

Yes

No

Stop BluetoothLEAdvertisementWatcher

Stop Timer

AdvertisementWatcherTimer_Callback()TM

Disconnected.

1

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 60 of 78
Aug.31.21

Figure 4-10 Flowchart of Connect/Disconnect button (2)

It operates as a Connect button when not connected to the evaluation board, and as a Disconnect button
when connected to the evaluation board.

When the Connect button is clicked, the BluetoothLEAdvertisementWatcher will start scanning and receive
advertising. If it finds an address entered in the Bluetooth Device Address textbox or an advertising with the
UUID of the Virtual UART profile, it will connect.

When the Disconnect button is clicked, Dispose is executed in the order of Characteristic, Service, and
BluetoothLEDevice to release resources. When the resource is released, the ConnectionStatusChanged
event of the BluetoothLEDevice class occurs and the connection with the evaluation board is disconnected.
As a process after disconnection, unregister the ConnectionStatusChanged event handler and initialize the
field that stores Service and Characteristic.

Disconnect()

End

ConnectionStatusChanged()BD

Connect()

Success?

End

Yes

No

Found the Evaluation
Board?

Yes

No

Connected. Connection failed.

End

Peripheral device was not found.

1

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 61 of 78
Aug.31.21

4.4.4.3 Log button

Figure 4-11 Flowchart of Log button

It operates as a Log button when not logging, and as a Logging button (log stop button) when logging.

When the Log button is clicked, a file save dialog will be displayed, saving the file path in the field and
creating a new file.

When the Logging button is clicked, it initializes the field that stores the file path so that it will not be logged
when character data is received.

4.4.4.4 File button (Send write)

Figure 4-12 Flowchart of File button (Send write)

Displays the file open dialog and sends the character data of the specified file to the evaluation board. Data
is sent every 20 bytes with the WriteValueAsync method of the GattCharacteristic class.

Main ｓymbols
Event handler:

Event source:

Event source
Button: BT

Button
Log

ButtonLog_Click()BT

Displays the file save dialog

Create new file

End

Main ｓymbols
Method:

Event handler:

Event source:

Event source
Button: BT

Button
File

ButtonFile_Click()BT

FileSend()

Displays the file open dialog

Open file

Read data from file

SendWrite()

End

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 62 of 78
Aug.31.21

4.4.4.5 Send button (Send write)

Figure 4-13 Flowchart of Send button (Send write)

Send The data entered in the data textbox is sent to the evaluation board. Data is sent by the
WriteValueAsync method of the GattCharacteristic class. The data length that can be sent is 20 bytes.

4.4.4.6 Send textbox, key down (Send write)

Figure 4-14 Flowchart of Send textbox, key down (Send write)

Send data inputted in the data textbox is sent to the evaluation board by pressing the Enter key or the Return
key. Data is sent by the WriteValueAsync method of the GattCharacteristic class. The data length that can
be sent is 20 bytes.

Main ｓymbols
Method:

Event handler:

Event source:

Event source
Button: BT

Button
Send

ButtonSend_Click()BT

SendWrite()

End

Main ｓymbols
Method:

Event handler:

Event source:

Event source
Keyboard: KY

TextBox
Send

TextBoxSend_KeyDown()KY

Enter?

Return?

End

SendWrite()

Yes

Yes

No

No

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 63 of 78
Aug.31.21

4.4.4.7 Receive string data (Receive indication)

Figure 4-15 Flowchart of Receive string data (Receive indication)

Receiving the Indication from the evaluation board, the ValueChanged event of the GattCharacteristic class
is occurs. Receives character data as an event parameter and displays the received character data in the
Receive textbox.

4.4.4.8 Disconnect from evaluation board

Figure 4-16 Flowchart of Disconnect from evaluation board

The ConnectionStatusChanged event of the BluetoothLEDevice class occurs when communication is not
possible due to the power of the evaluation board being turned off or the evaluation board being reset.

As a disconnection process, unregister the ConnectionStatusChanged event handler and initialize the fields
that store the Service and Characteristic.

Main ｓymbols
Event handler:

Event source:

Event source
GattCharacteristic: GC

Receive
Indicate

ReceiveIndication()GC

End

Main ｓymbols
Event handler:

Event source:

Event source
BluetoothLEDevice: BD

ConnectionStatusChanged()BD

End

Disconnect
from Peripheral

Disconnected.

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 64 of 78
Aug.31.21

4.5 Windows 10 Bluetooth LE communication
The source code related to Bluetooth LE communication of Windows 10 is explained by excerpting from the
source code of LED Switch Service Client. The source code related to Bluetooth LE communication of Virtual
UART Client is almost the same as the source code of LED Switch Service Client, so the explanation here is
omitted.

The source code shown in this section removes unnecessary code for debug output and Bluetooth LE
communication.

4.5.1 BluetoothLEAdvertisementWatcher
BluetoothLEAdvertisementWatcher is a class that can perform scanning and receive advertising (beacon)
sent by Bluetooth LE devices.

To start scanning, create a BluetoothLEAdvertisementWatcher object, set the scanning mode (Active mode),
and register the event handler (AdvertisementWatcher_Received) that will be called when the advertisement
is received. Then call the Start method to start the scan.
private void AdvertisementWatcher_Start(int timeout)
{
 advertisementWatcher = new BluetoothLEAdvertisementWatcher();
 advertisementWatcher.ScanningMode = BluetoothLEScanningMode.Active;
 advertisementWatcher.Received += AdvertisementWatcher_Received;
 advertisementWatcher.Start();
}

Figure 4-17 Start BluetoothLEAdvertisementWatcher

Called when an advertisement is received. Here, the name of the evaluation board to be connected is
determined from the received advertising data, and if it is the connection target, the necessary parameters
are saved.
public void AdvertisementWatcher_Received(BluetoothLEAdvertisementWatcher watcher,
 BluetoothLEAdvertisementReceivedEventArgs eventArgs)
{
 if (advertisementWatcher != null)
 {
 if (eventArgs.Advertisement.LocalName == DEVNAME_RBLE)
 {
 peripheralDevice.BluetoothDeviceAddrss = String.Format("{0:X}", eventArgs.BluetoothAddress)
 peripheralDevice.Name = eventArgs.Advertisement.LocalName;
 }
 }
}

Figure 4-18 Advertising reception event handler

Call the Stop method to stop the scan. Unregister the event handler and initialize the field that stored the
BluetoothLEAdvertisementWatcher object.
private void AdvertisementWatcher_Stop()
{
 advertisementWatcher.Stop();
 advertisementWatcher.Received -= AdvertisementWatcher_Received;
 advertisementWatcher = null;
}

Figure 4-19 Stop BluetoothLEAdvertisementWatcher

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 65 of 78
Aug.31.21

4.5.2 DeviceWatcher
DeviceWatcher is a class that detects devices registered in the Windows system and devices registered in
the system and dynamically enumerates them. The difference from BluetoothLEAdvertisementWatcher is
that you can also list the devices that have been paired and registered in the system. Instead of notifying the
application many times like BluetoothLEAdvertisementWatcher, it notifies only once, and if there is a change
in the notified information, it will notify again.

To start DeviceWatcher, set the parameters for using DeviceWatcher for Bluetooth LE devices and pass it to
the CreateWatcher method to create an object. Then, after registering the event handler that receives the
notification, call the Start method to start DeviceWatcher.
private void DeviceWatcher_Start(int timeout)
{
 // DeviceWatcher Bluetooth LE setting.
 string aqsAllBluetoothLEDevices =
 "(System.Devices.Aep.ProtocolId:=\"{bb7bb05e-5972-42b5-94fc-76eaa7084d49}\")";

 string[] requestedProperties = {"System.Devices.Aep.DeviceAddress",
 "System.Devices.Aep.IsConnected",
 "System.Devices.Aep.Bluetooth.Le.IsConnectable"};

 deviceWatcher = DeviceInformation.CreateWatcher(aqsAllBluetoothLEDevices,
 requestedProperties,
 DeviceInformationKind.AssociationEndpoint);

 // Register event handlers before starting the watcher.
 deviceWatcher.Added += DeviceWatcher_Added;
 deviceWatcher.Updated += DeviceWatcher_Updated;
 deviceWatcher.Removed += DeviceWatcher_Removed;
 deviceWatcher.EnumerationCompleted += DeviceWatcher_EnumerationCompleted;
 deviceWatcher.Stopped += DeviceWatcher_Stopped;

 // Start DeviceWatcher.
 deviceWatcher.Start();
}

Figure 4-20 Start DeviceWatcher

Called when device information is added to the Windows system. The name of the evaluation board to be
connected is determined from the notified information, and if the name of the evaluation board to be
connected and the information with the same Id are not included in the RBLEDevices collection, it is added
to the RBLEDevices collection.
private void DeviceWatcher_Added(DeviceWatcher sender, DeviceInformation deviceInfo)
{
 if (deviceInfo.Name == DEVNAME_RBLE)
 {
 DeviceWatcherInformation device = DeviceWatcherInformation_Search(deviceInfo.Id);
 if (device == null)
 {
 // The deviceInfo.Id was not found in the RBLEDevices ObservableCollection.

 // Add the found RBLE device to the RBLEDevices ObservableCollection.
 RBLEDevices.Add(new DeviceWatcherInformation(deviceInfo));
 }
 }
}

Figure 4-21 DeviceWatcher information addition event handler

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 66 of 78
Aug.31.21

Called when device information is updated on a Windows system. If the RBLEDevices collection contains
information with the same Id from the notified information, the RBLEDevices collection is updated.
private void DeviceWatcher_Updated(DeviceWatcher sender, DeviceInformationUpdate deviceInfoUpdate)
{
 DeviceWatcherInformation device = DeviceWatcherInformation_Search(deviceInfoUpdate.Id);
 if (device != null)
 {
 // The deviceInfo.Id was found in the RBLEDevices ObservableCollection.

 // Update the RBLE device information in the RBLEDevices ObservableCollection.
 device.Update(deviceInfoUpdate);
 }
}

Figure 4-22 DeviceWatcher information update event handler

Called when device information is deleted from the Windows system. If the RBLE Devices collection contains
information with the same Id from the notified information, it is deleted from the RBLE Devices collection.
private void DeviceWatcher_Removed(DeviceWatcher sender, DeviceInformationUpdate deviceInfoUpdate)
{
 DeviceWatcherInformation device = DeviceWatcherInformation_Search(deviceInfoUpdate.Id);
 if (device != null)
 {
 // The deviceInfo.Id was found in the RBLEDevices ObservableCollection.

 // Remove the RBLE device information in the RBLEDevices ObservableCollection.
 RBLEDevices.Remove(device);
 }
}

Figure 4-23 DeviceWatcher information deletion event handler

Called when DeviceWatcher enumeration is complete. This application does not process.
private void DeviceWatcher_EnumerationCompleted(DeviceWatcher sender, object e)
{
 // do nothing.
}

Figure 4-24 DeviceWatcher enumeration complete event handler

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 67 of 78
Aug.31.21

To stop DeviceWatcher, call the Stop method. This application uses Timer to operate DeviceWatcher for a
certain period of time and then stop it due to a timeout.

Calling the Stop method calls the DeviceWatcher stop event handler. Release the event handler and initialize
the field that stored the DeviceWatcher object.
private void DeviceWatcherTimer_Callback(object state)
{
 deviceWatcher.Stop();
}

private void DeviceWatcher_Stopped(DeviceWatcher sender, object e)
{
 // Unregister the event handlers.
 deviceWatcher.Added -= DeviceWatcher_Added;
 deviceWatcher.Updated -= DeviceWatcher_Updated;
 deviceWatcher.Removed -= DeviceWatcher_Removed;
 deviceWatcher.EnumerationCompleted -= DeviceWatcher_EnumerationCompleted;
 deviceWatcher.Stopped -= DeviceWatcher_Stopped;

 deviceWatcher = null;

Figure 4-25 Stop DeviceWatcher

4.5.3 Pairing
Pairing can register Pairing information with the evaluation board in the Windows system.

Pairing is executed by registering an event handler (PairingRequestedHandler) that receives Pairing request
notification and calling the PairAsync method of the DeviceInformation class. Then unregister the event
handler and exit.
private async void Pair(DeviceInformation deviceInfo)
{
 deviceInfo.Pairing.Custom.PairingRequested += PairingRequestedHandler;
 DevicePairingResult result =
 await deviceInfo.Pairing.Custom.PairAsync(DevicePairingKinds.ConfirmOnly,
 DevicePairingProtectionLevel.Encryption);
 deviceInfo.Pairing.Custom.PairingRequested -= PairingRequestedHandler;
}

Figure 4-26 Pairing

An event handler that is called when Pairing is executed. Pairing information is registered in the Windows
system by calling the Accept method of the DevicePairingRequestedEventArgs class of the event parameter.
private static void PairingRequestedHandler(DeviceInformationCustomPairing sender,
 DevicePairingRequestedEventArgs eventArgs)
{
 switch (eventArgs.PairingKind)
 {
 case DevicePairingKinds.ConfirmOnly:
 eventArgs.Accept();
 break;
 default:
 break;
 }
}

Figure 4-27 Pairing request event handler

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 68 of 78
Aug.31.21

4.5.4 Unpairing
To unregister Pairing, call the UnpairAsync method of the DeviceInformation class. Calling the UnpairAsync
method removes the Pairing information from the Windows system.
private async void Unpair()
{
 DeviceUnpairingResult result =
 await pairedDeviceInfomation.DeviceInformation.Pairing.UnpairAsync();
}

Figure 4-28 Unpairing

4.5.5 Connection
Connection is started by calling the FromIdAsync method of the BluetoothLEDevice class. The FromIdAsync
method only triggers the Connection, and the Connection (Sending a Connection request) is executed when
the GetGattServicesForUuidAsync method of the Service search is called.
private async void Connect()
{
 bluetoothLeConnectedDevice = await BluetoothLEDevice.FromIdAsync(pairedDeviceInfomation.Id);

Figure 4-29 Connection

Register the ConnectionStatusChanged event handler when all Connection processing is completed (Enable
notification setting to Client Characteristic Configuration Descriptor in this application). This event handler is
called when the state of Connection changes (when disconnected).

bluetoothLeConnectedDevice.ConnectionStatusChanged += ConnectionStatusChanged;

Figure 4-30 ConnectionStatusChanged event handler

4.5.6 Search for Service
Service search is executed by calling the GetGattServicesForUuidAsync method of the BluetoothLEDevice
class with the UUID to be searched specified as a parameter. If the GetGattServicesForUuidAsync method is
successful, it reads the Services property of the GattDeviceServicesResult class and saves the Service
object (the object of the GattDeviceService class) in the field.
var serviceResult =
 await bluetoothLeConnectedDevice.GetGattServicesForUuidAsync(UUID_LEDSW_SERVICE);
if (serviceResult.Status == GattCommunicationStatus.Success)
{
 gattPrimaryService = serviceResult.Services[0];

Figure 4-31 Serch for Service

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 69 of 78
Aug.31.21

4.5.7 Search for Characteristic
Characteristic search is executed by calling the GetCharacteristicsForUuidAsync method of the
GattDeviceServicesResult class with the UUID to be searched as a parameter. If the
GetCharacteristicsForUuidAsync method is successful, it reads the Characteristics property of the
GattCharacteristicsResult class and saves the Characteristic object (the object of the GattCharacteristic
class) in the field.

If Characteristic is Notification, register the ReceiveNotification event handler that will be called when
Notification is received.
var notificationCharacteristicsResult =
 await serviceResult.Services[0].GetCharacteristicsForUuidAsync(UUID_LEDSW_SW_STATE_NOTIFICATION);
if (notificationCharacteristicsResult.Status == GattCommunicationStatus.Success)
{
 characteristicNotify = notificationCharacteristicsResult.Characteristics[0];
 characteristicNotify.ValueChanged += ReceiveNotification;

Figure 4-32 Serch for Characteristic (Notification)

Similarly, Write Characteristic is called by specifying UUID as a parameter in the
GetCharacteristicsForUuidAsync method.
var writeCharacteristicsResult =
 await serviceResult.Services[0].GetCharacteristicsForUuidAsync(UUID_LEDSW_LED_BLINK_RATE_WRITE);
if (writeCharacteristicsResult.Status == GattCommunicationStatus.Success)
{
 characteristicWrite = writeCharacteristicsResult.Characteristics[0];

Figure 4-33 Serch for Characteristic (Write)

4.5.8 Client Characteristic Configuration Descriptor setting
Notification permission is executed by calling the WriteClientCharacteristicConfigurationDescriptorAsync
method of the GattCharacteristic class with the Notify permission parameter specified.
GattCommunicationStatus status =
 await characteristicNotify.WriteClientCharacteristicConfigurationDescriptorAsync(
 GattClientCharacteristicConfigurationDescriptorValue.Notify);

Figure 4-34 Client Characteristic Configuration Descriptor setting

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 70 of 78
Aug.31.21

4.5.9 Disconnection
Disconnection calls the Dispose method of the GattCharacteristic class, the Dispose method of the
GattDeviceService class, and the Dispose method of the BluetoothLEDevice class.
private void Disconnect()
{
 if (characteristicNotify != null)
 {
 characteristicNotify.Service.Dispose();
 }
 if (gattPrimaryService != null)
 {
 gattPrimaryService.Dispose();
 }
 if (bluetoothLeConnectedDevice != null)
 {
 bluetoothLeConnectedDevice.Dispose();
 }
}

private void ConnectionStatusChanged(BluetoothLEDevice sender, object e)
{
 if (sender.ConnectionStatus == BluetoothConnectionStatus.Disconnected)
 {
 // Disconnect and clear value.
 if (bluetoothLeConnectedDevice != null)
 {
 bluetoothLeConnectedDevice.ConnectionStatusChanged -= ConnectionStatusChanged;
 bluetoothLeConnectedDevice = null;
 }
 if (gattPrimaryService != null)
 {
 gattPrimaryService = null;
 characteristicNotify.ValueChanged -= ReceiveNotification;
 characteristicNotify = null;
 characteristicWrite = null;
 }
 }
}

Figure 4-35 Disconnection

4.5.10 Receive Notification
When Notification is received from the connected evaluation board, the registered event handler is called.
Received data is passed in the parameter GattValueChangedEventArgs class.
private void ReceiveNotification(GattCharacteristic sender, GattValueChangedEventArgs eventArgs)
{

}

Figure 4-36 Receive Notification

4.5.11 Send Write
Data is sent by Write to the connected evaluation board. It can be sent by calling the WriteValueAsync
method of the GattCharacteristic class with the send data specified as a parameter.
private async void SendWrite(string str)
{
 await characteristicWrite.WriteValueAsync(ibuffer, GattWriteOption.WriteWithResponse);
}

Figure 4-37 Send Write

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 71 of 78
Aug.31.21

5. Notes
5.1 Client Characteristic Configuration Descriptor write error
Depending on the state of Windows 10 you are using, the dialog shown in Figure 5-1 may be displayed
whenever you click the Connect button. This is due to an exception in the call to the
WriteClientCharacteristicConfigurationDescriptorAsync method that is set in the Client Characteristic
Configuration Descriptor. Please upgrade Windows 10 or use another Windows 10 PC.

Figure 5-1 CCCD Write Error

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 72 of 78
Aug.31.21

6. Appendix
6.1 Service and characteristic customization
e source code shown in "4.5.6 Search for Service" and "4.5.7 Search for Characteristic". The difference is
the UUID, field name (variable name), and event handler name, so you can easily customize it.

Figure 6-1 shows sample code to get the Indication Characteristic. (Error handling is excluded.)

private Guid UUID_SERVICE = new Guid("5BC1B9F7-A1F1-40AF-9043-C43692C18D7A");
private Guid UUID_INDICATION = new Guid("5BC18D80-A1F1-40AF-9043-C43692C18D7A");

private BluetoothLEDevice bluetoothLeConnectedDevice;
private GattDeviceService gattPrimaryService;
private GattCharacteristic characteristicIndication;

private async void Connect()
{
 // Start Connection
 bluetoothLeConnectedDevice = await BluetoothLEDevice.FromIdAsync(pairedDeviceInfomation.Id);

 // Service
 var serviceResult =
 await bluetoothLeConnectedDevice.GetGattServicesForUuidAsync(UUID_SERVICE);
 gattPrimaryService = serviceResult.Services[0];

 // Characteristic Indication
 var indicationCharacteristicsResult =
 await serviceResult.Services[0].GetCharacteristicsForUuidAsync(UUID_INDICATION);
 characteristicIndication = indicationCharacteristicsResult.Characteristics[0];
 characteristicIndication.ValueChanged += ReceiveIndication;
}

private void ReceiveIndication(GattCharacteristic sender, GattValueChangedEventArgs eventArgs)
{
 // process
}

Figure 6-1 Service and characteristic customization

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 73 of 78
Aug.31.21

6.2 Create a new project
Here will explain how to create a project that uses the Bluetooth LE feature in a WPF application.

(1) Launch the Microsoft Visual Studio Express 2017 for Windows Desktop.

(2) Select [File] - [New Project] from the menu bar to display the "New Project" dialog.

(3) In the "New Project" dialog, select "WPF App (.NET Framework)". Input the project name and folder
name to be created in [Name] and [Location]. Select the version of .NET Framework to use in
Frameworks. (Here, select ".NET Framework 4.6.1".)

Click the [OK] button to close the dialog.

Figure 6-2 Create a new project (1)

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 74 of 78
Aug.31.21

(4) A new project window will open.

Figure 6-3 Create a new project (2)

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 75 of 78
Aug.31.21

(5) Right-click on the project name in "Solution Explorer" to display the menu. Select [Unload Project].

Figure 6-4 Create a new project (3)

(6) Right-click on the project name in "Solution Explorer" to display the menu. Select [Edit wpfapp.csproj].

Figure 6-5 Create a new project (4)

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 76 of 78
Aug.31.21

(7) Add "<TargetPlatformVersion> 10.0 </ TargetPlatformVersion>" to wpfapp.csproj.

Figure 6-6 Create a new project (5)

(8) Right-click on the project name of "Solution Explorer" to display the menu. Select [Reload Project].

Figure 6-7 Create a new project (6)

(9) Right-click on "Reference" in "Solution Explorer" to display the menu. Select [Add Reference] to display
the Reference Manager dialog.

Figure 6-8 Create a new project (7)

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 77 of 78
Aug.31.21

(10) Select the "Browse" menu in the "Reference Manager" dialog. Click the [Browse] button and add the
following two files.

 C:\Program Files (x86)\Windows Kits\10\UnionMetadata\10.0.19041.0\Windows.winmd

 C:\Program Files (x86)\Reference Assemblies\Microsoft\
Framework\.NETCore\v4.5\System.Runtime.WindowsRuntime.dll

Click the [OK] button to close the dialog, and the classes and methods of the Bluetooth LE function will
be available.

Figure 6-9 Create a new project (8)

Bluetooth LE microcomputer / module Windows 10 Bluetooth LE Application

R01AN6004EJ0100 Rev.1.00 Page 78 of 78
Aug.31.21

Revision History

Rev. Date
Description
Page Summary

1.0 Aug.31.2021 - First edition, issued

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2021 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 LED Switch Service Client
	1.2 Virtual UART Client

	2. Operation Check
	2.1 Executable File
	2.1.1 LED Switch Service Client
	2.1.2 Virtual UART Client

	2.2 Windows Application Specification
	2.2.1 LED Switch Service Client
	2.2.2 Virtual UART Client

	2.3 Preparation of Operation Check Environment
	2.3.1 Windows PC
	2.3.2 Target Board for RX23W
	2.3.3 Target Board for RX23W module
	2.3.4 EK-RA4W1
	2.3.5 EB-RE01B
	2.3.6 RL78/G1D Evaluation Board (RTK0EN0001D01001BZ)

	2.4 Operation Check
	2.4.1 Operation check using LED Switch Service Client
	2.4.2 Operation check using Virtual UART Client

	3. Build
	3.1 Build Environment Setup
	3.1.1 Install Visual Studio 2017
	3.1.2 Install Windows 10 SDK

	3.2 File Structure
	3.2.1 LED Switch Service Client
	3.2.2 Virtual UART Client

	3.3 Build Windows Application

	4. Implementation Details
	4.1 Program file of Windows application
	4.2 Use Bluetooth LE API of UWP with WPF
	4.3 LED Switch Service Client
	4.3.1 MainWindow class
	4.3.1.1 Field (Member variable)
	4.3.1.2 Constructor
	4.3.1.3 Method/Event handler

	4.3.2 AdvertisementWatcherInformation class
	4.3.2.1 Property
	4.3.2.2 Method

	4.3.3 DeviceWatcherInformation class
	4.3.3.1 Constructor
	4.3.3.2 Property
	4.3.3.3 Field (Member variable)
	4.3.3.4 Method

	4.3.4 ViewModel class
	4.3.4.1 Field (Member variable)
	4.3.4.2 Constructor
	4.3.4.3 Property
	4.3.4.4 Method

	4.3.5 Flowchart
	4.3.5.1 Launch application
	4.3.5.2 Pair/Unpair button
	4.3.5.3 Connect/Disconnect button
	4.3.5.4 LED Blink Rate button (Send write)
	4.3.5.5 Receive SW state (Receive indication)
	4.3.5.6 Disconnect from evaluation board

	4.4 Virtual UART Client
	4.4.1 MainWindow class
	4.4.1.1 Field (Member variable)
	4.4.1.2 Constructor
	4.4.1.3 Method/Event handler

	4.4.2 AdvertisementWatcherInformation class
	4.4.2.1 Property
	4.4.2.2 Method

	4.4.3 ViewModel class
	4.4.3.1 Field (Member variable)
	4.4.3.2 Constructor
	4.4.3.3 Property
	4.4.3.4 Method

	4.4.4 Flowchart
	4.4.4.1 Launch application
	4.4.4.2 Connect/Disconnect button
	4.4.4.3 Log button
	4.4.4.4 File button (Send write)
	4.4.4.5 Send button (Send write)
	4.4.4.6 Send textbox, key down (Send write)
	4.4.4.7 Receive string data (Receive indication)
	4.4.4.8 Disconnect from evaluation board

	4.5 Windows 10 Bluetooth LE communication
	4.5.1 BluetoothLEAdvertisementWatcher
	4.5.2 DeviceWatcher
	4.5.3 Pairing
	4.5.4 Unpairing
	4.5.5 Connection
	4.5.6 Search for Service
	4.5.7 Search for Characteristic
	4.5.8 Client Characteristic Configuration Descriptor setting
	4.5.9 Disconnection
	4.5.10 Receive Notification
	4.5.11 Send Write

	5. Notes
	5.1 Client Characteristic Configuration Descriptor write error

	6. Appendix
	6.1 Service and characteristic customization
	6.2 Create a new project

	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice
	Contact information
	Corporate Headquarters
	Trademarks

