

RL78/I1D

Operation State Switching IAR

Application note

R01AN3597EJ0100 Rev.1.00 Jan. 31, 2017

Summary

The application note shows the register setting sequence for the switch of RL78/I1D operation state, using the Operation State Control. After reset, it operates in the LV mode. The flash operation mode is switched one by one by the button pressing (LV mode \rightarrow LS mode \rightarrow HS mode \rightarrow LS mode \rightarrow LP mode \rightarrow LS mode \rightarrow LV mode, repetition at the following). The power-supply voltage VDD should be confirmed with the A/D converter when switching to the HS mode, and if the voltage is out of specified range, the transition should be avoided.

Object device

RL78/I1D

When applying the application note to other microcomputers please change it according to the specification and evaluate it enough.

RL78/I1D

Contents

1.	Specification	3
2.	Operation condition confirmation	4
•	Hardware explanation 1. Example of hardware structure 2. Used pin list	5
4 4 4 4 4 4	Software explanation 1. Outline of operation 2. Setting of option byte 3. List of Constants 4. List of Variable 5. Function list 6. Function specification 7. Flow chart 4.7.1. The main processing 4.7.2. Initialization 4.7.3. Peripheral function Initialization 4.7.4. I/O Port Setup 4.7.5. CPU clock initialization 4.7.6. 12-bit interval timer initialization 4.7.7. Clock output initialization 4.7.8. INTPO initialization	6 7 8 9 10 14 15 16 18 23 24 24
	4.7.9. The main user initialization	25 26 26 27
	4.7.14.Flash operation mode switching (LS normal) processing.24.7.15.Flash operation mode switching (LS low consumption) processing.34.7.16.Flash operation mode switching (HS) processing.34.7.17.A/D converter initialization34.7.18.A/D converter initialization start processing.34.7.19.A/D converter stop processing34.7.20.Flash operation mode switching (LP) processing.34.7.21.External interruption (INTP0) processing34.7.22.12-bit interval timer interrupt processing34.7.23.A/D conversion complete interrupt processing3	31 32 34 35 35 36 37 39 40
5.	4.7.24. A/D conversion result acquisition process	40
6.	Sample code	
7.	Reference document	12

1. Specification

When the button is pressed (the INTPO interrupt is generated), the flash operation mode is changed. After all the RL78/I1D supported operation state transitions are executed, it returns back to the state same as after reset.

Table 1.1 shows peripheral function and usage and Figure 1.1 shows the operation state transition sequence order.

Table 1.1Peripheral function and usage

Peripheral function	Usage	
A/D converter	Measurement of VDD voltage	
12-bit interval timer	LED lighting control	

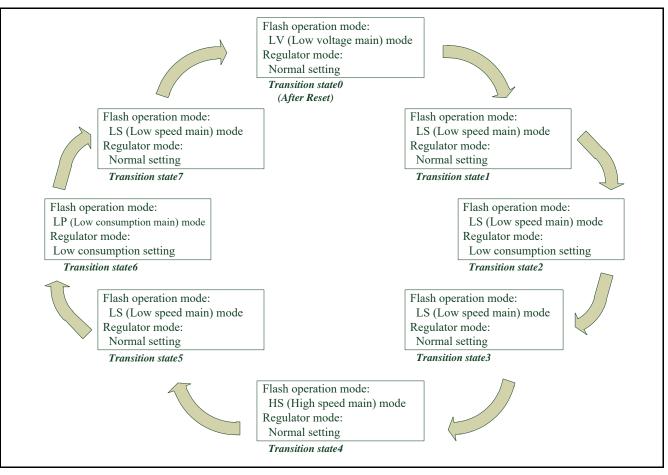


Figure 1.1 Operation state transition sequence order

2. Operation condition confirmation

The sample code of this application note confirms operation at the conditions stated below.

Item	Content
MCU	RL78/I1D (R5F117GC)
Operating frequency	·High-speed on-chip oscillator (HOCO) clock: 16 MHz, 8MHz, 4 MHz
	·Middle-speed on-chip oscillator (MOCO) clock: 4MHz, 1MHz
	·Low-speed on chip oscillator clock: 15KHz
	·CPU/peripheral hardware clock: 16MHz, 8MHz, 4MHz, 1 MHz
Operation voltage	3.0 V (operable at 1.6V-3.6V).
	LVD operation (V _{LVD}): LVD off
Integrated development	IAR Embedded Workbench for Renesas RL78 V2.21.2
environment	
C compiler	IAR C/C++ Compiler for Renesas RL78 V2.21.1.1833

3. Hardware explanation

3.1. Example of hardware structure

Figure 3.1 shows an example of the hard structure used in the application note

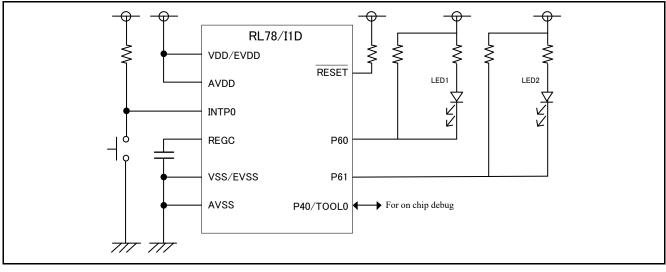


Figure 3.1 Hardware structure

Note: It is the circuit image and shows the simplified outline of the connection. Please design to do the pin processing etc. appropriately, and to meet with the electrical characteristics when the circuit is actually designed (Please connect the input only port to VDD or VSS through a resistor individually).

3.2. Used pin list

Table 3.1 shows the used pin and function.

Pin name	I/O	Content
P60	Output	LED1 turning on control
P61	Output	LED2 turning on control
P137/INTP0	Input	Operation state switching

4. Software explanation

4.1. Outline of operation

In this sample code, the operation state of RL78/I1D is switched by the button pressing (INTP0 interrupt generation). There are 8 kinds of operation states with combination of the flash operation mode and the regulator mode. After 8-time external interrupt INTO0 generations, it returns back to the state same as after reset. The operation state is displayed by the combination of turning on, turning off, and blinking LED. The fixed periodical interrupt processing triggered by the 12-bit interval timer updates the LED display. The transition to HS (high speed main) mode is executed when the VDD voltage is 2.4V or more. In the case of VDD below 2.4V, the transition to the HS mode is not executed. LED is blinked to inform the error.

Table 4.1 shows operation state detail and operation state transition.

Transition state	State	LED1	LED2	Operation clock	Range of operation voltage	Status of the next transition
0 (after reset)	LV mode	Turning off	Turning on	HOCO: 4MHz	1.6V~3.6V	1
1	LS mode (Normal setting)	Turning on	Turning off	HOCO: 8MHz	1.8V~3.6V	2
2	LS mode (low consumption setting)	High-speed blinking	Turning off	MOCO: 4MHz	1.8V~3.6V	3
3	LS mode (Normal setting)	Turning on	Turning off	HOCO: 8MHz	1.8V~3.6V	4 or 4-Error
4	HS mode	Turning on	Turning on	HOCO: 16MHz	2.4V~3.6V	5
4-Error	LS mode (Normal setting)	Super-high-speed blinking	Super-high-speed blinking	HOCO: 8MHz	1.8V~3.6V	5
5	LS mode (Normal setting)	Turning on	Turning off	HOCO: 8MHz	1.8V~3.6V	6
6	LP mode	Low-speed blinking	Turning off	MOCO: 1MHz	1.8V~3.6V	7
7	LS mode (Normal setting)	Turning on	Turning off	HOCO: 8MHz	1.8V~3.6V	0

 Table 4.1
 Operation state detail and operation state transition

4.2. Setting of option byte

Table 4.2 shows the setting of option byte. Please set the appropriate value to fit the different system.

		-18
Address	Set value	Content
000C0H/010C0H	11101111B	Watch dog timer operation stop
		(count stop after reset)
000C1H/010C1H	11111111B	LVD off
000C2H/010C2H	00101011B	LV mode, High-speed on-chip oscillator : 4MHz
000C3H/010C3H	10000100B	On chip debug enable

Table 4.2Optional byte setting

4.3. List of Constants

Table 4.3 lists the constants that are used in the sample program.

Constant	Setting	Description
_00_TRANSITION_STATUS_0	00H	Transition status 0
_01_TRANSITION_STATUS_1	01H	Transition status 1
_02_TRANSITION_STATUS_2	02H	Transition status 2
_03_TRANSITION_STATUS_3	03H	Transition status 3
_04_TRANSITION_STATUS_4	04H	Transition status 4
_05_TRANSITION_STATUS_5	05H	Transition status 5
_06_TRANSITION_STATUS_6	06H	Transition status 6
_07_TRANSITION_STATUS_7	07H	Transition status 7
_00_FLASHMODE_LV	00H	LED control status (LV mode)
_01_FLASHMODE_LS_0	01H	LED control status (LS(normal) mode)
_02_FLASHMODE_LS_1	02H	LED control status (LS (low consumption) mode)
_04_FLASHMODE_HS	04H	LED control status (HS mode)
_08_FLASHMODE_LP	08H	LED control status (LP mode)
_10_FLASHMODE_HS_ERROR	10H	LED control status (HS error mode)

Table 4.3Constants for the Sample Program

4.4. List of Variable

Table 4.4 lists the global variable that is used by this sample program.

Туре	Variable identifier	Content	Use function
uint16_t	g_flash_mode	State variable of flash operation mode	r_it_interrupt, switch_flashmode_to_LV, switch_flashmode_to_LS_0, switch_flashmode_to_LS_1, switch_flashmode_to_HS, switch_flashmode_to_LP,
uint16_t	g_transition_status	Transition state variable	r_intc0_interrupt
uint16_t	g_ad_result	Value of A/D conversion result	switch_flashmode_to_HS, r_adc_interrupt
uint16_t	g_ad_busy	A/D conversion completion flag	r_adc_interrupt, switch_flashmode_to_HS

Table 4.4	Global	variable

4.5. Function list

Table 4.5 shows the function list.

Function name	Outline
R_MAIN_UserInit	The main user initialization
R_INTC0_Start	INTP0 interrupt enable processing
R_IT_Start	12-bit interval timer start processing
R_PCLBUZ1_Start	Clock output start processing
R_ADC_Start	A/D conversion operation start processing
R_ADC_Stop	A/D converter stop processing
switch_flashmode_to_LV	The flash operation state is switched to the LV mode.
switch_flashmode_to_LS_0	The flash operation state is switched to the LS (normal) mode.
switch_flashmode_to_LS_1	The flash operation state is switched to the LS (low consumption) mode.
switch_flashmode_to_HS	The flash operation state is switched to the HS mode.
switch_flashmode_to_LP	The flash operation state is switched to the LP mode.
switch_flashmode_to_LV_M	The flash operation state is switched to the LV mode(MOCO).
r_adc_interrupt	A/D conversion complete interrupt processing
R_ADC_Result	A/D conversion result acquisition process
r_intc0_interrupt	External interrupt processing
r_it_interrupt	12-bit interval timer interrupt processing

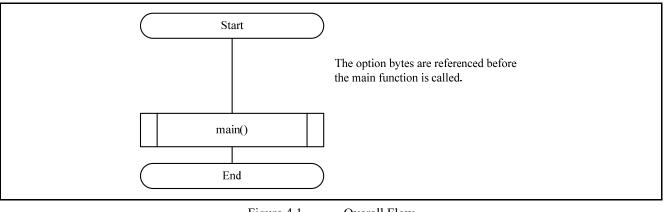
Table 4.5	Function
1 4010 4.5	1 unouon

4.6. Function specification

Below shows the function specification of the sample code.

R_MAIN_UserInit	
Outline	The main user initialization.
Header	r_cg_macrodriver.h, r_cg_userdefine.h, r_cg_intc.h, r_cg_it.h, r_cg_pclbuz.h
Declaration	void R_MAIN_UserInit(void)
Explanation	Performs initialization necessary to the operation of the application.
Parameter	None
Return value	None
R_INTC0_Start	
Outline	INTP0 interrupt enable processing.
Header	r cg macrodriver.h, r cg userdefine.h, r cg intc.h
Declaration	void R INTC0 Start(void)
Explanation	After clearing the INTP0 interrupt request flag of, it will allow the interrupt.
Parameter	None
Return value	None
R IT Start	
Outline	12-bit interval timer start processing.
Header	r_cg_macrodriver.h, r_cg_userdefine.h, r_cg_it.h
Declaration	void R_IT_Start(void)
Explanation	Start the count operation of the 12-bit interval timer.
Parameter	None
Return value	None
R PCLBUZ1 Start	
Outline	Clock output start processing.
Header	r_cg_macrodriver.h, r_cg_userdefine.h, r_cg_pclbuz.h
Declaration	void R_PCLBUZ1_Start(void)
Explanation	Start the clock count operation.
Parameter	None
Return value	None
R ADC Start	
Outline	A/D conversion operation start processing.
Header	r cg macrodriver.h, r cg userdefine.h, r cg adc.h
Declaration	void R ADC Start(void)
Declaration Explanation Parameter	Start the A/D conversion operation.

R_ADC_Stop	
Outline	A/D converter stop processing.
Header	r_cg_macrodriver.h, r_cg_userdefine.h, r_cg_adc.h
Declaration	void R_ADC_Stop(void)
Explanation	Stop the A/D conver operation.
Parameter	None
Return value	None
switch_flashstatemode	e_to_LV
Outline	The flash operation state is switched to the LV mode.
Header	r cg intc.h
Declaration	void switch_flashmode_to_LV(void)
Explanation	The flash operation state is switched to the LV mode.
Parameter	None
Return value	None
switch_flashmode_to	_LS_0
Outline	The flash operation state is switched to LS (normal) mode.
Header	r_cg_intc.h
Declaration	void switch_flashmode_to_LS_0(void)
Explanation	The flash operation state is switched to LS (normal) mode.
Parameter	None
Return value	None
switch_flashmode_to	_LS_1
Outline	The flash operation state is switched to LS (low consumption) mode.
Header	r_cg_intc.h
Declaration	void switch flashmode to LS_1(void)
Explanation	The flash operation state is switched to LS (low consumption) mode.
Parameter	None
Return value	None
switch_flashmode_to	HS
	The flash operation state is switched to the HS mode.
Outline	· . 1
Outline Header	r_cg_intc.h
	r_cg_intc.h void switch_flashmode_to_HS(void)
Header	_ •_
Header Declaration	void switch_flashmode_to_HS(void)

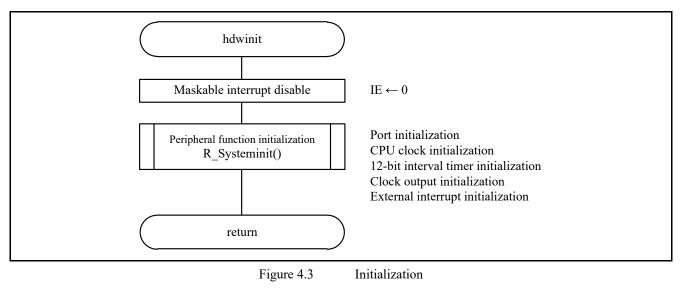

switch_flashmode_to	
Outline	The flash operation state is switched to the LP mode.
Header	r_cg_intc.h
Declaration	void switch_flashmode_to_LP(void)
Explanation	The flash operation state is switched to the LP mode.
Parameter	None
Return value	None
switch_flashstatemod	e_to_LV_M
Outline	The flash operation state is switched to the LV mode(MOCO).
Header	r_cg_intc.h
Declaration	void switch flashmode to LV M(void)
Explanation	The flash operation state is switched to the LV mode. Set the CPU clock to the Middle-speed on-chip oscillator.
Parameter	None
Return value	None
r_adc_interrupt	
Outline	A/D conversion complete interrupt processing
Header	r_cg_macrodriver.h, r_cg_userdefine.h, r_cg_adc.h
Declaration	interrupt static void r_adc_interrupt(void)
Explanation	A/D function is stopped, and the result of A/D conversion is stored in RAM area.
Parameter	None
Return value	None
R_ADC_Result	
Outline	A/D conversion result acquisition process
Header	r_cg_macrodriver.h, r_cg_userdefine.h, r_cg_adc.h
Declaration	None
Explanation	Store the results of A/D conversion in the RAM area.
Parameter	None
Return value	None
r intc0 interrupt	
Outline	External interrupt processing
Header	r cg macrodriver.h, r cg userdefine.h, r cg intc.h
	interrupt static void r intc0 interrupt(void)
Declaration	
	Pushing button calls this function where operation state switching is executed.
Declaration Explanation Parameter	Pushing button calls this function where operation state switching is executed. None

r_it_interrupt	
Outline	12-bit interval timer interrupt processing
Header	r_cg_macrodriver.h、r_cg_userdefine.h、r_cg_intc.h、r_cg_intp.h
Declaration	interrupt static void r_it_interrupt(void)
Explanation	LED state is updated according to the state of operation state.
Parameter	None
Return value	None

4.7. Flow chart

Figure 4.1 shows the whole flowchart.

4.7.1. The main processing


Figure 4.2 shows the flowchart of main processing.

4.7.2. Initialization

Figure 4.3 shows the flowchart of initialization flow chart.

4.7.3. Peripheral function Initialization

Figure 4.4 shows the flowchart of peripheral function initialization.

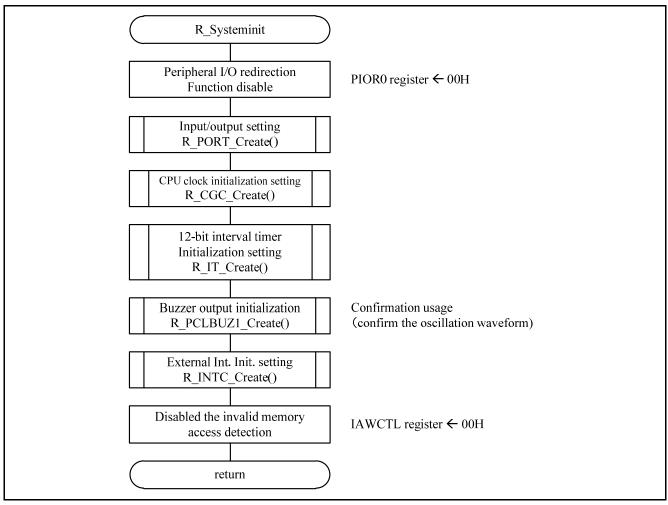
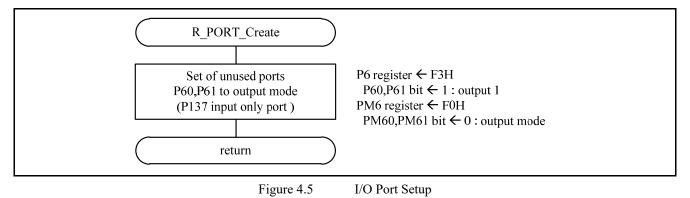



Figure 4.4 Peripheral function initialization

4.7.4. I/O Port Setup

Figure 4.5 shows the flowchart of I/O Port Setup.

Caution: Provide proper treatment for unused pins so that their electrical specifications are observed. Connect each of any unused input-only ports to V_{DD} or V_{SS} via a separate resistor.

Setting up the LED1-LED2 pin

- Port register (P6)
- Port mode register (PM6)

Select I/O mode and output level of each port for LED1,LED2 Symbol: PM6

7	6	5	4	3	2	1	0
0	0	0	0	P63	P62	P61	P60
0	0	0	0	0	0	1	1

Bit 1

P61	P61 I/O mode selection
0	Output 0
1	Output 1

Bit 0

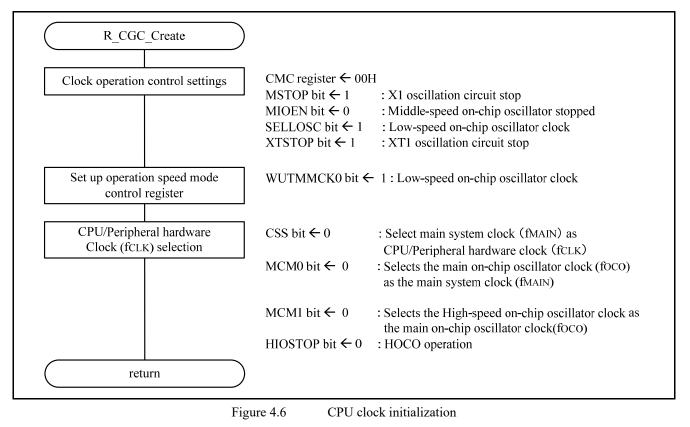
P60	P60 I/O mode selection
0	Output 0
1	Output 1

Symbol: PM6

7	6	5	4	3	2	1	0
1	1	1	1	PM63	PM62	PM61	PM60
1	1	1	1	0	0	0	0

Bit 1

PM61	PM61 I/O mode selection				
0	Output mode (output buffer on)				
1	Input mode (output buffer off)				


Bit 0

PM60	PM60 I/O mode selection			
0	Output mode (output buffer on)			
1	Input mode (output buffer off)			

Caution: For details on the register setup procedures, refer to RL78/I1D User's Manual: Hardware.

4.7.5. CPU clock initialization

Figure 4.6 shows the flowchart of CPU clock initialization.

Note: Refer to RL78/G13 (R01AN2575J) application note for CPU clock setting (R_CGC_Create()).

Setting up the clock operation mode

• Clock operation mode control register (CMC) High-speed system clock pin operation mode: Input port mode Subsystem clock pin operation mode: Input port mode

Symbol: CMC

7	6	5	4	3	2	1	0
EXCLK	OSCSEL	EXCLKS	OSCSELS	0	AMPHS1	AMPHS0	AMPH
0	0	0	0	0	0	0	0

Bits 7 and 6

EXCLK	OSCSEL	High-speed system clock pin operation mode X1/P121 pin		X2/EXCLK/P122 pin	
0	0	Input port mode	Input port		
0	1	X1 oscillation mode	Crystal/ceramic resonator connection		
1	0	Input port mode	Input port		
1	1	External clock input mode	Input port External clock input		

Bits 5 and 4

EXCLKS	OSCSELS	Subsystem clock pin operation modeXT1/P123 pinXT2		XT2/EXCLKS/P124 pin	
0	0	Input port mode	Input port		
0	1	XT1 oscillation mode	Crystal resonator connection		
1	0	Input port mode	Input port		
1	1	External clock input mode	Input port External clock input		

Caution: For details on the register setup procedures, refer to RL78/I1D User's Manual: Hardware.

Controlling the operation of the clocks

• Clock operation status control register (CSC) High-speed system clock operation control: Stopped Subsystem clock operation control: Stopped High-speed on-chip oscillator clock operation control: Operating

Symbol: CSC

7	6	5	4	3	2	1	0
MSTOP	XTSTOP	0	0	0	0	MIOEN	HIOSTOP
1	1	0	0	0	0	0	0

Bit 7

	High-speed system clock operation control					
MSTOP	X1 oscillation mode	External clock input mode	Input port mode			
0	X1 oscillator operating	External clock from EXCLK pin is valid	I			
1	X1 oscillator stopped	External clock from EXCLK pin is invalid	Input port			

Bit 6

	Subsystem clock operation control					
XTSTOP	X1 oscillation mode	X1 oscillation mode External clock input mode				
0	X1 oscillator operating	External clock from EXCLKS pin is valid	Turnet us of			
1		External clock from EXCLKS pin is invalid	Input port			

Bit 1

MIOEN	High-speed on-chip oscillator clock operation control			
0	High-speed on-chip oscillator operating			
1	High-speed on-chip oscillator stopped			

Bit 0

HIOSTOP	High-speed on-chip oscillator clock operation control			
0	High-speed on-chip oscillator operating			
1	High-speed on-chip oscillator stopped			

Caution: For details on the register setup procedures, refer to RL78/I1D User's Manual: Hardware.

Subsystem clock select

Subsystem clock select register (CKSEL)
 Select the sub clock or low-speed on-chip oscillator clock
 : low-speed on-chip oscillator clock

Symbol: CKSEL

7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	SELLOSC
0	0	0	0	0	0	0	1

Bit 0

•

SELLOSC	Selection of sub clock/low-speed on-chip oscillator clock
0	Sub clock
1	Low-speed on-chip oscillator clock

Controlling the operation speed mode

- Operation speed mode control register (OSMC)
 - Setting in STOP mode or HALT mode while subsystem clock is selected as CPU clock : Enable supply of subsystem clock to peripheral functions.
 - Operating clock for the real-time clock and 12-bit interval timer
 - : Low-speed on-chip oscillator clock

Symbol: OSMC

7	6	5	4	3	2	1	0
RTCLPC	0	0	WUTMM	0	0	0	0
			CK0				
0	0	0	1	0	0	0	0

Bit 7

RTCLPC	RTCLPC Setting in STOP mode or HALT mode while subsystem clock is selected as Clock			
0	Enables supply of subsystem clock to peripheral functions			
1	Stops supply of subsystem clock to peripheral functions other than real-time clock and 12-bit interval timer			

Bit 4

WUTMMCK 0	Selection of operation clock for real-time clock and 12-bit interval timer
0	Subsystem clock
1	Low-speed on-chip oscillator clock

Caution: The OSMC register is intended to be used to reduce power consumption by reducing the operating current of the device in the STOP and HALT modes while the subsystem clock is selected as CPU clock. For details on the register setup procedures, refer to RL78/I1D User's Manual: Hardware.

Setting up the CPU/peripheral hardware clock (f_{CLK})

• System clock control register (CKC) f_{CLK} initial value: High-speed on-chip oscillator clock (f_{IH})

Symbol: CKC

7	6	5	4	3	2	1	0
CLS	CSS	MCS	MCM0	0	0	MCS1	MCM1
0	0	0	0	0	0	0	0

Bit 6

CSS	Selection of CPU/peripheral hardware clock (f _{CLK})
0	Main system clock (f _{MAIN})
1	Subsystem clock (f _{SUB})

Bit 4

MCM0	Main system clock (f _{MAIN}) operation control				
	Selects the high-speed on-chip oscillator clock (f_{IH}) as the main system clock (f_{MAIN})				
1	Selects the high-speed system clock (f_{MX}) as the main system clock (f_{MAIN}).				

Bit 0

MCM1	Main system clock (f _{MAIN}) operation control
0	High-speed on-chip oscillator clock
1	Middle-speed on-chip oscillator clock

Caution: For details on the register setup procedures, refer to RL78/I1D User's Manual: Hardware.

4.7.6. 12-bit interval timer initialization

Figure 4.7 shows the flowchart of 12-bit interval timer initialization.

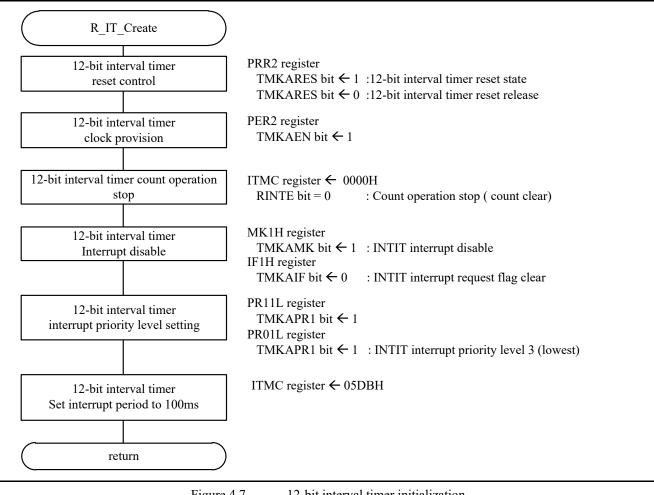
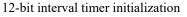



Figure 4.7

4.7.7. Clock output initialization

Figure 4.8 shows the flowchart of clock output initialization.

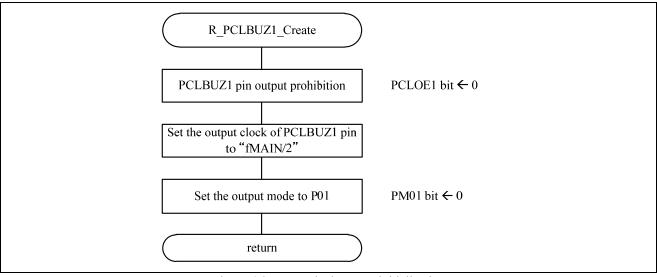
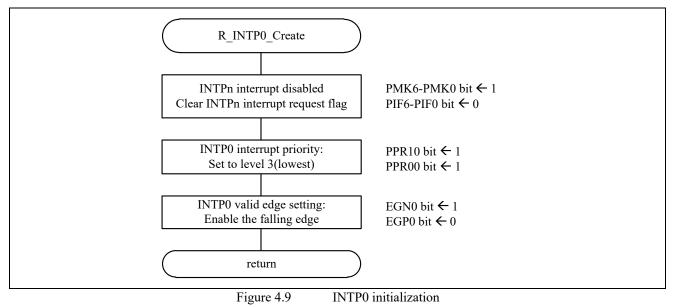



Figure 4.8 clock output initialization

4.7.8. INTP0 initialization

Figure 4.9 shows the flowchart of INTP0 initialization.

4.7.9. The main user initialization

Figure 4.10 shows the flowchart of the main user initialization.

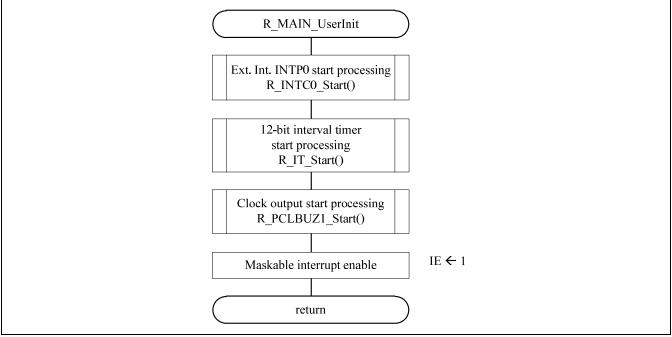


Figure 4.10 The main user initialization

4.7.10. INTP0 interrupt enable processing

Figure 4.11 shows the flowchart of INTP0 interrupt enable processing.

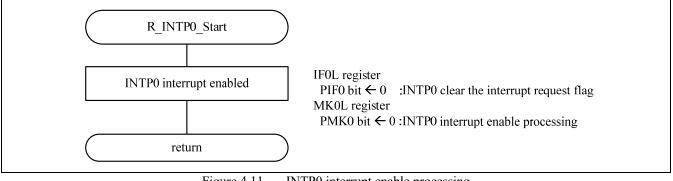


Figure 4.11 INTP0 interrupt enable processing

4.7.11. 12-bit interval timer start processing

Figure 4.12 shows the flowchart of 12-bit interval timer start processing.

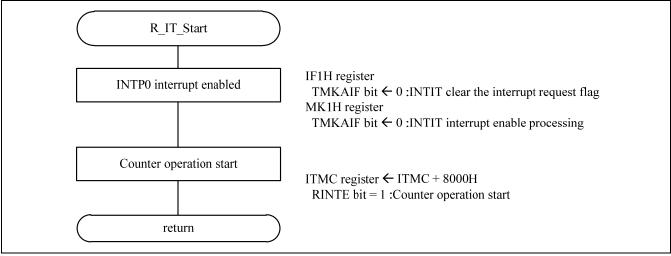
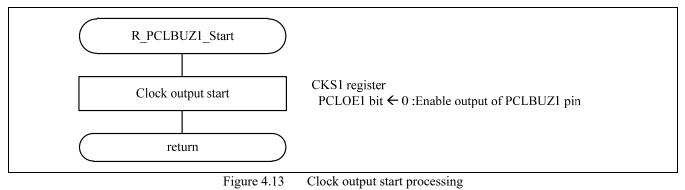



Figure 4.12 12-bit interval timer start processing

4.7.12. Clock output start processing

Figure 4.13 shows the flowchart of clock output start processing.

4.7.13. Flash operation mode switching (LV) processing

Figure 4.14 shows the flowchart of the flash operation mode switching (LV) processing.

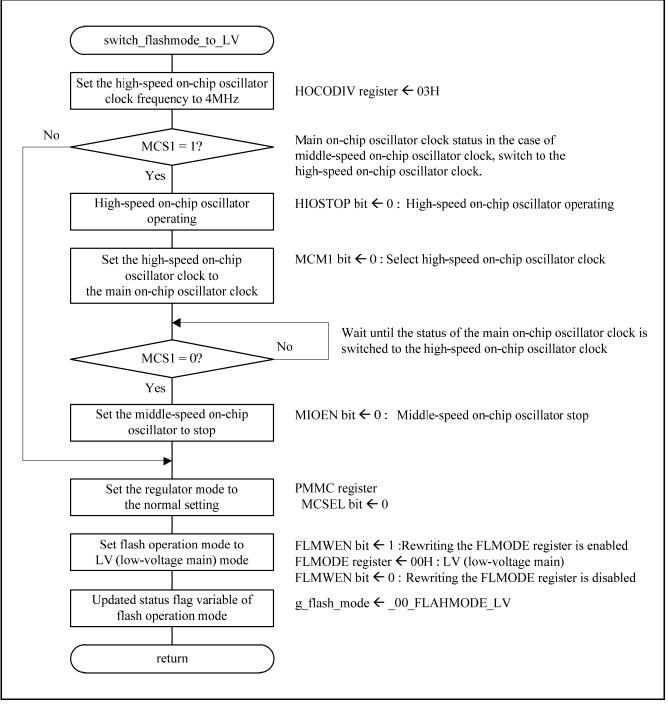


Figure 4.14 Flash operation switching (LV) processing

Regulator mode control

• Regulator mode control register (PMMC) Regulator mode control : Normal setting

Symbol: PMMC

7	6	5	4	3	2	1	0
0	MCSEL	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Bit 6

MCSEL	Control of regulator mode
0	Normal setting
1	Low-power consumption setting

Access control to the flash operation mode select register

- Flash operating mode protect register (FLMWRP) Control of the flash operation mode select register
- : Rewriting the FLMODE register is enabled

Symbol: FLMWRP

7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	FLMWEN
0	0	0	0	0	0	0	1

Bit 0

FLMWEN	Control of regulator mode			
0	Rewriting the FLMODE register is disabled			
1	Rewriting the FLMODE register is enabled			

Caution: For details on the register setup procedures, refer to RL78/I1D User's Manual: Hardware.

4.7.14. Flash operation mode switching (LS normal) processing

Figure 4.15, Figure 4.16 shows the flowchart of the flash operation mode switching (LS normal).

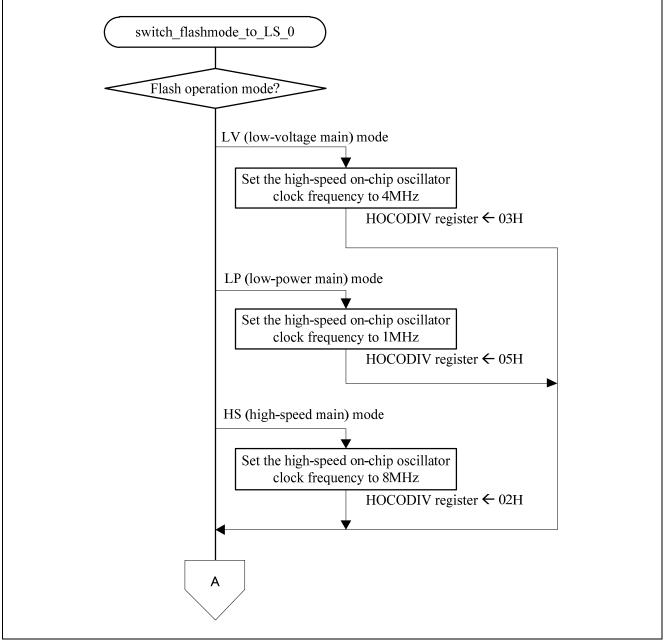


Figure 4.15 Flash operation mode switching (LS normal) processing(1/2)

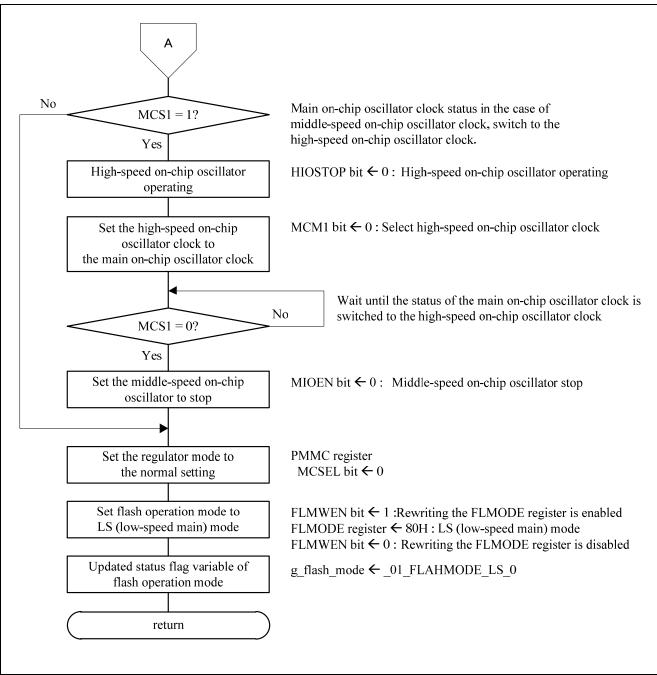


Figure 4.16 Flash operation mode switching (LS normal) processing(2/2)

4.7.15. Flash operation mode switching (LS low consumption) processing

Figure 4.17 shows the flowchart of the flash operation mode switching (LS low consumption) processing.

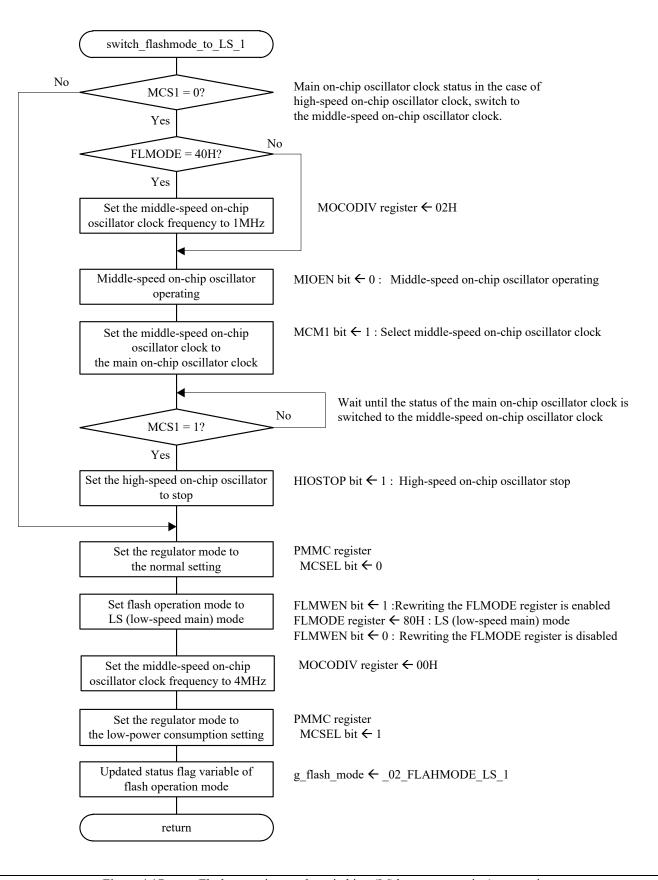


Figure 4.17

4.17 Flash operation mode switching (LS low consumption) processing

4.7.16. Flash operation mode switching (HS) processing

Figure 4.18, Figure 4.19 shows the flowchart of the flash operation mode switching (HS) processing.

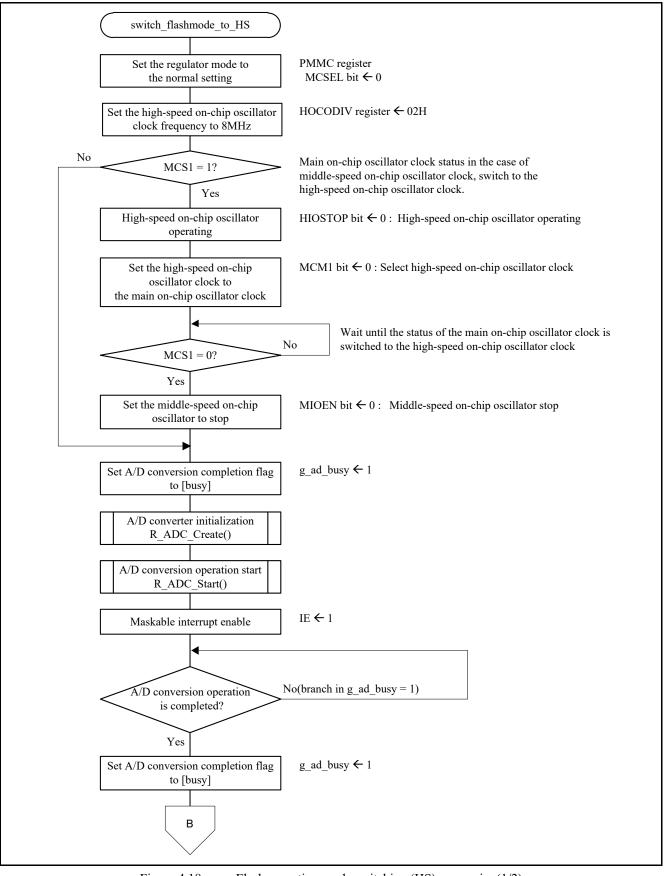


Figure 4.18 Flash operation mode switching (HS) processing(1/2)

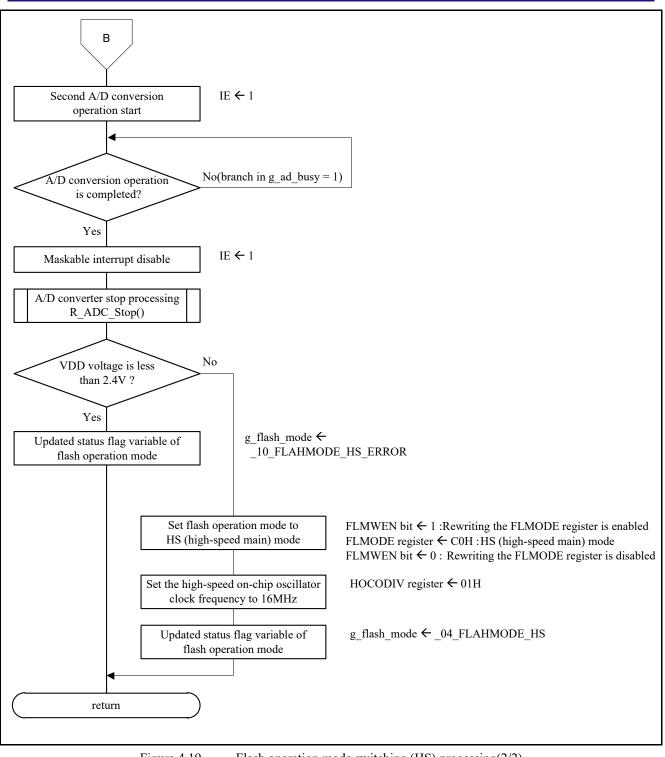


Figure 4.19 F

Flash operation mode switching (HS) processing(2/2)

4.7.17. A/D converter initialization

Figure 4.20 shows the flowchart of A/D converter initialization.

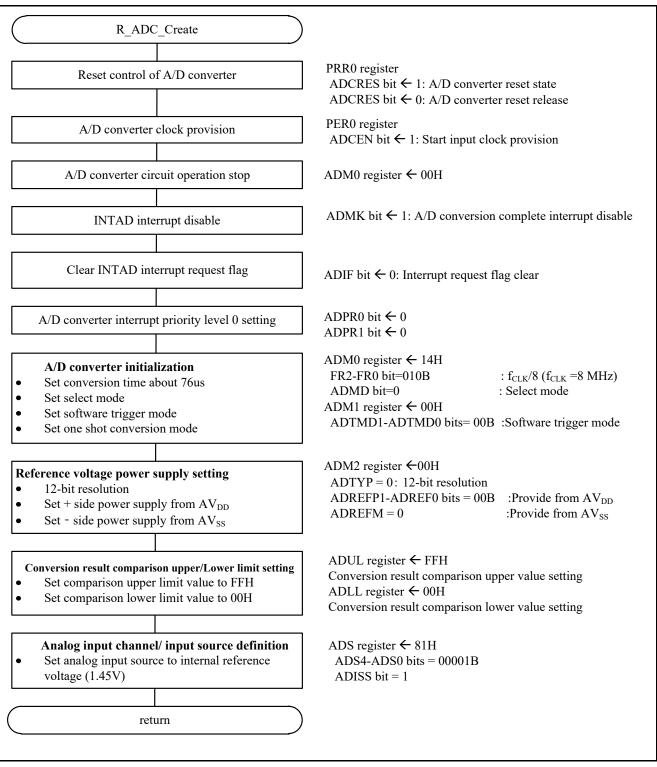


Figure 4.20 A/D converter initialization

4.7.18. A/D conversion operation start processing

Figure 4.21 shows the flowchart of A/D converter initialization.

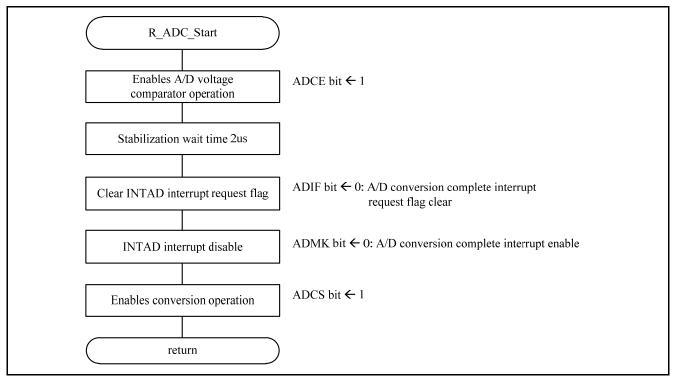


Figure 4.21 A/D conversion operation start processing

4.7.19. A/D converter stop processing

Figure 4.22 shows the flowchart of A/D converter initialization.

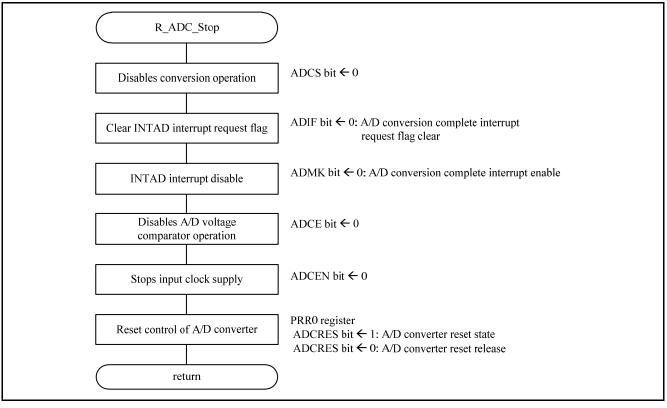
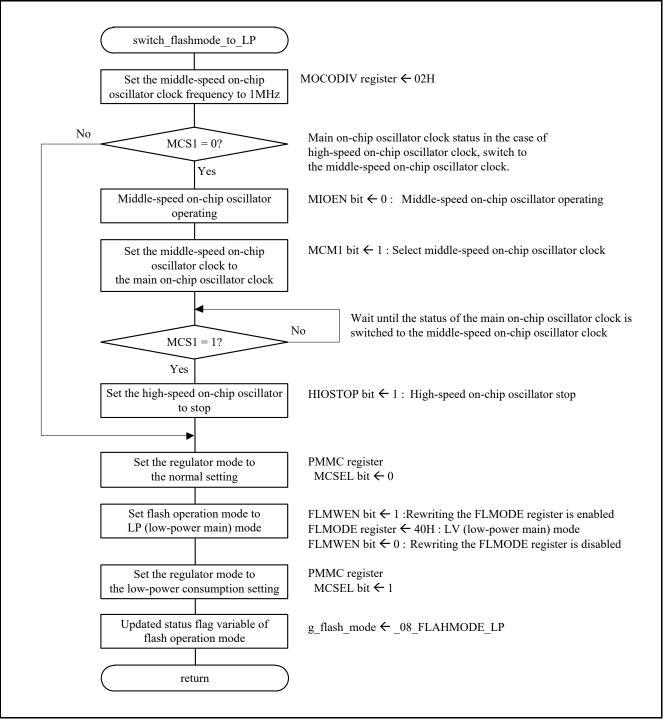
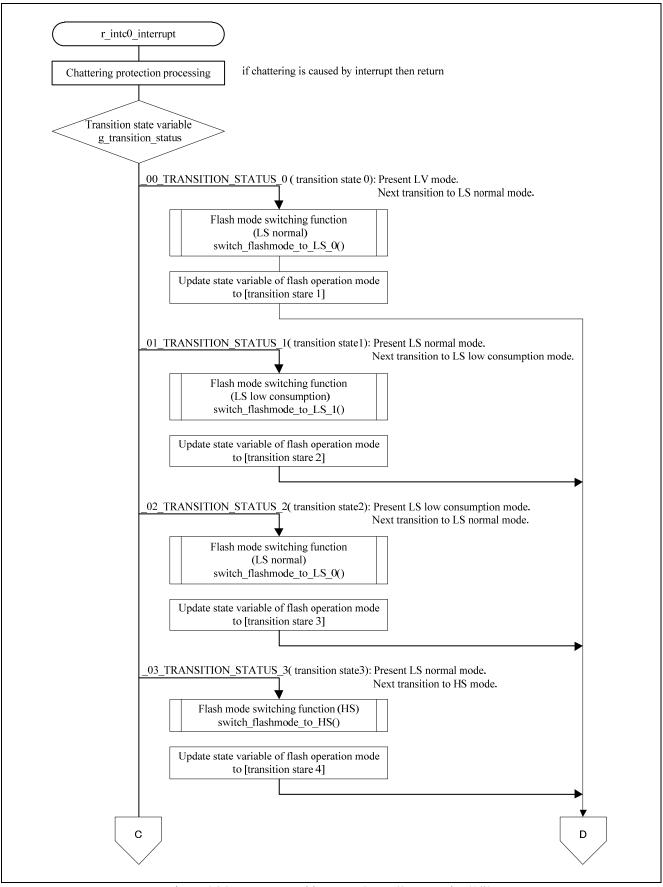
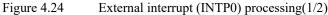


Figure 4.22 A/D converter stop processing

4.7.20. Flash operation mode switching (LP) processing

Figure 4.23 shows the flowchart of the flash operation mode switching (LP) processing.


Figure 4.23

Flash operation mode switching (LP normal) processing

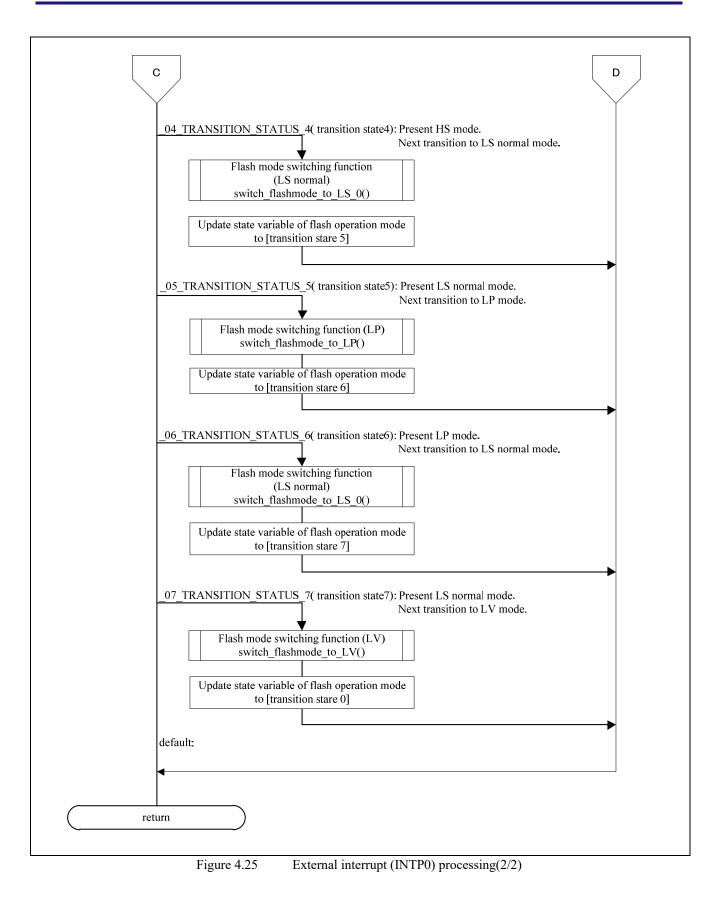
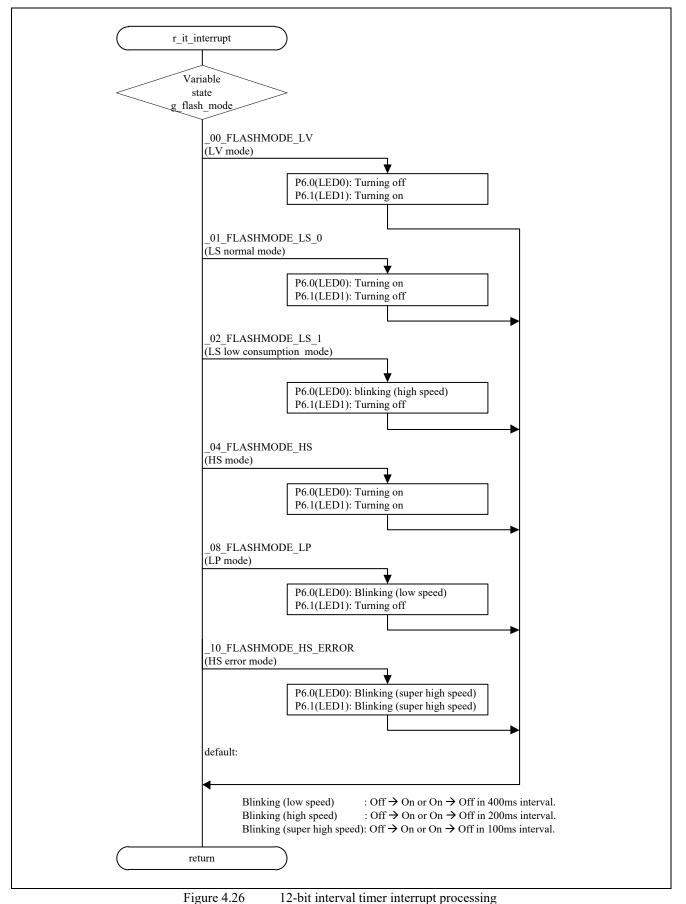

4.7.21. External interruption (INTP0) processing

Figure 4.24, Figure 4.25 shows the flowchart of the external interruption (INTP0) processing.



4.7.22. 12-bit interval timer interrupt processing

Figure 4.26 shows the flowchart of the 12-bit interval timer interrupt processing.

4.7.23. A/D conversion complete interrupt processing

Figure 4.27 shows the flowchart of the A/D conversion complete interrupt processing.

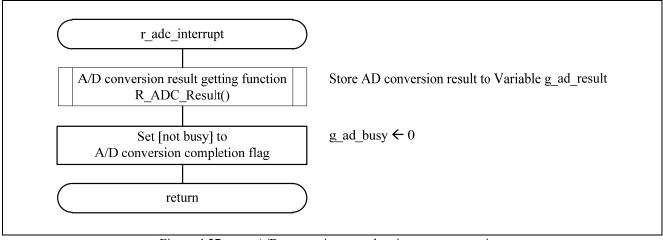
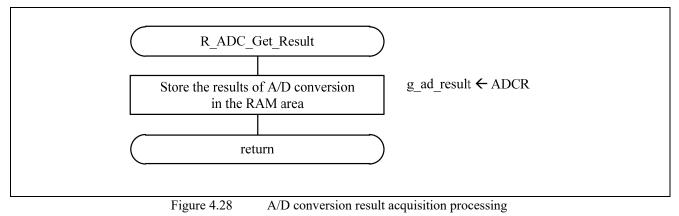



Figure 4.27 A/D conversion complete interrupt processing

4.7.24. A/D conversion result acquisition process

Figure 4.28 shows the flowchart of the A/D conversion result acquisition processing.

5. Power supply current measurement of the flash operating modes

The application note, there is a power supply current measurement mode. Please enable "#define _CURRENT_EVALUATION_MODE_" (r_cg_userdefine.h).

Power supply current measurement mode operates only the main system clock. All peripheral functions is stoped. Power supply current measurement mode can measure the HALT mode.

The operation of the power supply current measurement mode

RL78/I1D operation state is switched by a button is pressed (INTP0 interrupt generation).

Wait for the button press (INTP0 interrupt generation) in HALT mode.

All peripheral functions other than the main system clock is stopped.

Table 5.1 is describe the details and transition of power supply current measurement mode.

Transition state	State	Operation clock	Range of operation voltage	Status of the next transition
0	LV mode	HOCO: 4MHz	1.6V~3.6V	1
(after reset)				
1	LV mode	MOCO: 4MHz	1.8V~3.6V	2
2	LS mode	MOCO: 4MHz	1.8V~3.6V	3
	(low consumption setting)			
3	LS mode	HOCO: 8MHz	1.8V~3.6V	4 or
	(Normal setting)			4-Error
4	HS mode	HOCO: 16MHz	2.4V~3.6V	5
4-Error	LS mode	HOCO: 8MHz	1.8V~3.6V	5
	(Normal setting)			
5	LS mode	HOCO: 8MHz	1.8V~3.6V	6
	(Normal setting)			
6	LP mode	MOCO: 1MHz	1.8V~3.6V	7
7	LS mode	HOCO: 8MHz	1.8V~3.6V	0
	(Normal setting)			

Table 5.1Details and transition of power supply current measurement mode

Hardware configuration of the power supply current measurement mode

Power supply current measurement mode sets the digital input/output pin to the low-level output(P40/TOOL0 pin input setting). For this reason, please digital input/output pin is open.

If LED1 and LED2 are connected, because the current flows to the P60 pin and P61 pin, please check the power supply current by subtracting the amount of current.

6. Sample code

Please get the sample code from Renesas Electronics homepage.

7. Reference document

RL78/I1D User's Manual: Hardware (R01UH0474E) RL78 family user's manual software (R01US0015E) (Please get the latest version from Renesas Electronics homepage.)

Technical update (Please acquire latest information from Renesas Electronics homepage.)

Website and support

Renesas Electronics Website <u>http://japan.renesas.com</u>

Inquiries

http://japan.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

modification record

RL78/I1D Operation state switching IAR

Rev.	Date	Revision			
Kev.		Page	Summary		
1.00	Jan. 31, 2017	_	First Edition		

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the manual.

- ³⁄₄ The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- ³⁄₄ The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.
- 3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- ³⁄₄ The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm that the change will not lead to problems.

³⁄₄ The characteristics of Microprocessing unit or Microcontroller unit products in the same group but having a different part number may differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries. (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

RENESAS

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

 California Eastern Laboratories, Inc.

 4590 Patrick Henry Drive, Santa Clara, California 95054-1817, U.S.A.

 Tei: +1-408-919-2500, Fax: +1-408-988-0279

 Renessa Electronics Europe Limited

 Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K

 Tei: +4-40.528-585-100, Fax: +44-1628-585-900

 Renessa Electronics Europe GmbH

 Arcadiastrasse 10, 40472 Disseldorf, Germany

 Tei: +49-211-6503-0, Fax: +49-211-6503-1327

 Renessa Electronics (Shina) Co., Ltd.

 Ronessa Electronics (Shanghai) Co., Ltd.

 Ronessa Electronics (Shanghai) Co., Ltd.

 Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333

 Tei: +86-10-2226-0889, Fax: +662-12226-0899

 Renessa Electronics Hong Kong Limited

 Unit 301, Tower A, Gentral Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333

 Tei: +862-226-0889, Fax: +662-12220-0899

 Renessa Electronics Hong Kong Limited

 Unit 101-11, 10F, Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong

 Tei: +862-28175-9600, Fax: +882-28175-9670

 Renessa Electronics Singapore Pte. Ltd.

 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949

 Tei: +56-213-0200, Fax: +686-212-0300

 Renessa Electronics Malaysia Sdn.B