

RX24T Group

Renesas Starter Kit Code Generator Tutorial Manual For CS+

RENESAS 32-Bit MCU RX Family / RX200 Series

All information contained in these materials, including products and product specifications, represents information on the product at the time of publication and is subject to change by Renesas Electronics Corporation without notice. Please review the latest information published by Renesas Electronics Corporation through various means, including the Renesas Electronics Corporation website (http://www.renesas.com).

Rev. 1.00 Dec 2015

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Disclaimer

By using this Renesas Starter Kit (RSK), the user accepts the following terms:

The RSK is not guaranteed to be error free, and the entire risk as to the results and performance of the RSK is assumed by the User. The RSK is provided by Renesas on an "as is" basis without warranty of any kind whether express or implied, including but not limited to the implied warranties of satisfactory quality, fitness for a particular purpose, title and non-infringement of intellectual property rights with regard to the RSK. Renesas expressly disclaims all such warranties. Renesas or its affiliates shall in no event be liable for any loss of profit, loss of data, loss of contract, loss of business, damage to reputation or goodwill, any economic loss, any reprogramming or recall costs (whether the foregoing losses are direct or indirect) nor shall Renesas or its affiliates be liable for any other direct or indirect special, incidental or consequential damages arising out of or in relation to the use of this RSK, even if Renesas or its affiliates have been advised of the possibility of such damages.

Precautions

The following precautions should be observed when operating any RSK product:

This Renesas Starter Kit is only intended for use in a laboratory environment under ambient temperature and humidity conditions. A safe separation distance should be used between this and any sensitive equipment. Its use outside the laboratory, classroom, study area or similar such area invalidates conformity with the protection requirements of the Electromagnetic Compatibility Directive and could lead to prosecution.

The product generates, uses, and can radiate radio frequency energy and may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment causes harmful interference to radio or television reception, which can be determined by turning the equipment off or on, you are encouraged to try to correct the interference by one or more of the following measures;

- ensure attached cables do not lie across the equipment
- reorient the receiving antenna
- increase the distance between the equipment and the receiver
- connect the equipment into an outlet on a circuit different from that which the receiver is connected
- power down the equipment when not in use
- consult the dealer or an experienced radio/TV technician for help NOTE: It is recommended that wherever
 possible shielded interface cables are used.

The product is potentially susceptible to certain EMC phenomena. To mitigate against them it is recommended that the following measures be undertaken;

- The user is advised that mobile phones should not be used within 10m of the product when in use.
- The user is advised to take ESD precautions when handling the equipment.

The Renesas Starter Kit does not represent an ideal reference design for an end product and does not fulfil the regulatory standards for an end product.

How to Use This Manual

1. Purpose and Target Readers

This manual is designed to provide the user with an understanding of how to use Application Leading Tool (Code Generator) for RX together with the CS+ IDE to create a working project for the RSK platform. It is intended for users designing sample code on the RSK platform, using the many different incorporated peripheral devices.

The manual comprises of step-by-step instructions to generate code and import it into CS+, but does not intend to be a complete guide to software development on the RSK platform. Further details regarding operating the RX24T microcontroller may be found in the Hardware Manual and within the provided sample code.

Particular attention should be paid to the precautionary notes when using the manual. These notes occur within the body of the text, at the end of each section, and in the Usage Notes section.

The revision history summarizes the locations of revisions and additions. It does not list all revisions. Refer to the text of the manual for details.

The following documents apply to the RX24T Group. Make sure to refer to the latest versions of these documents. The newest versions of the documents listed may be obtained from the Renesas Electronics Web site.

Document Type	Description	Document Title	Document No.
User's Manual	Describes the technical details of the RSK hardware.	RSKRX24T User's Manual	R20UT3436EG
Tutorial Manual	Provides a guide to setting up RSK environment, running sample code and debugging programs.	RSKRX24T Tutorial Manual	R20UT3437EG
Quick Start Guide	Provides simple instructions to setup the RSK and run the first sample.	RSKRX24T Quick Start Guide	R20UT3438EG
Code Generator Tutorial Manual	Provides a guide to code generation and importing into the CS+ IDE.	RSKRX24T Code Generator Tutorial Manual	R20UT3439EG
Schematics	Full detail circuit schematics of the RSK.	RSKRX24T Schematics	R20UT3435EG
Hardware Manual	Provides technical details of the RX24T microcontroller.	RX24T Group Hardware Manual	R01UH0576EJ

2. List of Abbreviations and Acronyms

Abbreviation	Full Form
ADC	Analog-to-Digital Converter
API	Application Programming Interface
bps	Bits per second
CMT	Compare Match Timer
COM	COMmunications port referring to PC serial port
CPU	Central Processing Unit
DVD	Digital Versatile Disc
E1	Renesas On-chip Debugging Emulator
GUI	Graphical User Interface
IDE	Integrated Development Environment
IRQ	Interrupt Request
LCD	Liquid Crystal Display
LED	Light Emitting Diode
LSB	Least Significant Bit
LVD	Low Voltage Detect
MCU	Micro-controller Unit
MSB	Most Significant Bit
PC	Personal Computer
Pmod™	This is a Digilent Pmod [™] Compatible connector. Pmod [™] is registered to <u>Digilent Inc.</u> Digilent-Pmod_Interface_Specification
PLL	Phase-locked Loop
RAM	Random Access Memory
ROM	Read Only Memory
RSK	Renesas Starter Kit
RTC	Realtime Clock
SAU	Serial Array Unit
SCI	Serial Communications Interface
SPI	Serial Peripheral Interface
TAU	Timer Array Unit
TFT	Thin Film Transistor
TPU	Timer Pulse Unit
UART	Universal Asynchronous Receiver/Transmitter
USB	Universal Serial Bus
WDT	Watchdog timer

All trademarks and registered trademarks are the property of their respective owners.

Table of Contents

1. Overview	7
1.1 Purpose	7
1.2 Features	7
2. Introduction	8
3. Project Creation with CS+	9
3.2 Creating the Project	
4. Code Generation Using the CS+ plug in	11
J	
4.4 Code Generation	
4.4.1 Clock Generator	
4.4.2 Interrupt Controller Unit	
•	
•	
5. Completing the Tutorial Project	
5.3 LCD Code Integration	
5.3.1 SPI Code	
5.3.2 CMT Code	
5.4 Switch Code Integration	
5.4.1 Interrupt Code	
5.4.2 De-bounce Timer Code	
5.4.3 Main Switch and ADC Code	
5.5 Debug Code Integration	
5.6 UART Code Integration	
5.6.1 SCI Code	
5.6.2 Main UART code	
5.7 LED Code Integration	
6. Debugging the Project	44
7 Pupping the Code Constant Tutorial	15
7. Running the Code Generator Tutorial	
8. Additional Information	

RENESAS

RSKRX24T

RENESAS STARTER KIT

1.1 Purpose

This RSK is an evaluation tool for Renesas microcontrollers. This manual describes how to use the CS+ IDE code generator plug in to create a working project for the RSK platform.

1.2 Features

This RSK provides an evaluation of the following features:

- Project Creation with CS+
- Code Generation using the code generator plug in.
- User circuitry such as switches, LEDs and a potentiometer

The RSK board contains all the circuitry required for microcontroller operation.

2. Introduction

This manual is designed to answer, in tutorial form, how to use the code generator plug in for the RX family together with the CS+ IDE to create a working project for the RSK platform. The tutorials help explain the following:

- Project generation using the CS+
- Detailed use of the code generator plug in for CS+
- Integration with custom code
- Building the project CS+

The project generator will create a tutorial project with three selectable build configurations:

- 'DefaultBuild' is a project with debug support and optimisation level set to two.
- 'Debug' is a project built with the debugger support included. Optimisation is set to zero.
- 'Release' is a project with optimised compile options (level two) and no outputs debugging information options selected, producing code suitable for release in a product.

The tutorial examples in this manual assume that installation procedures described in the RSK Quick Start Guide have been completed. Please refer to the Quick Start Guide for details of preparing the configuration.

These tutorials are designed to show you how to use the RSK and are not intended as a comprehensive introduction to the CS+ debugger, compiler toolchains or the E1 emulator. Please refer to the relevant user manuals for more in-depth information.

3. Project Creation with CS+

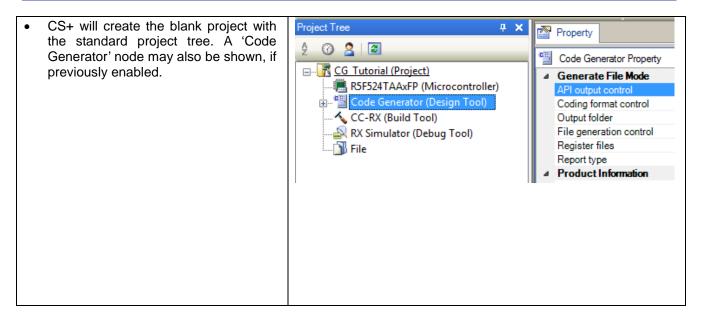
3.1 Introduction

In this section the user will be guided through the steps required to create a new C project for the RX24T MCU, ready to generate peripheral driver code using Code Generator. This project generation step is necessary to create the MCU-specific project and debug files.

3.2 Creating the Project

To use the program, start CS+:

Windows[™] 7 & Vista: Start Menu > All Programs > Renesas Electronics CS+ > CS+ for CC (RL78,RX,RH850)


Windows[™] 8.1 & 8: From Apps View , click 'CS+ for CC (RL78,RX,RH850)' icon

•	CS+ will show the Start Page. Use the 'GO' button to Create a New Project.	Create New Project Anew project can be created. A new project can also be created by reusing the file configuration registered to an existing project. Create New Multi-core Project		
•	In the 'Create Project' dialog, select 'RX' from the 'Microcontroller' pull- down.	Create Project		
•	In the 'Using Microcontroller' list control, scroll down to 'RX24T' and expand the tree control by clicking '+'. Select 'R5F524TAAxFP(100pin)'.	Using microcontroller:		
•	Ensure that in the 'Kind of project' pull- down, 'Empty Application(CC-RX)' is selected.	R5F524T8AxFF(80pin) SF524T8AxFF(80pin) R5F524T8AxFP(100pin) R5F524TAAxFP(80pin) R5F524TAAxFP(80pin)		
•	Choose an appropriate name and location for the project, then click 'Create'.	Kind of project: Empty Application(CC-RX)		
	Note: this tutorial assumes the project is named and located at the place shown opposite.	Project name: CG_Tutorial Place: C:\workspace Browse		
•	If the folder entered cannot be found a 'Question' dialogue will be displayed; click 'Yes'.	Make the project folder C:\workspace\CG_Tutorial\CG_Tutorial.mtpj Pass the file composition of an existing project to the new project Project to be passed: (Input project file to be diverted.) Copy composition files in the diverted project folder to a new project folder. Create Help		

RSKRX24T

3. Project Creation with CS+

4. Code Generation Using the CS+ plug in

4.1 Introduction

Code Generator is a Windows[™] GUI tool for generating template 'C' source code and project settings for the RX24T. When using Code Generator, the user is able to configure various MCU features and operating parameters using intuitive GUI controls, thereby bypassing the need in most cases to refer to sections of the Hardware Manual.

By following the steps detailed in this tutorial, the user will generate a CS+ project called CG_Tutorial. A fully completed Tutorial project is contained on the DVD and may be imported into CS+ by following the steps in the Quick Start Guide. This tutorial is intended as a learning exercise for users who wish to use the Code Generator to generate their own custom projects for CS+.

Once the user has configured the project, the 'Generate Code' function is used to generate three code modules for each specific MCU feature selected. These code modules are name 'r_cg_xxx.h', 'r_cg_xxx.c', and 'r_cg_xxx_user.c', where 'xxx' is a three letter acronym for the relevant MCU feature, for example 'adc'. Within these code modules, the user is then free to add custom code to meet their specific requirement. Custom code should be added, whenever possible, in between the following comment delimiters:

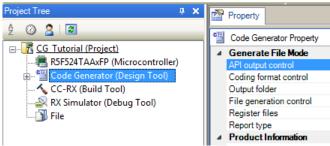
```
/* Start user code for adding. Do not edit comment generated here */
/* End user code. Do not edit comment generated here */
```

Code Generator will locate these comment delimiters, and preserve any custom code inside the delimiters on subsequent code generation operations. This is useful if, after adding custom code, the user needs to re-visit Code Generator to change any MCU operating parameters.

The CG_Tutorial project uses interrupts for switch inputs, the ADC module, the Compare Match Timer (CMT), the Serial Communications Interface (SCI) and uses these modules to perform A/D conversion and display the results via the Virtual COM port to a terminal program and also on the LCD display on the RSK.

Following a tour of the key user interface features of Code Generator in §4.3, the reader is guided through each of the peripheral function configuration dialogs in §4.4. In §5, the reader is familiarised with the structure of the template code, as well as how to add their own code to the user code areas provided by the code generator.

4.2 Enabling Code Generator


After installation of CS+, Code Generator must be enabled. This step is only required once, CS+ will remember this setting on subsequent launches.

From the 'Tool' pull-down menu select 'Plug-in Setting...'. On the 'Additional Function' tab, click the box next to the 'Code Generator/Pin View Plug-in' option and ensure it is ticked:

Basic Function	Additional Function
Dasic Function	/ dditional runction

	Module Name	Description
l	Code Generator Plug-in	Plug-in to generate the device driver automatically.(for V850, 78K0, 78K0R, RL78/G12, G13, G1
	Code Generator/PinView Plug-in	Plug-in to generate the device driver automatically and to view the device configuration.(for RX,

Click 'OK'. CS+ needs to restart to enable this selection, select 'Yes' from the Question dialogue box. After restarting, 'Code Generator (Design Tool)' node will now be shown in the left-hand 'Project Tree' window pane.

4.3 Code Generator Tour

This section presents a brief tour of Code Generator. For further details of the Code Generator paradigm and reference, refer to the Application Leading Tool Common Operations manual.

You can download the latest document from: <u>http://www.renesas.com/applilet</u> Application Leading Tool is the stand-alone version of Code Generator and this manual is applicable to the Code Generator.

In the Project Tree pane, click on the 🗄 icon next to 'Code Generator' node to expand the list.

Expand the 'Peripheral Functions' node by clicking on the 🖽 next to it.

Open the 'Peripheral Function' tab by double clicking on the 'Peripheral Functions' name.

The CS+ main window will now contain a 'Peripheral Functions' tab with the Initial View as show in Figure 4-1.

O CG_Tutorial - CS+ for CC - [Peripheral Function	15]			- • •
File Edit View Project Build Debug Tool W	/indow Help			
🚳 Start 🛃 🔜 🗿 🐰 🖻 🖄 🕫	🛛 🕋 🏯 🏔	👻 🚮 DefaultBuild	• 🔨 🔂 🖣 🐂 🔘 🖻 🖻 🐂 🛞 🦻	e ça ca 🖓
- R 🖆 🛋 🛤 👪 🕅 R 🖓 🗿 🚑 👼 🎆	i # @ % 🖞 🗊 : 🗆 🖓 🖓 🖉 🖉			
Project Tree 4 X	Property 💯 Peripheral Functions			- x
2 🕜 🙎 🔎	🐻 Generate Code 💑 📋 🚜 🛬 🚅	•	# .# 123 🔿 📥 .## 123	
G Tutorial (Project)		* (1) *** (1 <* 🔊 🔊 (0 <> *k		
R5F524TAAxFP (Microcontroller)	Clock setting Block diagram			î
Code Generator (Design Tool)	- Main clock oscillator setting			
Pin View	Operation			
Peripheral Functions	Main clock oscillation source	Resonator	•	
Voltage Detection Circuit	Frequency	8	(MHz)	E
Clock Frequency Accuracy N	Oscillator wait time	8192 cycles - 2048	(µs)	
Low Power Consumption				
Interrupt Controller Unit	Oscillation stop detection function	Disabled	•	
Buses	- PLL circuit setting			
Data Transfer Controller	Operation			
I/O Ports				
Multi-Function Timer Pulse	Input frequency division ratio	x 1 👻		
Port Output Enable 3 S-Bit Timer	Frequency multiplication factor	x 8 👻		
Compare Match Timer	Frequency	64 (MHz)		
Independent Watchdog Tim		(
🖅 🐨 Serial Communications Inter	- Low speed clock oscillator (LOCO) setting			
12C Bus Interface	Operation			-
Serial Peripheral Interface	Emailonar	A	(MU-)	
CRC Calculator	Output			д X
⊕ ● 12-Bit A/D Converter	[EOF]			*
D/A Converter				
Comparator C Data Operation Circuit				
Code Preview				E
CC-RX (Build Tool)				-
RX Simulator (Debug Tool)	All Messages			•
	🔝 Output 🚟 Error List			
F? Open Help f. F2 Rename F3 Find Next	F4 Replace Next F5 Go F6 Build	& Dow F? Build Project FB Ignore Bre	sak F9 Set/Delete B F10 Step Over F77 Step	In FRE Jump to Fun

Figure 4-1 Initial View

Code Generator provides GUI features for configuration of MCU subsystems and peripherals. Once the user has configured all required MCU subsystems and peripherals, the user can click the 'Generate Code' button, resulting in a fully configured CS+ project.

Navigation to the MCU peripheral configuration screens may be performed by double-clicking the required function in the Project Tree -> Project Name -> Peripheral Function on the left.

It is also possible to see a preview of the code that will be generated for the current peripheral function settings by double-clicking the required function in the Project Tree -> Project Name -> Code Preview on the left.

4.4 Code Generation

In the following sub-sections, the reader is guided through the steps to configure the MCU for a simple project containing interrupts for switch inputs, timers, ADC and a UART.

4.4.1 Clock Generator

Figure 4-2 shows a screenshot of Code Generator with the Clock Generator function open. Click on the 'Clock setting' sub tab. Configure the system clocks as shown in the figure. In this tutorial we are using the on board 20 MHz crystal resonator for our main clock oscillation source and the PLL circuit is in operation. The PLL output is used as the main system clock and the divisors should be set as shown in **Figure 4-2**.

Property Peripheral Functions*			
🔞 Generate Code 🛃 📋 🚜 🛬 🗰	iii 🙆 🖉 🦓	9 & 7 📲 7 🕻	🛱 🎧 🦶 🕖 🤤
Clock setting Block diagram			
- Main clock oscillator setting			
Operation			_
Main clock oscillation source	Resonator	-	
Frequency	20		(MHz)
Oscillator wait time	8192 cycles 🔹	2048	(au)
Oscillation stop detection function	Disabled	-	•
- PLL circuit setting			
Operation			
Input frequency division ratio	x 1/2 🗸		
Frequency multiplication factor	x 8 🔻		
Frequency	80	(MHz)	
- Low speed clock oscillator (LOCO) setting			
Operation			
Frequency	4		(MHz)
- System clock setting			
Clock source	PLL circuit	•	•
System clock (ICLK)	x 1 👻	80	(MHz)
Peripheral module clock (PCLKA)	x 1 👻	80	(MHz)
Peripheral module clock (PCLKB)	x 1/2 🗸	40	(MHz)
Peripheral module clock for ADC (PCLKD)	x 1/2 🔹	40	(MHz)
Flash IF clock (FCLK)	x 1/4 🗸	20	(MHz)
- IWDT-dedicated low-speed clock oscillator (IWDTL)CO) setting		
Operation	see, seang		
Frequency	15		(kHz)

Figure 4-2 Clock setting tab

Proceed to the next section on Interrupt

4.4.2 Interrupt Controller Unit

Referring to the RSK schematic, SW1 is connected to IRQ0 (P10) and SW2 is connected to IRQ5 (P02). SW3 is connected directly to the ADTRG0n and will be configured later in §4.4.4. Navigate to the 'Interrupt Controller Unit' node in Code Generator and in the 'General' tab, configure these two interrupts as falling edge triggered as shown in **Figure 4-3** below.

Property 📜 Peripheral R	Functions*							
🐻 Generate Code 🚣	🗅 🚜 🗠 💕 🖩 🖧	s 🚳 🚳 🖉	ھ	J 📲 J	12 👫 🧄 70 💈	3 (†		
- Fast interrupt setting								
Fast interrupt	Interrupt source	BSC (BUSERR vect=	=16)		-			
- Software interrupt setting —								
Software interrupt	Priority	Level 15 (highest)	~					
- NMI setting NMI pin interrupt	Valid edge	Falling	Ŧ	Digital filter	No filter	-	0	(MHz)
	valid edge	1 anng		Digital filter	No inter		U	(MITZ)
- IRQ0 setting IRQ0	Pin	P10	•	Digital filter	No filter	•	0	(MHz)
in aro		Falling	Ţ	Priority	Level 15 (highest)	_	U	(MITZ)
	Valid edge	raining	•	Filolity	Lever 15 (highest)	•		
-IRQ1 setting	D	P11		Dr. n. J. Mi	No Elaso		0	
IRQ1	Pin	[×	Digital filter	No filter		0	(MHz)
	Valid edge	Low level	-	Priority	Level 15 (highest)			
-IRQ2 setting								
IRQ2	Pin	P00	-	Digital filter	No filter	Ŧ	0	(MHz)
	Valid edge	Low level	-	Priority	Level 15 (highest)	-		
- IRQ3 setting								
IRQ3	Pin	P55	-	Digital filter	No filter	-	0	(MHz)
	Valid edge	Low level	-	Priority	Level 15 (highest)	-		
-IRQ4 setting								
IRQ4	Pin	P01	-	Digital filter	No filter	-	0	(MHz)
	Valid edge	Low level	-	Priority	Level 15 (highest)	-		
-IRQ5 setting								
IRQ5	Pin	P02	•	Digital filter	No filter	•	0	(MHz)
	Valid edge	Falling	•	Priority	Level 15 (highest)	-		
-IRQ6 setting								
IRQ6	Pin	P21	-	Digital filter	No filter	Ŧ	0	(MHz)
	Valid edge	Low level	-	Priority	Level 15 (highest)	-		
-IRQ7 setting								
IRQ7	Pin	P20	-	Digital filter	No filter	-	0	(MHz)
	Valid edge	Low level		Priority	Level 15 (highest)	Ŧ		
	_					-		

Figure 4-3 Interrupt Functions tab

4.4.3 Compare Match Timer

Navigate to the 'Compare Match Timer' node in Code Generator. CMT0 will be used as an interval timer for generation of accurate delays. CMT1 and CMT2 will be used as timers in de-bouncing of switch interrupts.

In the 'CMT0' sub-tab configure CMT0 as shown in **Figure 4-4**. This timer is configured to generate a High priority interrupt every 1ms. We will use this interrupt later in the tutorial to provide an API for generating high accuracy delays required in our application.

Property 🚆 Peripheral Functions*	
🔞 Generate Code 🚣 📋 🚜 😤 📽 🏭 🍰	🐅 🖗 🔍 🕲 🖉 ア 🖷 ア 🕮 🗛 🖶 🕂 🥲 꽃 -
CMT0 CMT1 CMT2 CMT3	
- Compare match timer operation setting	
O Unused	Used
- Count clock setting	
PCLK/8	PCLK/128
- Interval value setting	
Interval value	1 ms (Actual value: 1)
- Interrupt setting	
Enable compare match interrupt (CMI0)	
Priority	Level 10 👻

Figure 4-4 CMT0 tab

Navigate to the 'CMT1' sub-tab and configure CMT1 as shown in **Figure 4-5**. This timer is configured to generate a High priority interrupt after 20ms. This timer is used as our short switch de-bounce timer later in this tutorial.

Property Peripheral Functions*		
🐻 Generate Code 🚣 📋 🚜 😤 💕 🏙 🍰	, 💷 🙆 🙆 🚳	윤 🍠 🎕 🍠 🎇 💁 🔩 🐠 👙
CMT0 CMT1 CMT2 CMT3		
- Compare match timer operation setting		
Unused	Used	
- Count clock setting		
PCLK/8 PCLK/32	PCLK/128	PCLK/512
- Interval value setting		
Interval value	20	ms (Actual value: 20)
- Interrupt setting		
Enable compare match interrupt (CMI1)		
Priority	Level 10	•

Figure 4-5 CMT1 tab

Navigate to the 'CMT2' sub-tab and configure CMT2 as shown in **Figure 4-6**. This timer is configured to generate a High priority interrupt after 200ms. This timer is used as our long switch de-bounce timer later in this tutorial.

Property 🚆 Peripheral Functions*
🐻 Generate Code 🚣 📋 🛞 🚩 💕 🏙 🏯 💷 🔞 🥨 🧶 🖉 🦓 🖉 📲 🎜 📲 🖉
CMT0 CMT1 CMT2 CMT3
- Compare match timer operation setting
Unused
- Count clock setting
○ PCLK/8 ○ PCLK/32 ○ PCLK/128
- Interval value setting
Interval value 200 ms - (Actual value: 200)
- Interrupt setting
✓ Enable compare match interrupt (CMI2)
Priority Level 10 -

Figure 4-6 CMT2 tab

4.4.4 12-bit A/D Converter

Navigate to the '12-bit A/D Converter' tab in Code Generator. In the 'S12AD0' sub-tab configure S12AD0 as shown in **Figure 4-7**, **Figure 4-8** and configure the S12AD0 as shown. We will be using the S12AD0 in 12-bit one shot mode on the AN000 input, which is connected to the RV1 potentiometer output on the RSK. The conversion start trigger will be via the pin connected to SW3.

Property 💯 Peripheral Fun	ctions*								
🔞 Generate Code 🚣 📋	a 🖄 🖉	4 🗊 🙆 🖗	00	8 7	*# <i>5</i> 7	122 4	🔒 🌵	~D1	123
S12AD0 S12AD1 S12AD2									
- S12AD0 operation setting									
O Unused		Used							
- Operation mode setting									
Single scan mode		Group scar	n mode				© C	ontinua	ous scan mode
- Group scan select									
Two groups (A,B)		Three grou	ips (A,B,C)						
- Double trigger mode setting —									
Oisable		Enable							
- Self diagnosis setting									
Mode		Unused			-				
Voltage used		Use AVCC0 :	¢ 0		-				
- Disconnection detection assist	setting								
Charge setting		Unused		•	•				
Period		2 ADCLK			-				
- Group scan priority setting									
Group priority		Group without	t priority						•
Group action		Not restarted	or continue	d due to (Group pri	ority			-
Restart channel selection		Restarted fro	m the first s	can chan	nel				Y
- A/D converted value count setti	na								
 Addition mode 		Average m	ode						
-Analog input channel setting									
-Analog input channel setting -	Convert	Convert	Convert		Add/Av	erade	P	ooram	nable gain
	(Group A)	(Group B)	(Group C)		AD valu			nplifier	
AN000]	
AN001 AN002									
AN002 AN003									
AN016									

Figure 4-7 A/D Converter tab-1

RSKRX24T

Po	ogrammable gain amplifier setting				
	Enable pass-through amplifier AN000 Amplifier gain selection	2.000			
_		2.000			
-Co	nversion start trigger setting Conversion start trigger (Group A)				
	A/D conversion start trigger pin				•
	Conversion start trigger (Group B)				
	Compare match with or input capture to MTU0.TG	RA			-
	Conversion start trigger (Group C)				
	Compare match with or input capture to MTU1.TG	RA			*
	ADTRG0# pin selection	PA4	•		
– Da	ta registers setting				
	AD converted value addition count	1-time conversion			*
	Data placement	Right-alignment	•		
	Automatic clearing	Disable automatic clearing			•
-AN	1000 / Self-diagnosis conversion time setting				
	Input sampling time	3.667		(µs)	(Actual value: 3.675)
-AN	1001 conversion time setting				
	Input sampling time	3.667		(µs)	(Actual value: 3.675)
-AN	1002 conversion time setting				
	Input sampling time	3.667		(µs)	(Actual value: 3.675)
-AN	1003 conversion time setting				
	Input sampling time	3.667		(µs)	(Actual value: 3.675)
-AN	1016 conversion time setting				
	Input sampling time	3.667		(µs)	(Actual value: 3.675)
-Co	nversion time setting				
	Total conversion time (Group A)	4.725		(µs)	
	Total conversion time (Group B)			(µs)	
	Total conversion time (Group C)			(µs)	
-0	Itput setting				
	ADST0 pin output enable	PD6	-		
– Int	errupt setting				
	Enable AD conversion end interrupt (S12ADI)				
	Priority	Level 15 (highest)	•		
	\fbox Enable AD conversion end interrupt for group B (0	GBADI)			
	Priority	Level 15 (highest)	T		
	☑ Enable AD conversion end interrupt for group C (0	GCADI)			
	Priority	Level 15 (highest)	Ŧ		

Figure 4-8 A/D Converter tab-2

4.4.5 Serial Communications Interface

Navigate to the 'Serial Communications Interface' tab in Code Generator, select the SCI5 sub-tab and apply the settings shown in **Figure 4-9**. In the RSKRX24T SCI5 is used as an SPI master for the Pmod LCD on the PMOD1 connector as shown in the schematic.

Property 👮	Peripheral Functions*													
🐻 Generate Co	de 🚣 📋 🚜 🖄 🕼	🗰 🖧	sa 🖏	<u>@</u>	0 0	8	Ţ	\$ <mark> </mark> #	Ţ	123 4	<u>4</u>	岤	1	123 -×+
SCI1 SCI5 S	6C16													
General setting	Setting													
- Function setting														
O Unused														
Asynchro	onous mode		Transmis	sion				-						
Asynchromia	onous mode (Multi-processor)		Transmission -											
Clock sy	nchronous mode		Transmission 💌											
Smart ca	ard interface mode		Transmis	sion				•						
Simple II	C bus													
Simple S	PI bus		Master tra	ansmit	only			•						
- Pin setting														
TXD5	PB5 👻		RXD5	PB6	;			-						
SSDA5	PB5 👻		SSCL5	PB6	;			-						
SMOSI5	PB5 -		SMISO5	PB6	;			-						

Figure 4-9 SCI5 General Setting tab

Select the SCI5 'Setting' sub-tab and configure the SPI Master as illustrated in **Figure 4-10**. Make sure the 'Transfer direction setting' is set to 'MSB-first' and the 'Bit rate' is set to 10000000. All other settings remain at their defaults.

Property 🚆 Peripheral Functions*										
🐻 Generate Code 🚣 🗋 🐰 🗠 📽 🗰 🎆 🗊 🐼 🖉 🧐 🕲 🖉 🖉 📲 🌮 🎼 🌮 🖏										
SCI1 SCI5 SCI6										
General setting Setting										
- Transfer direction setting										
LSB-first IsB-first										
- Data inversion setting										
Normal O Inverted										
- Transfer rate setting										
Transfer clock PB7										
Bit rate 10000000 (bps) (Actual value: 10000000, Error : 0%)										
Enable modulation duty correction										
SCK5 pin function Clock output										
- Clock setting										
Clock delay Clock is not delayed -										
Enable clock polarity inversion										
- Data handling setting										
Transmit data handling Data handled in interrupt service routine										
- Interrupt setting										
TXI5. TEI5 priority Level 15 (highest) ▼										
- Callback function setting										
☑ Transmission end										

Figure 4-10 SCI5 SPI Master Setting

Staying in the 'Serial Communications Interface' tab in Code Generator, select the SCI1 sub-tab and apply the settings shown in **Figure 4-11**. In the RSKRX24T SCI1 is connected via a Renesas RL78/G1C to provide a USB virtual COM port as shown in the schematic.

Property Peripheral Functions*									
🔞 Generate Code 🚣 🧯 😹 🗠 💕 🗰 🍰	5 💷 🙆	Q. Q	ا 🕲	8 5	* 8 5	123 4	4	外例	123 - 4
SCI1 SCI5 SCI6									
General setting Setting									
- Function setting									
O Unused									
 Asynchronous mode 	Transmis	sion/rece	ption		•				
 Asynchronous mode (Multi-processor) 	Transmis	sion			-				
Clock synchronous mode	Transmis	Transmission							
Smart card interface mode	Transmis	Transmission							
Simple IIC bus									
Simple SPI bus	Slave tran	nsmit/rece	eive		-				
- Pin setting									
TXD1 PD3 👻	RXD1	PD5			•				
SSDA1 PD3 👻	SSCL1	PD5			-				
SMOSI1 PD3 -	SMISO1	PD5			-				

Figure 4-11 SCI1 General Setting tab

Select the SCI1 'Setting' sub-tab and configure SCI1 as illustrated in **Figure 4-12**. Make sure the 'Start bit edge detection' is set as 'Falling edge on RXD1 pin' and the 'Bit rate' is set to 19200 bps. All other settings remain at their defaults.

Property 💯 Peripheral Functions*		
		m
	u a 和 0 4 9 9 8	문 權 문 擧 🏠 🔩 🖗 🖗 🕏
SCI1 SCI5 SCI6		
General setting Setting		
 Start bit edge detection setting Low level on RXD1 pin 	Falling edge on RXD1 pin	
- Data length setting		
 Data tengun setung 9 bits 	8 bits	7 bits
- Parity setting		
None	Even	Odd
- Stop bit length setting		
I bit	2 bits	
- Transfer direction setting		
ISB-first	MSB-first	
- Transfer rate setting		
Transfer clock	Internal clock	•
Base clock	16 cycles for 1-bit period	Y
Bit rate	19200	 (bps) (Actual value: 19230.769, Error: 0.16%)
Enable modulation duty correction		
SCK1 pin function	SCK1 is not used	▼ PD4 ▼
- Noise filter setting		
Enable noise filter		
Noise filter clock	Clock signal divided by 1	▼ 40000000 (Hz)
- Hardware flow control setting		
None	© CTS	© RTS
CTS1/RTS1 pin	PD6	v
- Data handling setting		
Transmit data handling	Data handled in interrupt se	rvice routine -
Receive data handling	Data handled in interrupt se	rvice routine
- Interrupt setting		
Enable error interrupt (ERI1)		
TXI1, RXI1, TEI1, ERI1 priority	Level 15 (highest)	•
- Callback function setting		
✓ Transmission end	✓ Reception end	Reception error

Figure 4-12 SCI1 Asynchronous Setting

4.4.6 I/O Ports

Referring to the RSK schematic, LED0 is connected to PB3, LED1 is connected to PE5, LED2 is connected to P53 and LED3 is connected to P52. Navigate to the 'I/O Ports' tab in Code Generator and configure these four I/O lines as shown in **Figure 4-13**, **Figure 4-14** and **Figure 4-15** below. Ensure that the 'Output 1' tick box is checked. This ensures that the code is generated to set LEDs initially off.

🐻 G	enerate (Code 🔤	5 D	<i>8</i> 1	<u>*</u>	🗿 🖧	; \$111	ð Q.	00	8	7 📲	J 123	GL d∖	101 💱	
Port0	Port1	Port2 F	Port3	Port4	Port5	Port6	Port7	Port8	Port9	PortA	PortB	PortD	PortE		
PB0															
۲	Unused	\odot	In	0	Dut	Pi	ull-up	CMC	S output			-	🗌 Ou	put 1	High-drive output
- PB1															
۲	Unused	\bigcirc	In	0	Dut	Pi	ull-up	CMC	S output			-	🗌 Ou	put 1	High-drive output
PB2															
۲	Unused	\bigcirc	In	0	Dut	Pi	ull-up	CMC	S output			-	🗌 Ou	put 1	High-drive output
PB3															
\bigcirc	Unused	\bigcirc	In	٥ (Dut	Pi	ull-up	CMC	S output			•	V V	put 1	High-drive output
PB4															
۲	Unused	\bigcirc	In	0	Dut	Pi	ull-up	CMC	S output			-	🗌 Ou	put 1	High-drive output
PB5 -															
۲	Unused	\bigcirc	In 🕕	0	Dut 😲	Pi	ull-up	CMC	S output			Ŧ	🗌 Ou	put 1	High-drive output
- PB6															
۲	Unused	\bigcirc	In	0	Dut	Pi	ull-up	CMC	S output			-	🗌 Ou	put 1	High-drive output
- PB7															
۲	Unused	\bigcirc	In 🕕	0	Dut 😲	Pi	ull-up	CMC	S output			Ŧ	🗌 Ou	put 1	High-drive output

Figure 4-13 I/O ports – PortB

Pro	operty 🎉	Perip	heral Fu	unctions*					
🐻 G	enerate	Code	<u>å</u> (a 🖉 🖄 💕	🗰 🏭 🏭 🤇	000087*	J 43	🔬 🦶 🕖 🧐	
Port0	Port1	Port2	Port3	Port4 Port5	Port6 Port7	Port8 Port9 PortA PortB	PortD	PortE	
	Unused	C) In	Out	Pull-up	CMOS output	Ŧ	Output 1	High-drive output
	Unused	C) In	Out	Pull-up	CMOS output	-	Output 1	High-drive output
	Unused	C) In						
	Unused	C) In	Out	Pull-up	CMOS output	-	Output 1	High-drive output
	Unused	C) In	Out	Pull-up	CMOS output	Ŧ	Output 1	High-drive output
	Unused	C) In	Out	Pull-up	CMOS output	•	Votput 1	High-drive output

Figure 4-14 I/O ports – PortE

🐻 Generat	e Code 🛛 🔬 📋) 🚜 🖄 💕	🛢 🏭 🖗) @ @ @ & ア 雌 ア 提 🔍 帆 柳 琴 👘
	Port2 Port3	Port4 Port5	Port6 Port7	Port8 Port9 PortA PortB PortD PortE
-	ed 🔘 In	⊚ Out	Pull-up	Output 1
- P51	ed 🔘 In	⊚ Out	Pull-up	Output 1
© Unuse - P53	ed 💿 In	Out	Pull-up	☑ Output 1
	ed 🔘 In	Out	Pull-up	☑ Output 1
 Unuse P55 —	-	Out	Pull-up	Output 1
		Out	Pull-up	Output 1

Figure 4-15 I/O ports – Port7

P55 is used as one of the LCD control lines, together with PB4, PD0 and PD1. Configure these lines as shown in Figure 4-16, Figure 4-17 and Figure 4-18.

👸 Generate Code 🚣 📋 🚜 🛬 💓 🗰 🏭 🗱 🐲 🔞 🥨 🥸 🚳 🖉 🍠 📲 🎜 🏭 🍕 🧶										
Port0 Port1	Port2 Port3	Port4 Port5	Port6 Port7	Port8 Port9 PortA PortB	PortD F	PortE				
PB0 Onused	🔘 In	Out	Pull-up	CMOS output	-	Output 1	High-drive output			
PB1 Unused	🔘 In	Out	Pull-up	CMOS output	Ŧ	Output 1	High-drive output			
PB2 Onused	🔘 In	Out	Pull-up	CMOS output	T	Output 1	High-drive output			
PB3 — Onused	🔘 In	Out	Pull-up	CMOS output	•	Vutput 1	High-drive output			
PB4	⊚ In	Out	Pull-up	CMOS output	•	Vutput 1	High-drive output			
Figure 4-16 I/O ports – PortB										

Figure 4-16 I/O ports – PortB

🐻 G	🔞 Generate Code 🚣 🗋 🚜 🛬 📽 🏥 🎄 💷 🚳 🥨 🧐 🥵 🖉 📲 🎜 🏭 🆓 🥸															
Port0	Port1	Port2	Port3	Port4	Port5	Port6	Port7	Port8	Port9	PortA	PortB	PortD	PortE			
- PD0																
0	Unused	\odot	In	0	Out	Pul	l-up	CMC)S outpu	t		•	📃 Ou	tput 1	High-drive output	
- PD1 -																
0	Unused	\odot	In	0	Dut	Pul	l-up	CMC)S output	t		•	V Ou	tput 1	High-drive output	
						E i e		4.47	7 1/0		. I	DortF				

Figure 4-17 I/O ports – PortD

🐻 Gen	erate C	ode 🚣 📋	a 🔛 💕	🗰 🍰 💷 (ð @ Ø Ø	8 7 📲	🍠 🖧 🔩 🕖 🤩			
	Port1	Port2 Port3	Port4 Port5	Port6 Port7	Port8 Port9	PortA PortB	PortD PortE			
- P50 © U - P51	Inused	🔘 In	Out	Pull-up			Output 1			
	Inused	⊚ In	Out	Pull-up			Output 1			
	Inused	🔘 In	Out	Pull-up			✓ Output 1			
© U P54	Inused	⊚ In	Out	Pull-up			✓ Output 1			
 U P55 — 	Inused	⊚ In	Out	Pull-up			Output 1			
0 U	Inused	🔘 In	Out	Pull-up			V Output 1			
Figure 4-18 I/O ports – Port5										

Peripheral function configuration is now complete. Save the project using the File -> Save Project menu item, then click 'Generate Code'. The Output pane should report 'The operation of generating file was successful', as shown **Figure 4-19** below.

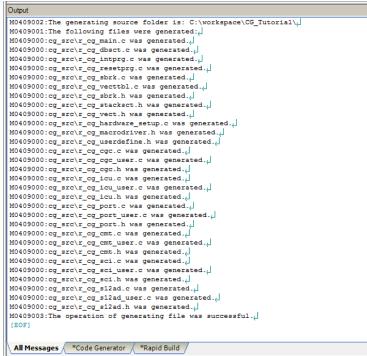


Figure 4-19 Code generator console

Figure 4-20 shows the Code Generator Files in the Project Tree pane. In the next section the CG_Tutorial project will be completed by adding user code into these files and adding new source files to the project.

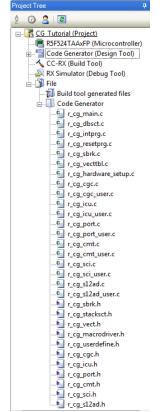


Figure 4-20 Code Generator Files in the Project Tree

5. Completing the Tutorial Project

5.1 Project Settings

•	In the 'Project Tree' pane, select 'CC-RX (Build Tool)'. The build properties will appear in the main window. CS+ creates a single build configuration called 'Default Build' for the project. This has standard code optimisation turned on by default.	CPU Instruction set architecture FXV2 Uses floating-point operation instructions Vesi(Endian type for data Rounding method for floating-point constant operations Frection of the double type and long double type Frection of the double type and long double type Frection of the double type and long double type Frection of the double type and long double type Frection of the double type and long double type Frection of the double type and long double type Frection of the double type and long double type Frection of the double type and long double type Frection of the double type and long double type Frection of the the double type and long double type Frection of the the double type and long double type Frection of the the double type and long double type Frection of the the enumeration type size automatically Frection of bit-field type Frection of bit-field members Frection of bit-field mem	endian data(endian=little) to rearest(=ound-nearest) les as zeros(=chonmalize=off) les in single precision(=dbl_size=4) les as unsigned char(=unsigned_char) les as unsigned(=unsigned_char) les as unsigned(=unsigned_char) les as unsigned(=unsigned_char) les as unsigned(=unsigned_char) les as unsigned(=unsigned_char) les as unsigned(=unsigned_char) oexception) ==off
•	Select the 'Compile Options' tab at the bottom of the properties window pane. Under 'Language of the C source file' select 'C99(- lang=c99)' as shown opposite.	Source Language of the C source file Language of the C++ source file Additional include paths System include paths Include files at the head of compiling units Macro definition Invalidates the predefined macro	C99(-lang=c99) C(C89)(-lang=c) C99(-lang=c99) Systemminicular particip Include files at the head of col Macro definition[0]
•	Select the 'Link Options' tab at the bottom of the properties window pane. Under 'Section -> ROM to RAM mapped section', add the three mappings as shown opposite.	Optimization Optimization type No optimize(-N00Ptimize) Section Section start address B_1,R_1,B_2,R_2,B,R,SU,SI/04,PReset The specified section that outputs The specified section that outputs Section alignment Section alignment ROM to RAM mapped section[3] [0] D=R [1] D_1=R_1 [2] D 2=R 2	_
	These settings are easily added by clicking the button '' and pasting the following text into the dialog: R 1=R_1 2=R_2	Text Edit Image: Constraint of the second seco	
•	This ensures that the linker assigns RAM rather than ROM addresses to C variables.	✓ OK Cancel Help	

RSKRX24T

5. Completing the Tutorial Project

n		1	
•	From the 'Build' menu, select 'Build Mode Settings'. Click 'Duplicate' and in the resulting 'Character String Input' dialog,	Build Mode Settings	
'Duplicate' and in the 'Character String Inp enter 'Debug' for the na		Selected <u>b</u> uild mode:	
			Apply to All
	duplicate build mode.	Build mode list:	
		DefaultBuild	Duplicate
			Delete
			Delete
			Rename
		Close	Help
		<u></u>	
٠	The new 'Debug' build mode will	CC-RX Property	- [
	be added to the Build mode list.	⊿ Build Mode	
	Click 'Close'. Now, in the main	Build mode	Default Build 👻
	CC-RX Property window, under	Output File Type and Path	Default Build
	the 'Common Options' tab, click on	Output file type	Debug
	the line containing 'Build Mode',	Intermediate file output folder	% DUIIDIVIODEINAME %
	click the pull-down arrow and		
	select 'Debug' from the pull-down'.		
	3		
•	In the 'Frequently Used Options	▲ CC-RX Property	
•	(for Compile)' group, select the	Build Mode	
	'Optimization Level' option and	Build mode	Debug
		 ▷ CPU ▷ PIC/PID 	
	select '0' from the pull-down. We	 Output File Type and Path 	
	have now created a 'Debug' build	Output file type	Execute Module(Load Module File)
	mode with no code optimisation	Intermediate file output folder Frequently Used Options(for Compile)	%BuildModeName%
	and will be using the Build mode to	 Additional include paths 	Additional include paths[2]
	create and debug the project.	System include paths	System include paths[0]
		Macro definition Outputs debugging information	Macro definition[0] Yes(-debug)
		Outputs debugging information Optimization level	O(-optimize=0)
		Outputs additional information for inter-module optimization	0(-optimize=0)
		Optimization type	1(-optimize=1)
		Outputs a source list file Frequently Used Options(for Assemble)	2(-optimize=2) Max(-optimize=max)

RSKRX24T

- All of the sample code projects • contained in this RSK are configured with three Build modes; 'Debug' 'DefaultBuild', and 'Release'. 'Release' is created in the same way as above; by duplicating 'Default Build'. 'Release' build mode leaves code optimisation turned removes debug informa the output file.
- To remove debug information . the 'Release' build mod 'CC-RX Property' windo the 'Common Options' t bottom of the window pa the **Outputs** C information' option, sel nodebug).
- Reset the build mode . 'Debug' using the 'Bui pull-down control.
- From the menus, selec • Save All' to save al settings.

5.2 Additional Fold

- Before new source files are added • to the project, we will create two additional folders in the CS+ Project Tree.
- In the Project Tree pane, right-click • the CG_Tutorial project and select 'Add -> Add New Category'.

Rename the newly-created 'New • Category' folder to 'C Source Files'. Repeat these steps to create a new category folder for 'Dependencies'.

on and ation from ation from the property of the paths include paths Additional include paths System include paths[0] Additional from the path from the path include paths include paths [0] Macro definition [0] Macro definition[0] Outputs additional information for inter-module optimization type Yes(debug) No(nodebug) Optimization type Optimizes war empnass or code Outputs a source list file No(nodebug) explore the paths System include paths System include paths [0] System include paths [0] w, select * Frequently Used Options(for Assemble) No(nodebug) Optimizes war empnass or code ane. For * Additional include paths System include paths [0] Macro definition back to ild Mode' * Macro definition Macro definition [0] Macro definition [0] ers ers ************************************	aves coue	Frequently Used Options(for Compile)	
 by system include paths by Macro definition Macro definition Macro definition Macro definition Outputs debugging information No(-nodebug) Optimization level Ves(-debug) Outputs additional information for inter-module optimization No(nodebug) Outputs a source list file No(noistfile) Additional include paths System include paths System include paths System include paths System include paths Macro definition Macro definition Macro definition Macro definition Macro definition 	on and	Additional include paths	Additional include paths[2]
ation from Outputs debugging information No(nodebug) Optimization level Yes(debug) Outputs additional information for inter-module optimization No(nodebug) Outputs as source list file No(noistfile) # Frequently Used Options(for Assemble) No(noistfile) Additional include paths System include paths [0] System include paths System include paths [0] Macro definition Macro definition [0]		System include paths	System include paths[0]
ation from Optimization level Yes(debug) Outputs additional information for inter-module optimization No(nodebug) Outputs a source list file No(noistfile) a Frequently Used Options(for Assemble) Additional include paths > Additional include paths Additional include paths [0] > Additional include paths System include paths [0] > Macro definition Macro definition [0] back to ild Mode' Il project	ation from	Macro definition	Macro definition[0]
ation from de, in the Dutputs additional information for inter-module optimization Optimization type Outputs a source list file No(nolistfile) a Frequently Used Options(for Assemble) Additional include paths System include paths System include paths [0] Macro definition Macro definition [0] the file -> Il project		Outputs debugging information	No(-nodebug)
de, in the Dw, select Optimization type Outputs a source list file No(nolistfile) a Additional include paths Additional include paths Additional include paths [0] b Additional include paths System include paths System include paths [0] b Additional include paths System include paths System include paths [0] b Additional inc		Optimization level	Yes(-debug)
de, in the bw, select tab at the ane. For debugging lect 'No(- back to ild Mode' bt 'File -> Il project	ation from	Outputs additional information for inter-module optimization	No(-nodebug)
bw, select Frequently Used Options(for Assemble) ab at the pane. For debugging lect 'No(- Additional include paths back to ild Mode' Macro definition back to ill project Since the project	to in the	Optimization type	Optimizes with emphasis on code
tab at the ane. For debugging lect 'No(- > Additional include paths > Additional include paths > System include paths > System include paths > System include paths > Macro definition Macro definition <td< td=""><td>,</td><td>Outputs a source list file</td><td>No(-nolistfile)</td></td<>	,	Outputs a source list file	No(-nolistfile)
tab at the ane. For debugging lect 'No(- > Additional include paths > Additional include paths > System include paths > System include paths > System include paths > Macro definition Macro definition <td< td=""><td>ow, select</td><td>Frequently Used Options (for Assemble)</td><td></td></td<>	ow, select	Frequently Used Options (for Assemble)	
ane. For debugging lect 'No(- back to ild Mode' t 'File -> Il project		Additional include paths	Additional include paths [0]
debugging lect 'No(- ild Mode' ct 'File -> Il project		System include paths	System include paths [0]
lect [°] No(- back to ild Mode' ct 'File -> Il project	ane. For	Macro definition	Macro definition [0]
ers	lect 'No(- back to ild Mode' ct 'File ->		
	ers		

ņх

🔨 CC-RX Property

⊿ Build Mode

CPU

PIC/PID

Output File Type and Path Output file type

3 🙎 🗃

K CC-RX (Bi

🔊 RX Simula

🖶 🗻 File

CG_Utorial (Build CG_Tutorial K5F524TA

20

E

清

Ē.

aje Rename

2 Property

<u>CG Tutorial (Project)*</u>

🖕 🕥 File

📲 Code Gen 🚺 Rebuild CG_Tutorial

Add

Paste

Clean CG_Tutorial

Open Folder with Explorer

Windows Explorer Menu

R5F524TAAxFP (Microcontroller)

🗄 📲 Code Generator (Design Tool)

🔨 CC-RX (Build Tool) 🚔 RX Simulator (Debug Tool)

🔲 🔄 iodefine.h Code Generator C Source Files

Set CG Tutorial as Active Project

Save Project and Development Tools as Package...

Intermediate file output folder

Build mode

Change property value for all build modes at once

Completing the Tutorial Project

Execute Module(Load Module File)

%BuildModeName%

Rel

No

2

💦 Add Subproject... Add New Subproject...

Add File...

Add New File...

Add New Category

1

7

(P)

Ctrl+V

F2

5.3 LCD Code Integration

API functions for the Okaya LCD display are provided with the RSK. Refer to the Tutorial project folder created according to the Quick Start Guide procedure. Locate the files ascii.h, r_okaya_lcd.h, iodefine.h, ascii.c, and r_okaya_lcd.c in this folder. Copy these files into the C:\Workspace\CG_Tutorial folder.

•	Right-click on the 'C Source Files' in the Project Tree and select 'Add -> Add File'.	i → J File → J Build tool generated files ↓ → J Code Generator						
•	Browse to the files ascii.c, and r_okaya_lcd.c in the C:\Workspace\CG_Tutorial folder and click 'Add'.	<mark> C Sourc</mark> Depenc		Add Open Folder with Explore Windows Explorer Menu]. *] *]	Add File Add New File Add New Category	
•	Repeat the above steps to add the files ascii.h , r_okaya_lcd.h to the 'Dependencies' folder.			Remove from Project Copy Paste	Shift+Del Ctrl+C Ctrl+V			
•	Repeat the above steps to add the file iodefine.h to the 'File' folder.		aje ≧	Rename Property	F2			

Code must be inserted in to the user code area in many files in this project, in the areas delimited by comments as follows:

/* Start user code for _xxxxx_. Do not edit comment generated here */ /* End user code. Do not edit comment generated here */

Where _xxxx_ depends on the particular area of code, i.e. 'function' for insertion of user functions and prototypes, 'global' for insertion of user global variable declarations, or 'include' for insertion of pre-processor include directives. User code inserted inside these comment delimiters is protected from being overwritten by Code Generator, if the user needs to subsequently change any of the Code Generator-generated code.

In the CS+ Project Tree, expand the 'Code Generator' folder and open the file 'r_cg_userdefine.h' by doubleclicking on it. Insert the following #defines in between the user code delimiter comments as shown below.

/* Start user code for function. Do not edit comment generated here */
#define TRUE (1)
#define FALSE (0)
/* End user code. Do not edit comment generated here */

In the CS+ Project Tree, open the file 'r_cg_main.c' by double-clicking on it. Insert #include "r_okaya_lcd.h" in between the user code delimiter comments as shown below.

/* Start user code for include. Do not edit comment generated here */
#include "r_okaya_lcd.h"
/* End user code. Do not edit comment generated here */

Scroll down to the 'main()' function and insert the highlighted code as shown below into the beginning of the user code area of the main() function:

```
void main(void)
{
    R_MAIN_UserInit();
    /* Start user code. Do not edit comment generated here */
    /* Initialize the debug LCD */
    R_LCD_Init();
    /* Displays the application name on the debug LCD */
    R_LCD_Display(0, (uint8_t *)" RSKR24T ");
    R_LCD_Display(1, (uint8_t *)" Tutorial ");
    R_LCD_Display(2, (uint8_t *)" Press Any Switch ");
    while (lU)
    {
        ;
        }
        /* End user code. Do not edit comment generated here */
}
```


5.3.1 SPI Code

The Okaya LCD display is driven by the SPI Master that was configured using Code Generator in §4.4.5. In the CS+ Project Tree, open the file 'r_cg_sci.h' by double-clicking on it. Insert the following code in the user code area at the end of the file:

```
/* Start user code for function. Do not edit comment generated here */
MD_STATUS R_SCI5_SPIMasterTransmit(uint8_t * const tx_buf, const uint16_t tx_num);
/* End user code. Do not edit comment generated here */
```

Now, open the r_cg_sci_user.c file and insert the following code in the user area for global:

```
/* Start user code for global. Do not edit comment generated here */
/* Flag used locally to detect transmission complete */
static volatile uint8_t sci5_txdone;
/* End user code. Do not edit comment generated here */
```

Insert the following code in the transmitend call-back function for SCI5:

```
void r_sci5_callback_transmitend(void)
{
    /* Start user code. Do not edit comment generated here */
    sci5_txdone = TRUE;
    /* End user code. Do not edit comment generated here */
}
```

Now insert the following function in the user code area at the end of the file:

```
* Function Name: R_SCI5_SPIMasterTransmit
 Description : This function sends SPI5 data to slave device.
4
        : tx_buf -
 Arguments
              transfer buffer pointer
          tx_num -
             buffer size
*
Return Value : status -
             MD_OK or MD_ARGERROR
*****
MD_STATUS R_SCI5_SPIMasterTransmit (uint8_t * const tx_buf, const uint16_t tx_num)
{
  MD STATUS status = MD OK;
  /* clear the flag before initiating a new transmission */
  sci5 txdone = FALSE;
  /* Send the data using the API */
  status = R_SCI5_SPI_Master_Send(tx_buf, tx_num);
  /* Wait for the transmit end flag */
  while (FALSE == sci5_txdone)
  {
     /* Wait */
  }
  return (status);
 End of function R_SCI5_SPIMasterTransmit
```

This function uses the transmit end callback function to perform flow control on the SPI transmission to the LCD, and is used as the main API call in the LCD code module.

5.3.2 CMT Code

The LCD code needs to insert delays to meet the timing requirements of the display module. This is achieved using the dedicated timer which was configured using Code Generator in §4.4.3. Open the file r_cg_cmt.h and insert the following code in the user area for function at the end of the file:

```
/* Start user code for function. Do not edit comment generated here */
void R_CMT_MsDelay(const uint16_t millisec);
/* End user code. Do not edit comment generated here */
```

Open the file r_cg_cmt_user.c and insert the following code in the user area for global at the beginning of the file:

```
/* Start user code for global. Do not edit comment generated here */
static volatile uint8_t one_ms_delay_complete = FALSE;
/* End user code. Do not edit comment generated here */
```

Scroll down to the r_cmt_cmi0_interrupt() function and insert the following line in the user code area:

```
static void r_cmt_cmi0_interrupt(void)
{
    /* Start user code. Do not edit comment generated here */
    one_ms_delay_complete = TRUE;
    /* End user code. Do not edit comment generated here */
}
```

Then insert the following function in the user code area at the end of the file:

```
* Function Name: R_CMT_MsDelay
* Description : Uses CMTO to wait for a specified number of milliseconds
* Arguments
        : uint16_t millisecs, number of milliseconds to wait
* Return Value : None
*****
void R_CMT_MsDelay (const uint16_t millisec)
{
  uint16_t ms_count = 0;
  do
  ł
    R CMTO Start();
    while (FALSE == one_ms_delay_complete)
     {
       /* Wait */
    R_CMT0_Stop();
    one_ms_delay_complete = FALSE;
    ms_count++;
  } while (ms count < millisec);</pre>
}
End of function R CMT MsDelay
*****
```

Select 'Build Project' from the 'Build' menu, or press F7. CS+ will build the project with no errors.

The project may now be run using the debugger as described in §6. The program will display 'RSKRX24T Tutorial Press Any Switch' on 3 lines in the LCD display.

5.4 Switch Code Integration

API functions for user switch control are provided with the RSK. Refer to the Tutorial project folder created according to the Quick Start Guide procedure. Locate the files rskrx24tdef.h, r_rsk_switch.h and r_rsk_switch.c in this folder. Copy these files into the C:\Workspace\CG_Tutorial folder. Import these three files into the project in the same way as the LCD files.

The switch code uses interrupt code in the files $r_cg_icu.h$, $r_cg_icu.c$ and $r_cg_icu_user.c$ and timer code in the files $r_cg_cmt.h$, $r_cg_cmt.c$ and $r_cg_cmt_user.c$, as described in §4.4.2 and §4.4.3. It is necessary to provide additional user code in these files to implement the switch press/release detection and de-bouncing required by the API functions in $r_rsk_switch.c$.

5.4.1 Interrupt Code

In the CS+ Project Tree, expand the 'Code Generator' folder and open the file 'r_cg_icu.h' by double-clicking on it. Insert the following code in the user code area at the end of the file:

/* Start user code for function. Do not edit comment generated here */
/* Function prototypes for detecting and setting the edge trigger of ICU_IRQ */
uint8_t R_ICU_IRQIsFallingEdge(const uint8_t irq_no);
void R_ICU_IRQSetFallingEdge(const uint8_t irq_no, const uint8_t set_f_edge);
void R_ICU_IRQSetRisingEdge(const uint8_t irq_no, const uint8_t set_r_edge);
/* End user code. Do not edit comment generated here */

Now, open the r_cg_icu.c file and insert the following code in the user code area at the end of the file:

```
* Function Name: R_ICU_IRQIsFallingEdge
* Description : This function returns 1 if the specified ICU_IRQ is set to
          falling edge triggered, otherwise 0.
* Arguments : uint8_t irq_no
* Return Value : 1 if falling edge triggered, 0 if not
                                    *******
uint8_t R_ICU_IRQIsFallingEdge (const uint8_t irq_no)
ł
  uint8_t falling_edge_trig = 0x0;
  if (ICU.IRQCR[irq_no].BYTE & _04_ICU_IRQ_EDGE_FALLING)
  {
     falling_edge_trig = 1;
  }
  return (falling_edge_trig);
* End of function R_ICU_IRQIsFallingEdge
*****
      * Function Name: R_ICU_IRQSetFallingEdge
* Description : This function sets/clears the falling edge trigger for the
          specified ICU_IRQ.
* Arguments : uint8_t irq_no
          uint8_t set_f_edge, 1 if setting falling edge triggered, 0 if
          clearing
* Return Value : None
             void R_ICU_IRQSetFallingEdge (const uint8_t irq_no, const uint8_t set_f_edge)
ł
  if (1 == set f edge)
  {
     ICU.IRQCR[irq_no].BYTE = _04_ICU_IRQ_EDGE_FALLING;
  }
  else
  {
     ICU.IRQCR[irq_no].BYTE &= (uint8_t) ~_04_ICU_IRQ_EDGE_FALLING;
  }
* End of function R_ICU_IRQSetFallingEdge
Function Name: R ICU IROSetRisingEdge
* Description : This function sets/clear the rising edge trigger for the
          specified ICU_IRQ.
* Arguments
        : uint8_t irq_no
          uint8_t set_r_edge, 1 if setting rising edge triggered, 0 if
          clearing
* Return Value : None
             *****
void R_ICU_IRQSetRisingEdge (const uint8_t irq_no, const uint8_t set_r_edge)
ł
  if (1 == set_r_edge)
  {
     ICU.IRQCR[irq_no].BYTE | = _08_ICU_IRQ_EDGE_RISING;
  }
  else
  {
     ICU.IRQCR[irq_no].BYTE &= (uint8_t) ~_08_ICU_IRQ_EDGE_RISING;
  }
* End of function R_ICU_IRQSetRisingEdge
```


Open the r_cg_icu_user.c file and insert the following code in the user code area for include near the top of the file:

/* Defines switch callback functions required by interrupt handlers */
#include "r_rsk_switch.h"

In the same file insert the following code in the user code area inside the function r_icu_irq0_interrupt ():

/* Switch 1 callback handler */
R_SWITCH_IsrCallback1();

In the same file insert the following code in the user code area inside the function r_icu_irq5_interrupt ():

/* Switch 2 callback handler */ R_SWITCH_IsrCallback2();

5.4.2 De-bounce Timer Code

Open the r_cg_cmt_user.c file and insert the following code in the user code area for include near the top of the file:

/* Defines switch callback functions required by interrupt handlers */
#include "r_rsk_switch.h"

In the same file insert the following code in the user code area inside the function r_cmt_cmi1_interrupt ():

```
/* Stop this timer - we start it again in the de-bounce routines */
R_CMT1_Stop();
/* Call the de-bounce call back routine */
R_SWITCH_DebounceIsrCallback();
```

In the same file insert the following code in the user code area inside the function r_cmt_cmi2_interrupt ():

```
/* Stop this timer - we start it again in the de-bounce routines */
R_CMT2_Stop();
/* Call the de-bounce call back routine */
```

R_SWITCH_DebounceIsrCallback();

5.4.3 Main Switch and ADC Code

In this part of the tutorial we add the code to act on the switch presses to activate A/D conversions and display the result on the LCD. In §4.4.4, we configured the ADC to be triggered from the ADTRG0# pin, SW3. In this code, we also perform software triggered A/D conversion from the user switches SW1 and SW2, by reconfiguring the ADC trigger source on-the-fly once an SW1 or SW2 press is detected.

In the CS+ Project Tree, expand the 'Code Generator' folder and open the file 'r_cg_userdefine.h' by doubleclicking on it. Insert the following code the user code area, resulting in the code shown below

/* Start user code for function. Do not edit comment generated here */
#define TRUE (1)
#define FALSE (0)
extern volatile uint8_t g_adc_trigger;

/* End user code. Do not edit comment generated here */

Open the file 'r_cg_main.c' and insert #include "r_rsk_switch.h" in the user code area for include, resulting in the code shown below:

```
/* Start user code for include. Do not edit comment generated here */
#include "r_okaya_lcd.h"
#include "r_rsk_switch.h"
/* End user code. Do not edit comment generated here */
```

Next add the switch module initialization function call highlighted in the user code area inside the main() function, resulting in the code shown below:

```
void main(void)
{
    R_MAIN_UserInit();
    /* Start user code. Do not edit comment generated here */
    /* Initialize the switch module */
    R_SWITCH_Init();
    /* Initialize the debug LCD */
    R_LCD_Init();
    /* Displays the application name on the debug LCD */
    R_LCD_Display(0, (uint8_t *)" RSKRX24T ");
R_LCD_Display(1, (uint8_t *)" Tutorial ");
    R_LCD_Display(2, (uint8_t *)" Press Any Switch ");
    while (1U)
    {
    ł
     * End user code. Do not edit comment generated here */
}
```

In the same file, insert the declarations in the user code area for global, resulting in the code shown below:

```
/* Start user code for global. Do not edit comment generated here */
/* Prototype declaration for cb_switch_press */
static void cb_switch_press (void);
/* Prototype declaration for get_adc */
static uint16_t get_adc(void);
/* Prototype declaration for lcd_display_adc */
static void lcd_display_adc (const uint16_t adc_result);
/* Variable for flagging user requested ADC conversion */
volatile uint8_t g_adc_trigger = FALSE;
```

 $/\,{}^{\star}$ End user code. Do not edit comment generated here ${}^{\star}/$

Next add the highlighted code below in the user code area inside the main() function and the code inside the while loop, resulting in the code shown below:

```
void main(void)
ł
    R_MAIN_UserInit();
    /* Start user code. Do not edit comment generated here */
    /* Initialize the switch module */
    R_SWITCH_Init();
    /* Set the call back function when SW1 or SW2 is pressed */
    R_SWITCH_SetPressCallback(cb_switch_press);
    /* Initialize the debug LCD */
    R_LCD_Init ();
    /* Displays the application name on the debug LCD */
    R_LCD_Display(0, (uint8_t *)" RSKRX24T ");
R_LCD_Display(1, (uint8_t *)" Tutorial ");
    R_LCD_Display(2, (uint8_t *)" Press Any Switch ");
    /* Start the A/D converter */
    R_S12AD0_Start();
    while (1U)
    {
        uint16_t adc_result;
         /* Wait for user requested A/D conversion flag to be set (SW1 or SW2) */
        if (TRUE == g_adc_trigger)
        {
             /* Call the function to perform an A/D conversion */
            adc_result = get_adc();
             /* Display the result on the LCD */
            lcd_display_adc(adc_result);
             /* Reset the flag */
            g_adc_trigger = FALS<mark>E;</mark>
        /* SW3 is directly wired into the ADTRG0n pin so will
           cause the interrupt to fire */
        else if (TRUE == g_adc_complete)
             /* Get the result of the A/D conversion */
            R_S12AD0_Get_ValueResult(ADCHANNEL0, &adc_result);
             /* Display the result on the LCD */
             lcd_display_adc(adc_result);
             /* Reset the flag */
             g_adc_complete = FALSE;
        }
        <mark>else</mark>
        {
             /* do nothing */
    /* End user code. Do not edit comment generated here */
}
```

Then add the definition for the switch call-back, get_adc() and lcd_display_adc() functions in the user code area for adding at the end of the file, as shown below:


```
/* set the flag indicating a user requested A/D conversion is required */
      g_adc_trigger = TRUE;
      /* Clear flag */
      g_switch_flag = 0x0;
   }
}
End of function cb_switch_press
                        * Function Name : get_adc
Description : Reads the ADC result, converts it to a string and displays
             it on the LCD panel.
* 1t of
* Argument : none
* Return value : uint16_t adc value
          *******
                            static uint16_t get_adc (void)
{
   /* A variable to retrieve the adc result */
  uint16_t adc_result;
   /* Stop the A/D converter being triggered from the pin ADTRGOn */
  R_S12AD0_Stop();
   /* Start a conversion */
  R_S12AD0_SWTriggerStart();
   /* Wait for the A/D conversion to complete */
  while (FALSE == g_adc_complete)
   {
      /* Wait */
   }
   /* Stop conversion */
  R_S12AD0_SWTriggerStop();
   /* Clear ADC flag */
  g_adc_complete = FALSE;
  R_S12AD0_Get_ValueResult(ADCHANNEL0, &adc_result);
   /* Set AD conversion start trigger source back to ADTRGOn pin */
  R_S12AD0_Start();
  return (adc result);
}
* End of function get_adc
* Function Name : lcd_display_adc
* Description : Converts adc result to a string and displays
             it on the LCD panel.
         it on the fer i
: uintl6_t adc result
 Argument
* Return value : none
           static void lcd_display_adc (const uint16_t adc_result)
ł
   /* Declare a temporary variable */
  uint8_t a;
   /* Declare temporary character string */
  char lcd buffer[11] = " ADC: XXXH";
   / \, \star \, Convert ADC result into a character string, and store in the local.
    Casting to ensure use of correct data type. */
   a = (uint8_t)((adc_result & 0x0F00) >> 8);
  lcd_buffer[6] = (char)((a < 0x0A) ? (a + 0x30) : (a + 0x37));
   a = (uint8_t)((adc_result & 0x00F0) >> 4);
   lcd_buffer[7] = (char)((a < 0x0A) ? (a + 0x30) : (a + 0x37));
   a = (uint8_t)(adc_result & 0x000F);
```

Open the file 'r_cg_s12ad.h' by double-clicking on it. Insert the following code in the user code area for function, resulting in the code shown below:

```
/* Start user code for function. Do not edit comment generated here */
```

```
/* Flag indicates when A/D conversion is complete */
extern volatile uint8_t g_adc_complete;
/* Functions for starting and stopping software triggered A/D conversion */
void R_S12AD0_SWTriggerStart(void);
```

void R_S12AD0_SWTriggerStop(void);

/* End user code. Do not edit comment generated here */

Open the file 'r_cg_s12ad.c' by double-clicking on it. Insert the following code in the user code area for adding at the end of the file, resulting in the code shown below:

```
* Function Name: R_S12AD0_SWTriggerStart
Description : This function starts the AD converter.
       : None
Arguments
void R_S12AD0_SWTriggerStart(void)
{
 IR(S12AD, S12ADI) = OU;
 IEN(S12AD, S12ADI) = 1U;
  S12AD.ADCSR.BIT.ADST = 1U;
End of function R_S12AD0_SWTriggerStart
*******
* Function Name: R_S12AD0_SWTriggerStop
Description : This function stops the AD converter.
Arguments
       : None
Return Value : None
*****
void R_S12AD0_SWTriggerStop(void)
 S12AD.ADCSR.BIT.ADST = 0U;
 IEN(S12AD, S12ADI) = OU;
  I_{R}(S12AD, S12ADI) = 0U;
」
/★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
End of function R_S12AD0_SWTriggerStop
****
```

/* End user code. Do not edit comment generated here */

Open the file r_cg_s12ad_user.c and insert the following code in the user code area for global, resulting in the code shown below:

```
/* Start user code for global. Do not edit comment generated here */
/* Flag indicates when A/D conversion is complete */
volatile uint8_t g_adc_complete;
/* End user code. Do not edit comment generated here */
```

Insert the following code in the user code area of the r_s12ad0_interrupt () function, resulting in the code shown below:

```
static void r_s12ad0_interrupt(void)
{
    /* Start user code. Do not edit comment generated here */
    g_adc_complete = TRUE;
    /* End user code. Do not edit comment generated here */
}
```

Select 'Build Project' from the 'Build' menu, or press F7. CS+ will build the project with no errors.

The project may now be run using the debugger as described in §6. When any switch is pressed, the program will perform an A/D conversion of the voltage level on the ADPOT line and display the result on the LCD panel. Return to this point in the CG_Tutorial to add the UART user code.

5.5 Debug Code Integration

API functions for trace debugging via the RSK serial port are provided with the RSK. Refer to the Tutorial project folder created according to the Quick Start Guide procedure. Locate the files r_rsk_debug.h and r_rsk_debug.c in this folder. Copy these files into the C:\Workspace\CG_Tutorial folder. Import these two files into the project in the same way as the LCD files.

In the r_rsk_debug.h file, ensure the following macro definition is included:

```
/* Macro for definition of serial debug transmit function - user edits this */
#define SERIAL_DEBUG_WRITE (R_SCI1_AsyncTransmit)
```

This macro is referenced in the r_rsk_debug.c file and allows easy re-direction of debug output if a different debug interface is used.

5.6 UART Code Integration

5.6.1 SCI Code

In the CS+ Project Tree, expand the 'Code Generator' folder and open the file 'r_cg_sci.h' by double-clicking on it. Insert the following code in the user code area at the end of the file:

```
/* Start user code for function. Do not edit comment generated here */
/* Exported functions used to transmit a number of bytes and wait for completion */
MD_STATUS R_SCI5_SPIMasterTransmit(uint8_t * const tx_buf, const uint16_t tx_num);
MD_STATUS R_SCI1_AsyncTransmit(uint8_t * const tx_buf, const uint16_t tx_num);
/* Character is used to receive key presses from PC terminal */
extern uint8_t g_rx_char;
/* Flag used to control transmission to PC terminal */
extern volatile uint8_t g_tx_flag;
```

/* End user code. Do not edit comment generated here */

Open the file 'r_cg_sci_user.c. Insert the following code in the user area for global near the beginning of the file:

/* Start user code for global. Do not edit comment generated here */

/* Global used to receive a character from the PC terminal */ uint8_t g_rx_char;

/* Flag used to control transmission to PC terminal */ volatile uint8_t g_tx_flag = FALSE;

```
/* Flag used locally to detect transmission complete */
static volatile uint8_t sci5_txdone;
static volatile uint8_t sci1_txdone;
```

/* End user code. Do not edit comment generated here */

In the same file, insert the following code in the user code area inside the r_sci1_callback_transmittend() function:

```
void r_scil_callback_transmitend(void)
{
    /* Start user code. Do not edit comment generated here */
    scil_txdone = TRUE;
    /* End user code. Do not edit comment generated here */
}
```


In the same file, insert the following code in the user code area inside the r_sci1_callback_receiveend() function:

```
void r_scil_callback_receiveend(void)
{
    /* Start user code. Do not edit comment generated here */
    /* Check the contents of g_rx_char */
    if (('c' == g_rx_char) || ('C' == g_rx_char))
    {
        g_adc_trigger = TRUE;
    }
    /* Set up SCI1 receive buffer and callback function again */
    R_SCI1_Serial_Receive((uint8_t *)&g_rx_char, 1);
    /* End user code. Do not edit comment generated here */
}
```

At the end of the file, in the user code area for adding, add the following function definition:

```
* Function Name: R_SCI1_AsyncTransmit
^{st} Description \, : This function sends SCI1 data and waits for the transmit end flag.
* Arguments
         : tx_buf -
              transfer buffer pointer
           tx num -
              buffer size
* Return Value : status -
             MD_OK or MD_ARGERROR
MD_STATUS R_SCI1_AsyncTransmit (uint8_t * const tx_buf, const uint16_t tx_num)
ł
  MD_STATUS status = MD_OK;
  /* clear the flag before initiating a new transmission */
  sci1_txdone = FALSE;
  /* Send the data using the API */
  status = R_SCI1_Serial_Send(tx_buf, tx_num);
  /* Wait for the transmit end flag */
  while (FALSE == scil_txdone)
  {
     /* Wait */
  }
  return (status);
}
              * End of function R_SCI1_AsyncTransmit
```


{

5.6.2 Main UART code

Open the file 'r_cg_main.c'. Add the following declaration to the user code area for include near the top of the file:

#include "r_rsk_debug.h"

Add the following declaration to the user code area for global near the top of the file:

```
/* Prototype declaration for uart_display_adc */
static void uart_display_adc(const uint8_t adc_count, const uint16_t adc_result);
/* Variable to store the A/D conversion count for user display */
```

static uint8_t adc_count = 0;

Add the following highlighted code to the user code area in the main function:

```
void main(void)
    R_MAIN_UserInit();
      Start user code. Do not edit comment generated here */
    /* Initialize the switch module */
   R_SWITCH_Init();
    /* Set the call back function when SW1 or SW2 is pressed */
   R_SWITCH_SetPressCallback(cb_switch_press);
    /* Initialize the debug LCD */
   R_LCD_Init ();
    /* Displays the application name on the debug LCD */
   R_LCD_Display(0, (uint8_t *)" RSKRX24T ");
R_LCD_Display(1, (uint8_t *)" Tutorial ");
   R_LCD_Display(2, (uint8_t *)" Press Any Switch ");
    /* Start the A/D converter */
   R_S12AD0_Start();
    /* Set up SCI1 receive buffer and callback function */
    R_SCI1_Serial_Receive((uint8_t *)&g_rx_char, 1);
    /* Enable SCI1 operations */
    R_SCI1_Start();
    while (1U)
    {
        uint16_t adc_result;
        /* Wait for user requested A/D conversion flag to be set */
        if (TRUE == g_adc_trigger)
        {
            /* Call the function to perform an A/D conversion */
            adc_result = get_adc();
            /* Display the result on the LCD */
            lcd_display_adc(adc_result);
            /* Increment the adc_count */
            if (16 == (++adc_count))
                 adc_count = 0;
            }
            /* Send the result to the UART */
            uart_display_adc(adc_count, adc_result);
            /* Reset the flag */
            g_adc_trigger = FALSE;
        }
```


}

```
/* SW3 is directly wired into the ADTRGOn pin so will
      cause the interrupt to fire */
   else if (TRUE == g_adc_complete)
    {
        /* Get the result of the A/D conversion */
       R_S12AD0_Get_ValueResult(ADCHANNEL0, &adc_result);
        /* Display the result on the LCD */
       lcd_display_adc(adc_result);
          Increment the adc_count */
        if (16 == (++adc_count))
        {
            adc_count = 0;
       }
        /* Send the result to the UART */
        uart_display_adc(adc_count, adc_result);
        /* Reset the flag */
       g_adc_complete = FALSE;
   }
   else
    {
        /* do nothing */
    }
}
/* End user code. Do not edit comment generated here */
```

Then, add the following function definition in the user code area at the end of the file:

```
* Function Name : uart_display_adc
* Description    : Converts adc result to a string and sends it to the UART1.
* Argument
           : uint8_t : adc_count
             uint16_t: adc result
* Return value : none
static void uart_display_adc (const uint8_t adc_count, const uint16_t adc_result)
ł
   /* Declare a temporary variable */
  char a;
   /* Declare temporary character string */
  static char uart_buffer[] = "ADC xH Value: xxxH\r\n";
  /* Convert ADC result into a character string, and store in the local.
    Casting to ensure use of correct data type. */
  a = (char)(adc_count \& 0x000F);
  uart_buffer[4] = (char)((a < 0x0A) ? (a + 0x30) : (a + 0x37));
  a = (char)((adc_result & 0x0F00) >> 8);
  uart_buffer[14] = (char)((a < 0x0A) ? (a + 0x30) : (a + 0x37));</pre>
   a = (char)((adc_result & 0x00F0) >> 4);
  uart_buffer[15] = (char)((a < 0x0A) ? (a + 0x30) : (a + 0x37));</pre>
  a = (char)(adc_result & 0x000F);
  uart_buffer[16] = (char)((a < 0x0A) ? (a + 0x30) : (a + 0x37));
   /* Send the string to the UART */
  R_DEBUG_Print(uart_buffer);
}
* End of function uart_display_adc
```

Select 'Build Project' from the 'Build' menu, or press F7. CS+ will build the project with no errors.

The project may now be run using the debugger as described in §6. Connect the RSK G1CUSB0 port to a USB port on a PC. If this is the first time the RSK has been connected to the PC then a device driver will be installed automatically. Open Device Manager, the virtual COM port will now appear under 'Port (COM & LPT)' as 'RSK USB Serial Port (COMx)', where x is a number.

Open a terminal program, such as HyperTerminal, on the PC with the same settings as for SCI1 (see §4.4.5). When any switch is pressed, or when 'c' is sent via the COM port, the program will perform an A/D conversion of the voltage level on the ADPOT line and display the result on the LCD panel and send the result to the PC terminal program via the SCI1. Return to this point in the CG_Tutorial to add the LED user code.

5.7 LED Code Integration

Open the file 'r_cg_main.c'. Add the following declaration to the user code area for include near the top of the file:

#include "rskrx24tdef.h"

Add the following declaration to the user code area for global near the top of the file:

```
/* Prototype declaration for led_display_count */
static void led_display_count(const uint8_t count);
```

Add the following highlighted code to the user code area in the main function:

```
void main(void)
   R MAIN UserInit();
   /* Start user code. Do not edit comment generated here */
    /* Initialize the switch module */
   R_SWITCH_Init();
    /* Set the call back function when SW1 or SW2 is pressed */
   R_SWITCH_SetPressCallback(cb_switch_press);
    /* Initialize the debug LCD */
   R_LCD_Init ();
    /* Displays the application name on the debug LCD */
   R_LCD_Display(0, (uint8_t *)" RSKRX24T ");
   R_LCD_Display(1, (uint8_t *)" Tutorial ");
   R_LCD_Display(2, (uint8_t *)" Press Any Switch ");
    /* Start the A/D converter */
   R S12AD0 Start();
    /* Set up SCI1 receive buffer and callback function */
   R_SCI1_Serial_Receive((uint8_t *)&g_rx_char, 1);
    /* Enable SCI1 operations */
   R_SCI1_Start();
    while (1U)
    {
        uint16_t adc_result;
        /* Wait for user requested A/D conversion flag to be set(SW1 or SW2) */
        if (TRUE == g_adc_trigger)
        {
            /* Call the function to perform an A/D conversion */
            adc_result = get_adc();
            /* Display the result on the LCD */
            lcd_display_adc(adc_result);
```


}

```
/* Increment the adc_count and display using the LEDs */
        if (16 == (++adc_count))
        {
            adc_count = 0;
        led_display_count(adc_count);
        /* Send the result to the UART */
       uart_display_adc(adc_count, adc_result);
        /* Reset the flag */
       g_adc_trigger = FALSE;
    /* SW3 is directly wired into the ADTRGOn pin so will
      cause the interrupt to fire */
   else if (TRUE == g_adc_complete)
    ł
        /* Get the result of the A/D conversion */
       R_S12AD0_Get_ValueResult(ADCHANNEL0, &adc_result);
        /* Display the result on the LCD */
        lcd_display_adc(adc_result);
        /* Increment the adc_count and display using the LEDs */
        if (16 == (++adc_count))
        {
            adc count = 0;
        led_display_count(adc_count);
        /* Send the result to the UART */
       uart_display_adc(adc_count, adc_result);
        /* Reset the flag */
       g_adc_complete = FALSE;
   }
   else
    {
        /* do nothing */
   }
/* End user code. Do not edit comment generated here */
```

Then, add the following function definition in the user code area at the end of the file:

```
* Function Name : led_display_count
* Description : Converts count to binary and displays on 4 LEDS0-3
* Argument
         : uint8_t count
* Return value : none
        static void led_display_count (const uint8_t count)
{
  /* Set LEDs according to lower nibble of count parameter */
  LED0 = (uint8_t)((count & 0x01) ? LED_ON : LED_OFF);
  LED1 = (uint8_t)((count & 0x02) ? LED_ON : LED_OFF);
  LED2 = (uint8_t)((count & 0x04) ? LED_ON : LED_OFF);
  LED3 = (uint8_t)((count & 0x08) ? LED_ON : LED_OFF);
}
End of function led_display_count
```

Select 'Build Project' from the 'Build' menu, or press F7. CS+ will build the project with no errors.

The project may now be run using the debugger as described in §6. The code will perform the same but now the LEDs will display the adc_count in binary form.

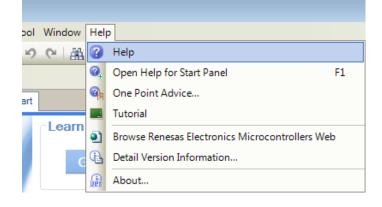
6. Debugging the Project

•	In the 'Project Tree' pane, right- click the 'RX Simulator (Debug Tool)'. Select 'Using Debug Tool -> RX E1(Serial)'.	Project Tree 4 X 2 3 3 2 3 3 3 CG Tutorial (Project)* 4 RSF524TAAxFP (Microcontroller) 5 Code Generator (Design Tool) 4 Code Generator (Design Tool) 4 Code Generator (Design Tool) 5 CC-RX (Build Tool) 7 RX Simulator (Debug Tool) 8 File 9 Build too 9 Property 10 RX E20(Serial) 11 RX Simulator 12 Dependencies	
•	Double-click 'RX E1(Serial) (Debug Tool)' to display the debugger tool properties. Under 'Clock', change the main clock frequency to 20 MHz and operating frequency to 80MHz. Under 'Connection with Target Board', change 'Power target from the emulator.(MAX 200mA) to 'Yes' All other settings can remain at their defaults.	Property Internal ROMRAM Size of internal ROM[KBytes] Size of internal RAM[KBytes] Size of internal RAM[KBytes] Size of DataFlash memory[KBytes] 8 Clock Main clock frequency[MHz] 20.0000 Operating frequency[MHz] 20.0000 Allow changing of the clock source on writing internal flash memory No Connection with Emulator Emulator serial No. Connection with Target Board Power target from the emulator.(MAX 200mA) Yes Supply voltage 3.3V Communications method FINE FINE FINE FINE 2000000	
•	Connect the E1 to the PC and the RSK E1 connector. Connect the Pmod LCD to the PMOD1 connector. From the 'Debug' menu select 'Download' to start the debug session and download code to the target.		

7. Running the Code Generator Tutorial

7.1 Running the Tutorial

Once the program has been downloaded onto the RSK device, the program can be executed. Click the 'Go' button or press F5 to begin the program from the current program counter position. It is recommended that you run through the program once first, and then continue to the Tutorial manual to review the code.



8. Additional Information

Technical Support

For details on how to use CS+, refer to the help file by opening CS+, then selecting Help > Help Contents from the menu bar.

For information about the RX24T group microcontroller refer to the RX24T Group Hardware Manual.

For information about the RX assembly language, refer to the RX Family Software Manual.

Technical Contact Details

Please refer to the contact details listed in section 8 of the "Quick Start Guide".

General information on Renesas microcontrollers can be found on the Renesas website at: <u>http://www.renesas.com/</u>

Trademarks

All brand or product names used in this manual are trademarks or registered trademarks of their respective companies or organisations.

Copyright

This document may be, wholly or partially, subject to change without notice. All rights reserved. Duplication of this document, either in whole or part is prohibited without the written permission of Renesas Electronics Europe Limited.

© 2015 Renesas Electronics Europe Limited. All rights reserved.

© 2015 Renesas Electronics Corporation. All rights reserved.

© 2015 Renesas System Design Co., Ltd. All rights reserved.

	~ ~ ` /
REVISION HIST	ORY

RSKRX24T Code Generator Tutorial Manual

Rev.	Date	Description	
		Page	Summary
1.00	Dec 29, 2015	—	First Edition issued

Renesas Starter Kit Manual: Code Generator Tutorial Manual

Publication Date: Rev. 1.00 Dec 29, 2015

Published by: Renesas Electronics Corporation

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

 Renease Electronics America Inc.

 28011 Scott Boulevard Samia Cohra, CA 99050-2549, U.S.A.

 Tel: +1-408-588-6000, Fax: +1-408-588-6130

 Renease Electronics Canada Limited

 2521 Yonge Street, Suite Sa09 Richmond Hill, Ontario Canada L4C 9T3

 Tel: +1-905-237-2004

 Renease Electronics Europe Limited

 Dukes Meadow, Milboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K

 Tel: +44-1625-855100, Fax: +44-1628-56900

 Renease Electronics Europe MbH

 Arcadiastraser 10, 40472 Disseldorf, Germany

 Tel: +49-211-6503-0, Fax: +49-211-6503-1327

 Renease Electronics (China) Co., Ltd.

 Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China

 Tel: +86-10-2235-1155, Fax: +86-10-2235-7679

 Renease Electronics (China) Co., Ltd.

 Yoni 100, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333

 Tel: +86-21-226-0889, Fax: +86-212-20999

 Renease Electronics Hong Kong Limited

 Unit 101-1161, 16/F., Tower A, Central Towers, 2554 Jangao Road, Putuo District, Shanghai, P. R. China 200333

 Tel: +86-22-226-0889, Fax: +86-219-2099

 Renease Electronics Shing North Road, Taipei 10543, Taiwan

 Tel: +86-24-175-9600, Fax: +886 2-8175-9670

 Renease Electronics Malaysia Stn.Bhd.

© 2015 Renesas Electronics Corporation. All rights reserved. Colophon 4.0

RX24T Group

R20UT3439EG0100