

SH7216 Group

APPLICATION NOTE

Ethernet PHY Board Design Guide

R01AN0935EJ0101 Rev.1.01 Dec. 20, 2011

Summary

This application note is intended to assist customers in designing the Ethernet board to connect the SH7214/SH7216 Microcomputer (MCU) with an Ethernet PHY-LSI.

Target Device

SH7214/SH7216

Contents

2
4
5

1. Interface

1.1 Overview

1.1.1 Media Independent Interface (MII)

The Media Independent Interface (MII) is a standard interface used to connect a network controller chip (MAC) with the media interface chip (PHY). Figure 1 shows the MII signal connection.

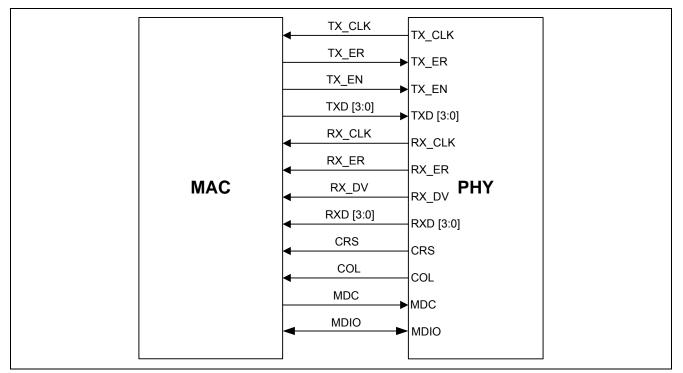


Figure 1 MII Signal Connection

1.1.2 Media Dependent Interface (MDI)

The Media Dependent Interface (MDI) is an interface used to connect the media interface chip (PHY) with the pulse transformer or RJ45 connector. Figure 2 shows the MDI signal connection.

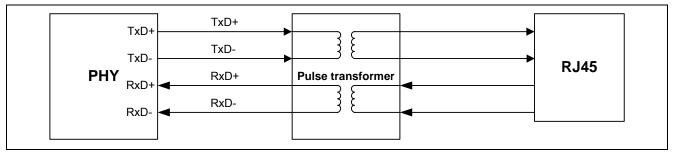


Figure 2 MDI Signal Connection

1.2 Interface Pins Functions

1.2.1 Media Independent Interface (MII)

Table 1 lists the pin functions of the Media Independent Interface (MII).

Table 1 Media Independent Interface (MII) Pin Functions

Signal Name	Function	I/O (MAC)	I/O (PHY)	Remarks
TX_CLK	Transmit clock		0	TX_EN, TXD [3:0] and TX_ER timing
				clocks
				10Base-T: 2.5 MHz
				100Base-TX: 25 MHz
TX_ER	Transmit error	0	I	
TX_EN	Transmit enable	0	I	
TXD0	Transmit data	0	I	
TXD1	Transmit data	0	I	
TXD2	TXD2 Transmit data		Ι	
TXD3	Transmit data	0	I	RX_DV, RXD [3:0], and TX_ER timing
				clocks
				10Base-T: 2.5 MHz
				100Base-T: 25 MHz
RX_CLK	Receive clock	I	0	
RX_ER	Receive error	I	0	
RX_DV	RX_DV Receive data invalid		0	
RXD0	RXD0 Receive data		0	
RXD1 Receive data			0	
RXD2 Receive data			0	
RXD3	RXD3 Receive data		0	
CRS	CRS Carrier detection		0	
COL	Collision detection	n detection I O		
MDC	Administrative data	0	I	
	clock			
MDIO	Administrative data	I/O	I/O	
	I/O			

1.2.2 Media Dependent Interface (MDI)

Table 2 lists the pin functions of the Media Dependent Interface (MDI).

Table 2 Media Dependent Interface (MDI) Pin Functions

Signal Name	Function	I/O (PHY)	Remarks
TXD+	Transmit output+	0	Differential signal transmit output
TXD-	Transmit output-	0	_
RXD+	Receive input+	I	Differential signal receive input
RXD-	Receive input-	I	

2. Transmission Line

2.1 MII

When designing the MII wiring pattern, note the following:

- MII transmission line must be designed as the high-frequency circuit.
- Place the MII transmission line on the layer adjacent to GND plane.
- Place the MII transmission line as short as possible.
- Do not allocate other signal lines close to the MII transmission line.
- Avoid using vias on the MII transmission line.
- MII transmission line must be wired with straight lines. If you cannot avoid doing so, the line must be bent gently in an arc or up to 135 degrees.
- Add the series resistors on all transceiver MII outputs.
- Impedance must be controlled on the MDC pin transmission line. The characteristic impedance required for the MDC pin transmission line is the differential impedance $50 \Omega \pm 15\%$. The pattern width and pattern pitch for impedance control vary depending on board thickness, material, and layer configuration. Contact the board manufacturer for more information.
- Install a resistor of 2.0 k $\Omega \pm 5\%$ on the MDIO pin transmission line.

Figure 3 shows the guideline for the wiring corner angle. Figure 4 shows the MII layout example.

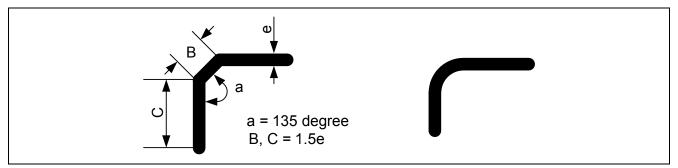


Figure 3 Wiring Corner Angle

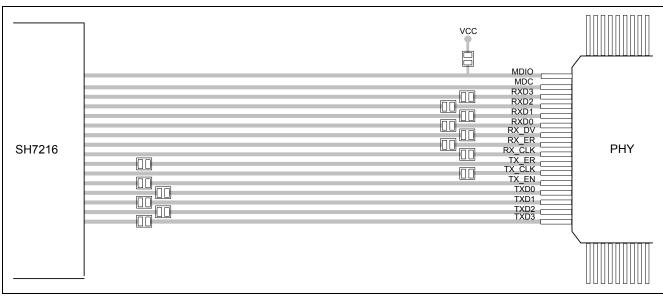


Figure 4 MII Layout

2.2 MDI

MDI transmission line must be designed as the high-frequency circuit. Impedance must be controlled on the line.

Refer to the datasheet of PHY when designing the wiring pattern, and termination pattern of the MDI transmission line.

3. Power Supply, Ground

Use a multi-layer PCB with the inner layers dedicated to GND and VCC.

3.1 MII

When designing the MII power supply and ground pattern, note the following:

- VCC and GND planes must be designed as wide as possible.
- Use low inductance, ceramic surface mount decoupling capacitors.
- As the ESR (Equivalent Series Resistor) of the aluminum electrolytic capacitor and tantalum capacitor are generally high which may affect the jitter value, these capacitors should be thoroughly designed and tested before use.
- Locate these decoupling capacitors as close as possible to the VCC and GND pins of the PHY.
- Connect the decoupling capacitor to the VCC and GND planes to achieve the lowest possible inductance.
- All decoupling capacitor and PHY VCC and GND connections should tie immediately to a VCC or GND plane via with minimum trace inductance.

3.2 MDI

Refer to the datasheet of PHY when designing the MDI power supply and ground pattern.

Website and Support

Renesas Electronics Website http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry

All trademarks and registered trademarks are the property of their respective owners.

Revision Record

		Description		
Rev.	Date	Page	Summary	
1.00	Sep.02.10		First edition issued	
1.01	Dec.20.11	4	Changed a resistor value to 2.0 k Ω ± 5%.	

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

- 1. Handling of Unused Pins
 - Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
 - The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

 The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

- 3. Prohibition of Access to Reserved Addresses Access to reserved addresses is prohibited.
 - The reserved addresses are provided for the possible future expansion of functions. Do not access
 these addresses; the correct operation of LSI is not guaranteed if they are accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to one with a different type number, confirm that the change will not lead to problems.

— The characteristics of MPU/MCU in the same group but having different type numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different type numbers, implement a system-evaluation test for each of the products.

Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

 Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application categorized as "Specific" or for which it is not intended without the prior written consent of Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronics appliances; machine tools;
 - personal electronic equipment; and industrial robots. "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics

Refer to "http://www.renesas.com/" for the latest and detailed information

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Renesas Electronics America America America A 98050-2554, U.S.A. Tei: +1-109-588-6000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited 1011 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tei: +1-305-888-5441, Fax: +1-905-898-3220 Renesas Electronics Curope Limited Dukes Meadow, Milboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tei: +44-1628-585-100, Fax: +44-1628-585-900 Renesas Electronics Curope CombH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tei: +49-211-65030, Fax: +49-211-6503-1327 Renesas Electronics (China) Co., Ltd. Thi Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tei: +49-211-5030, Fax: +49-211-6503 Renesas Electronics (Shanghai) Co., Ltd. Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China Tei: +49-21-5877-1818, Fax: +86-20-887-7858 / -7898 Renesas Electronics (Shanghai) Co., Ltd. Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China Tei: +86-21-5877-1818, Fax: +86-21-6877-7858 / -7898 Renesas Electronics (Shanghai) Co., Ltd. Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China Tei: +852-2880-9318, Fax: +852-2880-922/9044 Renesas Electronics Fawa Co., Ltd. Unit 204, 205, Fax: +865 2-8175-9670 Renesas Electronics Singapore Pte. Ltd. 1 harbourfront Avenue, #00+10, keppel Bay Tower, Singapore 098632 Tei: +852-28175-9600, Fax: +865 2-8175-9670 Renesas Electronic Singapore Pte. Ltd. 1 harbourfront Avenue, #00+10, keppel Bay Tower, Singapore 098632 Tei: +852-28175-9600, Fax: +852-886.Btd. Unit 906, Block B, Menara Amcorp, Amcorp, Trade Centre, No. 18, JIn Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tei: +805-28175, Fax: +603-79755-9501.