RENESAS TECHNICAL UPDATE

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061 Japan

Renesas Electronics Corporation Inquiry http://japan.renesas.com/contact/

E-mail: csc@renesas.com

Product Category	MPU & MCU	Document No.	TN-RL*-A025C/E	Rev.	3.00	
Title	RL78/G14 Restriction		Information Category	Technical Notification		
		Lot No				
Applicable Products	RL78/G14 Family R5F104xx	All lot	Reference Document	RL78/G14 User's Manu Rev.3.20 R01UH0186EJ0320 (Ja	al: Hardv ın. 2015)	vare

List of Restrictions to be added in this notification

Item	Restrictions that are added in this notification.	Products.	Corresponding page
1.1	Restriction on Setting of P6x ($x = 0$ to 3)	All	p.2

List of Restrictions of notified

Item	Restrictions of notified.	Products.	Corresponding page
2.1	Restriction of the division instruction (DIVHU, DIVWU)	All	р.3-р.7
2.2	Restriction on Use of Watchdog Timer	Product of ROM capacity 96Kbyte ~ 256Kbyte	р.8-р.10

Revision History

Revision history of RL78/G14 restrictions

Document Number	Date issued	Description
TN-RL*-A025A/E	April 9, 2014	First edition issued
		List of usage restriction previously: No. 2.2
TN-RL*-A025B/E	October 6, 2014	Second edition issued
		List of usage restriction previously: No. 2.1
TN-RL*-A025C/E	December 15,2015	Third edition issued
		List of usage restriction added: No. 1.1 (this document)

1. Restriction that are added in this notification

1.1. Restriction on Setting of P6x (x = 0 to 3)

1.1.1. Restriction

[Applicable Usage]

This restriction applies when the port pins P60, P61, P62, and P63 are in use.

1.1.2. Details of the Restriction

The actual block diagram for the circuits of port pins P60, P61, P62, and P63 is shown in figure 1 below but the diagram in the user's manual is as shown in figure 2.

As shown in figure 1, the input buffer of the actual circuit is enabled even if the pin is operating as an output (the corresponding bit in port mode register 6 (PM6) is set to 0). This may lead to a shoot-through current flowing through the port pins P60, P61, P62, and P63 when the voltage levels on these pins are intermediate.

Figure 1 Correct Circuit Diagram

1.1.3. Workaround

Do not apply intermediate voltages to the port pins P60, P61, P62, and P63 regardless of the settings of the corresponding bits in register PM6.

1.1.4. Planned Action

We do not plan to modify the hardware; instead we add a restriction on usage of port pins P60, P61, P62, and P63.

We will correct the block diagram and add a cautionary note on the shoot-through current in the next revision of the user's manual.

2. Restriction notified

2.1. Restriction of the division instruction (DIVHU, DIVWU)

2.1.1. About the restriction

<Usage subject to the restriction>

If the software code applies to ALL of the four conditions below, the code is subject to the restriction.

- A divide instruction (DIVHU or DIVWU) is executed in an interrupt service routine.
 A divide instruction (DIVHU or DIVWU) is defined as Group 1 instruction.
- Multiple interrupts are enabled in the interrupt service routine in which the divide instruction (DIVHU or DIVWU) is executed.
- 3) More than one interrupts with different interrupt priorities occur during the process of the interrupt service routine mentioned in 2) above.

Please refer to Table 2.1 for the detail of the priorities of the corresponding interrupts.

4) The divide instruction (DIVHU or DIVWU) is followed by a Group 2 instruction. Please refer to Item 5. "The List of Group 2 Instruction" for the details of Group 2 instructions. Please note, that any instruction is classified as "Group 2" if the preceding divide instruction is executed in RAM.

2.1.2. Detail of the restriction

There is a possibility of unintended operation when branching from Interrupt A to Interrupt C, or branching from Interrupt C to Interrupt A.

- I. A "Group 1" instruction (DIVHU, DIVWU) and a "Group 2" instruction are consecutive in Interrupt A in which multiple interrupts are enabled.
- II. Interrupt B, whose request occurs during the process of Interrupt A, is suspended.
- III. Interrupt C is generated during the two clock cycles just before the MCU completes the execution of the divide instruction (8th or 9th cycle for DIVHU, 16th or 17th cycle for DIVWU).

(0 to 3) of the interrupts. Table 2.1 shows the combinations subject to the restriction.

Priority level of Interrupt A	Priority level of Interrupt B	Priority level of Interrupt C	Restrictions
Level 0	Level 1/ Level 2/ Level 3	Level 0	
Level 1	Level 1/ Level 2/ Level 3	Level 0	Your code could be
Level 2	Level 2/ Level 3	Level 0/ Level 1	restrictions.
Level 3	Level 3	Level 0/ Level 1/ Level 2	
	Other than above		Your code is not subject to the restrictions.

Table2.1. Combinations subject to the restriction

2.1.3. Software Workaround

Please implement one of the following software workaround.

(A) Disable interrupts during a divide or modulo operation.

Example:

```
_asm("push PSW");
```

DI();

Divide or modulo operation in C

```
_asm("pop PSW");
```

(B) Insert a NOP instruction immediately after the divide instruction.

Also, if the divide instruction (DIVHU or DIVWU) is executed in RAM, move it to code flash.

Example:	
DIVWU	; Divide instruction
NOP	; Insert a NOP instruction
RET	; Group 2 instruction

In the case of using a High-level language including C, compilers may generate the instructions subject to this restriction. In this case, take the workaround (A).

Note: In the case of Renesas compiler CA78K0, "#pragma di" should be declared in the code to use DI();

2.1.4. Permanent Measure

We will implement the software workaround into Renesas compiler CA78K0R V1.7.1.

Detail of the implementation:

CA78K0R V1.7.1 always inserts a NOP instruction immediately after each DIVWU / DIVHU instruction when building. This Implementation eliminates the need for the software workaround mentioned in Item 3. Software Workaround".^{Note}

V1.7.1 Release Schedule: November 18, 2014

Note: If a divide instruction (DIVHU or DIVWU) is executed in RAM, code modification is required.

2.1.5. List of Group2 instruction

In the case a divide instruction (DIVHU or DIVWU) is followed by an instruction of Group2, it is subject to the restriction mentioned in this report. Instructions meeting either of the following conditions (Condition 1 to 3) are belong to Group2.

Instruction	Operand	Instruction	Operand	Instruction	Operand
	A, saddr	INC	saddr	CALL	All
	A, sfr	INC	!addr16	CALLT	All
	A, !addr16	INC	[HL+byte]	BRK	-
	A, [DE]	DEC	saddr	RET	-
ХСН	A, [DE+byte]	DEC	!addr16	RETI	-
Xon	A, [HL]	DEC	[HL+byte]	RETB	-
	A. [HL+bvte]	INCW	saddrp	BR	All
	Δ [HI +B]	INCW	!addr16	BC	All
	Α, [ΠΕΤΟ]	INCW	[HL+byte]	BNC	All
	A, [HL+C]	DECW	saddrp	BZ	All
ADD	saddr, #byte	DECW	!addr16	BNZ	All
ADDC	saddr, #byte	DECW	[HL+byte]	BH	All
SUB	saddr, #byte	MOV1	saddr.bit, CY	BNH	All
SUBC	saddr, #byte	MOV1	sfr.bit, CY	BT	All
AND	saddr, #byte	MOV1	[HL].bit, CY	BF	All
OR	saddr, #byte	SET1	saddr.bit	BTCLR	All
XOR	saddr, #byte	SET1	sfr.bit	HALT	-
		SET1	!addr16.bit	STOP	-
		SET1	[HL].bit		
		CLR1	saddr.bit		
		CLR1	sfr.bit		
		CLR1	!addr16.bit		
		CLR1	[HL].bit		

Condition 1: Instruction whose execution cycles are 2 or more.

Condition 2: Instruction reading the code flash memory or the mirror area.

Instruction in the tables below reading the code flash memory or the mirror area belong to "Group 2".

-							oporaria
	A, !addr16		AX, !addr16		A, !addr16		AX, !addr16
	A, [DE]		AX, [DE]		A, [HL]		AX, [HL+byte]
	A, [DE+byte]		AX, [DE+byte]	ADD	A, [HL+byte]	ADDW	AX, ES:!addr16
	A, [HL]		AX, [HL]	ADDC	A, [HL+B]		AX, ES:
l l	A, [HL+byte]		AX, [HL+byte]	SUB	A, [HL+C]		[HL+byte]
	A, [HL+B]		AX, word[B]	AND	A, ES:!addr16		AX, !addr16
	A, [HL+C]		AX, word[C]	OR	A, ES:[HL]	SLIBW/	AX, [HL+byte]
	A, word[B]		AX, word[BC]	XOR	A, ES:[HL+byte]	30800	AX, ES: addr16
	A, word[C]		BC, !addr16		A, ES:[HL+B]		[HL+byte]
	A, word[BC]		DE, !addr16		A, ES:[HL+C]	CMPW	AX, !addr16
	B, !addr16	MOVW	HL, !addr16		A, !addr16		AX, [HL+byte]
	C, !addr16		AX, ES:!addr16		A, [HL]		AX, ES:!addr16
	X, !addr16		AX, ES:[DE]	СМР	A, [HL+byte]		AX, ES:
MOV	A, ES:laddr16		AX,		A, [HL+B]	MOV1 AND1 OR1 XOR1	
	A, ES:[DE]		ES:[DE+byte]		A, [HL+C]		CY ES [HI] bit
	A, ES:[DE+byte]		AX, ES:[HL]		A ES:laddr16		CY [HI] bit
1	A, ES:[HL]		AX,		A, ES:[HL]		CY, ES:[HL].bit
	A, ES:[HL+byte]		ES:[HL+byte]		A, ES:[HL+byte]		CY, [HL].bit
1	A, ES:[HL+B]		AX, ES:word[B]		A, ES:[HL+B]		CY, ES:[HL].bit
	A, ES:[HL+C]		AX, ES:word[C]		A, ES:[HL+C]		CY, [HL].bit
1	A. ES:word[B]		AX, ES:word(BC)		ES:laddr16,		CY, ES:[HL].bit
	A, ES:word[C]		BC ES:laddr16		#byte	вт	ES:[HL].bit,
i i i i i i i i i i i i i i i i i i i	A. ES:word[BC]		DE ES:laddr16	CMP0	ES:laddr16		\$addr20
	B, ES:laddr16		HL ES:laddr16		X, [HL+byte]	BF	\$addr20
	C, ES:laddr16		TE, EO.:addi 10	CMPS	X, ES:[HL+byte]		
	X, ES:!addr16						

(c) 2015. Renesas Electronics Corporation. All rights reserved.

Condition 3 : Instruction suspending interrupt requests.

Instruction listed in the table below, that suspend interrupt requests, belong to Group2.

Instruction	Operand
MOV	PSW, #byte
MOV	PSW, A
MOV1	PSW.bit, CY
SET1	PSW.bit
CLR1	PSW.bit
RETB	-
RETI	-
POP	PSW
BTCLR	PSW.bit,\$addr20
EI	-
DI	-
SKC	-
SKNC	-
SKZ	-
SKNZ	-
SKH	-
SKNH	-

Instruction writing to the registers below belong to Group2 since they suspend interrupt requests.

Writing to the registers below by register addressing also subjects to the condition3.

- Interrupt request flag register
 - IF0L, IF0H, IF1L, IF1H, IF2L, IF2H
- Interrupt mask flag register

MK0L, MK0H, MK1L, MK1H, MK2L, MK2H

- Priority specification flag register
- PR00L, PR00H, PR01L, PR01H, PR02L, PR02H
- PR10L, PR10H, PR11L, PR11H, PR12L, PR12H

The table below shows the instructions writing to the registers listed above.

Instruction	Operand	Instruction	Operand	Instruction	Operand
MOV	sfr. #bvte	ХСН	A, sfr	INC	!addr16
MOV	!addr16, #byte	XCH	A, !addr16	INC	[HL+byte]
MOV	sfr, A	XCH	A, [DE]	DEC	!addr16
MOV	!addr16, A	XCH	A, [DE+byte]	DEC	[HL+byte]
MOV	IDEI. A	XCH	A, [HL]	INCW	!addr16
MOV	[DE+byte], #byte	XCH	A, [HL+byte]	INCW	[HL+byte]
MOV	[DE+byte], A	XCH	A, [HL+B]	DECW	!addr16
MOV	[HL]. A	XCH	A, [HL+C]	DECW	[HL+byte]
MOV	[HL+bvte], #bvte	ONEB	!addr16	MOV1	sfr.bit, CY
MOV	[HL+bvte], A	CLRB	!addr16	MOV1	[HL].bit, CY
MOV	[HL+B]. A	MOVS	[HL+byte], X	SET1	sfr.bit
MOV	[HL+C]. A	MOVW	sfrp, #word	SET1	!addr16.bit
MOV	word[B], #byte	MOVW	sfrp, AX	SET1	[HL].bit
MOV	word[B], A	MOVW	laddr16, AX	CLR1	sfr.bit
MOV	word[C], #byte	MOVW	[DE], AX	CLR1	!addr16.bit
MOV	word[C]. A	MOVW	[DE+byte], AX	CLR1	[HL].bit
MOV	word[BC], #byte	MOVW	[HL], AX	BTCLR	sfr.bit, \$addr20
MOV	word[BC], A	MOVW	[HL+byte], AX	BTCLR	[HL].bit, \$addr20
-		MOVW	word[B], AX		
		MOVW	word[C], AX		
		MOVW	word[BC], AX		

2.2. Reatriction on Use of the Watchdog Timer

2.2.1. About the restriction

Condition:

•

The restriction on applies to the following settings:

- The overflow time of the watchdog timer is set to 2¹³/fiL, 2¹⁴/fiL, or 2¹⁶/fiL
- The watchdog timer interval interrupt is used.

User option byte (000C0H) settings

7	6	5	4	3	2	1	0
WDTINT	WINDOW1	WINDOW0	WDTON	WDCS2	WDCS1	WDCS0	WDSTBYON
WDTINT		Us	e of interval in	terrupt of wate	chdog timer		

 WDTINT
 Use of interval interrupt of watchdog timer

 1
 Interval interrupt is generated when 75% + 1/2 fi∟ of the overflow time is reached.

WDTON	Operation control of watchdog timer counter
1	Counter operation enabled (counting started after reset)

WDCS2	WDCS1	WDCS0	Watchdog timer overflow time
1	0	1	2 ¹³ /fi∟ (474.90 ms)
1	1	0	2 ¹⁴ /fi∟ (949.80 ms)
1	1	1	2 ¹⁶ /fi∟ (3799.19 ms)

Settings other than the above do not apply to the restriction.

Description:

After clearing the watchdog timer, the watchdog timer interval interrupt (INTWDTI) is unintentionally generated after one clock of the watchdog timer elapses.

2.2.2. Software Workaround

Perform the procedure below to reset the watchdog timer counter.

- (1) The WDTIMK flag ^{*1} is set to 1 before the watchdog timer counter is reset.
- (2) Reset the watchdog timer counter.
- (3) Wait at least 80 µs.
- (4) Clear the WDTIIF flag *2 to 0 and clear the WDTIMK flag *1 to 0.
- *1 : Bit 0 of interrupt mask flag register 0 (MK0L register)
- *² : Bit 0 of interrupt request flag register 0 (IF0L register)

2.2.3. Modification Schedule

This matter is considered to be a restriction. The above mentioned workaround will be added to Chapter 13 Watchdog Timer when User's Manual: Hardware Rev.3.10 is published.

2.2.4. Products Affected by This Restriction

		Products ^{Note}		
No.	Description	RL78/G14 (Code Flash Memory 16 KB to 64 KB) R5F104xA, R5F104xC, R5F104xD, R5F104xE	RL78/G14 (Code Flash Memory 96 KB to 256 KB) R5F104xF, R5F104xG, R5F104xH, R5F104xJ	
1	Restriction on Use of Watchdog Timer	Restriction not applicable	Restriction applicable	

Note. This restriction is not intended for R5F104xK and R5F104xL.

R5F104xK and R5F104xL has 384 KB to 512 KB ROM capacity.

This Note was added to the second edition.

Appendix 2-1

List of Products Affected by This Restriction

RL78/G14 (Code Flash Memory 96 KB to 256 KB)

(Product names are blank product names. The ROM number is omitted.)

(i roudet names are stank product	
30-pin LSSOP 7.62 mm (300)	R5F104AFASP, R5F104AGASP R5F104AFDSP, R5F104AGDSP
	R5F104AFGSP, R5F104AGGSP
32-pin HWQFN	R5F104BFANA, R5F104BGANA
5x5 mm	R5F104BFDNA, R5F104BGDNA
	R5F104BFGNA, R5F104BGGNA
32-pin LQFP	R5F104BFAFP R5F104BGAFP
7x7 mm	R5F104BFDFP. R5F104BGDFP
	R5F104BFGFP, R5F104BGGFP
36-nin WFLGA	R5F104CFALA R5F104CGALA
4x4 mm	R5F104CFGLA, R5F104CGGLA
40-nin HWOFN	B5F104FFANA B5F104FCANA B5F104FHANA
6x6 mm	R5F104EFANA, R5F104EGANA, R5F104EHANA
	R5F104EFGNA R5F104EGGNA R5F104EHGNA
44 min LOED	DEFICIERAND DEFICIER AFD DEFICIERAND
44 pin LQFP	KOF 104FFAFF, KOF 104FGAFF, KOF 104F HAFF, KOF 104FJAFF, DEF104FEDED DEF104FCDED DEF104FUDED DEF104FIDED
10x10 mm	R5F104FFDFF, R5F104FGDFF, R5F104FHDFF, R5F104FJDFF, R5F104FFGFP R5F104FGGFP R5F104FHGFP R5F104FJGFP
	DEFICICEAED DEFICICAED DEFICICIAED DEFICICIAED
48-pin LFQFP	R5F104GFAFB, R5F104GGAFB, R5F104GHAFB, R5F104GJAFB
/x/mm	KOF 104GFDFB, KOF 104GGDFB, KOF 104GHDFB, KOF 104GJDFB DEF104CECED DEF104CCCED DEF104CHCED DEF104CICED
	RSF104GFGFD, RSF104GGGFD, RSF104GFGFD, RSF104GJGFD
48-pin HWQFN	R5F104GFANA, R5F104GGANA, R5F104GHANA, R5F104GJANA
/x/ mm	R5F104GFDNA, R5F104GGDNA, R5F104GHDNA, R5F104GJDNA
	K5F104GFGNA, K5F104GGGNA, K5F104GHGNA, K5F104GJGNA
52-pin LQFP	R5F104JFAFA, R5F104JGAFA, R5F104JHAFA, R5F104JJAFA
10x10 mm	R5F104JFDFA, R5F104JGDFA, R5F104JHDFA, R5F104JJDFA
	R5F104JFGFA, R5F104JGGFA, R5F104JHGFA, R5F104JJGFA
64-pin LQFP	R5F104LFAFA, R5F104LGAFA, R5F104LHAFA, R5F104LJAFA
12x12 mm	R5F104LFDFA, R5F104LGDFA, R5F104LHDFA, R5F104LJDFA
	R5F104LFGFA, R5F104LGGFA, R5F104LHGFA, R5F104LJGFA
64-pin LFQFP	R5F104LFAFB, R5F104LGAFB, R5F104LHAFB, R5F104LJAFB
10x10 mm	R5F104LFDFB, R5F104LGDFB, R5F104LHDFB, R5F104LJDFB
	R5F104LFGFB, R5F104LGGFB, R5F104LHGFB, R5F104LJGFB
64-pin FLGA	R5F104LFALA, R5F104LGALA, R5F104LHALA, R5F104LJALA
5x5 mm	R5F104LFGLA, R5F104LGGLA, R5F104LHGLA, R5F104LJGLA
64-pin LQFP	R5F104LFAFP, R5F104LGAFP, R5F104LHAFP, R5F104LJAFP
14x14 mm	R5F104LFDFP, R5F104LGDFP, R5F104LHDFP, R5F104LJDFP
	R5F104LFGFP, R5F104LGGFP, R5F104LHGFP, R5F104LJGFP
80-pin LFQFP	R5F104MFAFB, R5F104MGAFB, R5F104MHAFB, R5F104MJAFB
12x12 mm	R5F104MFDFB, R5F104MGDFB, R5F104MHDFB, R5F104MJDFB
	R5F104MFGFB, R5F104MGGFB, R5F104MHGFB, R5F104MJGFB
80-pin LQFP	R5F104MFAFA, R5F104MGAFA, R5F104MHAFA, R5F104MJAFA
14x14 mm	R5F104MFDFA, R5F104MGDFA, R5F104MHDFA, R5F104MJDFA
	R5F104MFGFA, R5F104MGGFA, R5F104MHGFA, R5F104MJGFA
100-pin LFQFP	R5F104PFAFB, R5F104PGAFB, R5F104PHAFB, R5F104PJAFB
14x14 mm	R5F104PFDFB, R5F104PGDFB, R5F104PHDFB, R5F104PJDFB
	R5F104PFGFB, R5F104PGGFB, R5F104PHGFB, R5F104PJGFB
100-pin LQFP	R5F104PFAFA R5F104PGAFA R5F104PHAFA R5F104PIAFA
14x20 mm	R5F104PFDFA, R5F104PGDFA, R5F104PHDFA, R5F104PJDFA
	R5F104PFGFA, R5F104PGGFA, R5F104PHGFA, R5F104PJGFA
	, , ,

