
All information contained in these materials, including products and product specifications, 
represents information on the product at the time of publication and is subject to change by 
Renesas Electronics Corp. without notice. Please review the latest information published by 
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp. 
website (http://www.renesas.com). 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

DSPASM 
FAA/GREEN_DSP Structured Assembler 
 

User’s Manual 

Rev.1.06  Mar 2024 

 
 

 

U
ser’

s M
anual 

www.renesas.com



 

 

Table of Contents 

1. Overview ............................................................................................................................................ 5 

2. About DSPASM ................................................................................................................................. 6 
2.1 Operating Environment ............................................................................................................................................. 7 
2.2 Input to the DSPASM ............................................................................................................................................... 7 
2.3 Output from the DSPASM ........................................................................................................................................ 9 
2.4 Command-Line Options for the DSPASM ............................................................................................................. 12 

3. Overview of Preprocessing .............................................................................................................. 24 
3.1 Distinguishing Identifiers for Preprocessing ........................................................................................................... 24 
3.2 Macro Replacement ................................................................................................................................................ 24 
3.3 Conditional Inclusion .............................................................................................................................................. 27 
3.4 File Inclusion .......................................................................................................................................................... 32 
3.5 Predefined Macros .................................................................................................................................................. 33 

4. Overview of Structured-Descriptive Processing .............................................................................. 34 
4.1 Variable Names Available for the Structured Description ...................................................................................... 34 

4.1.1 Register Variables ........................................................................................................................................ 34 
4.1.2 Flag Variables .............................................................................................................................................. 35 
4.1.3 A0 Register Bit Variables ............................................................................................................................. 35 
4.1.4 Pointer Variables .......................................................................................................................................... 36 

4.2 Constants Available for the Structured Description ................................................................................................ 36 
4.3 Operators Available for the Structured Description ................................................................................................ 37 

4.3.1 Priority of Operators ..................................................................................................................................... 39 
4.4 Control Statements Available for the Structured Description ................................................................................. 40 
4.5 Bit-Manipulating Instructions ................................................................................................................................. 64 
4.6 Concatenating Expressions Using Logical Operators ............................................................................................. 67 
4.7 Automatic Generation of Constant Labels .............................................................................................................. 70 
4.8 Stack Areas Used for the Structured Description .................................................................................................... 72 
4.9 Outputting the Structured Description to a List File ............................................................................................... 73 

5. Overview of Assembling ................................................................................................................. 75 
5.1 Specifications of Conversion of Assembly Codes .................................................................................................. 75 
5.2 Comments in Assembly Codes ............................................................................................................................... 83 
5.3 Definitions of Data in Data Section ........................................................................................................................ 83 
5.4 Pseudo-Directive in Assembly Codes ..................................................................................................................... 84 
5.5 About Sections ........................................................................................................................................................ 86 

5.5.1 Allocating Sections and the Number of Sections ......................................................................................... 87 
5.5.2 Note on Defining Multiple Sections ............................................................................................................. 89 

5.6 Direct Description of Instruction Codes ................................................................................................................. 89 

6. Details of Preprocessing .................................................................................................................. 90 
6.1 Operators of Constant Expressions ......................................................................................................................... 90 

7. Details of Structured-Descriptive Processing .................................................................................. 92 
7.1 Writing Address Values .......................................................................................................................................... 92 
7.2 Restrictions on the Structured Description.............................................................................................................. 92 

7.2.1 Expressions over Multiple Lines .................................................................................................................. 92 
7.2.2 Operators in Control Statements .................................................................................................................. 92 
7.2.3 Bit Manipulation Instructions ....................................................................................................................... 93 



 

 

7.2.4 Variables That Cannot Be Handled by Operators ........................................................................................ 93 
7.3 Crossing Nests in the Structured Description ......................................................................................................... 95 
7.4 Differences of Code Generation Depending on the Core Version of DSP ............................................................. 95 
7.5 Character Sets Available in the Structured Description .......................................................................................... 96 
7.6 Differences of Meanings at the Spots where "()" is Used ....................................................................................... 97 
7.7 Note on Using the Structured Description when the V3 Core is Used.................................................................... 98 
7.8 Note on Using the Structured Description without Side Effect .............................................................................. 99 

8. Details of Assembling .................................................................................................................... 100 
8.1 Restrictions on Assembling .................................................................................................................................. 100 
8.2 Character Sets Available in the Assembly Description ......................................................................................... 100 
8.3 Supplementary on Generating Assembly Codes ................................................................................................... 100 

9. Reserved Words ............................................................................................................................. 102 

10. Translation Limits ........................................................................................................................ 104 
10.1 Translation Limits on Preprocessing ..................................................................................................................... 104 
10.2 Translation Limits on the Structured Description ................................................................................................. 107 
10.3 Translation Limit on Assembling.......................................................................................................................... 107 

11. Error Messages ............................................................................................................................. 108 
11.1 Formats of Error Messages ................................................................................................................................... 108 
11.2 Error Messages...................................................................................................................................................... 108 
 

 

 

 



1.  Overview 

R20UT3911EJ0106 Rev.1.06  Page 5 of 126 
Mar 1, 2024  

1.   Overview 

This document summarizes the functional specifications of the structured-descriptive assembler for FAA/GREEN DSP 
(DSPASM). 



DSPASM  2.   About DSPASM 

R20UT3911EJ0106 Rev.1.06  Page 6 of 126 
Mar 1, 2024  

2.   About DSPASM 

The DSPASM is a program which assembles program codes having structured descriptions and outputs the assembled 
result as an object file. 

 

Figure 2.1   Flow of DSPASM Processing 

Preprocessing

Assembly-language 
file (.dsp)

Structured description

Assembling

List file
(.lst)

Object code source
file (.src)

Verilog file 
(.cmem, .dmem)

Object file
(.obj)

Processing by the 
structured-
descriptive 
assembler

Linker (existing)

Target file

Assembler

Assembly-language 
file (.asm)

Object file
(.obj)



DSPASM  2.   About DSPASM 

R20UT3911EJ0106 Rev.1.06  Page 7 of 126 
Mar 1, 2024  

2.1 Operating Environment 

The DSPASM operates in the following environment. 

Table 2.1 Operating Environment of the DSPASM 

Microsoft Windows Version 8.1 (32 bits or 64 bits, Japanese version or English version) 

Version 10 (32 bits or 64 bits, Japanese version or English version) 

Version 11 (64bits Japanese version or English version) 

 

2.2 Input to the DSPASM 

The DSPASM is input with the assembly-language file. 

Source codes to be assembled are described in an assembly-language file. For source codes, the normal assembler 
description and the structured description can be used. In addition, preprocessing directives can be described in source 
codes. 

The following shows an overview of an assembly-language file. 



DSPASM  2.   About DSPASM 

R20UT3911EJ0106 Rev.1.06  Page 8 of 126 
Mar 1, 2024  

Table 2.2 Overview of an Assembly-Language File 

Assembly-language file: extension (*.dsp) 

Format 

[Comment lines] 
[Preprocessing directives] 
 
SECTION CODE [NAME code section name] [LOCATE code RAM address] 
Program codes or comment lines 
 
SECTION DATA [NAME data section name] [LOCATE data RAM address] 
Data or comment lines 

Sample code 

 
; Sample code 
; 
 
#include <header.h> 
 
SECTION CODE LOCATE H'd000 
    MOV #S1_ST, DP0 
    MOV #S1_OUT, RP0 
    ; 
    MOV (DP0+), A0            ; DataB->A0 
    MOV A0, R0                ; DataB->R0 
    MOV (DP0+), A0            ; DataA->A0 
    ADD                      ; DataA + DataB 
    MOV A0, (RP0+) 
    STOP 
    ; 
SECTION DATA LOCATE H'c000 
S1_ST:  DATA H'00000050    ; DataB 
        DATA H'00000100    ; DataA 
        DATA H'00000003    ; Param_M0 
; 
S1_OUT: DATA H'00000000 

 



DSPASM  2.   About DSPASM 

R20UT3911EJ0106 Rev.1.06  Page 9 of 126 
Mar 1, 2024  

2.3 Output from the DSPASM 

One of the following three files can be output from the DSPASM. 

1. Object code source file 
2. Verilog file 
3. Object file 
 

The type of the file to be output is specified with the command-line option (-format). 

For details on command-line options, refer to section 2.4, Command-Line Options for the DSPASM. 

A list file can be output to check the result of conversion. When a list file is generated, the command-line option (-list) is 
specified. 

The following shows overviews of each file. 

(1) Object code source file 
 



DSPASM  2.   About DSPASM 

R20UT3911EJ0106 Rev.1.06  Page 10 of 126 
Mar 1, 2024  

Table 2.3 Overview of an Object Code Source File 

The assembled results are divided into program and data sections and output as two types of text files. 
 
For the file that outputs the program section, "_dspcode.src" is added at the end of the file name. 
For the file that outputs the data section, "_dspdata.src" is added at the end of the file name. 

Output example of an object code source file (program: *_dspcode.src) 

 
.SECTION    SAREA_DSPCODE, DATA, LOCATE=H'd000 
 .ORG    H'd000 
.DATA.B  H'80 
.DATA.B   H'00 
.DATA.B   H'88 
.DATA.B   H'03 
.DATA.B   H'07 
.DATA.B   H'03 
.DATA.B   H'07 
.DATA.B   H'0F 
.DATA.B   H'0D 
.DATA.B   H'20 
.END ND 

Output example of an object code source file (data: *_dspdata.src) 

 
.SECTION    SAREA_DSPDATA, DATA, LOCATE=H'c000 
 .ORG    H'c000 
S1_ST: 
.DATA.B   H'00 
.DATA.B   H'00 
.DATA.B   H'00 
.DATA.B   H'50 
.DATA.B   H'00 
.DATA.B   H'00 
.DATA.B   H'01 
.DATA.B   H'00 
.DATA.B   H'00 
.DATA.B   H'00 
.DATA.B   H'00 
.DATA.B   H'03 
S1_OUT: 
.DATA.B   H'00 
.DATA.B   H'00 
.DATA.B   H'00 
.DATA.B   H'00 
.END 

 



DSPASM  2.   About DSPASM 

R20UT3911EJ0106 Rev.1.06  Page 11 of 126 
Mar 1, 2024  

(2) Verilog file 
 

Table 2.4 Overview of a Verilog File 

The assembled results are divided into program and data sections and output as two types of text files. 
 
For the file that outputs the program section, the extension of the file name is ".cmem". 
For the file that outputs the data section, the extension of the file name is ".dmem". 

Output example of a Verilog file (program: *.cmem) 

 
@00000000    80008803 
@00000001    0703070f 
@00000002    0d200000 

Output example of a Verilog file (data: *.dmem) 

 
@00000000    00000050 
@00000001    00000100 
@00000002    00000003 
@00000003    00000000 

 

(3) Object file 
 

Table 2.5 Overview of an Object File 

The assembled results are output in the binary format (ELF/DWARF2). 
The extension of the file name is ".obj". 

 

(4) List file 
 

Table 2.6 Overview of a List File 

The source code to be assembled and the assembled results are output to the same text file. 
The extension of the file name is ".lst". 

List file (*.lst) 

 
       1               : .line "C:¥dspasm¥sample_code.dsp" , 1 
       2               :  
       3               : SECTION CODE 
       4 0000 8000     :     MOV #S1_ST, DP0 
       5 0002 8803     :     MOV #S1_OUT, RP0 
       6               : ; 
       7               : SECTION DATA 
       8 0000 00000050 : S1_ST: DATA  H'00000050 
       9 0004 00000100 :        DATA  H'00000100 
      10 0008 00000003 :        DATA  H'00000003 
      11               : ; 
      12 000c 00000000 : S1_OUT: DATA  H'00000000 

 



DSPASM  2.   About DSPASM 

R20UT3911EJ0106 Rev.1.06  Page 12 of 126 
Mar 1, 2024  

2.4 Command-Line Options for the DSPASM 

The DSPASM is executed in the following format with the command line of Windows ("∆" means a space). 

dspasm∆[command-line option]∆an input source file name 

Figure 2.2   Input Format of the DSPASM Command Line 

An extension of an input source file name cannot be omitted. Only one file can be specified for the input source file 
name. If multiple input source files are specified, an assembler error will occur. 

The following shows command-line options that can be specified with the DSPASM. When those options are specified, 
upper-case and lower-case characters are not distinguished. 



DSPASM  2.   About DSPASM 

R20UT3911EJ0106 Rev.1.06  Page 13 of 126 
Mar 1, 2024  

Table 2.7 Command-Line Options 

Command-Line Option Function 
-format∆output format 
(output format: ASM/VERILOG/OBJ) 

Specifies the output format for the assembler. 

-list Outputs a list file. 

-output∆folder name Specifies a folder in which files will be output. 

-text_macro∆character Specifies the first character used to specify a text macro such as define 
or ifdef. 

-define∆name#value Specifies a text macro. 

-allow_text_macro_redefine Allows redefining a symbol in the -define command-line option or the 
preprocessing directive in the source code. 

-inc_dir∆folder name Specifies a source folder for a file to be included. 

-dsp∆DSP type 
(DSP type: RX_DSP / RL78_DSP / 
RL78_101_DSP / RL78_111_DSP / 
RL78_IAR_DSP / RL78_LLVM_DSP / 
RL78_GCC_DSP / ARM_DSP / 
ARM_EABI5_DSP) 

Specifies DSP which is the target of code generation. 

-core_version∆version 
(version: 2/3) 

Specifies the core version of DSP which is the target of code generation. 

-E Preprocesses an input file and outputs the result to the file. 

-cpuLittleEndian 
-cpuBigEndian 

Selects the endian for the CPU. 

-littleEndianData Allows data values output as the result of assembling to be in little 
endian. 

-code_section_start 

-data_section_start 

Specifies addresses where sections of code or data are to start when 
allocated. 

-no_debug_info Information for use in debugging is not output in the object file. 

-debug_aranges-no-padding Specify this option when creating an input file for the converter 
(renesas_cc_converter). 

-label∆attribute 
(attribute: GLOBAL/LOCAL) 

Specifies the attribute of the symbol. 

-macro_identify∆ identification method 
(identification method: FORWARD/EXACT) 

Specifies the text macro identification method. 

-dwarf_spec∆output setting 
(output setting: 
INITIAL/GENERIC/RENESAS) 

Specifies the contents of DWARF information to be output in an object 
file. 

-code_execinstr Set the SHF_EXECINSTR flag for the directive code section of an object 
file. 

-code_label_type∆code label attribute 
(code label attribute: NOTYPE/FUNC) 
-data_label_type∆data label attribute 
(data label attribute: NOTYPE/OBJECT) 

Specifies the attribute to be added to the labels of the code section and 
data section. 

 
  



DSPASM  2.   About DSPASM 

R20UT3911EJ0106 Rev.1.06  Page 14 of 126 
Mar 1, 2024  

(1) Options for file outputs 
 

Table 2.8 -format Command-Line Option 

Specifying output files: -format 

Format -format∆output format 
Use any one of the following output formats:  

ASM Outputs object code source files. 

VERILOG Outputs Verilog files. 

OBJ Outputs object files. 

 
Specifying the option without an output format leads to an assembler error. 

Notes Specifies the output format of the assembler. 
If this option is not specified, an assembler error will occur. 
If this option is specified several times, the last specification is effective. 

Example dspasm -format OBJ a.dsp 

 

Table 2.9 -list Command-Line Option 

Specifying the output of a list file: -list 

Format -list 

Notes Outputs a list file. 

 

Table 2.10 -output Command-Line Option 

Specifying an output folder: -output 

Format -output∆folder name 
 
Specifying the option without a folder name leads to an assembler error. 

Notes Specifies a folder in which files will be output. 
If this option is not specified, files are output to the folder in which dspasm.exe has been started 
from the command line. 
If this option is specified several times, the last specification is effective. 

Example dspasm -format OBJ -output .¥tmpdir a.dsp 

 
  



DSPASM  2.   About DSPASM 

R20UT3911EJ0106 Rev.1.06  Page 15 of 126 
Mar 1, 2024  

(2) Options for preprocessing 
 

Table 2.11 -text_macro Command-Line Option 

Specifying the first character of a text macro: -text_macro 

Format -text_macro∆character 
 
Use any one of the following characters:  

#  '  `  @  _ 

 
Specifying the option without a character leads to an assembler error. 

Notes Specifies the first character used to specify a text macro such as define or ifdef. 
If a character other than above is specified, an assembler error will occur. 
If this option is not specified, # is regarded as being specified. 
If this option is specified several times, the last specification is effective. 

Example dspasm -format OBJ -text_macro @ a.dsp 

 

Table 2.12 -define Command-Line Option 

Specifying a text macro: -define 

Format -define∆name#value 
 
Specifying the option without "name#value" leads to an assembler error. 

Notes Specifies a text macro. 
The character strings to be replaced are described before "#" and those that have been replaced 
are described after "#". 
When multiple text macros are specified, specify this option repeatedly by the required number of 
times. 
The character strings to be replaced and that have been replaced are forcedly processed as upper-
case characters (upper-case and lower-case characters are not distinguished). 
Values after "#" can be omitted; in this case, spaces are inserted in the character strings that have 
been replaced. 
If two or more "#" are specified for the option, the character that has been described at the leftmost 
side is regarded as the delimiter. 

Example dspasm -format OBJ -define AAA#5 a.dsp 

 



DSPASM  2.   About DSPASM 

R20UT3911EJ0106 Rev.1.06  Page 16 of 126 
Mar 1, 2024  

Table 2.13 -allow_text_macro_redefine Command-Line Option 

Allowing redefinition of a text macro: -text_macro 

Format -allow_text_macro_redefine 

Notes Allows redefining a symbol in the -define command-line option or the preprocessing directive in the 
source code. 
If this option is not specified, redefining a symbol is not allowed (an assembler error will occur). 

#define REG_R  R0 
#define REG_R  R1 ; When the -allow_text_macro_redefine option is specified, the definition  
 ; of "define REG_R R1" that appeared later becomes enabled. 
 ; If this option is not specified, since redefinition of a symbol is not 

allowed,  
 ; an assembler error will occur. 
MOV A0,#REG_R ; When the -allow_text_macro_redefine option is specified, the 

character  
 ; string is replaced with "MOV A0,R1". 

 
 

 

Table 2.14 -inc_dir Command-Line Option 

Specifying the include folder: -inc_dir 

Format -inc_dir∆folder name 
 
Specifying the option without a folder name leads to an assembler error. 

Notes Specifies a source folder for a file to be included. 
If this option is not specified, a folder in which the assembly-language file has been stored is 
regarded as the starting point of the relative path. 
This option can be specified several times; in this case, a file to be included is searched in the order 
specified with the option. 

Example dspasm -format OBJ -inc_dir .¥abc a.dsp 

 
  



DSPASM  2.   About DSPASM 

R20UT3911EJ0106 Rev.1.06  Page 17 of 126 
Mar 1, 2024  

(3) Options for code generation 
 

Table 2.15 -dsp Command-Line Option 

Specifying DSP: -dsp 

Format -dsp∆DSP type 
Use any one of the following DSP types:  

Type specified with the option Target chip 

RX_DSP RX 

RL78_DSP RL78 (conformant with earlier than 
CCRL V1.01) 

RL78_101_DSP RL78 (conformant with CCRL V1.01 
or later) 

RL78_111_DSP RL78 (conformant with CCRL V1.11 
or later) 

RL78_IAR_DSP RL78 (conformant with IAR tool for 
RL78) 

RL78_LLVM_DSP RL78 (conformant with LLVM for 
Renesas RL78) 

RL78_GCC_DSP RL78 (conformant with GCC for 
Renesas RL78) 

ARM_DSP ARM 

ARM_EABI5_DSP ARM (conformant with the 
Embedded Application Binary 
Interface (EABI) standard) 

 
Specifying the option without a DSP type leads to an assembler error. 

Notes Specifies DSP which is the target of code generation. 
If this option is not specified, "RX_DSP" is regarded as being specified. 
If this option is specified several times, the last specification is effective. 
"ARM_EABI5_DSP" is specified when a linkable object file is generated by the GNU or IAR tool for 
use with ARM cores. 
To use an object file in a version earlier than CCRL V1.01, specify RL78_DSP. 
To use an object file in CCRL V1.01 or later, specify RL78_101_DSP. 
The code and data are handled as constants (CONSTF).  
To use an object file in CCRL V1.11 or later, specify RL78_111_DSP.  
The code and data are handled as those to be allocated to the DSP code and data areas in RL78 
memory space. 
To use an object file with the IAR tool for RL78, specify RL78_IAR_DSP. 
To use an object file with LLVM for Renesas RL78, specify RL78_LLVM_DSP. 
To use an object file with GCC for Renesas RL78, specify RL78_GCC_DSP. 

Example dspasm -format OBJ -dsp RL78_DSP a.dsp 

 



DSPASM  2.   About DSPASM 

R20UT3911EJ0106 Rev.1.06  Page 18 of 126 
Mar 1, 2024  

Table 2.16 -core_version Command-Line Option 

Specifying the core version of DSP: -core_version 

Format -core_version∆version 
Use any one of the following versions:  

2 The V2 core is the target of assembling. 

3 The V3 core is the target of assembling. 

 
Specifying the option without a version leads to an assembler error. 

Notes Specifies the core version of DSP which is the target of code generation. 
If this option is not specified, version 3 is regarded as being specified. 
If this option is specified several times, the last specification is effective. 

Example dspasm -format OBJ -dsp RL78_DSP -core_version 2 a.dsp 

 

Table 2.17 -E Command-Line Option 

Outputting the result of preprocessing to a file: -E 

Format -E 

Notes Preprocesses an input file and outputs the result to the file. 
For the file name to be output, the extension of the input file is changed to ".i". 
When this option is specified, the DSPASM only executes preprocessing; structured-descriptive 
processing and assembler execution are not performed. 
If this option is used together with -list, the list file will not be output. 

 

Table 2.18 -cpuLittleEndian and-cpuBigEndian Command-Line Options 

Selecting the endian for the CPU 

Format -cpuLittleEndian 
-cpuBigEndian 

Notes Specify -cpuLittleEndian to select little endian for the CPU. 
If you specify -cpuBigEndian or none of these options, big endian will be selected for the CPU. 
If both the -cpuLittleEndian and -cpuBigEndian options are specified, the option specified later is 
valid. 
In cases where big endian is to be selected for the CPU, also specify -littleEndianData because 
data values in the program need to be inverted in 4-byte units. 

 

Table 2.19 -littleEndianData Command-Line Option 

Outputting data values in little endian: -littleEndianData 

Format -littleEndianData 

Notes Specify this option if you wish data values output as the result of assembling to be in little endian. 
When this option is not specified, the output data values will be in big endian. 

 



DSPASM  2.   About DSPASM 

R20UT3911EJ0106 Rev.1.06  Page 19 of 126 
Mar 1, 2024  

Table 2.20 -code_section_start Command-Line Option 

Specifying an address where a section of code is to start when allocated: -code_section_start 

Format -code_section_start∆ <first address of the section> 
 
Specifying the option without a first address of the section leads to an assembler error. 

Notes Specify the address as a decimal or hexadecimal number. 
For the hexadecimal notations, refer to Table 4.6, Notation Patterns for Hexadecimal Numbers. 
 
The ranges of specifiable addresses for allocation are as follows. An assembler error occurs when a 
value which is out of the applicable range is specified. 

-core_version 2 is specified. 0 to FFFh 

-core_version 3 is specified, or -
core_version is not specified. 

0 to 3FFFh 

 
The code section is allocated from address 0 when this option is not specified. 

Example dspasm -format OBJ -code_section_start 500h a.dsp 

 



DSPASM  2.   About DSPASM 

R20UT3911EJ0106 Rev.1.06  Page 20 of 126 
Mar 1, 2024  

Table 2.21 data_section_start Command-Line Option 

Specifying an address where a section of data is to start when allocated: -data_section_start 

Format -data_section_start∆<first address of the section> 
 
Specifying the option without a first address of the section leads to an assembler error. 

Notes Specify the address as a decimal or hexadecimal number. 
For the hexadecimal notations, refer to Table 4.6, Notation Patterns for Hexadecimal Numbers. 
 
The ranges of specifiable addresses for allocation are as follows. An assembler error occurs when a 
value which is out of the applicable range is specified. 

-core_version 2 is specified. 0 to FFFh 

-core_version 3 is specified, or -
core_version is not specified. 

0 to 1FFFh 

 
The data section is allocated from address 0 when this option is not specified. 

 

Example dspasm -format OBJ -data_section_start 300h a.dsp 

 

Table 2.22 no_debug_info Command-Line Option 

Disabling the output of information for use in debugging: -no_debug_info 

Format -no_debug_info 

Notes Information for use in debugging is not output in the object file. 
 
When this option is not specified, information for use in debugging is output in the object file. Note, 
however, that the information is not output if the -dsp ARM_DSP option is specified, whether or not 
the -no_debug_info option is specified. 

 

Table 2.23 label Command-Line Option 

Specifies the attribute of the symbol: -label 

Format -labe∆attribute 

Notes Specifies the attributes of symbols without a .public specification. 
 
Use any one of the following attributes:  

GLOBAL The symbol can be referenced from other modules. 

LOCAL The symbol can’t be referenced from other modules. 

 
Specifying the option without a attribute leads to an assembler error. 
If this option is not specified, LOCAL is regarded as being specified. 
If this option is specified several times, the last specification is effective. 

 



DSPASM  2.   About DSPASM 

R20UT3911EJ0106 Rev.1.06  Page 21 of 126 
Mar 1, 2024  

Table 2.24 macro_identify Command-Line Option 

Specifying the text macro identification method: -macro_identify 

Format -macro_identify∆identification method 

Notes Specifies the macro identification method when text macro replacement is performed. 
 
Use any one of the following identification methods: 

Identification method specified with 
the option 

Description 

FORWARD 

A macro name character string after '#' is replaced with 
the macro definition. 
Replacement is performed even if the identifier to be 
replaced is included in a part of other identifiers. 

EXACT 

A macro name character string is replaced with the 
macro definition only when the character string 
matches a token beginning with '#'. Other operations 
are the same as for FORWARD. 

 
If this option is not specified, the macro name character string after '#' is replaced with the macro 
definition. 
Replacement is performed even if the identifier to be replaced is included in the part of another 
identifier (FORWARD operation). 
If this option is specified several times, the last specification is effective. 

 

Table 2.25 dwarf_spec Command-Line Option 

Specifying DWARF information output specifications for object files: -dwarf_spec 

Format -dwarf_spec∆output setting 

Notes Specifies the specifications of DWARF information to be output in an object file. 
 
Use any one of the following output settings: 

Output setting specified with the 
option 

Description 

INITIAL Outputs information according to the DWARF 
specifications for DSPASM. 

GENERIC Outputs information according to the DWARF 
specifications for GDB. 

RENESAS Outputs information according to the DWARF 
specifications for CCRL/CCRX. 

 
If this option is not specified, INITIAL setting is assumed. 
 
If this option is specified several times or at the same time as the -debug_aranges-no-padding 
option, the last specified option has priority. 

 



DSPASM  2.   About DSPASM 

R20UT3911EJ0106 Rev.1.06  Page 22 of 126 
Mar 1, 2024  

Table 2.26 code_execinstr Command-Line Option 

Enabling the SHF_EXECINSTR flag setting for code section: -code_execinstr 

Format -code_execinstr 

Notes Sets the SHF_EXECINSTR flag for the code section in an object file. 
 
If this option is not specified and one of the following is specified for the -dsp option, the 
SHF_EXECINSTR flag is not set: 
ARM_DSP, ARM_EABI5_DSP, RL78_IAR_DSP, RL78_101_DSP, or RL78_111_DSP. 
 
If this option is not specified and a value other than the following is specified for the -dsp option, the 
SHF_EXECINSTR flag is set: 
ARM_DSP, ARM_EABI5_DSP, RL78_IAR_DSP, RL78_101_DSP, or RL78_111_DSP. 

 

Table 2.27 code_label_type Command-Line Option 

Specify the attribute to be added to the code section label: -code_label_type 

Format -code_label_type∆code label attribute 

Notes Specifies the attribute to be added to the code section label. 
 
Use any one of the following attributes:  

NOTYPE Add STT_NOTYPE attribute to code section label. 

FUNC Add STT_FUNC attribute to code section label. 

 
Specifying the option without an attribute leads to an assembler error. 
If this option is not specified and RL78_IAR_DSP is specified for the -dsp option, the STT_FUNC 
attribute is added. 
 
If this option is not specified and RL78_IAR_DSP is not specified for the -dsp option, the 
STT_NOTYPE attribute is added. 
If this option is specified several times, the last specification is effective. 

 



DSPASM  2.   About DSPASM 

R20UT3911EJ0106 Rev.1.06  Page 23 of 126 
Mar 1, 2024  

Table 2.28 data_label_type Command-Line Option 

Specify the attribute to be added to the data section label: -data_label_type 

Format -data_label_type∆data label attribute 

Notes Specifies the attribute to be added to the data section label. 
 
Use any one of the following attributes:  

NOTYPE Add STT_NOTYPE attribute to data section label. 

OBJECT Add STT_OBJECT attribute to data section label. 

 
Specifying the option without an attribute leads to an assembler error. 
If this option is not specified and RL78_IAR_DSP is specified for the -dsp option, the STT_OBJECT 
attribute is added. 
 
If this option is not specified and RL78_IAR_DSP is not specified for the -dsp option, the 
STT_NOTYPE attribute is added. 
If this option is specified several times, the last specification is effective. 

 

 

 



DSPASM  3.   Overview of Preprocessing 

R20UT3911EJ0106 Rev.1.06  Page 24 of 126 
Mar 1, 2024  

3.   Overview of Preprocessing 

In the DSPASM, the following preprocessing is performed for the assembly-language file to be input. 

• Macro replacement (replacing a character string described in a file) 
• Conditional inclusion (selecting a code block to be assembled) 
• File inclusion (including an external file) 
 

This chapter describes the overview of preprocessing. 

For details on preprocessing, refer to chapter 6, Details of Preprocessing. 

3.1 Distinguishing Identifiers for Preprocessing 

In the DSPASM, a specific character (text macro character) is used to determine whether the contents described in the 
assembly-language file are the preprocessing directive or the character strings for macro replacement. 

The text-macro character can be specified with the "-text_macro" command-line option and "#" is used by default. 
For characters that can be used for the argument of the option, refer to Table 2.11. 

Since a character can be specified for the text-macro character, this chapter uses "{TC}" as the text-macro character. 

3.2 Macro Replacement 

In the DSPASM, a specific character string described in the assembly-language file can be replaced with another 
character string, which is called as macro replacement. 

Macro replacement targets the character string beginning with {TC}. The "{TC} define" preprocessing directive or the "-
define" command-line option is used to determine what replacement is performed. 



DSPASM  3.   Overview of Preprocessing 

R20UT3911EJ0106 Rev.1.06  Page 25 of 126 
Mar 1, 2024  

Table 3.1 define Preprocessing Directive 

Macro replacement preprocessing directive: {TC}define 

Format: 

1) {TC}define∆identifier∆list of replacement elements 
2) {TC}define∆identifier([list of identifiers])∆list of replacement elements 
3) {TC}define∆identifier(…)∆list of replacement elements 
4) {TC}define∆identifier(list of identifiers, …)∆list of replacement elements 
 
The first character of the formats above begins with {TC}. 

Sample code (This sample code uses "#" instead of {TC}.) 

 
; Sample code 

; 

#define MAGIC_NO   #H'123 

mov #MAGIC_NO, DP0      ; "#MAGIC_NO" is replaced with "H'123". 

 

#define CLEAR_A0()  A0=0           ; Function-macro replacement 

#CLEAR_A0()   ; The result is replaced with "A0 = 0". 

 

#define SET_A0(VAL)  A0 = #VAL   ; Function-macro replacement with arguments 

#SET_A0(1)    ; The result is replaced with "A0 = 1". 

 

#define SET_REG(…)  mov  #__VA_ARGS__     ; Function-macro replacement using variable arguments 

     ; The content of an argument is reflected to the predefined macro  

     ; __VA_ARGS__. 

#SET_REG(#H'123, DP0)   ; The result is replaced with "mov H'123, DP0". 

                                             ; Multiple arguments can be specified. 

 

#define SET_REG2(R, …)     mov  #__VA_ARGS__, #R  ; Function-macro replacement using variable arguments 

                                               ; The first argument is reflected to R and the contents of other 
arguments  

            ; are reflected to the predefined macro __VA_ARGS__. 

#SET_REG2(DP0, #H'ABC)          ; The result is replaced with "mov H'ABC, DP0". 

Notes: 



DSPASM  3.   Overview of Preprocessing 

R20UT3911EJ0106 Rev.1.06  Page 26 of 126 
Mar 1, 2024  

a) For symbols for macro replacement, upper-case and lower-case characters are not distinguished. 
b) Arguments specified with variable arguments are expanded to the predefined macro "__VA_ARGS__". 
c) Macro replacement is performed even if an identifier to be replaced is included in a part of other identifiers. To 
perform replacement in units of tokens, specify the command-line option "-macro_identify EXACT". In addition, 
identifiers that have previously been defined are preferentially replaced. 
 

#define   VALUE   8 

MOV #H'7#VALUE9, DP0            ; The result is replaced with " MOV #H'789, DP0". 

 

#define  AA #H'1 

#define  AAA #H'9 

MOV #AA23, DP0X              ; The result is replaced with "#H'123". 

 
d) Macros are replaced several times on the same line (replacement can be nested). 
 

#define VAL_TYPE   #ZERO 

#define  ZERO   H'00000000 

A0 = #VAL_TYPE                    ; A0 is replaced with H'00000000. 

 
e) When replacement is performed several times on the same line, the replaced result depends on the order that the text 
macro has been defined. 
 

#define  ZERO   H'00000000 

#define   VAL_TYPE   #ZERO 

A0 = #VAL_TYPE                    ; A0 is replaced with #ZERO. 

 
f) Macros are replaced even if the identifier to be replaced is the reserved word of the DSPASM. 
 
g) Macro replacement cannot be redefined. When redefinition is allowed, specify the command-line option "-
allow_text_macro_redefine". When "-allow_text_macro _redefine" is specified, the definition of macro replacement which 
has been specified with the command-line option "-define" can be overwritten by the {TC}define directive in the source 
code. 
 
h) The preprocessing directive for macro replacement cannot be described over multiple lines. 
 

#define MANY_ARGS(arg1, arg2, arg3,¥    ; If the definition is described over multiple lines, an assembler error will  

arg4, arg5, arg6)  VAL   ; occur. 

 
 

Maximum values of the character string length and the number of identifiers: 

For the maximum values of the character string length and the number of identifiers, refer to section 10.1, Translation 
Limits on Preprocessing. 

Error descriptions: 



DSPASM  3.   Overview of Preprocessing 

R20UT3911EJ0106 Rev.1.06  Page 27 of 126 
Mar 1, 2024  

◊ In the macro replacement preprocessing directive, lists of replacement elements can be omitted. 
◊ In the function-macro definition without variable arguments, descriptions to be replaced and the number of arguments 
for the macro definition must be matched. 
 

#define   CLEAR_A0() A0 = 0 

#CLEAR_A0(1)                ; An assembler error will occur because the number of arguments is not matched. 

 

#define   SET_A0(VAL) A0 = #VAL 

#SET_A0()                    ; An assembler error will occur because the number of arguments is not matched. 

 
◊ An assembler error will occur if an identifier which is used for the function-macro definition is described in the format 
without "()". 
 

#define   CLEAR_A0()   A0 = 0 

#CLEAR_A0    ; An assembler error will occur because the identifier does not have "()". 

 
◊ Argument names for the function-macro definition can consist only of alphabets, numerals, and underscores ("_"). 
 

#define  CLEAR_A0(ARG+1)  A0 = #ARG+1    ; An assembler error will occur because the argument name has symbols. 

#define  CLEAR_A0(ARG@1)  A0 = #ARG@1  ; An assembler error will occur because the argument name has symbols. 
 

 

3.3 Conditional Inclusion 

In the DSPASM, it can be determined whether or not a part of source codes described in the assembly-language file is the 
target of assembling according to a specific condition, which is called as conditional inclusion. 

The following two types of conditions are determined in conditional inclusion. 

1) Is a specific symbol defined? 
2) Is a constant expression satisfied? 
 

The preprocessing directive "{TC}ifdef" or "{TC}ifndef" is used to determine whether or not there is a symbol 
definition. When the result of a constant expression is determined, the preprocessing directive "{TC}if" is used. 



DSPASM  3.   Overview of Preprocessing 

R20UT3911EJ0106 Rev.1.06  Page 28 of 126 
Mar 1, 2024  

Table 3.2 if Preprocessing Directive 

Conditional inclusion preprocessing directive according to the result of a constant expression: {TC}if 

Format: 

1) {TC}if∆constant expression 
 Description block of the next source code to be included 

 {TC}elif∆constant expression 
 Description block of the next source code to be included 

 {TC}else 
 Description block of the next source code to be included 

 {TC}endif 
 
The first character of the formats above begins with {TC}. 
It is possible to omit {TC}elif and {TC}else. 
Some {TC}elif can be described in a block between {TC}if and {TC}endif. 

Sample code (This sample code uses "#" instead of {TC}.) 

 
; Sample code 

; 

SECTION CODE 

 

#define NUM_UNITS    2 

#if     #NUM_UNITS >= 2 

   ; 

   ; Processing when NUM_UNITS is 2 or more 

   ; 

#elif  #NUM_UNITS == 1 

   ; 

   ; Processing when NUM_UNITS is 1 

   ; 

#else 

   ; 

   ; Processing when NUM_UNITS is neither 2 or more nor 1 

   ; 

#endif 

Notes: 

a) For operators that can be used for constant expressions, refer to chapter 6, Details of Preprocessing. 
b) Constant expressions cannot be omitted. 
c) Constant expressions cannot use assignment operators, unary additive operators, and unary subtractive operators. 
d) The priority of operation in a constant expression can be changed by using "()". 
e) Constant expressions support decimal and hexadecimal descriptions. 

The length of a constant expression and the maximum value of nesting counts: 

For the length of a constant expression and the maximum value of nesting counts, refer to section 10.1, Translation 
Limits on Preprocessing. 

Error descriptions: 



DSPASM  3.   Overview of Preprocessing 

R20UT3911EJ0106 Rev.1.06  Page 29 of 126 
Mar 1, 2024  

◊ {TC}endif corresponding to {TC}if must be described in the same files. 
◊ In a constant expression, an assembler error will occur if the format of the expression is invalid; e.g., an expression on 
the right side or the left side of a binary operator is not described or parentheses are not matched. 
◊ An assembler error will occur if division by 0 or residue operation by 0 is generated during processing of constant 
expressions. 

 



DSPASM  3.   Overview of Preprocessing 

R20UT3911EJ0106 Rev.1.06  Page 30 of 126 
Mar 1, 2024  

Table 3.3 ifdef/ifndef Preprocessing Directive 

Conditional inclusion preprocessing directive according to the symbol definition: {TC}ifdef/{TC}ifndef 

Format: 

1) {TC}ifdef∆identifier 
 Description block of the next source code to be included 

 {TC}else 
 Description block of the next source code to be included 

 {TC}endif 
 
2) {TC}ifndef∆identifier 
 Description block of the next source code to be included 

 {TC}else 
 Description block of the next source code to be included 

 {TC}endif 
 
The first character of the formats above begins with {TC}. 
It is possible to omit {TC}else. 
{TC}elif can be described in a block between {TC}if and {TC}endif. 

Sample code (This sample code uses "#" instead of {TC}.) 



DSPASM  3.   Overview of Preprocessing 

R20UT3911EJ0106 Rev.1.06  Page 31 of 126 
Mar 1, 2024  

 
; Sample code 

; 

SECTION CODE 

 

#define TEST_VERSION 

#ifdef  TEST_VERSION   ; 

   ; Processing when TEST_VERSION is defined 

   ; 

#else 

   ; 

   ; Processing when TEST_VERSION is not defined 

   ; 

#endif 

 

#define  CUSTOM_ONLY 

#ifndef  CUSTOM_ONLY 

   ; 

   ; Processing when CUSTOM_ONLY is not defined 

   ; 

#else 

   ; 

   ; Processing when CUSTOM_ONLY is defined 

   ; 

#endif 

 

#define VERSION＿NUM   10 

#ifdef  VERSION＿NUM 

   ; 

   ; Regardless how VERSION＿NUM is replaced,  

   ; this block is the target of assembling if a symbol has been defined. 

   ; 

#endif 

Notes: 

a) Preprocessing directives, {TC}ifdef and {TC}ifndef, only determine whether or not there is a symbol definition 
regardless of the value that the symbol is replaced. When conditions are determined according to the value of the 
symbol, use the preprocessing directive {TC}if. 
b) For identifiers, upper-case and lower-case characters are not distinguished. 
c) Identifiers cannot be omitted. 

The maximum value of nesting counts: 

For the maximum value of nesting counts, refer to section 10.1, Translation Limits on Preprocessing. 

Error description: 

◊ {TC}endif corresponding to {TC}ifdef or {TC}ifndef must be described in the same files. 

 



DSPASM  3.   Overview of Preprocessing 

R20UT3911EJ0106 Rev.1.06  Page 32 of 126 
Mar 1, 2024  

3.4 File Inclusion 

In the DSPASM, the contents of other files can be included in the assembly-language file which is the target of 
assembling, which is called as file inclusion. 

When files are included, the preprocessing directive "{TC}include" is used. 

Table 3.4 include Preprocessing Directive 

File inclusion preprocessing directive: {TC}include 

Format: 

1) {TC}include∆<file name> 
 
The first character of the format above begins with {TC}. 
It is possible to omit {TC}elif and {TC}else. 
Some {TC}elif can be described in a block between {TC}if and {TC}endif. 

Sample code (This sample code uses "#" instead of {TC}.) 

 
; Sample code 

; 

SECTION CODE 

 

#include <value_no.def>          ; The value_no.def file is included. 

#include <..\def\const.def>     ; A file specified with the relative path is included. 

 

#define STARTUP_FILE startup.asm ; The file name is defined as a symbol. 

#include <#STARTUP_FILE>   ; The "startup.asm" file is included. 

Notes: 

a) A path name can be added to a file name. Both absolute and relative paths are supported as the path names. 
b) Both characters "\" and "/" are supported as delimiters of the path names. 
c) A source folder for a relative path can be specified with the command-line option "-inc_dir". If the "-inc_dir" option is 
not specified, a folder storing the assembly-language file is regarded as the source folder for the relative path. 
d) Symbols "<" and ">" are only supported for enclosing a file name. 
e) When the macro-replacement preprocessing directive {TC}define is described in a file that has been included by 
{TC}include, the symbol definition becomes valid from the line that {TC}define is described. 

The maximum value of nesting counts for file inclusion: 

For the maximum value of nesting counts for file inclusion, refer to section 10.1, Translation Limits on Preprocessing. 

Error description: 

◊ An assembler error will occur if no file can be read. 

 



DSPASM  3.   Overview of Preprocessing 

R20UT3911EJ0106 Rev.1.06  Page 33 of 126 
Mar 1, 2024  

3.5 Predefined Macros 

In the DSPASM, the following symbols are used as predefined macros. 

These symbols are reserved words; the user cannot change the contents of definition. 

• __VA_ARGS__ 
• __RENESAS__  
• __RENESAS_VERSION__  
• __DSPASM__ 
 



DSPASM 4.   Overview of Structured-Descriptive Preprocessing 

R20UT3911EJ0106 Rev.1.06  Page 34 of 126 
Mar 1, 2024  

4.   Overview of Structured-Descriptive Processing 

When source code is described in the DSPASM, structured descriptions specific to the DSPASM can be used in addition 
to the assembler description. 

Structured descriptions of the DSPASM support the creation of user programs and provide the following features. 

• Program structures such as a branch, multiple branches, and iteration can be described in a format which is close to 
the C language. 

• Numeric operations, assignments, bitwise operations, and comparison manipulations for memory or registers can be 
written in a format which is close to the C language. 

• Statements for bitwise operations and bit comparison manipulations can be simpler than a normal assembly 
description. 

 
This chapter describes the overview of structured-descriptive processing. 

For details on structured-descriptive processing, refer to chapter 7, Details of Structured-Descriptive Processing. 

4.1 Variable Names Available for the Structured Description 

The following variable names can be used for the structured description. 

• Register variables 
• Flag variables 
• A0 register bit variables 
• Pointer variables 
 

4.1.1 Register Variables 

The following register variables can be used for the structured description. 

Table 4.1 Register Variables 

Variable Name Register Type 
A0 Accumulator register 

M0 Multiplier register 

M1 Shift register 

L0 Upper-limit register 

L1 Lower-limit register 

R0 Adder register 

R1 Adder register 1 

DP0 Address pointer for accumulators 

DP1 Address pointer for operation parameters 

RP0 Address pointer for storing operation results 

F0 Flag register 

PS0 Program segment register 

DS0 Data segment register 

SS0 Stack segment register 

Note: R1, F0, PS0, DS0, and SS0 register variables are only supported when "3" is specified for the argument of  
command-line option "-core_version". 



DSPASM 4.   Overview of Structured-Descriptive Preprocessing 

R20UT3911EJ0106 Rev.1.06  Page 35 of 126 
Mar 1, 2024  

Note that the BR0 register and PG0 are not supported in the structured description because assembler directives which 
operate registers do not exist. In addition, the SP0 register is not supported in the structured description because a stack is 
used in the assembly code generated in the structured description and SP0 is rewritten as a result. 

When those registers are operated, the user must describe the ordinary assembly code. 

4.1.2 Flag Variables 

The following flag variables can be used for the structured description. 

Table 4.2 Flag Variables 

Variable Name Register Type 
I Interrupt flag 

Z ZERO flag 

U UNDER flag 

O OVER flag 

 

4.1.3 A0 Register Bit Variables 

In the structured description, using register bit variables enables direct operation of bits in the A0 register. 

The specified bit must be within the range from 0 to 31. If a bit outside the range is specified, an assembler error will 
occur. 

Table 4.3 A0 Register Bit Variables 

Variable Name Register Type 
A0_0 The least significant bit in the A0 register 

A0_1 The second bit from the lower-order bit side in the A0 register 

A0_2 The third bit from the lower-order bit side in the A0 register 

 Omitted 

A0_29 The third bit from the higher-order bit side in the A0 register 

A0_30 The second bit from the higher-order bit side in the A0 register 

A0_31 The most significant bit in the A0 register 

 

The following shows an image of A0 register bit variables. 

Table 4.4 Image of A0 Register Bits 

Higher-order bit side ← A0 register → Lower-order bit side 

31 30 29 Omitted 2 1 0 

 



DSPASM 4.   Overview of Structured-Descriptive Preprocessing 

R20UT3911EJ0106 Rev.1.06  Page 36 of 126 
Mar 1, 2024  

4.1.4 Pointer Variables 

Table 4.5 Pointer Variables 

Variable Name Register Type 
(DP0) Address pointer for accumulators 

(DP1) Address pointer for operation parameters 

(XX) Memory for data 

(NN DP1) Address pointer for operation parameters 

(NN, DP0) Address pointer for accumulators 

(NN, RP0) Address pointer for storing operation results 

(DP0+R0) Address pointer for accumulators + adder register 
Notes: 1. Immediates or label names can be written to "XX" in the table. 
 2 Immediates from -128 to 127 can be written to "NN" in the table. 
 3. Note that "()" in an expression in a control statement (for details, refer to section 4.4, Control Statements 

Available for the Structured Description) does not mean a pointer variable but the change of the priority of 
operation. For details, refer to section 7.6, Differences of Meanings at the Spots where "()" is Used . 

 4. Pointer variable (DP0+R0) is only supported when "3" is specified for the argument of command-line option  
"-core_version". 

 

4.2 Constants Available for the Structured Description 

The structured description supports decimal and hexadecimal constants. 

Although there are no limitations on the number of digits in decimal and hexadecimal numbers, an assembler error will 
occur if a value exceeds four bytes. 

For the hexadecimal constants, any of the following patterns can be used. 

Table 4.6 Notation Patterns for Hexadecimal Numbers 

Notation Pattern Notes 
H'xxxxxxxx Prefix H is appended to the hexadecimal constant. 

The prefix can be either upper- or lower-case. h'xxxxxxxx 

xxxxxxxxh Suffix H is appended to the hexadecimal constant. 
The suffix can be either upper- or lower-case. xxxxxxxxH 

Note: "x" in the table means a hexadecimal digit (the characters A to F or a to f can be used in addition to 0 to 9). 
 



DSPASM 4.   Overview of Structured-Descriptive Preprocessing 

R20UT3911EJ0106 Rev.1.06  Page 37 of 126 
Mar 1, 2024  

4.3 Operators Available for the Structured Description 

Table 4.7 Operators 

Type Operator Description 
Unary operators + Indicates positive numbers. 

- Indicates negative numbers. 

∼ Performs bitwise-inversion operation (NOT). 

++ Performs addition (unsigned). 

++.s Performs addition (signed, saturation operation) 

-- Performs subtraction (unsigned). 

--.s Performs subtraction (signed, saturation operation) 

Division and 
multiplication 
operators 

* Performs multiplication (unsigned). 

*.s Performs multiplication (signed, saturation operation) 

/ Performs division (unsigned). 
This instruction cannot be used for the V2 core; if it is used, an 
assembler error will occur. 

% Performs residue operation (unsigned). 
This instruction cannot be used for the V2 core; if it is used, an 
assembler error will occur. 

Addition and 
subtraction operators 

+ Performs addition (unsigned). 

+.s Performs addition (signed, saturation operation) 

- Performs subtraction (unsigned). 

-.s Performs subtraction (signed, saturation operation) 

Bitwise shift 
operators 

<< Performs logical left-shift operation for the specified bits. 

<<.s Performs arithmetic left-shift operation for the specified bits. 

>> Performs logical right-shift operation for the specified bits. 

>>.s Performs arithmetic right-shift operation for the specified bits. 

Relational operators < The operation result is true when the left side of the expression is 
smaller than the right side (unsigned). 
This instruction cannot be used for the V2 core; if it is used, an 
assembler error will occur. 

<.s The operation result is true when the left side of the expression is 
smaller than the right side (signed). 

> The operation result is true when the left side of the expression is larger 
than the right side (unsigned). 
This instruction cannot be used for the V2 core; if it is used, an 
assembler error will occur. 

>.s The operation result is true when the left side of the expression is larger 
than the right side (signed). 

<= The operation result is true when the left side of the expression is 
smaller than or equal to the right side (unsigned). 
This instruction cannot be used for the V2 core; if it is used, an 
assembler error will occur. 

<=.s The operation result is true when the left side of the expression is 
smaller than or equal to the right side (signed). 

>= The operation result is true when the left side of the expression is larger 
than or equal to the right side (unsigned). 
This instruction cannot be used for the V2 core; if it is used, an 
assembler error will occur. 



DSPASM 4.   Overview of Structured-Descriptive Preprocessing 

R20UT3911EJ0106 Rev.1.06  Page 38 of 126 
Mar 1, 2024  

>=.s The operation result is true when the left side of the expression is larger 
than or equal to the right side (signed). 

Equality operators == The operation result is true when the left side of the expression is equal 
to the right side. 

!= The operation result is true when the left side of the expression is not 
equal to the right side. 

Bitwise 
AND/OR/exclusive-
OR operators 

& Performs bitwise AND operation (AND). 

| Performs bitwise OR operation (OR). 

^ Performs bitwise exclusive-OR operation (XOR). 

Logical AND/OR 
operators 

&& The operation result is true when the values of the left and right sides of 
the expression are compared to 0 and both of them are not equal. 
Short-circuit evaluation is performed (if the left side is false, the right 
side is not evaluated). 

|| The operation result is true when the values of the left and right sides of 
the expression are compared to 0 and either of them is not equal. 
Short-circuit evaluation is performed (if the left side is true, the right side 
is not evaluated). 

Assignment operators = The right side is assigned to the left side. 
var ← exp 

*= The result of multiplication between the left and right sides is assigned 
to the left side (unsigned). 
var ← var * exp 

*=.s The result of multiplication between the left and right sides is assigned 
to the left side (signed, saturation operation). 
var ← var * exp 

/= The result of division between the left and right sides is assigned to the 
left side (unsigned). 
var ← var / exp 
This instruction cannot be used for the V2 core; if it is used, an 
assembler error will occur. 

%= The result of residue operation between the left and right sides is 
assigned to the left side (unsigned). 
var ← var % exp 
This instruction cannot be used for the V2 core; if it is used, an 
assembler error will occur. 

+= The result of addition between the left and right sides is assigned to the 
left side (unsigned). 
var ← var + exp 

+=.s The result of addition between the left and right sides is assigned to the 
left side (signed, saturation operation). 
var ← var + exp 

-= The result of subtraction between the left and right sides is assigned to 
the left side (unsigned). 
var ← var - exp 

-=.s The result of subtraction between the left and right sides is assigned to 
the left side (signed, saturation operation). 
var ← var - exp 

<<= The result of logical left-shift operation for the right-side bits in the left 
side is assigned to the left side. 
var ← var << exp 



DSPASM 4.   Overview of Structured-Descriptive Preprocessing 

R20UT3911EJ0106 Rev.1.06  Page 39 of 126 
Mar 1, 2024  

<<=.s The result of arithmetic left-shift operation for the right-side bits in the left 
side is assigned to the left side. 
var ← var << exp 

>>= The result of logical right-shift operation for the right-side bits in the left 
side is assigned to the left side. 
var ← var >> exp 

>>=.s The result of arithmetic right-shift operation for the right-side bits in the 
left side is assigned to the left side. 
var ← var >> exp 

&= The result of AND operation for the left and right sides is assigned to the 
left side. 
var ← var and exp 

|= The result of OR operation for the left and right sides is assigned to the 
left side. 
var ← var or exp 

^= The result of exclusive-OR operation for the left and right sides is 
assigned to the left side. 
var ← var xor exp 

Compound 
assignment 
(=..=) 

The rightmost-side value is assigned to the left side. 
var ← var2 ← …← exp 

Notes: 1. In the table above, 'var' and 'var2' mean variables and 'exp' means any expression (an expression consists of 
the combination of variables, constants, and operators). 

 2. Unary operators '++' and '--' are only supported when they are described in the prefix notation. If they are 
described in the postfix notation such as "A0—" or "A0++", an assembler error will occur. 

 3. If the specified variable cannot be handled by the operator, an assembler error will occur. (For details, see 
section 7.2.4, Variables That Cannot Be Handled by Operators.) 

 

4.3.1 Priority of Operators 

The following shows the priority of operators that are used for the structured description. 

Table 4.8 Priority of Operators 

High (1) +, - , ~, ++, ++.s, --, --.s (unary operators) 

↑ (2) *, *.s, /, %, <<, <<.s, >>, >>.s 

 (3) +. +.s, -, -.s 

 (4) &, | , ^ 

 (5) ==, !=, <, <.s, >, >.s, <=, <=.s, >=, >=.s 

↓ (6) &&, || 

Low (7) =, *=, *=.s, /=, %=, +=, +=.s, -=, -=.s, <<=, <<=.s, >>=, >>=.s, &=, |=, ^= 

 

For an expression in a control statement (for details, refer to section 4.4, Control Statements Available for the Structured 
Description), when the expression is enclosed by "()", the execution priority of operation can be changed. The expression 
enclosed by "()" has the higher priority of operation than other expressions. 

Note that "()" means the pointer variable in other expressions in the control statement; it cannot be used to change the 
execution priority of operation. 



DSPASM 4.   Overview of Structured-Descriptive Preprocessing 

R20UT3911EJ0106 Rev.1.06  Page 40 of 126 
Mar 1, 2024  

4.4 Control Statements Available for the Structured Description 

The following control statements are available for the structured description. 

• if … elif … else … endif 
• switch … case … default … endsw 
• while … endwh 
• do … during 
• for … to … step … endfor 
• goto 
• continue 
• break 
 



DSPASM 4.   Overview of Structured-Descriptive Preprocessing 

R20UT3911EJ0106 Rev.1.06  Page 41 of 126 
Mar 1, 2024  

Table 4.9 if Control Statement 

Conditional branch: if … elif … else … endif 

Format: 

if∆[expression 1] 
statement 1 

elif∆[expression 2] 
statement 2 

else 
statement3 

endif 
 
*Some 'elif' can be described in an if statement. 

Function: 

The if statements are used to branch the control of a program according to the true or false value of the result when an 
expression has been evaluated. 
 
1) When an evaluation result of the expression described with 'if' or 'elif' is true, the control of a program is resumed at 
the corresponding statements. 
2) When all evaluation results of the expression described with 'if' or 'elif' are false, the control of a program is resumed 
at the statements described with 'else'. 

Specifications: 

a) Variables, constants, and operators can be described in expressions. 
b) The following operators are available for expressions. 
• Relational operators (<, >, <=, >=, <.s, >.s, <=.s, >=.s) 
• Equality operators (==, !=) 
• Logical AND/OR operators (&&, ||) 
• Bitwise AND/OR/exclusive-OR operators (&, |, ^) 
c) The description of 'elif' or 'else' can be omitted. 
d) Some 'elif' can be described in an if statement. 
e) 'endif' cannot be omitted. 

Example of expansion of structured descriptions: 

Structured 
description 

Example of expansion of assemblers 
(Since this example is a current sample, it may be changed later.) 

if [ A0 < R0 ] 
R0 = A0 

else 
A0 = R0 

endif 

     ;--- Saves registers. --- 
     PUSH A0 
     PUSH RP0 
     ;--- Acquires operand 2. --- 
     PUSH RP0 
     PUSH A0 
     PUSH R0 
     POP A0 
     MOV.L #__V_00000002,RP0 
     MOV A0,(RP0+) 
     POP A0 
     POP RP0 
     ;--- Acquires operand 1. --- 



DSPASM 4.   Overview of Structured-Descriptive Preprocessing 

R20UT3911EJ0106 Rev.1.06  Page 42 of 126 
Mar 1, 2024  

     PUSH A0 
     POP A0 
     ;--- Executes comparison. --- 
     PUSH A0 
     PUSH L0 
     PUSH L1 
     PUSH DP1 
     MOV A0,L0 
     MOV.L #__V_00000002,DP1 
     MOV (DP1+),L1 
     CLAMP UNSIGNED 
     POP DP1 
     POP L1 
     POP L0 
     POP A0 
    ;--- Stores the result of comparison. --- 
     MOV.L (#__C_00000001),A0 
     MOV.L #__V_00000001,RP0 
     MOV A0,(RP0+) 
     ; --- Restores registers. --- 
     POP RP0 
     POP A0 
     ; --- Performs conditional branches. --- 
     JMP UNDER, #__L_00000004 
     ;--- Stores the result of comparison. --- 
     PUSH A0 
     PUSH RP0 
     MOV.L (#__C_00000000),A0 
     MOV.L #__V_00000001,RP0 
     MOV A0,(RP0+) 
     POP RP0 
     POP A0 
     ; --- Performs conditional branches. 
     JMP #__L_00000002 
 __L_00000004: 
     PUSH  A0 
     POP  R0 
     PUSH  A0 
     PUSH  RP0 
     PUSH A0 
     POP  A0 
     MOV.L  #__V_00000001,RP0 
     MOV  A0,(RP0+) 
     POP  RP0 
     POP  A0 
     PUSH  A0 



DSPASM 4.   Overview of Structured-Descriptive Preprocessing 

R20UT3911EJ0106 Rev.1.06  Page 43 of 126 
Mar 1, 2024  

     PUSH  RP0 
     MOV.L  (#__V_00000001),A0 
     MOV.L  #__V_00000002,RP0 
     MOV  A0,(RP0+) 
     MOV.L  #__V_00000003,RP0 
     MOV  A0,(RP0+) 
     POP  RP0 
     POP  A0 
     JMP #__L_00000003 
 __L_00000005: 
     PUSH  R0 
     POP  A0 
     PUSH  A0 
     PUSH  RP0 
     PUSH  R0 
     POP  A0  
     MOV.L  #__V_00000001,RP0 
     MOV  A0,(RP0+) 
     POP  RP0 
     POP  A0 
     PUSH  A0 
     PUSH  RP0 
     MOV.L  (#__V_00000001),A0 
     MOV.L  #__V_00000002,RP0 
     MOV  A0,(RP0+) 
     MOV.L  #__V_00000003,RP0 
     MOV  A0,(RP0+) 
     POP  RP0 
     POP  A0 
     JMP #__L_00000003 
  __L_00000003: 
 
SECTION DATA NAME SAREA_DSPDATA 
__C_00000000:     DATA H'00000000 
__C_00000001:      DATA H'00000001 
__V_00000001:     DATA H'00000000 
__V_00000002:     DATA H'00000000 
__V_00000003:     DATA H'00000000 

 



DSPASM 4.   Overview of Structured-Descriptive Preprocessing 

R20UT3911EJ0106 Rev.1.06  Page 44 of 126 
Mar 1, 2024  

Table 4.10 switch … case Control Statement 

Multiple branches: switch … case … default … endsw 

Format: 

switch∆[expression] 
case∆value: 
  statement 1 
  break 
case∆value: 
  statement 2 
  break 
default: 
  statement 3 
  break 
endsw 

Function: 

The switch statements are used to branch the control of a program according to the value of an expression. 
 
1) The control of a program is resumed at the statement that the value of the expression matches the description of the 
case label. 
2) If the value of the expression does not match the description of the case label, the control of a program is resumed at 
the default statement. 
3) If the value of the expression does not match the description of the case label and the default clause has not been 
described, any statements will not be executed. 

Specifications: 

a) Variables, constants, and unary operators can only be described in expressions. 
b) Constants can only be described as the values of the case label. 
c) Two or more case labels having the same value cannot be written. If the value of a case label is duplicated, an 
assembler error will occur. 
d) The description of 'break' can be omitted; if it is omitted, processing described immediately after the next case label or 
the default label will be executed. 
e) The description of 'default' can be omitted. 
f) 'endsw' cannot be omitted. 

Example of expansion of structured descriptions: 

Structured 
description 

Example of expansion of assemblers 
(Since this example is a current sample, it may be changed later.) 

switch [ A0 ] 
case 1: 

... 
break 

case 2:  
... 
break 

case 3:  
...  
break 

default:  
... 

__L_00000001: 
    PUSH A0 
    PUSH RP0 
    PUSH RP0 
    PUSH A0 
    PUSH A0 
    POP A0 
    MOV.L #__V_00000002,RP0 
    MOV A0,(RP0+) 
    POP A0 
    POP RP0 
    MOV.L (#__C_00000000),A0 



DSPASM 4.   Overview of Structured-Descriptive Preprocessing 

R20UT3911EJ0106 Rev.1.06  Page 45 of 126 
Mar 1, 2024  

break 
endsw 

    PUSH DP0 
    MOV.L #__V_00000002,DP0 
    CMP (DP0+) 
    POP DP0 
    MOV.L (#__C_00000001),A0 
    MOV.L #__V_00000001,RP0 
    MOV A0,(RP0+) 
    POP RP0 
    POP A0 
    JMP NOT_ZERO, #__L_00000006 
    PUSH A0 
    PUSH RP0 
    MOV.L (#__C_00000000),A0 
    MOV.L #__V_00000001,RP0 
    MOV A0,(RP0+) 
    POP RP0 
    POP A0 
    JMP #__L_00000003 
__L_00000006: 
__L_00000003: 
    ; case 1: 
    ; --- Saves registers. --- 
    PUSH A0 
    PUSH RP0 
    ; --- Acquires operand 2. --- 
    PUSH RP0 
    PUSH A0 
    MOV.L #__V_00000004,RP0 
    MOV.L (#__C_00000001),A0 
    MOV A0,(RP0+) 
    POP A0 
    POP RP0 
    ; --- Acquires operand 1. --- 
    PUSH A0 
    POP A0 
    ; --- Executes comparison. --- 
    PUSH DP0 
    MOV.L #__V_00000004,DP0 
    CMP (DP0+) 
    POP DP0 
    MOV.L (#__C_00000001),A0 
    MOV.L #__V_00000001,RP0 
    MOV A0,(RP0+) 
    ; --- Restores registers. --- 
    POP RP0 
    POP A0 



DSPASM 4.   Overview of Structured-Descriptive Preprocessing 

R20UT3911EJ0106 Rev.1.06  Page 46 of 126 
Mar 1, 2024  

    ; --- Performs conditional branches. 
    JMP ZERO, #__L_00000009 
    PUSH A0 
    PUSH RP0 
    MOV.L (#__C_00000000),A0 
    MOV.L #__V_00000001,RP0 
    MOV A0,(RP0+) 
    POP RP0 
    POP A0 
    JMP #__L_0000000a 
__L_00000009: 
    PUSH A0 
    PUSH RP0 
    MOV.L (#__V_00000001),A0 
    MOV.L #__V_00000002,RP0 
    MOV A0,(RP0+) 
    MOV.L #__V_00000003,RP0 
    MOV A0,(RP0+) 
    POP RP0 
    POP A0 
    JMP #__L_00000005 
__L_0000000a: 
    ; case 2: 
    ; --- Saves registers. --- 
    PUSH A0 
    PUSH RP0 
    ; --- Acquires operand 2. --- 
    PUSH RP0 
    PUSH A0 
    MOV.L #__V_00000004,RP0 
    MOV.L (#__C_00000002),A0 
    MOV A0,(RP0+) 
    POP A0 
    POP RP0 
    ; --- Acquires operand 1. --- 
    PUSH A0 
    POP A0 
    ; --- Executes comparison. --- 
    PUSH DP0 
    MOV.L #__V_00000004,DP0 
    CMP (DP0+) 
    POP DP0 
    MOV.L (#__C_00000001),A0 
    MOV.L #__V_00000001,RP0 
    MOV A0,(RP0+) 
    ; --- Restores registers. --- 



DSPASM 4.   Overview of Structured-Descriptive Preprocessing 

R20UT3911EJ0106 Rev.1.06  Page 47 of 126 
Mar 1, 2024  

    POP RP0 
    POP A0 
    ; --- Performs conditional branches. 
    JMP ZERO, #__L_0000000d 
    PUSH A0 
    PUSH RP0 
    MOV.L (#__C_00000000),A0 
    MOV.L #__V_00000001,RP0 
    MOV A0,(RP0+) 
    POP RP0 
    POP A0 
    JMP #__L_0000000e 
__L_0000000d: 
    PUSH A0 
    PUSH RP0 
    MOV.L (#__V_00000001),A0 
    MOV.L #__V_00000002,RP0 
    MOV A0,(RP0+) 
    MOV.L #__V_00000003,RP0 
    MOV A0,(RP0+) 
    POP RP0 
    POP A0 
    JMP #__L_00000005 
__L_0000000e: 
    ; case 3: 
    ; --- Saves registers. --- 
    PUSH A0 
    PUSH RP0 
    ; --- Acquires operand 2. --- 
    PUSH RP0 
    PUSH A0 
    MOV.L #__V_00000004,RP0 
    MOV.L (#__C_00000003),A0 
    MOV A0,(RP0+) 
    POP A0 
    POP RP0 
    ; --- Acquires operand 1. --- 
    PUSH A0 
    POP A0 
    ; --- Executes comparison. --- 
    PUSH DP0 
    MOV.L #__V_00000004,DP0 
    CMP (DP0+) 
    POP DP0 
    MOV.L (#__C_00000001),A0 
    MOV.L #__V_00000001,RP0 



DSPASM 4.   Overview of Structured-Descriptive Preprocessing 

R20UT3911EJ0106 Rev.1.06  Page 48 of 126 
Mar 1, 2024  

    MOV A0,(RP0+) 
    ; --- Restores registers. --- 
    POP RP0 
    POP A0 
    ; --- Performs conditional branches. 
    JMP ZERO, #__L_00000011 
    PUSH A0 
    PUSH RP0 
    MOV.L (#__C_00000000),A0 
    MOV.L #__V_00000001,RP0 
    MOV A0,(RP0+) 
    POP RP0 
    POP A0 
    JMP #__L_00000012 
__L_00000011: 
    PUSH A0 
    PUSH RP0 
    MOV.L (#__V_00000001),A0 
    MOV.L #__V_00000002,RP0 
    MOV A0,(RP0+) 
    MOV.L #__V_00000003,RP0 
    MOV A0,(RP0+) 
    POP RP0 
    POP A0 
    JMP #__L_00000005 
__L_00000012: 
    JMP #__L_00000005 
    JMP #__L_00000005 
__L_00000014: 
__L_00000005: 
 
SECTION DATA NAME SAREA_DSPDATA 
__C_00000000:    DATA H'00000000 
__C_00000001:    DATA H'00000001 
__C_00000002:    DATA H'00000002 
__C_00000003:    DATA H'00000003 
__V_00000001:    DATA H'00000000 
__V_00000002:    DATA H'00000000 
__V_00000003:    DATA H'00000000 
__V_00000004:    DATA H'00000000 

 



DSPASM 4.   Overview of Structured-Descriptive Preprocessing 

R20UT3911EJ0106 Rev.1.06  Page 49 of 126 
Mar 1, 2024  

Table 4.11 while Control Statement 

Conditional iteration: while … endwh 

Format: 

while∆[expression] 
statement 

endwh 

Function: 

The while statements are used to iterate controlling a program while the result of an expression is true. 
 
1) While the evaluation result of an expression is true, the descriptions of statements are iteratively executed. 

Specifications: 

a) Variables, constants, and operators can be described in expressions. 
b) The following operators are available for expressions. 
• Relational operators (<, >, <=, >=, <.s, >.s, <=.s, >=.s) 
• Equality operators (==, !=) 
• Logical AND/OR operators (&&, ||) 
• Bitwise AND/OR/exclusive-OR operators (&, |, ^) 
c) When 'forever' is described in an expression, an infinite-loop code is generated. 
d) 'endwh' cannot be omitted. 

Example of expansion of structured descriptions: 

Structured 
description 

Example of expansion of assemblers 
(Since this example is a current sample, it may be changed later.) 

while [ A0 < 9 ] 
++A0 

endwh 

__L_00000001: 
    ; --- Saves registers. --- 
    PUSH A0 
    PUSH RP0 
    ; --- Acquires operand 2. --- 
    PUSH RP0 
    PUSH A0 
    MOV.L #__V_00000002,RP0 
    MOV.L (#__C_00000009),A0 
    MOV A0,(RP0+) 
    POP A0 
    POP RP0 
    ; --- Acquires operand 1. --- 
    PUSH A0 
    POP A0 
    ; --- Executes comparison. --- 
    PUSH A0 
    PUSH L0 
    PUSH L1 
    PUSH DP1 
    MOV A0,L0 
    MOV.L #__V_00000002,DP1 
    MOV (DP1+),L1 



DSPASM 4.   Overview of Structured-Descriptive Preprocessing 

R20UT3911EJ0106 Rev.1.06  Page 50 of 126 
Mar 1, 2024  

    CLAMP UNSIGNED 
    POP DP1 
    POP L1 
    POP L0 
    POP A0 
    ; --- Stores the result of comparison. --- 
    MOV.L (#__C_00000001),A0 
    MOV.L #__V_00000001,RP0 
    MOV A0,(RP0+) 
    ; --- Restores registers. --- 
    POP RP0 
    POP A0 
    ; --- Performs conditional branches. --- 
    JMP UNDER, #__L_00000005 
    ;--- Stores the result of comparison. --- 
    PUSH A0 
    PUSH RP0 
    MOV.L (#__C_00000000),A0 
    MOV.L #__V_00000001,RP0 
    MOV A0,(RP0+) 
    POP RP0 
    POP A0 
    ; --- Performs conditional branches. --- 
    JMP #__L_00000003 
__L_00000005: 
    ; --- Saves registers. --- 
    PUSH R0 
    PUSH RP0 
    ; --- Increments a value. --- 
    MOV.L (#__C_00000001),R0 
    ADD_R 
    ; --- Stores a result. --- 
    MOV.L #__V_00000001,RP0 
    MOV A0,(RP0+) 
    ; --- Updates a result. --- 
    PUSH DP0 
    MOV.L #__V_00000001,DP0 
    MOV (DP0+),A0 
    PUSH A0 
    POP A0 
    POP DP0 
    ; --- Restores registers. --- 
    POP RP0 
    POP R0 
    PUSH    A0 
    PUSH    RP0 



DSPASM 4.   Overview of Structured-Descriptive Preprocessing 

R20UT3911EJ0106 Rev.1.06  Page 51 of 126 
Mar 1, 2024  

    MOV.L     (#__V_00000001),A0 
    MOV.L    #__V_00000002,RP0 
    MOV        A0,(RP0+) 
    MOV.L    #__V_00000003,RP0 
    MOV     A0,(RP0+) 
    POP     RP0 
    POP     A0 
    JMP #__L_00000001 
__L_00000006: 
__L_00000004: 
 
SECTION DATA NAME SAREA_DSPDATA 
__C_00000000:    DATA H'00000000 
__C_00000001:    DATA H'00000001 
__C_00000009:    DATA H'00000009 
__V_00000001:    DATA H'00000000 
__V_00000002:    DATA H'00000000 
__V_00000003:    DATA H'00000000 
__V_00000003:    DATA H'00000000 
__V_00000004:    DATA H'00000000 

 



DSPASM 4.   Overview of Structured-Descriptive Preprocessing 

R20UT3911EJ0106 Rev.1.06  Page 52 of 126 
Mar 1, 2024  

Table 4.12 do Control Statement 

Conditional iteration (post-execution determination): do … during 

Format: 

do 
statement 

during∆[expression] 

Function: 

The do statements are used to iterate controlling a program while the result of an expression is true. 
The while statements determine whether or not iteration is continued before executing the statements; the do 
statements determine whether or not iteration is continued after executing the statements. 
 
1) When an expression is evaluated after executing the descriptions of statements and while the evaluation result is 
true, the descriptions of statements are iteratively executed. 

Specifications: 

a) Variables, constants, and operators can be described in expressions. 
b) The following operators are available for expressions. 
• Relational operators (<, >, <=, >=, <.s, >.s, <=.s, >=.s) 
• Equality operators (==, !=) 
• Logical AND/OR operators (&&, ||) 
• Bitwise AND/OR/exclusive-OR operators (&, |, ^) 
c) When 'forever' is described in an expression, an infinite-loop code is generated. 

Example of expansion of structured descriptions: 

Structured 
description 

Example of expansion of assemblers 
(Since this example is a current sample, it may be changed later.) 

do 
 ++A0 
during [ A0 < 9 ] 

__L_00000001: 
    ; --- Saves registers. --- 
    PUSH R0 
    PUSH RP0 
    ; --- Increments a value. --- 
    MOV.L (#__C_00000001),R0 
    ADD_R 
    ; --- Stores a result. --- 
    MOV.L #__V_00000001,RP0 
    MOV A0,(RP0+) 
    ; --- Updates a result. --- 
    PUSH DP0 
    MOV.L #__V_00000001,DP0 
    MOV (DP0+),A0 
    PUSH A0 
    POP A0 
    POP DP0 
    ; --- Restores registers. --- 
    POP RP0 
    POP R0 
    PUSH    A0 
    PUSH    RP0 



DSPASM 4.   Overview of Structured-Descriptive Preprocessing 

R20UT3911EJ0106 Rev.1.06  Page 53 of 126 
Mar 1, 2024  

    MOV.L     (#__V_00000001),A0 
    MOV.L    #__V_00000002,RP0 
    MOV        A0,(RP0+) 
    MOV.L    #__V_00000003,RP0 
    MOV     A0,(RP0+) 
    POP     RP0 
    POP     A0 
    ; --- Saves registers. --- 
    PUSH A0 
    PUSH RP0 
    ; --- Acquires operand 2. --- 
    PUSH RP0 
    PUSH A0 
    MOV.L #__V_00000002,RP0 
    MOV.L (#__C_00000009),A0 
    MOV A0,(RP0+) 
    POP A0 
    POP RP0 
    ; --- Acquires operand 1. --- 
    PUSH A0 
    POP A0 
    ; --- Executes comparison. --- 
    PUSH A0 
    PUSH L0 
    PUSH L1 
    PUSH DP1 
    MOV A0,L0 
    MOV.L #__V_00000002,DP1 
    MOV (DP1+),L1 
    CLAMP UNSIGNED 
    POP DP1 
    POP L1 
    POP L0 
    POP A0 
    ; --- Stores the result of comparison. --- 
    MOV.L (#__C_00000001),A0 
    MOV.L #__V_00000001,RP0 
    MOV A0,(RP0+) 
    ; --- Restores registers. --- 
    POP RP0 
    POP A0 
    ; --- Performs conditional branches. --- 
    JMP UNDER, #__L_00000005 
    ;--- Stores the result of comparison. --- 
    PUSH A0 
    PUSH RP0 



DSPASM 4.   Overview of Structured-Descriptive Preprocessing 

R20UT3911EJ0106 Rev.1.06  Page 54 of 126 
Mar 1, 2024  

    MOV.L (#__C_00000000),A0 
    MOV.L #__V_00000001,RP0 
    MOV A0,(RP0+) 
    POP RP0 
    POP A0 
    ; --- Performs conditional branches. --- 
    JMP #__L_00000006 
__L_00000005: 
    JMP #__L_00000001 
__L_00000006: 
__L_00000004: 
 
SECTION DATA NAME SAREA_DSPDATA 
__C_00000000:    DATA H'00000000 
__C_00000001:    DATA H'00000001 
__C_00000009:    DATA H'00000009 
__V_00000001:    DATA H'00000000 
__V_00000002:    DATA H'00000000 
__V_00000003:    DATA H'00000000 

 



DSPASM 4.   Overview of Structured-Descriptive Preprocessing 

R20UT3911EJ0106 Rev.1.06  Page 55 of 126 
Mar 1, 2024  

Table 4.13 for Control Statement 

Conditional iteration (with initialization): for … to … step … endfor 

Format: 

for∆[expression 1]∆to∆[expression 2]∆step∆[expression 3] 
statement 

endfor 

Function: 

The for statements are used to iterate controlling a program while the evaluation result of expression 2 is true. 
The for statements can specify the initial value in expression 1 and processing after iteration in expression 3 in addition 
to continuation conditions of expression 2. Therefore, the for statements are often used when execution of a program is 
iterated fixed times. 
 
1) While the evaluation result of expression 2 is true, the descriptions of statements are iteratively executed. 
2) The for statements can specify the initial value in expression 1 and processing after iteration in expression 3. 

Specifications: 

a) An expression for assigning the initial value to a variable which controls the for statement is described in expression 
1. 
b) The description of expression 1 can be omitted; in this case, '[]' is used. 
c) The continuation conditions of the for statements are described in expression 2. 
d) The description of expression 2 can also be omitted; in this case, '[]' is used. When the description of expression 2 is 
omitted, expression 1 is executed. However, since continuation conditions are always false, expression 3 and the 
statements in the for statements will not be executed. 
e) Variables, constants, and operators can be described in expression 2. 
f) The following operators are available for expressions. 
• Relational operators (<, >, <=, >=, <.s, >.s, <=.s, >=.s) 
• Equality operators (==, !=) 
• Logical AND/OR operators (&&, ||) 
• Bitwise AND/OR/exclusive-OR operators (&, |, ^) 
g) An assignment expression for a variable which controls the for statements is described in expression 3. 
h) The description of expression 3 can also be omitted; in this case, '[]' is used. 
i) Labels cannot be used in expressions 1 and 3. 
j) If a label is described in expression 2, it is assumed as an address of the label. 
k) 'endfor' cannot be omitted. 

Example of expansion of structured descriptions: 

Structured 
description 

Example of expansion of assemblers 
(Since this example is a current sample, it may be changed later.) 

for [A0 = 0] to [A0 
< 9] step [++A0] 

... 
endfor 

    ; Expression 1 [A0 = 0] 
    MOV.L    (#__C_00000000),A0 
    PUSH    RP0 
    MOV.L    #__V_00000001,RP0 
    MOV     A0,(RP0+) 
    POP     RP0 
    PUSH    A0 
    PUSH    RP0 
    MOV.L     (#__V_00000001),A0 
    MOV.L    #__V_00000002,RP0 
    MOV        A0,(RP0+) 



DSPASM 4.   Overview of Structured-Descriptive Preprocessing 

R20UT3911EJ0106 Rev.1.06  Page 56 of 126 
Mar 1, 2024  

    MOV.L    #__V_00000003,RP0 
    MOV     A0,(RP0+) 
    POP     RP0 
    POP     A0 
    JMP #__L_00000002 
__L_00000001:    ; Expression 3 [++A0] 
    ; --- Saves registers. --- 
    PUSH R0 
    PUSH RP0 
    ; --- Increments a value. --- 
    MOV.L (#__C_00000001),R0 
    ADD_R 
    ; --- Stores a result. --- 
    MOV.L #__V_00000004,RP0 
    MOV A0,(RP0+) 
    ; --- Updates a result. --- 
    PUSH DP0 
    MOV.L #__V_00000004,DP0 
    MOV (DP0+),A0 
    PUSH A0 
    POP A0 
    POP DP0 
    ; --- Restores registers. --- 
    POP RP0 
    POP R0 
    PUSH    A0 
    PUSH    RP0 
    MOV.L     (#__V_00000004),A0 
    MOV.L    #__V_00000005,RP0 
    MOV        A0,(RP0+) 
    MOV.L    #__V_00000006,RP0 
    MOV     A0,(RP0+) 
    POP     RP0 
    POP     A0 
    JMP #__L_00000002 
__L_00000002:    ; Expression 2 [A0 < 9] 
    ; --- Saves registers. --- 
    PUSH A0 
    PUSH RP0 
    ; --- Acquires operand 2. --- 
    PUSH RP0 
    PUSH A0 
    MOV.L #__V_00000008,RP0 
    MOV.L (#__C_00000009),A0 
    MOV A0,(RP0+) 
    POP A0 



DSPASM 4.   Overview of Structured-Descriptive Preprocessing 

R20UT3911EJ0106 Rev.1.06  Page 57 of 126 
Mar 1, 2024  

    POP RP0 
    ; --- Acquires operand 1. --- 
    PUSH A0 
    POP A0 
    ; --- Executes comparison. --- 
    PUSH A0 
    PUSH L0 
    PUSH L1 
    PUSH DP1 
    MOV A0,L0 
    MOV.L #__V_00000008,DP1 
    MOV (DP1+),L1 
    CLAMP UNSIGNED 
    POP DP1 
    POP L1 
    POP L0 
    POP A0 
    MOV.L (#__C_00000001),A0 
    MOV.L #__V_00000007,RP0 
    MOV A0,(RP0+) 
    ; --- Restores registers. --- 
    POP RP0 
    POP A0 
    ; --- Performs conditional branches. --- 
    JMP UNDER, #__L_00000006 
    PUSH A0 
    PUSH RP0 
    MOV.L (#__C_00000000),A0 
    MOV.L #__V_00000007,RP0 
    MOV A0,(RP0+) 
    POP RP0 
    POP A0 
    JMP #__L_00000007 
__L_00000006: 
    JMP #__L_00000001 
__L_00000007: 
__L_00000005: 
 
SECTION DATA NAME SAREA_DSPDATA 
__C_00000000:    DATA H'00000000 
__C_00000001:    DATA H'00000001 
__C_00000009:    DATA H'00000009 
__V_00000001:    DATA H'00000000 
__V_00000002:    DATA H'00000000 
__V_00000003:    DATA H'00000000 
__V_00000004:    DATA H'00000000 



DSPASM 4.   Overview of Structured-Descriptive Preprocessing 

R20UT3911EJ0106 Rev.1.06  Page 58 of 126 
Mar 1, 2024  

__V_00000005:    DATA H'00000000 
__V_00000006:    DATA H'00000000 
__V_00000007:    DATA H'00000000 
__V_00000008:    DATA H'00000000 

 

Table 4.14 goto Control Statement 

Unconditional branches: goto 

Format: 

goto∆label 

Function: 

The goto statements are used to resume the control of a program at the specified label. 
 
1) The control of a program is resumed at the specified label. 

Specifications: 

a) If a label that has been specified as the destination target of goto does not exist, an assembler error will occur. 

Example of expansion of structured descriptions: 

Structured 
description 

Example of expansion of assemblers 
(Since this example is a current sample, it may be changed later.) 

    goto _L1 
     ... 
_L1: 

    JMP #_L1 
      ... 
_L1: 

 



DSPASM 4.   Overview of Structured-Descriptive Preprocessing 

R20UT3911EJ0106 Rev.1.06  Page 59 of 126 
Mar 1, 2024  

Table 4.15 continue Control Statement 

Continuation of iteration processing: continue 

Format: 

continue 

Function: 

The continue statements are used to restart the control of a program from iteration of the innermost loop (while, do … 
during, or for) including lines describing continue. 
 
1) The control of a program is restarted from iteration of the innermost loop including lines describing continue. 

Specifications: 

a) The control of a program is restarted from iteration of the innermost loop including lines describing continue even if 
the iteration loop consists of the nest. 
b) If continue is described at the outside of iteration, an assembler error will occur. 

Example of expansion of structured descriptions: 

Structured 
description 

Example of expansion of assemblers 
(Since this example is a current sample, it may be changed later.) 

while [ forever ] 
  ...(1)... 
  if [ A0 < 9 ] 
    continue 
  endif 
  ...(2)... 
endwh 
 
 
 
  

__L_00000001:; while [ forever ] 
    PUSH A0 
    PUSH RP0 
    PUSH RP0 
    PUSH A0 
    MOV.L #__V_00000002,RP0 
    MOV.L (#__C_00000001),A0 
    MOV A0,(RP0+) 
    POP A0 
    POP RP0 
    MOV.L (#__C_00000000),A0 
    PUSH DP0 
    MOV.L #__V_00000002,DP0 
    CMP (DP0+) 
    POP DP0 
    MOV.L (#__C_00000001),A0 
    MOV.L #__V_00000001,RP0 
    MOV A0,(RP0+) 
    POP RP0 
    POP A0 
    JMP NOT_ZERO, #__L_00000005 
    PUSH A0 
    PUSH RP0 
    MOV.L (#__C_00000000),A0 
    MOV.L #__V_00000001,RP0 
    MOV A0,(RP0+) 
    POP RP0 
    POP A0 
    JMP #__L_00000003 
__L_00000005: 



DSPASM 4.   Overview of Structured-Descriptive Preprocessing 

R20UT3911EJ0106 Rev.1.06  Page 60 of 126 
Mar 1, 2024  

    ...(1)... 
    ; --- Saves registers. --- 
    PUSH A0 
    PUSH RP0 
    ; --- Acquires operand 2. --- 
    PUSH RP0 
    PUSH A0 
    MOV.L #__V_00000002,RP0 
    MOV.L (#__C_00000009),A0 
    MOV A0,(RP0+) 
    POP A0 
    POP RP0 
    ; --- Acquires operand 1. --- 
    PUSH A0 
    POP A0 
    ; --- Executes comparison. --- 
    PUSH A0 
    PUSH L0 
    PUSH L1 
    PUSH DP1 
    MOV A0,L0 
    MOV.L #__V_00000002,DP1 
    MOV (DP1+),L1 
    CLAMP UNSIGNED 
    POP DP1 
    POP L1 
    POP L0 
    POP A0 
    ; --- Stores the result of comparison. --- 
    MOV.L (#__C_00000001),A0 
    MOV.L #__V_00000001,RP0 
    MOV A0,(RP0+) 
    ; --- Restores registers. --- 
    POP RP0 
    POP A0 
    ; --- Performs conditional branches. 
    JMP UNDER, #__L_00000009 
    ; --- Stores the result of comparison. --- 
    PUSH A0 
    PUSH RP0 
    MOV.L (#__C_00000000),A0 
    MOV.L #__V_00000001,RP0 
    MOV A0,(RP0+) 
    POP RP0 
    POP A0 
    ; --- Performs conditional branches. --- 



DSPASM 4.   Overview of Structured-Descriptive Preprocessing 

R20UT3911EJ0106 Rev.1.06  Page 61 of 126 
Mar 1, 2024  

    JMP #__L_0000000a 
__L_00000009: 
    JMP #__L_00000001 
    JMP #__L_00000008 
__L_0000000a: 
__L_00000008: 
    ...(2)... 
    JMP #__L_00000001 
__L_00000003: 
__L_00000004:    ; endwh 
 
SECTION DATA NAME SAREA_DSPDATA 
__C_00000000:    DATA H'00000000 
__C_00000001:    DATA H'00000001 
__C_00000009:    DATA H'00000009 
__V_00000001:    DATA H'00000000 
__V_00000002:    DATA H'00000000 

 



DSPASM 4.   Overview of Structured-Descriptive Preprocessing 

R20UT3911EJ0106 Rev.1.06  Page 62 of 126 
Mar 1, 2024  

Table 4.16 break Control Statement 

Exit of iteration processing and switch statements: break 

Format: 

break 

Function: 

The break statements have the following two functions. 
 
1) Iteration of the innermost loop (while, do … during, or for) including lines describing break is suspended. 
2) Execution of the switch … case statements are exited and the control of a program is resumed at the next line of 
'endsw'. 
Specifications: 

a) Iteration of the innermost loop including lines describing break is suspended even if the iteration loop consists of the 
nest. 
b) If break is described at the outside of iteration or the switch statements, an assembler error will occur. 
c) Even if the switch statements are described in iteration, break described in the switch statements functions to exit the 
switch statements. 
d) Even if iteration is described in the switch statements, break described in iteration functions to exit iteration. 

Example of expansion of structured descriptions: 

Structured 
description 

Example of expansion of assemblers 
(Since this example is a current sample, it may be changed later.) 

while [ forever ] 
  ...(1)... 
  if [ A0 < 9 ] 
    break 
  endif 
  ...(2)... 
endwh 
 
 
  

    ; while 
__L_00000001: 
    PUSH A0 
    PUSH RP0 
    PUSH RP0 
    PUSH A0 
    ; [ forever ] 
    MOV.L #__V_00000002,RP0 
    MOV.L (#__C_00000001),A0 
    MOV A0,(RP0+) 
    POP A0 
    POP RP0 
    MOV.L (#__C_00000000),A0 
    PUSH DP0 
    MOV.L #__V_00000002,DP0 
    CMP (DP0+) 
    POP DP0 
    MOV.L (#__C_00000001),A0 
    MOV.L #__V_00000001,RP0 
    MOV A0,(RP0+) 
    POP RP0 
    POP A0 
    JMP NOT_ZERO, #__L_00000005 
    PUSH A0 
    PUSH RP0 
    MOV.L (#__C_00000000),A0 



DSPASM 4.   Overview of Structured-Descriptive Preprocessing 

R20UT3911EJ0106 Rev.1.06  Page 63 of 126 
Mar 1, 2024  

    MOV.L #__V_00000001,RP0 
    MOV A0,(RP0+) 
    POP RP0 
    POP A0 
    JMP #__L_00000003 
__L_00000005: 
    ...(1)... 
    ; if [ A0 < 9 ] 
    ; --- Saves registers. --- 
    PUSH A0 
    PUSH RP0 
    ; --- Acquires operand 2. --- 
    PUSH RP0 
    PUSH A0 
    MOV.L #__V_00000002,RP0 
    MOV.L (#__C_00000009),A0 
    MOV A0,(RP0+) 
    POP A0 
    POP RP0 
    ; --- Acquires operand 1. --- 
    PUSH A0 
    POP A0 
    ;--- Executes comparison. --- 
    PUSH A0 
    PUSH L0 
    PUSH L1 
    PUSH DP1 
    MOV A0,L0 
    MOV.L #__V_00000002,DP1 
    MOV (DP1+),L1 
    CLAMP UNSIGNED 
    POP DP1 
    POP L1 
    POP L0 
    POP A0 
    MOV.L (#__C_00000001),A0 
    MOV.L #__V_00000001,RP0 
    MOV A0,(RP0+) 
    ; --- Restores registers. --- 
    POP RP0 
    POP A0 
    JMP UNDER, #__L_00000009 
    PUSH A0 
    PUSH RP0 
    MOV.L (#__C_00000000),A0 
    MOV.L #__V_00000001,RP0 



DSPASM 4.   Overview of Structured-Descriptive Preprocessing 

R20UT3911EJ0106 Rev.1.06  Page 64 of 126 
Mar 1, 2024  

    MOV A0,(RP0+) 
    POP RP0 
    POP A0 
    JMP #__L_0000000a 
__L_00000009: 
    JMP #__L_00000004                ; break 
    JMP #__L_00000008 
__L_0000000a: 
__L_00000008: 
    ...(2)... 
    JMP #__L_00000001 
__L_00000003: 
__L_00000004:               ; endwh 
 
SECTION DATA NAME SAREA_DSPDATA 
__C_00000000:    DATA H'00000000 
__C_00000001:    DATA H'00000001 
__C_00000009:    DATA H'00000009 
__V_00000001:    DATA H'00000000 
__V_00000002:    DATA H'00000000 

 

4.5 Bit-Manipulating Instructions 

The following bit-manipulating instructions are available for the structured description. 

• Setting bits: bset 
• Clearing bits: bclr 
• Testing bits: btst 
 



DSPASM 4.   Overview of Structured-Descriptive Preprocessing 

R20UT3911EJ0106 Rev.1.06  Page 65 of 126 
Mar 1, 2024  

Table 4.17 bset Instruction 

Setting bits: bset 

Format: 

1) bset∆bpos, dest 
2) bset∆A0_n 

Function: 

The bset instruction is used to set registers and the specific bit of a variable specified with parameters to 1. 
 
1) For bpos, either of the immediate indicating the bit position, the register storing the bit position, or the variable is 
specified. 
2) For dest, registers and variables for setting bits are specified. 
3) For A0_n, any A0 register bit variable is specified (A0_0 to A0_31). 

Specifications: 

a) The value specified with bpos must be within the range from 0 to 31. If the value of bpos is outside the range, bits of 
dest are not changed. 
b) If bpos is an immediate and the value is outside the range, an assembler error will occur. 
c) The value of n specified for A0_n must be within the range from 0 to 31. If the value of n is outside the range, an 
assembler error will occur. 
 

Table 4.18 bclr Instruction 

Clearing bits: bclr 

Format: 

1) bclr∆bpos, dest 
2) bclr∆A0_n 

Function: 

The bclr instruction is used to clear registers and the specific bit of a variable specified with parameters to 0. 
 
1) For bpos, either of the immediate indicating the bit position, the register storing the bit position, or the variable is 
specified. 
2) For dest, registers and variables for clearing bits are specified. 
3) For A0_n, any A0 register bit variable is specified (A0_0 to A0_31). 

Specifications: 

a) The value specified with bpos must be within the range from 0 to 31. If the value of bpos is outside the range, bits of 
dest are not changed. 
b) If the value of bpos is an immediate and the value is outside the range, an assembler error will occur. 
c) The value of n specified for A0_n must be within the range from 0 to 31. If the value of n is outside the range, an 
assembler error will occur. 

 



DSPASM 4.   Overview of Structured-Descriptive Preprocessing 

R20UT3911EJ0106 Rev.1.06  Page 66 of 126 
Mar 1, 2024  

Table 4.19 btst Instruction 

Testing bits: btst 

Format: 

1) btst∆bpos, dest 
2) btst∆A0_n 

Function: 

The btst instruction is used to check registers and the specific bit of a variable specified with parameters and update 
flags Z and O depending on that value. 
 
1) For bpos, either of the immediate indicating the bit position, the register storing the bit position, or the variable is 
specified. 
2) For dest, registers and variables for testing bits are specified. 
3) For A0_n, any A0 register bit variable is specified (A0_0 to A0_31). 
4) Flags Z and O are changed as follows depending on the value of the bit specified with parameters. 
Flag Z: The flag becomes 1 and 0 when the specified bit is 0 and other than 0, respectively. 
Flag O: The flag becomes 1 and 0 when the specified bit is 1 and other than 0, respectively. 

Specifications: 

a) The value specified with bpos must be within the range from 0 to 31.  
If the value of bpos is outside the range: 
- when the value of bpos is an immediate, an assembler error will occur. 
- when the value of bpos is a register or a variable, the value of dest cannot be guaranteed. 

b) The value of n specified for A0_n must be within the range from 0 to 31. If the value of n is outside the range, an 
assembler error will occur. 
 



DSPASM 4.   Overview of Structured-Descriptive Preprocessing 

R20UT3911EJ0106 Rev.1.06  Page 67 of 126 
Mar 1, 2024  

4.6 Concatenating Expressions Using Logical Operators 

For the structured description, multiple expressions can be concatenated by using logical operators ('&&' or '||'). 

Table 4.20 Concatenating Expressions 

Example of expansion of structured descriptions: 

Structured 
description 

Example of expansion of assemblers 
(Since this example is a current sample, it may be changed later.) 

if [ A0 < M0 && A0 
< R0 ] 
  ... 
endif 

    ; --- Saves registers. --- 
    PUSH A0 
    PUSH RP0 
    ;--- Acquires operand 2. --- 
    PUSH RP0 
    PUSH A0 
    PUSH M0 
    POP A0 
    MOV.L #__V_00000004,RP0 
    MOV A0,(RP0+) 
    POP A0 
    POP RP0 
    ;--- Acquires operand 1. --- 
    PUSH A0 
    POP A0 
    ; --- Executes comparison. --- 
    PUSH A0 
    PUSH L0 
    PUSH L1 
    PUSH DP1 
    MOV A0,L0 
    MOV.L #__V_00000004,DP1 
    MOV (DP1+),L1 
    CLAMP UNSIGNED 
    POP DP1 
    POP L1 
    POP L0 
    POP A0 
    ; --- Stores the result of comparison. --- 
    MOV.L (#__C_00000001),A0 
    MOV.L #__V_00000001,RP0 
    MOV A0,(RP0+) 
    ; --- Restores registers. --- 
    POP RP0 
    POP A0 
    ; --- Performs conditional branches. --- 
    JMP UNDER, #__L_00000004    ; true side 
    ; --- Stores the result of comparison. --- 



DSPASM 4.   Overview of Structured-Descriptive Preprocessing 

R20UT3911EJ0106 Rev.1.06  Page 68 of 126 
Mar 1, 2024  

    PUSH A0 
    PUSH RP0 
    MOV.L (#__C_00000000),A0 
    MOV.L #__V_00000001,RP0 
    MOV A0,(RP0+) 
    POP RP0 
    POP A0 
    ; --- Performs conditional branches. --- 
    JMP #__L_00000007           ; false side 
__L_00000004: 
    ; --- Saves registers. --- 
    PUSH A0 
    PUSH RP0 
    ;--- Acquires operand 2. --- 
    PUSH RP0 
    PUSH A0 
    PUSH R0 
    POP A0 
    MOV.L #__V_00000005,RP0 
    MOV A0,(RP0+) 
    POP A0 
    POP RP0 
    ;--- Acquires operand 1. --- 
    PUSH A0 
    POP A0 
    ; --- Executes comparison. --- 
    PUSH A0 
    PUSH L0 
    PUSH L1 
    PUSH DP1 
    MOV A0,L0 
    MOV.L #__V_00000005,DP1 
    MOV (DP1+),L1 
    CLAMP UNSIGNED 
    POP DP1 
    POP L1 
    POP L0 
    POP A0 
    ; --- Stores the result of comparison. --- 
    MOV.L (#__C_00000001),A0 
    MOV.L #__V_00000002,RP0 
    MOV A0,(RP0+) 
    ; --- Restores registers. --- 
    POP RP0 
    POP A0 
    ; --- Performs conditional branches. --- 



DSPASM 4.   Overview of Structured-Descriptive Preprocessing 

R20UT3911EJ0106 Rev.1.06  Page 69 of 126 
Mar 1, 2024  

    JMP UNDER, #__L_00000006    ; true side 
    ; --- Stores the result of comparison. --- 
    PUSH A0 
    PUSH RP0 
    MOV.L (#__C_00000000),A0 
    MOV.L #__V_00000002,RP0 
    MOV A0,(RP0+) 
    POP RP0 
    POP A0 
    ; --- Performs conditional branches. --- 
    JMP #__L_00000007           ; false side 
__L_00000006: 
    ; ... 
    JMP #__L_00000003 
__L_00000007: 
__L_00000003: 
 
SECTION DATA NAME SAREA_DSPDATA 
__C_00000000:    DATA H'00000000 
__C_00000001:    DATA H'00000001 
__V_00000001:    DATA H'00000000 
__V_00000002:    DATA H'00000000 
__V_00000003:    DATA H'00000000 
__V_00000004:    DATA H'00000000 
__V_00000005:    DATA H'00000000 

 



DSPASM 4.   Overview of Structured-Descriptive Preprocessing 

R20UT3911EJ0106 Rev.1.06  Page 70 of 126 
Mar 1, 2024  

4.7 Automatic Generation of Constant Labels 

For the structured description, the following three types of data and labels are generated when assembly codes are 
generated. 

• Constant data and constant-data referencing label 
• Working variable and working-variable referencing label 
• Destination-target referencing label 
 

The constant data and working variables are added in the data section "SAREA_DSPDATA". If the 
"SAREA_DSPDATA" section does not exist, it is generated automatically. However, a data section allocated in the 
relocatable form has been defined in the source code, the constant data and working variables are added at the end of the 
section. 

For details of relocatable allocation of the sections, see section 5.4, About Sections. 

Table 4.21 Constant Data and Referencing Label 

Constant data and referencing label 

Usage: 

When constants are used for the structured description, e.g., comparison of integer values in the if statements and 
initialization of variables in the for statements, constant data and referencing labels are generated to refer to those 
values. 

Specifications: 

a) The naming rule of a label name is defined as follows. 
A character string representing "'__C_' + constant value" as eight-digit hexadecimal 
b) Even if a constant is represented as decimal in the structured description, constant-data referencing labels generate a 
label name in hexadecimal notation. 

Example of expansion of structured descriptions: 

Structured 
description 

Example of expansion of assemblers 
(Since this example is a current sample, it may be changed later.) 

A0 = 10  MOV.L (#__C_0000000a),A0   ;A0 = 10 
 ;;; Partially omitted. ;;; 
 
SECTION DATA NAME SAREA_DSPDATA 
__C_0000000a: DATA H'0000000a  ; Constant label of 10 
;;; The rest omitted. ;;; 

 



DSPASM 4.   Overview of Structured-Descriptive Preprocessing 

R20UT3911EJ0106 Rev.1.06  Page 71 of 126 
Mar 1, 2024  

Table 4.22 Working Variable and Referencing Label 

Working variable and referencing label 

Usage: 

When a working area is required for the structured description, working variable data and referencing labels are 
generated to allocate the value as a variable. 

Specifications: 

a) The naming rule of a label name is defined as follows. 
A character string representing "'__V_' + internal ID value" as eight-digit hexadecimal 

Example of expansion of structured descriptions: 

Structured 
description 

Example of expansion of assemblers 
(Since this example is a current sample, it may be changed later.) 

if [ A0 < R0 ] 
R0 = A0 

else 
A0 = R0 

endif 
 
 
 

     ; if [ A0 < R0 ] 
     ;--- Saves registers. --- 
     PUSH A0 
     PUSH RP0 
 ;--- Acquires operand 2. --- 
     PUSH RP0 
     PUSH A0 
     PUSH R0 
     POP A0 
     MOV.L #__V_00000002,RP0    ; Working variable which stores the value of 
operand 2 
     MOV A0,(RP0+) 
     POP A0 
     POP RP0 
 ;--- Acquires operand 1. --- 
     PUSH A0 
     POP A0 
 ;--- Executes comparison. --- 
     PUSH A0 
     PUSH L0 
     PUSH L1 
     PUSH DP1 
     MOV A0,L0 
     MOV.L #__V_00000002,DP1 
     MOV (DP1+),L1 
     CLAMP UNSIGNED 
     POP DP1 
     POP L1 
     POP L0 
     POP A0 
 ;;; Partially omitted. ;;;  
     
SECTION DATA NAME SAREA_DSPDATA 
__C_00000000:     DATA H'00000000 
__C_00000001:     DATA H'00000001 



DSPASM 4.   Overview of Structured-Descriptive Preprocessing 

R20UT3911EJ0106 Rev.1.06  Page 72 of 126 
Mar 1, 2024  

__V_00000001:     DATA H'00000000  ; Label of a working variable 
__V_00000002:     DATA H'00000000  ; Label of a working variable 
__V_00000003:     DATA H'00000000  ; Label of a working variable 
;;; The rest omitted. ;;; 

 

Table 4.23 Destination-Target Referencing Label 

Destination-target referencing label 

Usage: 

To implement control structures such as conditional branches and iteration, labels indicating the destination target of 
the jmp directive are automatically generated for the structured description. 

Specifications: 

a) The naming rule of a label name is defined as follows. 
A character string representing "'__L_' + internal ID value" as eight-digit hexadecimal 

Example of expansion of structured descriptions: 

Structured 
description 

Example of expansion of assemblers 
(Since this example is a current sample, it may be changed later.) 

while [ A0 < 9 ] 
++A0 

endwh 
 
 
 

__L_00000001:    ; Start label of while [A0 < 9 ] 
 ;;; Partially omitted. ;;;  
    JMP #__L_00000001    ;endwh 
__L_00000003: 
__L_00000004:    ; End label of while [A0 < 9 ] 
 

 
SECTION DATA NAME SAREA_DSPDATA 
;;; The rest omitted. ;;; 

 

4.8 Stack Areas Used for the Structured Description 

When the structured description is used, the user must allocate suitable stack areas and set the address in the stack area to 
the SP0 register. 

The stack size required for the structured description is described below. When a stack is used in the user application, the 
user must allocate the size that the following size has been added. 

• When codes are generated for GREEN DSP Ver. 2: 
(the number of registers: 9 × 4 bytes) × 2 sets = 72 bytes 

• When codes are generated for GREEN DSP Ver. 3: 
(the number of registers: 10 × 4 bytes) × 2 sets = 80 bytes 

 



DSPASM 4.   Overview of Structured-Descriptive Preprocessing 

R20UT3911EJ0106 Rev.1.06  Page 73 of 126 
Mar 1, 2024  

Table 4.24 Example of the Description for Setting a Stack 

Example of Assembler Description: 

SECTION CODE LOCATE H'mmm 
     MOV #STACK_TOP,SP0 ; Initializes a stack pointer. 
     … 
 
; Allocates a stack area (80 bytes for GREEN DSP Ver. 3) 
SECTION DATA LOCATE H'nnn 
STACK_END:  DATA H'00000000 
            DATA  H'00000000 
            DATA  H'00000000 
            DATA  H'00000000 
            DATA  H'00000000 
            DATA  H'00000000 
            DATA  H'00000000 
            DATA  H'00000000 
            DATA  H'00000000 
            DATA  H'00000000 
            DATA  H'00000000 
            DATA  H'00000000 
            DATA  H'00000000 
            DATA  H'00000000 
            DATA  H'00000000 
            DATA  H'00000000 
            DATA  H'00000000 
            DATA  H'00000000 
            DATA  H'00000000 
STACK_TOP:  DATA H'00000000 

 

4.9 Outputting the Structured Description to a List File 

Both the contents of the structured description and the assembly code generated by the structured description are output 
to a list file. The contents of the structured description are output with triple semicolons, and the generated assembly code 
is output from the following line. 



DSPASM 4.   Overview of Structured-Descriptive Preprocessing 

R20UT3911EJ0106 Rev.1.06  Page 74 of 126 
Mar 1, 2024  

; 
; Description of a source code 
MOV  #val, DP0 
A0 = (DP0) 
MOV (DP0+),A0 

; 
; Output to a list file 
MOV  #val, DP0 
 
;;; A0 = (DP0) 
PUSH DP0 
MOV (DP0+),A0 
POP DP0 
PUSH RP0 
MOV.L #__V_00000001,RP0 
MOV A0,(RP0+) 
POP RP0 
PUSH A0 
PUSH RP0 
MOV.L (#__V_00000001),A0 
MOV.L #__V_00000002,RP0 
MOV A0,(RP0+) 
MOV.L #__V_00000003,RP0 
MOV A0,(RP0+) 
POP RP0 

Figure 4.1   Example of Outputting the Structured Description to a List File 



DSPASM  5.   Overview of Assembling 

R20UT3911EJ0106 Rev.1.06  Page 75 of 126 
Mar 1, 2024  

5.   Overview of Assembling 

For assembling in the DSPASM, assembly-source codes which have been described by the user and generated by the 
structured description are converted to instruction codes for GREEN DSP and the result is output to a file. 

This chapter describes the overview of assembling. 

For details on assembling, refer to chapter 8, Details of Assembling. 

5.1 Specifications of Conversion of Assembly Codes 

In the DSPASM, instructions described in the assembly-source code are converted to instruction codes for GREEN DSP. 

Values of the available assembly codes and the instruction codes to be converted differ depending on the core version of 
DSP. 

Correspondence between the core version of DSP and the available assembly codes is shown below. 

 



DSPASM  5.   Overview of Assembling 

R20UT3911EJ0106 Rev.1.06  Page 76 of 126 
Mar 1, 2024  

Table 5.1 Assembly and Instruction Codes when the Green-DSP V2 Core is Specified 

GREEN-DSP V2 Core: When "2" is specified for the argument of command-line option "-core_version" 
Type Instruction Operand 1 Operand 2 Instruction Code (Hexadecimal) 

Transfer 

MOV A0 M0 1 

MOV A0 M1 2 

MOV A0 R0 3 

MOV A0 L0 5 

MOV A0 L1 6 

MOV #XX DP0 80+XX 

MOV #XX DP1 84+XX 

MOV #XX RP0 88+XX 

MOV (DP0+) A0 7 

MOV (DP0-) A0 21 

MOV (DP1+) M0 8 

MOV (DP1+) M1 9 

MOV (DP1+) R0 0a 

MOV (DP1+) L0 0b 

MOV (DP1+) L1 0c 

MOV A0 (RP0+) 0d 

MOV A0 (RP0-) 22 

Arithmetic 
operation 

MUL   0e 

ADD   0f 

SUB   11 

MUL_ADD   12 

MUL_SUB   14 

LIMIT   1c 

Comparison CMP (DP0+)  1d 

Branch 

JMP OVER #XX cXXX 

JMP UNDER #XX dXXX 

JMP ZERO #XX eXXX 

JMP NOT_ZERO #XX fXXX 

JMP #XX  bXXX 

I/O 
OUT A0 (H'XX) 1eXX 

IN (H'XX) A0 1fXX 

Control 
NOP   0 

STOP   20 

Stack manipulation 

MOV #XX SP0 90+XX 

PUSH A0  2c 

PUSH M0  2d 

PUSH M1  2e 

PUSH R0  2f 

PUSH L0  30 

PUSH L1  31 

PUSH DP0  32 



DSPASM  5.   Overview of Assembling 

R20UT3911EJ0106 Rev.1.06  Page 77 of 126 
Mar 1, 2024  

PUSH DP1  33 

PUSH RP0  34 

POP A0  35 

POP M0  36 

POP M1  37 

POP R0  38 

POP L0  39 

POP L1  3a 

POP DP0  3b 

POP DP1  3c 

POP RP0  3d 

Subroutine 
JSR #XX  aXXX 

RET   3e 

Logic operation 

OR A0 R0 23 

AND A0 R0 24 

XOR A0 R0 25 

NOT A0  26 

ABS A0  27 

ABS_S A0  4f 

SFT_RL   28 

SFT_RA   29 

SFT_LL   2a 

SFT_LA   2b 

Extended transfer 

MOV (XX, DP0) A0 41XX 

MOV (XX, DP1) M0 42XX 

MOV (XX, DP1) M1 43XX 

MOV (XX, DP1) R0 44XX 

MOV (XX, DP1) L0 45XX 

MOV (XX, DP1) L1 46XX 

MOV A0 (XX, RP0) 47XX 

MOV (#XX) A0 8C+XX 

MOV (#XX) M0 94+XX 

MOV (#XX) M1 98+XX 

MOV (#XX) R0 9C+XX 

MOV SP0 RP0 48 

MOV RP0 SP0 49 

Non-saturation 
arithmetic 
operation 

MUL_R   4a 

ADD_R   4b 

SUB_R   4c 

MUL_ADD_R   4d 

MUL_SUB_R   4e 

Interrupt 

CLI   51 

STI   52 

RETI   54 

Others CODE H'XX  XX (value of operand) 



DSPASM  5.   Overview of Assembling 

R20UT3911EJ0106 Rev.1.06  Page 78 of 126 
Mar 1, 2024  

JIV   53 
Note: In the table, "constant+XX" means an instruction code that a constant value has been added to XX. In addition, 

"constant value XX" means that the multi-byte instruction codes are generated in combination with the constant 
value and XX. 

 



DSPASM  5.   Overview of Assembling 

R20UT3911EJ0106 Rev.1.06  Page 79 of 126 
Mar 1, 2024  

Table 5.2 Assembly and Instruction Codes when the Green-DSP V3 Core is Specified 

GREEN-DSP V3 Core: When "3" is specified for the argument of command-line option "-core_version" 
Type Instruction Operand 1 Operand 2 Instruction Code (Hexadecimal) 

Transfer 

MOV A0 M0 1 

MOV A0 M1 2 

MOV A0 R0 3 

MOV A0 R1 4 

MOV A0 L0 5 

MOV A0 L1 6 

MOV #XX DP0 80+XX 

MOV #XX DP1 84+XX 

MOV #XX RP0 88+XX 

MOV.S #XX DP0 80+XX 

MOV.S #XX DP1 84+XX 

MOV.S #XX RP0 88+XX 

MOV.L #XX DP0 [68-6b]80+XX 

MOV.L #XX DP1 [68-6b]84+XX 

MOV.L #XX RP0 [68-6b]88+XX 

MOV (DP0+) A0 7 

MOV (DP0-) A0 21 

MOV (DP1+) M0 8 

MOV (DP1+) M1 9 

MOV (DP1+) R0 0a 

MOV (DP1+) L0 0b 

MOV (DP1+) L1 0c 

MOV A0 (RP0+) 0d 

MOV A0 (RP0-) 22 

Arithmetic 
operation 

MUL   0e 

ADD   0f 

SUB   11 

MUL_ADD   12 

MUL_ADD3   13 

MUL_SUB   14 

MUL_LIMIT   15 

LIMIT_ADD   16 

LIMIT_ADD3   17 

LIMIT_SUB   18 

MUL_LIMIT_ADD   19 

MUL_LIMIT_ADD3   1a 

MUL_LIMIT_SUB   1b 

MUX   0e 

ADD3   10 

MUX_ADD   12 

MUX_ADD3   13 



DSPASM  5.   Overview of Assembling 

R20UT3911EJ0106 Rev.1.06  Page 80 of 126 
Mar 1, 2024  

MUX_SUB   14 

MUX_CLAMP   15 

CLAMP_ADD   16 

CLAMP_ADD3   17 

CLAMP_SUB   18 

MUX_CLAMP_ADD   19 

MUX_CLAMP_ADD3   1a 

MUX_CLAMP_SUB   1b 

CLAMP   1c 

CLAMP UNSIGNED  78 

LIMIT   1c 

LIMIT UNSIGNED  78 

Comparison 
CMP (DP0+)  1d 

CMP UNSIGNED (DP0+) 79 

Branch 

JMP OVER #XX [64-67]cXXX 

JMP UNDER #XX [64-67]dXXX 

JMP ZERO #XX [64-67]eXXX 

JMP NOT_ZERO #XX [64-67]fXXX 

JMP #XX  [64-67]bXXX 

I/O 
OUT A0 (H'XX) 1eXX 

IN (H'XX) A0 1fXX 

Control 
NOP   0 

STOP   20 

Stack 
manipulation 

MOV #XX SP0 90+XX 

MOV.S #XX SP0 90+XX 

MOV.L #XX SP0 [6c-6f]90+XX 

PUSH A0  2c 

PUSH M0  2d 

PUSH M1  2e 

PUSH R0  2f 

PUSH R1  3f 

PUSH L0  30 

PUSH L1  31 

PUSH DP0  32 

PUSH DP1  33 

PUSH RP0  34 

POP A0  35 

POP M0  36 

POP M1  37 

POP R0  38 

POP R1  40 

POP L0  39 

POP L1  3a 

POP DP0  3b 

POP DP1  3c 



DSPASM  5.   Overview of Assembling 

R20UT3911EJ0106 Rev.1.06  Page 81 of 126 
Mar 1, 2024  

POP RP0  3d 

Subroutine 
JSR #XX  [64-67]aXXX 

RET   3e 

Logic operation 

OR A0 R0 23 

AND A0 R0 24 

XOR A0 R0 25 

NOT A0  26 

ABS A0  27 

ABS_S A0  4f 

SFT_RL   28 

SFT_RA   29 

SFT_LL   2a 

SFT_LA   2b 

Extended 
comparison 

CMPX (DP0+)  50 

CMPX UNSIGNED (DP0+) 7a 

Extended transfer 

MOV (XX, DP0) A0 41XX 

MOV (XX, DP1) M0 42XX 

MOV (XX, DP1) M1 43XX 

MOV (XX, DP1) R0 44XX 

MOV (XX, DP1) L0 45XX 

MOV (XX, DP1) L1 46XX 

MOV A0 (XX, RP0) 47XX 

MOV (#XX) A0 8C+XX 

MOV (#XX) M0 94+XX 

MOV (#XX) M1 98+XX 

MOV (#XX) R0 9C+XX 

MOV.S (#XX) A0 8C+XX 

MOV.S (#XX) M0 94+XX 

MOV.S (#XX) M1 98+XX 

MOV.S (#XX) R0 9C+XX 

MOV.L (#XX) A0 [68-6b]8C+XX 

MOV.L (#XX) M0 [68-6b]94+XX 

MOV.L (#XX) M1 [68-6b]98+XX 

MOV.L (#XX) R0 [68-6b]9C+XX 

MOV SP0 RP0 48 

MOV RP0 SP0 49 

Non-saturation 
arithmetic 
operation 

MUX_R   4a 

MUL_R   4a 

ADD_R   4b 

SUB_R   4c 

MUX_ADD_R   4d 

MUL_ADD_R   4d 

MUX_SUB_R   4e 

MUL_SUB_R   4e 

Interrupt CLI   51 



DSPASM  5.   Overview of Assembling 

R20UT3911EJ0106 Rev.1.06  Page 82 of 126 
Mar 1, 2024  

STI   52 

RETI   54 

Extended 
operation 

INC A0  55 

DEC A0  56 

DIV   58 

Table reference MOV (DP0+R0) A0 57 

Extended bit 
manipulation 

SFT_RL n  70 

SFT_LL n  71 

SFT_RA n  76 

SFT_LA n  77 

BTEST n  72 

Flag manipulation 

MOV A0 F0 59 

MOV F0 A0 5a 

FLGTEST n  73 

FLGSET n  74 

FLGCLR n  75 

Segment 
manipulation 

MOV #XX PS0 60+XX 

MOVP #XX PS0 64+XX 

MOV #XX DS0 68+XX 

MOV #XX SS0 6c+XX 

Others 
CODE H'XX  XX (value of operand) 

JIV   53 
Note: In the table, "[constant 1-constant 2]" means that a code for specifying a segment is output before an instruction 

code when the target address of the instruction is another segment. 
 



DSPASM  5.   Overview of Assembling 

R20UT3911EJ0106 Rev.1.06  Page 83 of 126 
Mar 1, 2024  

5.2 Comments in Assembly Codes 

In the DSPASM, the following descriptions are interpreted as comments. 

1) From ";" to the end of the line 
2) From "//" to the end of the line 
3) Description with one or more lines starting with "/*" and ending with "*/" 
 

; This line shows a comment. 

nop   ; A comment is described from a semicolon to the end of a line. 

 

// This line also shows a comment. 

nop   // A comment is described from double slashes to the end of a line. 

 

/* This comment is  

*  described across 

*  multiple lines. 

*/ 

Figure 5.1   Example of Describing a Comment 

Japanese (i.e., two-byte character string) can be used for comments. In such a case, use UTF-8 for the Japanese character 
code. 

5.3 Definitions of Data in Data Section 

The following shows the format for stating the definitions of data in a data section. 

Format: 

[character string for the label name:]∆DATA∆[decimal, hexadecimal, or #character string for the label name]∆ 
[comment] 
 
When referring to a label, add "#" to the start of the character string for the label name. 

Specifications: 

a) For reference to a label name, a label which is defined in the code or data sections can be used. If the label name is 
not defined, an assembler error will occur. 

Sample code: 

SECTION CODE LOCATE H'0 
SUB_START: 
        (omitted) 
 
SECTION DATA LOCATE H'1000 
S1_ST:  DATA 50            ; DataA 
        DATA H'100         ; DataB 
        DATA 00000200h     ; DataC 
        DATA #SUB_START    ; Address of SUB_START 
        DATA #S1_ST          ; Address of S1_ST 

 



DSPASM  5.   Overview of Assembling 

R20UT3911EJ0106 Rev.1.06  Page 84 of 126 
Mar 1, 2024  

5.4 Pseudo-Directive in Assembly Codes 

In the DSPASM, the following pseudo-directive can be used. 

1) .public 
2) .line 
 

Table 5.3 .public Pseudo-Directive 

.public pseudo-directive 

Format: 

1) .public∆symbol 

Function: 

Declares a symbol specified with the .public pseudo-directive so that the symbol can be referenced from other modules. 

Specifications: 

a) Labels can be specified for symbols. 



DSPASM  5.   Overview of Assembling 

R20UT3911EJ0106 Rev.1.06  Page 85 of 126 
Mar 1, 2024  

Sample code 

; Sample code 
; 
SECTION CODE 
    MOV #S1_ST, DP0 
    MOV #S1_OUT, RP0 
    ; 
    MOV (DP0+), A0            ; DataB->A0 
    MOV A0, R0                ; DataB->R0 
    MOV (DP0+), A0            ; DataA->A0 
    ADD                      ; DataA + DataB 
    ; 
    MOV A0, (RP0+)            ; A0->DataC 
    STOP 
    ; 
SECTION DATA 
S1_ST: 
        .public _DataB 
_DataB: 
        DATA H'00000000    ; DataB 
        .public _DataA 
_DataA: 
        DATA H'00000000    ; DataA 
; 
S1_OUT: 
        .public _DataC 
_DataC: 
        DATA H'00000000    ; DataC 

 

 



DSPASM  5.   Overview of Assembling 

R20UT3911EJ0106 Rev.1.06  Page 86 of 126 
Mar 1, 2024  

Table 5.4 .line Pseudo-Directive 

.line pseudo-directive 

Format: 

1) .line∆"file name",line number 

Function: 

The .line pseudo-directive is used to specify the file name and the line number being processed for the DSPASM. 
 
1) The line number begins with 1. 

Specifications: 

a) The DSPASM does not check that there actually exists the file specified with the .line pseudo-directive. 
b) The value written to the line number must be within the range from 1 to 100,000. If the value outside the range is 
written, an assembler error will occur. 

Sample code 

.LINE  "sample.dsp" , 1    ; The following line is the first line of sample.dsp. 
; Sample code 
; 
SECTION CODE 
    MOV #S1_ST, DP0 
    MOV #S1_OUT, RP0 
    ; 
.LINE  "includesample.dsp" , 1    ; The following line is the first line of includesample.dsp. 
    MOV (DP0+), A0            ; DataB->A0 
    MOV A0, R0                ; DataB->R0 
    MOV (DP0+), A0            ; DataA->A0 
    ADD                      ; DataA + DataB 
    ; 
.LINE  "sample.dsp" , 7    ; The following line is the seventh line of sample.dsp.  
    MOV A0, (RP0+) 
    STOP 
    ; 
SECTION DATA 
S1_ST:  DATA H'00000050    ; DataB 
        DATA H'00000100    ; DataA 
        DATA H'00000003    ; Param_M0 
; 
S1_OUT: DATA H'00000000 

 

5.5 About Sections 

An assembly source consists of two types of sections; code and data sections. 

When code and data sections are defined, specify CODE and DATA as the section type in the SECTION statement, 
respectively. 



DSPASM  5.   Overview of Assembling 

R20UT3911EJ0106 Rev.1.06  Page 87 of 126 
Mar 1, 2024  

Description of the CODE section 

Format: 

1) SECTION∆CODE∆[NAME∆section name]∆[LOCATE∆start address] 

Function: 

A section for allocating program codes is defined. 
 
1) Alphanumeric characters and underscores can be used for the section name. 
2) Decimal and hexadecimal constants can be used for the start address. 

Specifications: 

a) A section name can be omitted. 
b) When a section name is omitted, another section name immediately before that section name is allocated. 
However, if there is no section immediately before it, the section name will be SAREA_DSPCODE. 
c) The start address can be omitted. 
d) When the start address is specified, the section is allocated in absolute form. 
e) When the start address is not specified, the section is allocated in relocatable form. 
f) When multiple sections with the same name are described, they should be allocated so that the addresses are 
contiguous. 
g) When sections with the same name have already been defined, the start address cannot be specified. If specified, an 
assembler error will occur. 
h) If names of data and code sections are overlapped, an assembler error will occur. 
i) If address areas are overlapped in multiple sections, an assembler error will occur. 

 

Description of the DATA section 

Format: 

1) SECTION∆DATA∆[NAME∆section name]∆[LOCATE∆start address] 

Function: 

A section for allocating program data is defined. 
 
1) Alphanumeric characters and underscores can be used for the section name. 
2) Decimal and hexadecimal constants can be used for the start address. 

Specifications: 

a) A section name can be omitted. 
b) When a section name is omitted, another section name immediately before that section name is allocated. 
However, if there is no section immediately before it, the section name will be SAREA_DSPCODE. 
c) The start address can be omitted. 
d) When the start address is specified, the section is allocated in absolute form. 
e) When the start address is not specified, the section is allocated in relocatable form. 
f) When multiple sections with the same name are described, they should be allocated so that the addresses are 
contiguous. 
g) When sections with the same name have already been defined, the start address cannot be specified. If specified, an 
assembler error will occur. 
h) If names of data and code sections are overlapped, an assembler error will occur. 
i) If address areas are overlapped in multiple sections, an assembler error will occur. 

 

5.5.1 Allocating Sections and the Number of Sections 

Sections can be allocated in absolute form or relocatable form. 



DSPASM  5.   Overview of Assembling 

R20UT3911EJ0106 Rev.1.06  Page 88 of 126 
Mar 1, 2024  

When a section allocated in relocatable form is defined, other sections than that section cannot be defined. 

Multiple sections allocated in absolute form can be defined. 

The following shows the combination of code and data sections. 

 The number of sections definable 
for code sections 

The number of sections definable 
for data sections 

Relocatable code section 
Relocatable data section 

One section only One section only 

Relocatable code section 
Absolute data section 

One section only Multiple sections 

Absolute code section 
Relocatable data section 

Multiple sections One section only 

Absolute code section 
Absolute data section 

Multiple sections Multiple sections 

 

; Sample code 
SECTION CODE NAME DSPCODE1  ; This section is allocated in relocatable form. 
    NOP 
    STOP 
 
SECTION CODE NAME DSPCODE1  ; The section that has already been defined is only available. 
    NOP                           ; Note that LOCATE cannot be specified. 
    STOP 
; 
SECTION DATA NAME DSPDATA1 LOCATE H'00004000  ; This section is allocated  
S0_ST:  DATA H'00000050                             ; in absolute form. 
S0_OUT: DATA H'00000000 
 
SECTION DATA NAME DSPDATA2 LOCATE H'00005000 
S2_ST:  DATA H'00000050 
S2_OUT: DATA H'00000000 
 
SECTION DATA NAME DSPDATA1  ; The section that has already been defined is available. 
S1_ST:  DATA H'00000050     ; Note that LOCATE cannot be specified. 
S1_OUT: DATA H'00000000 
 

Figure 5.2   Example of the Description of Sections 1 (Code Section: Relocatable, Data Section: Absolute) 



DSPASM  5.   Overview of Assembling 

R20UT3911EJ0106 Rev.1.06  Page 89 of 126 
Mar 1, 2024  

; Sample code 
SECTION CODE NAME DSPCODE1 LOCATE H'00006000  ; This section is allocated 
    NOP                                         ; in absolute form. 
    STOP 
 
SECTION CODE NAME DSPCODE2 LOCATE H'00007000 
    NOP 
    STOP 
 
SECTION CODE NAME DSPCODE1  ; When the section that has already been defined is used,  
    NOP                      ; LOCATE cannot be specified. 
    STOP 
; 
SECTION DATA NAME DSPDATA1  ; This section is allocated in relocatable form. 
S0_ST:  DATA H'00000050 
S0_OUT: DATA H'00000000 
 
SECTION DATA NAME DSPDATA1  ; The section that has already been defined is only available. 
S1_ST:  DATA H'00000050     ; Note that LOCATE cannot be specified. 
S1_OUT: DATA H'00000000 

Figure 5.3   Example of the Description of Sections 2 (Code Section: Absolute, Data Section: Relocatable) 

5.5.2 Note on Defining Multiple Sections 

When multiple code and data sections are described and those are transferred from ROM of the CPU to SRAM of the 
DSP, allocation of sections must not be changed even if there are gaps between sections (do not change the offset from 
the base address). 

5.6 Direct Description of Instruction Codes 

The DSPASM supports the description "CODE H'xx" which directly describes instruction codes. When this instruction is 
described, the value specified with an argument is output as the assembly code.



DSPASM  6.   Details of Preprocessing 

R20UT3911EJ0106 Rev.1.06  Page 90 of 126 
Mar 1, 2024  

6.   Details of Preprocessing 

This chapter explains the details of preprocessing that are not described in chapter 3, Overview of Preprocessing. 

6.1 Operators of Constant Expressions 

The following shows operators that are available for constant expressions with conditional inclusion preprocessing 
directive ({TC}if). 



DSPASM  6.   Details of Preprocessing 

R20UT3911EJ0106 Rev.1.06  Page 91 of 126 
Mar 1, 2024  

Table 6.1 Operators Available for Constant Expressions of Preprocessing Directives 

Type Operator Description 
Unary 
operators 

+ Indicates positive numbers. 

- Indicates negative numbers. 

∼ Performs bitwise-inversion operation (NOT). 

Division and 
multiplication 
operators 

* Performs multiplication (unsigned). 

*.s Performs multiplication (signed, saturation operation) 

/ Performs division (unsigned). 

% Performs residue operation (unsigned). 

Addition and 
subtraction 
operators 

+ Performs addition (unsigned). 

+.s Performs addition (signed, saturation operation) 

- Performs subtraction (unsigned). 

-.s Performs subtraction (signed, saturation operation) 

Bitwise shift 
operators 

<< Performs logical left-shift operation for the specified bits. 

<<.s Performs arithmetic left-shift operation for the specified bits. 

>> Performs logical right-shift operation for the specified bits. 

>>.s Performs arithmetic right-shift operation for the specified bits. 

Relational 
operators 

< The operation result is true when the left side of the expression is smaller than the right side 
(unsigned). 

<.s The operation result is true when the left side of the expression is smaller than the right side 
(signed). 

> The operation result is true when the left side of the expression is larger than the right side 
(unsigned). 

>.s The operation result is true when the left side of the expression is larger than the right side 
(signed). 

<= The operation result is true when the left side of the expression is smaller than or equal to 
the right side (unsigned). 

<=.s The operation result is true when the left side of the expression is smaller than or equal to 
the right side (signed). 

>= The operation result is true when the left side of the expression is larger than or equal to the 
right side (unsigned). 

>=.s The operation result is true when the left side of the expression is larger than or equal to the 
right side (signed). 

Equality 
operators 

== The operation result is true when the left side of the expression is equal to the right side. 

!= The operation result is true when the left side of the expression is not equal to the right side. 

Bitwise 
AND/OR/ 
exclusive-OR 
operators 

& Performs bitwise AND operation (AND). 

| Performs bitwise OR operation (OR). 

^ Performs bitwise exclusive-OR operation (XOR). 

Logical 
AND/OR 
operators 

&& The operation result is true when the values of the left and right sides of the expression are 
compared to 0 and both of them are not equal. 
Short-circuit evaluation is performed (if the left side is false, the right side is not evaluated). 

|| The operation result is true when the values of the left and right sides of the expression are 
compared to 0 and either of them is not equal. 
Short-circuit evaluation is performed (if the left side is true, the right side is not evaluated). 

 

The priority of operators are the same as that described in section 4.3.1, Priority of Operators. 



DSPASM  7.   Details of Structured-Descriptive Preprocessing 

R20UT3911EJ0106 Rev.1.06  Page 92 of 126 
Mar 1, 2024  

7.   Details of Structured-Descriptive Processing 

This chapter explains the details of structured-descriptive processing that are not described in chapter 4, Overview of 
Structured-Descriptive Processing. 

7.1 Writing Address Values 

An address value can be written as an immediate to address pointer registers. However, it cannot be written to operation 
parameter registers such as A0 or M0. 

When an address value is specified for the operation parameter register, use a register or a variable that the address value 
has been assigned. 

Example of Assembler Description: 

MOV  #H'000, DP0      ; An address value can be written as an immediate (hexadecimal). 
MOV  #100,DP0        ; An address value can be written as an immediate (decimal). 
; 
MOV  #H'00000000, A0  ; An address value cannot be written as an immediate to the A0 register. 

 

7.2 Restrictions on the Structured Description 

7.2.1 Expressions over Multiple Lines 

In the DSPASM, since the structured description is analyzed in a line unit, expressions over multiple lines cannot be 
described. 

Similarly, elements to determine the structured description (e.g., in the for statement, from the reserved word "for" to 
[expression 3] which specifies increments) must also be described in a line. 

7.2.2 Operators in Control Statements 

In the structured description, operators which return true or false values can only be used in expressions in the control 
statements. If used in the other statements, an assembler error will occur.  

Type of Operators Returning True or False Values Operator 
Relational operators <, <.s, >, >.s, <=, <=.s, >=, >=.s 

Equality operators ==, != 

Logical AND/OR operators &&, || 

 

Operators other than logical AND/OR cannot be used with expressions for which the result may be true or false. For 
example, an assembler error will occur in the case of the following code. 

Example of Coding for Continuous Operation Following a True or False Result: 

if [(A0 < R0) == 0]   ; An assembler error will occur since a test for equivalence is applied to the result of the  
                    relational operation "A0 < R0". 
      (omitted) 
endif 

 



DSPASM  7.   Details of Structured-Descriptive Preprocessing 

R20UT3911EJ0106 Rev.1.06  Page 93 of 126 
Mar 1, 2024  

7.2.3 Bit Manipulation Instructions 

Bit manipulation instructions cannot be used in expressions in the control statements or with other operators.  

Bit manipulation instructions bset, bclr, btst 

 

7.2.4 Variables That Cannot Be Handled by Operators 

This section describes variables that cannot be handled by operators. If an unusable variable is described, an assembler 
error will occur.  

Type Operator Variables That Cannot Be Handled 

Unary operators 

+ None 

- 

The following variables cannot be used: 

Register variables: PS0, DS0, SS0 

Flag variables: I, Z, U, O 

A0 register bit variables: A0_0 to A0_31 

Pointer variable: (immediate, RP0) 

~ 

The following variables cannot be used: 

Register variables: PS0, DS0, SS0 

Flag variables: I, Z, U, O 

Pointer variable: (immediate, RP0) 

++ The following variables cannot be used: 

Register variables: PS0, DS0, SS0 

Register variables: I, Z, U, O 

A0 register bit variables: A0_0 to A0_31 

Pointer variables: (DP0), (DP1), (immediate, DP0), (immediate, DP1), 
(immediate, RP0), (DP0+R0) 

Constants 

++.s 

-- 

--.s 

Division and 
multiplication 
operators 

* The following variables cannot be used: 

Register variables: PS0, DS0, SS0 

Flag variables: I, Z, U, O 

A0 register bit variables: A0_0 to A0_31 

Pointer variable: (immediate, RP0) 

*.s 

/ The following variables cannot be used: 

Register variables: PS0, DS0, SS0 

Flag variables: I, Z, U, O 

A0 register bit variables: A0_0 to A0_31 

Pointer variable: (immediate, RP0)  

% 

Addition and 
subtraction operators 

+ The following variables cannot be used: 

Register variables: PS0, DS0, SS0 

Flag variables: I, Z, U, O 

A0 register bit variables: A0_0 to A0_31 

+.s 

- 

-.s 



DSPASM  7.   Details of Structured-Descriptive Preprocessing 

R20UT3911EJ0106 Rev.1.06  Page 94 of 126 
Mar 1, 2024  

Pointer variable: (immediate, RP0) 

Bitwise shift 
operators 

<< The following variables cannot be used: 

Register variables: PS0, DS0, SS0 

Flag variables: I, Z, U, O 

A0 register bit variables: A0_0 to A0_31 

Pointer variable: (immediate, RP0) 

<<.s 

>> 

>>.s 

Relational operators 

< The following variables cannot be used: 

Register variables: PS0, DS0, SS0 

Flag variables: I, Z, U, O 

A0 register bit variables: A0_0 to A0_31 

Pointer variables: (DP0), (DP1), (immediate, DP0), (immediate, DP1), 
(immediate, RP0), (DP0+R0) 

<.s 

> 

>.s 

<= 

<=.s 

>= 

>=.s 

Equality operators 

== The following variables cannot be used: 

Register variables: S0, DS0, SS0 

Flag variable: I 

Pointer variable: (immediate, RP0) 

 

Flag variables (Z, U, O) and A0 register bit variables can only be used for 
comparison with 0 or 1. 

!= 

Bitwise 
AND/OR/exclusive-
OR operators 

& The following variables cannot be used on the right side of expressions: 

Register variables: PS0, DS0, SS0 

Flag variables: I, Z, U, O 

A0 register bit variables: A0_0 to A0_31 

Pointer variable: (immediate, RP0) 

| 

^ 

Logical AND/OR 
operators  

&& The following variables cannot be used: 

Register variables: PS0, DS0, SS0 

Flag variable: I 

Pointer variable: (immediate, RP0) 

|| 

Assignment 
operators 

= The following variables cannot be used on the left side of expressions: 

Flag variables: Z, U, O 
Pointer variables: (DP0), (DP1), (immediate, DP0), (immediate,DP1), (DP0+R0) 
 
The following variables cannot be used on the right side of expressions: 

Register variables: PS0, DS0, SS0 

Flag variables: I, Z, U, O 

A0 register bit variables 
Pointer variable: (immediate, RP0) 
 
When the following variables are used on the left side, anything except for 

*= 

*=.s 

/= 

%= 

+= 

+=.s 

-= 

-=.s 

<<= 



DSPASM  7.   Details of Structured-Descriptive Preprocessing 

R20UT3911EJ0106 Rev.1.06  Page 95 of 126 
Mar 1, 2024  

<<=.s constants cannot be used on the right side.  

Register variables: PS0, DS0, SS0 

 
When the following variables are used on the left side, anything except for 0 and 
1 cannot be used on the right side. 
Flag variable: I 
A0 register bit variables: A0_0 to A0_31 

 

>>= 

>>=.s 

&= 

|= 

^= 

Compound 
assignment 
(=..=) 

 

For other restrictions than above, refer to section 10.2, Translation Limits on the Structured Description. 

7.3 Crossing Nests in the Structured Description 

Nests cannot be crossed in the structured description. If nests are crossed, an assembler error will occur. 

Table 7.1   Example of Crossing of a Nest in the Structured Description 

Example of Assembler Description: 

while [A<B] 
if [A==C] 

break  
endwh               ;;; An assembler error occurs in this line. 

endif 

 

7.4 Differences of Code Generation Depending on the Core Version of DSP 

In the structured description, there are the following differences in the assembly code to be generated depending on the 
core version of DSP which is specified with the -core_version option. 

Core Version 2: V2 Core Version 3: V3 
1) MUL/MUL_R is used for multiplication. 
2) MOV is used for data transfer. 
3) LIMIT is used for relational operation.  
 

1) MUX/MUX_R is used for multiplication. 
2) MOV.L is used for data transfer. 
3) CLAMP is used for relational operation. 
4) The following directives are only used in the V3 core. 
DIV 
BTEST 

 

  



DSPASM  7.   Details of Structured-Descriptive Preprocessing 

R20UT3911EJ0106 Rev.1.06  Page 96 of 126 
Mar 1, 2024  

7.5 Character Sets Available in the Structured Description 

The following characters are available in the structured description. 

Table 7.2   Character Sets Available in the Structured Description 

Available Character Sets 
Item Value 

English uppercase characters A B C D E F G H I J K L M N O P Q R S V W X Y Z 

English lowercase characters a b c d e f g h i j k l m n o p q r s t u v w x y z 

Numerals 0 1 2 3 4 5 6 7 8 9 

Special characters ! % & ( ) * + , - . / ; < = > [ ] ^ | ~ 

Space characters Space tab 

New-line characters CR LF 

 

Note that English upper-case and lower-case characters are not distinguished in the structured description. 



DSPASM  7.   Details of Structured-Descriptive Preprocessing 

R20UT3911EJ0106 Rev.1.06  Page 97 of 126 
Mar 1, 2024  

7.6 Differences of Meanings at the Spots where "()" is Used 

The meanings of "()" differ as shown below depending on the spots where it is used. 

Spot where "()" is used Description 

Control statement Changes the priority of operation. 

Other than control statement Is handled as a pointer variable. 
If a variable name which is not described in section 4.1.4, Pointer Variables, is 
used, an assembler error will occur. 

Sample code 

SECTION CODE 
    if [(DATA2) == H'100]   // Since (DATA2) is not handled as a pointer variable, the meaning is the same as 
                          // DP0 == H'100 and the result is true. 
 
  (DATA2) = H'100    // Since (DATA2) is handled as a pointer variable,  
                            // H'100 is set for DATA2. 
    endif 
    ; 
    for [R0 = (DATA1) * 2] to [R0 < 16] step [R0 += 4] // Since (DATA1) is not handled as a pointer variable,  
                                                // H'0000 is set for R0. 
        (DATA1) = R0  // Since (DATA1) is handled as a pointer variable,  
                       // Value of R0 is set to the 4-byte area starting from DATA1. 
    endfor 
    STOP 
; 
SECTION DATA NAME DATASEC1 LOCATE H'0000 
DATA1: 
    DATA H'00000004 
; 
SECTION DATA NAME DATASEC2 LOCATE H'0100 
DATA2: 
    DATA H'00000200 
; 

 



DSPASM  7.   Details of Structured-Descriptive Preprocessing 

R20UT3911EJ0106 Rev.1.06  Page 98 of 126 
Mar 1, 2024  

7.7 Note on Using the Structured Description when the V3 Core is Used 

In the structured description, since the MOV.L directive is used in the assembly code to be generated, the value of the 
DS0 register may be changed at the spot where the structured description is used. Accordingly, when the user must 
specify the data segment, check the specifications of the data segment in the software manual of GREEN-DSP and 
modify the assembly code according to the following steps if required. 

(1) Assemble the source code and output a list file. 
(2) Find the spot where MOV.L is used in the structured-description section from a list file. 
(3) Check that the data segment has not been rewritten as an unintended value by the MOV.L directive. 
(4) If the data segment has been rewritten as an unintended value, the MOV.S and MOV directives after exiting the 

structured-description section will refer to an unintended segment. 
(5) Therefore, modify the following MOV.S and MOV directives as the MOV.L directive. 



DSPASM  7.   Details of Structured-Descriptive Preprocessing 

R20UT3911EJ0106 Rev.1.06  Page 99 of 126 
Mar 1, 2024  

7.8 Note on Using the Structured Description without Side Effect 

When the structured description without side effect (e.g., expression without assignment) is used, the instruction code 
that the value of the operation result is set to a working area is generated. 

[Example of structured description without side effect] 

• A0 + R0 
• 10 
• 1 + 2 
 

Table 7.3   Example of Expansion of Assemblers when Constant "10" is Described in the Structured Description 

Example of Expansion of Assembers 

       1              : .line "C:¥dspasm¥sample_code.dsp" , 1 
       2              : SECTION CODE 
       3              :  
       4              : ;;; 10 
       5 0000 2c       :  PUSH A0 
       6 0001 34       :  PUSH RP0 
       7 0002 688c00   :  MOV.L (#__C_0000000a),A0 
       8 0005 688801   :  MOV.L #__V_00000001,RP0 
       9 0008 0d       :  MOV A0,(RP0+) 
      10 0009 3d       :  POP RP0 
      11 000a 35       :  POP A0 
      12 000b 2c       :  PUSH A0 
      13 000c 34       :  PUSH RP0 
      14 000d 688c00   :  MOV.L (#__C_0000000a),A0 
      15 0010 688802   :  MOV.L #__V_00000002,RP0 
      16 0013 0d       :  MOV A0,(RP0+) 
      17 0014 3d       :  POP RP0 
      18 0015 35       :  POP A0 
      19              :  
      20              : SECTION DATA NAME SAREA_DSPDATA 
      21 0000 0000000a : __C_0000000a: DATA H'0000000a 
      22 0004 00000000 : __V_00000001: DATA H'00000000 

      23 0008 00000000 : __V_00000002: DATA H'00000000 

 

 

 

 
 



DSPASM  8.   Details of Assembling 

R20UT3911EJ0106 Rev.1.06  Page 100 of 126 
Mar 1, 2024  

8.   Details of Assembling 

This chapter explains the details of assembling that are not described in chapter 5, Overview of Assembling. 

8.1 Restrictions on Assembling 

For restrictions on assembling, refer to section 10.3, Translation Limit on Assembling. 

8.2 Character Sets Available in the Assembly Description 

The following characters are available in the assembly description. Note that upper-case and lower-case characters are 
not distinguished in the assembly description. 

Table 8.1   Character Sets Available in the Assembly Description 

Available Character Sets 
Item Value 

English uppercase characters A B C D E F G H I J K L M N O P Q R S V W X Y Z 

English lowercase characters a b c d e f g h i j k l m n o p q r s t u v w x y z 

Numerals 0 1 2 3 4 5 6 7 8 9 

Special characters ! " # $ ' * ( ) + , - . / : ; ? _ ` 

Space characters Space tab 

New-line characters CR LF 

 

The following shows a list of characters and symbols that can be used in label and section names. 

If characters that cannot be recognized in label and section names are used, an assembler error will occur. 

Table 8.2   Characters and Symbols Available for Use in Label and Section Names 

English uppercase characters A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

English lowercase characters a b c d e f g h i j k l m n o p q r s t u v w x y z 

Numerals 0 1 2 3 4 5 6 7 8 9 

Special characters ! $ ' . ? _ ` 

 

8.3 Supplementary on Generating Assembly Codes 

• JMP/JSR directives 
The destination-target address of the JMP/JSR directives can be specified in the 12-bit width. If the specified address 
exceeds the 12-bit width, the destination-target address will be the value that the specified value has been masked 
with 0x0FFF. 
In addition, only when the V3 core is in use, upper four bits (values masked with 0xF000) are regarded as segment 
numbers. 

 
• OUT/IN directives 

Ports for the OUT/IN directives can be specified in the 8-bit width. If the specified port number exceeds the 8-bit 
width, the port number will be the value that the specified value has been masked with 0xFF. 

 
• Segment manipulation directives (transfer to the PS0, DS0, or SS0 register) 

Segment values specified with the segment manipulation directive must be within the range from 0 to 3. If the 
specified value exceeds the range, an assembler error will occur. 



DSPASM V1.00.00  7.   Details of Structured-Descriptive Preprocessing 

R20UT3911EJ0106 Rev.1.06  Page 101 of 126 
Mar 1, 2024  

Under development Preliminary document 

Specifications in this document are tentative and subject to change. 

 
• CODE directive 

Output codes for the CODE directive can be specified in the 8-bit width. If the specified output code exceeds the 8-bit 
width, the output code will be the value that the specified value has been masked with 0xFF. 

 
• Overlapped labels 

If labels are overlapped in the DSPASM, an assembler error will occur. The error will also occur when data and code 
labels are overlapped. 

 
• Global symbols 

If labels are overlapped in the DSPASM, an assembler error will occur. The error will also occur when data and code 
labels are overlapped. Labels will be local symbols which cannot be referenced from an object file on the CPU. 
To use a label as a global symbol that can be referenced from an object file on the CPU, use .PUBLIC as described 
below. 
To reference the global symbol as a variable in a C program on the CPU, use the symbol name according to the C 
language specifications. 

Example of Expansion of Assembers 

SECTION DATA 

.PUBLIC _DATA1     ; Declares the label (_DATA1) as a global symbol. 

_DATA1: 

    DATA H'00000004 

 

 



DSPASM  9.   Reserved Words 

R20UT3911EJ0106 Rev.1.06  Page 102 of 126 
Mar 1, 2024  

9.   Reserved Words 

The following shows reserved words used for the DSPASM. 

Table 9.1   Reserved Words for Predefined Macros (1) 

__VA_ARGS__ 
__RENESAS__  

__RENESAS_VERSION__  
__DSPASM__ 

 

Table 9.2   Reserved Words for Preprocessors (2) 

{TC}define 
{TC}if 
{TC}else 
{TC}endif 

{TC}ifdef  
{TC}ifndef 
{TC}elif 
{TC}include 

 

Table 9.3   Reserved Words for Structured Descriptions (3) 

if 
elif 
else 
endif 
switch 
case 

endsw 
default 
while 
endwh 
do 
during 

for 
to 
step 
endfor 
goto 
continue 

break 
forever 
bset 
bclr 
btst 

 

Table 9.4   Reserved Words for Assembly Descriptions (4) 

section 
code 
data 
locate 
name 

.line 

 



DSPASM  9.   Reserved Words 

R20UT3911EJ0106 Rev.1.06  Page 103 of 126 
Mar 1, 2024  

Table 9.5   Reserved Words for Assembly Directives (5) 

ABS 
ABS_S 
ADD 
ADD3 
ADD_R 
AND 
BTEST 
CLAMP 
CLAMP_ADD 
CLAMP_ADD3 
CLAMP_SUB 
CLI 
CMP 
CMPX 
CODE 
DEC 
DIV 
FLGCLR 

FLGSET 
FLGTEST 
IN 
INC 
JIV 
JMP 
JSR 
LIMIT 
LIMIT_ADD 
LIMIT_ADD3 
LIMIT_SUB 
MOV 
MOV.L 
MOV.S 
MOVP 
MUL 
MUL_ADD 
MUL_ADD3 

MUL_ADD_R 
MUL_LIMIT 
MUL_LIMIT_ADD 
MUL_LIMIT_ADD3 
MUL_LIMIT_SUB 
MUL_R 
MUL_SUB 
MUL_SUB_R 
MUX 
MUX_ADD 
MUX_ADD3 
MUX_ADD_R 
MUX_CLAMP 
MUX_CLAMP_ADD 
MUX_CLAMP_ADD3 
MUX_CLAMP_SUB 
MUX_R 
MUX_SUB 

MUX_SUB_R 
NOP 
NOT 
OR 
OUT 
POP 
PUSH 
RET 
RETI 
SFT_LA 
SFT_LL 
SFT_RA 
SFT_RL 
STI 
STOP 
SUB 
SUB_R 
XOR 

 

Table 9.6   Reserved Words for Assembly Registers (6) 

A0 
M0 
M1 
L0 
L1 
R0 

R1 
DP0 
DP1 
RP0 
F0 
SP0 

PS0 
DS0 
SS0 
BR0 
PG0 

I 
Z 
U 
O 

 

Table 9.7   Reserved Words for A0 Bit Variables (7) 

A0_0 
A0_1 
A0_2 
A0_3 
A0_4 
A0_5 
A0_6 
A0_7 

A0_8 
A0_9 
A0_10 
A0_11 
A0_12 
A0_13 
A0_14 
A0_15 

A0_16 
A0_17 
A0_18 
A0_19 
A0_20 
A0_21 
A0_22 
A0_23 

A0_24 
A0_25 
A0_26 
A0_27 
A0_28 
A0_29 
A0_30 
A0_31 

 

• Other reserved words 
In addition to the reserved words above, a word including double underscores ("__") is also regarded as the reserved 
word. 

 



DSPASM  10.   Translation Limits 

R20UT3911EJ0106 Rev.1.06  Page 104 of 126 
Mar 1, 2024  

10.   Translation Limits 

The DSPASM has the following translation limits. 

10.1 Translation Limits on Preprocessing 

Preprocessing has the following translation limits. 

Table 10.1   Translation Limits on Preprocessing 

Number of descriptions of macro replacement preprocessing directives Up to 1,024 
* Up to 512 in V1.03.00 or earlier  

Character string length of identifiers for macro replacement Up to 200 characters 

Number of parameters for function macros Up to 31 

Number of levels of the nest for conditional inclusion 
({TC}if/{TC}ifdef/{TC}ifndef/{TC}elif) 

Up to 31 nesting levels 
* Only the source codes that satisfy 
conditions are to be counted. 

Number of nests for file inclusion ({TC}include) Up to 64 counts 

Length of a line (not including new-line codes) Up to 2,048 characters 

 

If those limits are exceeded, an assembler error will occur. 

 

Table 10.2   Method for Counting Nesting Levels 

#define  NUM  1 
#if  #NUM == 1 ; The most outside preprocessing directive is not counted as a nesting level. 
 #if  #NUM > 0 ; Nesting level 1 
  #if  #NUM <= 2 ; Nesting level 2 
  #endif 
 #endif 
#endif 

 

In a source code that is excluded from inclusion with the conditional inclusion preprocessing directive, the nesting levels 
are not counted. In such a source code, even if the number of nesting levels exceeds 31, an assembler error will not occur. 



DSPASM  9.   Reserved Words 

R20UT3911EJ0106 Rev.1.06  Page 105 of 126 
Mar 1, 2024  

Table 10.3   Examples of Descriptions Where Nest Count of Conditional Inclusion Preprocessing Directive 
Exceeds Translation Limits 

#define  NUM   0 
 
#if  #NUM == 0  
 #if  #NUM < 1           ; Nesting level 1 
 -- omitted -- 
  #if  #NUM < 31      ; Nesting level 31 
   #if  #NUM < 32  ; Nesting level count exceeds 31. An assembler error occurs on this line. 
    ; Processing on nesting level 32 
   #endif 
  #endif 
 -- omitted -- 
 #endif 
#endif 

#define  ABC   0 
 
#ifdef  ABCD              ; Since a macro is not defined for ABCD, nests from the next line are not included.  
      ; Nests following #else are included.  
 #ifdef  ABC           ; Nesting level 1 
 -- omitted -- 
  #ifdef  ABC       ; Nesting level 31 
   #ifdef  ABC   ; Although the nesting level count exceeds 31, an assembler error does not occur  
      ; because this is not to be included. 
    ; Processing on nesting level 32 
   #endif 
  #endif 
 -- omitted -- 
 #endif 
#else 
 #ifdef  ABC             ; Nesting level 1 
 -- omitted -- 
  #ifdef  ABC        ; Nesting level 31 
   #ifdef  ABC    ; Nesting level count exceeds 31. An assembler error occurs on this line. 
    ; Processing on nesting level 32 
   #endif 
  #endif 
 -- omitted -- 
 #endif 
#endif 

 



DSPASM  9.   Reserved Words 

R20UT3911EJ0106 Rev.1.06  Page 106 of 126 
Mar 1, 2024  

#define  NUM   31 
 
#if  #NUM > 0  
 #if  #NUM > 1     ; Nesting level 1 
 -- omitted -- 

   #if  #NUM > 31        ; Nesting level 31. Since this constant expression is false, the next #if is not 
included. 
   #if  #NUM > 32   ; Although the nesting level count exceeds 31, an assembler error does not occur  
       ; because this is not to be included. 
     ; Processing on nesting level 32 
   #endif 
  #elif  #NUM == 31 
   #ifdef  NUM      ; Nesting level count exceeds 31. An assembler error occurs on this line. 
    ; Processing on nesting level 32 
   #endif 
  #else 
   ; Processing on nesting level 31. This line is not included. 
  #endif 
 -- omitted -- 
 #endif 
#endif 

#define  ABC   0 
 
#ifndef  ABCD             ; Since a macro is not defined for ABCD, nests from the next line are included.  
      ; Nests following #else are not included. 
 #ifdef  ABC           ; Nesting level 1 
 -- omitted -- 
  #ifdef  ABC       ; Nesting level 31 
   #ifdef  ABCD  ; Nesting level count exceeds 31. An assembler error occurs on this line. 
      ; Even if the condition is false, it is counted as a nest. 
    ; Processing on nesting level 32 
   #endif 
  #endif 
 -- omitted -- 
 #endif 
#else 
 #ifdef  ABC            ; Nesting level 1 
 -- omitted -- 
  #ifdef  ABC        ; Nesting level 31 
   #ifdef  ABC   ; Although the nesting level count exceeds 31, an assembler error does not occur  
      ; because this is not to be included. 
    ; Processing on nesting level 32 
   #endif 
  #endif 
 -- omitted -- 
 #endif 
#endif 



DSPASM  9.   Reserved Words 

R20UT3911EJ0106 Rev.1.06  Page 107 of 126 
Mar 1, 2024  

 

10.2 Translation Limits on the Structured Description 

The structured description has the following translation limits. 

Table 10.4   Translation Limits on the Structured Description 

Length of a line (not including new-line codes) Up to 2,048 characters 

Number of levels of the nest for control statements Up to 31 nesting levels 
*Up to 31 nests are specified 
regardless of the type of control 
statements. 

Number of operators available for one control statement Up to 31 

 

If those limits are exceeded, an assembler error will occur. 

10.3 Translation Limit on Assembling 

Assembling has the following translation limit. 

Table 10.5   Translation Limit on Assembling 

Length of a line (not including new-line codes) Up to 2,048 characters 

 

If this limit is exceeded, an assembler error will occur. 



DSPASM  11.   Error Messages 

R20UT3911EJ0106 Rev.1.06  Page 108 of 126 
Mar 1, 2024  

11.   Error Messages 

This chapter describes error messages output from the DSPASM. 

11.1 Formats of Error Messages 

Messages of the assembler are output in the following formats according to the specifications of CubeSuite+. 

(1) When the file name and line number are included 

file-name (line-number) : message-type component-number message-number : message 

 

(2) When the file name and line number aren't included 

message-type component-number message-number : message 

 

Note that message types, component numbers, and message numbers are output as the continued character string. 

Message types One alphabetic character ("E" for an error or "W" for a 
warning) 

Component numbers Two digits (Fixed to "05".) 

Message numbers Five digits (The first digit is fixed to "5".) 

 

11.2 Error Messages 

The following shows errors generated in the DSPASM. 

If an error occurs, processing will be terminated. In the case of a warning, on the other hand, processing is resumed after 
a message has been displayed. 

E0553001: command line option. (-format) 

Description The invalid -format option is specified. 

Display information None 

Action by user Specify any one of OBJ, ASM, or VERILOG. 

 

E0553002: command line option. (-dsp) 

Description The invalid -dsp option is specified. 

Display information None 

Action by user Specify any one of the following: 
RX_DSP, RL78_DSP, RL78_101_DSP, RL78_111_DSP, RL78_IAR_DSP, 
RL78_LLVM_DSP, RL78_GCC_DSP, ARM_DSP, or ARM_EABI5_DSP 

 

E0553003: command line option. (-core_version) 

Description The invalid -core_version option is specified. 

Display information None 

Action by user Specify either 2 or 3. 

 



DSPASM  11.   Error Messages 

R20UT3911EJ0106 Rev.1.06  Page 109 of 126 
Mar 1, 2024  

E0553004: command line option. (-text_macro) 

Description An unusable character is specified for the -text_macro option. 

Display information None 

Action by user Specify any of the following characters:  
#  '  `  @  _ 

 

E0553005: command line option. (specified option name) 

Description A non-existent option is specified. 

Display information The specified option name 

Action by user Check specification of options. 

 

E0553006: illegal file name. 

Description The name of the assembly-language file was illegal (a wrong extension, etc.). 

Display information The name of the assembly-language file which has been specified for input 

Action by user Check the name of the assembly-language file. 

 

E0553007: illegal include file name. 

Description The name of the file to be included was illegal ('>' was not found, no file name was 
described, etc.). 

Display information The name of the file to be included and the line number where an error occurred 

Action by user Check the name of the file to be included. 

 

E0553008: source file open error. 

Description No assembly-language file could not be read. 

Display information The name of the assembly-language file which has been specified for input and the line 
number where an error occurred 

Action by user Check that the assembly-language file can be read. 

 

E0553009: include file open error. 

Description No file to be included could not be read. 

Display information The name of the file to be included and the line number where an error occurred 

Action by user Check that the file to be included can be read. 

 

E0553010: include file nesting over. 

Description The number of nests for the include file exceeds the upper limit (64). 

Display information The name of the file to be included and the line number where an error occurred 

Action by user Check that the nest structure of the include file is not circulated. 

 

E0553011: file write error. 

Description Writing to the output file was failed. 

Display information The name of the output file 

Action by user Check that the output file can be written. 

 



DSPASM  11.   Error Messages 

R20UT3911EJ0106 Rev.1.06  Page 110 of 126 
Mar 1, 2024  

E0553012： define symbol not found. 

Description No identifier is specified in the description of {TC}define. 

Display information The name of the file and the line number where an error occurred 

Action by user Check that identifiers have been defined. 

 

E0553013: text macro redefined. 

Description A text macro was redefined. 
*If the command-line option "-allow_ text_macro_redefine" is specified, this error will not 
occur. 

Display information The name of the file and the line number where an error occurred 

Action by user Check that definitions of identifiers are not overlapped. 

 

E0553014: illegal ifdef. 

Description No identifier is specified in the description of {TC}ifdef. 

Display information The name of the file and the line number where an error occurred 

Action by user Check the description of the line where an error occurred. 

 

E0553015: illegal ifndef. 

Description No identifier is specified in the description of {TC}ifndef. 

Display information The name of the file and the line number where an error occurred 

Action by user Check that identifiers have been defined. 

 

E0553016: illegal if. 

Description No identifier is specified in the description of {TC}if. 

Display information The name of the file and the line number where an error occurred 

Action by user Check that constant statements have been described. 

 

E0553017: illegal elif. 

Description No identifier is specified in the description of {TC}elif. 

Display information The name of the file and the line number where an error occurred 

Action by user Check that constant statements have been described. 

 

E0553018: illegal else. 

Description No preprocessing directive for {TC}else was found. 

Display information The name of the file and the line number where an error occurred 

Action by user Describe any one of {TC}if, ifdef, or ifndef before {TC}else. 

 

E0553019: illegal endif. 

Description No preprocessing directive for {TC}endif was found. 

Display information The name of the file and the line number where an error occurred 

Action by user Describe any one of {TC}if, ifdef, or ifndef before {TC}endif. 

 



DSPASM  11.   Error Messages 

R20UT3911EJ0106 Rev.1.06  Page 111 of 126 
Mar 1, 2024  

E0553020: if - endif not found. 

Description No {TC}endif for {TC}if was found. 

Display information The name of the file and the line number where an error occurred 

Action by user Check that {TC}endif for {TC}if has been described. 

 

E0553021: ifdef - endif not found. 

Description No {TC}endif for {TC}ifdef was found. 

Display information The name of the file and the line number where an error occurred 

Action by user Check that {TC}endif for {TC}ifdef has been described. 

 

E0553022: ifndef - endif not found. 

Description No {TC}endif for {TC}ifndef was found. 

Display information The name of the file and the line number where an error occurred 

Action by user Check that {TC}endif for {TC}ifndef has been described. 

 

E0553023: cannot allocate memory. 

Description Allocation of dynamic memory was failed. 

Display information The name of the file and the line number where an error occurred 

Action by user When other programs are running on Windows, exit them and reexecute the DSPASM. 
In addition, check the description of the line where an error occurred. 

 

E0553024: illegal define. (identifier name) 

Description There was an illegal description in {TC}define. 

Display information The name of the file and the line number where an error occurred 

Action by user Check the description of the line where an error occurred. 

 

E0553025: illegal expression. 

Description There was an illegal description in the constant expression. 

Display information The name of the file and the line number where an error occurred 

Action by user Check the description of the constant expression. 

 

E0553026: constant value overflow. 

Description A constant value exceeds the upper limit (4 bytes). 

Display information The name of the file and the line number where an error occurred 

Action by user Specify a value from 0 to 4294967295 for a constant. 

 

E0553027: zero divide. 

Description Division by 0 occurred when the description of the constant expression was processed. 

Display information The name of the file and the line number where an error occurred 

Action by user Check the description of the constant expression. 

 



DSPASM  11.   Error Messages 

R20UT3911EJ0106 Rev.1.06  Page 112 of 126 
Mar 1, 2024  

E0553028: unexpected EOF. 

Description An unexpected EOF was detected. 

Display information The name of the file and the line number where an error occurred 

Action by user Check the following for the description of the line where an error occurred. 

• Comments over multiple lines are closed. 
 

E0553029: unknown section. 

Description There is an illegal section type in the SECTION statement. 

Display information The name of the file and the line number where an error occurred 

Action by user Specify either CODE or DATA for the SECTION statement. 

 

E0553030: unknown move operand 1. 

Description There is an error in the first operand of the transfer directive. 

Display information The name of the file and the line number where an error occurred 

Action by user Check the description of the first operand. 

 

E0553031: unknown move operand 2. 

Description There is an error in the second operand of the transfer directive. 

Display information The name of the file and the line number where an error occurred 

Action by user Check the description of the second operand. 

 

E0553032: unknown move operand 3. 

Description There is an error in the third operand of the transfer directive. 

Display information The name of the file and the line number where an error occurred 

Action by user Check the description of the third operand. 

 

E0553033: unknown push operand. 

Description There is an error in the operand of the PUSH directive. 

Display information The name of the file and the line number where an error occurred 

Action by user Check the description of the operand. 

 

E0553034: unknown pop operand. 

Description There is an error in the operand of the POP directive. 

Display information The name of the file and the line number where an error occurred 

Action by user Check the description of the operand. 

 

E0553035: displacement error. 

Description There is an error in the description of the segment number for the transfer directive or 
displacement for the extended transfer directive. 

Display information The name of the file and the line number where an error occurred 

Action by user Specify a value from 0 to 3 for the segment number and from -128 to 127 for displacement. 

 



DSPASM  11.   Error Messages 

R20UT3911EJ0106 Rev.1.06  Page 113 of 126 
Mar 1, 2024  

E0553036: unknown port no. 

Description There is an error in specification of port addresses of the IN and OUT directives. 

Display information The name of the file and the line number where an error occurred 

Action by user Specify a value from 0 to 255 for a port address. 

 

E0553037: code format error. 

Description There is an error in an instruction code of the CODE directive. 

Display information The name of the file and the line number where an error occurred 

Action by user Specify a value from 0 to 255 for an instruction code. 

 

E0553038: unknown code. (description of an unknown assembler directive) 

Description There is a description of an unknown assembler directive. 

Display information The name of the file, the line number where an error occurred, and the description of an 
unknown assembler directive 

Action by user Check the description of the assembler directive. 

 

E0553039: reserved symbol. (symbol name) 

Description A reserved word is included in a symbol name. 

Display information The name of the file, the line number where an error occurred, and the symbol name 

Action by user Change the symbol name which does not contain any reserved words. 

 

E0553040: data format error. 

Description There is an unknown description in the data section. 

Display information The name of the file and the line number where an error occurred 

Action by user Check the description of the data section. 

 

E0553041: address(code) resolve error. 

Description An undefined code label was referred to in the program area. 

Display information The name of the file and the line number where an error occurred 

Action by user Check the definition of a label. 

 

E0553042: address(code) format error. 

Description There is an error in a description of an address which indicates the program area. 

Display information The name of the file and the line number where an error occurred 

Action by user Check the description of the address. 

 

E0553043: address(data) resolve error. 

Description An undefined data label was referred to in the program area. 

Display information The name of the file and the line number where an error occurred 

Action by user Check the definition of a label. 

 



DSPASM  11.   Error Messages 

R20UT3911EJ0106 Rev.1.06  Page 114 of 126 
Mar 1, 2024  

E0553044: address(data) format error. 

Description There is an error in a description of an address which indicates the data area. 

Display information The name of the file and the line number where an error occurred 

Action by user Check the description of the address. 

 

E0553045: address resolve error. 

Description An undefined label was referred to in the data section. 

Display information The name of the file and the line number where an error occurred 

Action by user Check the definition of a label. 

 

E0553046: data number error. 

Description There is an error in a description of a numeral which follows the DATA keyword in the data 
section. 

Display information The name of the file and the line number where an error occurred 

Action by user Check the description of the numeral. 

 

E0553047: section address format error. 

Description There is an error in a description of an address which follows LOCATE in the SECTION 
statement. 

Display information The name of the file and the line number where an error occurred 

Action by user Check the description of the address. 

 

E0553048: code label defined. 

Description The definitions of labels are overlapped. 

Display information The name of the file and the line number where an error occurred 

Action by user Check the definition of the label. 

 

E0553049: section name defined. 

Description The data section and code section names are overlapped. 

Display information The name of the file and the line number where an error occurred 

Action by user Specify the different name for a section. 

 

E0553050: code section address base error. 

Description The base address of the code section is outside the program area. 

Display information The name of the file and the line number where an error occurred 

Action by user Check specification of addresses in the code section. 

 

E0553051: data label defined. 

Description The definitions of labels are overlapped. 

Display information The name of the file and the line number where an error occurred 

Action by user Check the definition of the label. 

 



DSPASM  11.   Error Messages 

R20UT3911EJ0106 Rev.1.06  Page 115 of 126 
Mar 1, 2024  

E0553052: section address overlapped. 

Description The address ranges of sections are overlapped. 

Display information The name of the file and the line number where an error occurred 

Action by user Check the address range of each section. 

 

E0553053: data section address base error. 

Description The base address of the data section is outside the data area. 

Display information The name of the file and the line number where an error occurred 

Action by user Check specification of addresses in the data section. 

 

E0553054: .LINE line number is out of range. 

Description The line number of the pseudo-directive .LINE is out of the range. 

Display information The name of the file and the line number where an error occurred 

Action by user Specify a value from 1 to 100,000 for a line number. 

 

E0553055: macro definition number over. 

Description The number of macros defined by {TC}define exceeded the upper limit (512). 

Display information The name of the file and the line number where an error occurred 

Action by user Specify the number of descriptions of {TC}define as less than 512. 

 

E0553056: identifier string size over. 

Description The character length of an identifier defined by {TC}define exceeded the upper limit (200). 

Display information The name of the file and the line number where an error occurred 

Action by user Check the character length of an identifier. 

 

E0553057: function macro arguments number over. 

Description The number of function-macro arguments exceeded the upper limit (31). 

Display information The name of the file and the line number where an error occurred 

Action by user Check the number of arguments. 

 

E0553058: condition directives nesting over. 

Description The number of nests for conditional inclusion (if, ifdef, ifndef, elif, or else) exceeded the 
upper limit (31). 

Display information The name of the file and the line number where an error occurred 

Action by user Specify the number of nests for conditional inclusion (if, ifdef, ifndef, elif, or else) as less 
than 31. 

 

E0553059: statement nesting over. 

Description The number of nests for control statements (if, elif, else, switch, while, during, or for) 
exceeded the upper limit (31). 

Display information The name of the file and the line number where an error occurred 

Action by user Specify the number of nests for control statements (if, elif, else, switch, while, during, or for) 
as less than 31. 

 



DSPASM  11.   Error Messages 

R20UT3911EJ0106 Rev.1.06  Page 116 of 126 
Mar 1, 2024  

E0553060: operator number in a statement over. 

Description The number of operators used in a control statement exceeded the upper limit (31). 

Display information The name of the file and the line number where an error occurred 

Action by user Check the number of operators used in a control statement. 

 

E0553061: line string size over. 

Description The number of characters in a line exceeded the upper limit (2048). 

Display information The name of the file and the line number where an error occurred 

Action by user Specify the number of characters in a line as less than 2048. 

 

E0553062: command line option -define define symbol not found. 

Description No identifier is specified for the command-line option -define. 

Display information None 

Action by user Check that an identifier is defined. 

 

E0553063: command line option -define text macro redefined.  (identifier name) 

Description A text macro was redefined with the command-line option -define. 
*If the command-line option "-allow_ text_macro _redefine" is specified, this error will not 
occur. 

Display information The name of the file and the line number where an error occurred 

Action by user Check that definitions of identifiers are not overlapped. 

 

E0553064: command line option -define illegal define. (identifier name) 

Description There was illegal specification of the command-line option -define. 

Display information The name of the identifier 

Action by user Check the specification of the command-line option -define. 

 

E0553065: command line option -define macro definition number over. 

Description The number of macros defined by the command-line option -define exceeded the upper limit 
(512). 

Display information None 

Action by user Specify the specified number of the command-line options -define as less than 512. 

 

E0553066: command line option -define identifier string size over. 

Description The character length of an identifier defined by the command-line option -define exceeded 
the upper limit (200). 

Display information None 

Action by user Check the character length of an identifier. 

 

E0553067: command line option -define function macro arguments number over. (identifier name) 

Description The number of function-macro arguments in the command-line option -define exceeded the 
upper limit (31). 

Display information The name of the identifier 

Action by user Check the number of arguments. 

 



DSPASM  11.   Error Messages 

R20UT3911EJ0106 Rev.1.06  Page 117 of 126 
Mar 1, 2024  

E0553068: command line option. (-output) 

Description The invalid -output option is specified. 

Display information None 

Action by user Specify a character string for a parameter. 

 

E0553069: command line option. (-define) 

Description The invalid -define option is specified. 

Display information None 

Action by user Specify a character string for a parameter. 

 

E0553070: command line option. (-inc_dir) 

Description The invalid -inc_dir option is specified. 

Display information None 

Action by user Specify a character string for a parameter. 

 

E0553071: out of section. 

Description A code is described in the spot where no section has been defined. 

Display information The name of the file and the line number where an error occurred 

Action by user Describe the code below the start line of the code section or data section. 

 

E0553074: not supported instruction. 

Description A directive which is not supported by the V2 core version is described. 

Display information The name of the file and the line number where an error occurred 

Action by user Do not use directives which are not supported, otherwise specify 3 with the -core_version 
option. 

 

E0553075: not supported register. 

Description A register which is not supported by the V2 core version is described. 

Display information The name of the file and the line number where an error occurred 

Action by user Do not use registers which are not supported, otherwise specify 3 with the -core_version 
option. 

 

E0553076: illegal operator. (operator) 

Description An unavailable operator is described in [] in the control statement. 

Display information The name of the file, the line number where an error occurred, and operators 

Action by user Describe operators only available for the expression in the control statement. 

 

E0553077: section end address is out of range. 

Description The end address of a section exceeds 0xFFFFFFFF. 

Display information The name of the file and the line number where an error occurred 

Action by user Specify the end address of a section as 0xFFFFFFFF or lower. 

 



DSPASM  11.   Error Messages 

R20UT3911EJ0106 Rev.1.06  Page 118 of 126 
Mar 1, 2024  

E0553078: end statement not found. 

Description There is no end statements for the control statements in the structured description. 

Display information The name of the file 

Action by user Describe the end statements for the control statements. 

 

E0553079: invalid operand. (operator operand) *When a value of the right side of an operator is an unexpected 
operand 
           invalid operand. (operand operator) *When a value of the left side of an operator is an unexpected 
operand 

Description In the structured description, an unexpected operand is described for a value of the left side 
or the right side of an operator. 

Display information The name of the file, the line number where an error occurred, the operator where an error 
occurred, and the operand having an error 

Action by user Describe an operand which handles operators. 

 

E0553080: section definition error. 

Description Sections allocated in absolute and relocatable forms are mixed. Otherwise, there exists two 
or more sections allocated in relocatable form of which names are different. 

Display information The name of the file and the line number where an error occurred 

Action by user Define one of sections allocated in absolute form or relocatable form. 
Specify the same name for all sections allocated in relocatable form. 

 

E0553081: invalid struct description. (control statement) 

Description The control statement for the structured description is not the expected structure. 

Display information The name of the file, the line number where an error occurred, and the illegal control 
statement 

Action by user Check that the control structure described in the structured description is the same as that 
in section 4.4, Control Statements Available for the Structured Description. 

 

E0553082: DSP unsupported operation. (operand or operator) 

Description An operand or an operator which is unavailable for the DSP version specified with the  
-core_version option is described. 

Display information The name of the file, the line number where an error occurred, and the illegal operand or 
operator 

Action by user Do not use operators or operands which are not supported, otherwise specify 3 with the  
-core_version option. 

 

E0553083: unknown pointer. 

Description There is an error in a description of a pointer variable. 

Display information The name of the file and the line number where an error occurred 

Action by user Check the description of the pointer variable. 

 



DSPASM  11.   Error Messages 

R20UT3911EJ0106 Rev.1.06  Page 119 of 126 
Mar 1, 2024  

W0553084: MOVP instruction was inserted before JMP/JSR instruction. 

Description A MOVP instruction has been added before a JMP or JSR instruction. 
Note: This warning is issued when the JMP or JSR instruction satisfies both of the 
conditions given below. 
• The branch destination is an address in the same segment. 
• The value of the lowest-order 12 bits of the address where the instruction is located is 

0xFFE or 0xFFF. 
Display information The name of the file and the line number that the warning applies 

Action by user Check the address where the JMP or JSR instruction is located. 

 

E0553085: command line option. (-code_section_start) 

Description The description of the address where allocation is to start, which is specified with -
code_section_start option, has an error, or the value is out of the applicable range. 

Display information None 

Action by user Check the value of the address where the allocation of code is to start. 

 

E0553086: command line option. (-data_section_start) 

Description The description of the address where allocation is to start, which is specified with -
data_section_start option, has an error, or the value is out of the applicable range. 

Display information None 

Action by user Check the value of the address where the allocation of code is to start. 

 

E0553087: An operator other than the logical AND/OR operator is used for the expression returning the boolean 
value. 

Description An operator other than logical AND/OR has been used with an expression that may be 
evaluated as either true or false. 

Display information The name of the file and the line number where an error occurred 

Action by user Use the logical AND/OR operators to concatenate expressions for which the result may be 
true or false. 

 

E0553090: command line option. (-macro_identify) 

Description An invalid -macro_identify option is specified. 

Display information None 

Action by user Specify either FORWARD or EXACT. 

 

E0553094: command line option. (-dwarf_spec) 

Description An invalid -dwarf_spec option is specified. 

Display information None 

Action by user Specify any one of INITIAL, GENERIC, or RENESAS. 

 



DSPASM  11.   Error Messages 

R20UT3911EJ0106 Rev.1.06  Page 120 of 126 
Mar 1, 2024  

E0553095: command line option. (-code_label_type) 

Description An invalid -code_label_type option is specified. 

Display information None 

Action by user Specify either NOTYPE or FUNC. 

 

E0553096: command line option. (-data_label_type) 

Description An invalid -data_label_type option is specified. 

Display information None 

Action by user Specify either NOTYPE or OBJECT. 

 



 

C - 1 

Revision History 
DSPASM 

GREEN_DSP Structured Assembler User’s Manual 
 

Rev. Date Description 
Page Summary 

1.00 Sep.09, 2016  First Edition issued 

1.01 Jan.10, 2017 11 Table 2.11 -text_macro Command-Line Option 
Description about the cause of an assembler error was added. 

13 Table 2.17 -E Command-Line Option 
Description of combining -E command-line and -list command line options was added. 

13 Table 2.18 -cpuLittleEndian and -cpuBigEndian Command-Line Options 
Description of combining -cpuLittleEndian and -cpuBigEndian command-line options 
was added. 

25 4.1.3 A0 Register Bit Variables 
Description about the cause of an assembler error was added. 

26 Table 4.6 Pointer Variables 
Description of pointer variables for handling displacement was added. 

29 Table 4.8 Operators 
Description of operations when variables which cannot be handled by operators are 
used in the structured description was added. 

45 Table 4.14 for Control Statement 
Description of loop variables was deleted. Description of labels was added. 

55 Table 4.18 bset Instruction 
Description about the cause of an assembler error was added. 

55 Table 4.19 bclr Instruction 
Description about the cause of an assembler error was added. 

56 Table 4.20 btst Instruction 
Description about the cause of an assembler error was added. 

60 4.7 Automatic Generation of Constant Labels 
Description of automatically generated data destination for the structured description 
was added. Description of dedicated data section generation function was added. 

80 7.2.2 Operators in Control Statements 
Description about the cause of an assembler error was added. 

80 7.2.4 Variables That Cannot Be Handled by Operators 
Description of variables which cannot be specified on the right side or left side of the 
operator in the structured description was added. 

83 7.4 Differences of Code Generation Depending on the Core Version of DS 
Unnecessary description for core version 2 was deleted. 
Directives generated only in core version 3 were modified. 
Differences of code generation for relational operation was added. 

90 
91 

Table 10.2 Method for Counting Nesting Levels 
Table 10.3 Examples of Descriptions Where Nest Count of Conditional Inclusion 
Preprocessing Directive Exceeds Translation Limits 
Methods to count nests and description examples were added. 

95 11.2 Error Messages   
Error on -text_macro line option: E0553004: command line option. (-text_macro) 
Description and action were modified. 



 

C - 2 

1.02 Sep.01, 2017 10 2.4 Command-Line Options for the DSPASM 
The following command line options were added to table 2.7, Command-Line Options. 
-code_section_start 
-data_section_start 
-no_debug_info 

14 
15 

2.4 Command-Line Options for the DSPASM 
Descriptions of the following command line options were added. 
-code_section_start 
-data_section_start 
-no_debug_info 

107 11.2 Error Messages 
The following error messages were added. 
E0553085: command line option. (-code_section_start) 
E0553086: command line option. (-data_section_start) 

1.03 Dec.01, 2017 11 to 
16 

Statements about an assembly error being caused when any of the following 
command-line options is specified with no parameter were added. 
  -format 
  -output 
  -text_macro 
  -define 
  -inc_dir 
  -dsp 
  -core_version 
  -code_section_start 
 -data_section_start 

37 Table 4.10 switch … case Control Statement 
A statement about the specification that writing two or more case labels having the 
same value leads to an assembler error was added. 

83 7.2.2 Operators in Control Statements 
A statement about the specification that operators cannot follow on from expressions 
for which the result may be true or false was added. 

87 Table 7.2 Character Sets Available in the Structured Description 
Special characters that are only usable in assembly statements were deleted. 

91 Table 8.1 Character Sets Available in the Assembly Description 
Special characters that are only usable in structured statements were deleted. 

91 Table 8.2, Characters and Symbols Available for the Label Name or Section Name, 
was added. 

110 11.2 Error Messages 
The following error message was added. 
E0553087: An operator other than the logical AND/OR operator is used for the 
expression returning the boolean value. 

1.05 Dec.01, 2022 6 Table 2.1 Operating Environment of the DSPASM 
A Windows 11 environment has been added. 

9-10 Table 2.7 Command-Line Options 
RL78_101_DSP, RL78_111_DSP, RL78_IAR_DSP, RL78_LLVM_DSP, and 
RL78_GCC_DSP have been added to DSP type of the -dsp option. 
The -label option has been added. 
The -macro_identify option has been added. 



 

C - 3 

The -dwarf_spec option has been added. 
The -code_execinstr option has been added. 

13 Table 2.15 -dsp Command-Line Option 
RL78_101_DSP, RL78_111_DSP, RL78_IAR_DSP, RL78_LLVM_DSP, and 
RL78_GCC_DSP have been added as DSP types. 

16-17 Table 2.23 -label Command-Line Option has been added. 
Table 2.24 -macro_identify Command-Line Option has been added. 
Table 2.25 -dwarf_spec Command-Line Option has been added. 
Table 2.26 -code_execinstr Command-Line Option has been added. 

70 Table 5.3 .public Pseudo-Directive has been added. 

85 8.3 Supplementary on Generating Assembly Codes 
A description about global symbols has been added. 

86 Table 9.4 Reserved Words for Assembly Descriptions (4) 
.public has been added. 

88 Table 10.1 Translation Limits on Preprocessing 
The number of descriptions of macro replacement preprocessing directives has been 
changed from 512 to 1,024. 

92 11.1 Formats of Error Messages 
In the error message format, file-name has been changed to file-path. 

92,10
5 

11.2 Error Messages 
The description of the following message has been changed: 
E0553002: RL78_101_DSP, RL78_111_DSP, RL78_IAR_DSP, RL78_LLVM_DSP, 
and RL78_GCC_DSP have been added as DSP types. 
The following error messages have been added: 
E0553088: command line option. (-label) 
E0553090: command line option. (-macro_identify) 
E0553094: command line option. (-dwarf_spec) 

1.06 Mar 01, 2024 7 Table 2.1 Operating Environment of the DSPASM 
The supported OS has been changed to Windows 8.1 or later. 

13 Table 2.7 Command-Line Options 
The -code_label_type option has been added. 
The -data_label_type option has been added. 

22-23 Table 2.27 -code_label_type Command-Line Option has been added. 
Table 2.28 -data_label_type Command-Line Option has been added. 

40,44 4.4 Control Statements Available for the Structured Description 
The default clause was added to the switch control statement. 

120 11.2 Error Messages 
The following error messages have been added: 
E0553095: command line option. (-code_label_type) 
E0553096: command line option. (-data_label_type) 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DSPASM 
FAA/GREEN_DSP Structured Assembler User’s Manual 
 
Publication Date: Rev.1.06 Mar 1, 2024 
 
Published by: Renesas Electronics Corporation 

 
 



 
 
 
 
 
 
  

DSPASM 
FAA/GREEN_DSP Structured Assembler 

User’s Manual 

R20UT3911EJ0106 


	1.    Overview
	2.    About DSPASM
	2.1 Operating Environment
	2.2 Input to the DSPASM
	2.3  Output from the DSPASM
	2.4 Command-Line Options for the DSPASM

	3.    Overview of Preprocessing
	3.1 Distinguishing Identifiers for Preprocessing
	3.2 Macro Replacement
	3.3 Conditional Inclusion
	3.4 File Inclusion
	3.5  Predefined Macros

	4.    Overview of Structured-Descriptive Processing
	4.1 Variable Names Available for the Structured Description
	4.1.1 Register Variables
	4.1.2 Flag Variables
	4.1.3 A0 Register Bit Variables
	4.1.4 Pointer Variables

	4.2 Constants Available for the Structured Description
	4.3 Operators Available for the Structured Description
	4.3.1 Priority of Operators

	4.4 Control Statements Available for the Structured Description
	4.5 Bit-Manipulating Instructions
	4.6  Concatenating Expressions Using Logical Operators
	4.7  Automatic Generation of Constant Labels
	4.8 Stack Areas Used for the Structured Description
	4.9 Outputting the Structured Description to a List File

	5.    Overview of Assembling
	5.1 Specifications of Conversion of Assembly Codes
	5.2 Comments in Assembly Codes
	5.3 Definitions of Data in Data Section
	5.4 Pseudo-Directive in Assembly Codes
	5.5 About Sections
	5.5.1 Allocating Sections and the Number of Sections
	5.5.2 Note on Defining Multiple Sections

	5.6 Direct Description of Instruction Codes

	6.    Details of Preprocessing
	6.1 Operators of Constant Expressions

	7.    Details of Structured-Descriptive Processing
	7.1 Writing Address Values
	7.2 Restrictions on the Structured Description
	7.2.1 Expressions over Multiple Lines
	7.2.2 Operators in Control Statements
	7.2.3 Bit Manipulation Instructions
	7.2.4 Variables That Cannot Be Handled by Operators

	7.3 Crossing Nests in the Structured Description
	7.4 Differences of Code Generation Depending on the Core Version of DSP
	7.5 Character Sets Available in the Structured Description
	7.6 Differences of Meanings at the Spots where "()" is Used
	7.7 Note on Using the Structured Description when the V3 Core is Used
	7.8 Note on Using the Structured Description without Side Effect

	8.    Details of Assembling
	8.1 Restrictions on Assembling
	8.2 Character Sets Available in the Assembly Description
	8.3 Supplementary on Generating Assembly Codes

	9.    Reserved Words
	10.    Translation Limits
	10.1 Translation Limits on Preprocessing
	10.2 Translation Limits on the Structured Description
	10.3 Translation Limit on Assembling

	11.    Error Messages
	11.1 Formats of Error Messages
	11.2 Error Messages

	Revision History

