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CS+ RH850 Compiler CC-RH V1.07.00 
Release Note 
 

Thank you for using the CS+ integrated development environment. 

This document describes the restrictions and points for caution. Read this document before using the 

product.  
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Chapter 1. Target Devices 

The target devices supported by the CC-RH compiler are listed on the Website. 

Please see the URL below. 

CS+ Product Page: 

http://www.renesas.com/cs+ 
 

  

http://www.renesas.com/cs+


CS+ CC-RH V1.07.00 Release Note 

R20UT4208EJ0100  Rev.1.00                                                        Page 3 of 17 
December 20, 2017  

Chapter 2. User’s Manuals 

Please read the following user’s manuals along with this document. 

 

Manual Name Document Number 

CC-RH Compiler User's Manual R20UT3516EJ0104 

CS+ Integrated Development Environment User’s Manual:  
CC-RH Build Tool Operation 

R20UT3283EJ0105 
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Chapter 3. Keywords When Uninstalling the Product 

There are two ways to uninstall this product. 

 

• Use the integrated uninstaller from Renesas (uninstalls all CS+ components) 

• Use the Windows uninstaller (only uninstalls this product) 

 

To use the Windows uninstaller, select “CS+ CC-RH V1.07.00” from “Programs and Features” of the 
control panel.  
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Chapter 4. Changes 

This chapter describes changes to the CC-RH compiler from V1.06.00 to V1.07.00.  

Note that the features which are only available to users holding a registered license for the Professional 
edition are indicated as [Professional edition]. 

 

 
  



CS+ CC-RH V1.07.00 Release Note 

R20UT4208EJ0100  Rev.1.00                                                        Page 6 of 17 
December 20, 2017  

4.1 C99 standard 
To select conformance of the language specifications with the C99 standard, the -lang and -strict_std 

compiler options have been added. 

Note that this version of the compiler does not support variable-length arrays and complex types, and 

some standard library functions. 

 

 

When the -lang=c option is specified, the language specifications conform with the C90 standard. 

When the -lang=c99 option is specified, the language specifications conform with the C99 

standard. 

 

 

This option selects processing of the C source program in strict accordance with the language 

standard (C90 or C99) specified with the -lang option. Error and warning messages are output in 

response to code that violates the given standard. 

V1.06.00 and earlier versions have the -Xansi option to select the processing of C source programs 

in strict accordance with the C90 standard; however, in V1.07.00 and later versions, the -strict_std 

option is used. If the -Xansi option is specified in V1.07.00 and later versions, it is automatically 
converted to the -strict_std option for input to the compiler. 

 

 
  

-lang={c|c99} 

-strict_std 
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4.2 Improvements to the feature for checking source code against 
MISRA-C:2012 rules [Professional edition] 
The following rule numbers have been added to those which can be designated as arguments of the -
Xmisra2012 option for use with the C99 standard, which selects checking by the compiler of source code 

against the specified MISRA-C:2012 rules. 
 

[Mandatory rules] 17.6 

[Required rules]  8.14,  9.4,  9.5,  13.1,  18.7,  21.11 

[Advisory rules] 21.12 
 

The following are the numbers of MISRA-C:2012 rules against which each revision of compilers can check 

source code for compliance. 
 
Rule classification 
(number of rules in the 
standard) 

V1.03.00 V1.04.00 V1.05.00 V1.06.00 V1.07.00 

Mandatory rules (16) 3 3 4 6 7 

Required rules (108) 31 58 76 80 86 

Advisory rules (32) 7 21 23 25 26 

Total number of rules (156) 41 82 103 111 119 
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4.3 Feature for detecting illegal indirect function calls [Professional 
edition] 
A feature for detecting indirect function calls to illegal addresses has been added. 

The compiler checks the branch destination addresses of indirect calls of functions through the following 

steps and calls an error function if it detects a problem. 

1. The compiler automatically extracts functions which may be indirectly called in the C-source program 
and the linker consolidates the information to generate a list of functions in the executable files. 

2. The compiler inserts processing for calling the “__control_flow_integrity” checking function 

immediately before calls of indirect functions it finds in analyzing the C-source program. The branch 
destination address of the call of the indirect function is passed as an argument to this checking 

function. 

3. Within the checking function at the time of execution, the branch destination address given as the 
argument is checked to see if it is included in the list of functions. If the address is not included, it is 

regarded as an illegal indirect function call, so the “__control_flow_chk_fail” error function will be 

called. 

 

The following C-source program shows an example of an illegal indirect function call. 

 

 

 

 

 

 

 

Since the address of func1 is acquired in the fourth line, the call of func1 is regarded as indirect and 

added to the list of functions. 

Since a function pointer fp is used to indirectly call func1 in the seventh line, the compiler acquires the 
value of fp immediately before this call and generates code to call the “__control_flow_integrity” 

checking function by specifying the acquired value as an argument. Within the checking function, a 

check of whether the value specified by the argument (the address of func1 in the case of normal 
operation) is included in the list of functions is conducted and subsequent operation is as follows. 

- If the list includes the value, the compiler continues to process the C-source program. 

- If the list does not include the value, the “__control_flow_chk_fail” error function is called. 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

extern void func1(void); 
extern void func2(void); 
 
void (*fp)(void) = &func1; 
 
void main(void) { 

(*fp)();          // Function func1 is indirectly called. 
func2();         // Function func2 is directly called. 

} 
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Illegal indirect function calls can thus be detected in the way described above. 

Since the call of func2 is direct, the eighth line is not detected. 

Specify the following options to enable this feature. 

 

 

 

This option selects the generation of code for detecting illegal indirect function calls. 

 

 

 

This option selects the generation of a list of functions for use in detecting illegal indirect function 

calls. 

 

The following linker options have also been added in association with this feature. 

 -cfi_add_func 
This option adds the symbols or addresses of functions which are specified as arguments to the list 

of functions. 

 -cfi_ignore_module 
This option selects the non-addition of the addresses of functions included in a file which is 

specified as an argument to the list of functions. 

 -show=cfi 
This option selects the output of the contents of the list of functions to the list file which is output in 

response to specifying the -list option. 

 

 

[Compile option] 

-control_flow_integrity 

[Link option] 

-cfi 
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4.4  PIC/PID facilities 
PIC and PID (described below) facilities have been added for the allocation of functions, constants, or 

variables to given addresses that differ from those they would otherwise be given at the time of linkage. 
In the CC-RH compiler,  

- the facility for allocating functions to addresses and making them executable there is called the PIC 

(Position Independent Code) facility, 

- the facility for allocating constants to addresses and making reference to them at those addresses 

possible is called the PIROD (Position Independent Read Only Data) facility, and  

- the facility for allocating variables to addresses and making reference to them at those addresses 

possible is called the PID (Position Independent Data) facility. 

 

4.4.1 Section 

The following sections have been added to support the PIC and PID facilities. 

In association with the addition of the sections above, the following options have been added. 

 Attribute strings which can be specified for #pragma section: 

pctext,  pcconst16,  pcconst23,  pcconst32,  gp_disp32,  ep_disp32 

 Section attributes which can be specified as arguments of the -Xsection option: 
pcconst16,  pcconst23 

 Relocatable attributes which can be specified as operands of the .cseg, .dseg or .section directive. 

PCTEXT,  PCCONST16,  PCCONST23,  PCCONST32, 
SDATA32,  SBSS32,  EDATA32,  EBSS32 

Target Section Name Access 

Function .pctext 
Access with a 32-bit address relative to the PC 
value or the __pc_data symbol 

Constant .pcconst16 
Access with a 16-bit address relative to the 
__pc_data symbol 

Constant .pcconst23 
Access with a 23-bit address relative to the 
__pc_data symbol 

Constant .pcconst32 
Access with a 32-bit address relative to the 
__pc_data symbol 

Variable with the 
initial value 

.sdata32 
Access with a 32-bit address relative to the 
value of r4 (GP) Variable without 

the initial value 
.sbss32 

Variable with the 
initial value 

.edata32 
Access with a 32-bit address relative to the 
value of r30 (EP) Variable without 

the initial value 
.ebss32 
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4.4.2 Compile options 

The following compiler options have been added for enabling the PIC and PID facilities. 

 

 

 

The default section of the functions is changed from .text to .pctext. 

Execution at the given position is enabled by calling the functions that were allocated to the .pctext 

section in PC-relative mode. 

 

 

 

 

The default section of the constants is changed from .const to .pcconst32. 

Allocation and reference to the given positions are enabled by referring to the constants that were 

allocated to the .pcconst32 section in PC-relative mode. 

 

 

 

 

The default sections of the variables are changed from .data and .bss to .sdata32 and .sbss32. 

Allocation and reference to the given positions are enabled by referring to the variables that were 
allocated to the .sdata32 and .sbss32 sections in GP-relative mode. 

 

 
4.4.3 Assemble options 

The following assembler options have been added to enable the PIC and PID facilities. 

 

 

 

 

The relocation attribute that can be specified as an operand in the .cseg or .section directive is 

changed as follows. If a relocation attribute that is not specifiable is specified, an error will occur. 

[To enable the PIC facility] 

-pic 

-pirod 

[To enable the PIROD facility] 

-pid 

[To enable the PID facility] 

-pic 

[To enable the PIC facility] 
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- When this option is not specified: TEXT 

- When this option is specified: PCTEXT 

 

 

 

 

The relocation attribute that can be specified as an operand in the .cseg or .section directive is 

changed as follows. If a relocation attribute that is not specifiable is specified, an error will occur. 

- When this option is not specified: CONST, ZCONST, or ZCONST23 
- When this option is specified: PCCONST16, PCCONST23, or PCCONST32 

 

 

 

 

The relocation attribute that can be specified as an operand in the .cseg or .section directive is 
changed as follows. If a relocation attribute that is not specifiable is specified, an error will occur. 

- When this option is not specified: DATA, ZDATA, ZDATA23, BSS, ZBSS, or ZBSS23 

- When this option is specified: SDATA32, SBSS32, EDATA32, or EBSS32 

 

4.4.4 -r4 option 
The -r4 option, which causes the code generated during compilation to not use the r4 register (GP), has 

been added. 

 

 

When the -r4=fix option is specified, the value of the r4 register is fixed for the entire project. 

Specify this parameter when GP-relative sections are in use due to the PID facility or for some 
other reason. 

When the -r4=none option is specified, object code that can be used for both programs that include 

or do not include the use of PID is generated. 
 
 
4.5 Enhanced optimization 

The performance of generated code have been improved mainly by implementing the following 

optimization. 
  

-pirod 

[To enable the PIROD facility] 

-pid 

[To enable the PID facility] 

-r4={fix|none} 
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4.5.1 Handling of bitwise operations 
Handling of bitwise operations for data having a narrow bit width has been enhanced. 

 

 

 

 

 

 

 

 

In this example, a bit-mask operation for the value to be assigned to *p is deleted. Replacing bitwise 

operations having unnecessary processing in conditional operations with the logical instruction not 
becomes possible. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
4.5.2 Alias analysis 

Optimization by alias analysis has been enhanced. Alias analysis was implemented in V1.06.00 and is 
enabled by specifying the -Xalias=ansi option. 

In V1.06.00, alias analysis is disabled when the -Xmerge_files option is specified. However, in V1.07.00, 

it is enabled even when the -Xmerge_files option is specified. 

When optimization by alias analysis is enabled, the effect is the same as in V1.06.00. 

<Code generated by V1.06.00> 

_func: 

        .stack _func = 0 

        andi 0x0000000F, r7, r2 

        shr r2, r8 

        andi 0x000000FF, r8, r2 ; Bit-mask operation 

        add r7, r6 

        cmp 0x00000000, r9 

        bnz9 .BB.LABEL.1_2 

.BB.LABEL.1_1:  ; bb20 

        movea 0xFFFFFF00, r0, r2 

        or r2, r8 

        xori 0x000000FF, r8, r2 

.BB.LABEL.1_2:  ; bb23 

        st.b r2, 0x00000000[r6] 

        jmp [r31] 

<Code generated by V1.07.00> 

_func: 

        .stack _func = 0 

        andi 0x0000000F, r7, r2 

        shr r2, r8 

        add r7, r6 

        cmp 0x00000000, r9 

        bnz9 .BB.LABEL.1_2 

.BB.LABEL.1_1:  ; bb20 

        not r8, r8  ; Logical instruction 

.BB.LABEL.1_2:  ; bb23 

        st.b r8, 0x00000000[r6] 

        jmp [r31] 

<Example of source code> 

void func(unsigned char *t, unsigned char i, unsigned char j, unsigned char v) { 

 unsigned char *p = &t[i & 0xff]; 

 unsigned char m = j >> (i & 0xf); 

 *p = v ? m : ~m; 

} 
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In the example above, although the address of StructArray[p->index1] would be calculated three times 

without alias analysis, it is only calculated once with alias analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

<Example of source code> 

struct tag1 { 
    char member1; 
    int  member2; 
    long long member3; 
} StructArray[2]; 
 
struct tag2 { 
    short index0; 
    short index1; 
    short index2; 
}; 
 
void func(struct tag2 *p) { 
    StructArray[p->index1].member1 = 1; 
    StructArray[p->index1].member2 = 2; 
    StructArray[p->index1].member3 = 3; 

} 

<Without alias analysis> 

_func: 

.stack _func = 0 

     ld.h 0x00000002[r6], r2 

     shl 0x00000004, r2 

     mov #_StructArray, r5 

     add r5, r2 

     mov 0x00000001, r7 

     st.b r7, 0x00000000[r2] 

     ld.h 0x00000002[r6], r2 

     shl 0x00000004, r2 

     add r5, r2 

     mov 0x00000002, r7 

     st.w r7, 0x00000004[r2] 

     ld.h 0x00000002[r6], r2 

     shl 0x00000004, r2 

     add r2, r5 

     mov 0x00000003, r2 

     st.w r2, 0x00000008[r5] 

     st.w r0, 0x0000000C[r5] 

     jmp [r31] 

<With alias analysis> 

_func: 

  .stack _func = 0 

     ld.h 0x00000002[r6], r2 

     shl 0x00000004, r2 

     mov #_StructArray, r5 

     add r2, r5 

     mov 0x00000001, r2 

     st.b r2, 0x00000000[r5] 

     mov 0x00000002, r2 

     st.w r2, 0x00000004[r5] 

     mov 0x00000003, r2 

     st.w r2, 0x00000008[r5] 

     st.w r0, 0x0000000C[r5] 

     jmp [r31] 
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4.6 Upper limits on usable amounts of memory 
The amounts of memory on the host computer that are usable by the CC-RH compiler have been 

expanded. 

 2 Gbytes with the 32-bit and 64-bit OSs [V1.06.00 and earlier versions] 

 3 Gbytes with the 32-bit OS and 4 Gbytes with the 64-bit OS [V1.07.00 and later versions] 

 
 
4.7 Initialization of automatic variables by using immediate values 

The -Oinline_init compiler option, which causes the initialization of structure-type or array-type automatic 
variables by using immediate values, has been added. This may accelerate the execution of programs. 

 

 

 

 

 

 

Initialization of automatic variables is usually by reference to a table in which initializers have been 
defined (e.g. .STR.1 for code generated by V1.06.00). When the -Oinline_init option is specified, 

automatic variables are initialized by placing initializers in instructions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

<Code generated by V1.06.00> 

_main: 
        .stack _main = 16 
        add 0xFFFFFFF0, r3 
        movea 0x00000010, r0, r2 
        mov #.STR.1, r5 
        mov r3, r6 
        add r6, r2 
        br9 .BB.LABEL.1_2 
.BB.LABEL.1_1:  ; entry 
        ld23.dw 0x00000000[r5], r8 
        st23.dw r8, 0x00000000[r6] 
        add 0x00000008, r5 
        add 0x00000008, r6 
.BB.LABEL.1_2:  ; entry 
        cmp r6, r2 
        bnz9 .BB.LABEL.1_1 
.BB.LABEL.1_3:  ; entry 
        dispose 0x00000010, 0x00000000, [r31] 
        .section .const, const 
        .align 4 
.STR.1: 
        .dw 0x0001,0x0002,0x0003,0x0004 

<Code generated by V1.07.00> 
[When -Oinline_init is specified] 

_main: 
        .stack _main = 16 
        add 0xFFFFFFF0, r3 
        mov 0x00000001, r2 
        st.w r2, 0x00000000[r3] 
        mov 0x00000002, r2 
        st.w r2, 0x00000004[r3] 
        mov 0x00000003, r2 
        st.w r2, 0x00000008[r3] 
        mov 0x00000004, r2 
        st.w r2, 0x0000000C[r3] 
        dispose 0x000010, 0x000000, [r31] 

<Example of source code> 

void main() { 

  int array[4] = {1,2,3,4}; 

} 
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4.8 Control of messages 
The -change_message compiler option, which is used to change warning messages to error 

messages, has been added to avoid oversights in the form of warning messages not being noticed. 

In addition, the -Xno_warning compiler option that controls the output of warning messages can now 

specify messages with numbers from 0510000. 

 W0520000 to W0559999 can be controlled. [V1.06.00 and earlier versions] 

 W0510000 to W0559999 can be controlled. [V1.07.00 and later versions] 

 

 

4.9 Fixing of the record length of the Intel HEX file 
The -fix_record_length_and_align option, which causes the output addresses of Intel HEX files (.hex) 

and Motorola S-record files (.mot) to have a specified alignment and be output with a fixed record 
length, has been added. Since with this option a HEX file is always output with a fixed record length, it 

can improve the efficiency of work such as comparing HEX files. 

The -byte_count option has also been extended to allow its specification along with the -form=stype 
option. 

 

 

4.10 Addition of a message at linkage 
In V1.06.00 and earlier versions, the warning code W0561322 was output if sections with different 

alignment conditions but the same names were linked. In V1.07.00, warning code W0561331 is output 
when sections with the same names but different alignment conditions, with the condition for one not 

being a multiple of that of the other, are linked. 

W0561322: Section alignment mismatch : " section" 

W0561331: Section alignment is not adjusted : " section" 

In both cases, specification of the greater value of the alignment condition is enabled and the sections 

are linked. 

W0561322 can be ignored since it does not indicate a problem with operation. However, since 

W0561331 indicates a possible problem with operation, the alignment conditions must be reviewed. 
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4.11 Rectified points for caution 
The points for caution on the following four items no longer apply. For details, refer to Tool News. 

- The pow function returning incorrect values (No.9) 
- Using a goto statement to move to a label in a switch statement (No.16) 

- Math library functions that contain FPU instructions (No.17) 

- Loop statements with loop-control variables in which constants are used as the condition for ending 
the loop (No.18) 

 

 
4.12 Other changes and improvements 

The generation of an internal error in response to building has been corrected. 
 
 
 
 
All trademarks and registered trademarks are the property of their respective owners. 
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