

R20UT4208EJ0100 Rev.1.00 Page 1 of 17
December 20, 2017

CS+ RH850 Compiler CC-RH V1.07.00
Release Note

Thank you for using the CS+ integrated development environment.

This document describes the restrictions and points for caution. Read this document before using the

product.

Contents
Chapter 1. Target Devices .. 2
Chapter 2. User’s Manuals .. 3
Chapter 3. Keywords When Uninstalling the Product .. 4
Chapter 4. Changes .. 5

4.1 C99 standard .. 6
4.2 Improvements to the feature for checking source code against MISRA-C:2012 rules

[Professional edition] .. 7
4.3 Feature for detecting illegal indirect function calls [Professional edition] 8
4.4 PIC/PID facilities ... 10

4.4.1 Section ... 10
4.4.2 Compile options ... 11
4.4.3 Assemble options ... 11
4.4.4 -r4 option ... 12

4.5 Enhanced optimization .. 12
4.5.1 Handling of bitwise operations .. 13
4.5.2 Alias analysis .. 13

4.6 Upper limits on usable amounts of memory .. 15
4.7 Initialization of automatic variables by using immediate values ... 15
4.8 Control of messages ... 16
4.9 Fixing of the record length of the Intel HEX file ... 16
4.10 Addition of a message at linkage .. 16
4.11 Rectified points for caution .. 17
4.12 Other changes and improvements .. 17

R20UT4208EJ0100
Rev.1.00

December 20, 2017

CS+ CC-RH V1.07.00 Release Note

R20UT4208EJ0100 Rev.1.00 Page 2 of 17
December 20, 2017

Chapter 1. Target Devices

The target devices supported by the CC-RH compiler are listed on the Website.

Please see the URL below.

CS+ Product Page:

http://www.renesas.com/cs+

http://www.renesas.com/cs+

CS+ CC-RH V1.07.00 Release Note

R20UT4208EJ0100 Rev.1.00 Page 3 of 17
December 20, 2017

Chapter 2. User’s Manuals

Please read the following user’s manuals along with this document.

Manual Name Document Number

CC-RH Compiler User's Manual R20UT3516EJ0104

CS+ Integrated Development Environment User’s Manual:
CC-RH Build Tool Operation

R20UT3283EJ0105

CS+ CC-RH V1.07.00 Release Note

R20UT4208EJ0100 Rev.1.00 Page 4 of 17
December 20, 2017

Chapter 3. Keywords When Uninstalling the Product

There are two ways to uninstall this product.

• Use the integrated uninstaller from Renesas (uninstalls all CS+ components)

• Use the Windows uninstaller (only uninstalls this product)

To use the Windows uninstaller, select “CS+ CC-RH V1.07.00” from “Programs and Features” of the
control panel.

CS+ CC-RH V1.07.00 Release Note

R20UT4208EJ0100 Rev.1.00 Page 5 of 17
December 20, 2017

Chapter 4. Changes

This chapter describes changes to the CC-RH compiler from V1.06.00 to V1.07.00.

Note that the features which are only available to users holding a registered license for the Professional
edition are indicated as [Professional edition].

CS+ CC-RH V1.07.00 Release Note

R20UT4208EJ0100 Rev.1.00 Page 6 of 17
December 20, 2017

4.1 C99 standard
To select conformance of the language specifications with the C99 standard, the -lang and -strict_std

compiler options have been added.

Note that this version of the compiler does not support variable-length arrays and complex types, and

some standard library functions.

When the -lang=c option is specified, the language specifications conform with the C90 standard.

When the -lang=c99 option is specified, the language specifications conform with the C99

standard.

This option selects processing of the C source program in strict accordance with the language

standard (C90 or C99) specified with the -lang option. Error and warning messages are output in

response to code that violates the given standard.

V1.06.00 and earlier versions have the -Xansi option to select the processing of C source programs

in strict accordance with the C90 standard; however, in V1.07.00 and later versions, the -strict_std

option is used. If the -Xansi option is specified in V1.07.00 and later versions, it is automatically
converted to the -strict_std option for input to the compiler.

-lang={c|c99}

-strict_std

CS+ CC-RH V1.07.00 Release Note

R20UT4208EJ0100 Rev.1.00 Page 7 of 17
December 20, 2017

4.2 Improvements to the feature for checking source code against
MISRA-C:2012 rules [Professional edition]
The following rule numbers have been added to those which can be designated as arguments of the -
Xmisra2012 option for use with the C99 standard, which selects checking by the compiler of source code

against the specified MISRA-C:2012 rules.

[Mandatory rules] 17.6

[Required rules] 8.14, 9.4, 9.5, 13.1, 18.7, 21.11

[Advisory rules] 21.12

The following are the numbers of MISRA-C:2012 rules against which each revision of compilers can check

source code for compliance.

Rule classification
(number of rules in the
standard)

V1.03.00 V1.04.00 V1.05.00 V1.06.00 V1.07.00

Mandatory rules (16) 3 3 4 6 7

Required rules (108) 31 58 76 80 86

Advisory rules (32) 7 21 23 25 26

Total number of rules (156) 41 82 103 111 119

CS+ CC-RH V1.07.00 Release Note

R20UT4208EJ0100 Rev.1.00 Page 8 of 17
December 20, 2017

4.3 Feature for detecting illegal indirect function calls [Professional
edition]
A feature for detecting indirect function calls to illegal addresses has been added.

The compiler checks the branch destination addresses of indirect calls of functions through the following

steps and calls an error function if it detects a problem.

1. The compiler automatically extracts functions which may be indirectly called in the C-source program
and the linker consolidates the information to generate a list of functions in the executable files.

2. The compiler inserts processing for calling the “__control_flow_integrity” checking function

immediately before calls of indirect functions it finds in analyzing the C-source program. The branch
destination address of the call of the indirect function is passed as an argument to this checking

function.

3. Within the checking function at the time of execution, the branch destination address given as the
argument is checked to see if it is included in the list of functions. If the address is not included, it is

regarded as an illegal indirect function call, so the “__control_flow_chk_fail” error function will be

called.

The following C-source program shows an example of an illegal indirect function call.

Since the address of func1 is acquired in the fourth line, the call of func1 is regarded as indirect and

added to the list of functions.

Since a function pointer fp is used to indirectly call func1 in the seventh line, the compiler acquires the
value of fp immediately before this call and generates code to call the “__control_flow_integrity”

checking function by specifying the acquired value as an argument. Within the checking function, a

check of whether the value specified by the argument (the address of func1 in the case of normal
operation) is included in the list of functions is conducted and subsequent operation is as follows.

- If the list includes the value, the compiler continues to process the C-source program.

- If the list does not include the value, the “__control_flow_chk_fail” error function is called.

1:
2:
3:
4:
5:
6:
7:
8:
9:

extern void func1(void);
extern void func2(void);

void (*fp)(void) = &func1;

void main(void) {

(*fp)(); // Function func1 is indirectly called.
func2(); // Function func2 is directly called.

}

CS+ CC-RH V1.07.00 Release Note

R20UT4208EJ0100 Rev.1.00 Page 9 of 17
December 20, 2017

Illegal indirect function calls can thus be detected in the way described above.

Since the call of func2 is direct, the eighth line is not detected.

Specify the following options to enable this feature.

This option selects the generation of code for detecting illegal indirect function calls.

This option selects the generation of a list of functions for use in detecting illegal indirect function

calls.

The following linker options have also been added in association with this feature.

 -cfi_add_func
This option adds the symbols or addresses of functions which are specified as arguments to the list

of functions.

 -cfi_ignore_module
This option selects the non-addition of the addresses of functions included in a file which is

specified as an argument to the list of functions.

 -show=cfi
This option selects the output of the contents of the list of functions to the list file which is output in

response to specifying the -list option.

[Compile option]

-control_flow_integrity

[Link option]

-cfi

CS+ CC-RH V1.07.00 Release Note

R20UT4208EJ0100 Rev.1.00 Page 10 of 17
December 20, 2017

4.4 PIC/PID facilities
PIC and PID (described below) facilities have been added for the allocation of functions, constants, or

variables to given addresses that differ from those they would otherwise be given at the time of linkage.
In the CC-RH compiler,

- the facility for allocating functions to addresses and making them executable there is called the PIC

(Position Independent Code) facility,

- the facility for allocating constants to addresses and making reference to them at those addresses

possible is called the PIROD (Position Independent Read Only Data) facility, and

- the facility for allocating variables to addresses and making reference to them at those addresses

possible is called the PID (Position Independent Data) facility.

4.4.1 Section

The following sections have been added to support the PIC and PID facilities.

In association with the addition of the sections above, the following options have been added.

 Attribute strings which can be specified for #pragma section:

pctext, pcconst16, pcconst23, pcconst32, gp_disp32, ep_disp32

 Section attributes which can be specified as arguments of the -Xsection option:
pcconst16, pcconst23

 Relocatable attributes which can be specified as operands of the .cseg, .dseg or .section directive.

PCTEXT, PCCONST16, PCCONST23, PCCONST32,
SDATA32, SBSS32, EDATA32, EBSS32

Target Section Name Access

Function .pctext
Access with a 32-bit address relative to the PC
value or the __pc_data symbol

Constant .pcconst16
Access with a 16-bit address relative to the
__pc_data symbol

Constant .pcconst23
Access with a 23-bit address relative to the
__pc_data symbol

Constant .pcconst32
Access with a 32-bit address relative to the
__pc_data symbol

Variable with the
initial value

.sdata32
Access with a 32-bit address relative to the
value of r4 (GP) Variable without

the initial value
.sbss32

Variable with the
initial value

.edata32
Access with a 32-bit address relative to the
value of r30 (EP) Variable without

the initial value
.ebss32

CS+ CC-RH V1.07.00 Release Note

R20UT4208EJ0100 Rev.1.00 Page 11 of 17
December 20, 2017

4.4.2 Compile options

The following compiler options have been added for enabling the PIC and PID facilities.

The default section of the functions is changed from .text to .pctext.

Execution at the given position is enabled by calling the functions that were allocated to the .pctext

section in PC-relative mode.

The default section of the constants is changed from .const to .pcconst32.

Allocation and reference to the given positions are enabled by referring to the constants that were

allocated to the .pcconst32 section in PC-relative mode.

The default sections of the variables are changed from .data and .bss to .sdata32 and .sbss32.

Allocation and reference to the given positions are enabled by referring to the variables that were
allocated to the .sdata32 and .sbss32 sections in GP-relative mode.

4.4.3 Assemble options

The following assembler options have been added to enable the PIC and PID facilities.

The relocation attribute that can be specified as an operand in the .cseg or .section directive is

changed as follows. If a relocation attribute that is not specifiable is specified, an error will occur.

[To enable the PIC facility]

-pic

-pirod

[To enable the PIROD facility]

-pid

[To enable the PID facility]

-pic

[To enable the PIC facility]

CS+ CC-RH V1.07.00 Release Note

R20UT4208EJ0100 Rev.1.00 Page 12 of 17
December 20, 2017

- When this option is not specified: TEXT

- When this option is specified: PCTEXT

The relocation attribute that can be specified as an operand in the .cseg or .section directive is

changed as follows. If a relocation attribute that is not specifiable is specified, an error will occur.

- When this option is not specified: CONST, ZCONST, or ZCONST23
- When this option is specified: PCCONST16, PCCONST23, or PCCONST32

The relocation attribute that can be specified as an operand in the .cseg or .section directive is
changed as follows. If a relocation attribute that is not specifiable is specified, an error will occur.

- When this option is not specified: DATA, ZDATA, ZDATA23, BSS, ZBSS, or ZBSS23

- When this option is specified: SDATA32, SBSS32, EDATA32, or EBSS32

4.4.4 -r4 option
The -r4 option, which causes the code generated during compilation to not use the r4 register (GP), has

been added.

When the -r4=fix option is specified, the value of the r4 register is fixed for the entire project.

Specify this parameter when GP-relative sections are in use due to the PID facility or for some
other reason.

When the -r4=none option is specified, object code that can be used for both programs that include

or do not include the use of PID is generated.

4.5 Enhanced optimization

The performance of generated code have been improved mainly by implementing the following

optimization.

-pirod

[To enable the PIROD facility]

-pid

[To enable the PID facility]

-r4={fix|none}

CS+ CC-RH V1.07.00 Release Note

R20UT4208EJ0100 Rev.1.00 Page 13 of 17
December 20, 2017

4.5.1 Handling of bitwise operations
Handling of bitwise operations for data having a narrow bit width has been enhanced.

In this example, a bit-mask operation for the value to be assigned to *p is deleted. Replacing bitwise

operations having unnecessary processing in conditional operations with the logical instruction not
becomes possible.

4.5.2 Alias analysis

Optimization by alias analysis has been enhanced. Alias analysis was implemented in V1.06.00 and is
enabled by specifying the -Xalias=ansi option.

In V1.06.00, alias analysis is disabled when the -Xmerge_files option is specified. However, in V1.07.00,

it is enabled even when the -Xmerge_files option is specified.

When optimization by alias analysis is enabled, the effect is the same as in V1.06.00.

<Code generated by V1.06.00>

_func:

 .stack _func = 0

 andi 0x0000000F, r7, r2

 shr r2, r8

 andi 0x000000FF, r8, r2 ; Bit-mask operation

 add r7, r6

 cmp 0x00000000, r9

 bnz9 .BB.LABEL.1_2

.BB.LABEL.1_1: ; bb20

 movea 0xFFFFFF00, r0, r2

 or r2, r8

 xori 0x000000FF, r8, r2

.BB.LABEL.1_2: ; bb23

 st.b r2, 0x00000000[r6]

 jmp [r31]

<Code generated by V1.07.00>

_func:

 .stack _func = 0

 andi 0x0000000F, r7, r2

 shr r2, r8

 add r7, r6

 cmp 0x00000000, r9

 bnz9 .BB.LABEL.1_2

.BB.LABEL.1_1: ; bb20

 not r8, r8 ; Logical instruction

.BB.LABEL.1_2: ; bb23

 st.b r8, 0x00000000[r6]

 jmp [r31]

<Example of source code>

void func(unsigned char *t, unsigned char i, unsigned char j, unsigned char v) {

 unsigned char *p = &t[i & 0xff];

 unsigned char m = j >> (i & 0xf);

 *p = v ? m : ~m;

}

CS+ CC-RH V1.07.00 Release Note

R20UT4208EJ0100 Rev.1.00 Page 14 of 17
December 20, 2017

In the example above, although the address of StructArray[p->index1] would be calculated three times

without alias analysis, it is only calculated once with alias analysis.

<Example of source code>

struct tag1 {
 char member1;
 int member2;
 long long member3;
} StructArray[2];

struct tag2 {
 short index0;
 short index1;
 short index2;
};

void func(struct tag2 *p) {
 StructArray[p->index1].member1 = 1;
 StructArray[p->index1].member2 = 2;
 StructArray[p->index1].member3 = 3;

}

<Without alias analysis>

_func:

.stack _func = 0

 ld.h 0x00000002[r6], r2

 shl 0x00000004, r2

 mov #_StructArray, r5

 add r5, r2

 mov 0x00000001, r7

 st.b r7, 0x00000000[r2]

 ld.h 0x00000002[r6], r2

 shl 0x00000004, r2

 add r5, r2

 mov 0x00000002, r7

 st.w r7, 0x00000004[r2]

 ld.h 0x00000002[r6], r2

 shl 0x00000004, r2

 add r2, r5

 mov 0x00000003, r2

 st.w r2, 0x00000008[r5]

 st.w r0, 0x0000000C[r5]

 jmp [r31]

<With alias analysis>

_func:

 .stack _func = 0

 ld.h 0x00000002[r6], r2

 shl 0x00000004, r2

 mov #_StructArray, r5

 add r2, r5

 mov 0x00000001, r2

 st.b r2, 0x00000000[r5]

 mov 0x00000002, r2

 st.w r2, 0x00000004[r5]

 mov 0x00000003, r2

 st.w r2, 0x00000008[r5]

 st.w r0, 0x0000000C[r5]

 jmp [r31]

CS+ CC-RH V1.07.00 Release Note

R20UT4208EJ0100 Rev.1.00 Page 15 of 17
December 20, 2017

4.6 Upper limits on usable amounts of memory
The amounts of memory on the host computer that are usable by the CC-RH compiler have been

expanded.

 2 Gbytes with the 32-bit and 64-bit OSs [V1.06.00 and earlier versions]

 3 Gbytes with the 32-bit OS and 4 Gbytes with the 64-bit OS [V1.07.00 and later versions]

4.7 Initialization of automatic variables by using immediate values

The -Oinline_init compiler option, which causes the initialization of structure-type or array-type automatic
variables by using immediate values, has been added. This may accelerate the execution of programs.

Initialization of automatic variables is usually by reference to a table in which initializers have been
defined (e.g. .STR.1 for code generated by V1.06.00). When the -Oinline_init option is specified,

automatic variables are initialized by placing initializers in instructions.

<Code generated by V1.06.00>

_main:
 .stack _main = 16
 add 0xFFFFFFF0, r3
 movea 0x00000010, r0, r2
 mov #.STR.1, r5
 mov r3, r6
 add r6, r2
 br9 .BB.LABEL.1_2
.BB.LABEL.1_1: ; entry
 ld23.dw 0x00000000[r5], r8
 st23.dw r8, 0x00000000[r6]
 add 0x00000008, r5
 add 0x00000008, r6
.BB.LABEL.1_2: ; entry
 cmp r6, r2
 bnz9 .BB.LABEL.1_1
.BB.LABEL.1_3: ; entry
 dispose 0x00000010, 0x00000000, [r31]
 .section .const, const
 .align 4
.STR.1:
 .dw 0x0001,0x0002,0x0003,0x0004

<Code generated by V1.07.00>
[When -Oinline_init is specified]

_main:
 .stack _main = 16
 add 0xFFFFFFF0, r3
 mov 0x00000001, r2
 st.w r2, 0x00000000[r3]
 mov 0x00000002, r2
 st.w r2, 0x00000004[r3]
 mov 0x00000003, r2
 st.w r2, 0x00000008[r3]
 mov 0x00000004, r2
 st.w r2, 0x0000000C[r3]
 dispose 0x000010, 0x000000, [r31]

<Example of source code>

void main() {

 int array[4] = {1,2,3,4};

}

CS+ CC-RH V1.07.00 Release Note

R20UT4208EJ0100 Rev.1.00 Page 16 of 17
December 20, 2017

4.8 Control of messages
The -change_message compiler option, which is used to change warning messages to error

messages, has been added to avoid oversights in the form of warning messages not being noticed.

In addition, the -Xno_warning compiler option that controls the output of warning messages can now

specify messages with numbers from 0510000.

 W0520000 to W0559999 can be controlled. [V1.06.00 and earlier versions]

 W0510000 to W0559999 can be controlled. [V1.07.00 and later versions]

4.9 Fixing of the record length of the Intel HEX file
The -fix_record_length_and_align option, which causes the output addresses of Intel HEX files (.hex)

and Motorola S-record files (.mot) to have a specified alignment and be output with a fixed record
length, has been added. Since with this option a HEX file is always output with a fixed record length, it

can improve the efficiency of work such as comparing HEX files.

The -byte_count option has also been extended to allow its specification along with the -form=stype
option.

4.10 Addition of a message at linkage
In V1.06.00 and earlier versions, the warning code W0561322 was output if sections with different

alignment conditions but the same names were linked. In V1.07.00, warning code W0561331 is output
when sections with the same names but different alignment conditions, with the condition for one not

being a multiple of that of the other, are linked.

W0561322: Section alignment mismatch : " section"

W0561331: Section alignment is not adjusted : " section"

In both cases, specification of the greater value of the alignment condition is enabled and the sections

are linked.

W0561322 can be ignored since it does not indicate a problem with operation. However, since

W0561331 indicates a possible problem with operation, the alignment conditions must be reviewed.

CS+ CC-RH V1.07.00 Release Note

R20UT4208EJ0100 Rev.1.00 Page 17 of 17
December 20, 2017

4.11 Rectified points for caution
The points for caution on the following four items no longer apply. For details, refer to Tool News.

- The pow function returning incorrect values (No.9)
- Using a goto statement to move to a label in a switch statement (No.16)

- Math library functions that contain FPU instructions (No.17)

- Loop statements with loop-control variables in which constants are used as the condition for ending
the loop (No.18)

4.12 Other changes and improvements

The generation of an internal error in response to building has been corrected.

All trademarks and registered trademarks are the property of their respective owners.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by

you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other disputes involving patents, copyrights, or other intellectual property rights of third parties, by or

arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawing, chart, program, algorithm, application

examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages

incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics products.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the

product’s quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

 Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (space and undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas

Electronics disclaims any and all liability for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas

Electronics.

6. When using the Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the

reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat radiation

characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions or failure or accident arising out of the use of Renesas Electronics products beyond such specified

ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics such as the occurrence of failure at a

certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please ensure to implement safety measures to guard them

against the possibility of bodily injury, injury or damage caused by fire, and social damage in the event of failure or malfunction of Renesas Electronics products, such as safety design for hardware and

software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures by your own responsibility as warranty

for your products/system. Because the evaluation of microcomputer software alone is very difficult and not practical, please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please investigate applicable laws and

regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive carefully and sufficiently and use Renesas Electronics products in compliance with all

these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws

or regulations. You shall not use Renesas Electronics products or technologies for (1) any purpose relating to the development, design, manufacture, use, stockpiling, etc., of weapons of mass destruction,

such as nuclear weapons, chemical weapons, or biological weapons, or missiles (including unmanned aerial vehicles (UAVs)) for delivering such weapons, (2) any purpose relating to the development,

design, manufacture, or use of conventional weapons, or (3) any other purpose of disturbing international peace and security, and you shall not sell, export, lease, transfer, or release Renesas Electronics

products or technologies to any third party whether directly or indirectly with knowledge or reason to know that the third party or any other party will engage in the activities described above. When exporting,

selling, transferring, etc., Renesas Electronics products or technologies, you shall comply with any applicable export control laws and regulations promulgated and administered by the governments of the

countries asserting jurisdiction over the parties or transactions.

10. Please acknowledge and agree that you shall bear all the losses and damages which are incurred from the misuse or violation of the terms and conditions described in this document, including this notice,

and hold Renesas Electronics harmless, if such misuse or violation results from your resale or making Renesas Electronics products available any third party.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2017 Renesas Electronics Corporation. All rights reserved.
Colophon 6.0

(Rev.3.0-1 November 2016)

http://www.renesas.com
http://www.renesas.com/

	Chapter 1. Target Devices
	Chapter 2. User’s Manuals
	Chapter 3. Keywords When Uninstalling the Product
	Chapter 4. Changes
	4.1 C99 standard
	4.2 Improvements to the feature for checking source code against MISRA-C:2012 rules [Professional edition]
	4.3 Feature for detecting illegal indirect function calls [Professional edition]
	4.4 PIC/PID facilities
	4.4.1 Section
	4.4.2 Compile options
	4.4.3 Assemble options
	4.4.4 -r4 option

	4.5 Enhanced optimization
	4.5.1 Handling of bitwise operations
	4.5.2 Alias analysis

	4.6 Upper limits on usable amounts of memory
	4.7 Initialization of automatic variables by using immediate values
	4.8 Control of messages
	4.9 Fixing of the record length of the Intel HEX file
	4.10 Addition of a message at linkage
	4.11 Rectified points for caution
	4.12 Other changes and improvements

