

RX651 Group

SH7044 to RX651 Microcontroller Migration Guide

Introduction

This application note describes points requiring special attention, points of difference, etc., that need to be borne in mind when replacing the SH7044 with the RX651 in a user system. For detailed information on each function, refer to the latest version of the User's Manual: Hardware.

Target Device

RX651

Contents

1.	CPU Architecture	2
2.	On-Chip Functions	29
3.	Sample Code	90
4.	Reference Documents	91

1. CPU Architecture

1.1 Registers

The points of difference between the registers of the SH7044 and the RX651 are described below.

1.1.1 General-Purpose Registers

The SH7044 and RX651 each have 16 32-bit general-purpose registers. They differ in that the register used as the stack pointer (SP) is different.

- SH7044: R15
- RX651: R0

Figure 1.1 shows the differences between general-purpose registers. On the SH7044, R0 is also used as an index register.

31	0		31	0
R0*	:		R0 (SP)	
R1			R1	
R2			R2	
R3			R3	
R4			R4	
R5			R5	
R6			R6	
R7			R7	
R8			R8	
R9			R9	
R10			R10	
R11			R11	
R12			R12	
R13		/	R 13	
R14		/	R14	
R15 (SP)		R15	

modes. R0 may be fixed as the source or destination register, depending on the instruction.

Figure 1.1 Differences Between General-Purpose Registers

1.1.2 Control Registers

The SH7044 and RX651 control registers have differences as shown in the differences in the control registers in Figure 1.2.

Figure 1.2 Differences Between Control Registers

The RX651 has no registers corresponding to PR and GBR on the SH7044. The ACC register on the RX651 corresponds to MACH and MACL on the SH7044. An outline of the control registers that are implemented on the RX651 but not on the SH7044 is presented below.

Register name	Explanation
Interrupt Stack Pointer (ISP)	The RX651 has two types of stack pointers.
User Stack Pointer (USP)	Whether the stack pointer operates as the ISP or USP depends on the
	value of the stack pointer select bit (U) in the processor status word (PSW).
Interrupt Table Register (INTB)*1	Specify the start address of the variable vector table.
Backup PC/Backup PSW (BPC/BPSW)	RX651 has normal interrupt and fast interrupt. With fast interrupts, the contents of the PC and PSW are saved to the dedicated registers (BPC and BPSW), so it is possible to shorten the processing time for saving the registers. BPC and BPSW do not support multiple interrupts.
Fast Interrupt Vector Register (FINTV)	A register that specifies the jump destination when a fast interrupt occurs.
Floating-Point Status Word (FPSW)	RX651 Register that shows various statuses of the operation result (Results of floating-point operations) of the on-chip FPU.
Exception Table Register (EXTB)	Specify the start address of the variable vector table.

Table 1.1	Control Re	gisters available	on	just RX651
-----------	------------	-------------------	----	------------

Note:1 The functionality of this register is equivalent to that of VBR on the SH7044.

• Differences between status registers

Table 1.2 Differences Between SR (SH7044) and PSW (RX651)

SR Bit Name	PSW Bit Name	Description
Т	С	The calculation result (true/false, carry/borrow, etc.) indicated by the T bit on the
	Z	SH7044 is shown by four flags (C, Z, S, and O) on the RX651.
	S	C: Carry flag (0/1 = No carry has occurred./A carry has occurred.)
	0	Z: Zero flag
		S: Sign flag
		O: Overflow flag
S	_	Controls the functionality that prevents overflows during ALU arithmetic
		operations performed by the DSP unit of the SH7044.
		On the RX651 there is no bit corresponding to the S bit, and the occurrence of
		an overflow during a floating-point operation is reported by the FPSW flag. It is
		also possible to perform exception handling when an overflow occurs.
10, 11, 12, 13	IPL[3:0]	These are the interrupt mask bits.
		Both the SH7044 and the RX651 support level settings from 0 (lowest) to 15
		(highest). Only interrupts with a priority level higher than this setting are
		accepted.
Q	—	The Q bit is used by the DIV0U, DIV0S, and DIV1 instructions on the SH7044.
-		There is no corresponding bit on the RX651.
Μ	—	The M bit is used by the DIV0U, DIV0S, and DIV1 instructions on the SH7044.
		There is no corresponding bit on the RX651.
	Ι	Interrupt enable bit
		0: Interrupts are disabled.
		1: Interrupts are enabled.
		This bit is used to enable interrupt requests on the RX651. The initial state is 0,
		so it is necessary to set this bit to 1 in order to accept interrupts. Also, this bit is
		cleared to 0 when an exception is accepted, and no interrupts are accepted
		while its value remains 0.
		Note that the interrupt status flag of the interrupt controller is reset when an
		Interrupt request occurs, regardless of the setting of this bit.
—	0	This bit specifies the stack pointer used by the RX651.
		0: Interrupt stack pointer (ISP)
		1: User stack pointer (USP)
		This bit is cleared to 0 when an exception is accepted.
	PM	This bit specifies the processor mode of the RX651.
		0: Supervisor mode
		1: User mode
		This bit is cleared to 0 when an exception is accepted.

1.2 Option-Setting Memory(OFSM)

The RX651 has an option setting memory with registers that determine the MCU state after reset.

For the setting method of the option setting memory, refer to the User's Manual: Hardware.

1.2.1 Outline of Option-Setting Memory

	b31	b0
Address		Register Description
FF7F FFE8h to FF7F FFEFh	UB code A	Codes necessary when using user boot mode.
FF7F FFF0h to FF7F FFF7h	UB code B	(Do not overwrite these codes when using USB boot mode.)
FF7F FFF8h to FF7F FFFBh	Endian select register B (MDEB) (user boot mode)	Register for selecting the endian setting of the CPU.
	_	—
FFFF FF80h to FFFF FF83h	Endian select register S (MDES) (single-chip mode)	Register for selecting the endian setting of the CPU.
	_	-
FFFF FF88h to FFFF FF8Bh	Option function select register 1 (OFS1)	 The OFS1 register is used to make t following two settings: Voltage monitor 0 reset is enabled disabled after a reset. HOCO oscillation is enabled/ disabled after a reset.
FFFF FF8Ch to FFFF FF8Fh	Option function select register 0 (OFS0)	The OFS0 register is used to make settings for the independent watchdo timer (IWDT) and watchdog timer (WDT).
		_

Figure 1.4 Option-	Setting Memory	Area
--------------------	----------------	------

1.2.2 Endian Setting

The SH7044 is fixed in big-endian mode. On the RX651, instructions are fixed in little-endian, and the data order is selectable between little-endian and big-endian. The endian setting is specified by means of the endian select bits (MDE[2:0]) in the MDES and MDEB registers in the option-setting memory.

When switching from the SH7044 to the RX651, it is possible to use big-endian order by specifying big-endian in the option settings of the genuine Renesas compiler. This allows migration without the need to be conscious of endianness in the user program.

The endian setting can be switched for each CS area in the external address space. However, instruction code cannot be allocated to an external space with an endian setting that differs from that of the chip. When allocating instruction code to an external space, ensure that an area with the same endian setting as the chip is used. (For details, see the User's Manual: Hardware.)

In actuality, Figure 1.5 Endian specification by compiler option :Endian Setting Example, is generated automatically according to the compiler option setting.*

Figure 1.5 Specifying Endianness by Compiler Option

1.3 Reset Function

1.3.1 Reset Sources

SH7044 and RX651 reset sources are shown in table 1.3 Reset Sources.

	SH7044	RX651
Reset type	Power-on reset (pin reset)	RES# pin reset
	 Manual reset (pin reset) 	 Power-on reset (Internal reset) Voltage monitor 0 reset
		 Voltage monitor 1 reset Voltage monitor 2 reset
		 Deep software standby reset
		Independent watchdog timer reset
		Watchdog timer resetSoftware reset

(1) Reset vector configuration

The SH7044 has separate vectors for power-on resets and for manual resets (PC and SP).*

The RX651 has a single reset vector for multiple reset sources. The reset source is identified in reset status registers 0 to 2 during reset processing, and processing for the corresponding source is performed.

(2)Stack pointer

On the SH7044, it is necessary to specify the end address (+1) of the stack area in the reset vector. There is no stack pointer setting area in the vector table on the RX651, so the stack pointer is set in ISP and USP.

Note:1 See 1.7.4, Vector Configuration, for details of the vector tables.

Figure 1.6 Reset Vectors on SH7044 and RX651

1.3.2 Reset Sources and Initialization Scope

The initialization scope of the reset sources differs between the SH7044 and the RX651. Table 1.4 lists the reset types and their initialization scope on the SH7044, and table 1.5 lists the reset types and their initialization scope on the RX651. (For details, see the User's Manual: Hardware.)

Table 1.4 SH7044 Reset Sources and Initialization Scope

Item	Power-On Reset	Manual Reset	
CPU	0	0	
On-chip peripheral modules	0		
-			

 \bigcirc : Reset —: No reset

Table 1.5 RX651 Reset Sources and Initialization Scope

	Reset Sou	irces							
Reset Target	Res# Pin Reset	Power-On Reset	Voltage Monitor 0 Reset	Independent Watchdog Timer Reset	Watchdog Timer Reset	Voltage Monitor 1 Reset	Voltage Monitor 2 Reset	Deep Software Standby Reset	Software Reset
Power-on reset detection flag	0	_	_	_	_	_	_	_	_
Cold start/warm start determination flag	_	0	_	_	—		_		—
Voltage monitor 0 reset detection flag	0	0	—	—	—	—	—	_	—
Independent watchdog timer reset detection flag	0	0	0	—	—	—	—	\bigcirc	—
Independent watchdog timer registers	0	0	0	_	—	_	_	0	—
Watchdog timer reset detection flag	0	0	0	0	—	_	_	0	—
Watchdog timer registers	0	0	0	0	_	_	_	0	_
Voltage monitor 1 reset detection flag	0	0	0	0	0	_	_	_	_
Voltage monitor function 1 registers	0	0	0	0	0	_	_	*1	_
Voltage monitor 2 reset detection flag	0	0	0	0	0	0	_	—	_
Voltage monitor function 2 registers	0	0	0	0	0	0	_	*2	_
Deep software standby reset detection flag	0	0	0	0	0	0	0	—	_
Software reset detection flag	0	0	0	0	0	0	0	0	_
Realtime clock registers	_	_	_	_	_	_	_	_	_
High-speed on-chip oscillator-related registers	0	0	0	0	0	0	0	_	0
Main clock oscillator-related registers	0	0	0	0	0	0	0	_	0
Pin states	0	0	0	0	0	0	0	_	0
Low power consumption- related registers	0	0	0	0	0	0	0	—	0
Registers other than the above, CPU, and internal state	0	0	0	0	0	0	0	0	0

 \bigcirc : Reset —: No change

Notes: 1. Only LVD1CR1 and LVD1SR are initialized.

2. Only LVD1CR2 and LVD2SR are initialized.

1.4 **Clock Settings**

1.4.1 **Clock Sources**

The clock sources and clock generation circuits of the SH7044 and RX651 are listed below.

SH7044	RX651
Oscillator (EXTAL and XTAL) + PLL circuit	Main clock oscillator (EXTAL and XTAL) + PLL circuit
	 Subclock oscillator (XCIN and XCOUT)
	 High-speed on-chip oscillator (HOCO)
	 Low-speed on-chip oscillator (LOCO)
	 IWDT-dedicated on-chip oscillator
Note: In the description below, the high-speed of	n-chip oscillator is referred to as the HOCO and the low-

Table 1.6 List of SH7044 and RX651 Clock Sources

speed on-chip oscillator as the LOCO.

1.4.2 **Clock Generation Circuit**

On the SH7044 clock control is not performed in software. Each peripheral device operations in synchronization with the system clock (ϕ) or a clock generated by the prescaler. On the RX651 a large variety of clocks operate under software control.

On the RX651 the LOCO operates as the clock source after a reset. The operation of necessary clock sources and PLL circuits other than the LOCO is started during system initialization, and various clocks are selected, such as the system clock and bus clocks. When making changes to clock-related settings, it is necessary to consider the register setting sequence and the oscillation and clock oscillation stabilization time.

See the following application note for details of the clock setting procedure.

RX63N Group, RX651 Group Initial Setting (R01AN3034EJ0211)

Figure 1.7 RX651 Clock Generation Circuit

1.5 **Operation Modes**

1.5.1 Comparison of Operation Modes

The table below shows a comparison of the operation modes of the SH7044 and RX651. For details of each operation mode, see the User's Manual: Hardware.

SH7044 Operation Mode	RX651 Operation Mode	Description
MCU mode 0 MCU mode 1	On-chip ROM disabled extended mode	An operation mode in which the on-chip ROM is disabled and the external address space is enabled. The external bus width differs from that of mode 0 and mode 1 on the SH7044.
MCU mode 2	On-chip ROM enabled extended mode	An operation mode in which the on-chip ROM is enabled and the external address space is enabled
Single-chip mode	Single-chip mode	An operation mode in which the on-chip ROM is enabled and the external address space is disabled
Boot mode	Boot mode (SCI interface)	An operation mode in which the flash memory modifying program (boot program), which is stored in a dedicated area internal to the microcontroller, is run. The on-chip flash memory can be programmed by a device external to the microcontroller by using the asynchronous serial interface (SCI1).
User program mode	Functionality equivalent to the SH7044 can be implemented in ordinary operation mode.	An operation mode that is only transitioned to when the setting value of the FWP pin changes and in which the on-chip flash memory is programmed by a programming/erase control program that has been prepared ahead of time by the user. It is possible to implement equivalent functionality in ordinary operation mode on the RX651, so it is not necessary to change the pin states.
PROM mode	Program rewriting of onboard RX is possible by emulator etc.	PROM mode can be programmed into the on-chip ROM using a general purpose PROM writer.
Writer mode	Program rewriting of onboard RX is possible by emulator etc.	The writer mode supports flash memory read mode, automatic write mode, automatic erase mode, and status read mode.
_	Boot mode (USB interface) / (FINE interface)	A mode in which the flash memory rewrite program (boot program) stored in the dedicated area inside the MCU operates. Using USB or fine, it is possible to rewrite the on-chip flash memory from the MCU external.

Table 1.7 Comparison of Operation Modes

1.5.2 Comparison of Memory

The figure below shows a comparison of memory maps in on-chip ROM enabled mode (on-chip ROM enabled extended mode on the RX651).

SH70	044 on-chip ROM enabled	mode R	X631 on-chip ROM enabled extended mode
0000 0000h	On-chip ROM	0000 0000h	RAM
0004 0000h		0004 0000h	Reserved area
		0008 0000h	Peripheral I/O registers
	Reserved area	0010 0000h	On-chip ROM (E2 data flash)
		0010 8000h	Reserved area
		007F 8000h	FCU-RAM area
		007F A000h	Reserved area
0020 0000h	CS0 area	007F C000h	Peripheral I/O registers
		007F C500h	Reserved area
0040 0000h	CS1 area	007F FC00h	Peripheral I/O registers
		0080 0000h	Reserved area
0080 0000h ⁻	CS2 area	00E0 0000h	On-chip ROM (program ROM) (dedicated for programming)
00C0 0000h	CS3 area	0100 0000h	External address space (CS area)
0100 0000h	DRAM area	0800 0000h	External address space (SDRAM area)
0200 0000h	Reserved area	1000 0000h	Reserved area
FFFF 8000h ⁻	On-chip peripheral modules	FEFF E000h	On-chip ROM (FCU firmware) (read-only)
FFFF 8800h		FF00 0000h	Reserved area
	Reserved area	FF7F C000h	On-chip ROM (user boot) (read-only)
		FF80 0000h	Reserved area
FFFF 0000h	On-chip RAM	FFE0 0000h	On-chip ROM (program ROM) (read-only)
FFFF FFFFh		FFFF FFFFh	

Figure 1.8 SH7044 and RX651 Memory Map Comparison (On-Chip ROM Enabled Mode)

The figure below shows a comparison of memory maps in single-chip mode.

	Single-chip mode (SH7044)		Single-chip mode (RX631)
0000 0000h	On chin ROM	0000 0000h	RAM
0004 0000h		0004 0000h	Reserved area
		0008 0000h	Peripheral I/O registers
		0010 0000h	On-chip ROM (E2 data flash)
		0010 8000h	Reserved area
		007F 8000h	FCU-RAM area
		007F A000h	Reserved area
		007F C000h	Peripheral I/O registers
	Descendence	007F C500h	Reserved area
	Reserved area	007F FC00h	Peripheral I/O registers
		0080 0000h	Reserved area
		00E0 0000h	On-chip ROM (program ROM) (dedicated for programming)
		0100 0000h -	Reserved area
		FEFF E000h	On-chip ROM (FCU firmware)
		FF00 0000h	(read-only) Reserved area
		FF7F C000h	On-chip ROM (user boot) (read-only)
		FF80 0000h	Reserved area
FFFF 8000h		FFE0 0000h	
FEEF 8800h	On-chip peripheral modules		
FFFF 0000h	Reserved area		On-chip ROM (program ROM) (read-only)
FFFF FFFFh	On-chip RAM	FFFF FFFFh	

Figure 1.9 SH7044 and RX651 Memory Map Comparison (Single-Chip Mode)

	On-chip ROM disabled mode (SH7044)		On-chip ROM disabled mode (RX631)
0000 0000h		0000 0000h	RAM
		0004 0000h	Reserved area
	COU space	0008 0000h	Peripheral I/O registers
0040 0000h	CS1 space	0010 0000h	
0080 0000h	CS2 space		Reserved area
00C0 0000h	CS3 space		
0100 0000h	DRAM space	0100 0000h	External address space (CS area)
0200 0000h	Reserved area	0800 0000h 1000 0000h EE00 0000h	External address space (SDRAM area) Reserved area
FFFF 8000h			
FFFF 8800b	On-chip peripheral modules		
	Reserved area		External address space
FFFF F000h			
FFFF FFFFh	On-chip RAM	FFFF FFFFh	

The figure below shows a comparison of memory maps in on-chip ROM disabled mode.

Figure 1.10 SH7044 and RX651 Memory Map Comparison (On-Chip ROM Disabled Mode)

- On the RX651 the RAM is allocated to addresses adjacent to 0000 0000h and ROM (for reading data) to addresses adjacent to FFFF FFFFh. Also, the RX651 has on-chip data flash for storing data.
- On the RX651 the peripheral IO registers are allocated within the address range from 0008 0000h to 000F FFFFh, and only the flash-related registers and peripheral clock notification register are allocated within the address range from 007F C000h to 007F FFFFh.
- On the RX651 the external address space is allocated within the address range from 0100 0000h to 0FFF FFFFh and configured as seven CS spaces of 16 MB each and a 128 MB SDRAM space.

1.5.3 Operation Mode Settings

Whereas on the SH7044 operation mode settings are made only with the MD1, MD0, and FWP pins, on the RX651 operation mode settings can be made by means of the MD pin and UB pin when a reset is canceled, or by software after a reset is canceled.

Table 1.8:RX651 terminal setting and operation mode lists the operation modes that are determined by pin settings, and table 1.9: RX651 SYSCR0 register setting and operation mode lists the operation modes that are set in software after a reset is canceled.

Pin		
MD	UB	Mode Name
1		Single-chip mode
0	0	Boot mode
	1	Boot mode (USB interface) *1
$0 \rightarrow 1^{*1}$	0	Boot mode (FINE interface)
Notes: 1.	After resetting the N	ID terminal to 0, switch between 20 and 100 msec.

Table 1.8 Pin Settings and Operation Modes on RX651

Table 1.9 SYSCR0 Register Settings and Operation Modes on RX651

SYSCR0 Register*2		
ROME Bit*1	EXBE Bit	Mode Name
0 (On-chip ROM disabled) * ¹	0 (external bus disabled)	Single-chip mode
1 (On-chip ROM enabled)* ²	0 (external bus disabled)*2	
0 (On-chip ROM disabled) * ¹	1 (external bus enabled)	On-chip ROM disabled extended mode
1 (On-chip ROM enabled)	1 (external bus enabled)	On-chip ROM enabled extended mode

Notes: 1. Once the ROME bit is set to 0, it cannot be reverted to 1.

2. After the STSCR0 register is reset, ROME = 1 and EXBE = 0.

1.6 **Processor Modes**

The RX CPU supports two processing modes: supervisor mode and user mode. These processor modes enable hierarchical CPU resource protection.

This makes it possible, when replacing the SH7044 with the RX651, to replace the software by operating in supervisor mode only, without using user mode. In other words, software can be replaced without the need to be conscious of the processor mode.

Processor Modes	Transition Conditions	Outline
Supervisor mode	 Reset cancellation Exception occurrence (PSW.PM bit cleared to 0) 	All CPU resources are accessible, and all instructions can be executed (no limitations). This is the mode in which the OS and other system programs ordinarily operate.
User mode	• PSW.PM bit set to 1 In this case, first set to 1 the PSW.PM bit saved to the stack, then execute the RTE instruction. Alternately, first set to 1 the PSW.PM bit saved to BPSW, then execute the RTFI instruction.	Write access to some CPU resources, such as some bits in PSW and to BPC and BPSW, is restricted, and privileged instructions cannot be used. This is the mode in which user programs such as application programs ordinarily operate.

Table 1.10 Processor Modes

Transitioning from supervisor mode to user mode

MVFC	PSW,R1	; The RTE instruction is used to simulate return from an exception.
OR	#00100000h,R1	;
PUSH.L	R1	;
MVFC	PC,R1	;
ADD	#10,R1	;
PUSH.L	R1	;
RTE		
NOP		
NOP		

Transitioning from user mode to supervisor mode

Operation transitions to supervisor mode when exception handling occurs. Operation then transitions again to user mode after the return from exception handling.

Another way to cause a transition to supervisor mode is to use an instruction that generates an unconditional trap, such as the INT instruction or BRK instruction.

1.7 Exception Handling

The points of difference regarding exception handling in general on the SH7044 and RX651, including interrupts, are described below.

1.7.1 Types of Exception Handling

A comparative listing of exception sources on the SH7044 and RX651 is shown below.

SH7044	RX651	Main Points of Difference
Power-on reset	Reset	On the SH7044 there are separate vectors for power-on
Manual reset	-	resets and manual resets.
		On the RX651 there is a single reset vector. The reset
		source is identified in reset status registers 0 to 2 during
		reset interrupt handling, and appropriate processing is
		performed.
Address error	Access exception	On the SH7044 this exception occurs when an attempt is
CPU address error	—	made to access an access-prohibited area or an address
DMAC / DTC	—	to which access is prohibited.
address error		On the RX651 this exception occurs when a memory
		protection error occurs.
		On the SH7044 the next instruction is saved to PC when
		this exception occurs.
		On the RX651 the instruction that generated this
		exception is saved to PC.
Interrupt (NMI)	Non-maskable interrupt	None
Interrupt	Interrupt	The RX651 also supports fast interrupts (level 15)
(external/internal)	(external/internal)	
TRAP instruction	Unconditional trap	The SH7044 has 32 sources, but the RX651 has 16
(TRAPA instruction)	(INT, BRK instruction)	sources with dedicated vectors and up to 256 sources
		when sources also used for interrupts are included.
General illegal	Undefined instruction	
Instruction	exception	In SH7044, if an undefined code other than the delayed
		branch instruction (delay slot) is decoded, a general
		When an undefined code placed in a delayed branch
		instruction (delay slot) or an instruction that rewrites a PC
		is decoded, a slot injustice instruction occurs.
		RX651 raises an undefined instruction exception when it
	-	detects the execution of an undefined instruction.
Illegal slot instruction		Initiated when an instruction to rewrite an undefined code
		or PC placed in a deterred branch instruction (delay slot)
	Drivila and in struction	_ IS decoded.
	Privilegea Instruction	_ inere are no exceptions equivalent to privileged
—	Floating-point exception	SH7044.
		In SH7044, the PC of the following instruction is
		evacuated when this exception occurs, and the PC of
		exception generation instruction is evacuated in RX651.

1.7.2 Exception Handling Priority

The comparative priority of exception sources on the SH7044 and RX651 is shown below.

Priority	SH7044	RX651	Remarks
High	Power-on reset	Reset	
	Manual reset	Non-maskable interrupt	
	Address error exception	Interrupt (external/internal)	
	Interrupt (NMI)	Instruction access exception	
	Interrupt (external/internal)	Undefined instruction exception,	
		privileged instruction exception	
	TRAP instruction	Unconditional trap	
	General illegal instruction exception	Operand access exception	
Low	Illegal slot instruction exception	Floating-point exception	

Table 1.12 Exception Event Priority

Note: Among interrupts, the priority is determined by the interrupt controller.

On the SH7044 address errors have higher priority than interrupts (internal or external), but on the RX651 both instruction access exceptions and operand access exceptions have lower priority than interrupts.

1.7.3 Basic Processing Sequence of Exception Handling

The basic processing sequence interrupt exception handling on the SH7044 and RX651 is shown below.

Figure 1.11 Interrupt (Internal/External) Processing Sequence

1.7.4 Vector Configuration

Both the SH7044 and RX651 have a relocatable vector configuration, which allows the vector table to be reallocated. On the SH7044 the vector base register (VBR) specifies the start of the vector table. (Note that VBR is initialized to 0 after a reset, so it is not possible to change the reset vector.)

The RX651's INTB (interrupt table register) points to the beginning of the interrupt vector table, and EXTB (exception table register) points to the beginning of the exception vector table.

The interrupt vector table has been assigned an interrupt and an unconditional trap that can be repositioned.

The exception vector table has been assigned a system exception.

The RX651 reset is a fixed vector.

Also, the fast interrupt vector is set in the FINTV register.

Figure 1.12 Vector table settings shows the difference between vector tables.

Figure 1.12 Vector Table Settings

1.7.5 Interrupt Masking by SR (SH7044) and PSW (RX651)

On the RX651 the I bits in control register PSW are used to set the interrupt mask level. The I bits indicate which interrupts are enabled and which are disabled.

SH7044	RX651	
SR Register	PSW Register	 Description
10, 11, 12, 13	IPL[3:0]	CPU interrupt mask level (priority level)
		Setting value: 0 to Fh (levels 0 to 15)
		When an interrupt request occurs, this level setting is compared with the priority level set for the individual interrupt source, and the interrupt is enabled if its level setting is higher than the mask level.
	I	Interrupt enable bit
		0: Interrupts are disabled.
		1: Interrupts are enabled.
		When an interrupt occurs, the interrupt status flag in the interrupt controller is set to 1. After a system reset, this bit is set to 1, enabling acceptance of interrupts. When an exception is accepted, this bit is cleared to 0 and no interrupts are accepted while its value remains 0.

Table 1.13 Interrupt-Related Bits in SR and PSW

1.8 Interrupt Handling

This chapter describes the differences in interrupt processing, focusing on the interrupt controller.

1.8.1 Interrupt Controller

Table 1.14 Comparison of interrupt controller specifications lists the differences in the interrupt controller specifications.

 Table 1.14
 Comparison of Interrupt Controller Specifications

ltem		SH7044	RX651
Interrupts	Peripheral function interrupts	 Interrupts from peripheral modules Interrupt detection: Edge/level*1 	 Interrupts from peripheral modules Interrupt detection: Edge/level*1 Group interrupt function Software configurable interrupt B function Software configurable interrupt A function
	External pin interrupts	 IRQ0 to IRQ7 pins Sources: 8 Interrupt detection: Low level or falling edge can be specified for each source. 	 IRQ0 to IRQ15 pins Sources: 16 Interrupt detection: Low level, falling edge, rising edge, or both edges can be specified for each source. Digital filter function support
	Software interrupts	None	Supported
	Interrupt priority	A level from 0 to Fh can be specified for each source by a register setting.	The priority level is set by the interrupt factor priority register r (IPRr) (r = 000 to 255).
	Fast interrupt function	None	Supported
	DTC and DMAC control	Activation supported*2	Activation supported
	EXDMAC control	None	EXDMAC bootable with software configurable interrupts
	User break interrupt	Supported	None It can be supported by the debugger function of the emulator
Non- maskable interrupts	NMI pin interrupts	 Interrupt detection method (selection of falling or rising edge) NMI input level read bit provided 	 Interrupt detection method (selection of falling or rising edge) Digital filter function
	Other sources (Other than exception handling)	• • None	 Interrupt at oscillation stop detection WDT underflow or refresh error IWDT underflow or refresh error Voltage monitor 1 interrupt Voltage monitor 2 interrupt RAM error interrupt

Notes: 1. The detection method is fixed for fixed-connection peripheral modules.

2. On the SH7044 activation source setting is performed on the DTC or DMAC.

Figure 1.13 Differences Between Interrupt Controller Registers

Figure 1.13 shows the differences between the interrupt controllers of the SH7044 and RX651.

The interrupt controller of the SH7044 controls IRQ interrupt flags, while peripheral module interrupt flags are controlled by the peripheral modules.

On the RX651 the interrupt controller controls all interrupt status flags, for both IRQs and peripheral modules.* In addition, the interrupt controller controls the activation source settings for the DTC and DMAC. The disable transfer at NMI occurrence function of the DTC and DMAC on the SH7044 is not implemented on the RX651.

Note: * The interrupt controller contains an interrupt request register for each interrupt source, but there are also interrupt enable bits implemented in the peripheral modules. (For details, see the User's Manual: Hardware.)

1.8.2 Interrupt Flag Management

When a peripheral module of the SH7044 generates an interrupt by edge detection, the corresponding interrupt flag (interrupt source flag) in the interrupt handler is cleared (the flag is cleared and a dummy read is performed). This is done because the interrupt will be generated once again if the flag is not cleared by the handler. On the RX651 the interrupt flags (interrupt status flags) are managed internally by the interrupt controller. The interrupt controller has a function whereby when it sends an interrupt request to the CPU or DTC/DMAC and receives a response indicating that it was accepted, it automatically clears the corresponding interrupt status flag. It is therefore not necessary to clear the flag and do a dummy read as on the SH7044. Note that in the case of interrupts generated by level detection the source flags reside in the peripheral modules, so they do need to be cleared. For details, see the User's Manual: Hardware.

Figure 1.14 SH7044 Peripheral Module Interrupt (Edge Detection)

Figure 1.15 RX651 Peripheral Module Interrupt (Edge Detection)

1.8.3 Fast Interrupt Control

In addition to ordinary interrupts, the RX651 supports fast interrupts.

Ordinary interrupt: After determining the interrupt priority it is necessary to save the contents of the control registers and general-purpose registers to the internal RAM or the external RAM by software.

Fast interrupt: Operation gives the interrupt the highest priority. When the interrupt occurs, the contents of the control registers are saved to dedicated registers, allowing interrupt activation to be realized faster than an ordinary interrupt.

It is possible to assign a portion of the general-purpose registers to exclusive use for interrupts by setting a compiler option. This eliminates the need to save and restore the contents of the general-purpose registers, further speeding up the interrupt.

Figure 1.16 Differences Between Ordinary Interrupts and Fast Interrupts

1.8.4 Digital Filter

The RX651 is provided with a digital filter function for the IRQ and NMI level signals. The sampling clock for the digital filter can be specified, and interrupt signals that do not last for at least three cycles of the sampling clock base are not accepted. This improves the system's noise tolerance.

Figure 1.17 Digital Filter Operation Example

1.8.5 Multiple Interrupts

On the SH7044 if a high-priority interrupt occurs while a low-priority interrupt handler is running, the low-priority interrupt handler is suspended and the high-priority interrupt handler is executed. Once the high-priority interrupt handler finishes, the suspended low-priority interrupt handler is restarted.

On the RX651 if a high-priority interrupt occurs while a low-priority interrupt handler is running, the high-priority interrupt is not accepted until the low-priority interrupt handler finishes. This is because the PSW.I bit is cleared to 0 (interrupts are disabled) in a normal interrupt handler. In order to realize handling of multiple interrupts equivalent to that of the SH7044, it is necessary to set the PSW.I bit to 1 (interrupts are enabled) in the interrupt handler.

Figure 1.18 SH7044 Multiple Interrupt Sequence

Figure 1.19 RX651 Interrupt Sequence (Not Controlled by PSW.I Bit)

Figure 1.20 RX651 Interrupt Sequence (Controlled by PSW.I Bit)

1.8.6 Sselect interrupt

Among the RX651 interrupts, the interrupt factor of the peripheral module (Example: Some of the MTU and TPU interrupt factors) is allocated to the same vector as shown in Figure 1.21 selection interrupts. When using the unit selection function, it is necessary to select the interrupt source by means of a selector (register).

Figure 1.21 Unit Selection Function

1.8.7 Group Interrupts

Group interrupts allow multiple interrupt sources to be assigned to a single vector. Group interrupt detection is by means of a logical OR operation on all the interrupt requests assigned to the group. This means that when an interrupt request is detected, it is necessary to identify the interrupt request from among those in the group by means of software.

Figure 1.22 Group Interrupts

2. On-Chip Functions

2.1 List of On-Chip Functions

For more information about the peripheral features that are available only in RX651, see the User's Manual: Hardware.

	•
SH7044	RX651
Clock oscillator (CPG)	Clock generation circuit
User break controller (UBC)	
	Can be supported by the debugger function of the
	emulator
Data transfer controller (DTC)	Data transfer controller (DTCb)
Bus state controller (BSC)	Bus controller (BSC)
Direct memory access controller (DMAC)	DMA controller (DMACA)
	EXDMA controller (EXDMACa)
Multifunction timer pulse unit (MTU)	Multifunction timer pulse unit (MTU3a)
Watchdog timer (WDT)	Watchdog timer (WDTA)
	Independent watchdog timer (IWDTa)
Serial communication interface (SCI)	Serial communication interfaces (SCIg,SCIh, SCIi)
High-speed A/D converter (other than A mask)	12-bit A/D converter (S12ADFa)
Mid-speed A/D converter (A mask)	
Compare match timer (CMT)	Compare match timer (CMT)
	Compare match timer W (CMTW)
Pin function controller (PFC)	Multi-function pin controller (MPC)
I/O ports (I/O)	I/O port
Flash memory (256 KB)*1	Flash memory*2
RAM (4 KB)	RAM (maximum 256 KB)
Low power consumption function	Low power consumption function
Cache memory (CAC)	
64/128 / 256kB mask ROM	It can be supported by the on-chip flash memory of RX
128kB PROM (ZTAT)	It can be supported by the on-chip flash memory of RX
256kB flash memory (F-ZTAT)	It can be supported by the on-chip flash memory of RX
—	Voltage detection circuit (LVDA)
	Clock frequency system measurement circuit (CAC)
	Battery backup function
	Register write protection function
	Memory protection unit (MPU)
	Event Link Controller (ELC)
	Port output enable 3 (POE3a)
	16-bit timer pulse unit (TPUa)
	Programmable pulse generator (PPG)
	8-bit timer (TMR)
	Realtime clock (RTCd)
	Ethernet controller (ETHERC)
	Ethernet controller direct memory access controller
	(EDMAC)
	USB2.0FS Host/Function module (USBb)
	I ² C bus interface (RIICa)
	CAN module (CAN)
	Serial peripheral interface (RSPIc)

Table 2.1 List of Peripheral Functions

 Quad Serial Peripheral Interface (QSPI)
CRC calculator (CRCa)
SD Host Interface (SDHI)
SD Slave Interface (SDSI)
Multimedia Card Interface (MMCIF)
Parallel data capture unit (PDC)
Graphic LCD controller (GLCDC)
2D drawing engine (DRW2D)
Boundary scan
AESa
RNG
Trusted Secure IP (TSIP)
D / A converter (R12DAa)
Temperature sensor (TEMPS)
Data calculation circuit (DOC)
Standby RAM

Notes: 1. Some versions of the SH7044 have on-chip mask ROM.

The RX651 group has up to 2 KB of on-chip flash memory (ROM) for storing code and up to 32 KB of on-chip flash memory for storing data (Data flash). For details, see the User's Manual: Hardware.

2.2 I/O Ports

2.2.1 Number of I/O Ports

Table 2.2 Number of I/O Ports on SH7044 and R

Item	Package	Port Function
Number of I/O ports on SH7044	QFP-112	I/O: 74
		Input: 8
		Total: 82
Number of I/O ports on RX651	TFLGA-177	I/O: 136
	LFBGA -176	Input: 1
	LQFP -176	Pull-up resistor: 136
		Open-drain output: 136
		5 V tolerant: 19
	TFLGA-145	I/O: 111
	LQFP-144	Input: 1
		Pull-up resistor: 111
		Open-drain output: 111
		5 V tolerant: 18
	TFLGA-100	I/O: 78
	LQFP-100	Input: 1
		Pull-up resistor: 78
		Open-drain output: 78
		5 V tolerant: 17
	TFLGA-64	I/O: 41
		Input: 1
		Pull-up resistor: 41
		Open-drain output: 41
		5 V tolerant: 8
	LQFP-48	I/O: 42
		Input: 1
		Pull-up resistor: 42
		Open-drain output: 42
		5 V tolerant: 8

2.2.2 I/O Settings

Both the SH7044 and RX651 have multiplexed pins. Therefore, it is necessary to make pin settings to assign each pin to either general I/O or an on-chip module function.

On the SH7044 port functions are determined by settings made to the pin function controller (PFC). The I/O ports range from A to F, and with the exception of port F, which is input-only, each port can be assigned to either general I/O or an on-chip module function. Ports A to E are assigned to either general I/O or an on-chip module function the making settings in registers PnIOR and PnCR (n: port A to E). The general concept of I/O settings on the SH7044 and the functions of the various registers are described below.

Figure 2.1 SH7044 I/O Settings

Table 2.3	Register	Configuration or	SH7044 for L	/O Ports and F	Pin Function	Controller
	Register	ooninguration of			in i unction	Controller

Module	Name	Function Name	Function
I/O port	PnDR	Port n data register Port n data register	
PFC	PnIOR	Port n IO register	Selects the port n I/O direction.
	PnCR	Port n control register	Selects the pin function.
	IFCR	IRQ function control register	Specifies the IRQ output pin state.

Note that the functions that can be assigned to pins and the functions that can be specified by the PFC differ according to the SH7044's operation mode (microcontroller mode 0, 1, or 2, or single-chip mode).

The RX651 is provided with I/O ports 0 to 9, A to G, and J, and the configuration of the registers corresponding to these I/O ports is shown below. The port I/O registers include dedicated input and dedicated output registers.

The following types of I/O port settings are supported on the RX651.

- Open drain control register: Port output format selection
- CMOS output, N-channel open-drain output, or P-channel open-drain output
- Pull-up control register: Input pull-up resistor on/off selection
- Drive capacity control register: Selection between normal drive output and high drive output
- 5 V tolerant input ports are provided.

As on the SH7044, the pins are multiplexed, so it is necessary to make pin function settings in the I/O port module and the multi-function pin controller (MPC).

The I/O settings for RX651 are shown in Figure 2.2: RX651 I/O settings.

Figure 2.2 I/O Settings on the RX651

To use a pin for general I/O, it is sufficient to make settings in the I/O port registers (settings in PMR, PDR, ODR, PCR, and DSCR). Table 2.4 lists the registers in which the settings are made. Figure 2.3 is a flowchart of the setting procedure.

To use a pin for a peripheral function, the pin must be assigned to the peripheral function in the pin function control register (PxnPFS) in the MPC. Tables 2.4 and 2.5 list the registers in which the settings are made. Figure 2.4 is a flowchart of the setting procedure.

For example settings for use with peripheral functions that include general I/O, see the section describing the specific peripheral function.

Register	Function Name	Function
PDR	Port direction register	Specifies input or output for pins selected as general I/O
PODR	Port output register	Stores nin output data for general output ports
	Port input register	Poflocts pin states for general input ports.
	Port mode register	Lead for port pin function pottings
FINIK	For mode register	Specifies whether each pin is used as a general I/O port or for a peripheral function.
ODR0	Open drain control register 0	Selects the port output format from among the following:
		CMOS output
		N-channel open drain
		P-channel open drain
ODR1	Open drain control register 1	Selects the port output format from among the following:
		CMOS output
		N-channel open drain
PCR	Pull-up control register	Turns the port input pull-up resistor on or off.
DSCR	Drive capacity control register	Specifies the drive capacity.
		Normal drive output
		High drive output
DSCR2	Drive capacity control register	
		Specifies the drive capacity.
		Normal / high drive output
		High drive output for high-speed interface

Table 2.4 RX651 I/O Port Register Configuration

Register	Function Name	Function
PWPR	Write-protect register	Write-protect function for PxxPFS register
		xx: 0n to 9n, An to Gn, J3
P0nPFS	P0n pin function control register	Register for selecting the pin function
		(port 0 pin function selection)
P1nPFS	P1n pin function control register	Register for selecting the pin function
		(port 1 pin function selection)
P2nPFS	P2n pin function control register	Register for selecting the pin function
		(port 2 pin function selection)
((
Ň	Ň	× ×
PFnPFS	PFn pin function control register	Register for selecting the pin function
		(port F pin function selection)
PJnPFS	PJnpin function control register	Register for selecting the pin function
		(port J pin function selection)
PFCSE	CS output enable register	Disables or enables output on CSn# (n: 0 to 7).
PFCSS0	CS output pin select register 0	Selects output pins for CS0 to CS3.
PFCSS1	CS output pin select register 1	Selects output pins for CS4 to CS7.
PFAOE0	Address output enable register 0	Settings when using pins for address bus
PFAOE1	Address output enable register 1	Settings when using pins for address bus
PFBCR0	External bus control register 0	Settings when using pins for external bus
PFBCR1	External bus control register 1	Settings when using pins for external bus
PFBCR2	External bus control register 2	Settings when using pins for external bus
PFBCR3	External bus control register 3	Settings when using pins for external bus
PFENET	Ethernet control register	Ethernet mode setting (PMII or MII)

Table 2.5 RX651 Multi-Function Pin Controller Registers

The initialization sequence when using RX651 I/O ports for general I/O is shown below.

Figure 2.3 Using RX651 I/O Ports for General I/O

The initialization sequence when assigning pin functions to RX651 I/O ports is shown below.

Pin settings	The initial pin condition is assumed to be general input (the default).
Set PRCR	Cancel protect. \rightarrow Cancels write protection on low power consumption function–related registers.
Set MSTPCRx	Cancels the module stop state for the function module to be used (x: A, B, or C).
Set PRCR	Apply protect. \rightarrow Applies write protection to low power consumption function–related registers.
Set ODR/PCR and set DSCR	Specifies open-drain output, input pull-up resistor enabled or disabled, and the drive capacity.
Set PODR	Set the pin output to the initial value.
Set PDR	Sets the port direction.
Set PMR	Sets the mode to general port.
Set PWPR	Cancels protect on PxxPFS register.
Set PxxPFS	Selects the pin function to be used.
Set PFCSE, PFCSSx, PFAOEx, and PFBCRx	When using the external bus, sets each corresponding CSn#.
Set PWPR	Enables protect on the PxxPFS register.
Set PMR*	Selects pin function as the mode. Note that PMR remains set to general input when using analog pins.
Make individual module settings*	Makes register settings for the module used.
END	: These settings are made
ote: * The order of PMR settings and mo	dule settings differs according to the module.

Figure 2.4 Assigning Pin Functions to RX651 I/O Ports

Note: For details on the MPC settings used to assign functions to pins, see the section describing the specific peripheral function.

On the RX651 the individual modules are in the stopped state^{*1} by default. Therefore, it is necessary to cancel module stop with the module stop control register (MSTPCRx) of the low power consumption function before making peripheral function settings. In addition, write protection has been applied to MSTPCRx by the register write protection function. Thus, to overwrite MSTPCRx it is necessary to first make it writeable by using the protect register (PRCR).

Note: 1. The DMAC, DTC, and RAM are in the operable state by default.

2.2.3 General I/O

General I/O port setting examples for the SH7044 and RX651 are shown below.

An example of using PB2 for SH7044 and P34 for RX651 as general-purpose inputs is shown in "Table 2.6 Settings for general-purpose input".

Procedure		SH7044 Setting Example	RX651 Setting Example
1	Set the pin I/O direction to input.	PBIOR.PB2IOR = 0	PORT3.PDR.B4 = 0
2	Set general pins as general ports.	PBCR2.PB2MD1 = 0	PORT3.PMR.B4 = 0
		PBCR2.PB2MD0 = 0	

Table 2.6 Pin Settings for General Input

An example of using PB2 for SH7044 and P34 for RX651 as general-purpose inputs is shown in "Table 2.7 Settings for general-purpose input". The output value is 1.

Procedure		SH7044 Setting Example	RX651 Setting Example
1	Set the pin to output.	PBDR.PB2DR = 1	PORT3.PODR.B4 = 1
2	Set the pin I/O direction to output.	PBIOR.PB2IOR = 1	PORT3.PDR.B4 = 1
3	Set pins as general ports.	PBCR2.PB2MD1 = 0	PORT3.PMR.B4 = 0
		PBCR2.PB2MD0 = 0	

Table 2.7 Pin Settings for General Output

2.3 Buses

This section describes the points of difference between the bus specifications of the two microcontrollers.

2.3.1 Comparison of Specifications

The main differences between the buses of the SH7044 and RX651 are shown below.

Table 2.8 SH7044 and RX651 Bus Comparison			
Item	SH7044	RX651	
External bus address space	 External address spaces CS0 to CS3 (4 MB each) Notes: 1. CS0 is 2 MB when on-chip ROM is enabled. 2. 4 MB in on-chip ROM disabled mode. 	 External address spaces CS0 to CS7 (16 MB) 	
DRAM/SDRAM dedicated space	DRAM space (maximum 16 MB)	SDRAM space (maximum 128 MB)	
Bus width	Settable to 8 or 16 bits by area.	Settable to 8, 16, or 32 bits by area.	
Endianness	Big-endian (fixed)	The endianness can be set independently for each area.*	
Bus arbitration	 CPU bus and external bus have fixed priority. 	 External bus: Priority selectable from the following: 1) fixed priority, 2) toggle priority Internal bus: Priority selectable from the following: 1) fixed priority, 2) toggle priority 	
SRDAM refresh	CAS Bifo RAS refresh and self-refresh support	Auto fresh and self-refresh support	
Interrupt request occurrence	• The refresh counter can be used as an interval timer	Can be supported by timers such as MTU3	
External bus arbitration	Possible	Not possible	
Other access control	 Output of _RAS and _CAS signals for DRAM Ability to generate a RAS precharge time assurance Tp cycle DRAM burst access function Ability to specify the DRAM refresh interval Ability to insert wait cycles using an external _WAIT signal Ability to access address data multiplexed I/O devices 	 CS area Ability to insert recovery cycles Cycle wait function CSn# signal timing setting RD# and WR# signal timing control Write access mode Ability to access address data multiplexed I/O devices SDRAM area Multiplexed output of row and column addresses CAS latency setting Write buffer Write buffer function 	

Note: * See 1.2.2.

2.3.2 Bus Configuration

The bus configurations of the SH7044 and RX651 are compared below.

The configuration of the SH7044's bus state controller is shown below.

Figure 2.5 SH7044 Bus State Controller Configuration

The bus configurations of the RX651 is shown below.

Figure 2.6 RX651 Bus Configuration

The bus types on the RX651 are listed below. The RX651 has a different bus architecture than the SH7044, and the memory buses, internal buses, and peripheral buses each have multiple stages. This enables parallel operation by the CPU and DMAC or DTC, and between the modules on the peripheral buses, thereby speeding up operation overall.

Table 2.9 RX651 Buses

Bus	Connected modules, etc.	Clock
CPU buses	Instruction bus: CPU, on-chip Memory	ICLK
(instruction bus and operand bus)	Operand bus: CPU, on-chip Memory	
Memory bus 1	On-chip RAM	ICLK
Memory bus 2	Code flash memory	ICLK
Internal main bus 1	CPU	ICLK
Internal main bus 2	DTC, DMAC, Extended bus master	ICLK
Internal peripheral bus 1	DTC, DMAC, EXDMAC, interrupt controller, bus error	ICLK
	monitoring block	(EXDMA: PCLKB)
Internal peripheral bus 2	Peripheral functions (peripheral functions other than	PCLKB
	those connected to peripheral buses 1, 3, 4, and 5)	
Internal peripheral bus 3	USBb, Standby RAM	PLCKB
Internal peripheral bus 4	EDMAC, ETHERC, MTU3, SCIi, RSPI, AES	PLCKA
Internal peripheral bus 5	GLDC, DRW	PLCKA
Internal peripheral bus 6	Code flash memory, Data flash memory	FCLK
External buses (CS areas)	External devices	BCLK
External buses (SDRAM)	SDRAM	SDCLK

ICLK: System clock PCLKA: Peripheral clock A PCLKB: Peripheral clock B

FCLK: FlashIF clock BCLK: External bus clock SDCLK: SDRAM clock

2.4 Interrupt Controller (ICUB)

2.4.1 IRQ Usage Example

A setting example using IRQ3 is shown below. PB5 is used as the IRQ3 input pin on the SH7044. P33 is used as the IRQ3 input pin on the RX651.

Table 2.10 Interrupt Initial Setting Example (IRQ3 Settings)

Pro	ocedure	SH7044	RX651
1	Make I/O port settings.	PBIOR.PB5IOR = 0 (general input pin setting) PBCR2.PB5MD1, PBCR2.PB5MD0 = 01b (IRQ3 interrupt input pin)	PORT3.PDR.B3 = 0 (P33 input setting) PORT3.PMR.B3 = 0 (P33 GPIO setting) MPC.PWPR.B0WI = 0 MPC.PWPR.PFSWE = 1 (PFS write enabled) MPC.P33PFS.ISEL = 1 (interrupt function setting IRQ3-DS) MPC.PWPR.PFSWE = 0 (PFS write disabled)
2	Make interrupt controller settings.	ICR.IRQ3S = 1 (IRQ detection: Falling edge) IPRA = 0x000F (bits 3 to 0: interrupt level 15)	IRQCR3.IRQMD = 1 (IRQ detection: Falling edge) IRQFLTE0.FLTEN3 = 1 (IRQ3 digital noise filter enabled) IRQFLTC0.FCLKSEL3 = 3; (sampling PCLK/64) IR067 = 0 (interrupt flag cleared) IER08.IEN3 = 1 (IRQ3 enabled) IPR067 = 15 (interrupt level 15)

2.5 Data Transfer Controller (DTCb)

2.5.1 Comparison of Specifications

On both the SH7044 and RX651 the transfer information is located in RAM, and DTC vectors are used to specify transfer information. The basic operation of the three transfer modes (normal transfer mode, repeat transfer mode, and block transfer mode) is the same on both microcontrollers. The DTC specifications of the SH7044 and RX651 are listed below.

Item	SH7044	RX651
Transfer modes	Normal transfer mode	
	Repeat transfer mode	
	Block transfer mode	
Activation sources	•	
	 External interrupt 	
	 Peripheral function interrupt 	
	Software trigger	
Activation enable/disable		
control	Activated by DTC activation enable regis	ster of interrupt controller.
Transfer spaces		
	Transfer between the following spaces is	s possible:
	On-chip memory space	
	On-chip peripheral module space (ex	cluding DMAC and DTC)
	External memory space	
	 Memory-mapped external device spa 	ace
	Note: One of the specified areas must be chip peripheral module space.	e in the on-chip memory space or on-
Transfer units	May be specified as 8, 16, or 32 bits. Block size: May be specified within	1 data unit: May be specified as 8, 16, or 32 bits.
	range of 0 to 65,535.	1 block: May be specified within range of 1 to 256 data units.
Number of transfers	• Normal transfer mode : 1 to 65536 tir	mes
	 Repeat transfer mode : 1 to 256 time times) 	es (repeat after the specified number of
	Block transfer mode : 1 to 65536 time	es
CPU interrupt requests	 An interrupt generated by a CPU interactivation source. 	errupt request may be used as the DTC
	• A CPU interrupt at single data unit tra	ansfer-end may be used.
	 A CPU interrupt after transfer of a spused. 	ecified number of data units may be
Method	Control information is allocated for each	interrupt source by using DTC vectors.
Other	Chain transfer	Chain transfer
		 Sequence transfer
		The following functions can be used
		to shorten the transfer duration and
		reduce memory usage:
		Transfer information read skipping
		Write-back skipping
		Short-address mode
		• Event link
		 Light back disabled

Table 2.11 Comparison of DLC Specifications on SH7044 and RX651

Displacement addition

•

2.5.2 Register Configuration

The register configuration of the DTC is shown below.

Table 2.12	List of DTC Registers	on SH7044 and R	X651
------------	-----------------------	-----------------	------

ltem		SH7044	RX651
Transfer mod	de selection	DTC mode register (DTMR)	DTC mode register A (MRA)
		DTC mode 1, 0 (MD1 or MD0)	DTC transfer mode select bits
Selection of	repeat area or	DTC mode register (DTMR)	DTC mode register B (MRB)
block area as	s transfer	DTC transfer mode select (DTS)	DTC transfer mode select bits
destination o	r transfer source		
Data transfer	r size selection	DTC mode register (DTMR)	DTC mode register A (MRA)
		DTC data transfer size 1 or 0 (SZ1 or SZ0)	DTC data transfer size bits
Transfer sou	rce:	DTC mode register (DTMR)	DTC mode register A (MRA)
Address stat	e after transfer	Source address mode 1 or 0 (SM1 or SM0)	Transfer source address addressing mode bits
Transfer des	tination:	DTC mode register (DTMR)	DTC mode register B (MRB)
Address stat	e after transfer	Destination address mode 1 or 0 (DM1 or DM0)	Transfer destination address addressing mode bits
Chain	Transfer-end/	DTC mode register (DTMR)	DTC mode register B (MRB)
transfer selection	continue, enable/ disable	DTC chain enable (CHNE)	DTC chain transfer enable bit (CHNE)
	Continuous transfer/	_	DTC mode register B (MRB)
	transfer at change of transfer counter		DTC chain transfer select bit (CHNE)
Interrupt requ	uest enable/	DTC mode register (DTMR)	DTC mode register B (MRB)
disable		DTC interrupt select (DISEL)	DTC interrupt select bit (DISEL)
DTC transfer	suspend/	DTC mode register (DTMR)	
resume by N	MI		
Transfer sou	rce address	DTC source address register (DTSAR)	DTC transfer source register (SAR)
Transfer destination address		DTC destination address register (DTDAR)	DTC transfer destination register (DAR)
Initial address		DTC initial address register (DTIAR) *1*1*2	_
Transfer cou	nt specification	DTC transfer count register A	DTC transfer count register A
		(DTCRA)	(CRA)
		Specifies the transfer count.	Specifies the transfer count.
Block	Data unit transfer	DTC transfer count register A	DTC transfer count register B
transfer	count	(DTCRA)	(CRB)
mode		Specifies the block transfer count.	Specifies the block transfer count.
	Block length	DTC transfer count register B	DTC transfer count register A
	specification	(DICRB)	
	· · · P · · · · · · · · · · · ·	Specifies the block length.	Specifies the block length.
DIC activation	on disable/enable	DTC enable register (DTER) DTC enable bit	(ICU.DTCERn)
DTC module operate/stop			DTC module start register (DTCST)
· ·			DTC module start bit
Base address		DTC information base register	DTC vector base register
		(DTBR)* ²	(DTCVBR)
Full address	mode/	—	DTC address mode register
Short addres	s mode		(DTCADMOD)
NMI interrupt	t generation	DTC control/status register	Non-maskable interrupt status
enable/disab	le	(DTCSR)	register (ICU.NMISR)
		NMI flag bit (NMIF)	NMI status flag

Item	SH7044	RX651
DTC activation by software	DTC control/status register	Software interrupt activation
enable/disable	(DTCSR)	register (ICU.SWINTR)
	DTC software activation enable bit (SWDTE)	Software interrupt activation bit (SWINT)
DTC vector address setting for	DTC control/status register	DTC status register (DTCSTS)
DTC activation by software	(DTCSR)	VECN[7:0] bits
	Software activation vectors 7 to 0 (DTVEC7 to DTVEC0)	(DTC-activating vector number monitoring bits)
Showing of DTC transfer		DTC status register (DTCSTS)
operation state		DTC active flag
Read skipping enable	_	DTC Control Register (DTCCR)
		DTC transfer information read skipping enable bit
Possibility to add displacement	—	DTC mode register C (MRC)
values		Displacement addition bit
Base address setting for index	—	DTC index table base register
placement		(DTCIBR)
Sequence transfer End	—	DTC operation register (DTCOR)
execution		Sequence transfer end bit
Sequence transfer settings	—	DTC sequence transfer permission
		register (DTCSQE)
		Sequence transfer vector number
		specification bit
		Sequence transfer permission bit
Specifying a displacement	_	DTC Address displacement register
value		(DTCDISP)

Notes: 1. The initial address setting in SH is set in the transfer source (SAR) / transfer destination (DAR) register of RX.

2. The contents of the SH information base register are included in the contents of the address indicated by the RX DTC vector base register.

2.5.3 Transfer Modes

The differences in the operation of the transfer modes is described below.

Item	SH7044	RX651
Transfer size	1 byte, 1 word, or 1 longword	1 byte, 1 word, or 1 longword
Transfer count	1 to 65,536	1 to 65,536

Table 2.13 Normal Transfer Mode

Table 2.14 Repeat Transfer Mode (The method of specifying the repeat area differs.)

Item	SH7044	RX651
Transfer size	1 byte, 1 word, or 1 longword	1 byte, 1 word, or 1 longword
Transfer count	1 to 256	1 to 256
Repeat area specification method	The repeat mode and whether either the source or destination is the repeat area is specified in the mode register. The repeat address is specified in the repeat initial address register.	The concept of the repeat initial address does not apply, and the initial value of SAR or DAR is repeated.

vord, or
vor

Table 2.15 Block Transfer Mode (The way of conceptualizing the single block size differs.)

2.5.4 Activation Source Setting

On the SH7044 activation sources of the DTC are set in the DTC enable registers (DTEA to DTEE). On the RX651 DTC activation sources are set in the DTC activation enable registers (DTCERn, n: vector number) of the interrupt controller, and this enables DTC activation by interrupts.

2.5.5 DTC Vector Configuration

The DTC vector configuration on the SH7044 and RX651 is shown below.

On the SH7044 the DTC vector table starts from the fixed address 400h. The upper 16 bits of the transfer information addresses are stored in the DTC information base register (DTBR), and the lower 16-bit address for each activation source is stored in the DTC vector table.

Figure 2.7 DTC Vector Configuration on SH7044

On the RX651 the vector table start address is specified by the DTC vector base register (DTVBR).. Vectors can be set in 1 KB units within the range from 0000 0000h to 7FF FC00h and from F800 0000h to FFFF FC00h. As with interrupt vectors, the vectors are numbered 0 to 255, and a 32-bit transfer information address can be specified for each vector. In contrast to the SH7044's DTC vector table, which starts from the fixed address 400h, on the RX651 the start address can be set in the DTC vector base register, so there is more flexibility in specifying the DTC vector table area.

Figure 2.8 DTC Vector Configuration on RX651

2.5.6 Allocation of Transfer Information

The format of transfer information differs between the SH7044 and the RX651.

On the SH7044 a different transfer information format is used for each transfer mode. On the RX651 all transfer modes use the same transfer information format. Note, however, that on the RX651 the DTC transfer information is affected by the endianness setting. The transfer information format of each mode on the SH7044 (a) and the full-address mode transfer information format on the RX651 (b) are shown below.

Figure 2.9 DTC Transfer Information Formats on SH7044 and RX651

The RX651 supports a short-address mode in which addresses can be specified in 24 bits. The size of the transfer information is four longwords in full-address mode but only three longwords in short-address mode. This reduces the time it takes the DTC to read transfer information and enables it to start up faster. In addition, less RAM is needed to store the transfer information. The transfer information format in short-address mode is shown below.

Figure 2.10 RX651 DTC Transfer Information Format in Short-Address Mode

Short-address mode supports 16 megabytes of transfer space in address ranges 00000000h to 007FFFFh and FF800000h to FFFFFFFh (excluding reserved areas).

2.5.7 Module Stop

The initial state of the peripheral modules of the RX651 is stopped, due to the low power consumption function. However, the initial state of the DTC is operational, so there is no need to cancel the module stop state. Module stop can be applied to the DTC, but doing so also stops the DMAC because the same control bit in the module stop control register is used for both the DTC and the DMAC. (The EXDAMC and EDMAC are controlled separately.)

2.6 Direct Memory Access Controller (DMACAa)

Direct memory access control functionality is implemented on the SH7044 by an on-chip DMAC and on the RX651 by an on-chip DMACA and by a dedicated on-chip EXDMACa for transfers between external areas. The internal bus configuration of the RX651 differs from that of SH microcontrollers. It supports independent data transfers by CPU instruction execution and by the DMAC or DTC for improved transfer performance.

2.6.1 Comparison of Specifications

The functions and features of the SH7044 and RX651 are shown below.

Table 2.16 Comparison of SH7044	(DMAC) and RX651 (DMACA and EXDMACa) Functions
SH7044	RX651

Item		DMAC	DMACA	EXDMACa
Number	of channels	4 channels	8channels	2 channels
Maximum transfer 16 M (16,777,216) count (maximum transfer data unit count on RX)		64M data units (block transfer mode max. total transfer count: 1,024 data units \times 65535 blocks) Free running mode settable	1 M data units (block transfer mode max. total transfer count: 1,024 data units × 1,024 blocks)	
DMA acti sources	vation	 External request On-chip module request Auto request (Equivalent to software trigger) 	 External requests not supported. On-chip module request Software trigger External interrupts 	 External request On-chip module request Software trigger
Channel priority Selectable between the following: • ① CH0> CH1> CH2> CH3 • ② CH0> CH2> CH3> CH2> CH3> CH1 • ③ CH2> CH0> CH1> CH3④Round robin		Fixed (channel 0 > channel 1 > channel 2 ···> channel7)	Fixed (channel 0 > channel 1)	
Transfer	1 data unit	8 bits, 16 bits, 32 bits	8 bits, 16 bits, 32 bits	8 bits, 16 bits, 32 bits
data	Repeat size		Data units: 1 to 1,024	Data units: 1 to 1,024
	Block size		Data units: 1 to 1,024	Data units: 1 to 1,024
	Cluster size			Data units: 1 to 8
Transfer	modes	 None (The transfer mode on the SH is equivalent to normal transfer mode on the RX.) 	 Normal transfer mode Repeat transfer mode Block transfer mode 	 Normal transfer mode Repeat transfer mode Block transfer mode Cluster transfer mode
Bus mod	es	Cycle-steal mode		
		Burst mode		
Address	modes	 Single address mode Dual address mode 	_	Single address modeDual address mode
Address	update mode	Address is fixed.	Address is fixed.	Address is fixed.
	-	 Address is 	Offset addition	Offset addition
		incremented.	Address is	Address is
		Address is	incremented.	incremented.

		decremented.	Address is	Address is
			decremented.	decremented.
Interrupt request	Transfer- end interrupt	Generated after completion of the number of transfers specified by the transfer counter.	Normal transfer mode: After the transfers is completed Repeat transfer mode: After the number of repeats is completed Block transfer mode: After the tr number of blocks is completed Cluster transfer mode: After the number of clusters is completed	specified number of transfer of the specified ansfer of the specified transfer of the specified (EXDMACa only)
	Transfer escape-end interrupt	_	Generated after completion of date the repeat size or when the external overflows.	ata transfer equivalent to nded repeat area
Other		Source address reload function	 Extended repeat area function Event link function 	Extended repeat area function

2.6.2 DMAC Block Diagram

A block diagram of the SH7044's DMAC is shown below.

A block diagram of the RX651's DMACA is shown below.

Figure 2.12 RX651 DMACA Block Diagram

A block diagram of the RX651's EXDMACa is shown below.

Figure 2.13 RX651 EXDMACa Block Diagram

2.6.3 Comparison of Registers

Table 2.17 "SH7044 / RX651 DMAC / DMACA Register Comparison" compares the DMAC registers of the SH7044 and the DMACA registers of the RX651.

Table 2.18 "SH7044 / RX651 DMAC / EXDMACa Register Comparison" compares the DMAC registers of the SH7044 and the EXDMACa registers of the RX651.

Table 2.17 SH7044/RX651 DMAC/DMACA Register Comparison

SH7044	RX651
DMAC n: 0 to 3	DMACA m: 0 to 7
DMA operation register (DMAOR)	DMA module start register (DMAST)
DMA source address register n (SARn)	DMA transfer source register m (DMACm.DMSAR)
DMA destination register n (DARn)	DMA transfer destination register m (DMACm.DMDAR)
DMA transfer count register n (DMATCRn)	DMA transfer counter register m (DMACm.DMCRA)
DMA channel control register (CHCRn)	DMA block transfer count register m (DMACm.DMCRB)
—	DMA transfer mode register m (DMACm.DMTMD)
	DMA interrupt setting register m (DMACm.DMINT)
	DMA address mode register m (DMACm.DMAMD)
	DMA transfer enable register m (DMACm.DMCNT)
	DMA software start register m (DMACm.DMREQ)
	DMA status register m (DMACm.DMSTS)
	DMA activation source flag control register m
	(DMACm.DMCSL)
	DMA offset register (DMAC0.DMOFR)
	DMA interrupt status register m (DMACm.DMIST)

Note: In the register symbols above, n and m represent the respective DMA channel numbers.

SH7044	RX651
DMAC n: 0 to 3	EXDMACa p: 0 to 1
DMA operation register (DMAOR)	EXDMA module start register (EDMAST)
DMA source address register n (SARn)	EXDMA transfer source register p (EXDMACp.EDMSAR)
DMA destination register n (DARn)	EXDMA transfer destination register p
	(EXDMACp.EDMDAR)
DMA transfer count register n (DMATCRn)	EXDMA transfer counter register p (EXDMACp.EDMCRA)
DMA channel control register (CHCRn)	EXDMA block transfer count register p
	(EXDMACp.EDMCRB)
—	EXDMA output setting register p (EXDMACp.EDMOMD)
	EXDMA transfer mode register p (EXDMACp.EDMTMD)
	EXDMA interrupt setting register p (EXDMACp.EDMINT)
	EXDMA address mode register p (EXDMACp.EDMAMD)
	EXDMA transfer enable register p (EXDMACp.EDMCNT)
	EXDMA software start register p (EXDMACp.DEMREQ)
	EXDMA status register p (EXDMACp.EDMSTS)
	EXDMA external request sense mode register p
	(EXDMACp.EDMRMD)
	EXDMA external request flag register p
	(EXDMACp.EDMERF)
	EXDMA peripheral request flag register p
	(EXDMACp.EDMPRF)
	EXDMA offset register (EXDMAC0.EDMOFR)
	Cluster buffer register y (CLDBR0 to CLDBR7)

Table 2.18 SH7044/RX651 DMAC/EXDMACa Register Comparison

Note: In the register symbols above, n and p represent the respective DMA channel numbers.

2.6.4 DMA Activation Sources and Settings

Table 2.19 "DMA Activation Source Comparison" lists the types of transfer activation sources of the respective DMAC modules.

	SH7044	RX651	
DMA Activation Sources	DMAC	DMACA	EXDMACa
Activation by software	Supported	Supported	Supported
Activation by external device via request pin	Supported (activation by _DREQ signal)	Not supported	Supported (activation by EDREQn signal)
Activation by peripheral module	Supported	Supported (activation by interrupt via external interrupt input also supported)	Supported

On the SH7044, DMA activation by peripheral module requires that the activation source be specified by a resource selector setting in the DMA channel control register (RS3 to RS0 in CHCRx). On the RX651 (DMACA) DMA activation by peripheral module requires specification of the activation source's vector number in the DMAC activation request select register (DMRSRm, m: channel 0 to 3) of the interrupt controller.

2.6.5 Transfer Sources and Destinations

The transfer sources and destinations supported by each DMA are listed below.

Table 2.20 SH7044 DMAC Transfer Sources and Destination

	Transfer Destination				
Transfer Sources	External Device with DACK	External Memory	Memory-Mapped External Device	On-Chip Memory	On-Chip Peripheral Module
External Device with DACK	Not supported	•	•	Not supported	Not supported
External Memory	•	0	0	0	0
Memory-Mapped External Device	•	0	0	0	0
On-Chip Memory	Not supported	0	0	0	0
On-Chip Peripheral Module	Not supported	0	0	0	0

●: Single address mode transfers supported. ○: Dual address mode transfers supported.

Table 2.21 RX651 DMACA Transfer Sources and Destinations

	Transfer Destination				
Transfer Sources	External Device with EDACK	External Memory	Memory-Mapped External Device	On-Chip Memory	On-Chip Peripheral Module
External Device with DACK	Not supported	Not supported	Not supported	Not supported	Not supported
External Memory	Not supported	0	0	0	0
Memory-Mapped External Device	Not supported	0	0	0	0
On-Chip Memory	Not supported	0	0	0	0
On-Chip Peripheral Module	Not supported	0	0	0	0

O: Transfers supported.

Table 2.22 RX651 EXDMACa Transfer Sources and Destinations

	Transfer Destination				
Transfer Sources	External Device with EDACK	External Memory	Memory-Mapped External Device	On-Chip Memory	On-Chip Peripheral Module
External Device with EDACK	Not supported	•	•	Not supported	Not supported
External Memory	•	0	0	Not supported	Not supported
Memory-Mapped External Device	•	0	0	Not supported	Not supported
On-Chip Memory	Not supported	Not supported	Not supported	Not supported	Not supported
On-Chip Peripheral Module	Not supported	Not supported	Not supported	Not supported	Not supported

•: Single address mode transfers supported. O: Dual address mode transfers supported.

2.6.6 Transfer Modes

The transfer modes of the SH7044 and RX651 are described below.

The concept of transfer mode does not apply on the SH7044. When switching to the RX651, the equivalent transfer mode is normal transfer mode. However, if the source address reload function was used on the SH7044, it is possible to achieve equivalent results on the RX651 by using repeat mode to repeat the source address for four transfer units. This makes it possible to reproduce the transfer method of the SH7044 by using the transfer modes of the RX651.

Transfer Mode	DMACA	EXDMACa	Remarks
Normal transfer	0	0	Equivalent to the transfer method of the SH7044
Repeat transfer	0	0	Usable as a substitute for source address reload on the SH7044
Block transfer	0	0	
Cluster transfer	Not supported	0	

Table 2.23 RX651 Transfer Modes

2.6.7 Address Modes

The SH7044 has two address modes: single address mode and dual address mode.

The EXDMACa of the RX651 has a single address mode and a dual address mode like the SH7044. In single address mode a DMA transfer can be completed in a single bus cycle. Two bus cycles are required to complete a DMA transfer in dual address mode. On the DMACA the address mode concept does not apply, but the method of specifying addresses and the operation are equivalent to dual address mode on the SH7044.

2.6.8 Bus Modes

On the SH7044 the bus mode can be specified as either cycle-steal mode or burst mode. In cycle-steal mode the bus is released to another bus master when a single transfer finishes. In burst mode the bus is not released after the start of a DMA transfer until the transfer finishes.

On the RX651 it is not possible to specify the bus mode of the DMACA or EXDMACa. This is because the bus architecture differs from that of the SH7044. The RX651 supports parallel operation when the bus master accesses a different slave. On the RX651 it is possible for the DMAC to perform transfers between the peripheral bus and the external bus while the CPU is accessing the ROM to fetch CPU instructions or the RAM to manipulate operands.

Figure 2.14 Parallel Bus Operation shows an example in which the DMAC accesses the peripheral bus and the external bus using internal main bus 2 while the CPU is accessing the ROM and **ROM** access CPU instruction fetch ROM ROM ROM ROM ROM ROM ROM RAM access CPU operand RAM RAM RAM RAM RAM RAM RAM Peripheral bus 1 External bus access access DMAC Peripheral External ! ł RAM. 1

Figure 2.14 Parallel Bus Operation

2.6.9 Module Stop

The initial state of the peripheral modules of the RX651 is stopped, due to the low power consumption function. However, the initial state of the DMACA and EXDMAC is operational, so there is no need to cancel the module stop state. Module stop can be applied to the DMACA, but doing so also stops the DTC because the same control bit in the module stop control register is used for both the DTC and the DMAC.

2.7 Multifunction Timer Pulse Unit 3(MTU3a)

2.7.1 Comparison of Specifications

ltem		SH7044	RX651		
Pulse I/O		Maximum 16	Maximum 28		
Pulse input			3		
Count clock		Selectable for each channel among six clocks based on the internal clock (ϕ) and eight clocks employing external clocks (TCLKA, TCLKB, TCLKC, and TCLKD).	11 types can be selected for each channel MTU0 is 14 types, MTU2 is 12 types, MTU5 is 10 kinds, MTU1 & MTU2 (LWA = 1) 4 types)		
Function settings	MTU0 to 4 MTU6 * ¹ MTU7 * ¹ MTU8 * ¹	 Compare match waveform output Input capture function Synchronous operation Synchronized writing to multiple timers (TCNT) (Except MTU8) Clearing synchronized with compare match or input capture (Except MI – I/O with various registers in synchronization with counter (Except MTU4) PWM mode			
MTU0, MTU3, MTU4 MTU6*1 MTU7*1 MTU8*1 MTU1, MTU2 MTU3, MTU4 MTU6 *1 MTU7 *1 MTU8 *1 MTU3,4		 Support for buffer operation settings 			
		Up- or down-counting of two-phase encoder pulses in phase counting mode			
		 Complementary PWM and reset syn operation of MTU3 / MTU4 and MTU negative total 12-phase output. Double buffer function can be set 	ichronous PWM operation by interlocking J6 / MTU7 enables 6-phase positive / in complementary PWM mode		
		In conjunction with MTU0, the AC synchronous motor (brushless DC motor) drive mode with complementary PWM and reset synchronous PWM can be set, and waveform output of two types (chopping, level) is selectable.			
	MTU5*1		Capable of operation as a dead-time compensation counter		
	MTU0/5*1 MTU1,2 MTU8 *1	_	32-bit phase counting mode specifiable by combining MTU1 and MTU2 and through interlocked operation with MTU0/MTU5 and MTU8		
Complementary PWM mode		Interrupts at counter peaks and troughs			
Interrupt sources (See separate listing for details.)		23	43		
Buffer oper	ation	Automatic transfer of register contents			
Trigger generation		A/D converter start trigger	A/D converter start trigger PPG output trigger		

Table 2.24 Comparison of MTU Specifications on SH7044 and RX651

RX651 Group		SH7044 to RX	651 Microcontroller Migra	tion Guide
DMAC activation	MTU0 to MTU 4 MTU5 to MTU 8 ^{*1}	TGR compare match or input capture Note: On the SH7044 the registers are named TGRnA (n: channel number)		
	MTU4,7		Overflow interrupt	
DTC activation	MTU0 to MTU 4	TGR compare match or input capture,		
	MTU5 to MTU 8 [*]			
	MTU4 MTU8 ^{*1}	TGR compare match or input capture, T	CNT overflow or underflow	
A/D conversion start triggers		MTU0 to MTU4: TGRA compare match or input capture	MTU0 to MTU4,6,7: TGRA c n ir MTU0: TGRE compare matc MTU4,7: TCNT underflow du c	ompare natch or nput capture h iring omplementa y PWM
PPG triggers		_	MTU0 to MTU3: TGRA and TGRB compare match or input capture	
A/D conversion start request delay function		_	MTU4: Start request at match TADCORA or TADCORB and	n of I TCNT
Interrupt skipping function		_	MTU3: TGRA compare match interrupt skipping MTU4: TCIV interrupt skipping	

*1 Only RX651

Table 2.25 List of MTU Interrupt Sources on SH7044 and RX65

	SH7044	4/RX651				RX651			
Item	MTU0	MTU1	MTU2	MTU3	MTU4	MTU5	MTU6	MTU7	MTU8
Compare match/input capture nA	\bigcirc	0	0	0	0		Δ	Δ	Δ
Compare match/input capture nB	\bigcirc	\bigcirc		\bigcirc	\bigcirc		Δ	Δ	Δ
Compare match/input capture nC	0			0	0		Δ	Δ	Δ
Compare match/input capture nD	0			0	0		Δ	Δ	Δ
Overflow	0	0	0	0	0		Δ	Δ	Δ
Underflow		0	0		0			$\Delta^{\star 1}$	
Compare match nE	Δ								
Compare match nF	Δ								
Compare match/input capture nU						Δ			
Compare match/input capture nV						Δ			
Compare match/input capture nW						Δ			

n: Channel number \bigcirc : Compatible between SH7044 and RX651 $_\Delta$: Added on RX651

RENESAS

* 1: Valid only in complementary PWM mode

2.7.2 Handling of Interrupt Flags

The RX651's MTU2a and the SH7044's MTU are software compatible. With the exception of changes to the timer status register (TSR) interrupt flags, it is possible to migrate the functions of MTU0 to MTU4and MTU6 to MTU8 without changing the registers. (It is necessary to make separate changes to the initial settings, such as the pin settings.) The one significant difference is that on the RX651 the timer status register (TSR) contains no interrupt flags. Nevertheless, it is possible to implement equivalent processing by using the interrupt request register (IR) in the interrupt controller corresponding to the MTU (IR142 and above).

The RX651 MTU interrupt is assigned to selective interrupt A.

The interrupt controller's selective interrupt A status flag (PIARk.PIRn) is not automatically cleared, but it does not affect interrupt request generation.

See Chapter 1.8 for interrupts.

2.7.3 List of Registers

Whether or not changes to the register settings are needed when switching from the SH7044 to the RX651 is indicated below.

Register Name	SH7044 (MTU)	RX651 (MTU3a)	Change
Timer control register	TCR0 to TCR4	MTU0.TCR to MTU4.TCR	0
-		MTU6.TCR to MTU84.TCR	
		MTU5.TCRU/V/W	*1
Timer control register 2		MTU0.TCR2	*1
-		MTU3.TCR2 to MTU4.TCR2	
		MTU6.TCR2 to MTU8.TCR2	
Timer mode register	TMDR0 to TMDR4	MTU0.TMDR1	0
		MTU1.TMDR1 to MTU2.TMDR1	*1
		MTU3.TMDR1 to MTU4.TMDR1	
		MTU6.TMDR1 to MTU8.TMDR1	
Timer mode register 2		MTU1.TMDR2A	*1
		MTU2.TMDR2B	
Timer mode register 3		MTU.TMDR3	*1
Timer I/O control register	TIOR0H, TIOR3H,	MTU0.TIORH, MTU3.TIORH,.	O
	TIOR4H	MTU6,TIORH	
	TIOR1, TIOR2	MTU1.TIOR, MTU2.TIOR	0
	TIOR0L, TIOR3L,	MTU0.TIORL, MTU3.TIORL,	\bigcirc
	TIOR4L	TU4.TIORL	
		MTU6.TIORH, MTU8.TIORH	*1
Timer compare match clear register		TCNTCMPCLR	*1
Timer interrupt enable register	TIER0	MTU0.TIER	MTU0.TIE
			R
	TIER1. TIER2	MTU1.TIER . MTU2.TIER	0
	TIER3, TIER4	MTU3.TIER.MTU6.TIER	0
			*1
		MTU8.TIER	
Timer status register	TSR0		
-	TSR1, TSR2	MTU1.TSR MTU2.TSR	Δ
	TSR3, TSR4	MTU3.TSR MTU4.TSR	Δ
		MTU6.TSR MTU7.TSR	

Table 2.26 List of MTU Registers (1/3)

 \odot : Registers with identical bit assignments on the SH7044 and RX651

O: Registers where the RX651 has new functions (bits) assigned. (Except for the new function bits, the bit assignments are identical.)

 $\Delta:~$ On the RX651 these registers contain no interrupt flags.

Note: * Registers with no equivalents on the SH7044. (These registers are for new functions added in the MTU2. When migrating programs that use the SH7044's MTU, the initial values can be used unaltered without any problem.)

Register Name	SH7044 (MTU)	RX651 (MTU3a)	Change	
Timer buffer operation transfer mode		MTU0.TBTM、MTU3.TBTM、	*1	
register		MTU4.TBTM、MTU6.TBTM、		
		MTU7.TBTM		
Timer input capture control register		MTU1.TICCR		
Thai machine synchro clear register		MTU6.TSYCR	*1	
Timer counter	TCNT0~4	MTU0.TCNT to MTU4.TCNT	\bigcirc	
		MTU5.TCNT to MTU7.TCNT	*1	
Timer long word count		MTU1.TCNTLW		
Timer general register	TGR0,3,4 (A,B,C,D)	MTU0.TGRA to D	0	
		MTU3.TGRA to D		
		MTU4.TGRA to D		
		MTU0.TGRE,F	*1	
		MTU1.TGRC to F		
		MTU2.TGRC to F		
		MTU3.TGRE,F		
		MTU4.TGRE,F		
		MTU5.TGRA to F		
		MTU6.TGRA to F		
		MTU7.TGRA to F		
	TGR1,2 (A,B)	MTU1.TGRA,B	0	
		MTU2.TGRA,B		
Timer longword general register		MTU1.TGRALW		
		MTU1.TGRBLW		
Timer start register	TSTR	MTU.TSTR	0	
Timer synchro register	TSYR	MTU.TSYR	\odot	
Timer counter Synchro start register		MTU.TCSYSTR		
Timer read / write enable register		MTU.TRWERA、	*1	
		MTU.TRWERB		
Timer output master permission register	TOER	MTU.TOERA、	0	
		MTU.TOERB	*1	
Timer output control register 1	TOCR	MTU.TOCR1A	0	
		MTU.TOCR1B	*1	

Table 2.27 List of MTU Registers (2/3)

 \bigcirc : Registers with identical bit assignments on the SH7044 and RX651

O: Registers where the RX651 has new functions (bits) assigned. (Except for the new function bits, the bit assignments are identical.)

 $\Delta:~$ On the RX651 these registers contain no interrupt flags.

Note: *1 Registers with no equivalents on the SH7044. (These registers are for new functions added in the MTU2. When migrating programs that use the SH7044's MTU, the initial values can be used unaltered without any problem.)

Register Name	SH7044 (MTU)	RX651 (MTU3a)	Change
Timer output control register 2		MTU.TOCR2A、MTU.TOCR2B	*1
Timer output level buffer register		MTU.TOLBRA、MTU.TOLBRB	*1
Timer gate control register A		MTU.TGCRA	*1
Timer sub-counter		MTU.TCNTSA、MTU.TCNTSB	*1
Timer cycle data register		MTU.TCDRA、MTU.TCDRB	*1
Timer cycle buffer register		MTU.TCBRA、MTU.TCBRA	*1
Timer dead time data register		MTU.TDDRA、MTU.TDDRB	*1
Timer dead time enable register		MTU.TDERA、MTU.TDERB	*1
Timer buffer transfer setting register		MTU.TBTERA、MTU.TBTERB	*1
Timer waveform control register		MTU.TWCRA、MTU.TWCRB	*1
Noise filter control register n		MTU0.NFCR0、MTU1.NFCR1、	*1
		MTU2.NFCR2、MTU3.NFCR3、	
		MTU4.NFCR4、MTU6.NFCR6、	
		MTU7.NFCR7、	
		MTU8.NFCR8	
Timer waveform control register		MTU.TWCRA、MTU.TWCRB	*1
Noise filter control register n		MTU0.NFCR0、MTU1.NFCR1、	*1
		MTU2.NFCR2、MTU3.NFCR3、	
		MTU4.NFCR4、MTU6.NFCR6、	
		MTU7.NFCR7、	
		MTU8.NFCR8	1
Noise filter control register 5		MTU5.NFCR5	*1
Timer A / D conversion start request control register		MTU4.TADCR	*1
Timer A / D conversion start request cycle		MTU4.TADCORA、	*1
setting register		MTU4.TADCORB、	
		MTU7.TADCORA、	
		MTU7.TADCORB	
Timer A / D conversion start request cycle		MTU4.TADCOBRA、	*1
setting buffer register		MTU4.TADCOBRB、	
		MTU7.TADCOBRA、	
		MIU7.IADCOBRB	
I imer interrupt decimation mode register			*1
I imer interrupt decimation setting register 1		MIU.TITCR1A	*1
Timer interrupt decimation count counter 1		MTU.TITCNT1A	*1
Timer interrupt decimation setting register 2		MTU.TITCR2A	*1
Timer interrupt decimation count counter 2		MTU.TITCNT2A	*1

Table 2.27 List of MTU Registers (3/3)

 $\ensuremath{\mathbb{O}}$: Registers with identical bit assignments on the SH7044 and RX651

O: Registers where the RX651 has new functions (bits) assigned. (Except for the new function bits, the bit assignments are identical.)

 $\Delta:$ On the RX651 these registers contain no interrupt flags.

Note: *1 Registers with no equivalents on the SH7044. (These registers are for new functions added in the MTU2. When migrating programs that use the SH7044's MTU, the initial values can be used unaltered without any problem.)

2.7.4 Unit Selection Function

Some interrupt sources of the MTU and TPU are assigned to common vectors. It is therefore necessary when using the MTU to specify which interrupt will be using each vector by setting the corresponding selector.

2.7.5 Module Stop

The initial state of the peripheral modules of the RX651 is stopped, due to the low power consumption function. The initial state of the MTU is stopped as well. Do not fail to cancel the module stop state when making settings to the module. Before accessing the module stop control register to cancel the module stop state, first cancel register write protection.

2.8 Watchdog Timers (WDTA)

2.8.1 Comparison of Specifications

The SH7044 incorporates the WDT as its watchdog timer module. The RX651 incorporates, in addition to the WDTA, the IWDTa, which operates on a dedicated independent clock. The specifications of these modules are compared below.

Table 2.27 Comparison of WDT, WDTA, and IWDTa Specifications on SH7044 and RX651

	SH7044	RX651	
Item	WDT	WDTA	IWDTa
Clock source	System clock (Peripheral clock (PCLK)	IWDT dedicated clock (IWDTCLK)
Clock frequency division ratio	φ/2, 64, 128, 256, 512, 1024, 4096, 8192	PCLK/4, 64, 128, 512, 2048, 8192	IWDTCLK/1, 16, 32, 64, 128, 256
Count operation	8-bit up-counter	14-bit down-counter	14-bit down-counter
Operating modes	Watchdog timer modeInterval timer mode	Change with option setting memory instead of operation mode concept —Output reset allowed (Equivalent to watchdog timer mode) —Interrupt Request allowed (Equivalent to interval timer mode)	Change with option setting memory instead of operation mode concept —Output reset allowed (Equivalent to watchdog timer mode) —Interrupt Request allowed (Equivalent to interval timer mode)
Count start condition	Timer enable bit in timer control register set to "enabled"	Selectable between the following: 1. Automatic count start after a reset (auto- start mode) 2. Count start by refresh operation (register start mode)	Selectable between the following: 1. Automatic count start after a reset (auto- start mode) 2. Count start by refresh operation (register start mode)
Count stop condition	 Watchdog timer mode Overflow Power-on reset Interval timer mode Timer enable bit in timer control register set to "disabled" Power-on reset 	 Underflow Reset (down-counter, return to register initial value) Refresh error 	 Underflow Reset (down-counter, return to register initial value) Refresh error
Operation at overflow/ underflow	 Watchdog timer mode WDTOVF output Internal reset Interval timer mode Interrupt 	 When reset output is permitted Internal reset When interrupt request output is enabled Interrupt 	 When reset output is permitted Internal reset When interrupt request output is enabled Interrupt
Other		 Window function The following are specified by settings in option function select register 0: Clock frequency division ratio 	Cooperation with event link controller • Window function • Can operate even with low power consumption The following are specified

 Refresh window start/end

Timeout period

Operation at underflow

by settings in option function select register 0:

- Clock frequency division ratio
- Refresh window start/end
- Timeout period
- Operation at underflow

—: Function not implemented on SH7044.

2.8.2 Count Start condition

The SH7044 group starts counting with a "1" write to the timer enable bit.

With the RX651, you can select the register start mode (similar to the SH7044 group) that starts counting by writing to the register in the option function selection register, or the auto start mode that automatically starts counting after reset.

In the RX651 auto-start mode, counting automatically starts after a reset is released in accordance with the settings in option function select register (OFS0) in the ROM.

In register start mode, counting is started by refresh operation after the respective registers are set after a reset is released.

2.8.3 Interrupt

The RX651's WDTA and IWDTa interrupts support both Non-maskable interrupt and interrupts.

The interrupt status flag (IRn.IR) of the interrupt controller is automatically cleared when an interrupt is received.

See Chapter 1.8 for interrupts.

2.8.4 Refresh Operation

The RX651 refreshes the count by writing "00h" to the WDT refresh register (WDTRR) and then writing "FFh".

Writing to the WDT refresh register must be done within the refresh permission period.

To refresh the IWDTa count, write to the IWDT refresh register (IWDTRR) within the refresh permission period.

ltem	SH7044 Group	RX651 (WDTA)
Refresh Condition	Write to the watchdog timer counter (TCNT)	Write "FFh" after writing "00h" to the refresh register (WDTRR) within the Refresh permission period
Initial value of counter after refresh	The value written to the watchdog timer counter (TCNT)	 Register start mode The value selected by the timeout period selection bit (WDTCR.TOPS) of the WDT control register. Auto start mode Option Function The value selected by the WDT timeout period selection bit (OFS0.WDTTOPS) in the selection register.

Table 2.28 Comparison of refresh operations

2.8.5 Register write limit

SH7044 Group and RX651 both have limited register writes for WDT. The register write limits are shown below.

Table 2.29	SH7044 group	register write limit
------------	--------------	----------------------

Item	Write limit
Timer counter (TCNT)	Write in the word size of the following
Reset control / Status register (RSTCSR)	configuration
— Reset enable (RSTCSR.RSTE)	— high byte: "5Ah"
— Reset select (RSTCSR.RSTS)	— Low byte: Write data
Timer counter / Status register (TCSR)	Write in the word size of the following
Reset control / Status register (RSTCSR)	configuration
— Watchdog timer overflow flag (RSTCSR.WOVF)	— High byte: "A5h"
	 Low byte: Write data

Table 2.30	RX651	Register	write limits
		<u> </u>	

Item	Write limit
WDT control register (WDTCR)	Writable only once between reset
WDT reset control register (WDTRCR)	release and first refresh operation
IWDT control register (IWDTCR)	
IWDT reset control register (IWDTRCR)	
IWDT count stop control register (IWDTCSTPR)	

2.8.6 Interrupt

The RX651's WDTA and IWDTa interrupts support both Non-maskable interrupt and interrupts.

The interrupt status flag (IRn.IR) of the interrupt controller is automatically cleared when an interrupt is received.

See Chapter 1.8 for interrupts.

2.8.7 Module Stop

The initial state of the peripheral modules of the RX651 is stopped, due to the low power consumption function. However, the WDTA and IWDTa have no module stop function. Their initial operating state is determined by settings in the option-setting memory. Note that when all modules are stopped, the WDTA stops counting and retains its state. The operation of the IWDTa when all modules are stopped is selectable between operational and stopped by a setting in the option-setting memory.

2.9 Serial Communication Interface (SCIg, SCIi, SCIh)

2.9.1 Comparison of Specifications

In contrast to the SCI of the SH7044, the RX651 integrates the SCIg/SCIi/SCIh. In addition to the conventional asynchronous and clock-synchronous transfer modes, the SCIc provides smartcard (IC card) interface support as an extended asynchronous mode. In addition, it supports simple I²C bus interface single master operation and simple SPI bus interface mode. SCI2 has an extended serial interface. For details of the transfer modes that are not supported on the SH7044, refer to the User's Manual: Hardware.

Item		SH7044	RX651
Number of char	nels	2 channels (SCI0, SCI1)	13 channels SCIg : SCI0 to 9 SCIi : SCI10 to 11 SCIh : SCI12
Serial communication modes		AsynchronousClock-synchronous	 Asynchronous Clock-synchronous Smartcard interface Simple I²C bus Simple SPI bus
Transfer speed		Any bit rate may be selected u	ising the on-chip baud rate generator.
Full-duplex communication		Transmit block: Support for continuous transmission using double-buffer configuration Receive block: Support for continuous reception using double-buffer	
Data transfer		LSB-first only	Selectable between LSB-first and MSB- first (MSB-first only on simple I ² C bus)
Interrupt source	S	 Transmit data-empty Transmit-end Receive data-full Receive error 	 Transmit data-empty Transmit-end Receive data-full Receive error Start condition* Restart condition* Stop condition generation-end* Note: * Used in simple I²C mode.
Asynchronous	Data length	7 bits, 8 bits	7 bits, 8 bits,9 bits
mode	Stop bits	1 bit, 2 bits	
	Parity	Even parity, odd parity, or no parity	
	Receive error detection	Parity error, overrun error, or framing error	
	Hardware flow control	No	Yes (controllable using CTS and RTSn pins)
	Data match detection	No	It is possible to compare the received data and the comparison data register and generate an interrupt request if they match.
	Break detection	Possible by reading level of RxDn pin directly when a framing error occurs	
	Clock source	Selectable between internal and external clock	Selectable between internal and external clock Ability to input transfer rate clock from TMR (SCI5 and SCI6)
	Multi-processor communication	Yes	· · · · ·
	Noise	No	On-chip digital noise filter for input on

Table 2.31 SCI Differences

SH7044 to RX651 Microcontroller Migration Guide

	cancellation		RXDn pins
Clock-	Data length	8 bits	· · · · · · · · · · · · · · · · · · ·
synchronous mode	Receive error detection	Overrun error	
	Hardware flow	No	Yes
	control		(controllable using CTS and RTSn pins)
Smartcard inter	face	No	Yes
Simple I ² C mode		No	Yes
Simple SPI mode		No	Yes
Extended serial mode		No	Implemented on SCIh (SCI12) only

A comparison of the on-chip SCI registers is shown below.

SH7044	RX651	Changed
Transmit data register (TDR)	Transmit data register (TDR)	Ô
Transmit shift register (TSR)	Transmit shift register (TSR)	O
Receive data register (RDR)	Receive data register (RDR)	O
Receive shift register (RSR)	Receive shift register (RSR)	Ô
Serial mode register (SMR)	Serial mode register (SMR)	O
Serial control register (SCR)	Serial control register (SCR)	O
Serial status register (SSR)	Serial status register (SSR/ SSRFIFO)	O *1
Bit rate register (BBR)	Bit rate register (BBR)	Ô
	Smartcard mode register (SCMR)	0
	Serial extended mode register (SEMR)	0
	Noise filter setting register (SNFR)) *2
	I ² C mode registers 1 to 3 (SIMR1 to SIMR3)	*2
	I ² C status register (SISR)	
	SPI mode register (SPMR)	*2*3
	Extended serial mode enable register (ESMER)	
	Control registers 0 to 3 (CR0 to CR3)	
	Port control register (PCR)	
	Interrupt control register (ICR)	
	Status register (STR)	
	Status clear register (STCR)	
	Control field 0 data register (CF0DR)	
	Control field 0 compare enable register (CF0CR)	
	Control field 0 receive data register (CF0RR)	
	Primary control field 1 data register (PCF1DR)	
	Secondary control field 1 data register (SCF1DR)	
	Control field 1 compare enable register (CF1CR)	
	Control field 1 receive data register (CF1RR)	
	Timer control register (TCR)	
	Timer mode register (TMR)	
	Timer prescaler register (TPRE)	
	Timer count register (TCNT)	—
	Receive data registers H, L, HL (RDRH, RDRL, RDRHL)	
	Receive FIFO Data Register (FRDR)	
	Transmit data registers H, L, HL (TDRH, TDRL, TDRHL)	
	Transmit FIFO Data Register (FTDR)	
	Modulation duty register (MDDR)	
	FIFO control register (FCR)	
	FIFO data count register (FDR)	
	Line status register (LSR)	
	Comparative data register (CDR)	
	Data comparison control register (DCCR)	
	Serial port register (SPTR)	

Table 2.32 SCI Communication Registers

 $\ensuremath{\mathbb{O}}$: Registers with identical bit assignments on the SH7044 and RX651

- O: Registers not present on the SH7044 that are required when using functions.
- —: Registers with no equivalents on the SH7044. (When migrating programs that use the SH7044's SCI, the initial values can be used unaltered without any problem.)

Notes: 1. Only TDRE and RDRF differ.

- The function of some bits differs depending on the smart card interface mode and non-smart card interface mode, and the FIFO mode and non-FIFO mode.
 - 2. When migrating programs, the initial values can be used unaltered.
 - 3. For information on register settings required when performing flow control using the CTS and RTS pins, and register bit assignments, see the User's Manual: Hardware.

2.9.2 Clock source selection

The RX651 can select the TMR clock input (SCI5, SCI6, SCI12 only) as the clock source when communicating in asynchronous mode.

Also, the SH7044 group operates on the clock of the port generator when the internal clock is selected, and the clock is fixed at 16 bits when the external clock is selected, while the RX65N can be selected from 8 bits or 16 bits.

2.9.3 Interrupt

The SH7044 group and RX651 can activate DTC and DMAC by interrupting with receive data full and transmit data empty.

Table 2.33 shows a list of Interrupt sources for the SH7044 group and RX72M.

See Chapter 1.8 for interrupts.

Driarity	Interrupt sources	Start by interrupt		
Friority		SH7044 group	RX651	
high	Receive error	Not possible	Impossible	
1	Receive data full	DMAC/DTC can be	DMAC/DTC can be	
	Transmit data empty	activated	activated	
Low	Transmit end	Not possible	Not possible	

Table 2.33 List of SCI interrupt factors

2.9.4 Switching SCIs

Differences such as the following should be borne in mind when switching from the SH7044's SCI to the SCIc or SCId on the RX651:

1. TDRE and RDRF

The transmit register-empty (TDRE) and receive data-full (RDRF) flags in the serial status register of the SH7044 are not implemented on the SCIc or SCId modules of the RX651. The TDRE and RDRF flags on the SH7044 correspond to the IR (TXI) and IR (RXI) flags, respectively, of the interrupt controller on the RX651.2. Determination of one-bit period and clock source selection

For communication in asynchronous mode, external clock input or TMR clock input can be selected as the clock source for determining the one-bit period by a setting in the serial extended mode register (SEMR). Also, the number of base clock cycles per one-bit period can be set to 8 or 16.

3. Digital noise filter

The digital noise filter is activated or disabled by a setting in the serial extended mode register (SEMR). When enabling the noise filter, make sure to make the appropriate noise filter clock select setting in the noise filter setting register (SNFR).

4. Receive error interrupt

The receive error interrupt is assigned to a group interrupt. The use of a group interrupt means that receive errors for 12 channels, SCI0 to SCI12, are assigned to a single vector. Therefore, when a receive error interrupt is generated it is necessary to detect the channel on which the error occurred by means of the ISn (n: channel number) flags in group interrupt source register 12 (GRP12). Within each channel, error handling for overrun errors, framing errors, and parity errors is the same as on the SH7044.

2.9.5 Module Stop

The initial state of the peripheral modules of the RX651 is stopped, due to the low power consumption function. The initial state of the SCI is also stopped. Do not fail to cancel the module stop state when making settings to the module. Before accessing the module stop control register to cancel the module stop state, first cancel register write protection.

2.10 10-bit A / D converter

2.10.1 Comparison of Specifications

The RX651 does not have a 10-bit A / D converter.

Use a 12-bit A / D converter (S12ADFa). (See 12-bit A / D converter)

2.11 12-bit A / D converter (S12ADFa)

2.11.1 Comparison of Specifications

The features and features of the SH7044 high-speed A/D Converter and RX651 12-bit A/D converters (S12ADFa) are shown below.

	SH7044	RX651
	High-Speed	
Item	A/D Converter	12-Bit A/D Converter (S12ADa)
Resolution	10 bits	12 bits
channels	8 channels	S12AD: 8 channels S12AD1 21 channels +
		1 expansion
A/D conversion	Successive approximation	Successive approximation
method		
Conversion speed	2.9 µs per 1channel	Per channel (0.48 μ s) (12-bit converter mode)
	28 MHz)	Per channel (0.42 µs) (8-bit converter mode)
	,	(A / D converter clock ADCLK = 60MHz
		operation)
Operating modes	 Selectable between select mode and group 	 Operation mode can be set individually for 2 units
	mode	Scan mode
	Selectable between	— Continuous scan mode
	single mode and scan	— Single scan mode
	mode	Group scan mode With group priority control
A/D conversion start	Software trigger	Software trigger
conditions	 Trigger by timer 	 Trigger by timer
	(MTU)	(MTU、TPU、TMR、ELC)
	 Asynchronous trigger (ADTRG pin) 	 Asynchronous trigger (ADTRG0# pin, ADTRG1 # pin)
Other functions	Buffer operation	Channel-only sample and hold function
	2-channel	 Adjustable number of sampling states
	simultaneous sampling	 Self-diagnosis function of 12-bit A / D converter
		 A / D conversion value addition mode and average mode can be selected
		 Analog input disconnection detection assist function
		Double trigger mode
		12/10/8 bit conversion switching function
		• A / D data register auto clear function
		Extended analog input function
		Compare function Event link function
Operations linked to	CPU interrupt	Various CPU interrupts are generated for
A/D conversion-end	generation	each mode
interrupt	DMAC or DTC	A compare interrupt request is generated
	activation	when the comparison condition of the
		Start DMAC or DTC
Low power	None	Support for module stop state setting
consumption function		

Table 2.34 Comparison of High-Speed A/D Converter Specifications on SH7044 and RX651

RX651 Group		SH7044 to RX651 Microcontroller Migration Guide
Conversion targets	AN pin	AN pin Internal reference voltage Temperature sensor Extended input

2.11.2 Input Channels

The SH7216 group consists of eight channels.

On the RX651 the S12ADC comprises two units, S12AD and S12AD1, one with eight channels and the other with 21 channels. As on the SH7216 Group, on the RX651 each unit incorporates an A/D converter. Simultaneous operation is possible, but continuous scan operation spanning the two units is not supported. Figure 2.15 compares the A/D converter configurations of the SH7216 Group and RX72M

Figure 2.15 compares the A/D converter configurations of the SH7216 Group and RX72M.

Figure 2.15 Comparison of A/D Converter Configurations

2.11.3 Scanning Sequence

Table 2.35 lists the scanning sequence when all channels are specified.

Microcontroller	A/D Converter	Conversion Sequence
SH7216 Group	ADC (module 0)	$AN0 \Rightarrow AN1 \Rightarrow AN2 \Rightarrow AN3$
	ADC (module 1)	$AN4 \Rightarrow AN5 \Rightarrow AN6 \Rightarrow AN7$
RX72M	S12AD	$AN0 \Rightarrow AN1 \Rightarrow omitted \Rightarrow AN6 \Rightarrow AN7$
		\Rightarrow Temperature sensor output \Rightarrow Internal reference voltage
		It is possible to select group A priority control for group scan
		operation.
	S12AD1	$AN100 \Rightarrow AN101 \Rightarrow omitted \Rightarrow AN119 \Rightarrow AN120$
		\Rightarrow Temperature sensor output \Rightarrow Internal reference voltage
		It is possible to select group A priority control for group scan
		operation.

Table 2 35	A/D Converter	Scanning	Sequence
Table 2.55	A/D COnverter v	Scanning	Sequence

2.11.4 Operating Modes

The operation of the SH7044's high-speed A/D converter is determined by the following mode settings in combination.

- Channel designation mode Select mode: A single channel is specified. Group mode: Multiple channels are specified.
- Converter operation mode Single mode: A/D conversion is activated once. Scan mode: A/D conversion is activated repeatedly.

Table 2.36 SH7044 High-Speed A/D Converter Operating Modes

Operating Mode	Single Mode	Scan Mode
Select mode	1 conversion of 1 channel	Repeated conversions of 1 channel
Group mode	1 conversion of multiple channels	Repeated conversions of multiple channels

The corresponding operating modes, when switching from the SH7044's high-speed A/D converter, are listed below.

Table 2.37 A/D Converter Operating Mode Correspondences

No.	SH7044 (high-speed A/D converter)	RX651 (S12ADFa)
1	Select single mode	Single scan mode (only 1 channel specified)
2	Select scan mode	Continuous scan mode (only 1 channel specified)
3	Group single mode	Single scan mode (multiple channels specified)
4	Group scan mode	Continuous scan mode (multiple channels specified)

2.11.5 Interrupt

On the RX651 the S12ADFa interrupts are assigned to group interrupt BL1 and to software configurable interrupt B. The group BL1 interrupt status flag (GRPBL1.ISn) is cleared automatically when the corresponding bit in the module's status register is cleared. The software configurable interrupt B status flag (PIBRk.PIRn) is not cleared automatically, but there is no effect on the generation of interrupt requests.

Refer to 1.8, Interrupt Handling for information about interrupts.

2.11.6 Module Stop

The initial state of the peripheral modules of the RX651 is stopped, due to the low power consumption function. The initial state of the A/D converter modules (S12ADFa) is also stopped. Do not fail to cancel the module stop state when making settings to these modules. Before accessing the module stop control register to cancel the module stop state, first cancel register write protection.

2.11.7 Other Differences

The 12-bit A/D converter on the RX651 has no functions equivalent to simultaneous sampling, low-power conversion mode, and buffer operation, all of which are supported by the high-speed A/D converter on the SH7044.

2.12 Compare Match Timer (CMT)

2.12.1 Comparison of Specifications

Item	SH7044	RX651
Clock	Each channel selectable among 4 internal clocks ($\phi/8$, $\phi/32$, $\phi/128$, and $\phi/512$)	Each channel selectable among 4 internal clocks (PCLK/8, PCLK/32, PCLK/128, and PCLK/512)
Number of units (channels)	1 unit (total 2 channels)	2 units (total 4 channels)
Interrupt sources	Support for separate compare match interrupt requests for each (CMI0 and CMI1)	Support for separate compare match interrupt requests for each (CMI0, CMI1, CMI2, and CMI3)

Table 2.38 Comparison of SH7044 and RX651 CMT Specifications

2.12.2 CMT Replacement

The CMT of the SH7044 and the CMT of the RX651 are software compatible. However, the compare match timer control and status registers (CMCSR0 and CMCSR1) on the RX651 do not contain interrupt flags, so it is necessary to use the interrupt controller's interrupt flags instead. In addition, it is not necessary to clear the flags in the compare match interrupt handler. (The interrupt controller automatically clears the associated flag when an interrupt is accepted.) A comparison of the compare match timer registers of the SH7044 and RX651 is shown below.

Register Name	SH7044	RX651	Changed
Channel	Channel 0,1	Unit 0 (channel 0,1)	0
Compare match timer start register	CMSTR	CMSTR0	O
Compare match timer control/status registers	CMCSR0, CMCSR1	CMT0.CMCR, CMT1.CMCR	©∗1
Compare match timer counters	CMCNT0, CMCNT1	CMT0.CMCNT, CMT1, CMCNT	\bigcirc
Compare match timer constant registers	CMCOR0, CMCOR1	CMT0.CMCOR, CMT1, CMCOR	0
Unit 1	—	Unit 1 (channels 2, 3)	0
		CMSTR1	0
		CMT2.CMCR, CMT3.CMCR) *
		CMT2.CMCNT, CMT3, CMCNT	0
		CMT2.CMCOR, CMT3, CMCOR	0

Table 2.39 List of Compare Match Timer Registers

 $\ensuremath{\mathbb{O}}$: Registers with identical bit assignments on the SH7044 and RX651

 \bigcirc : Unit 1 registers. The bit assignments are the same as for unit 0.

Note: * These registers so not contain interrupt flags. Use the IR bits of the interrupt controller instead.

2.12.3 Module Stop

The initial state of the peripheral modules of the RX651 is stopped, due to the low power consumption function. The initial state of the CMT is also stopped. Do not fail to cancel the module stop state when making settings to the module. Before accessing the module stop control register to cancel the module stop state, first cancel register write protection.

2.13 Flash Memory

2.13.1 Comparison of Specifications

ltem	SH7044	RX651		
Size	• 256 KB	 ROM area User area: Max. 2 MB 		
Block size × block count	 1 KB × 4 (4 KB) 28 KB × 1 (28 KB) 32 KB × 7 (224 KB) 	 Linear mode Blocks 0 to 7 8K bytes x 8 (64K bytes) Blocks 8 to 69 32K x 61 (1952K bytes) 		
	- Drogrom modo	 Dual mode Blocks 0 to 7 8K bytes x 8 (64K bytes) Blocks 8 to 37 32K x 29 (464K bytes) Blocks 38 to 45 8K bytes x 8 (64K bytes) Blocks 46 to 75 32K x 29 (464K bytes) 		
Operating modes	 Program mode Erase mode Program verify mode Erase verify mode 	 Flash sequencer (FCU) Control the FCU according to the FACI command. FACI command program Block erase Multi-block erase P / E suspend P / E resume Clear status forced termination Blank check Configuration settings 		
Write and erase units	 Write: 32-byte units Erase: Block units 	 Write Code Flash memory program Unit: 128 bytes Data flash memory program Unit: 4 bytes Erase Erase Erase unit: 1 block 		
Write count	100 times	1,000 times		
Programming modes	 On-board programming Boot mode User programming mode Writer mode 	 On-board programming Boot mode (SCI/USB/FINE) Single-chip mode 		
Other	 Automatic bit rate adjustment RAM-based flash memory emulation function Protect mode 	 Automatic bit rate adjustment Suspend/resume function ROM code protection function Supports background operations 		

Note: P / E: Program / Erase

When rewriting the on-chip Flash with RX651, "Flash Module Firmware Integration Technology" can be used.

The Flash Module Firmware Integration Technology makes it easy to implement rewriting of the RX651's on-chip See the following application note below for how to use it and how to embed it in application.:

Flash module Firmware Integration Technology (R01AN2184EJ)

2.14 Low Power Consumption Function

2.14.1 Comparison of Mode Specifications

The low-power modes on the SH7044 are sleep mode and standby mode. The states of the clock, CPU, and on-chip modules in each mode are listed below:

Table 2.41 SH7044 Low-Power Modes

Item	Clock	CPU	On-Chip Modules
Sleep mode	Operating	Stopped	Operating
Standby mode	Stopped	Stopped	Stopped

The low-power modes on the RX651 are sleep mode, all-module clock stop mode, software standby mode, and deep software standby mode. Table 2.38 lists the states of the on-chip modules in each mode.

Entering and Exiting Low Power Consumption Modes and Operating States	Sleep Mode	All-Module Clock Stop Mode	Software Standby Mode	Deep Software Standby Mode
	Control register +	Control register +	Control register +	Control register +
Transition condition	instruction	instruction	instruction	instruction
Method of release				
other than reset	Interrupt	Interrupt*1	Interrupt*2	Interrupt*3
	Program execution state	Program execution state	Program execution state	Program execution
	(interrupt	(interrupt	(interrupt	state
State after release*4	processing)	processing)	processing)	(interrupt processing)
Main clock oscillator	Operation possible	Operation possible	Operation possible *5	Operation possible *5
Sub-clock oscillator	Operation possible	Operation possible	Operation possible *6	Operation possible *6
High-speed on-chip oscillator	Operation possible	Operation possible	Stopped	Stopped
Low-speed on-chip oscillator	Operation possible	Operation possible	Stopped	Stopped
IWDT dedicated on-chip oscillator	Operation possible *7	Operation possible *7	Operation possible *7	Stopped (settings undetermined) *7
PLL	Operation possible	Operation possible	Stopped	Stopped
CPU	Stopped	Stopped	Stopped	Stopped
	(settings retained)	(settings retained)	(settings retained)	(settings undetermined)
RAM and expansion	Operation possible	Stopped	Stopped	Stopped
RAM	(settings retained)	(settings retained)	(settings retained)	(settings undetermined)
Standby RAM	Operation possible (settings retained)	Stopped (settings retained)	Stopped (settings retained)	Stopped (settings retained/ undetermined) *8
Flash memory	Operating	Stopped (settings retained)	Stopped (settings retained)	Stopped (settings retained)
USBFS host/function module (USBb)	Operation possible	Stopped *9	Stopped *9	Stopped (settings retained/ undetermined) *10
Watchdog timer (WDT	Stopped	Stopped	Stopped	Stopped
A)	(settings retained)	(settings retained)	(settings retained)	(settings undetermined)
Independent watchdog timer (IWDT)	Operation possible *7	Operation possible *7	Operation possible *7	Stopped (settings undetermined) *7
Realtime clock (RTC)	Operation possible	Operation possible	Operation possible	Operation possible
8-bit timer (unit 0, unit 1) (TMR)	Operation possible	Operation possible*11	Stopped (settings retained)	Stopped (settings undetermined)
Port Output Enable (POE)	Operating possible	Operating possible*12	Stopped (settings retained)	Stopped (settings undetermined)
Voltage detection circuit (LVDA)	Operation possible	Operation possible	Operation possible	Operation possible *13, *14
Power-on reset circuit	Operating	Operating	Operating	Operating *14
Peripheral modules	Operation possible	Stopped (settings retained)	Stopped (settings retained)	Stopped (settings undetermined)
I/O ports	Operating	Settings retained *15	Settings retained *16	Settings retained *16

Table 2.42 RX651 Low-Power Modes

"Operating possible" means that operating or stopped can be controlled by the control register setting.

"Stopped (Retained)" means that internal register values are retained and internal operations are suspended.

"Stopped (Undefined)" means that internal register values are undefined and power is not supplied to the internal circuit.

Note 1. "Interrupts" here indicates an external pin interrupt (the NMI or IRQ0 to IRQ15) or any of peripheral interrupts (the 8-bit timer, RTC alarm, RTC periodic, IWDT, USB suspend/resume, voltage monitoring 1, voltage monitoring 2, and main-clock oscillation stop detection).

Note 2. "Interrupts" here indicates an external pin interrupt (the NMI or IRQ0 to IRQ15) or any of peripheral interrupts (the RTC alarm, RTC periodic, IWDT, USB suspend/resume, voltage monitoring 1, and voltage monitoring 2 interrupts).

Note 3. "Interrupts" here indicates a certain external pin interrupt source pin (the NMI, IRQ0-DS to IRQ15-DS, SCL2-DS, SDA2-DS, or CRX1-DS) or any of peripheral interrupts (the RTC alarm, RTC periodic, USB suspend/resume, voltage monitoring 1, and voltage monitoring 2 interrupts). However, these interrupts are enabled only when the corresponding bit in the deep standby interrupt enable registers i (DPSIERi) (i = 0 to 3) is set to 1. When the pin functions have "-DS" appended to their names, they can also be used as triggers for release from deep software standby. Also, USBb is not released from deep software standby mode using USB0_OVRCURB multiplexed with pin P22.

Note 4. This does not include release initiated by the RES# pin reset, power-on reset, voltage monitoring reset, or independent watchdog-timer reset. The transition is to the reset state when release is initiated by one of these reset sources.

Note 5. Operation or stopping can be selected by the main clock oscillator forced oscillation bit (MOFXIN) in the main clock oscillator forced oscillation control register (MOFCR).

Note 6. Operation or stopping is selected by the sub-clock oscillator control bit (RTCEN) in the RTC control register 3 (RCR3).

Note 7. Operation or stopping is selected by the setting of the IWDT sleep mode count stop control bit (IWDTSLCSTP) in the option function select register 0 (OFS0) in IWDT auto start mode. If the OFS0.IWDTSLCSTP bit is 0 (disabling stopping of the counter when a transition to low power consumption mode is made), the transition is to software standby mode rather than deep software standby mode. In any mode other than IWDT auto start mode, operation or stopping is selected by the setting of the sleep mode counter stop control bit (SLCSTP) in the IWDT counter stop control register (IWDTCSTPR). If the IWDTCSTPR.SLCSTP bit is 0 (disabling stopping of the counter when a transition to low power consumption mode is made), the transition to low power consumption mode is made), the transition to low power consumption mode is made).

Note 8. Retention or undefined is selectable by the setting of the deep cut bits in the deep standby control register (DPSBYCR.DEEPCUT[1:0]).

Note 9. Detection of USB resumption is possible.

Note 10. Disabling or enabling of detection of USB resumption is controllable by the deep cut bits in the deep standby control register (DPSBYCR.DEEPCUT[1:0]). When detection of USB resumption is enabled, the values of the registers in the USB resume detecting unit are only held even in deep software standby mode.

Also, USBb is not released from deep software standby mode using USB0_OVRCURB multiplexed with pin P22.

Note 11. Stopping or operation is controlled by the module-stop setting bits (MSTPA4 and MSTPA5, respectively) in module-stop control register A (MSTPCRA) for 8-bit timers 0 and 1 (unit 0) and 2 and 3 (unit 1).

Note 12. When a source condition for POE interrupts is satisfied while POE interrupts are enabled and the chip is in all-module clock stop

mode, the flag for the source condition is retained but return from all-module clock stop mode does not proceed. If a different source initiates return from all-module clock stop mode in this situation, the POE interrupt is generated after that.

Note 13. If the voltage monitoring 1 circuit mode selection bit in the voltage monitoring 1 circuit control register 0 (LVD1CR0.LVD1RI) or the voltage monitoring 2 circuit mode selection bit in the voltage monitoring 2 circuit control register 0 (LVD2CR0.LVD2RI) is 1, the transition is to software standby mode rather than deep software standby mode.

Note 14. When the deep cut bits in the deep standby control register (DPSBYCR.DEEPCUT[1:0]) are set to 11b and the LSI enters deep

software standby mode, the voltage detection circuit stops and the low power consumption function of the power-on reset circuit is enabled.

Note 15. If pin P53 is being used for the BCLK signal, operation continues with as-is output of BCLK. While the 8-bit timer and RTC are operated, the related pins continue operation.

Note 16. Retention of levels or placement in the high-impedance state is selectable for the address bus and bus control signals (CS0# to

CS7#, RD#, WR0# to WR3#, WR#, BC0# to BC3#, ALE, CKE, SDCS#, RAS#, CAS#, WE#, and DQM0 to DQM3) by the output port enable bit (OPE) in the standby control register (SBYCR).

2.14.2 Mode Transitions

The transition diagram between each mode of RX651 is shown in Figure 2.15 "RX651 Mode Transition Diagram".

Figure 2.16 RX651 Mode Transitions

The events and transition conditions shown in figure 2.30 are listed below:

Table 2.43 List of RX651 Mode Transitions and Events

No	Event	Transition Condition (The following conditions are specified before the event)
1	RES# pin = high	
2	WAIT instruction executed	SBYCR.SSBY = 0
3	All interrupts	_
4	WAIT instruction executed	SBYCR.SSBY = 0 MSTPCRA.ACSE = 1 MSTPCRA = FFFF FF[C-F]Fh MSTPCRB = FFFF FFFFh MSTPCRC[31:16] = FFFFh MSTPCRD = FFFF FFFFh
5	External and peripheral interrupts	External pin interrupts (NMI, IRQ0 to IRQ15) Peripheral function interrupts (8-bit timer, RTC alarm, RTC cycle, IWDT, USB suspend/resume, voltage monitor 1, voltage monitor 2, oscillation stop detection)*
6	WAIT instruction executed	SBYCR.SSBY = 1, DPSBYCR.DPSBY = 0
7	External and peripheral interrupts	External pin interrupts (NMI, IRQ0 to IRQ15) Peripheral function interrupts (RTC alarm, RTC cycle, IWDT, USB suspend/resume, voltage monitor 1, voltage monitor 2)*
8	WAIT instruction executed	SBYCR.SSBY = 1, DPSBYCR.DPSBY = 1
9	External and peripheral interrupts	Some pins used as external pin interrupt sources (NMI, IRQ0-DS to IRQ15-DS, SCL2-DS, SDA2-DS, CRX1-DS), peripheral function interrupts (RTC alarm, RTC cycle, USB suspend/resume, voltage monitor 1, voltage monitor 2)*
Net		After one of the above interrupts occurs the internal reset state lasts for a specified duration, after which the internal reset and deep software standby mode are canceled at the same time, and the CPU operates in normal operation mode using the LOCO (recovery after a reset).

Note: * Each interrupt has detailed conditions. For descriptions, see the User's Manual: Hardware.

3. Sample Code

For the settings of each function, use the smart configurator to set according to the application and generate the code.

4. Reference Documents

4.1 Reference Documents

Section 4.1 lists the documents referenced in the preparation of this application note. When referring to the documents listed below, substitute the latest version if a newer version is available. The latest versions of these documents can be confirmed and downloaded from the Renesas Electronics Website.

Table 4.1 Reference Documents

Reference Documents
SH7040 Series User's Manual Hardware (REJ09B0031-0600H)
SH-1/SH-2/SH-DSP Software Manual (REJ09B0228-0700)
RX65N Group, RX651 Group User's Manual: Hardware (R01UH0590EJ0230)
RX Family User's Manual: Software (R01US0071EJ)
Flash Memory User's Manual Hardware Interface (R01UH0602EJ)
Flash Module Firmware Integration Technology (R01AN2184EJ)
SH7040 Series: On-Chip I/O (ADJ-502-052A)

Website and Support

Renesas Electronics Website

https://www.renesas.com/jp/en

Inquiries Contact Us | Renesas

All trademarks and registered trademarks are the property of their respective owners.

Revision History

		Description	
Rev.	Date	Page	Summary
1.00	Sep 22, 2022		First edition issued

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a systemevaluation test for the given product.

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
- 5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 6. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS OF OROUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION ("Vulnerability Issues"). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
- 8. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
 (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/.