
For M16C Series,R8C Family C compiler Package V.5.45 Release 01 Release note

R20UT0443EJ0300 Rev.3.00 Page 1 of 32
Dec. 15, 2010

===== Be sure to read this note. =====

For M16C Series,R8C Family C compiler Package
V.5.45 Release 01

Release note
(Rev.3.00)

Renesas Solutions Corporation
December 15. 2010

Abstract
Welcome to M16C Series,R8C Family C compiler Package (M3T-NC30WA) V.5.45 Release 01. This document
contains supplementary descriptions to User's Manual. When you read certain items in the User's Manual,
please read this document as well.

1. About Installation of C compiler Package ..3
2. The latest information ...3
3. Update of the C Compiler User's Manual ..3
4. Precautions on Product..3

4.1. About Integrated Development Environment TM..3
4.2. About the version of MR30(Real-time OS)..3
4.3. Suggestions Concerning File Names ...3
4.4. Precautions about virus check programs ..4
4.5. Precautions on M16C Series,R8C Family-Dependent Code ..4

4.5.1. Precautions regarding the M16C interrupt control register ..4
4.5.2. Precautions about access of SFR area..5
4.5.3. About specifying the interrupt control register ...5
4.5.4. Regarding M16C/62 4M extended mode ..5
4.5.5. Section FirmRam_NE and the Value of the SB Register when the On-Chip Debugger is Selected 6
4.5.6. When Using a M16C-Series MCU That Has a Reserved Area from FFFD8h to FFFDBh...............6

4.6. Precautions about Compiler, Assembler, Linkage Editor and Utilities ..6
4.6.1. About –Oglobal_jmp(-OGJ)...6
4.6.2. About Using Inline Functions –OLU and -OFFTI at the Same Time..7
4.6.3. About -ffar_pointer (-fFP)..7
4.6.4. Precaution for Assembler start-up files (ncrt0.a30, sect30.inc,nc_define.inc)...................................7
4.6.5. About the standard I/O function...7
4.6.6. Precautions about the search of an include file...7
4.6.7. Precautions to be taken when using #pragma ASM/ENDASM and asm() ..8
4.6.8. Precautions about debugging of a program using _Bool type...8
4.6.9. Precautions regarding the preprocessing directive #define..8
4.6.10. Precautions on macro definition ...8
4.6.11. Precautions on #if preprocessing directive...9
4.6.12. Calls to functions that return a structure result in a system error..9
4.6.13. Precaution about - Ostack_frame_align (-OSFA)...10
4.6.14. Precaution about performing right-shift operations..11
4.6.15. Precaution about utl30 ..11

For M16C Series,R8C Family C compiler Package V.5.45 Release 01 Release note

R20UT0443EJ0300 Rev.3.00 Page 2 of 32
Dec. 15, 2010

4.6.16. Precaution about MapViewer..11
4.6.17. Precaution about malloc(), calloc() and realloc() ..12
4.6.18. Note on Defining an Incomplete Structure or Union Type ...12

5. Contents of upgrade from V.5.45 Release 00..12
5.1. Contents of upgrade about C compiler ..12

5.1.1. Fixed Problems ..12
5.2. Contents of upgrade about High-performance Embedded Workshop ...12

5.2.1. Fixed Problems ..12
6. Software version list of C Compiler Package ...13
7. Conformance with MISRAC Rule ...14

7.1. Standard Function Library ..14
7.1.1. Cause of Rule Violation ...14
7.1.2. Inspection No. running counter to the rule ...14
7.1.3. Evaluation Environment...14

7.2. Conformance with MISRA C Rule in HEW Generation Source Code ...14
7.2.1. Cause of Rule Violation ...14
7.2.2. Inspection No. running counter to the rule ...14
7.2.3. Evaluation Environment...15
7.2.4. #pragma extended functions for use in C start-up (Misra C rule 99) ..15

8. C-language Startups ..16
8.1. Generated Files...16
8.2. Processing of Each Generated File ..18
8.3. How to Generate a C-language Startup ..24

9. The error in writing of the manual ...32

For M16C Series,R8C Family C compiler Package V.5.45 Release 01 Release note

R20UT0443EJ0300 Rev.3.00 Page 3 of 32
Dec. 15, 2010

1. About Installation of C compiler Package

For details on how to install, please refer to “Install Guide”.

2. The latest information

Please refer to the following for the latest information on this product.
http://tool-support.renesas.com/eng/toolnews/p_m16c_1.htm

3. Update of the C Compiler User's Manual

The user's manual that is installed along with the compiler contains some errors. Download the latest
user's manual from the Renesas Web site to replace the old one.

http://documentation.renesas.com/eng/products/tool/rej10j1995_nc30_u.pdf

4. Precautions on Product

When using the compiler, please be sure to follow the precautions and suggestions described below.

4.1. About Integrated Development Environment TM

TM does NOT support M3T-NC30WA V.5.45 Release 01.
Therefore, the following cannot be specified.
(1) Create a new project of M3T-NC30WA V.5.45 Release 01 with TM
(2) Port the projects created by TM to High-performance Embedded Workshop

Please refer to “C Compiler Package Guidebook” for the method of porting the project created by TM to
High-performance Embedded Workshop.

4.2. About the version of MR30(Real-time OS)

This C compiler can be used with M3T-MR30 V.3.30 Release 1 or later versions.
Caution:
When you install M3T-MR30, please be sure to install in the same directory (bin,lib30,inc30) as this C
compiler package.

4.3. Suggestions Concerning File Names

The file names ,directory names and Workspace 1 names that can be specified are subject to the
following restrictions:

 The directory, file, or workspace name which comprised of ASCII character-code only can be
used.

 Only one period (.) can be used in a file name.

1 Workspace is a working directory used for processing like the compilation,build or debugging on High-performance Embedded
Workshop.

http://tool-support.renesas.com/eng/toolnews/p_m16c_1.htm�
http://documentation.renesas.com/eng/products/tool/rej10j1995_nc30_u.pdf�

For M16C Series,R8C Family C compiler Package V.5.45 Release 01 Release note

R20UT0443EJ0300 Rev.3.00 Page 4 of 32
Dec. 15, 2010

 Network path names cannot be used. Assign the path to a drive name.
 Shortcut cannot be used.
 The "..." symbol cannot be used as a means of specifying two or more directories.

If the limitations above are violated, the following problems may occur.

 The value set by the assembler directive commands .id, .ofsreg, .protect,.rvector or .svector
cannot operate correctly. As a result, the ID code and the option function select register may
not be set correctly.

 Call Walker to refer to the stack size is not displayed correctly.
 The MAP Viewer to refer to the map information in the absolute module file isn't displayed

correctly.
 The setting by these assembler directive commands isn't displayed in .map file.
 A compile error like "Can't open file" arises.
 A message like "Because a problem occurred, lnxx.exe is terminated." is issued and then the

linker is terminated abnormally.
 The file name length including the path should be less than 128 characters.

4.4. Precautions about virus check programs

If the virus detection program is memory-resident in your computer, M3T-NC30WA may not start up
normally. In such a case, remove the virus detection program from memory before you start
M3T-NC30WA.

4.5. Precautions on M16C Series,R8C Family-Dependent Code

4.5.1. Precautions regarding the M16C interrupt control register

When -O5 optimizing option is used, the compiler generates in some cases BTSTC or BTSTS bit
manipulation instructions. In M16C, the BTSTC and BTSTS bit manipulation instructions are
prohibited from rewriting the contents of the interrupt control registers.
When using any of the products concerned, ensure that no incorrect code is generated.

 Example
When -O5 optimizing options is used in the program shown below, a BTSTC instruction is
generated at compilation, which prevents an interrupt request bit from being processed correctly,
resulting in the assembled program performing improper operations.

#pragma ADDRESS TA0IC 0055h /* M16C/62 MCU's Timer A0 interrupt control register */
struct {

char ILVL : 3;
char IR : 1; /* An interrupt request bit */
char dmy : 4;

} TA0IC;

void wait_until_IR_is_ON(void)
{

while (TA0IC.IR == 0) /* Waits for TA0IC.IR to become 1 */
{

;
}
TA0IC.IR = 0; /* Returns 0 to TA0IC.IR when it becomes 1 */

}

 Workaround

For M16C Series,R8C Family C compiler Package V.5.45 Release 01 Release note

R20UT0443EJ0300 Rev.3.00 Page 5 of 32
Dec. 15, 2010

(1) Suppress the generation of the BTSTC and BTSTS instructions resulting from using an
optimizing option by selecting the -ONA (or -Ono_asmopt) option together with “-O5”
optimizing option.

(2) Add an asm function to disable optimization locally, as shown in the example below.

while(TA0IC.IR == 0)
{

asm();
}

 Notes
Make sure that no BTSTC and BTSTS instructions are generated after these side-steppings.

4.5.2. Precautions about access of SFR area

You may need to use specific instructions when writing to or reading registers in the SFR area.
Because the specific instruction is different for each model, see the User's Manual for the specific
Machine. These instructions should be used in your program using the asm function.

4.5.3. About specifying the interrupt control register

M3T-NC30WA supports the functions that set or change the value of an interrupt priority level to
conform to MESC TECHNICAL NEWS(No. M16C-14-9805).

 case of setting the value
Please use SetLevel function. In this time, please be sure to include “intlevel.h” file.

SetLevel(char *adr, char val);
adr : Address of the interrupt control register
val : value

 case of changing the value
Please use ChgLevel function. In this time, please be sure to include “intlevel.h” file.

ChgLevel(char *adr, char val) ;
adr : Address of the interrupt control register
val : value

[Example]
#include <intlevel.h>
#pragma ADDRESS timerA 55H
char *timerA;
void func(void)
{
 SetLevel(timerA,2); // Specifying the value “2” to the interrupt priority level
 :
 ChgLevel(timerA,4); // Changing the value “4” to the interrupt priority level
}

4.5.4. Regarding M16C/62 4M extended mode

Make sure the program is located in the internal ROM.

For M16C Series,R8C Family C compiler Package V.5.45 Release 01 Release note

R20UT0443EJ0300 Rev.3.00 Page 6 of 32
Dec. 15, 2010

4.5.5. Section FirmRam_NE and the Value of the SB Register when the On-Chip Debugger is Selected

If you select the debugger on the dialog box selecting OnChipDebegger when creating a new project
workspace, FirmRam_NE section may be allocated from 400H. Then, you can't access the correct area
by using the SB relative addressing mode, because the initial value for SB register is set to 400H.
If section FirmRam_NE starts from 400H as the result of linkage, the initial value for the SB register
should be changed to the value of the start address of the bss_SE section. For the start address of the
bss_SE section, see the contents of the map file.

The values indicated below should be changed to the start address of the bss_SE section.

<resetprg.c>

 void start(void)
{
 :
 sb = 0x400; // 400H fixation (Do not change)

}

<resetprg.h>

 #define DEF_SBREGISTER _asm(" .glb __SB__¥n"¥
 "__SB__ .equ 0400H")

MCU Concerned as of May 16, 2009

M16C/26, M16C/26A, M16C/28, M16C/29,
M16C/30P,
M16C/62P,
M16C/6N4, M16C/6N5, M16C/6NK, M16C/6NL, M16C/6NM, M16C/6NN,
M16C/6S,
M16C/64,
M16C/64A,
M16C/65

4.5.6. When Using a M16C-Series MCU That Has a Reserved Area from FFFD8h to FFFDBh

Special-page vector-table functions (‘#pragma SPECIAL’ and assembler directive ‘.svector’) are not
usable.

4.6. Precautions about Compiler, Assembler, Linkage Editor and Utilities

4.6.1. About –Oglobal_jmp(-OGJ)

If the compiler option -Oglobal_jmp(-OGJ) , the assembler option –JOPT and the link option -JOPT are
used and the link option -ORDER or –LOC is specified more than one time, only either -ORDER or
-LOC that is specified last time becomes effective and a linkage error occurs.

As a result:
 If -ORDER is specified more than one time, a linkage error will occur.
 If -LOC is specified more than one time, allocation will not be done properly.
Please be sure to specify -ORDER and -LOC respectively one by one.

For M16C Series,R8C Family C compiler Package V.5.45 Release 01 Release note

R20UT0443EJ0300 Rev.3.00 Page 7 of 32
Dec. 15, 2010

4.6.2. About Using Inline Functions –OLU and -OFFTI at the Same Time

If the compiler option -Oloop_unroll(-OLU) and -Oforward_function_to_inline(-OFFTI) are used at the
same time, and a function that is expanded inline is described in the loop statement, the following error
may occur:

Error (asp30): Undefined symbol exist 'Symbol name'

If this error occurs add a dummy asm function in the statement.

4.6.3. About -ffar_pointer (-fFP)

If -ffar_pointer is used, be aware that when the & operator that acquires the address of a near attribute
variable is used, it is handled in 16–bit address. Make sure that it is cast with the far pointer prior to
the & operator.
Note also that if the pointer size is acquired with sizeof, the return value is 2. If any function without
prototype declaration is called, only 2 bytes of address are stacked. Always be sure to declare function
prototypes.

4.6.4. Precaution for Assembler start-up files (ncrt0.a30, sect30.inc,nc_define.inc)

The content of start-up files may be customized depending on the target MCU or application.
Please refer to the hardware manual or the datasheet of the target MCU when undergoing such
customizations.

4.6.5. About the standard I/O function

The standard I/O functions consume much RAM. If you use the standard I/O functions in your program
for R8C Family, you cannot use %f,%E,%e,%g,%G for printf.

4.6.6. Precautions about the search of an include file

If you specify a file to include with a drive name in the #include line, and attempt to compile the file
from a directory different from the one in which the file to compile is present, instances may occur in
which the file to include cannot be found.

Example

#include "c:\user\test\sample.h"
main(){}

C:\user>nc30 \user\test2\sample.c -silent \user2\tm_test\aa.c
[Error(cpp30.21):\user2\test2\sample.c, line 1] include file not found 'c:\user\test\sample.h'

For M16C Series,R8C Family C compiler Package V.5.45 Release 01 Release note

R20UT0443EJ0300 Rev.3.00 Page 8 of 32
Dec. 15, 2010

4.6.7. Precautions to be taken when using #pragma ASM/ENDASM and asm()

 Regarding debug information when using #pragma ASM/ENDASM and asm() outside
functions, if you write #pragma ASM anywhere outside functions, no C source line information
will be output. For this reason, information regarding descriptions in #pragma ASM to
#pragma ENDASM, such as error message lines when assembling or linking and line
information when debugging, may not be output normally.

 C compilers generate code of arguments to be passed via registers and of register variables by
analyzing their scopes. However, if manipulations of register values are described using inline
assemble features(such as #pragma ASM / #pragma ENDASM directives and asm function), C
compilers cannot hold information on the scopes of the above-mentioned arguments and
register variables. So, be sure to save and restore register contents on and from the stack when
registers are loaded using inline assemble functions described above.

4.6.8. Precautions about debugging of a program using _Bool type

When you debug the program which uses the _BOOL type, please confirm whether the debugger
supports the _BOOL type.
In using the debugger which does not support the _BOOL type, please use a debugging
option“-gbool_to_char (-gBTC)” at the time of compile.

4.6.9. Precautions regarding the preprocessing directive #define

To define a macro which will be made the same value as the macro ULONG_MAX, always be sure to
add the suffix UL.

4.6.10. Precautions on macro definition

If the name of a macro itself is used in the content of a macro definition and the defined macro is
specified in an argument to other function-like macro, macro replacement cannot be executed correctly.

 Example

 int a = 10;
#define a a + a // macro name ‘a’
#define p(x,y) x + y

void func(void)
{
 int i = p (a , a); // results in i = 80
} // i = 40 is correct

 Workaround
Make sure the macros passed to the arguments to function-like macros are defined with a name
that is not used in the macro definition.

 int a = 10;
#define b a + a // Change to a macro name that is not 'a'
#define p(x,y) x + y

void func(void)
{
 int i = p (b , b);
}

For M16C Series,R8C Family C compiler Package V.5.45 Release 01 Release note

R20UT0443EJ0300 Rev.3.00 Page 9 of 32
Dec. 15, 2010

4.6.11. Precautions on #if preprocessing directive

If a constant expression of #if directive is a shift whose left operand is a negative value and right
operand is a value of unsigned type, the result of the shift expression cannot be worked correctly.

 Example

 void func(void)

{

 char a;

#if (-1 << 1U) > 0 // Determined to be true

 a = 1; // (–1 << 1U) is –2, so that it correctly is false

#else

 a = 2;

#endif

}

 Workaround
If the left operand of a shift is a negative value, change the right operand of that shift to a value
of signed type.

 void func(void)

{

 char a;

#if (-1 << 1) > 0 // Disuse of the suffix U changes the right operand of

 a = 1; // a shift to signed type.

#else

 a = 2;

#endif

}

4.6.12. Calls to functions that return a structure result in a system error.

System Error occurs when a return value of a function which returns a structure is used to initialize an
auto structure variable.

Example

 typedef struct tag{
 long abc;

}st;

st func(int);

void main(){

 st st1 = func(10);

}

For M16C Series,R8C Family C compiler Package V.5.45 Release 01 Release note

R20UT0443EJ0300 Rev.3.00 Page 10 of
32
Dec. 15, 2010

Workaround
Make sure that structure variables of storage class auto are defined separately from the
initialization of those variables.

 void main(){
st st1;

st1 = func(10);

}

4.6.13. Precaution about - Ostack_frame_align (-OSFA)

If compile option -Ostack_frame_align (-OSFA) is used, incorrect values of stack size may be provided in
inspector information and the stack size display file (with extension .stk). As a result, the values of
stack size calculated by the STKViewer and CallWalker (utilizing inspector information) and the stk30
stack size calculate utility (utilizing the stack size display file) will be false.

[Tool News: http://tool-support.renesas.com/eng/toolnews/070701/tn5.htm]
Conditions
 This problem occurs if the following conditions are all satisfied:
 (1) Compile option -Ostack_frame_align (-OSFA) is selected.
 (2) Compile option -genter is not selected.
 (3) In the program exists a function that does not make any stack frame.
 In order that no function can make the stack frame, the following three conditions must be met:

- The function does not take arguments passed via the stack.
- In the function exist no auto variables (except for the ones assigned to registers) or auto
variables have been deleted by the optimization of the compiler.
- The compiler does not create any temporary variables.

Example
 void sub(unsigned int);

void func(void) /* Condition (3) */

{

 sub(10);

}

Workaround

Do Not select compile option -Ostack_frame_align (-OSFA), or use -genter along with
-Ostack_frame_align (-OSFA),.

For M16C Series,R8C Family C compiler Package V.5.45 Release 01 Release note

R20UT0443EJ0300 Rev.3.00 Page 11 of
32
Dec. 15, 2010

4.6.14. Precaution about performing right-shift operations

Under the condition that an optimizing option is selected at compilation, System Error may arise if the
result of shifting a 32-bit data piece to the right by the number of bits within a range of 11 to 15 is
directly stored in or cast to a variable of 16 bits long.

[Tool News: http://tool-support.renesas.com/eng/toolnews/070716/tn4.htm]

Conditions

This problem may occur if the following conditions are all satisfied:
(1) Any of the following optimizing options is selected to enhance the speed of program execution

and minimize ROM consumption: -O, -OR, and -OR_MAX
(2) A data piece of 32 bits long is shifted right by the number of bits within a range of 11 to 15.
(3) The result in (2) above is directly stored in or cast to a variable of 16 bits long.
(4) The compiler specifies the register in which the data piece to be shifted in (2) and the 16-bit

variable in (3) are stored.

Example
 int i;
long l;

 i = (int)(l >> 15);

Workaround

Do not directly store the result of right-shifting a 32-bit data piece in or cast it to a 16-bit variable,
but assign it to a 32-bit variable and then store this variable in a 16-bit variable.

 Modification of the above example

 int i;
long l, ll;

 ll = l >> 15; /* Assign the result to a 32-bit variable */
 i = (int)ll;

4.6.15. Precaution about utl30

C compiler user’s manual “Appendix G the SBDATA declaration & SPECIAL page Function declaration
utility (utl30)” on Page 357 has the statement that “Includes, during startup (sect30.inc), the SPECIAL
Page vector definition file (special.inc) as a file to be included”. But, this is the explanation for the
version older than V.5.40. The SPECIAL Page vector definition file is unnecessary in V.5.40 or later.
Therefore, please do not use it.

4.6.16. Precaution about MapViewer

As you cannot use Online Help of the MapViewer with a PC running Windows Vista(R), please use that
of the EcxMap and CallWalker instead.

For M16C Series,R8C Family C compiler Package V.5.45 Release 01 Release note

R20UT0443EJ0300 Rev.3.00 Page 12 of
32
Dec. 15, 2010

4.6.17. Precaution about malloc(), calloc() and realloc()

Memory management function malloc ,calloc and realloc of the NC30WA cannot secure the area of
64KB or more at a time.

4.6.18. Note on Defining an Incomplete Structure or Union Type

When the definition of a member follows that of an incomplete structure or union type (in which only a
tag has been defined) using typedef, the members in structures or unions that are declared with the
typedef name may not be displayed by any debuggers.
Note, however, that debuggers will display these members correctly when their definition precedes
typedef.

Example of occurrence

typedef struct str1 str1_t; /* An incomplete structure type is
defined */

struct str1 { /* Members are defined */
 int i;
 int j;
};

str1_t s = { 1, 2 }; /* A structure is declared with the typedef
name */

5. Contents of upgrade from V.5.45 Release 00

5.1. Contents of upgrade about C compiler

5.1.1. Fixed Problems

The following known problems have been fixed
 With Errors Arising after Linking is Performed

[RENESAS TOOL NEWS]
http://tool-support.renesas.com/eng/toolnews/091116/tn3.htm

 With Calculating Stack Usage
[RENESAS TOOL NEWS]
http://tool-support.renesas.com/eng/toolnews/091116/tn2.htm

 With the function for automatically generating variable vector tables

[RENESAS TOOL NEWS]
http://tool-support.renesas.com/eng/toolnews/091001/tn4.htm

5.2. Contents of upgrade about High-performance Embedded Workshop

5.2.1. Fixed Problems

 With using SQMlint (the MISRA C rule checker) with High-performance Embedded Workshop

[RENESAS TOOL NEWS]
http://tool-support.renesas.com/eng/toolnews/090801/tn1.htm

http://tool-support.renesas.com/eng/toolnews/091116/tn3.htm�
http://tool-support.renesas.com/eng/toolnews/080616/tn1.htm�
http://tool-support.renesas.com/eng/toolnews/080616/tn2.htm�
http://tool-support.renesas.com/eng/toolnews/080616/tn3.htm�

For M16C Series,R8C Family C compiler Package V.5.45 Release 01 Release note

R20UT0443EJ0300 Rev.3.00 Page 13 of
32
Dec. 15, 2010

6. Software version list of C Compiler Package

The following lists the software items and their versions include with C Compiler Package V.5.45
Release 01.

 nc30 V.6.03.22.003
 cpp30 V.4.10.00.000
 ccom30 V.5.32.04.003
 aopt30 V.1.04.04.001
 sbauto V.1.00.00.000
 as30 V.5.15.00.001
 mac30 V.3.42.00.000
 pre30 V.1.10.12
 asp30 V.5.14.00.000
 ln30 V.5.15.00.001
 lb30 V.1.02.00.000
 lmc30 V.4.02.01.000
 xrf30 V.2.02.00.000
 abs30 V.2.11.00.000
 utl30 V.1.00.09.001
 MapViewer V.3.01.02
 genmap V.1.00.01.001
 gensni V.1.00.00.002

For M16C Series,R8C Family C compiler Package V.5.45 Release 01 Release note

R20UT0443EJ0300 Rev.3.00 Page 14 of
32
Dec. 15, 2010

7. Conformance with MISRAC Rule

7.1. Standard Function Library

In C-Source code of standard function library M3T-NC30WA, it is found that some rules2 are against
the MISRAC Rule, but these violations do not constitute a drawback to any operation.

7.1.1. Cause of Rule Violation

In C-Source code of standard function library M3T-NC30WA, the major causes for rule violation are as
follows:

 C-Compiler specifications (near/far modifier, asm () function and #pragma)
 Declaration of function based on ANSI Standard
 The evaluation sequence in the conditional statement is not described explicitly, using a

parenthesis.
 Implicit type conversion

7.1.2. Inspection No. running counter to the rule

The following are Inspection Nos. that run counter to the Rule:
1 12 13 14 18 21 22 28 34 35

36 37 38 39 43 44 45 46 48 49
50 54 55 56 57 58 59 60 61 62
65 69 70 71 72 76 77 82 83 85
99 101 103 104 105 110 111 115 118 119

121 124

7.1.3. Evaluation Environment
Compiler M3T-NC30WA V.5.30 Release 1
Compile Option -O -c -as30 "-DOPTI=0" -gnone -finfo -fNII -misra_all -r $*.csv
MISRA C Checker SQMlint V.1.00 Release 1A

7.2. Conformance with MISRA C Rule in HEW Generation Source Code

In C-Source code that HEW (High-performance Embedded Workshop) generates automatically, it is found
that some rules are against the MISRAC Rule, but these violations do not constitute a drawback to any
operation.

7.2.1. Cause of Rule Violation

In C-Source code that HEW generates, the major causes for rule violation are as follows:
 C-Compiler specifications (#pragma etc.)
 cope of variable defined by Header-File
 Definition of type used in Bit-Field

7.2.2. Inspection No. running counter to the rule

The following are Inspection Nos. that run counter to the Rule:
13 14 22 34 36 37 43 45 46
49 54 59 69 76 82 85 99 104

2 These results were produced after inspection using MISRAC Rule Checker SQMLint.

For M16C Series,R8C Family C compiler Package V.5.45 Release 01 Release note

R20UT0443EJ0300 Rev.3.00 Page 15 of
32
Dec. 15, 2010

110 111 115 124 126

7.2.3. Evaluation Environment
Compiler M3T-NC30WA V.5.45 Release 00
Compile Option -c -misra_all
MISRA C Checker SQMlint V.1.03 Release 00

7.2.4. #pragma extended functions for use in C start-up (Misra C rule 99)
Extended Function Definition

File
Description Function Remark

#pragma STACKSIZE resetprg.h Defines the user
stack size.

The stack section (stack)
is output and the top
label name of the stack is
generated.

For compiler use only and
strictly not for user.

#pragma ISTACKSIZE resetprg.h Defines the
interrupt stack size.

The interrupt stack
section (istack) is output
and the top label name of
the interrupt stack is
generated.

For compiler use only and
strictly not for user.

#pragma CREG resetprg.h Declares an internal
register of the
MCU.

A special instruction is
used to generate code for
access to an internal
register declared by this
pragma.

For compiler use only and
strictly not for user.

#pragma sectaddress resetprg.h
fvector.c

Defines a section.
Its address can also
be declared at the
same time.

The section name
declared by this pragma
is used to define a section.
When its address is
specified at the same
time, an address
definition using a pseudo
instruction “.org” is
output.

For compiler use only and
strictly not for user.

#pragma entry resetprg.h Declares a function
to be executed at
the time of a reset.

An enter instruction to
configure a stack frame
for the function declared
by this pragma is not
output.
This is because the enter
instruction should not be
generated before the
stack pointer is
initialized.

For compiler use only and
strictly not for user.

#pragma interrupt/V fvetor.c Generates a vector
table.

Only the interrupt vector
is defined for the function
declared by this pragma.

Refer to Appendix B7
for syntax and
example.

#pragma interrupt intprg.c
fvector.c

Declares an
interrupt function.

Interrupt-function code is
generated for the function
declared by this pragma.

Refer to Appendix B7
for syntax and
example..

#pragma interrupt heap.c
resetprg.c
initsct.h
resetprg.c
firm.c

Changes the name
of a section.

The section name is
changed to the one
defined by this pragma.

Refer to Appendix B7
for syntax and
example.

#pragma ADDRESS Each sfr
header file

Defines the I/O
address and
declares a variable.

.equ is used to define the
I/O address for sfr defined
by this pragma.

Refer to Appendix B7
for syntax and
example.

For M16C Series,R8C Family C compiler Package V.5.45 Release 01 Release note

R20UT0443EJ0300 Rev.3.00 Page 16 of
32
Dec. 15, 2010

8. C-language Startups

V.5.40 Release 00(A) or earlier version of compilers does not support startup programs written in C
language.
Please note that the conventional startups written in assembler such as ncrt0.a30 , sect30.inc and
nc_define.inc can be used the same way as in the past.
To use the conventional ncrt0.a30 , sect30.inc and nc_define.inc select Application indicated by (1) in
the new project workspace below.

8.1. Generated Files

The C-language startup includes the following files:
(1) resetprg.c

Initializes the microcomputer.
(2) initsct.c

Initializes each section (by clearing them to 0 and transferring initial values).
(3) heap.c

Reserves storage for the heap area.
(4) fvector.c

Defines the fixed vector table.
(5) intprg.c

Declares the entry function for variable vector interrupts.
(6) firm.c/firm_ram.c

Reserves storage for the program and workspace areas used by firm of FoUSB/E8 as dummy areas
when OnChipDebugger is selected. (Please do not alter the file.)

(7) cstartdef.h
Defines the sizes of stack and heap

(1)

For M16C Series,R8C Family C compiler Package V.5.45 Release 01 Release note

R20UT0443EJ0300 Rev.3.00 Page 17 of
32
Dec. 15, 2010

(8) initsct.h
Contains statements for the processes (assembler macros) that initialize each section. (Please do not
alter the file.)

(9) resetprg.h
Includes each header file.

(10) typedef.h
Declares each type by typedef. (Please do not alter the file.)

(11) sfrXX.h,sfrXX.inc
The sfr definition header file of CPU chosen when a project was created is registered to the work
space.

For M16C Series,R8C Family C compiler Package V.5.45 Release 01 Release note

R20UT0443EJ0300 Rev.3.00 Page 18 of
32
Dec. 15, 2010

8.2. Processing of Each Generated File

 resetprg.c (essential)
The content of this file varies with the selected MCU (M16C or R8C).

(1) The startup function is located in the interrupt section.
(2) The function body of the CPU initialization function start() is defined.
(3) Initializes the interrupt stack pointer.
(4) Sets the protect register to “Write-enabled”.
(5) Sets the processor mode register to “single-chip mode.”

If modes need to be changed, this expression must be altered.
(6) Sets the protect register to “Write-inhibited”.
(7) Sets the U flag.

If you chose “Use the user stack” in the workspace creation wizard, the user stack pointer is set

#pragma section program interrupt

void start(void)
{
 isp = &_istack_top; // set interrupt stack pointer
 prcr = 0x02; // change protect mode register
 pm0 = 0x00; // set processor mode register
 prcr = 0x00; // change protect mode register
 flg = __F_value__; // set flag register
#if __STACKSIZE__!=0
 sp = &_stack_top; // set user stack pointer
#endif
 sb = 0x400; // 400H fixation (Do not change)

 // set variable vector's address
 _asm(" ldc #((topof vector)>>16)&0FFFFh,INTBH");
 _asm(" ldc #(topof vector)&0FFFFh,INTBL");

 initsct(); // initialize each sections
#if __STACKSIZE__!=0
 sp = &_stack_top; // set user stack pointer
#else
 isp = &_istack_top; // set interrupt stack pointer
#endif

#if __HEAPSIZE__ != 0
 heap_init(); // initialize heap
#endif
#if __STANDARD_IO__ != 0
 _init(); // initialize standard I/O
#endif
 fb = 0; // initialize FB registe for debugger
 main(); // call main routine

 exit(); // call exit
}

①

②

③
④
⑤
⑥
⑦

⑧

⑨

⑩

⑪

⑫

⑬

⑭

⑮

For M16C Series,R8C Family C compiler Package V.5.45 Release 01 Release note

R20UT0443EJ0300 Rev.3.00 Page 19 of
32
Dec. 15, 2010

(8) Initializes the user stack pointer if you chose “Use the user stack” in the workspace creation wizard.
(9) Sets the SB register to address 0x400 (which sets the start address of RAM).
(10) Sets the variable vector address in the INTB register.

(11) Initializes each section (by clearing them to 0 and transferring initial values).

(12) Initializes the stack pointer again after the initialization of sections.
(13) Initializes the heap area.

If memory management functions are used, call to this function must be enabled.
(14) Initializes the standard input/output library

If standard input/output functions are used, call to this function must be enabled.
(15) Calls the main function.

 initsct.c (essential)
The content of this file varies with the selected MCU (M16C or R8C).

void initsct(void)
{
 sclear("bss_SE","data,align"); --------------------------------------- (1)
 sclear("bss_SO","data,noalign");
 sclear("bss_NE","data,align");
 sclear("bss_NO","data,noalign");
#ifndef __NEAR__
 sclear_f("bss_FE","data,align"); --------------------------------------- (2)
 sclear_f("bss_FO","data,noalign");
#endif
 // add new sections
 // bss_clear("new section name");

 scopy("data_SE","data,align"); --------------------------------------- (3)
 scopy("data_SO","data,noalign");
 scopy("data_NE","data,align");
 scopy("data_NO","data,noalign");
#ifndef __NEAR__
 scopy_f("data_FE","data,align"); --------------------------------------- (4)
 scopy_f("data_FO","data,noalign");
#endif
}

For M16C Series,R8C Family C compiler Package V.5.45 Release 01 Release note

R20UT0443EJ0300 Rev.3.00 Page 20 of
32
Dec. 15, 2010

(1) sclear: Clears the bss section of the near area to zero.
If the bss section name is altered or a new bss section name is added using the #pragma SECTION
bss feature, NE and NO must be altered or added in pairs.

 sclear(“section name_NE,” “data.align”);
 sclear(“section name_NO,” “data.noalign”);

Example: When a section is added by #pragma section bss bss2, the following must be added to
initsct.c

 sclear(“bss2_NE,” “data.align”);
 sclear(“bss2_NO,” “data.noalign”);

(2) sclear_f: Clears the bss section of the far area to zero.

If an external variable without initial values is declared using the far qualifier, this macro function
must be enabled. This option is invalid only when -R8C option is specified.

(3) scopy: Transfers initial values to the data section of the near area.

If the data section name is altered or a new dada section name is added using the #pragma
SECTION data feature, NE and NO must be altered or added in pairs.

 scopy(“section name_NE,” “data.align”);
 scopy(“section name_NO,” “data.noalign”);

Example: When a section is added by #pragma section data data2, the following must be added to
initsct.c

 scopy(“data2_NE,” “data.align”);
 scopy(“data2_NO,” “data.noalign”);

(4) scopy_f: Transfers initial values to the data section of the far area.

If an external variable with initial values is declared using the far qualifier, this macro function
must be enabled. This option is invalid only when -R8C option is specified.

 heap.c (only when memory management functions such as malloc are used)

(1) Locates the heap area in the heap_NE section.

* If the heap size consists of an odd number of bytes, the heap_NO section is assumed by default.
(2) Reserves storage for the heap area by an amount equal to the size defined in __HEAPSIZE__.

#pragma SECTION bss heap --------------------------- (1)

_UBYTE heap_area[__HEAPSIZE__]; --------------------------- (2)

For M16C Series,R8C Family C compiler Package V.5.45 Release 01 Release note

R20UT0443EJ0300 Rev.3.00 Page 21 of
32
Dec. 15, 2010

 fvector.c (essential)

(1) Outputs the section and address of a fixed vector table.

* This pragma is used exclusively for startup and cannot normally be used.
(2) Fills fixed vectors other than reset with a dummy function (_dummy_int).
 * #pragma interrupt/v Function_Name
 The Function_Name is registered in the vector table. When the function is defined, this definition
 needs #pragma interrupt.
(3) Defines the entry function.

The function to be executed upon reset is registered in a fixed vector.

 intprg.c (This file may be needed depends on the target MCU)

// DMA0 (software int 8)
#pragma interrupt _dma0(vect=8) -----------------------------------(1)
void _dma0(void){} -----------------------------------(2)

// DMA1 (software int 9)
#pragma interrupt _dma1(vect=9)
void _dma1(void){}

// DMA2 (software int 10)
#pragma interrupt _dma2(vect=10)
void _dma2(void){}

// DMA3 (software int 11)
#pragma interrupt _dma3(vect=11)
void _dma3(void){}

（Skipped）

#pragma sectaddress vector,ROMDATA Fvectaddr --------------------- (1)

//

#pragma interrupt/v _dummy_int //udi --------------------- (2)
#pragma interrupt/v _dummy_int //over_flow
#pragma interrupt/v _dummy_int //brki
#pragma interrupt/v _dummy_int //address_match
#pragma interrupt/v _dummy_int //single_step
#pragma interrupt/v _dummy_int //wdt
#pragma interrupt/v _dummy_int //dbc
#pragma interrupt/v _dummy_int //nmi
#pragma interrupt/v start ---------------------(3)

For M16C Series,R8C Family C compiler Package V.5.45 Release 01 Release note

R20UT0443EJ0300 Rev.3.00 Page 22 of
32
Dec. 15, 2010

(1) Declares the variable vector interrupt function.
The functions corresponding to each variable vector interrupt function are declared. A variable
vector table is generated at the same time.

(2) Defines the variable vector interrupt function.
Please write the content of processing in the functions corresponding to the interrupt vector
numbers used.

Example: To use interrupt vector number 9 (DMA1)

(3) If intprg.c is unnecessary

Please remove it from file registration to exclude it from the target to be linked.

 firm.c/firm_ram.c (Only when on chip debugger is selected)
DO NOT change the content of this file directly.
The content is altered automatically depending on the target MCU and selected FoUSB/E8

(1) Enables E8 when it is to be used
(2) Allocates the work ram area to be used by the E8 firmware in the FirmRam_NE section.
(3) Reserves the area of work ram for the size defined as __WORK__RAM__.
(4) Locates the firmware program of E8 in the FirmArea section.
(5) Specifies the size of the firmware program.
(6) Allocates the work ram area to be used by the FoUSB firmware in the FirmRam_NE section.

#ifdef __E8__ // for E8 ---------------------------------(1)

#pragma section bss FirmArea ---------------------------------(2)

#ifndef __WORK_RAM__
#define __WORK_RAM__ 0x80
#endif

_UBYTE _workram[__WORK_RAM__]; ---------------------------------(3)

#pragma section bss FirmArea ---------------------------------(4)
_far _UBYTE _firmarea[0x800]; // dummy for monitor ---------------------------------(5)

#else // for FoUSB

#pragma section bss FirmRam ---------------------------------(6)
_UBYTE _workram[0x80]; // for Firmware's workram ---------------------------------(7)

#pragma section bss FirmArea ---------------------------------(8)
_far _UBYTE _firmarea[0x600]; // dummy for monitor ---------------------------------(9)
#endif

#pragma interrupt _dma1(vect=9)
void _dma1(void)
{

// Omission
}

For M16C Series,R8C Family C compiler Package V.5.45 Release 01 Release note

R20UT0443EJ0300 Rev.3.00 Page 23 of
32
Dec. 15, 2010

(7) Reserves 0x80 bytes of storage for the work ram area. (It depends on the corresponding
microcomputer type)
(8) Locates the firmware program of FoUSB in the FirmArea section.
(9) Specifies the size of the firmware program.

 cstartdef.c (essential)

(1) Varies according to the stack size that you entered in the creating workspace wizard.
(2) Varies according to the interrupt stack size that you entered in the creating workspace wizard.
(3) Varies according to the heap size that you entered in the creating workspace wizard.
(4) Set to 1 if you chose to “Use the standard input/output function” in the creating workspace wizard.
(5) Should be set to 1 if the WATCHDOG feature needs to be enabled immediately after reset.

(R8C Family/Tiny only)
If you want to change the above again after you’ve created a new workspace, be sure to change this
file directly.

 initsct.h (essential)

Please do not alter the content of this file.

 resetprg.h (essential)
If using On-Chip Debugger, please refer to the section “3.3.5. Section FirmRam_NE and the Value of
the SB Register when the On-Chip Debugger is Selected” in this release note.

 typedef.h (essential)

Please do not alter the content of this file.

#define __STACKSIZE__ 0x80 ----------------------- (1)
#define __ISTACKSIZE__ 0x80 ----------------------- (2)
#define __HEAPSIZE__ 0x80 ----------------------- (3)
#define __STANDARD_IO__ 0 ----------------------- (4)
#define __WATCH_DOG__ 0 ----------------------- (5)

For M16C Series,R8C Family C compiler Package V.5.45 Release 01 Release note

R20UT0443EJ0300 Rev.3.00 Page 24 of
32
Dec. 15, 2010

8.3. How to Generate a C-language Startup

 Selecting the project that uses a C-language startup.

(1) Select C source startup Application in the left-side window.

After selecting "C source startup Application", "Application" will be automatically selected if you change
the default setting of "CPU family". Please select "C source startup Application" again.

 Selecting the type of microcomputer

(1)

(2)

For M16C Series,R8C Family C compiler Package V.5.45 Release 01 Release note

R20UT0443EJ0300 Rev.3.00 Page 25 of
32
Dec. 15, 2010

(2) Select the type of microcomputer from CPU Series and CPU Group.
When a type of microcomputer is selected, its corresponding sfr header file is copied to the
workspace. Furthermore, a variable vector table (intprg.c) is registered.

Although V.5.40 Release 00(A) showed ROM sizes in parentheses in CPU Group selection, note that
beginning with this version, ROM size selection is moved to the wizard that is displayed when you click
the Next> button.

 Selecting the size of ROM

The ROM size that you select in (3), in addition to settings in V.5.40 Release 00(A) where the on-chip
debugger is selected, ensures that the ROM attribute sections are located appropriately when linked
according to the ROM size.

(3)

For M16C Series,R8C Family C compiler Package V.5.45 Release 01 Release note

R20UT0443EJ0300 Rev.3.00 Page 26 of
32
Dec. 15, 2010

 Settings for the case where the standard I/O function and memory management function libraries are
used

(4) Select this check box when you use the standard I/O function library.
When this check box is selected, function calls to _init() in resetprg.c are enabled.
Furthermore, device.c and init.c are registered to the project.

(5) Select this check box when you use the memory management function library.
When this check box is selected, function calls to heap_init() in resetprg.c are enabled.
Furthermore, heapdef.h and heap.c are registered to the project.

(4)

(5)

For M16C Series,R8C Family C compiler Package V.5.45 Release 01 Release note

R20UT0443EJ0300 Rev.3.00 Page 27 of
32
Dec. 15, 2010

 Select OnChipDebugger

(6) Select the appropriate debugger when you use OnChipDebugger.

You can select either FoUSB or E8 as debugger.
However, there may be a case when you can’t select one of or both of the debuggers depending
on the target MCU.
When this selection is made, firm.c is registered and the area for the debugger displayed at (7)
is saved as the variable area. Duplication of the user's program and the area for the debugger
is avoided.

(7) Set Firmware Address and workRam Address.

Here, you set the program area for Firmware and the RAM area for work to be used by
FoUSB/E8.
You can alter the default values only when the debugger allows you to do so.
If you alter these addresses when using the debugger, alter them to suit the setup of the
debugger.
For details about the address and size to be altered for each, consult the user’s manual of your
debugger.

(8) If you select OnChipDebugger while the standard input/output function library is selected,

“UART1” indicated here changes to “UART0.”
This means that the standard input/output device is changed to UART0 because the standard
input/output functions and OnChipDebugger both use UART1.

(8)

(6)

(7)

For M16C Series,R8C Family C compiler Package V.5.45 Release 01 Release note

R20UT0443EJ0300 Rev.3.00 Page 28 of
32
Dec. 15, 2010

 Selecting the stack size

(9) Choose to use or not use the user stack.

If this check box is unselected, settings are changed so that the user stack will not be used in
the start function.

(10) Set the user stack size.
The define value in cstartdef.h is changed.

(11) Set the interrupt stack size.
The define value in cstartdef.h is changed.

To change the stack size or HEAP size after you created a project, change the respective values that are
set in cstartdef.h as shown below.

 #define __STACKSIZE__ 0x80
#define __ISTACKSIZE__ 0x80
#define __HEAPSIZE__ 0x80

(9)

(10)

(11)

For M16C Series,R8C Family C compiler Package V.5.45 Release 01 Release note

R20UT0443EJ0300 Rev.3.00 Page 29 of
32
Dec. 15, 2010

 List of registered files

Here, you can check the list of files to be registered.

For M16C Series,R8C Family C compiler Package V.5.45 Release 01 Release note

R20UT0443EJ0300 Rev.3.00 Page 30 of
32
Dec. 15, 2010

 Section order

To confirm the order in which sections are linked and the addresses to which they are linked, take
a look at Category: Section Order in [Renesas M16C Standard Toolchain] → [Link].

(1)

(2)

(3)

For M16C Series,R8C Family C compiler Package V.5.45 Release 01 Release note

R20UT0443EJ0300 Rev.3.00 Page 31 of
32
Dec. 15, 2010

If you added a new section with #pragma SECTION, click the [Edit] button in (1) to open the
Section window.

While the Sectiondialog has the focus, click the [Add] button in (2).

The Add section dialog will be launched, so enter the name of the new section that you want.
The section you’ve entered will be registered, so move the section to the area in which you want it
to be located by using the Up or Down arrow in (3).

For M16C Series,R8C Family C compiler Package V.5.45 Release 01 Release note

R20UT0443EJ0300 Rev.3.00 Page 32 of
32
Dec. 15, 2010

9. The error in writing of the manual

M16C Series, R8C Family C Compiler Package V.5.45 C Compiler User's Manual (Rev. 3) has some
errors that must be corrected as shown in the table below.

E.2.2 List of Standard Library Functions by Function Table E.8 Mathematical Functions

Function Reentrant (errors) Reentrant (correct)
acos ○ ×
asin ○ ×
atan2 ○ ×
log ○ ×
log10 ○ ×
pow ○ ×
sqrt ○ ×
acosf ○ ×
asinf ○ ×
atan2f ○ ×
log10f ○ ×
sinf ○ ×

	For M16C Series,R8C Family C compiler Package V.5.45 Release 01 Release note
	1. About Installation of C compiler Package
	2. The latest information
	3. Update of the C Compiler User's Manual
	4. Precautions on Product
	4.1. About Integrated Development Environment TM
	4.2. About the version of MR30(Real-time OS)
	4.3. Suggestions Concerning File Names
	4.4. Precautions about virus check programs
	4.5. Precautions on M16C Series,R8C Family-Dependent Code
	4.5.1. Precautions regarding the M16C interrupt control register
	4.5.2. Precautions about access of SFR area
	4.5.3. About specifying the interrupt control register
	4.5.4. Regarding M16C/62 4M extended mode
	4.5.5. Section FirmRam_NE and the Value of the SB Register when the On-Chip Debugger is Selected
	4.5.6. When Using a M16C-Series MCU That Has a Reserved Area from FFFD8h to FFFDBh

	4.6. Precautions about Compiler, Assembler, Linkage Editor and Utilities
	4.6.1. About –Oglobal_jmp(-OGJ)
	4.6.2. About Using Inline Functions –OLU and -OFFTI at the Same Time
	4.6.3. About -ffar_pointer (-fFP)
	4.6.4. Precaution for Assembler start-up files (ncrt0.a30, sect30.inc,nc_define.inc)
	4.6.5. About the standard I/O function
	4.6.6. Precautions about the search of an include file
	4.6.7. Precautions to be taken when using #pragma ASM/ENDASM and asm()
	4.6.8. Precautions about debugging of a program using _Bool type
	4.6.9. Precautions regarding the preprocessing directive #define
	4.6.10. Precautions on macro definition
	4.6.11. Precautions on #if preprocessing directive
	4.6.12. Calls to functions that return a structure result in a system error.
	4.6.13. Precaution about - Ostack_frame_align (-OSFA)
	4.6.14. Precaution about performing right-shift operations
	4.6.15. Precaution about utl30
	4.6.16. Precaution about MapViewer
	4.6.17. Precaution about malloc(), calloc() and realloc()
	4.6.18. Note on Defining an Incomplete Structure or Union Type

	5. Contents of upgrade from V.5.45 Release 00
	5.1. Contents of upgrade about C compiler
	5.1.1. Fixed Problems

	5.2. Contents of upgrade about High-performance Embedded Workshop
	5.2.1. Fixed Problems

	6. Software version list of C Compiler Package
	7. Conformance with MISRAC Rule
	7.1. Standard Function Library
	7.1.1. Cause of Rule Violation
	7.1.2. Inspection No. running counter to the rule
	7.1.3. Evaluation Environment

	7.2. Conformance with MISRA C Rule in HEW Generation Source Code
	7.2.1. Cause of Rule Violation
	7.2.2. Inspection No. running counter to the rule
	7.2.3. Evaluation Environment
	7.2.4. #pragma extended functions for use in C start-up (Misra C rule 99)

	8. C-language Startups
	8.1. Generated Files
	8.2. Processing of Each Generated File
	8.3. How to Generate a C-language Startup

	9. The error in writing of the manual

