
R01AN3109EJ0120 Rev.1.20 Page 1 of 140
Dec. 12, 2018

RZ/T1 Group
CAN Interface Sample Program

APPLICATION NOTE

Summary
This application note explains a sample program for handling communications by using CAN0, which is one of the two
channels (CAN0 and CAN1) of the on-chip CAN controller of the MCU mounted on the RZ/T1 evaluation board.

The features of the CAN interface sample program are listed below.

Sending messages:
• Send messages by using the transmission buffers
• Send messages by using the transmission-and-reception FIFO buffers in transmission mode

Receiving messages:
• Receive messages by using the reception buffers
• Receive messages by using the reception FIFO buffers
• Receive messages by using the transmission-and-reception FIFO buffers in reception mode

Self-test modes:
• Self-test mode 0 (external loop-back)

Send from a transmission buffer and receive at a reception buffer
Send from a transmission buffer and receive at a reception FIFO buffer
Send from a transmission buffer and receive at a transmission-and-reception FIFO buffer in reception mode
Send from a transmission-and-reception FIFO buffer in transmission mode and receive at a transmission-and-
reception FIFO buffer in reception mode

• Self-test mode 1 (internal loop-back)
Send from a transmission buffer and receive at a reception buffer
Send from a transmission buffer and receive at a reception FIFO buffer
Send from a transmission buffer and receive at a transmission-and-reception FIFO buffer in reception mode
Send from a transmission-and-reception FIFO buffer in transmission mode and receive at a transmission-and-
reception FIFO buffer in reception mode

The allowed transfer rates:

Three rates; 1 Mbps, 500 Kbps, 125 Kbps can be selected from the menu provided for the program.

R01AN3109EJ0120
Rev.1.20

Dec. 12, 2018

Introduction

R01AN3109EJ0120 Rev.1.20 Page 2 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

Restrictions

The following restrictions apply to this sample program.
(1) The channel in use is fixed to CAN0
(2) The allowed message format is data frames with a standard ID (0x120)
(3) Reception rules are predetermined as follows:

Page number for the reception rule table: 0
Number of reception rules: 1 (described in table 0)
Reception rule ID: data frames with a standard ID (0x120)

(4) Buffers to be used are fixed as follows:
Transmission buffer number: 0
Reception buffer number: 1
Number of the transmission-and-reception FIFO buffer in transmission mode: 0
Number of the transmission buffer to be linked to the transmission-and-reception FIFO buffer in transmission mode:
2
Number of the transmission-and-reception FIFO buffer in reception mode: 1

(5) Other
This sample program does not support the following capabilities.
Transmission abort, transmission by using a transmission queue, function to save transmission history, gateway
function, following test functions; standard test mode, listen-only mode, RAM test, inter-channels transfer test, and
error detection and correction for RSCAN RAM

Target Devices
RZ/T1 Group

When applying the sample program covered in this application note to another microconrtoller, modify the program
according to the specifications for the target microcontroller and conduct an extensive evaluation of the modified
program.

1. Specifications ... 7

2. Operating Environment .. 9

3. Related Application Note ... 10

4. Peripheral Modules .. 11

5. Hardware ... 12
5.1 Pins .. 12
5.2 Sample Circuit ... 12

6. CAN Configuration ... 13
6.1 Configuring the CAN Module ... 13

6.2 CAN State (Mode) Transitions ... 15
6.2.1 Global Modes .. 15
6.2.2 Channel Modes ... 17

6.2.3 Changes of Channel Mode Caused by Transitions between Global Modes 18
6.3 Transfer Rate ... 19

6.3.1 CAN Bit Time Setting ... 19

6.3.2 Calculating Transfer Rates .. 20
6.3.3 Procedure for Setting CAN Bit Time and Transfer Rates .. 21

6.4 Global Facilities ... 22

6.4.1 Transmission Priority ... 22
6.4.2 DLC Checking ... 22

6.4.3 DLC Replacement ... 23
6.4.4 Mirroring Function .. 23
6.4.5 CAN Clock Source ... 23

6.4.6 Timestamp Clock ... 24
6.4.7 Global Facilities ... 25

6.5 Reception Rule Table .. 26

6.5.1 Number of Reception Rules .. 26
6.5.2 Setting of the IDE, RTR, and ID Bits ... 26
6.5.3 Processing Using Reception Rules ... 26

6.5.4 Settings to Mask the IDE, RTR, and ID Bits .. 26
6.5.5 Values for DLC Checking .. 26
6.5.6 Reception Rule Labeling ... 27

6.5.7 Buffer for Storing Messages .. 27
6.5.8 Usage Example of Reception Rule .. 28
6.5.9 Procedure for Setting the Reception Rule Table ... 30

6.6 Buffers and FIFO Buffers ... 31
6.6.1 Reception Buffer .. 32
6.6.2 Reception FIFO Buffer ... 32

6.6.3 Transmission-and-Reception FIFO Buffer ... 33
6.6.4 Transmission Buffers ... 34

Table of Contents

6.6.5 Transmission History Buffers ... 34
6.6.6 Procedures for Setting Buffers .. 35

6.7 Global Error Interrupt ... 37
6.7.1 Global Error Interrupts ... 37
6.7.2 Procedure for Setting the Global Error Interrupt .. 37

6.8 Channel Functions ... 38
6.8.1 CANi Error Interrupts ... 38
6.8.2 CANi Transmission Abort Interrupts .. 40

6.8.3 Bus-Off Recovery Mode .. 40
6.8.4 Error Display Modes .. 40
6.8.5 Transfer Test Mode ... 40

6.8.6 Procedures for Setting the Channel Functions .. 41
6.9 Configurations Required for Each CAN State (Mode) ... 42

6.9.1 CAN State (Mode) Transition .. 42

6.9.2 Global Facilities ... 42
6.9.3 Transfer Rate ... 42
6.9.4 Reception Rule Table .. 43

6.9.5 Buffers ... 43
6.9.6 Global Error Interrupts ... 43

6.9.7 Channels ... 43

7. Reception ... 44
7.1 Receiving Functions .. 44
7.2 Reception by Using the Reception Buffers .. 44

7.2.1 Procedures for Reading from a Reception Buffer .. 45

7.3 Reception by Using the Reception FIFO Buffers ... 46
7.3.1 Procedure for Reading from the Reception FIFO Buffers ... 47
7.3.2 Handling of Reception FIFO-Related Interrupts .. 48

7.4 Reception by Using the Transmission-and-Reception FIFO Buffers 49
7.4.1 Procedure for Reading from the Transmission-and-Reception FIFO Buffers 50
7.4.2 Handling of Transmission-and-Reception FIFO Buffer-Related Interrupts

(When Used in Reception Mode) .. 51

8. Transmission .. 52
8.1 Transmitting Functions .. 52
8.2 Transmission by Using the Transmission Buffers .. 52

8.2.1 Message Transmission .. 52

8.2.2 Procedure for Transmitting Messages from the Transmission Buffer 53
8.2.3 Transmission Abort .. 54
8.2.4 Procedure for Aborting Message Transmission .. 54

8.2.5 One-Shot Transmission Function .. 55
8.2.6 Procedure for Transmission by Using the One-Shot Transmission Function 55
8.2.7 Handling of Transmission Buffer-Related Interrupts .. 56

8.2.8 Processing after Completion of Message Transmission or Transmission Abort 57
8.3 Transmission by Using the Transmission-and-Reception FIFO Buffers 59

8.3.1 Message Transmission .. 59
8.3.2 Procedure for Transmitting Messages from a Transmission-and-Reception

FIFO Buffer .. 60

8.3.3 Transmission Abort .. 61
8.3.4 Interval Transmission .. 61
8.3.5 Handling of Transmission-and-Reception FIFO Interrupts (Transmission Mode) 61

8.4 Transmission History Buffers ... 62
8.4.1 Storing Transmission History Data .. 62
8.4.2 Procedure for Reading From a Transmission History Buffer 63

8.4.3 Handling of Transmission History Interrupts .. 64

9. CAN-Related Interrupts .. 65
9.1 CAN-Related Interrupts ... 65

9.1.1 Procedure for Setting the CAN Related Interrupts .. 65

10. Software ... 66
10.1 Operational Outline .. 66

10.1.1 Setting of Projects ... 67

10.1.2 Preparation for Self-Test ... 67
10.1.3 Preparation for Transmission and Reception Tests .. 67

10.1.4 Terminal Software (Tera Term) ... 68
10.1.5 Sample Program Menu .. 69
10.1.6 Setting Values for the Sample Program .. 71

10.1.7 Transmission Test ... 72
10.1.8 Reception Test .. 74
10.1.9 Test for Transmission While Receiving Data at the Same Time 75

10.1.10 Self-Test .. 76
10.2 Interrupts .. 77
10.3 Fixed-Width Integer Types ... 78

10.4 Constants and Error Codes ... 79
10.5 Functions ... 83
10.6 Structures/Unions/Enumerated Types ... 84

10.7 Function Specifications .. 89
10.7.1 R_CAN_Open .. 89
10.7.2 R_CAN_Close ... 89

10.7.3 R_CAN_GlobalControl .. 90
10.7.4 R_CAN_ChannelControl ... 91
10.7.5 R_CAN_SetBitrate ... 93

10.7.6 R_CAN_UseBufferEntry .. 93
10.7.7 R_CAN_SetRxFifoBuffer ... 94
10.7.8 R_CAN_SetFifoBuffer ... 94

10.7.9 R_CAN_ReleaseFifoBuffer .. 95
10.7.10 R_CAN_ReleaseRxFifoBuffer ... 95

10.7.11 R_CAN_ReleaseBuffer .. 95
10.7.12 R_CAN_GetTxBufferStatus ... 96
10.7.13 R_CAN_WriteBuffer .. 96

10.7.14 R_CAN_GetFifoStatus .. 96
10.7.15 R_CAN_WriteFifo .. 97
10.7.16 R_CAN_Tx .. 97

10.7.17 R_CAN_RxSet ... 98
10.7.18 R_CAN_ReadBuff ... 98
10.7.19 R_CAN_GetRxFifoMessageNum .. 99

10.7.20 R_CAN_ReadRxFifo ... 99
10.7.21 R_CAN_GetFifoMessageNum .. 99
10.7.22 R_CAN_ReadFifo .. 100

10.7.23 R_CAN_SetCommTestMode .. 100
10.7.24 R_CAN_ResetTestMode ... 101
10.7.25 R_CAN_SetInterruptHandler ... 101

10.7.26 R_CAN_SetInterruptEnableDisable .. 102
10.7.27 R_CAN_GetInterruptSource .. 102

10.7.28 R_CAN_ClearInterruptSource ... 103
10.7.29 main ... 103

10.8 Flowchart ... 104

10.8.1 Main Processing .. 104
10.8.2 Transmission Test ... 105
10.8.3 Reception Test .. 110

10.8.4 Test for Transmission While Receiving Data at the Same Time 117
10.8.5 Self-Tests .. 120
10.8.6 Callback Processing .. 130

11. Sample Codes ... 138

12. Reference Documents ... 139

R01AN3109EJ0120 Rev.1.20 Page 7 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

1. Specifications
Table 1.1 lists the peripheral modules to be used and their applications and Figure 1.1 shows the operating environment
for execution of the sample code.

Table 1.1 Peripheral Modules and Applications

Peripheral Modules Application

CAN interface (RSCAN)
CAN0

Transmission and reception of data through the CAN bus by using these LSI chips.

Power consumption reducer For starting and stopping the RSCAN module (MSTPCRB1)

Interrupt controller (ICUA) Controlling the following RSCAN interrupt sources:
CAN global error (vector 262)
CAN0 error (vector 263)
CAN1 error (vector 264)
CAN reception FIFO (vector 104)
CAN0 transmission-and-reception FIFO buffer reception completion (vector 105)
CAN0 transmission (vector 106)
CAN1 transmission-and-reception FIFO buffer reception completion (vector 107)
CAN1 transmission (vector 108)

I/O ports CAN0: CRXD0 (input) PC6
CAN0: CTXD0 (output) P67
CAN1: CRXD1 (input) PC7
CAN1: CTXD1 (output) P66

R01AN3109EJ0120 Rev.1.20 Page 8 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

Note 1. Indicates the device that the user needs to prepare.

Figure 1.1 Operating Environment

DC5V output
AC adaptor
(Included

accessory)

Microphone
Headphone

Serial

Host computer*

R01AN3109EJ0120 Rev.1.20 Page 9 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

2. Operating Environment
The sample code covered in this application note is for the environment below.

Table 2.1 Operating Environment

Item Description

Microcontroller RZ/T1 group

Operating frequency CPU clock (CPUCLK): 450 MHz

Operating voltage Power-supply voltage (I/O): 3.3 V

Integrated development environment • Embedded Workbench® for Arm (version 8.20.2) from IAR Systems
• Arm® integrated environment: Arm Development Studio 5 (DS-5™) (version 5.26.2) from

Arm
• e2studio (version 6.1.0) from Renesas

Operating modes • SPI boot mode (serial flash memory)
• 16-bit bus boot mode (NOR flash memory)

CAN operating modes Global stop mode
Global reset mode
Global test mode
Global operating mode
Channel stop mode
Channel reset mode
Channel halt mode
Channel transfer mode

Settings for communication for the
terminal software

• Transfer rate: 115200 bps
• Data length: 8 bits
• Parity: none
• Stop bit length: 1 bit
• Flow control: not supported
• New line code (reception): CR
• New line code (transmission): CR

Board RZ/T1 evaluation board
(RTK7910022C00000BR)

Devices (functions to be used on the
board)

Serial interface (USB-mini B connector J8)
CAN controller (RSCAN) which conforms the ISO11898-1 specification (for standard frame
and extended frame)

R01AN3109EJ0120 Rev.1.20 Page 10 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

3. Related Application Note
The application note related to this application note is listed below for reference.

• Application Note: RZ/T1 Group Initial Settings (R01AN2554EJ)

Note: Settings for registers of the microcontroller which are not stated in this application note are as described in the above
application note.

R01AN3109EJ0120 Rev.1.20 Page 11 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

4. Peripheral Modules
Refer to RZ/T1 Group User’s Manual: Hardware for the functions related to the CAN interface including power-
consumption reducer, I/O port, and multi-function pin controller (MPC).

R01AN3109EJ0120 Rev.1.20 Page 12 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

5. Hardware

5.1 Pins
Table 5.1 shows the pins used and their functions.

5.2 Sample Circuit
Figure 5.1 shows a block diagram.

Table 5.1 Pins Used and Their Functions

Channel Pin Name Input/Output Description

CAN0 CRXD0 Input CAN0 reception data input pin

CTXD0 Output CAN0 transmission data output pin

CAN1 CRXD1 Input CAN1 reception data input pin

CTXD1 Output CAN1 transmission data output pin

Figure 5.1 RSCAN Block Diagram

Peripheral bus

CAN-related registers

Protocol controller

CAN0RX

CAN0TX

Protocol controller

CAN1RX

CAN1TX

Baud rate prescaller
(BRP[9:0])

Acceptance filter

ID-base transmission
priority controller

Timer

Baud rate prescaller
(BRP[9:0])

fCANTQm

fCAN
DCS

PCLKD
(75 MHz)

CANCLKA
(24 MHz)

CANCLKB
(25 MHz)

Reception rule
table RAM

FIFO RAM

Buffer RAM

Interrupt
generator

CAN global error interrupt
(INTRCANGERR)
CAN reception FIFO interrupt
(INTRCANGECC)
CANm transmission interrupt
(INTRCANmTRX)
CANm error interrupt
(INTRCANmERR)
CANm transmission-and-reception
FIFO reception completion interrupt
(INTRCANmREC)

m: The channel number (0 or 1)
BRP[9:0]: Bits of the RSCAN0CmCFG register
DCS: Bits of the RSCAN0GCFG register
fCANTQm: CANmTq clock
fCAN: CAN clock

1/2

R01AN3109EJ0120 Rev.1.20 Page 13 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

6. CAN Configuration

6.1 Configuring the CAN Module
This section describes how to configure the features required for handling communications by using the CAN module
(“CAN communications”). Configuration is required before starting or restarting CAN communications after the MCU is
reset, any bus error is detected, or a wakeup signal is generated.

Configuration is allowed in the following modes. See Section 6.2, CAN State (Mode) Transitions for details on the
CAN states (modes).

• Global reset mode
• Channel reset mode
• Channel halt mode

The following aspects of the CAN module are configured in the initial processing. See the subsequent sections for details
on processing for each of the items.

• CAN state (mode)
• Transfer rates
• Global facilities
• Reception rule table
• Buffers
• Global error interrupts
• Channel functions

R01AN3109EJ0120 Rev.1.20 Page 14 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

(1) Configuring the CAN module after the MCU is reset
Initialize the whole CAN module after the MCU is reset.

Figure 6.1 Processing of Configuring the CAN Module after the MCU Reset

Start

End

The module exits the global stop mode and enters the global reset
mode (by setting the RSCAN0GCTR.GSLPR bit to 0)

The GRAMINIT flag of the
RSCAN0GSTS register is 0?

No
Yes

The module exits the channel stop mode and enters the channel reset
mode (by setting the RSCAN0CmCTR.CSLPR bit to 0)

Configuration of the RSCAN0GCFG register

Configuration of the RSCAN0CmCFG register

Configuration of the reception rules

Configuration of the buffers

Configuration of the RSCAN0GCTR register

Configuration of the RSCAN0CmCTR register

Configuration of the interrupts and related settings

The module enters the global operation mode (by setting the
RSCAN0GCTR.GMDC[1:0] bits to 00b)

The module enters the channel communication mode (by setting the
RSCAN0CmCTR.CHMDC[1:0] bits to 00b)

R01AN3109EJ0120 Rev.1.20 Page 15 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

6.2 CAN State (Mode) Transitions
The CAN module has four global modes to control the state of the module as a whole (its global modes) and four channel
modes to control the individual channels (the modes of each channel) as listed below.

Global modes:
• Global stop mode
• Global reset mode
• Global test mode
• Global operation mode

Channel modes:
• Channel stop mode
• Channel reset mode
• Channel halt mode
• Channel transfer mode

6.2.1 Global Modes
These modes involve control of the CAN module as a whole.

Figure 6.2 shows transitions between the global modes. Transition from one global mode to another may also affect the
current channel modes.

Figure 6.2 Transitions between Global Modes

Global stop mode
GSLPR = 0

GSLPR = 1

Global reset mode

GMDC[1:0] = 00b

GMDC[1:0] = 01b

Global operation
mode

Global test mode

G
M

D
C

[1:0] = 00b

G
M

D
C

[1:0] = 10b

GMDC[1:0] = 10b

GMDC[1:0] = 01b

MCU reset

R01AN3109EJ0120 Rev.1.20 Page 16 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

(1) Global stop mode
The clock for the CAN module stops in this mode so that power consumption can be reduced. Reading from the
CAN-related registers is possible but writing to them is not allowed while in this mode. The register values from
before the transition are retained.

(2) Global reset mode
The CAN module is configured as a whole in this mode. Making a transition to this mode from another mode
initializes part of the registers.

(3) Global test mode
Registers related to test functions are configured in this mode. Making a transition to this mode from another mode
stops communication with this module.

(4) Global operation mode
The whole CAN module is operational in this mode. Communications involving the CAN module proceed in this
mode.

R01AN3109EJ0120 Rev.1.20 Page 17 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

6.2.2 Channel Modes
The channels of the CAN module are controlled in these modes.

Figure 6.3 shows a transition diagram between channel modes.

Figure 6.3 Transition Diagram among Channel Modes

Channel stop mode

CSLPR = 0 CSLPR = 1

Channel reset mode

CHMDC[1:0] = 10b

CHMDC[1:0] = 01b

Channel halt mode

MCU reset

Reception
BOSTS = 0

TRMSTS = 0
RECSTS = 1
COMSTS = 1

 　
　　　

Transmission started

Transmission completed

CHMDC[1:0] = 00b CHMDC[1:0] = 01b

Arbitration lost

CHMDC[1:0] = 00b CHMDC[1:0] = 10b

Transmission
BOSTS = 0

TRMSTS = 1
RECSTS = 0
COMSTS = 1

Reception
completed

Idling
BOSTS = 0

TRMSTS = 0
RECSTS = 0
COMSTS = 1

Bus-off
BOSTS = 1

TRMSTS = 1
RECSTS = 0
COMSTS = 1

TEC > 255

Channel communication mode

Eleven consecutive
recessive bits have been
detected 128 times
(when BOM[1:0] = 00b)

Transmission started after
eleven consecutive recessive
bits have been detected 128
times (when BOM[1:0] = 00b)

SOF is
detected

R01AN3109EJ0120 Rev.1.20 Page 18 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

(1) Channel stop mode
The clock supplied to the channel currently selected is stopped in this mode. Therefore, power consumption can be
reduced. Reading from the CAN-related registers through the concerned channel is possible but writing to them is
not allowed while in this mode. The register values from before the transition are retained.

(2) Channel reset mode
The individual channels of the CAN module are configured in this mode. Making a transition to this mode from
another mode initializes part of the registers related to the currently selected channel.

(3) Channel halt mode
Registers related to test functions are configured in this mode. Making a transition to this mode from another mode
stops communication with this module by using the currently selected channel.

(4) Channel transfer mode
Communications involving the CAN module are done in this mode. The channels of this module are in any of the
following states while in this mode:

- Idle state
Neither reception nor transmission is in progress.

- Reception state
The channel is receiving a message from another node.

- Transmission state
The channel is sending a message.

- Bus-off state
The channel is cut off from the CAN bus.

6.2.3 Changes of Channel Mode Caused by Transitions between Global Modes
Transition from one global mode to another may change the current channel modes. Table 6.1 lists changes of channel
mode before and after entering each global mode.

Table 6.1 Changes of Channel Mode Caused by Transitions between Global Modes

Channel Mode Before
Entering Any Global
Mode

Corresponding Change of Channel Mode After Entering Each Global Mode

Global operation Global test Global reset Global stop

Channel transfer Channel transfer Channel halt Channel reset Transition not allowed

Channel halt Channel halt Channel halt Channel reset Transition not allowed

Channel reset Channel reset Channel reset Channel reset Channel stop

Channel stop Channel stop Channel stop Channel stop Channel stop

R01AN3109EJ0120 Rev.1.20 Page 19 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

6.3 Transfer Rate
The following settings determine the CAN module’s transfer rate.

• Bit time setting
• Calculation of the bit rate

6.3.1 CAN Bit Time Setting
In the CAN module of these microcontrollers, one-bit communication frame is divided into three segments as shown in
Figure 6.4. Two time segments (TSEG1 and TSEG2) are used to determine the sampling point. The user can set the
sampling time by changing the setting values for these segments.

The sampling time is set by using the time quantum (Tq), a fixed unit of time which can be obtained from the clock
frequency and the baud rate prescaler value input to the CAN module.

Descriptions of the segments in the above figure are given below.
• SS: Synchronization segment

This segment controls synchronization by monitoring the recessive to dominant edge within the interframe space.
The interframe space contains three subfields, which are intermission, suspend transmission, and bus idle. All nodes
are able to start transmission of data during the bus idle time.

• TSEG1: Time segment 1
This segment absorbs the physical delay on the CAN bus. Physical delay on the bus is twice the total of the
following three delays: a delay on the CAN bus, a delay in the input comparator, and a delay in the output driver.

• TSEG2: Time segment 2
This segment compensates phase errors due to clock frequency errors.

• SJW: Resynchronization jump width
This is a length to extend or reduce a time segment to compensate for an error in phase.

Figure 6.4 Structure of Bit Segments and A Sample Point

TSEG1 TSEG2

A case of sampling at 80%

Sampling point

SJW

SS

SJW

80%

R01AN3109EJ0120 Rev.1.20 Page 20 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

(1) Conditions for setting bit time
The ranges and limitations for the setting values for each segment are as follows.
Ranges of setting values:
• SS : fixed to 1Tq
• TSEG1 : from 4 to 16 Tq
• TSEG2 : from 2 to 8 Tq
• SJW : from 1 to 4 Tq
• SS + TSEG1 + TSEG2 : from 8 to 25 Tq
Limitations on the settings:
• TSEG1 > TSEG2 ≥ SJW (with the added condition that when SJW = 1, TSEG2 ≥ 2)

6.3.2 Calculating Transfer Rates
The transfer rate is determined by the CAN clock (fCAN) which is a clock source for the CAN module, the baud rate
prescaler value, and Tq count per bit time. Either one of the following clocks can be used as fCAN: the clock obtained by
dividing the CPU/peripheral hardware clock by 2 or the X1 clock.

Table 6.2 and Table 6.3 are examples of basic transfer rates and bit times.

Note: Figures in parentheses indicate baud rate prescaler values.

Table 6.2 Examples of Basic Transfer Rates

fCAN

Transfer Rate
40 MHz 32 MHz 24 MHz 16 MHz 8 MHz

1 Mbps 8 Tq (5)
20 Tq (2)

8 Tq (4)
16 Tq (2)

8 Tq (3)
12 Tq (2)
24 Tq (1)

8 Tq (2)
16 Tq (1)

8 Tq (1)

500 Kbps 8 Tq (10)
20 Tq (4)

8 Tq (8)
16 Tq (4)

8 Tq (6)
12 Tq (4)
24 Tq (2)

8 Tq (4)
16 Tq (2)

8 Tq (2)
16 Tq (1)

250 Kbps 8 Tq (20)
20 Tq (8)

8 Tq (16)
16 Tq (8)

8 Tq (12)
12 Tq (8)
24 Tq (4)

8 Tq (8)
16 Tq (4)

8 Tq (4)
16 Tq (2)

125 Kbps 8 Tq (40)
20 Tq (16)

8 Tq (32)
16 Tq (16)

8 Tq (24)
12 Tq (16)
24 Tq (8)

8 Tq (16)
16 Tq (8)

8 Tq (8)
16 Tq (4)

Table 6.3 Bit Time Example

1 Bit

Setting Value (Tq) Sampling Point (%)
* See Figure 6.4SS TSEG1 TSEG2 SJW

8 Tq 1 4 3 1 62.50

1 5 2 1 75.00

10 Tq 1 6 3 1 70.00

1 7 2 1 80.00

16 Tq 1 10 5 1 68.75

1 11 4 1 75.00

20 Tq 1 12 7 1 65.00

1 13 6 1 70.00

R01AN3109EJ0120 Rev.1.20 Page 21 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

6.3.3 Procedure for Setting CAN Bit Time and Transfer Rates
Figure 6.5 shows the procedure for setting the CAN bit time and transfer rate. Make these settings during CAN
configuration.

Figure 6.5 Procedure for Setting CAN Bit Time and Transfer Rates

Start

Return

Setting of the following values for the CAN bit time
• Baud rate prescaler value
• TSEG1
• TSEG2
• SJW

R01AN3109EJ0120 Rev.1.20 Page 22 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

6.4 Global Facilities
The following functionalities are configured for the CAN module as a whole. These are the settings common to both
channels.

• Transmission priority
• DLC checking
• DLC replacement
• Mirroring function
• CAN clock source
• Timestamp clock

6.4.1 Transmission Priority
This function sets priorities for transmission requests issued from two or more transmission buffers of the same channel.
The same priority setting applies to both channels; that is, priority cannot be configured per channel. Priority is judged
based on the following two options:

• ID-base
Messages stored in the buffers are transmitted in the order based on their IDs, according to the CAN bus arbitration
method. This option applies to messages in transmission buffers and transmission-and-reception FIFO buffers
which are set in transmission mode. The oldest message is highest in the order of priority for a reception-and-
transmission FIFO buffer. When a message is being transmitted from a transmission-and-reception FIFO buffer, the
next message in the buffer is judged to have the next highest priority. When the same message ID is set for two or
three of the buffers, the buffer with the lower or lowest number takes priority.

• Based on transmission buffer numbers
The message in the transmission buffer with the lowest number among the transmission buffers having a
transmission request takes priority. When the transmission-and-reception FIFO buffer is linked to transmission
buffers, priority is judged according to the buffer numbers of the buffers of the link destinations.

When messages are to be resent after arbitration losses or any errors, the priority order is judged again regardless of the
selection of the priority setting rules.

6.4.2 DLC Checking
Enable or disable the DLC (data length code) checking function during configuration.

When this function is enabled, DLC filtering is applied to the messages that have passed through the acceptance filter.
When this function is disabled, DLC filtering is not applied to those.

When DLC filtering is applied to a received message that is equal to or larger than the DLC value specified in the
reception rule, it passes through the filter. Meanwhile, when DLC filtering is applied to a received message that is
smaller than the DLC value specified in the reception rule, it does not pass through the filter. In this case, the message
will not be stored in the reception buffer or transmission-and-reception FIFO buffer, which means a DLC error has
occurred.

R01AN3109EJ0120 Rev.1.20 Page 23 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

6.4.3 DLC Replacement
Enable or disable the DLC replacement function during configuration. This function is enabled only when DLC checking
is enabled.

If a message has passed through DLC filtering while DLC replacement is enabled, the number of bytes corresponding to
the DLC value in the reception rule table instead of the DLC value of the received message is stored in the reception
buffer. If the size of the message exceeds the replacement value in the table, H’00 is stored in the corresponding bytes in
the reception buffer.

If a message passed DLC filtering while DLC replacement is disabled, the DLC value of the received message is stored
in the reception buffer. Here, all data bytes of the received message are stored in the buffer.

6.4.4 Mirroring Function
Enable or disable the mirroring function during configuration. When this function is enabled, a CAN node is able to
receive messages sent by itself.

When a CAN node receives messages sent from a different node, the reception rule without mirroring function is used
for processing data. When a CAN node receives messages sent by its own node, the reception rule with mirroring
function is used for processing data.

6.4.5 CAN Clock Source
The CAN clock (fCAN) is configured as a clock source for the CAN module. The following two clocks can be used as
the source.

• Clock obtained by frequency-dividing the CPU/peripheral hardware clock by 2
• X1 clock

Figure 6.6 illustrates the CAN clock generator.

Figure 6.6 CAN Clock Generator

Baud rate prescaller
1/(P+1)

Baud rate prescaller
1/(P+1)

fCAN

DCS

CANCLKA (24 MHz)

CANCLKB (25 MHz)

m = 0, 1: Channel number
BRP[9:0] Bits of the RSCAN0CmCFG register
DCS: Bits of the RSCAN0GCFG register
fCAN: CAN clock

0

1

BRP[9:0]

BRP[9:0]

P = 0 to 1023

fCANTQ0

fCANTQ1

Transfer rate =
fCAN

Baud rate prescaler division ratio × (Tq count of 1 bit time)

P = 0 to 1023

R01AN3109EJ0120 Rev.1.20 Page 24 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

6.4.6 Timestamp Clock
The settings of the clock source and division ratios used for the timestamp counter are described below.

The timestamp is a 16-bit free-running counter clock used for recording message receiving time. The value of the
timestamp counter is fetched at the StartOfFrame*1 timing of a message and then stored in a reception buffer or a FIFO
buffer together with the message ID and its data.

The clock used for the timestamp counter can be selected from the following:
• Clock obtained by frequency-dividing the CPU/peripheral hardware clock by 2
• CANi bit time clock
Note 1. StartOfFrame: A field indicating a start of a frame.

Figure 6.7 is a block diagram of the timestamp function.

Figure 6.7 Timestamp Function

Frequency divider Timestamp
counter (16 bits)

TSSS bit

TSBTCS[2:0] bits

TSBTCS[2:0], TSSS, TSP[3:0]: Bits of the RSCAN0GCFG register

000b

001b

TSP[3:0]

CAN0 bit time clock

CAN1 bit time clock

1/2PCLKD

R01AN3109EJ0120 Rev.1.20 Page 25 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

6.4.7 Global Facilities
Figure 6.8 shows the procedure for setting the global facilities. Make these settings during CAN configuration.

Figure 6.8 Setting Procedure for Global Facilities

Start

Return

Configuration of the following CAN global facilities:
• Transmission priority
• DLC checking
• DLC replacement
• Mirroring function
• Selection of the CAN clock source

(frequency-dividing fCLK by 2 or X1 clock)
• Timestamp clock
• Interval timer prescaler

R01AN3109EJ0120 Rev.1.20 Page 26 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

6.5 Reception Rule Table
Messages received by the CAN module are filtered based on the reception rule table.

According to the settings in the table, received data may be processed by the acceptance filter, DLC filter, routing,
labeling, or mirroring functions, before being stored in the specified buffer.

The reception rule table includes the following settings:
• Number of the reception rules
• Setting of the IDE, RTR, and ID bits
• Whether to apply reception rules or not
• Weather to mask the IDE, RTR, and ID bits or not
• DLC checking
• Labeling for reception rules
• Buffers for storing data

6.5.1 Number of Reception Rules
Number of reception rules are set for each channel. Up to 16 rules can be registered in one page.

In filtering process, received messages are checked with the reception rules from the minimum rule number. Filtering
stops when the bits for the target received messages match all the reception rules or when checking of all bits ended
without having any match with the reception rules. If no reception rules matched, the message is not stored in the
reception buffers or FIFO buffers.

6.5.2 Setting of the IDE, RTR, and ID Bits
Setting of the ID format (standard or extended), the frame format (data or remote), and the reception ID in each received
message is required.

6.5.3 Processing Using Reception Rules
Setting the GAFLLB bit of the RSCAN0GAFLIDj register to 0 allows data processing by using the reception rules for
the messages received from a different CAN node.

Setting the GAFLLB bit of the RSCAN0GAFLIDj register to 1 while mirroring function is enabled allows data
processing by using the reception rules for the messages received from its own node.

6.5.4 Settings to Mask the IDE, RTR, and ID Bits
The values set in the IDE mask, RTR mask, and ID mask bits are used to mask the values set in the corresponding IDE,
RTR, and ID bits. The bits not masked by these bits are enabled when acceptance filter is applied.

6.5.5 Values for DLC Checking
The DLC values set in the reception rule table are compared with that in the received message when DLC checking is
enabled.

R01AN3109EJ0120 Rev.1.20 Page 27 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

6.5.6 Reception Rule Labeling
Users can set a 12-bit information label for messages which have passed through the filter. The label is attached to the
message when it is stored in the buffer. The label may be set as described and labeling may also be handled under
program control. For example, the channel through which messages with the same ID in a reception FIFO buffer were
received can be identified by their labels by setting the channel number in the label.

6.5.7 Buffer for Storing Messages
Messages passed through the DLC filtering are stored in the buffers specified from the followings.

• Reception buffer n (a single buffer is designated for a single reception rule)
• Reception FIFO buffer m
• Transmission-and-reception FIFO buffer k in reception mode

Up to two buffers are selected for a single reception rule but only one buffer can be designated for storing the messages.

R01AN3109EJ0120 Rev.1.20 Page 28 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

6.5.8 Usage Example of Reception Rule
The following are usage examples of the reception rules.

[Example 1]

Required settings for the registers for receiving the message with the following conditions are given below.
• ID format : standard ID
• Message format : data frames
• Mirroring function : disabled (receiving messages from a different CAN node)
• Reception IDs : 120h, 121h, 122h, 123h
• DLC : the DLC value of the reception message is equal to or greater than 6
• Labeling : 010h
• Destination buffers : reception buffer 3 and reception FIFO buffers 0 and 1

Reception Rule ID Register (RSCAN0GAFLIDj)

Reception Rule Mask Register (RSCAN0GAFLMj)

Reception Rule Pointer 0 Register (RSCAN0GAFLP0j)

Reception Rule Pointer1 Register (RSCAN0GAFLP1j)

 

Target Reception ID GAFLIDE GAFLRTR GAFLLB GAFLID[28:0]

120h 0 0 0 B'- --- ---- ---- ---- -001 0010 0000

121h B'- --- ---- ---- ---- -001 0010 0001

122h B'- --- ---- ---- ---- -001 0010 0010

123h B'- --- ---- ---- ---- -001 0010 0011

GAFLIDEM GAFLRTRM GAFLIDM[28:0]

1 1 B'0 0000 0000 0000 0000 0111 1111 1100

GAFLDLC[3:0] GAFLPTR[11:0] GAFLRMV GAFLRMDP[6:0]

6 010h 1 3

RSCAN0GAFLP1j[17:0] GAFLFDPr[7:0]

B'00 0000 0000 0000 0000 B'0000 0011

R01AN3109EJ0120 Rev.1.20 Page 29 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

[Example 2]

Required settings for the registers for receiving the message with the following conditions are given below.
• ID format : standard ID
• Message format : remote frames, data frames
• Mirroring function : disabled (receiving messages from a different CAN node)
• Reception ID : 130h
• DLC : DLC is disabled
• Labeling : 130h
• Destination buffers : reception FIFO buffer 0, transmission-and-reception FIFO buffer 0

Reception Rule ID Register (RSCAN0GAFLIDj)

Reception Rule Mask Register (RSCAN0GAFLMj)

Reception Rule Pointer 0 Register (RSCAN0GAFLP0j)

Reception Rule Pointer1 Register (RSCAN0GAFLP1j)

Target Reception ID GAFLIDE GAFLRTR GAFLLB GAFLID[28:0]

130h (data frames) 0 0 0 B'- --- ---- ---- ---- -001 0011 0000

130h (remote frames) 0 1 0 B'- --- ---- ---- ---- -001 0011 0000

GAFLIDEM GAFLRTRM GAFLIDM[28:0]

1 0 B'0 0000 0000 0000 0000 0111 1111 1111

GAFLDLC[3:0] GAFLPTR[11:0] GAFLRMV GAFLRMDP[6:0]

0 130h 0 0

RSCAN0GAFLP1j[17:0] GAFLFDPr[7:0]

B'00 0000 0000 0000 0001 B'0000 0001

R01AN3109EJ0120 Rev.1.20 Page 30 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

6.5.9 Procedure for Setting the Reception Rule Table
Figure 6.9 shows the setting flow of the reception rule table. Make these settings during CAN configuration.

Figure 6.9 Setting Procedure for the Reception Rule Table

Start

Return

Select the page number to be configured by the AFLPN[4:0] bits of
the RSCAN0GAFLECTR register

Has configuration for all the pages to be used finished?
No

Yes

Configure the reception rules by the RSCAN0GAFLIDj,
RSCAN0GAFLMj, RSCAN0GAFLP0j, and RSCAN0GAFLP1j

registers

Disable writing to the reception rule table by setting
the AFLDAE bit of the RSCAN0GAFLECTR register to 0

j = 15?
No

Yes

Set the number of the reception rules for individual channels
by the RNCm[7:0] bits of the RSCAN0GAFLCFG0 or

RSCAN0GAFLCFG1 register

Enable writing to the reception rule table by setting
the AFLDAE bit of the RSCAN0GAFLECTR register to 1

R01AN3109EJ0120 Rev.1.20 Page 31 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

6.6 Buffers and FIFO Buffers
Configuration of the following buffers and FIFO buffers are required for sending and receiving messages.

• Reception buffers
• Reception FIFO buffers
• Transmission-and-reception FIFO buffers
• Transmission buffers
• Transmission history buffers

Figure 6.10 shows a buffer structure.

Figure 6.10 Buffer Structure

Reception buffer 0

:

Reception buffer 31
Reception FIFO buffer 0
Reception FIFO buffer 1
Reception FIFO buffer 2
Reception FIFO buffer 3
Reception FIFO buffer 4
Reception FIFO buffer 5
Reception FIFO buffer 6
Reception FIFO buffer 7

Transmission buffer 15

Transmission-and-reception FIFO buffer 0
Transmission-and-reception FIFO buffer 1
Transmission-and-reception FIFO buffer 2

Transmission buffer 0

Transmission-and-reception FIFO buffer 0
Transmission-and-reception FIFO buffer 1
Transmission-and-reception FIFO buffer 2

:

Transmission buffer 15

Transmission buffer 0

:

Reception buffers

Reception FIFO buffers

Transmission-and-reception
FIFO buffers

Transmission buffers

CAN0

CAN1

CAN0

CAN1

32 fixed buffers

Up to 160 buffers

R01AN3109EJ0120 Rev.1.20 Page 32 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

6.6.1 Reception Buffer
The number of buffers to be used as reception buffers is specified in the range from 0 to 31. No reception buffer can be
used if the specified number of the reception buffers is 0. Interrupt settings are not needed as there are no interrupts
related to reception buffers.

6.6.2 Reception FIFO Buffer
The following settings are required to use the reception FIFO buffers:

• The number of buffers
• Enabling and disabling of interrupts and setting of interrupt sources

(1) The number of buffers
The number of buffers to be used as reception FIFO buffers is specified in the range from 0 to 8.
If no reception FIFO buffers are to be used, set the reception FIFO buffer enable bit (RFE) and the reception FIFO
buffer depth configuration bits (RFDC[2:0]) of the reception FIFO buffer configuration/control register
(RSCAN0RFCCx) to 0 and 000, respectively.

(2) Enabling and disabling interrupts and setting interrupt sources
Enable or disable the reception FIFO interrupts during configuration. When the interrupt is enabled, the interrupt
sources are selected from the following.
• An interrupt is generated (the RFIM bit of the RSCAN0RFCCx register is set to 0) when the conditions set in the

RFIGCV[2:0] bits of the reception FIFO buffer configuration/control register (RSCAN0RFCCx) met.
• An interrupt is generated (the RFIM bit of the RSCAN0RFCCx register is set to 1) every time message reception

completes.

R01AN3109EJ0120 Rev.1.20 Page 33 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

6.6.3 Transmission-and-Reception FIFO Buffer
The following settings are required to use the transmission-and-reception FIFO buffers.

• The number of the buffers
• Enabling and disabling of interrupts and setting of interrupt sources
• Mode of the transmission-and-reception FIFO buffer
• Interval timer counter (when used in transmission mode)
• Transmission buffer link (when used in transmission mode)

(1) The number of buffers
The number of buffers to be used as the transmission-and-reception FIFO buffers is specified in the range from 0 to
5, up to three for each channel (CAN0: 0 to 2, CAN1: 3 to 5).
If no transmission-and-reception FIFO buffers are to be used, set the transmission-and-reception FIFO buffer enable
bit (CFE) and the transmission-and-reception FIFO buffer depth configuration bits (CFDC[2:0]) of the
transmission-and-reception FIFO buffer configuration/control register (RSCAN0CFCCk) to 0 and 000,
respectively.

(2) Enabling and disabling interrupts and setting interrupt sources
Transmission-and-reception FIFO interrupts are enabled and disabled. The interrupt sources for each mode
(transmission or reception) are shown below.

Generation of a transmission-and-reception FIFO transmission interrupt triggers generation of the following CANi
transmission interrupt sources:
• CANi transmission completion interrupt
• CANi transmission abort interrupt
• CANi transmission-and-reception FIFO transmission completion interrupt
• CANi transmission history interrupt

(3) Mode of the transmission-and-reception FIFO buffer
Transmission-and-reception FIFO buffers are used in either the reception mode or the transmission mode.
• Reception mode

In this mode, the buffer serves as a reception FIFO buffer.
• Transmission mode

In this mode, the buffer serves as a transmission FIFO buffer.

Mode CFIM Bit Interrupt Source

Reception 0 A FIFO reception interrupt request is issued when the number of received messages
reached the value set in the CFIGCV[2:0] bits.

1 A FIFO reception interrupt request is issued every time message reception completes.

Transmission 0 A FIFO transmission interrupt request is issued when the buffer becomes empty after
completion of message transmission.

1 A FIFO transmission interrupt request is issued every time message transmission
completes.

R01AN3109EJ0120 Rev.1.20 Page 34 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

(4) Interval timer counter (when used in transmission mode)
The source for the counter and transmission interval are specified. The counter is enabled only in transmission
mode.

(5) Transmission buffer link (when used in transmission mode)
A transmission-and-reception FIFO buffer is linked to a transmission buffer. Linking is enabled only in transmission
mode.

6.6.4 Transmission Buffers
Enable or disable transmission completion interrupts for each transmission buffer during configuration. A single channel
contains sixteen transmission buffers which are used as transmission buffers or the buffers linked to transmission-and-
reception FIFO buffers in transmission mode.

Generation of a transmission completion interrupt triggers generation of the following CANi transmission interrupt
sources:

- CANi transmission completion interrupt
- CANi transmission abort interrupt
- CANi transmission-and-reception FIFO transmission completion interrupt
- CANi transmission history interrupt

6.6.5 Transmission History Buffers
The following settings are required to use a transmission history buffer. A single channel contains one transmission
history buffer which can hold history data on sixteen transmissions.

• Buffers for which transmission histories are to be stored are selectable
• Enabling and disabling of interrupts and setting of interrupt sources

(1) Buffers for which transmission histories are to be stored
The buffers (transmission source) for which transmission history data will be stored in the transmission history
buffer are selected from the following two options. It is also possible to select whether or not to store the
transmission history at each transmission.
• Transmission-and-reception FIFO buffers
• Transmission buffers and transmission-and-reception FIFO buffers

(2) Enabling and disabling interrupts and setting interrupt sources
Enable or disable transmission history interrupts during configuration. The interrupt sources are shown below.

- CANi transmission completion interrupt
- CANi transmission abort interrupt
- CANi transmission-and-reception FIFO transmission completion interrupt
- CANi transmission history interrupt

R01AN3109EJ0120 Rev.1.20 Page 35 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

6.6.6 Procedures for Setting Buffers
Figure 6.11 shows a procedure for setting the reception buffers and reception FIFO buffers, and Figure 6.12 shows a
procedure for setting the transmission-and-reception FIFO buffers, transmission buffers, and transmission history
buffers.

Make these settings during CAN configuration.

Figure 6.11 Procedure for Setting the Reception Buffers and Reception FIFO Buffers

Start

Return

Following configurations for the reception FIFO buffer m:
• Sources for the reception FIFO buffer interrupt
• Enabling and disabling of the reception FIFO buffer interrupt
• Number of the buffers

Has configuration of all buffers of reception
FIFO buffer completed? No

Yes

Configuration of the number of reception buffers

R01AN3109EJ0120 Rev.1.20 Page 36 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

Figure 6.12 Procedure for Setting the Transmission-and-Reception FIFO Buffers, Transmission Buffers, and
Transmission History Buffers

Start

Return

Following configurations for the CANi transmission-and-reception FIFO buffer k:
• Number of the buffers
• Mode
• Interrupt sources for the buffers
• Enabling or disabling of the transmission/reception FIFO buffer reception

interrupt
• Enabling or disabling of the transmission/reception FIFO buffer transmission

interrupt
• Interval timer
• Linkage to the transmission buffers

Has configuration of all buffers of transmission-
and-reception FIFO buffer completed? No

Yes

Following configurations for the CANi transmission history buffer:
• Buffers whose transmission history will be stored
• Sources for the transmission history buffer interrupt
• Enabling and disabling of the transmission history buffer

Configuration of enabling or disabling of the transmission completion interrupt

R01AN3109EJ0120 Rev.1.20 Page 37 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

6.7 Global Error Interrupt
Settings for the global error interrupt is described below. The CAN module outputs an interrupt request for the interrupt
enabling bit which is being enabled. Generation of interrupts also depends on the settings of the interrupt control
registers of the interrupt controller.

6.7.1 Global Error Interrupts
There are following sources for global error interrupts.

• DLC checking error
• FIFO message loss
• Transmission history buffer overflow

(1) DLC checking error
In DLC checking, this error is detected if the DLC value of the received message, which has passed through the
acceptance filter, is smaller than that of the reception rule.

(2) FIFO message is lost
This is detected if storing of a further received message is attempted while the reception FIFO buffer or the
transmission-and-reception FIFO buffer is full.

(3) Transmission history buffer overflow
This is detected if storing of further transmission history is attempted while the transmission history buffer is full.

6.7.2 Procedure for Setting the Global Error Interrupt
Figure 6.13 shows the procedure for setting the global error interrupts. Make these settings during CAN configuration.

 

Figure 6.13 Procedure for Setting the Global Error Interrupt

Start

Return

Following configurations for the CAN global error interrupt:
• Enabling or disabling of the DLC checking error interrupt
• Enabling or disabling of the FIFO message lost interrupt
• Enabling or disabling of the transmission history buffer

overflow interrupt

R01AN3109EJ0120 Rev.1.20 Page 38 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

6.8 Channel Functions
Configure the following features provided for the individual channels.

• Channel error interrupt
• Transmission abort interrupt
• Bus-off recovery mode
• Error display mode
• Transfer test mode

6.8.1 CANi Error Interrupts
The CANi error interrupts are enabled or disabled. The sources for these channel error interrupts are shown below.

• Bus error
• Error warning
• Error passive
• Bus-off entry
• Bus-off recovery
• Overload frame transmission
• Bus lockup
• Arbitration lost

(1) Bus error interrupt
This interrupt is generated on detection of any of the followings:
• A form error is detected in the ACK delimiter.

The ADERR bit of the channel error flag register (RSCAN0CmERFL) is set to 1.
• A recessive bit is detected although a dominant bit has been transmitted.

The B0ERR bit of the channel error flag register (RSCAN0CmERFL) is set to 1.
• A dominant bit is detected although a recessive bit has been transmitted.

The B1ERR bit of the channel error flag register (RSCAN0CmERFL) is set to 1.
• A CRC error is detected.

The CERR bit of the channel error flag register (RSCAN0CmERFL) is set to 1.
• An ACK error is detected.

The AERR bit of the channel error flag register (RSCAN0CmERFL) is set to 1.
• A form error is detected.

The FERR bit of the channel error flag register (RSCAN0CmERFL) is set to 1.
• A stuff error is detected.

The SERR bit of the channel error flag register (RSCAN0CmERFL) is set to 1.

(2) Error warning interrupt
This interrupt is generated when an error warning state, where the value in the reception error counter or the
transmission error counter exceeds 95, is first detected.

(3) Error passive interrupt
This interrupt is generated when an error passive state, where the value in the reception error counter or the
transmission error counter exceeds 127, is first detected.

R01AN3109EJ0120 Rev.1.20 Page 39 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

(4) Bus-off entry interrupt
This interrupt is generated on detection of a bus-off state, where the value in the transmission error counter exceeds
255. Entering a bus-off state as a result of setting the bus-off recovery mode to “transmission to channel halt mode
at bus-off state” also causes this interrupt.

(5) Bus-off recovery interrupt
This interrupt is generated on detection of recovery from the bus-off state after eleven consecutive recessive bits
have been detected 128 times.

(6) Overload frame transmission interrupt
This interrupt is generated on detection of a condition for transmitting the overload frame in reception or
transmission.

(7) Bus lockup interrupt
This interrupt is generated on detection of the CAN bus being locked up, which is determined by the detection of 32
consecutive dominant bits on the CAN bus during channel transfer.

(8) Arbitration lost interrupt
This interrupt is generated on detection of a case of a loss in arbitration.

R01AN3109EJ0120 Rev.1.20 Page 40 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

6.8.2 CANi Transmission Abort Interrupts
Enable or disable transmission abort interrupts during configuration. When this interrupt is enabled, it is generated when
completion of transmission abort is detected.

Generation of a transmission abort interrupt triggers generation of the following CANi transmission interrupts:
• CANi transmission completion interrupt
• CANi transmission abort interrupt
• CANi transmission-and-reception FIFO transmission completion interrupt
• CANi transmission history interrupt

6.8.3 Bus-Off Recovery Mode
Behavior of the CAN module in bus-off recovery mode is selected by the BOM[1:0] bits of the channel control register
(RSCAN0CmCTR) as follows.

• 00: The CAN module behaves in compliance with the ISO11898-1 specifications.
• 01: The CAN module makes a transition to the channel halt mode as it enters the bus-off state.
• 10: The CAN module makes a transition to the channel halt mode as it exits the bus-off state.
• 11: The CAN module makes a transition to the channel halt mode by a request from the program during bus-off

state

6.8.4 Error Display Modes
Content of the errors on the CAN bus are displayed on the corresponding bits (bits 14 to 8) of the channel error flag
register (RSCAN0CmERFL). The display mode of the errors is selected from the following.

• Displays the first error only (ERRD bit of the RSCAN0CmCTR register is 0)
In this mode, only the flag for the first error event is set to 1. If two or more errors occur in the first error event, all
the flags of the detected errors are set to 1.

• Displays all errors (ERRD bit of the RSCAN0CmCTR register is 1)
In this mode, the flags for all error events are set to 1 regardless of the order of their occurrence.

6.8.5 Transfer Test Mode
A transfer test mode is selectable. The test functions are run by the CAN transceiver or the MCU for self-diagnosis of
CAN communications and of the RAM.

R01AN3109EJ0120 Rev.1.20 Page 41 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

6.8.6 Procedures for Setting the Channel Functions
Figure 6.14 shows a procedure for setting the channel functions. Make these settings during CAN configuration.

Figure 6.14 Procedure for Setting the Channel Functions

Start

Return

Following configurations for the CANi channel functions:
• Enabling or disabling of the following channel error interrupts;
 Buss error interrupt,
 Error warning interrupt,
 Error passive interrupt,
 Bus-off entry interrupt,
 Bus-off recovery interrupt,
 Overload frame transmission interrupt,
 Bus lockup interrupt,
 Arbitration lost interrupt
• Transmission abort interrupt
• Bus-off recovery mode
• Error display mode
• Communications test mode

R01AN3109EJ0120 Rev.1.20 Page 42 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

6.9 Configurations Required for Each CAN State (Mode)
Configurations required at each CAN state (mode) are shown in the tables below.

Note: “R”: setting is required, “N/R”: setting is not required, “N/A”: setting is not allowed.

6.9.1 CAN State (Mode) Transition

6.9.2 Global Facilities

6.9.3 Transfer Rate

Configuration Processing

State of the CAN Module

After MCU reset
After transition to
global reset mode

After transition to
channel reset mode

After transition to
channel halt mode

Transition between global modes R R N/A N/A

Transition between channel modes R R R R

Configuration Processing

State of the CAN Module

After MCU reset
After transition to
global reset mode

After transition to
channel reset mode

After transition to
channel halt mode

Transmission priority R N/R N/A N/A

DLC checking R N/R N/A N/A

DLC replacement R N/R N/A N/A

Mirroring function R N/R N/A N/A

Clock R N/R N/A N/A

Timestamp clock R N/R N/A N/A

Interval timer prescaler R N/R N/A N/A

Configuration Processing

State of the CAN Module

After MCU reset
After transition to
global reset mode

After transition to
channel reset mode

After transition to
channel halt mode

Bit time R N/R N/R N/R

Transfer rate R N/R N/R N/R

R01AN3109EJ0120 Rev.1.20 Page 43 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

6.9.4 Reception Rule Table

6.9.5 Buffers

6.9.6 Global Error Interrupts

6.9.7 Channels

Configuration Processing

State of the CAN Module

After MCU reset
After transition to
global reset mode

After transition to
channel reset mode

After transition to
channel halt mode

Reception rule table R N/R N/A N/A

Configuration Processing

State of the CAN Module

After MCU reset
After transition to
global reset mode

After transition to
channel reset mode

After transition to
channel halt mode

Reception buffers R N/R N/A N/A

Reception FIFO buffers R N/R N/A N/A

Transmission-and-reception FIFO
buffers

R N/R N/R N/R

Transmission buffers R N/R N/R N/R

Transmission history buffers R N/R N/R N/R

Configuration Processing

State of the CAN Module

After MCU reset
After transition to
global reset mode

After transition to
channel reset mode

After transition to
channel halt mode

Global error interrupts R N/R N/A N/A

Configuration Processing

State of the CAN Module

After MCU reset
After transition to
global reset mode

After transition to
channel reset mode

After transition to
channel halt mode

Channel functions R N/R N/R N/R

R01AN3109EJ0120 Rev.1.20 Page 44 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

7. Reception

7.1 Receiving Functions
CAN messages are received by using the following reception types. See the subsequent sections for the details on each
type.

• Reception by using the reception buffers
• Reception by using the reception FIFO buffers
• Reception by using the transmission-and-reception FIFO buffers

7.2 Reception by Using the Reception Buffers
Reception buffer 0 to n + 1 are shared by both channels. Data (message) in a reception buffer will be overwritten when a
new message is stored in the same reception buffer. Thus, the latest received data can be read. No interrupt is generated
on reception of a message by a reception buffer.

Once storing of message to a reception buffer begins, the RMNS bit of the reception buffer new data register 0
(RSCAN0RMND0) is set to 1, which means reception buffer n contains a new message. Then, the data can be read from
the reception buffer ID register (RSCAN0RMIDq), the reception buffer pointer register (RSCAN0RMPTRq), the
reception buffer data field 0 register (RSCAN0RMDF0q), and the reception buffer data field 1 register
(RSCAN0RMDF1q).

R01AN3109EJ0120 Rev.1.20 Page 45 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

7.2.1 Procedures for Reading from a Reception Buffer
Figure 7.1 shows a procedure for reading from a reception buffer.

Figure 7.1 Procedure for Reading from a Reception Buffer

Start

Return

Clear the reception completion flag for the concerned reception buffer
to 0.

Is the
reception completion flag for the

concerned buffer 0? No

Yes

Read the following information from the reception buffer:
• The IDE, RTR, and ID bits
• The DLC value
• Label information
• The timestamp value
• Reception data

Has any reception buffer received a new message?
No

Yes

Was the reception data
overwritten while reading from the buffer?

(Is the concerned reception
completion flag set to 1?) No

Yes

User processing when overwriting of a message is detected

R01AN3109EJ0120 Rev.1.20 Page 46 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

7.3 Reception by Using the Reception FIFO Buffers
Eight reception FIFO buffers are shared by both channels. Each reception FIFO buffer can retain messages up to the
number equal to the number of reception buffers that each reception FIFO buffer has.

Once the received message has been stored in the reception FIFO buffer, the value of the corresponding message count
display counter (the RFMC[7:0] bits in the reception FIFO buffer status register (RSCAN0RFSTSx)) is incremented.

The received message is read from the reception FIFO buffer access ID register (RSCAN0RFIDx), the reception FIFO
buffer access pointer register (RSCAN0RFPTRx), the reception FIFO buffer access data field 0 register
(RSCAN0RFDF0x), and the reception FIFO buffer access data field 1 register (RSCAN0RFDF1x).

When the value of the message count display counter matches the number of messages that can be stored in a single
reception FIFO buffer (a value set by the RFDC bit of the RSCAN0RFCCx register), the buffer is full (the RFFL bit of
the RSCAN0RFSTSx register is set to 1).

When all the messages have been read from the reception FIFO buffer, it is empty (the RFEMP bit of the
RSCAN0RFSTSx register is set to 1).

R01AN3109EJ0120 Rev.1.20 Page 47 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

7.3.1 Procedure for Reading from the Reception FIFO Buffers
Figure 7.2 shows a procedure for reading from a reception FIFO buffer.

Figure 7.2 Procedure for Reading from a Reception FIFO Buffer

Start

Return

Was a message loss detected?
No

Yes

Update the pointer to the reception FIFO buffer

Clear the reception FIFO message lost flag

Are there any unread messages
in the reception FIFO buffer?

No
Yes

Read the following information from the reception FIFO buffer:
• The IDE, RTR, and ID bits
• The DLC value
• Label information
• The timestamp value
• Reception data

User processing when a message loss is detected

R01AN3109EJ0120 Rev.1.20 Page 48 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

7.3.2 Handling of Reception FIFO-Related Interrupts
(1) Handling of reception FIFO interrupt

While this interrupt is enabled, it is generated when the conditions set by the RFIM bit of the RSCAN0RFCCx
register are met.
Even if the reception FIFO buffers are disabled while an interrupt request is present (the RFIF bit of the
RSCAN0RFSTSx register is set to 1), the interrupt request flag (the RFIR flag) is not automatically cleared to 0, so
clear it by a program.
Each reception FIFO buffer is enabled and disabled individually by the RFIE bit of the RSCAN0RFCCx register.
The sources for this interrupt are shown below.
• An interrupt request is issued when the condition selected by the CFIGCV[2:0] bits of the RSCAN0RFCCx

register met (this source is selected by setting the RFIM bit of the RSCAN0RFCCx register to 0).
• An interrupt request is issued every time reception of message completes (this source is selected by setting the

RFIM bit of the RSCAN0RFCCx register to 1)

All the interrupt request flags for the reception FIFO interrupts which you want to use need to be set to 0 while the
corresponding interrupt enable bits are being set to 1.

(2) Handling of global error interrupt
While this interrupt is enabled, it is generated on detection of a message loss in the reception FIFO buffer. This
interrupt is enabled and disabled collectively for the whole CAN module by using the MEIE bit of the
RSCAN0GCTR register.

R01AN3109EJ0120 Rev.1.20 Page 49 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

7.4 Reception by Using the Transmission-and-Reception FIFO Buffers
The transmission-and-reception FIFO buffers are used either in reception mode or transmission mode. This section
describes the reception mode only.

Each channel has three dedicated transmission-and-reception FIFO buffers. In reception mode, these buffers serve
similarly as reception FIFO buffers and can retain messages up to the number equal to the number of the buffers that each
transmission-and-reception FIFO buffer has.

Once the received message has stored in the transmission-and-reception FIFO buffer, the value of the corresponding
message count display counter (the CFMC[7:0] bits in the transmission-and-reception FIFO buffer status register
(RSCAN0CFSTSk)) is incremented.

The received message is read from the transmission-and-reception FIFO buffer access ID register (RSCAN0CFIDk), the
transmission-and-reception FIFO buffer access pointer register (RSCAN0CFPTRk), the transmission-and-reception
FIFO buffer access data field 0 register (RSCAN0CFDF0k), and the transmission-and-reception FIFO buffer access data
field 1 register (RSCAN0CFDF1k). The data are sequentially read from each FIFO on a first-in, first-out basis.

When the value of the message count display counter matches the number of messages that can be stored in a single
transmission-and-reception FIFO buffer (a value set by the CFDC[2:0] bits of the RSCAN0CFCCk register), the buffer is
full (the CFFLL flag of the RSCAN0CFSTSk register is set to 1).

When all the messages have been read from the transmission-and-reception FIFO buffer, it is empty and the CFEMP bit
of the RSCAN0CFSTSk register is set to 1.

R01AN3109EJ0120 Rev.1.20 Page 50 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

7.4.1 Procedure for Reading from the Transmission-and-Reception FIFO Buffers
Figure 7.3 shows a procedure for reading from the transmission-and-reception FIFO buffers.

Figure 7.3 Procedure for Reading from the Transmission-and-Reception FIFO Buffers

Start

Return

Was a message loss detected?

No

Yes

Increment the pointer to the transmission-and-reception FIFO buffer

Clear the transmission-and-reception FIFO message lost flag

Are there any unread messages in the
transmission-and-reception FIFO buffer?No

Yes

Read the following information from the transmission-and-reception FIFO buffer:
• The IDE, RTR, and ID bits
• The DLC value
• Label information
• The timestamp value
• Reception data

User processing when a message loss is detected

R01AN3109EJ0120 Rev.1.20 Page 51 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

7.4.2 Handling of Transmission-and-Reception FIFO Buffer-Related Interrupts (When
Used in Reception Mode)

(1) Handling of transmission-and-reception FIFO reception completion interrupt
While this interrupt is enabled, it is generated when the conditions set by the CFIM bit of the RSCAN0CFCCk
register are met.
Even if the transmission-and-reception FIFO buffers are disabled while an interrupt request is present (the CFRXIF
bit of the RSCAN0CFSTSk register is set to 1), the interrupt request flag (the CFTXIF flag) is not automatically
cleared to 0, so clear it by a program.
Each transmission-and-reception FIFO buffer is enabled and disabled individually by the CFRXIE bit of the
RSCAN0CFCCk register. The sources for this interrupt are shown below.
• An interrupt request is issued when the condition selected by the CFIGCV[2:0] bits of the RSCAN0CFCCk

register met (this source is selected by setting the CFIM bit of the RSCAN0CFCCk register to 0).
• An interrupt request is issued every time reception of message completes (this source is selected by setting the

CFIM bit of the RSCAN0CFCCk register to 1)

All the interrupt request flags for the transmission-and-reception FIFO interrupts which you want to use need to be
set to 0 while the corresponding interrupt enable bits are being set to 1.

(2) Handling of global error interrupt
While this interrupt is enabled, it is generated on detection of a message loss in the transmission-and-reception
FIFO buffer. This interrupt is enabled and disabled collectively for the whole CAN module by using the MEIE bit of
the RSCAN0GCTR register.

R01AN3109EJ0120 Rev.1.20 Page 52 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

8. Transmission

8.1 Transmitting Functions
CAN messages are transmitted by using the following transmission types. See the subsequent sections for the details on
each type.

• Transmission by using the transmission buffers
• Transmission by using the transmission-and-reception FIFO buffers
• Transmission by using the transmission history buffers

8.2 Transmission by Using the Transmission Buffers
Transmission of data frames and remote frames are possible by using the transmission buffers. A single channel contains
sixteen transmission buffers which are used as transmission buffers or the buffers for linking to the transmission-and-
reception FIFO buffers.

The transmission buffers are provided with the following features.
• Message transmission
• Transmission abort
• One-shot transmission (disables retransmission)

8.2.1 Message Transmission
This is a function to transmit data frames or remote frames. Issuing a transmission request for the target transmission
buffer (by setting the TMTR bit of the RSCAN0TMCp register to 1) enables transmission of the message. The result of
transmission is read from the TMTRF[1:0] flag of the RSCAN0TMSTSp register as follows:

• Transmission has been completed without a request for aborting transmission (TMTRF[1:0] flag is B’10)
• Transmission has been completed with a request for aborting transmission (TMTRF[1:0] flag is B’11)

Each transmission completion interrupt is enabled and disabled individually by the TMIEp bit of the RSCAN0TMIEC0
register.

R01AN3109EJ0120 Rev.1.20 Page 53 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

8.2.2 Procedure for Transmitting Messages from the Transmission Buffer
Figure 8.1 shows a procedure for transmitting messages from the transmission buffer.

Figure 8.1 Procedure for Transmitting a Message from the Transmission Buffer

Start

Return

Does the transmission buffer
status register indicate H'00?

No

Yes

Issue a transmission request for the concerned transmission buffer
control register

Store the following information in the transmission buffer:
• The IDE, RTR, and ID bits
• Whether storing of the transmission history is enabled or disabled
• The DLC value
• Label information
• Transmission data

Write B'00 to the transmission result flag for the concerned
transmission buffer

R01AN3109EJ0120 Rev.1.20 Page 54 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

8.2.3 Transmission Abort
Aborting transmission refers to the discarding of a message for which transmission was being retried.

When two or more nodes begin transmission at the same time, the nodes containing the messages with lower-priority
CAN IDs lose in arbitration and cannot complete transmission unless they subsequently win in arbitration or retry
transmission while the CAN bus is idle. Messages for which transmission is being retried are cancelled by aborting
transmission.

This function can be used to set up a time limit for the transmission of a message or for the transmission of a message as
urgent (i.e., by giving it a higher priority).

The transmission request which has been issued for a transmission buffer (by setting the TMTRM bit of the
RSCAN0TMSTSp register to 1) will be cancelled by issuing a request for aborting the transmission to the concerned
buffer (by setting the TMTAR bit of the RSCAN0TMCp register to 1).

Once a request to abort transmission is issued, transmission of the message concerned is aborted at the following times
depending on its state.

The message for which transmission is in progress or which has the second highest priority of transmission:
• When a loss in arbitration occurs
• When an error occurs

Other than above:
• On issuing of an explicit request to abort transmission

Once the transmission abort is completed, the TMTRF[1:0] flag of the RSCAN0TMSTSp register is set to B’01 and the
transmission request is cancelled (the TMTRM bit is cleared to 0).

After a request for aborting the transmission is issued for a message for which transmission is in progress or which has
the second highest priority of transmission, if the concerned message is successfully transmitted without arbitration
losses or any errors, the result of transmission is read as follows.

• Transmission has been completed with a request for aborting the transmission (TMTRF[1:0] flag is set to B’11)

8.2.4 Procedure for Aborting Message Transmission
Figure 8.2 shows a procedure for aborting message transmission.

Figure 8.2 Procedure for Aborting Message Transmission

Start

Return

Issue a request for aborting transmission
for the target transmission buffer

R01AN3109EJ0120 Rev.1.20 Page 55 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

8.2.5 One-Shot Transmission Function
By enabling this function (by setting the TMOM bit of the RSCAN0TMCp register to 1), only a single transmission is
attempted for the message for which a transmission request has been issued. This means that transmission will not be
retried after an arbitration loss or any errors.

The result of one-shot transmission is read from the TMTRF[1:0] flag of the RSCAN0MSTSp register as follows.

At successful transmission:
• Transmission has been completed without a request for aborting the transmission (TMTRF[1:0] flag is B’10)
• Transmission has been completed with a request for aborting the transmission (TMTRF[1:0] flag is B’11)

At occurrence of an arbitration loss or an error:
• Transmission abort has been completed (TMTRF[1:0] flag is set to B’01)

8.2.6 Procedure for Transmission by Using the One-Shot Transmission Function
Figure 8.3 shows a procedure for transmission by using the one-shot transmission function.

Figure 8.3 Procedure for Transmission by Using the One-Shot Transmission Function

Start

Return

Does the transmission buffer
status register indicate H’00?

No

Yes

Enable one-shot transmission and set the transmission request flag

Store the following information in the transmission buffer:
• The IDE, RTR, and ID bits
• Whether storing of the transmission history is enabled or disabled
• The DLC value
• Label information
• Transmission data

Write B’00 to the transmission result flag for the concerned
transmission buffer

R01AN3109EJ0120 Rev.1.20 Page 56 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

8.2.7 Handling of Transmission Buffer-Related Interrupts
(1) Handling of transmission completion interrupt

While this interrupt is enabled, a CANi transmission interrupt is generated on completion of transmission of a
message.
Transmission completion interrupt is enabled and disabled for the individual transmission buffers by the TMIEq bit
of the RSCAN0TMIEC0 register.
The sources for the CANi transmission interrupt are shown below. If the user uses two or more interrupt sources,
identify each source while the interrupt is being handled as required. These source flags are also read from the
RSCAN0GTINTSTS0 register.

- CANi transmission completion interrupt
- CANi transmission abort interrupt
- CANi transmission-and-reception FIFO transmission completion interrupt
- CANi transmission history interrupt

(2) Handling of transmission abort interrupt
While this interrupt is enabled, a CANi transmission completion interrupt is generated on completion of aborting a
transmission. Transmission abort interrupt is enabled and disabled for the individual channels by the TAIE bit of the
RSCAN0CmCTR register. However, if the transmission for which a request for abortion has been issued is already
successfully completed (the TMTRF[1:0] flag is set to B’11), a transmission completion interrupt will be generated
instead of a transmission abort interrupt.
The sources for the CANi transmission interrupt are shown below. If the user uses two or more interrupt sources,
identify each source while the interrupt is being handled as required. The source flags are also read from the
RSCAN0GTINTSTS0 register.

- CANi transmission completion interrupt
- CANi transmission abort interrupt
- CANi transmission-and-reception FIFO transmission completion interrupt
- CANi transmission history interrupt

R01AN3109EJ0120 Rev.1.20 Page 57 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

8.2.8 Processing after Completion of Message Transmission or Transmission Abort
(1) Processing after completion of message transmission or transmission abort when interrupt is disabled

Figure 8.4 shows a processing after completion of message transmission or transmission abort when interrupt is
disabled.

Figure 8.4 Processing after Completion of Message Transmission or Transmission Abort when Interrupt is
Disabled

Start

Return

Have the transmissions from
the concerned buffers been aborted?

No

Yes

Write B’00 to the transmission result flags for the
concerned transmission buffers.

Have transmissions from
the concerned buffers been completed?

Are there any transmission
buffers which have not been judged for their

transmission priority?

No
Yes

No
Yes

User processing after completion of transmission
User processing after completion of transmission

abort

R01AN3109EJ0120 Rev.1.20 Page 58 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

(2) Processing after completion of message transmission when interrupt is enabled
Figure 8.5 shows a processing after completion of message transmission when interrupt is enabled.

(3) rocessing after completion of transmission abort when interrupt is enabled
Figure 8.6 shows a processing after completion of transmission abort when interrupt is enabled.

Figure 8.5 Processing after Completion of Message Transmission when Interrupt is Enabled

Figure 8.6 Processing after Completion of Transmission Abort when Interrupt is Enabled

Start

Return

Search for buffers whose transmissions have been completed

Write B’00 to the transmission result flags for the concerned buffers

User processing after completion of transmission

Start

Return

Search for buffers whose transmissions have been aborted

Write B’00 to the transmission result flags for the concerned buffers

User processing after completion of transmission abort

R01AN3109EJ0120 Rev.1.20 Page 59 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

8.3 Transmission by Using the Transmission-and-Reception FIFO Buffers
Transmission of data frames and remote frames are possible by using the transmission-and-reception FIFO buffers. Each
channel has three transmission-and-reception FIFO buffers, each of which can retain up to 128 messages. The messages
are transmitted sequentially on a first-in, first-out basis.

The transmission-and-reception FIFO buffers are used in either the reception mode or the transmission mode. This
section describes the transmission mode only.

The transmission-and-reception FIFO buffers are provided with the following features.
• Message transmission
• Transmission abort
• Interval transmission

8.3.1 Message Transmission
This is a function to transmit data frames or remote frames. The messages stored in the transmission-and-reception FIFO
buffers are transmitted sequentially on a first-in, first-out basis.

R01AN3109EJ0120 Rev.1.20 Page 60 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

8.3.2 Procedure for Transmitting Messages from a Transmission-and-Reception FIFO
Buffer

Figure 8.7 shows a procedure for transmitting messages from a transmission-and-reception FIFO buffer.

Figure 8.7 Procedure for Transmitting Messages from a Transmission-and-Reception FIFO Buffer

Start

Return

Yes

Update the pointer to the transmission-and-reception FIFO buffer

Are there any available buffers
in the transmission-and-reception FIFO buffer? No

Store the following information in the transmission-and-reception FIFO buffer:
• The IDE, RTR, and ID bits
• Whether storing of the transmission history is enabled or disabled
• The DLC value
• Label information
• Transmission data

R01AN3109EJ0120 Rev.1.20 Page 61 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

8.3.3 Transmission Abort
Disabling the transmission-and-reception FIFO buffers leads to abortion of the transmission of all the messages in the
buffers regardless of whether transmission of any is in progress or not. Once the abort is completed, the transmission-
and-reception FIFO buffer becomes empty.

Completion of transmission abort for the transmission-and-reception FIFO buffers does not cause an interrupt. Still, it
may cause a transmission-and-reception FIFO transmission completion interrupt if a message for which a request for
abortion has been issued was successfully transmitted.

8.3.4 Interval Transmission
In transmission mode, a transmission interval can be specified for sequential transmissions from the same transmission-
and-reception FIFO buffer.

8.3.5 Handling of Transmission-and-Reception FIFO Interrupts (Transmission Mode)
(1) Handling of transmission-and-reception FIFO interrupt

While the transmission-and-reception FIFO transmission completion interrupt is enabled, a CANi transmission
interrupt is generated according to the setting in the CFIM bit of the RSCAN0CFCCk register.
The sources for the CANi transmission interrupt are shown below. If the user uses two or more interrupt sources,
identify each source while the interrupt is being handled as required. The source flags are also read from the
RSCAN0GTINTSTS0 register.
• CANi transmission completion interrupt
• CANi transmission abort interrupt
• CANi transmission-and-reception FIFO transmission completion interrupt
• CANi transmission history interrupt

Transmission-and-reception FIFO transmission completion interrupts are enabled and disabled. When the interrupt
is enabled, the interrupt sources are selected from the following.
• An interrupt request is issued when the buffer becomes empty upon completion of transmission.
• An interrupt request is issued every time message transmission completes.

 

R01AN3109EJ0120 Rev.1.20 Page 62 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

8.4 Transmission History Buffers
Users can select whether or not to store the information of the transmitted messages (transmission history data) in the
transmission history buffers. A single channel contains one transmission history buffer which can hold history data of
sixteen transmissions.

8.4.1 Storing Transmission History Data
Whether or not to store the transmission history is decided for the individual transmission sources (transmission buffers)
at the time of configuration. For the transmission buffers which are configured for storage of their transmission history,
whether or not to store the transmission history and which label to attach to the history data is selectable each time a
message is transmitted.

The following data are stored in the transmission history buffer on successful transmission:

Buffer type
This is the type of buffer (transmission buffer or transmission-and-reception FIFO buffer) for which the item of
transmission history has been stored.

Buffer number
This is the number of the transmission buffer or the transmission-and-reception FIFO buffer for which transmission
history has been stored.

Label data
This is the information of the transmitted message. Users can freely set the label for the messages when they are
stored in the reception buffers.

R01AN3109EJ0120 Rev.1.20 Page 63 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

8.4.2 Procedure for Reading From a Transmission History Buffer
Figure 8.8 shows a procedure for reading from a transmission history buffer.

Figure 8.8 Procedure for Reading from a Transmission History Buffer

Start

Return

Was a transmission history
buffer overflow detected? No

Yes

Update the pointer to the transmission history buffer

Clear the transmission history buffer overflow flag

Does the transmission history buffer
hold any transmission history data? No

Yes

Read the following information from the transmission history buffer:
• Buffer type
• Buffer number
• Label information

User processing at a transmission history buffer overflow

R01AN3109EJ0120 Rev.1.20 Page 64 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

8.4.3 Handling of Transmission History Interrupts
(1) Handling of transmission history interrupt

While the transmission history interrupt is enabled, a CANi transmission interrupt occurs when the condition
selected in the THLIM bit of the RSCAN0THLCCm register is satisfied.
The sources for the CANi transmission interrupt are shown below. If the user uses two or more interrupt sources,
identify each source while the interrupt is being handled as required. The source flags are also read from the
RSCAN0GTINTSTS0 register.

- CANi transmission completion interrupt
- CANi transmission abort interrupt
- CANi transmission-and-reception FIFO transmission completion interrupt
- CANi transmission history interrupt

(2) Handling of global error interrupt
While this interrupt is enabled, it is generated on detection of a message overflow error in the transmission history
buffer. This interrupt is enabled and disabled collectively for the whole CAN module by using the THLEIE bit of
the RSCAN0GCTR register.

R01AN3109EJ0120 Rev.1.20 Page 65 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

9. CAN-Related Interrupts

9.1 CAN-Related Interrupts
The following CAN-related interrupts are available for the module. Each interrupt is enabled or disabled by the settings
for the corresponding interrupt request.

Global interrupts:
CAN reception FIFO interrupt
CAN global error interrupt

Channel interrupts:
CANi transmission interrupts

• CANi transmission completion interrupt
• CANi transmission abort interrupt
• CANi transmission-and-reception FIFO transmission completion interrupt
• CANi transmission history interrupt
• CANi transmission queue interrupt

CANi transmission-and-reception FIFO reception completion interrupt
CANi error interrupt

9.1.1 Procedure for Setting the CAN Related Interrupts
Figure 9.1 shows a procedure for setting the can related interrupts.

Figure 9.1 Procedure for Setting the CAN-Related Interrupts

Start

Return

Disable the interrupt by masking it

Clear the interrupt request for the concerned
interrupt to 0

Set the priority level for the interrupt

Enable the interrupt by clearing the mask

R01AN3109EJ0120 Rev.1.20 Page 66 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

10. Software

10.1 Operational Outline
Table 10.1 is the outline of the features of a sample program for the RSCAN module and Figure 10.1 is a system block
diagram.

Table 10.1 Outline of the Features

Function Outline

Alternative pins PC6: CAN0 CRXD0
P67: CAN0 CTXD0
PC7: CAN1 CRXD1
P66: CAN1 CTXD1

Channel for CAN communications Channel 0 (CAN0)

Interrupt sources
(number in parentheses indicates the
priority order)

CAN global error (3)
CAN0 error (4)
CAN1 error (4)
CAN reception FIFO (5)
CAN0 transmission-and-reception FIFO reception completion (5)
CAN1 transmission-and-reception FIFO reception completion (5)
CAN0 transmission (5)
CAN1 transmission (5)

Transfer rate 1 Mbps

Operational modes Transmission mode (sending side of the two connected evaluation boards):
• Message transmission by using the transmission buffers
• Message transmission by using the transmission-and-reception FIFO buffers in

transmission mode
Reception mode (receiving side of the two connected evaluation boards):

• Message reception by using the reception buffers
• Message reception by using the reception FIFO buffers
• Message reception by using the transmission-and-reception FIFO buffers in reception

mode
Test for transmission while receiving data at the same time
Test mode (test in a single evaluation board):

• Self-test mode 0 (external loopback mode)
• Self-test mode 1 (internal loopback mode)

Operational outline Operating modes are selected from the menu.

Operation result display The result of an operation is output to the console.

Figure 10.1 System Block Diagram

Controlling
menus

Sample Program

Controlling the CAN
driver Controlling interrupts

CAN Sample Driver

State
management

Buffer
management

Message
transmission and

reception

Power
consumption

reduction

R01AN3109EJ0120 Rev.1.20 Page 67 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

10.1.1 Setting of Projects
The projects for the development environments EWARM, DS-5, and e2studio are described in the RZ/T1 Group
Application Note: Initial Settings.

10.1.2 Preparation for Self-Test
This sample program provides self-testing for CAN communications. A test for a single evaluation board which is
connected to the development environment is possible.

10.1.3 Preparation for Transmission and Reception Tests
These tests require two evaluation boards (boards A and B) which are respectively connected to different development
environments on different PCs. Evaluation boards A and B are connected to each other by a CAN cable*1 in their CAN 1
connectors.

Note 1. The cable connects the CAN-H pins and CAN-L pins, respectively, of CAN connector 1 (J15) on boards A and
B to each other.

Figure 10.2 Configuration for Self-Testing by a Sample Program

Figure 10.3 Configuration for Testing Transmission and Reception by a Sample Program

Evaluation board A

CAN1

Evaluation board B

CAN1

R01AN3109EJ0120 Rev.1.20 Page 68 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

10.1.4 Terminal Software (Tera Term)
In the sample program, data are transferred between a COM port of the host PC and the RS-232C interfaces of the boards
by using the synchronous communications protocol of the serial communications interface with FIFO (SCIFA).

Start up the Tera Term terminal software on the host PC and configure the serial ports for a baud rate of 115200 with CR
as the new line character.

• Transfer rate : 115200 bps
• Character lengths : 8 bits
• Stop bit length : 1 bit
• Parity : None
• Hardware flow control : Not supported

An example of serial port setup with “COM4” is shown below.

Figure 10.4 Terminal Setup of Tera Term

Figure 10.5 Serial Port Setup of Tera Term

R01AN3109EJ0120 Rev.1.20 Page 69 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

10.1.5 Sample Program Menu
Start up the Tera Term terminal software and then start up the sample program. Select the program you want to use from
the main menu on the console window.

Main menu

Content of each menu item is described below.

[1] Send message test <uses a Tx buffer>

This is a test of the transmission of a message from a transmission buffer.

[2] Send message test <uses a Send/receive FIFO buffer Tx mode>

This is a test of the transmission of a message from a transmission-and-reception FIFO buffer.

[3] Receive message test <uses a Rx buffer>

This is a test of the reception of a message at a reception buffer.

[4] Receive message test <uses a Rx FIFO buffer>

This is a test of the reception of a message at a reception FIFO buffer.

[5] Receive message test <uses a Send/receive FIFO buffer Rx mode>

This is a test of the reception of a message at a transmission-and-reception FIFO buffer in reception mode.

[6] Send and receive simultaneous test <uses a Send/receive FIFO buffer >

This is a test of the transmission and reception of messages at the same time.

[7] Self-test <Internal mode/External mode>

This is a menu item for selecting self-tests.

[9] Exit – The end of the sample program –

Select this function to exit the sample program.

Figure 10.6 Main Menu of the Sample Program

R01AN3109EJ0120 Rev.1.20 Page 70 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

Self-test menu

This is a set of self-tests of operation in external and internal loopback modes by using a single evaluation board
(evaluation board A). The modes are switched by the menu.

Content of each self-test is described below.

[1] Tx Buffer → Rx Buffer

This is a test of the transmission of a message from a transmission buffer and reception of it at a reception buffer.

[2] Tx Buffer → Rx FIFO buffer

This is a test of the transmission of a message from a transmission buffer and reception of it at a reception FIFO buffer.

[3] Tx Buffer → Send/receive FIFO buffer Rx mode

This is a test of the transmission of a message from a transmission buffer and reception of it at a transmission-and-
reception FIFO buffer in reception mode.

[4] Send/receive FIFO buffer Tx mode → Send/receive FIFO buffer Rx mode

This is a test of the transmission of a message from a transmission-and-reception FIFO buffer in reception mode and
reception of it at a transmission-and-reception FIFO buffer in reception mode.

[5] Set to External loop back mode

Self-test mode 0 (external loopback mode) is selected.

[6] Set to Internal loop back mode

Self-test mode 1 (internal loopback mode) is selected.

Figure 10.7 Selection of Self-Tests after Selecting Menu Item “[7] Self-Test”

R01AN3109EJ0120 Rev.1.20 Page 71 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

10.1.6 Setting Values for the Sample Program
This sample program runs with the following settings:

Channel: CAN0 (fixed)
Baud rate: 1 Mbps (fixed)
Transmission message: Repetition of a 8-byte message
Reception rule: 1 (reception of the messages with the ID 0x120 only) (fixed)
Transmission buffer number: 0 (fixed)
Reception buffer number: 1 (fixed)
Reception FIFO buffer number: 0 (fixed)
Number of the transmission-and-reception FIFO buffer in transmission mode: 0 (fixed)
Number of the transmission-and-reception FIFO buffer in reception mode: 1 (fixed)
Number of the transmission buffer which is linked to the transmission-and-reception FIFO buffer: 2 (fixed)

Sample data settings:
Message ID: 0x120 (fixed)
Message type: Standard ID (fixed)
Data format: Data frame (fixed)
Message data size: 00h to FFh (8 bytes of data are transmitted in one message)

Reception buffer setting:
Buffer size: 1024 bytes. Data in excess of this size are overwritten from the beginning of the buffer.

R01AN3109EJ0120 Rev.1.20 Page 72 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

10.1.7 Transmission Test
Preparation

Connect evaluation boards A and B, which are respectively connected to different development environments on
different PCs, with the CAN cable. See Section 10.1.3 for details.

Operating procedure
1. Set the receiving side (evaluation board B) in reception mode by selecting [3], [4], or [5] from the main menu.
2. Select [1] or [2] from the main menu on the sending side (evaluation board A).
3. Transmit messages sequentially from the sending side.
4. The transmission test is terminated by pressing any key on the sending side. The receiving side exits the reception

mode at this time.

Transmission data settings:
Message ID: 0x120
Message type: standard ID (a value of 0)
Data format: data frame (a value of 0)
Message data size: 8 bytes of data are transmitted in one message (the 8-byte sequences from 0x00 to 0xFF are used
in the sample program)
Delimiter code: message end code (transmission of 0x00 8 times consecutively is judged to indicate the end of a
message)

Test result
The following shows an example of transmission test by using the transmission-and-reception FIFO buffer in
transmission mode.

Figure 10.8 Example of Transmission Test Result

Log output from the sending side (evaluation board A) Log output from the receiving side (evaluation board B)

R01AN3109EJ0120 Rev.1.20 Page 73 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

Note
In the operating procedure described earlier, if the messages are transmitted from the sending side (evaluation board
A) while the receiving side (evaluation board B) has not entered the reception mode, an error will occur as shown in
the window below. Be sure to start transmission of the test messages after completing preparation for the receiving
side.

Figure 10.9 Example of Error in the Transmission Test

R01AN3109EJ0120 Rev.1.20 Page 74 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

10.1.8 Reception Test
Preparation

Connect evaluation boards A and B, which are respectively connected to different development environment on
different PCs, with the CAN cable. See Section 10.1.3 for details.

Operating procedure
1. Set the receiving side (evaluation board A) in reception mode by selecting [3], [4], or [5] from the main menu.
2. Select [1] or [2] from the main menu on the sending side (evaluation board B).
3. Transmit messages sequentially from the sending side.
4. The transmission test on the sending side is terminated by pressing any key on the sending side. The receiving side

exits the reception mode at this time and the reception test is terminated accordingly.

Test result
The following shows an example of reception test by using the transmission-and-reception FIFO buffer in reception
mode.

Figure 10.10 Example of Reception Test Result

Log output from the receiving side (evaluation board A) Log output from the sending side (evaluation board B)

R01AN3109EJ0120 Rev.1.20 Page 75 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

10.1.9 Test for Transmission While Receiving Data at the Same Time
Preparation

Connect evaluation boards A and B, which are respectively connected to different development environment on
different PCs, with the CAN cable. See Section 10.1.3 for details.

Operating procedure
(1) Select [6] from the main menu on the evaluation board A.
(2) A request that the user press any key is output.
(3) Select [6] from the main menu on the evaluation board B on the other PC.
(4) A request that the user press any key is output.
(5) Press any key on the evaluation board B after confirming that the request message was output on both sides.

By taking the procedure described above, the evaluation boards A and B sequentially transmit messages.

This test is terminated by pressing any key on either of the evaluation board A or B.

Test result
The following shows an example of transmission test while receiving a different message at the same time.

Figure 10.11 Example of Result of Transmission Test While Receiving Data

Log output from the evaluation board A:
Send messages to the board B while receiving messages
from the same

Log output from the evaluation board B:
Send messages to the board A while receiving messages
from the same

R01AN3109EJ0120 Rev.1.20 Page 76 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

10.1.10 Self-Test
Preparation

This test requires only evaluation board A which is connected to a development environment. See Section 10.1.2
for details.

Operating procedure
1. Select [7] from the main menu for evaluation board A to show the self-test menu.
2. Select the operation you want to test from the menu, either [5] external loopback mode or [6] internal loopback

mode (default).

Test result
The following shows an example of self-test by transmitting a message from a transmission buffer and receiving it
at the transmission-and-reception FIFO buffer in reception mode.

Figure 10.12 Example of Self-Testing Result

R01AN3109EJ0120 Rev.1.20 Page 77 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

10.2 Interrupts
Table 10.2 lists the interrupts used in the sample code.

Table 10.2 Interrupts Used in the Sample Code

Interrupt (source ID) Priority Processing Outline

CAN global error (CANGE) CAN_IR_PRIORITY_262_CANERR_GL Generation of a global error on detection of the following
sources (vector number 262):

• DLC error
• FIFO message loss
• Transmission history buffer overflow

CAN0 error (CANIE0) CAN_IR_PRIORITY_263_CANERR_CH0 Generation of a channel 0 error on detection of the fol-
lowing sources: (vector number 263):

• Channel bus error
• Error warning state
• Error passive state
• Bus-off entry
• Bus-off recovery
• Overload
• Channel bus lockup
• Arbitration lost
• Stuff error
• Form error
• ACK error
• CRC error
• Recessive bit error
• Dominant bit error
• ACK delimiter error

CAN1 error (CANIE1) CAN_IR_PRIORITY_264_CANERR_CH1 Generation of a channel 0 error on detection of the same
sources as above (vector number 264)

CAN reception FIFO (CANRFI) CAN_IR_PRIORITY_104_CANRFI Message reception by using the reception FIFO buffers
(vector number 104)

CAN0 transmission-and-recep-
tion FIFO reception completion
(CANFIR0)

CAN_IR_PRIORITY_105_CANFIR0 Message reception by using the transmission-and-
reception FIFO buffers in reception mode (vector num-
ber 105)

CAN0 transmission (CANTI0) CAN_IR_PRIORITY_106_CANTI0 End of transmission on detection of the following source
conditions (vector number 106):

• Transmission completion
• Transmission abort completion
• Transmission interrupt request for the transmission-

and-reception FIFO in transmission mode

CAN1 transmission-and-recep-
tion FIFO reception completion
(CANFIR1)

CAN_IR_PRIORITY_107_CANFIR1 Message reception by using the transmission-and-
reception FIFO in reception mode (vector number 107)

CAN1 transmission (CANTI1) CAN_IR_PRIORITY_108_CANTI1 End of transmission on detection of the following source
conditions (vector number 108):

• Transmission completion
• Transmission abort completion
• Transmission interrupt request for the transmission-

and-reception FIFO in transmission mode

R01AN3109EJ0120 Rev.1.20 Page 78 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

10.3 Fixed-Width Integer Types
Table 10.3 lists the fixed-width integer types used for the sample code. These types are defined in the standard library.

 

Table 10.3 Fixed-Width Integer Types Used for the Sample Code

Symbol Description

int8_t 8-bit signed integer

int16_t 16-bit signed integer

int32_t 32-bit signed integer

int64_t 64-bit signed integer

uint8_t 8-bit unsigned integer

uint16_t 16-bit unsigned integer

uint32_t 32-bit unsigned integer

uint64_t 64-bit unsigned integer

R01AN3109EJ0120 Rev.1.20 Page 79 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

10.4 Constants and Error Codes
Table 10.4 lists the constants to be used in the sample program.

Table 10.4 Constants to be Used in the Sample Program (1 / 4)

Constant Name Setting Value Description

CAN_NUM 2 The number of channels of the CAN module

CAN_CH_0 0 Channel 0 (CAN0)

CAN_CH_1 1 Channel 1 (CAN1)

CH_BUFFER_MAX 16 The number of transmission buffers available for each channel

CH_FIFO_BUFFER_MAX 3 The number of transmission-and-reception FIFO buffers available at
each channel

DATA_MAX 8 The number of message data that can be transmitted at the same time

CAN_TX_BUFFER 0 A state flag (the transmission buffers are in use)

CAN_TX_FIFO 1 A state flag (the transmission-and-reception FIFO buffers are in use in
transmission mode)

CAN_TX_HISTORY 2 A state flag (for transmission history)

CAN_TX_QUEUE 3 A state flag (for transmission queue)

CAN_RX_BUFFER 0 A state flag (reception buffers are in use)

CAN_RX_RX_FIFO 1 A state flag (reception FIFO buffers are in use)

CAN_RX_FIFO 2 A state flag (transmission-and-reception FIFO buffers are in use in
reception mode)

CAN_MODULE_ON 0 Exits the stop state

CAN_MODULE_OFF 1 Enters the stop state

CAN_STANDARD 0 Standard ID

CAN_EXTENDED 1 Extended ID

CAN_DATA_FRAME 0 Data frame

CAN_REMOTE_FRAME 1 Remote frame

CAN_RULE_PAGE_MAX 8 The maximum number of the reception rule pages

CAN_RULE_TABLE_MAX 16 The maximum number of the reception rule tables

CAN_RX_FIFO_BUFFER_MAX 8 The maximum number of the reception FIFO buffers

CAN_RX_BUFFER_MAX 32 The maximum number of the reception buffers

CAN_RULE_NUM_MAX 64 The maximum number of the reception rules

CAN_RX_MODE 0 Reception mode

CAN_TX_MODE 1 Transmission mode

CAN_GATEWAY_MODE 2 Gateway mode

CAN_FIFO_MSG_0 0 The number of the transmission-and-reception FIFO buffer stages (0
message)

CAN_FIFO_MSG_4 1 The number of the transmission-and-reception FIFO buffer stages (4
messages)

CAN_FIFO_MSG_8 2 The number of the transmission-and-reception FIFO buffer stages (8
messages)

CAN_FIFO_MSG_16 3 The number of the transmission-and-reception FIFO buffer stages (16
messages)

CAN_FIFO_MSG_32 4 The number of the transmission-and-reception FIFO buffer stages (32
messages)

CAN_FIFO_MSG_48 5 The number of the transmission-and-reception FIFO buffer stages (48
messages)

CAN_FIFO_MSG_64 6 The number of the transmission-and-reception FIFO buffer stages (64
messages)

R01AN3109EJ0120 Rev.1.20 Page 80 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

CAN_FIFO_MSG_128 7 The number of the transmission-and-reception FIFO buffer stages (128
messages)

GL_MODE_STOP 0 Global stop mode

GL_MODE_RESET 1 Global reset mode

GL_MODE_TEST 2 Global test mode

GL_MODE_OPE 3 Global operation mode

CAN_GL_OPE 0 Enters the global operating mode

CAN_GL_RESET 1 Enters the global reset mode

CAN_GL_TEST 2 Enters the global test mode

CH_MODE_STOP 0 Channel stop mode

CH_MODE_RESET 1 Chanel reset mode

CH_MODE_WAIT 2 Channel halt mode

CH_MODE_COMM 3 Channel transfer mode

CAN_CH_COMM 0 Enters the channel transfer mode

CAN_CH_RESET 1 Enters the channel reset mode

CAN_CH_WAIT 2 Enters the channel halt mode

GL_TEST_RAMTEST 0 RAM test

GL_TEST_COMMTEST 1 Inter-channels transfer test

CH_TEST_STANDARD 0 Standard test mode

CH_TEST_LISTENONLY 1 Listen-only mode

CH_TEST_SELF0 2 Self-test mode 0 (external loopback mode)

CH_TEST_SELF1 3 Self-test mode 1 (internal loopback mode)

CANCLKA_CLK 24000000μ CAN clock runs at 24 MHz

CANCLKB_CLK 25000000μ CAN clock runs at 25 MHz

CAN_INTR_DISABLE 0 Interrupt is disabled

CAN_INTR_ENABLE 1 Interrupt is enabled

CAN_IR_PRIORITY_262_CANERR_GL 3 Priority order (CAN global error)

CAN_IR_PRIORITY_263_CANERR_CH0 4 Priority order (CAN0 error)

CAN_IR_PRIORITY_264_CANERR_CH1 4 Priority order (CAN1 error)

CAN_IR_PRIORITY_104_CANRFI 5 Priority order (CAN reception FIFO)

CAN_IR_PRIORITY_105_CANFIR0 5 Priority order (CAN0 transmission-and-reception FIFO reception com-
pletion)

CAN_IR_PRIORITY_106_CANTI0 5 Priority order (CAN0 transmission)

CAN_IR_PRIORITY_107_CANFIR1 5 Priority order (CAN1 transmission-and-reception FIFO reception com-
pletion)

CAN_IR_PRIORITY_108_CANTI1 5 Priority order (CAN1 transmission)

CAN_HVA_WRITE_DATA 0μ HVA write data

CAN_OK 0μ Returned value for successful operation

CAN_EMPTY 1μ Returned value for the case of buffer empty

CAN_NG 0xFFFFFFFFμ Returned value when an error occurred

CAN_INTR_TX_END 1 A source for the channel transmission interrupt: transmission comple-
tion

CAN_INTR_ABORT_END 2 A source for the channel transmission interrupt: abort transmission
completion

CAN_INTR_FIFO_REQ 3 A source for the channel transmission interrupt: completion of trans-
mission from the transmission-and-reception FIFO in transmission
mode

Table 10.4 Constants to be Used in the Sample Program (2 / 4)

Constant Name Setting Value Description

R01AN3109EJ0120 Rev.1.20 Page 81 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

CAN_INTR_QUEUE_REQ 4 A source for the channel transmission interrupt: transmission queue
request is issued

CAN_INTR_HISTORY_REQ 5 A source for the channel transmission interrupt: transmission history
request is issued

CAN_INTR_FIFO_EMPTY 1 Reception FIFO buffer empty

CAN_INTR_FIFO_FULL 2 Reception FIFO buffer full

CAN_INTR_FIFO_LOST 3 Reception FIFO buffer message lost

CAN_INTR_FIFO_TX_MESSAGE 4 Transmission-and-reception FIFO transmission interrupt request

CAN_INTR_FIFO_RX_MESSAGE 5 Transmission-and-reception FIFO reception interrupt request

CAN_BUS_ERR 1 Error flag (bus error)

CAN_ERR_WARNING 2 Error flag (error warning)

CAN_ERR_PASSIVE 3 Error flag (error passive)

CAN_BUS_OFF_START 4 Error flag (bus-off entry)

CAN_BUS_OFF_RETURN 5 Error flag (bus-off recovery)

CAN_OVER_LOAD 6 Error flag (overload)

CAN_BUS_LOCK 7 Error flag (channel bus lockup)

CAN_ARBITRATION_LOST 8 Error flag (arbitration lost)

CAN_STAFF_ERR 9 Error flag (staff error)

CAN_FORM_ERR 10 Error flag (form error)

CAN_ACK_ERR 11 Error flag (ACK error)

CAN_CRC_ERR 12 Error flag (CRC error)

CAN_RECESSIVE_BIT_ERR 13 Error flag (recessive bit error)

CAN_DOMINANT_BIT_ERR 14 Error flag (dominant bit error)

CAN_ACK_DELIMITER_ERR 15 Error flag (ACK delimiter error)

CAN_DLC_ERR 1 Error flag (DLC error)

CAN_FIFO_MSG_LOST_ERR 2 Error flag (FIFO message lost)

CAN_HISTORY_OVERFLOW_ERR 3 Error flag (transmission history buffer overflow)

CAN0_CRXD0_P30_VAL 0x10 MPC: setting value for the CAN0 CRXD0 (not used in this sample pro-
gram)

CAN0_CRXD0_PC6_VAL 0x10 MPC: setting value for the CAN0 CRXD0

CAN0_CTXD0_P60_VAL 0x10 MPC: setting value for the CAN0 CTXD0 (not used in this sample pro-
gram)

CAN0_CTXD0_P67_VAL 0x10 MPC: setting value for the CAN0 CTXD0

CAN1_CRXD1_PC3_VAL 0x10 MPC: setting value for the CAN1 CRXD1 (not used in this sample pro-
gram)

CAN1_CRXD1_PC7_VAL 0x10 MPC: setting value for the CAN1 CRXD1

CAN1_CTXD1_P61_VAL 0x10 MPC: setting value for the CAN1 CTXD1 (not used in this sample pro-
gram)

CAN1_CTXD1_P66_VAL 0x10 MPC: setting value for the CAN1 CTXD1

CAN1_CTXD1_PB3_VAL 0x10 MPC: setting value for the CAN1 CTXD1 (not used in this sample pro-
gram)

CAN_GL_STATUS_BIT 0x00000007μ RSCAN0GSTS register mask bit

CAN_CH_STATUS_BIT 0x00000007μ RSCAN0CmSTS register mask bit

GCFG_REG_INIT 0x00000013μ The initial value for the RSCAN0GCFG register

TMIEC0_REG_DISABLE_LOW 0x0000FFFFμ TMIEp (p = 15 to 0) mask bit of the RSCAN0TMIEC0 register

TMIEC0_REG_DISABLE_HIGH 0xFFFF0000μ TMIEp (p = 31 to 16) mask bit of the RSCAN0TMIEC0 register

CAN_CH_STOP_MODE 0x00000004μ RSCAN0CmCTR register channel stop mode

Table 10.4 Constants to be Used in the Sample Program (3 / 4)

Constant Name Setting Value Description

R01AN3109EJ0120 Rev.1.20 Page 82 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

Note 1. Refer to Section 6.3.1, CAN Bit Time Setting of this application note and Section 35.9.1.2 Bit Timing Setting of
the RZ/T1 Group User’s Manual: Hardware for details.

CAN_REL_CH_STOP_MODE 0xFFFFFFFBμ Release the module from the RSCAN0CmCTR register channel stop
mode

TIME_QUANTUM_MIN 8 (*1) Value range for the bit time
Set the value within the range obtained by SS + TSEG1 + TSEG2 = 8
to 25 Tq

TIME_QUANTUM_MAX 25 (*1) Value range for the bit time
Set the value within the range obtained by SS + TSEG1 + TSEG2 = 8
to 25 Tq

SAMPLE_POINT 0.666666667 (*1) Sample point (%)
The two third of one-bit communication frame is set as the sampling
point in this sample program.

FIFO_UPDATE 0x000000FFμ The value for controlling the pointer to the FIFO buffers

Table 10.4 Constants to be Used in the Sample Program (4 / 4)

Constant Name Setting Value Description

R01AN3109EJ0120 Rev.1.20 Page 83 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

10.5 Functions
Table 10.5 lists the functions used in this sample program.

Table 10.5 List of Functions

Function Name Description

R_CAN_Open Starts up the CAN module

R_CAN_Close Stops the CAN module

R_CAN_GlobalControl Makes a transition between the global modes

R_CAN_ChannelControl Makes a transition between the channel modes

R_CAN_SetBitrate Sets the transfer rates

R_CAN_UseBufferEntry Registers the information of the buffers for use in transmission and reception

R_CAN_SetRxFifoBuffer Enables the reception FIFO buffer

R_CAN_SetFifoBuffer Enables the transmission-and-reception FIFO buffer

R_CAN_ReleaseFifoBuffer Releases the transmission-and-reception FIFO buffer

R_CAN_ReleaseRxFifoBuffer Releases the reception FIFO buffer

R_CAN_ReleaseBuffer Releases the transmission buffer or the reception buffer

R_CAN_GetTxBufferStatus Reads the state of the transmission buffer

R_CAN_WriteBuffer Writes messages to be transmitted to the transmission buffer

R_CAN_GetFifoStatus Reads the state of the transmission-and-reception FIFO buffer

R_CAN_WriteFifo Writes messages to be transmitted to the transmission-and-reception FIFO buffer

R_CAN_Tx Starts transmission

R_CAN_RxSet Makes settings for reception

R_CAN_ReadBuff Reads received messages from the reception buffer

R_CAN_ReadRxFifo Reads received messages from the reception FIFO buffer

R_CAN_ReadFifo Reads received messages from the transmission-and-reception FIFO buffer

R_CAN_GetFifoMessageNum Get the number of unread messages in the transmission-and-reception FIFO buffer

R_CAN_GetRxFifoMessageNum Get the number of unread messages in the reception FIFO buffer

R_CAN_SetCommTestMode Makes settings for transfer tests

R_CAN_ResetTestMode The module is released from the test mode and enters the channel transfer mode

R_CAN_SetInterruptHandler Registers the interrupt handler

R_CAN_SetInterruptEnableDisable Controls enabling and disabling of the CAN module interrupt vectors

R_CAN_GetInterruptSource Gets the interrupt source

R_CAN_ClearInterruptSource Clears the interrupt source

main The main processing of the sample program

R01AN3109EJ0120 Rev.1.20 Page 84 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

10.6 Structures/Unions/Enumerated Types
The following shows the structures, unions, and enumerated types used in this sample code.

• can_vector_t
A structure for selecting whether to use the RSCAN interrupt vector or not

• can_callback_t
A structure for registering a callback function

• can_handle_t
A structure for registering a callback function

typedef struct {

 union {

 uint8_t BYTE;

struct {

uint8_t CANGE:1; /* CAN global error interrupt */

uint8_t CANIE0:1; /* CAN0 error interrupt */

uint8_t CANIE1:1; /* CAN1 error interrupt */

uint8_t CANRFI:1; /* CAN reception FIFO interrupt */

uint8_t CANFIR0:1; /* CAN0 transmission-and-reception FIFO interrupt */

uint8_t CANTI0:1; /* CAN0 transmission interrupt */

uint8_t CANFIR1:1; /* CAN1 transmission-and-reception FIFO interrupt */

uint8_t CANTI1:1; /* CAN1 transmission interrupt */

 } BIT;

 } SELECT;

} can_vector_t;

typedef struct {

void (*pintr_ge)(void); /* Pointer to user callback function */

void (*pintr_ie0)(void); /* Pointer to user callback function */

void (*pintr_ie1)(void); /* Pointer to user callback function */

void (*pintr_rfi)(void); /* Pointer to user callback function */

void (*pintr_fir0)(void); /* Pointer to user callback function */

void (*pintr_ti0)(void); /* Pointer to user callback function */

void (*pintr_fir1)(void); /* Pointer to user callback function */

void (*pintr_ti1)(void); /* Pointer to user callback function */

} can_callback_t;

typedef struct {

bool ch_opened;

can_callback_t can_callback;

} can_handle_t;

R01AN3109EJ0120 Rev.1.20 Page 85 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

• can_rx_rule_t
A structure for the reception rule table

• udata_t
A union of four-byte long types

• can_tx_message_t
A structure of transmission message data

typedef struct {

uint32_t buf_type; /* Type of the buffer */

/* Transmission: CAN_TX_BUFFER, CAN_TX_FIFO */

/* Reception: CAN_RX_BUFFER, CAN_RX_RX_FIFO, CAN_RX_FIFO */

uint32_t rule_page; /* Reception rule page number */

uint32_t rule_table; /* Reception rule table number */

uint32_t rule_id; /* Message ID */

uint32_t rule_type; /* Message type (data frame/remote frame) */

uint32_t rule_format; /* Message format (standard ID/extended ID) */

uint32_t rule_label; /* Message label */

uint32_t rule_dlc_check; /* DLC checking */

uint32_t rule_mask; /* Mask */

} can_rx_rule_t;

typedef union udata {

uint32_t LONG;

uint8_t BYTE[4];

} udata_t;

typedef struct {

uint32_t id; /* Message ID */

uint32_t type; /* 0: Data frame/1: Remote frame */

uint32_t format; /* 0: Standard ID/1: Extended ID */

uint32_t length; /* Message data length */

udata_t data_h; /* Message data */

udata_t data_l; /* Message data */

uint32_t history_label; /* Label */

uint32_t buf_type; /* Type of the buffer to be used (buffer or FIFO) */

} can_tx_message_t;

R01AN3109EJ0120 Rev.1.20 Page 86 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

• can_rx_message_t
A structure of reception message data

 
• gl_err_source_t

A structure for the global error source count

• ch_err_source_t
A structure for the channel error source count

typedef struct {

uint32_t id; /* Message ID */

uint32_t format; /* 0: Standard ID/1: Extended ID */

uint32_t type; /* 0: Data frame/1: Remote frame */

uint16_t timestamp; /* Timestamp data */

uint16_t label; /* Label information */

uint32_t length; /* Message length */

udata_t data_h; /* Message data */

udata_t data_l; /* Message data */

} can_rx_message_t;

typedef struct {

uint32_t total_num; /* Total count of the global errors */

uint32_t dlc_error_num; /* DLC error count */

uint32_t fifo_message_lost_num; /* FIFO message loss count */

uint32_t history_overflow_num; /* Transmission history overflow count */

} gl_err_source_t;

typedef struct {

uint32_t total_num; /* Total count of the channel errors */

uint32_t bus_error_num; /* Bus error count */

uint32_t error_warning_num; /* Error warning count */

uint32_t error_passive_num; /* Error passive count */

uint32_t bus_off_start_num; /* Bus-off start count */

uint32_t bus_off_return_num; /* Bus-off return count */

uint32_t overload_num; /* Overload count */

uint32_t bus_lock_num; /* Bus lock-up count */

uint32_t arbitration_lost_num; /* Arbitration loss count */

uint32_t staff_error_num; /* Staff error count */

uint32_t form_error_num; /* Form error count */

uint32_t ack_error_num; /* ACK error count */

uint32_t crc_error_num; /* CRC error count */

uint32_t recessive_bit_error_num; /* Recessive bit error count */

uint32_t dominant_bit_error_num; /* Dominant bit error count */

uint32_t ack_delimiter_error_num; /* ACK delimiter error count */

} ch_err_source_t;

R01AN3109EJ0120 Rev.1.20 Page 87 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

• ch_tx_source_t
A structure for the transmission interrupt source count

• can_intr_source_t
A structure for the information of the interrupt source

 
• can_used_buffer_t

A structure for the information of the buffer in use

typedef struct {

uint32_t total_num; /* Total count of the transmission interrupts */

uint32_t intr_sorce; /* Interrupt source */

uint32_t tx_buf_end_num; /* Count of successful transmissions from the transmission buffer */

uint32_t tx_fifo_end_num; /* Count of successful transmissions from the transmission-and-reception
FIFO buffer in transmission mode */

uint32_t tx_abort_num; /* Transmission abortion count*/

uint32_t tx_queue_num; /* Transmission queue count */

uint32_t tx_history_num; /* Transmission history data count */

} ch_tx_source_t;

typedef struct {

uint32_t rx_fifo_num; /* Reception FIFO interrupt count */

uint32_t ch_fifo_receive_num; /* Transmission-and-reception FIFO reception interrupt count */

ch_tx_source_t tx_source; /* Transmission interrupt source */

gl_err_source_t gl_err; /* Global error interrupt source */

ch_err_source_t ch_err; /* Channel error interrupt source */

} can_intr_source_t;

typedef struct {

uint32_t use_tx_buf_no; /* Transmission buffer number */

uint32_t use_rx_buf_no; /* Reception buffer number */

uint32_t use_rx_fifo_no; /* Reception FIFO buffer number */

uint32_t use_fifo_txmode_no; /* Number of the transmission-and-reception FIFO buffer in
transmission mode */

uint32_t use_fifo_rxmode_no; /* Number of the transmission-and-reception FIFO buffer in
reception mode */

uint32_t use_fifo_link_buf_no; /* Number of the buffer to which the FIFO buffer is linked to */

} can_used_buffer_t;

R01AN3109EJ0120 Rev.1.20 Page 88 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

• can_tx_intr_sts_t
A structure for the information of the state of the request for transmission interrupt

• can_tx_history_t
A structure for the information of the transmission history

typedef struct {

union {

uint8_t BYTE;

struct {

uint8_t TMTRF:2; /* Result of transmission from the transmission buffer */

uint8_t CFTXIF:1; /* Request for transmission-and-reception FIFO transmission interrupt */

uint8_t TXQIF:1; /* Request for transmission queue interrupt */

uint8_t THLIF:1; /* Request for transmission history interrupt */

uint8_t :3;

} BIT;

} STS;

} can_tx_intr_sts_t;

typedef struct {

uint32_t buf_type; /* Buffer type */

uint32_t buf_no; /* Buffer number */

uint32_t label; /* Label data */

} can_tx_history_t;

R01AN3109EJ0120 Rev.1.20 Page 89 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

10.7 Function Specifications
Specifications of the functions used in the sample code are as follows:

10.7.1 R_CAN_Open

10.7.2 R_CAN_Close

R_CAN_Open

Synopsis This is the function used first when using the CAN module.

Header r_can_api.h

Declaration void R_CAN_Open(uint32_t ch, uint32_t frequency);

Description This function makes initial settings for starting CAN communications. The channels and the
transfer rate used for the communication are specified in the arguments. The following processes
are required if the channel to be used has not been initialized.

- Initializing the variables used with the API functions
- Releasing the CAN module from the stop state
- Setting the ports to input or output
- Setting the CAN module to the global reset mode
- Setting the selected channel to the channel reset mode
- Initializing the CAN registers to be used for the CAN communication
- Specifying the transfer rate for the CAN communication

Arguments uint32_t ch : Channel number

uint32_t frequency : Transfer rate

Returned value None

Remarks None

R_CAN_Close

Synopsis Stops the CAN communication and releases the CAN module.

Header r_can_api.h

Declaration void R_CAN_Close(uint32_t ch);

Description This function makes settings for ending the current CAN communication. When executed, the
channels specified by the arguments are disabled. The following operations are included:

- Setting the CAN module to the stop state
- Disabling the CAN interrupts

Call R_CAN_Open() to restart communication after this function has been called. If the ongoing
communication is forcibly stopped, the communication is not guaranteed.

Arguments uint32_t ch : Channel number

Returned value None

Remarks None

R01AN3109EJ0120 Rev.1.20 Page 90 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

10.7.3 R_CAN_GlobalControl
R_CAN_GlobalControl

Synopsis Controls the RSCAN module as a whole.

Header r_can_api.h

Declaration void R_CAN_GlobalControl(uint32_t mode);

Description This function sets the RSCAN module to whichever of the following global modes is specified in
the argument.

- Global stop mode
GThe clock for the whole module is stopped. Lower-power consumption is possible in this mode.

- Global reset mode
The initial settings for the whole CAN module are made in this mode.

- Global test mode
Tests (RAM test and inter-channels transfer test) are carried out in this mode.

- Global operation mode
Operation of the whole CAN module is enabled in this mode. The CAN module is normally in this
mode.

Arguments uint32_t mode : The module makes a transition to the specified global mode from the
list below:

GL_MODE_OPE: global operation mode
GL_MODE_RESET: global reset mode
GL_MODE_STOP: global stop mode
GL_MODE_TEST: global test mode

Returned value None

Remarks None

Figure 10.13 Transitions between Global Modes

Global stop mode
GSLPR = 0

GSLPR = 1

Global reset mode

GMDC[1:0] = 00b

GMDC[1:0] = 01b

Global operation
mode

Global test mode

G
M

D
C

[1:0] = 00b

G
M

D
C

[1:0] = 10b

GMDC[1:0] = 10b

GMDC[1:0] = 01b

MCU reset

R01AN3109EJ0120 Rev.1.20 Page 91 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

10.7.4 R_CAN_ChannelControl
R_CAN_ChannelControl

Synopsis Controls channels.

Header r_can_api.h

Declaration void R_CAN_ChannelControl(uint32_t ch, uint32_t mode);

Description This function sets the state of the selected channel to whichever of the following channel modes is
specified in the arguments:

- Channel stop mode
The clock for the specified channel is stopped in this mode.

- Channel reset mode
The initial settings for the channel is made in this mode.

- Channel halt mode
The CAN module is halted and tests for the specified channels are enabled.

- Channel transfer mode
CAN communications are normally handled in this mode.

Arguments uint32_t ch : Channel number

uint32_t mode : The selected channel makes a transition to the specified channel
mode from the list below:

CH_MODE_STOP: channel stop mode
CH_MODE_RESET: channel reset mode
CH_MODE_WAIT: channel halt mode
CH_MODE_COMM: channel transfer mode

Returned value None

Remarks None

R01AN3109EJ0120 Rev.1.20 Page 92 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

Figure 10.14 Transition Diagram among Channel Modes

Channel stop mode

CSLPR = 0 CSLPR = 1

Channel reset mode

CHMDC[1:0] = 10b

CHMDC[1:0] = 01b

Channel halt mode

MCU reset

Reception
BOSTS = 0

TRMSTS = 0
RECSTS = 1
COMSTS = 1

 　
　　　

Transmission started

Transmission completed

CHMDC[1:0] = 00b CHMDC[1:0] = 01b

Arbitration lost

CHMDC[1:0] = 00b CHMDC[1:0] = 10b

Transmission
BOSTS = 0

TRMSTS = 1
RECSTS = 0
COMSTS = 1

Reception
completed

Idling
BOSTS = 0

TRMSTS = 0
RECSTS = 0
COMSTS = 1

Bus-off
BOSTS = 1

TRMSTS = 1
RECSTS = 0
COMSTS = 1

TEC > 255

Channel communication mode

Eleven consecutive
recessive bits have been
detected 128 times
(when BOM[1:0] = 00b)

Transmission started after
eleven consecutive recessive
bits have been detected 128
times (when BOM[1:0] = 00b)

SOF is
detected

R01AN3109EJ0120 Rev.1.20 Page 93 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

10.7.5 R_CAN_SetBitrate

10.7.6 R_CAN_UseBufferEntry

R_CAN_SetBitrate

Synopsis Specifies the transfer rate for the CAN communication.

Header r_can_api.h

Declaration void R_CAN_SetBitrate(uint32_t ch, uint32_t frequency);

Description This function specifies the transfer rate for the CAN communication by using the value set in the
argument.
See Section 6.3, Transfer Rate.

Arguments uint32_t ch : Channel number

uint32_t frequency : Transfer rate
BAUD_RATE_1MBPS: 1 Mbps
BAUD_RATE_500KBPS: 500 Kbps
BAUD_RATE_125KBPS: 125 Kbps

Returned value None

Remarks None

R_CAN_UseBufferEntry

Synopsis Registers the information of the buffers for use in the CAN communications.

Header r_can_api.h

Declaration void R_CAN_UseBufferEntry(can_used_buffer_t * obj);

Description This function registers the following information of the buffers for use in the CAN communications.

- Transmission buffer number
- Reception buffer number
- Reception FIFO buffer number
- Number of the transmission-and-reception FIFO in transmission mode
- Number of the transmission-and-reception FIFO in reception mode
- Number of the buffer to which the transmission-and-reception FIFO in transmission mode links.

Arguments can_used_buffer_t * obj : A pointer to the structure which holds the information related to
buffers

Returned value None

Remarks None

R01AN3109EJ0120 Rev.1.20 Page 94 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

10.7.7 R_CAN_SetRxFifoBuffer

10.7.8 R_CAN_SetFifoBuffer

R_CAN_SetRxFifoBuffer

Synopsis Enables the reception FIFO buffers.

Header r_can_api.h

Declaration void R_CAN_SetRxFifoBuffer(uint32_t ch, can_rfcc_t * obj);

Description This function enables reception of messages by using the reception FIFO buffers. A CAN
reception FIFO interrupt occurs on reception of a message.
Register the reception FIFO buffer number to be used for the CAN communication by the
R_CAN_UseBufferEntry() function before calling this function.
The received messages are read by using the R_CAN_ReadRxFifo() function.

See Section 7.3, Reception by Using the Reception FIFO Buffers.

Arguments uint32_t ch : Channel number

can_rfcc_t * obj : Information of the reception FIFO buffer

Returned value None

Remarks None

R_CAN_SetFifoBuffer

Synopsis Enables the transmission-and-reception FIFO buffers.

Header r_can_api.h

Declaration void R_CAN_SetFifoBuffer(uint32_t ch, uint32_t mode, can_cfcc_t * obj);

Description This function enables transmission and reception of messages by using the transmission-and-
reception FIFO buffers.

- Transmission mode
A transmission completion interrupt occurs on completion of transmission of message from the
transmission-and-reception FIFO buffer in transmission mode, with the source for the interrupt
as completion of transmission.
See Section 8.3, Transmission by Using the Transmission-and-Reception FIFO Buffers.

- Reception mode
A reception completion interrupt occurs on completion of reception of message at the
transmission-and-reception FIFO buffer in reception mode.
Register the transmission-and-reception FIFO buffers to be used for the CAN communication by
using the R_CAN_UseBufferEntry() function before calling this function.
The received messages are read by using the R_CAN_ReadFifo() function.
See Section 7.4, Reception by Using the Transmission-and-Reception FIFO Buffers.

Arguments uint32_t ch : Channel number

uint32_t mode : Modes
CAN_TX_MODE: transmission mode
CAN_RX_MODE: reception mode

can_cfcc_t * obj : Information of the transmission-and-reception FIFO buffer

Returned value None

Remarks None

R01AN3109EJ0120 Rev.1.20 Page 95 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

10.7.9 R_CAN_ReleaseFifoBuffer

10.7.10 R_CAN_ReleaseRxFifoBuffer

10.7.11 R_CAN_ReleaseBuffer

R_CAN_ReleaseFifoBuffer

Synopsis Releases the transmission-and-reception FIFO buffers used for the CAN communications.

Header r_can_api.h

Declaration void R_CAN_ReleaseFifoBuffer(uint32_t ch, uint32_t mode);

Description This function releases the transmission-and-reception FIFO buffers used for the CAN
communications.

Arguments uint32_t ch : Channel number

uint32_t mode : Modes
CAN_TX_MODE: transmission mode
CAN_RX_MODE: reception mode

Returned value None

Remarks None

R_CAN_ReleaseRxFifoBuffer

Synopsis Releases the reception FIFO buffers used for the CAN communications.

Header r_can_api.h

Declaration void R_CAN_ReleaseRxFifoBuffer(uint32_t ch);

Description This function releases the reception FIFO buffer used for the CAN communications.

Arguments uint32_t ch : Channel number

Returned value None

Remarks None

R_CAN_ReleaseBuffer

Synopsis Releases the buffers used for the CAN communications.

Header r_can_api.h

Declaration void R_CAN_ReleaseBuffer(uint32_t ch, uint32_t mode);

Description This function releases the buffers used for the CAN communications.

Arguments uint32_t ch : Channel number

uint32_t mode : Mode
CAN_TX_MODE: transmission mode
CAN_RX_MODE: reception mode

Returned value None

Remarks None

R01AN3109EJ0120 Rev.1.20 Page 96 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

10.7.12 R_CAN_GetTxBufferStatus

10.7.13 R_CAN_WriteBuffer

 

10.7.14 R_CAN_GetFifoStatus

R_CAN_GetTxBufferStatus

Synopsis Reads the state of the transmission buffer.

Header r_can_api.h

Declaration uint32_t R_CAN_GetTxBufferStatus(uint32_t ch);

Description This function is used for reading the state of the transmission buffer.

Arguments uint32_t ch : Channel number

Returned value 0: No ongoing transmission
1: Transmission is in progress

Remarks None

R_CAN_WriteBuffer

Synopsis Writes messages to the transmission buffer.

Header r_can_api.h

Declaration void R_CAN_WriteBuffer(uint32_t ch, can_tx_message_t * msg);

Description This function is used for writing messages to the transmission buffer. The message ID, the data
format, the data length, the label information, and the data to be transmitted are stored in the
can_tx_message_t structure and set as an argument of this function.
See Section 8.2, Transmission by Using the Transmission Buffers.

Arguments uint32_t ch : Channel number

can_tx_message_t * msg : Information of the transmission message

Returned value None

Remarks None

R_CAN_GetFifoStatus

Synopsis Reads the state of the transmission-and-reception FIFO buffer.

Header r_can_api.h

Declaration uint32_t R_CAN_GetFifoStatus(uint32_t ch, uint32_t mode);

Description This function is used for reading the state of the transmission-and-reception FIFO buffer.

Arguments uint32_t ch : Channel number

uint32_t mode : Modes
CAN_TX_MODE: transmission mode
CAN_RX_MODE: reception mode

Returned value 0: Transmission-and-reception FIFO buffer is not full
1: Transmission-and-reception FIFO buffer is full

Remarks None

R01AN3109EJ0120 Rev.1.20 Page 97 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

10.7.15 R_CAN_WriteFifo

10.7.16 R_CAN_Tx

R_CAN_WriteFifo

Synopsis Writes messages to the transmission-and-reception FIFO buffer in transmission mode.

Header r_can_api.h

Declaration void R_CAN_WriteFifo(uint32_t ch, can_tx_message_t * msg);

Description This function is used for writing messages to the transmission-and-reception FIFO buffer in
transmission mode. The message ID, the data format, the data length, the label information, and
the data to be transmitted are stored in the can_tx_message_t structure and set as an argument
of this function.
See Section 8.3, Transmission by Using the Transmission-and-Reception FIFO Buffers.

Arguments uint32_t ch : Channel number

can_tx_message_t * msg : Information of the transmission message

Returned value None

Remarks None

R_CAN_Tx

Synopsis Starts transmission in CAN communication.

Header r_can_api.h

Declaration void R_CAN_Tx(uint32_t ch, can_tx_message_t * msg);

Description This function starts transmission in CAN communication.
- Transmission by using the transmission buffer

Set the transmission request bit for the relative transmission buffer to 1 (transmission is
requested).

- Transmission by using the transmission-and-reception FIFO buffer in transmission mode
Set the transmission-and-reception FIFO buffer enable bit to 1 (transmission-and-reception
FIFO buffers are used)

Arguments uint32_t ch : Channel number

can_tx_message_t * msg : Information of the transmission message

Returned value None

Remarks None

R01AN3109EJ0120 Rev.1.20 Page 98 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

10.7.17 R_CAN_RxSet

10.7.18 R_CAN_ReadBuff

R_CAN_RxSet

Synopsis Enables reception.

Header r_can_api.h

Declaration void R_CAN_RxSet(uint32_t ch, can_rx_rule_t * rule);

Description This function is used for setting rules for receiving messages. The information of the reception
rules are stored in the can_rx_rule_t structure and set as an argument for the reception rule of this
function.
See Section 6.5, Reception Rule Table.

Arguments uint32_t ch : Channel number

can_rx_rule_t * rule : Information of the reception rule

Returned value None

Remarks None

R_CAN_ReadBuff

Synopsis Reads messages from the reception buffer.

Header r_can_api.h

Declaration uint32_t R_CAN_ReadBuff(uint32_t ch, can_rx_message_t * obj);

Description This function is used for reading messages from the reception buffers.
See Section 7.2, Reception by Using the Reception Buffers.

Arguments uint32_t ch : Channel number

can_rx_message_t * obj : A pointer to the area where the reception messages are stored

Returned value CAN_OK: Data are successfully read from the reception buffer.
CAN_EMPTY: There are no new messages in the reception buffer.

Remarks None

R01AN3109EJ0120 Rev.1.20 Page 99 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

10.7.19 R_CAN_GetRxFifoMessageNum

10.7.20 R_CAN_ReadRxFifo

10.7.21 R_CAN_GetFifoMessageNum

 

R_CAN_GetRxFifoMessageNum

Synopsis Gets the number of unread messages from the reception FIFO buffer.

Header r_can_api.h

Declaration uint32_t R_CAN_GetRxFifoMessageNum(void);

Description This function returns the number of unread messages in the reception FIFO buffer.
See Section 7.3, Reception by Using the Reception FIFO Buffers.

Arguments None

Returned value The number of unread messages.

Remarks None

R_CAN_ReadRxFifo

Synopsis Reads the received messages from the reception FIFO buffer.

Header r_can_api.h

Declaration uint32_t R_CAN_ReadRxFifo(can_rx_message_t * obj);

Description This function is used for reading messages from the reception FIFO buffer.
See Section 7.3, Reception by Using the Reception FIFO Buffers.

Arguments can_rx_message_t * obj : The area where the received messages are stored.

Returned value CAN_OK: Data are successfully read from the reception FIFO buffer.
CAN_EMPTY: There are no unread messages in the reception FIFO buffer (buffer empty).
CAM_LOST: FIFO message lost.

Remarks None

R_CAN_GetFifoMessageNum

Synopsis Get the number of unread messages from the transmission-and-reception FIFO buffer.

Header r_can_api.h

Declaration uint32_t R_CAN_GetFifoMessageNum(uint32_t ch);

Description This function returns the number of unread messages from the transmission-and-reception FIFO
buffer.
See Section 7.4, Reception by Using the Transmission-and-Reception FIFO Buffers.

Arguments uint32_t ch : Channel number

Returned value The number of unread messages

Remarks None

R01AN3109EJ0120 Rev.1.20 Page 100 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

10.7.22 R_CAN_ReadFifo

10.7.23 R_CAN_SetCommTestMode

R_CAN_ReadFifo

Synopsis Reads the received messages from the transmission-and-reception FIFO buffer.

Header r_can_api.h

Declaration uint32_t R_CAN_ReadFifo(uint32_t ch, can_rx_message_t * obj);

Description This function is used for reading the messages from the transmission-and-reception FIFO buffer.
See Section 7.4, Reception by Using the Transmission-and-Reception FIFO Buffers.

Arguments uint32_t ch : Channel number

can_rx_message_t * obj : A pointer to the area where the received messages are stored.

Returned value CAN_OK: Data are successfully read from the transmission-and-reception FIFO buffer.
CAN_EMPTY: There are no unread messages in the transmission-and-reception FIFO buffer
(buffer empty).
CAM_LOST: FIFO message lost.

Remarks None

R_CAN_SetCommTestMode

Synopsis Selects the transfer test mode.

Header r_can_api.h

Declaration void R_CAN_SetCommTestMode(uint32_t ch, uint32_t mode);

Description This function is used for selecting a test mode from the following:
- Standard test mode
- Listen-only mode
- Self-test mode 0 (external loopback mode)
- Self-test mode 1 (internal loopback mode)

Arguments uint32_t ch : Channel number

uint32_t mode : Test modes
CH_TEST_STANDARD: Standard test mode
CH_TEST_LISTENONLY: Listen-only test mode
CH_TEST_SELF0: Self-test mode 0 (external loopback mode)
CH_TEST_SELF1: Self-test mode 1 (internal loopback mode)

Returned value None

Remarks None

R01AN3109EJ0120 Rev.1.20 Page 101 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

10.7.24 R_CAN_ResetTestMode

10.7.25 R_CAN_SetInterruptHandler

R_CAN_ResetTestMode

Synopsis Clears the transfer test state.

Header r_can_api.h

Declaration void R_CAN_ResetTestMode(uint32_t ch);

Description This function clears the test mode set by using the R_CAN_SetCommTestMode() function.

After the test, always clear the state by calling this function.

Arguments uint32_t ch : Channel number

Returned value None

Remarks None

R_CAN_SetInterruptHandler

Synopsis Registers the callback function which is called by the interrupt handling routines used in the CAN
communications.

Header r_can_api.h

Declaration void R_CAN_SetInterruptHandler(uint32_t ch, can_callback_t * pcallback);

Description This function is used to register the callback function which is called by one of the following
interrupt handling routines used in the CAN communications.

- CAN global error
- CAN0 error
- CAN1 error
- CAN reception FIFO
- CAN0 transmission-and-reception FIFO reception completion
- CAN0 transmission
- CAN1 transmission-and-reception FIFO reception completion
- CAN1 transmission

* pcallback:
A pointer to the structure which holds the information of the callback function. Write the callback
function name to the member of this structure. Write null if the pointer is not used.

Arguments uint32_t ch : Channel number

can_callback_t * pcallback : Information of the callback function

Returned value None

Remarks None

R01AN3109EJ0120 Rev.1.20 Page 102 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

10.7.26 R_CAN_SetInterruptEnableDisable

10.7.27 R_CAN_GetInterruptSource

 

R_CAN_SetInterruptEnableDisable

Synopsis Controls enabling and disabling of the interrupt handler used in the CAN communication.

Header r_can_api.h

Declaration void R_CAN_SetInterruptEnableDisable(uint32_t enable_disable);

Description This function controls enabling and disabling of the following interrupt handlers used in CAN
communication.

- CAN global error
- CAN0 error
- CAN1 error
- CAN reception FIFO
- CAN0 transmission-and-reception FIFO reception completion
- CAN0 transmission
- CAN1 transmission-and-reception FIFO reception completion
- CAN1 transmission

Arguments uint32_t enable_disable : Enables or disables
CAN_INTR_DISABLE: Disables
CAN_INTR_ENABLE: Enables

Returned value None

Remarks None

R_CAN_GetInterruptSource

Synopsis Gets the interrupt source

Header r_can_api.h

Declaration void R_CAN_GetInterruptSource(can_intr_source_t * obj);

Description This function returns an indicator of the source of an interrupt.

Arguments can_intr_source_t * obj : Area where the information of the interrupt source is stored

Returned value None

Remarks None

R01AN3109EJ0120 Rev.1.20 Page 103 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

10.7.28 R_CAN_ClearInterruptSource

10.7.29 main

R_CAN_ClearInterruptSource

Synopsis Clears the information of the interrupt source.

Header r_can_api.h

Declaration void R_CAN_ClearInterruptSource(void);

Description This function clears the source for the corresponding interrupt.

Arguments None

Returned value None

Remarks None

Main

Synopsis The main function of this sample program.

Header ―

Declaration void main(void)

Description This is the main processing for this sample program.
See Section 10.8, Flowchart for detailed processing.

Arguments None

Returned value None

Remarks None

R01AN3109EJ0120 Rev.1.20 Page 104 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

10.8 Flowchart

10.8.1 Main Processing
In this sample program, the item the user wants to check is selected from the menus. See Section 10.1, Operational
Outline for the menus.

Figure 10.15 is the flowchart for the main processing of this sample code.

Figure 10.15 Main Processing in the Sample Code

Start

Register the numbers of the buffers to be
used in the sample program

Initialization of the LED ports

Startup the CAN module
CAN0, 1 Mbps

Initialization of the SCIFA2 module

Display the main menu

Processing branches depending on the
number selected from the menu

R_CAN_Open(ch_no, baud_rate);
Channel: CAN0
Transfer rate: 1 Mbps

R_CAN_UseBufferEntry(&used_buf);
Transmission buffer number: 0
Reception buffer number: 1
Reception FIFO buffer number: 0
Number of the transmission-and-reception FIFO buffer in transmission mode: 0
Number of the transmission buffer linked to the transmission-and-reception FIFO buffer: 2
Number of the transmission-and-reception FIFO buffer in reception mode: 1

R01AN3109EJ0120 Rev.1.20 Page 105 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

10.8.2 Transmission Test
Two types of the transmission tests, transmission by using the transmission buffer and by using the transmission-and-
reception FIFO buffer in transmission mode are available from the menu.

See Section 10.1, Operational Outline for the menus.

The following functions are used for performing each test.

(1) void tx_demo_buffer(void)
Message transmission by using the transmission buffer.

(2) void tx_demo_fifo(void)
Message transmission by using the transmission-and-reception FIFO buffer in transmission mode.

(3) uint32_t write_buffer(uint32_t msg_type, tx_data_t * obj)
Writing transmission messages to the registers related to the transmission buffer.

(4) uint32_t write_fifo(uint32_t msg_type, tx_data_t * obj)
Writing transmission messages to the registers related to the transmission-and-reception FIFO buffer.

Figure 10.16 to Figure 10.19 show the flowcharts for processing by the respective functions.

R01AN3109EJ0120 Rev.1.20 Page 106 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

(1) Message transmission by using the transmission buffer
Function name: void tx_demo_buffer(void)
A flowchart for this test is shown below.

Figure 10.16 Message Transmission by Using the Transmission Buffer

Start

Preparation of the transmission message

Initialization of the variables to be used
demo_init()

Registration of the interrupts and callback functions
select_interrupt_source()

Write to the transmission buffer
write_buffer((uint32_t)MSG_BODY, &tx_data)

Judgment for the returned value
RET_OK:
The transmission data is output to the console.
RET_ERROR:
Exit the processing (the flag is set).
RET_BUSY:
The buffer is in use and wait until it becomes available.

can_callback.pintr_ge = &user_gl_err_callback;
can_callback.pintr_rfi = &user_rx_fifo_callback;
can_callback.pintr_ie0 = &user_ch0_err_callback;
can_callback.pintr_ti0 = &user_ch0_tx_callback;
can_callback.pintr_fir0 = &user_ch0_rx_fifo_callback;
can_callback.pintr_ie1 = NULL;
can_callback.pintr_ti1 = NULL;
can_callback.pintr_fir1 = NULL;
R_CAN_SetInterruptHandler(ch_no, &can_callback);

Yes

Has any key been pressed
or did any error occur?

No

Return

Output the result of the processing
demo_result()

Clear the information of the buffers used in the test
demo_end()

Send a message termination code
send_termination_code()

Preparation of the next message

Has transmission of the
message been completed?

Yes
No

R01AN3109EJ0120 Rev.1.20 Page 107 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

(2) Message transmission by using the transmission-and-reception FIFO buffer in transmission mode
Function name: void tx_demo_fifo(void)
A flowchart for this test is shown below.

Figure 10.17 Message Transmission by Using the Transmission-and-Reception FIFO Buffer in Transmission
Mode

Start

Configuration of the transmission-and-reception FIFO
buffer in transmission mode

set_fifo_buffer(ch_no, CAN_TX_MODE,
TRG_RCV_MSG

Initialization of the variables to be used
demo_init()

Registration of the interrupts and callback functions
select_interrupt_source()

Write to the transmission buffer
write_fifo((uint32_t)MSG_BODY, &tx_data)

Judgment for the returned value
RET_OK:
The transmission data is output to the console.
RET_ERROR:
Exit the processing (the flag is set).
RET_BUSY:
The buffer is in use and wait until it becomes available.

can_callback.pintr_ge = &user_gl_err_callback;
can_callback.pintr_rfi = &user_rx_fifo_callback;
can_callback.pintr_ie0 = &user_ch0_err_callback;
can_callback.pintr_ti0 = &user_ch0_tx_callback;
can_callback.pintr_fir0 = &user_ch0_rx_fifo_callback;
can_callback.pintr_ie1 = NULL;
can_callback.pintr_ti1 = NULL;
can_callback.pintr_fir1 = NULL;
R_CAN_SetInterruptHandler(ch_no, &can_callback);

Yes

Has any key been pressed
or did any error occur?

No

Return

Output the result of the processing
demo_result()

Clear the information of the buffers used in the test
demo_end()

Send a message termination code
send_termination_code()

Preparation of the next messages

Has transmission of the
message been completed?

Yes
No

Preparation of the transmission messages

R01AN3109EJ0120 Rev.1.20 Page 108 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

(3) Writing transmission messages to the registers related to the transmission buffer
Function name: uint32_t write_buffer(uint32_t msg_type, tx_data_t * obj)
A flowchart for this test is shown below.

Figure 10.18 Writing Transmission Messages to the Registers Related to the Transmission Buffer

Start

Preparation of the transmission message
(8 bytes)

Start the sample data from the beginning

Judgment for the returned value
RET_OK:
Transmission has been completed.
RET_ERROR:
An error occurred.
RET_BUSY:
The buffer is in use.

R_CAN_GetTxBufferStatus(ch_no)

Yes

Has transmission been completed or
did any errors occur?

No

Return

Update the information of the transmission message

Write to the transmission buffer
R_CAN_WriteBuffer(ch_no, &tx_msg)

Is the transmission buffer available?

Did the sample data end?
No

Yes

Yes
No

Transmission request
R_CAN_Tx(ch_no, &tx_msg)

R01AN3109EJ0120 Rev.1.20 Page 109 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

(4) Writing transmission messages to the registers related to the transmission-and-reception FIFO buffer.
Function name: uint32_t write_fifo(uint32_t msg_type, tx_data_t * obj)
A flowchart for this test is shown below.

Figure 10.19 Writing Transmission Messages to the Registers Related to the Transmission-and-Reception
FIFO Buffer

Start

Preparation of the transmission message
(8 bytes)

Start the sample data from the beginning

Judgment for the returned value
RET_OK:
Transmission has been completed.
RET_ERROR:
An error occurred.
RET_BUSY:
The buffer is in use.

R_CAN_GetFifoStatus(ch_no, CAN_TX_MODE)

Yes

Has transmission been completed or
did any error occur?

No

Return

Update the information of the transmission message

Write to the transmission-and-reception FIFO buffer
R_CAN_WriteFifo(ch_no, &tx_msg)

Is the
transmission-and-reception FIFO buffer

available?

Did the sample data end?
No

Yes

Yes
No

Transmission request
R_CAN_Tx(ch_no, &tx_msg)

R01AN3109EJ0120 Rev.1.20 Page 110 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

10.8.3 Reception Test
Two types of reception tests, message reception by using the reception buffer and by using the reception FIFO buffer are
available from the menus.

See Section 10.1, Operational Outline for the menus.

The following functions are used for performing each test.

(1) void rx_demo_buffer(void)
Message reception by using the reception buffer

(2) void rx_demo_rx_fifo(void)
Message reception by using the reception FIFO buffer

(3) void rx_demo_fifo(void)
Message reception by using the transmission-and-reception FIFO buffer in reception mode

(4) uint32_t read_buffer(rx_data_t * obj)
Reading received messages from the reception buffer

(5) void read_rx_fifo(rx_data_t * obj)
Reading received messages from the reception FIFO buffer

(6) void read_fifo(uint32_t ch, rx_data_t * obj)
Reading received messages from the transmission-and-reception FIFO buffer

Figure 10.20 to Figure 10.25 show the flowcharts for processing by the respective functions.

R01AN3109EJ0120 Rev.1.20 Page 111 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

(1) Message reception by using the reception buffer
Function name: void rx_demo_buffer(void)
A flowchart for this test is shown below.

Figure 10.20 Message Reception by Using the Reception Buffer

can_callback.pintr_ge = &user_gl_err_callback;
can_callback.pintr_rfi = &user_rx_fifo_callback;
can_callback.pintr_ie0 = &user_ch0_err_callback;
can_callback.pintr_ti0 = &user_ch0_tx_callback;
can_callback.pintr_fir0 = &user_ch0_rx_fifo_callback;
can_callback.pintr_ie1 = NULL;
can_callback.pintr_ti1 = NULL;
can_callback.pintr_fir1 = NULL;
R_CAN_SetInterruptHandler(ch_no, &can_callback);

Start

Configuration of the reception rules
rx_rule(CAN_RX_BUFFER)

Initialization of the variables to be used
clear_status()

Registration of the interrupts and callback functions
select_interrupt_source()

Read from the reception buffer
read_buffer(&rx_data)

Judgment for the returned value
MSG_BODY:
The reception data is output to the console.
MSG_END:
Exit the processing (the flag is set).

Yes

Has any key been pressed
or did any error occur?

No

Return

Output the result of the processing
demo_result()

Clear the information of the buffers used in the test
demo_end()

Preparation of the transmission messages

R01AN3109EJ0120 Rev.1.20 Page 112 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

(2) Message reception by using the reception FIFO buffer
Function name: void rx_demo_rx_fifo(void)
A flowchart for this test is shown below.

Figure 10.21 Message Reception by Using the Reception FIFO Buffer

can_callback.pintr_ge = &user_gl_err_callback;
can_callback.pintr_rfi = &user_rx_fifo_callback;
can_callback.pintr_ie0 = &user_ch0_err_callback;
can_callback.pintr_ti0 = &user_ch0_tx_callback;
can_callback.pintr_fir0 = &user_ch0_rx_fifo_callback;
can_callback.pintr_ie1 = NULL;
can_callback.pintr_ti1 = NULL;
can_callback.pintr_fir1 = NULL;
R_CAN_SetInterruptHandler(ch_no, &can_callback);

Start

Configuration of the reception rules
rx_rule((unit32_t)CAN_RX_FIFO)

Initialization of the variables to be used
clear_status()

Registration of the interrupts and callback functions
select_interrupt_source()

Read from the reception FIFO buffer
read_rx_fifo(&rx_data)

Judgment for the returned value
MSG_BODY:
The reception data is output to the console.
MSG_END:
MSG_LOST:
MSG_ERROR:
Exit the processing (the flag is set).

Yes

Has any key been pressed
or did any error occur?

No

Return

Output the result of the processing
demo_result()

Clear the information of the buffers used in the test
demo_end()

Preparation of the transmission messages

Configuration of the reception FIFO bufers
rx_fifo_mode(ch_no, TRG_RCV_MSG)

Did a reception FIFO interrupt occur?

Yes

No

R01AN3109EJ0120 Rev.1.20 Page 113 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

(3) Message reception by using the transmission-and-reception FIFO buffer in reception mode
Function name: void rx_demo_fifo(void)
A flowchart for this test is shown below.

Figure 10.22 Message Reception by Using the Transmission-and-Reception FIFO Buffer in Reception Mode

can_callback.pintr_ge = &user_gl_err_callback;
can_callback.pintr_rfi = &user_rx_fifo_callback;
can_callback.pintr_ie0 = &user_ch0_err_callback;
can_callback.pintr_ti0 = &user_ch0_tx_callback;
can_callback.pintr_fir0 = &user_ch0_rx_fifo_callback;
can_callback.pintr_ie1 = NULL;
can_callback.pintr_ti1 = NULL;
can_callback.pintr_fir1 = NULL;
R_CAN_SetInterruptHandler(ch_no, &can_callback);

Start

Configuration of the reception rules
rx_rule(CAN_RX_FIFO)

Initialization of the variables to be used
clear_status()

Registration of the interrupts and callback functions
select_interrupt_source()

Read from the transmission-and-reception FIFO buffer
read_fifo(ch_no, &rx_data)

Judgment for the returned value
MSG_BODY:
The reception data is output to the console.
MSG_END:
MSG_LOST:
MSG_ERROR:
Exit the processing (the flag is set).

Yes

Has any key been pressed
or did any error occur?

No

Return

Output the result of the processing
demo_result()

Clear the information of the buffers used in the test
demo_end()

Preparation of the reception messages

Configuration of the transmission-and-reception FIFO
buffers

set_fifo_buffer(ch_no, CAN_RX_MODE,
TRG_RCV_MSG)

Did a
transmission-and-reception FIFO reception

completion interrupt occur?

Yes

No

R01AN3109EJ0120 Rev.1.20 Page 114 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

(4) Reading received messages from the reception buffer
Function name: uint32_t read_buffer(rx_data_t * obj)
A flowchart for this test is shown below.

Figure 10.23 Reading Received Messages from the Reception Buffer

R_CAN_ReadBuffer(ch_no, &rx_msg)

Start

Store the received message data in the reception buffer
(8 bytes)

Store the reception data from the beginning of the specified
buffer

Update the information of the received message

Judgment for the returned value
MSG_BODY: The message body
MSG_END: The delimiter code
MSG_NONE: No message has been received

Yes

Is the buffer specified for storing messages full?

No

Return

Yes

No

No

Has the data been
read from the reception buffer?

Is the received data the message body?

Yes

R01AN3109EJ0120 Rev.1.20 Page 115 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

(5) Reading Received Messages from the Reception FIFO Buffer
Function name: void read_rx_fifo(rx_data_t * obj)
A flowchart for this test is shown below.

Figure 10.24 Reading Received Messages from the Reception FIFO Buffer

R_CAN_GetRxFifoMessageNum()

Start

Read from the reception FIFO buffer
R_CAN_ReadRxFifo(&rx_msg)

Store the reception data from the beginning of the specified buffer

Update the information of the received message

Judgment for the returned value
CAN_OK:
• If the reception data is the delimiter code: rx_data_sts =

MSG_END
• If the reception data is the message data, it is stored in the

reception buffer (8 bytes): rx_data_sts = MSG_BODY
CAN_LOST: rx_data_sts = MSG_LOST
If an error occurred: rx_data_sts = MSG_ERROR

Yes

Is the buffer specified for storing messages full?

No

Return

No

Are there any unread messages
 in the reception FIFO buffer?

Yes

R01AN3109EJ0120 Rev.1.20 Page 116 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

(6) Reading received messages from the transmission-and-reception FIFO buffer
Function name: void read_fifo(uint32_t ch, rx_data_t * obj)
A flowchart for this test is shown below.

Figure 10.25 Reading Received Messages from the Transmission-and-reception FIFO Buffer

R_CAN_GetInfoMessageNum(ch)

Start

Read from the transmission-and-reception FIFO buffer
R_CAN_ReadFifo(ch, &rx_msg)

Store the reception data from the beginning of the specified buffer

Update the information of the received message

Judgment for the returned value
CAN_OK:
• If the reception data is the delimiter code:

rx_data_sts = MSG_END
• If the reception data is the message data, it is stored in the

reception buffer (8 bytes):rx_data_sts=MSG_BODY
CAN_LOST: rx_data_sts = MSG_LOST
If an error occurred: rx_data_sts = MSG_ERROR

Yes

Is the buffer specified for storing messages full?

No

Return

No

Are there any unread
messages in the transmission-and-reception

FIFO buffer?

Yes

R01AN3109EJ0120 Rev.1.20 Page 117 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

10.8.4 Test for Transmission While Receiving Data at the Same Time
This is to test transmission of messages while receiving a different message at the same time.

In this sample program, the messages are received by using the transmission-and-reception FIFO buffer in reception
mode and transmitted by using the transmission-and-reception FIFO buffer in transmission mode.

See Section 10.1, Operational Outline for the menus.

The following function is used for performing this test.

(1) void trx_demo_fifo(void)
Message transmission while receiving a different message at the same time.

Figure 10.26 shows a flowchart for this processing.

R01AN3109EJ0120 Rev.1.20 Page 118 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

(1) Message transmission while receiving a different message at the same time
Function name: void trx_demo_fifo(void)
A flowchart for this test is shown below.

Figure 10.26 Message Transmission While Receiving a Different Message at the Same Time (1/2)

can_callback.pintr_ge = &user_gl_err_callback;
can_callback.pintr_rfi = &user_rx_fifo_callback;
can_callback.pintr_ie0 = &user_ch0_err_callback;
can_callback.pintr_ti0 = &user_ch0_tx_callback;
can_callback.pintr_fir0 = &user_ch0_rx_fifo_callback;
can_callback.pintr_ie1 = NULL;
can_callback.pintr_ti1 = NULL;
can_callback.pintr_fir1 = NULL;
R_CAN_SetInterruptHandler(ch_no, &can_callback);

Start

Configuration of the reception rules
rx_rule(CAN_RX_FIFO)

Initialization of the variables to be used
demo_init()

Registration of the interrupts and callback functions
select_interrupt_source()

Preparation of the reception messages

Configuration of the transmission-and-reception FIFO buffers
in reception mode

set_fifo_buffer(ch_no, CAN_RX_MODE, TRG_RCV_MSG)

Configuration of the transmission-and-reception FIFO buffers in
transmission mode

set_fifo_buffer(ch_no, CAN_TX_MODE, TRG_RCV_MSG)

To be continued to the next page

“Please press any key when you are ready on the receiving side >>”

R01AN3109EJ0120 Rev.1.20 Page 119 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

Figure 10.26 Message Transmission While Receiving a Different Message at the Same Time (2/2)

Read from the transmission-and-reception FIFO buffer
read_fifo(ch_no, &rx_data)

Judgment for the returned value
MSG_BODY:
The reception data is output to the console.
MSG_END:
MSG_LOST:
MSG_ERROR:
Exit the processing (the flag is set).

Yes

Has any key been pressed
or did any error occur?

No

Return

Output the result of the processing
demo_result()

Clear the information of the buffers used in the test
demo_end()

Continued from the previous page

Did a
transmission-and-reception FIFO reception

completion interrupt occur?

Yes
No

Write to the transmission buffer
write_fifo(MSG_BODY, &tx_data)

Judgment for the returned value
RET_OK:
The transmission data is output to the console.
RET_ERROR:
Exit the processing (the flag is set).
RET_BUSY:
The transmission buffer is in use. Wait until it becomes
available.

Preparation for the next transmission message

Have transmission of
the messages been completed?

Yes

No

R01AN3109EJ0120 Rev.1.20 Page 120 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

10.8.5 Self-Tests
Testing CAN communications by using a single evaluation board which is connected to the development environment is
possible. In this sample program, self-tests for checking transmission and reception are available. Select the test mode
from self-test mode 0 for external loopback or self-test mode 1 for internal loopback from the menu.

See Section 10.1, Operational Outline for the menus.

(1) Self-test mode 0 (external loopback)
This is a loopback within a channel including the CAN transceiver. Figure 10.27 shows the connection when self-
test mode 0 is selected.

(2) Self-test mode 1 (internal loopback)
In this mode, the transmitted messages are handled as the reception messages and stored in the specified buffer.
Figure 10.28 shows the connection when self-test mode 1 is selected.

Figure 10.27 Connection for Self-Test Mode 0

Figure 10.28 Connection for Self-Test Mode 1

CANmTX

CAN transceiver

CANmRX

CANmTx
(internal)

ACK

CANmRx
(internal)

CANmTX CANmRX

CANmTx
(internal)

ACK

CANmRx
(internal)

Recessive level

R01AN3109EJ0120 Rev.1.20 Page 121 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

Four types of self-tests are available as follows;
• Transmitting a message from the transmission buffer and receiving it at the reception buffer
• Transmitting a message from the transmission buffer and receiving it at the reception FIFO buffer
• Transmitting a message from the transmission buffer and receiving it at the transmission-and-reception FIFO buffer

in reception mode
• Transmitting a message from the transmission-and-reception FIFO buffer in transmission mode and receiving it at

the transmission-and-reception FIFO buffer in reception mode

The type of transmission depends on the buffer used for transmission as follows.
The transmission buffer: transmission of one message is repeated.
The transmission-and-reception FIFO buffer in transmission mode: transmission of one message is repeated.

The type of reception depends on the buffer used for reception as follows.
The reception FIFO buffer:

An interrupt occurs when the number of messages stored in the reception FIFO buffer matches the specified FIFO
buffer depth (four messages).

The transmission-and-reception FIFO buffer in reception mode:
An interrupt occurs when the number of messages stored in the transmission-and-reception FIFO buffer matches
the transmission-and-reception FIFO buffer depth (four messages).

The following functions are used for performing each test.
(1) void selftest_buf_to_buf(void)

Sending a message from the transmission buffer and receiving it at the reception buffer
(2) void selftest_buf_to_rx_fifo(void)

Sending a message from the transmission buffer and receiving it at the reception FIFO buffer
(3) void selftest_buf_to_fifo(void)

Sending a message from the transmission buffer and receiving it at the transmission-and-reception FIFO buffer
(4) void selftest_fifo_to_fifo(void)

Sending a message from the transmission-and-reception FIFO buffer in transmission mode and receiving it at the
transmission-and-reception FIFO buffer in reception mode

Figure 10.29 to Figure 10.32 show the flowcharts for processing by the respective functions.

R01AN3109EJ0120 Rev.1.20 Page 122 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

(1) Sending a message from the transmission buffer and receiving it at the reception buffer
Function name: void selftest_buf_to_buf(void)
A flowchart for this test is shown below.

Figure 10.29 Sending a Message from the Transmission Buffer and Receiving It at the Reception Buffer (1/2)

Start

Initialization of the variables used in the sample program
demo_init()

Registration of the interrupts and callback functions
select_interrupt_source()

Configuration of the reception rules
rx_rule(CAN_RX_BUFFER)

Configuration of the self-test modes
R_CAN_SetCommTestMode(ch_no, selftest_loopback_type)

Preparation for transmission and reception of messages

can_callback.pintr_ge = &user_gl_err_callback;
can_callback.pintr_rfi = &user_rx_fifo_callback;
can_callback.pintr_ie0 = &user_ch0_err_callback;
can_callback.pintr_ti0 = &user_ch0_tx_callback;
can_callback.pintr_fir0 = &user_ch0_rx_fifo_callback;
can_callback.pintr_ie1 = NULL;
can_callback.pintr_ti1 = NULL;
can_callback.pintr_fir1 = NULL;
R_CAN_SetInterruptHandler(ch_no, &can_callback);

To be continued to the next page

R01AN3109EJ0120 Rev.1.20 Page 123 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

Figure 10.29 Sending a Message from the Transmission Buffer and Receiving It at the Reception Buffer (2/2)

Return

Yes

Read from the reception buffer
read_buffer(&rx_data)

Has any key been pressed or
did any error occur?

No

Judgment of the returned value
RET_OK：
 The transmission data is output to the console.
　The transmission flag is set.
RET_ERROR:
 Exit the processing (the flag is set).
RET_BUSY:

Clear the information of the buffers used for the test
demo_end()

Output the result of the processing
demo_result()

Write the message to the transmission buffer
write_buffer(MSG_BODY, &tx_data)

Continued from the previous page

Judgment of the returned value
MSG_BODY:
 The reception data is output to the console.
 Reception of the message has been completed.

Clear the test mode
R_CAN_ResetTestMode(ch_no)

Was the transmission successful?

Has reception of the
message been completed?

Has transmission of the
message been completed?

Preparation for the next messages

Yes
No

Yes
No

Yes
No

R01AN3109EJ0120 Rev.1.20 Page 124 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

(2) Sending a message from the transmission buffer and receiving it at the reception FIFO buffer
Function name: void selftest_buf_to_rx_fifo(void)
A flowchart for this test is shown below.

Figure 10.30 Sending a Message from the Transmission Buffer and Receiving It at the Reception FIFO buffer
(1/2)

Start

Initialization of the variables used in the sample program
demo_init()

Registration of the interrupts and callback functions
select_interrupt_source()

Configuration of the reception FIFO buffers
rx_fifo_mode(ch_no, TRG_FIFO_FULL)

Configuration of the self-test modes
R_CAN_SetCommTestMode(ch_no, selftest_loopback_type)

Preparation for transmission and reception of messages

can_callback.pintr_ge = &user_gl_err_callback;
can_callback.pintr_rfi = &user_rx_fifo_callback;
can_callback.pintr_ie0 = &user_ch0_err_callback;
can_callback.pintr_ti0 = &user_ch0_tx_callback;
can_callback.pintr_fir0 = &user_ch0_rx_fifo_callback;
can_callback.pintr_ie1 = NULL;
can_callback.pintr_ti1 = NULL;
can_callback.pintr_fir1 = NULL;
R_CAN_SetInterruptHandler(ch_no, &can_callback);

To be continued to the next page

Configuration of the reception rules
rx_rule(CAN_RX_RX_FIFO)

R01AN3109EJ0120 Rev.1.20 Page 125 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

Figure 10.30 Sending a Message from the Transmission Buffer and Receiving It at the Reception FIFO Buffer
(2/2)

Return

Yes

Read from the reception FIFO buffer
read_rx_fifo(&rx_data)

Has any key been pressed or
did any error occur?

No

Judgment of the returned value
RET_OK：
 The transmission data is output to the console.
　The transmission flag is set.
RET_ERROR:
 Exit the processing (the flag is set).
RET_BUSY:

Clear the information of the buffers used for the test
demo_end()

Output the result of the processing
demo_result()

Write the message to the transmission buffer
write_buffer(MSG_BODY, &tx_data)

Continued from the previous page

Judgment of the returned value
MSG_BODY:
 The reception data is output to the console.

Clear the test mode
R_CAN_ResetTestMode(ch_no)

Did a reception FIFO interrupt occur?

Has transmission of the
message been completed?

Preparation for the next messages

Yes
No

Yes
No

R01AN3109EJ0120 Rev.1.20 Page 126 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

(3) Sending a message from the transmission buffer and receiving it at the transmission-and-reception FIFO buffer in
reception mode
Function name: void selftest_buf_to_fifo(void)
A flowchart for this test is shown below.

Figure 10.31 Sending a Message from the Transmission Buffer and Receiving It at the Transmission-and-
Reception FIFO Buffer in Reception Mode (1/2)

Start

Initialization of the variables used in the sample program
demo_init()

Registration of the interrupts and callback functions
select_interrupt_source()

Configuration of the transmission-and-reception FIFO buffers
set_fifo_buffer(ch_no, CAN_RX_MODE, TRG_FIFO_FULL)

Configuration of the self-test modes
R_CAN_SetCommTestMode(ch_no, selftest_loopback_type)

Preparation for the information of messages for transmission
and reception

can_callback.pintr_ge = &user_gl_err_callback;
can_callback.pintr_rfi = &user_rx_fifo_callback;
can_callback.pintr_ie0 = &user_ch0_err_callback;
can_callback.pintr_ti0 = &user_ch0_tx_callback;
can_callback.pintr_fir0 = &user_ch0_rx_fifo_callback;
can_callback.pintr_ie1 = NULL;
can_callback.pintr_ti1 = NULL;
can_callback.pintr_fir1 = NULL;
R_CAN_SetInterruptHandler(ch_no, &can_callback);

To be continued to the next page

Configuration of the reception rules
rx_rule((uint32_t)CAN_RX_FIFO)

R01AN3109EJ0120 Rev.1.20 Page 127 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

Figure 10.31 Sending a Message from the Transmission Buffer and Receiving It at the Transmission-and-
Reception FIFO Buffer in Reception Mode (2/2)

Return

Yes

Read from the transmission-and-reception FIFO buffer
read_fifo(ch_no, &rx_data)

Has any key been pressed or
did any error occur?

No

Judgment of the returned value
RET_OK：
 The transmission data is output to the console.
　The transmission flag is set.
RET_ERROR:
 Exit the processing (the flag is set).
RET_BUSY:

Clear the information of the buffers used for the test
demo_end()

Output the result of the processing
demo_result()

Write the message to the transmission buffer
write_buffer(MSG_BODY, &tx_data)

Continued from the previous page

Judgment of the returned value
MSG_BODY:
 The reception data is output to the console.

Clear the test mode
R_CAN_ResetTestMode(ch_no)

Did a
transmission-and-reception FIFO reception

interrupt occur?

Has transmission of the
message been completed?

Preparation for the next messages

Yes

No

Yes
No

R01AN3109EJ0120 Rev.1.20 Page 128 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

(4) Sending a message from the transmission-and-reception FIFO buffer in transmission mode and receiving it at the
transmission-and-reception FIFO buffer in reception mode
Function name: void selftest_fifo_to_fifo(void)
A flowchart for this test is shown below.

Figure 10.32 Sending a Message from the Transmission-and-Reception FIFO Buffer in Transmission Mode and
Receiving It at the Transmission-and-Reception FIFO Buffer in Reception Mode (1/2)

Start

Initialization of the variables used in the sample program
demo_init()

Registration of the interrupts and callback functions
select_interrupt_source()

Configuration of the transmission-and-reception FIFO buffer in
transmission mode

set_fifo_buffer(ch_no, CAN_TX_MODE, TRG_RCV_MSG)

Configuration of the self-test modes
R_CAN_SetCommTestMode(ch_no, selftest_loopback_type)

Preparation for transmission and reception of messages

can_callback.pintr_ge = &user_gl_err_callback;
can_callback.pintr_rfi = &user_rx_fifo_callback;
can_callback.pintr_ie0 = &user_ch0_err_callback;
can_callback.pintr_ti0 = &user_ch0_tx_callback;
can_callback.pintr_fir0 = &user_ch0_rx_fifo_callback;
can_callback.pintr_ie1 = NULL;
can_callback.pintr_ti1 = NULL;
can_callback.pintr_fir1 = NULL;
R_CAN_SetInterruptHandler(ch_no, &can_callback);

To be continued to the next page

Configuration of the reception rules
rx_rule((uint32_t)CAN_RX_FIFO)

Configuration of the transmission-and-reception FIFO buffer in
reception mode

set_fifo_buffer(ch_no, CAN_RX_MODE, TRG_FIFO_FULL)

R01AN3109EJ0120 Rev.1.20 Page 129 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

Figure 10.32 Sending a Message from the Transmission-and-Reception FIFO Buffer in Transmission Mode and
Receiving It at the Transmission-and-Reception FIFO Buffer in Reception Mode (2/2)

Return

Yes

Read from the transmission-and-reception FIFO buffer
read_fifo(ch_no, &rx_data)

Has any key been pressed or
did any error occur?

No

Judgment of the returned value
RET_OK：
 The transmission data is output to the console.
　The transmission flag is set.
RET_ERROR:
 Exit the processing (the flag is set).
RET_BUSY:

Clear the information of the buffers used for the test
demo_end()

Output the result of the processing
demo_result()

Write the message to the transmission-and-reception FIFO
buffer

write_fifo(MSG_BODY, &tx_data)

Continued from the previous page

Judgment of the returned value
MSG_BODY:
 The reception data is output to the console.

Clear the test mode
R_CAN_ResetTestMode(ch_no)

Did a transmission-and-reception
FIFO reception interrupt occur?

Has transmission of the
message been completed?

Preparation for the next messages

Yes

No

Yes
No

R01AN3109EJ0120 Rev.1.20 Page 130 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

10.8.6 Callback Processing
This sample program includes interrupt handling routines that are activated on occurrence of the various interrupt source
conditions. The handling routines and the callback functions called by each are listed below.

(1) RSCAN:CANGE (CAN global error)
Interrupt handler: void user_gl_err_isr(void)
Callback function: void user_gl_err_callback(void)

(2) RSCAN:CANIE0 (CAN0 error)
Interrupt handler: void user_ch0_err_isr(void)
Callback function: void user_ch0_err_callback(void)

(3) RSCAN:CANIE1 (CAN1 error)
Interrupt handler: void user_ch1_err_isr(void)
Callback function: void user_ch1_err_callback(void)

(4) RSCAN:CANRFI (CAN reception FIFO interrupt)
Interrupt handler: void user_rx_fifo_isr(void)
Callback function: void user_rx_fifo_callback(void)

(5) RSCAN:CANTI0 (CAN0 transmission interrupt)
Interrupt handler: void user_ch0_tx_isr(void)
Callback function: void user_ch0_tx_callback(void)

(6) RSCAN:CANTI1 (CAN1 transmission interrupt)
Interrupt handler: void user_ch1_tx_isr(void)
Callback function: void user_ch1_tx_callback(void)

(7) RSCAN:CANFIR0 (CAN0 transmission-and-reception FIFO reception completion interrupt)
Interrupt handler: void user_ch0_rx_fifo_isr(void)
Callback function: void user_ch0_rx_fifo_callback(void)

(8) RSCAN:CANFIR1 (CAN1 transmission-and-reception FIFO reception completion interrupt)
Interrupt handler: void user_ch1_rx_fifo_isr(void)
Callback function: void user_ch1_rx_fifo_callback(void)

(9) SCIFA:RXIF2 (SCIFA reception FIFO data full interrupt)
Interrupt handler: void scifa_key_input_isr(void)
Callback function: void key_handler_callback(void)

R01AN3109EJ0120 Rev.1.20 Page 131 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

How to configure the interrupt handling routines is described here:
Use the API functions below to configure the interrupt handling routines.
 void R_ICU_Regist(uint32_t vec_num, uint32_t type, uint32_t priority, uint32_t isr_addr);
 uint32_t vec_num: vector number
 uint32_t type: interrupt detection type
 uint32_t priority: priority level of the interrupt
 uint32_t isr_addr: address of the function for the interrupt handling routine

Use the API functions below to enable or disable the interrupt.
 void R_ICU_Disable(uint32_t vec_num);
 void R_ICU_Enable(uint32_t vec_num);
 uint32_t vec_num: vector number

An example of configuring the callback function is described here.
can_handle_t gb_can_handles[CAN_NUM];

Figure 10.33 to Figure 10.38 show the flowcharts for handling the callback functions on occurrence of the respective
errors.

typedef struct {
void (*pintr_ge)(void); /* Pointer to user callback function. */
void (*pintr_ie0)(void); /* Pointer to user callback function. */
void (*pintr_ie1)(void); /* Pointer to user callback function. */
void (*pintr_rfi)(void); /* Pointer to user callback function. */
void (*pintr_fir0)(void); /* Pointer to user callback function. */
void (*pintr_ti0)(void); /* Pointer to user callback function. */
void (*pintr_fir1)(void); /* Pointer to user callback function. */
void (*pintr_ti1)(void); /* Pointer to user callback function. */

} can_callback_t;

typedef struct {
bool ch_opened;
can_callback_t can_callback;

} can_handle_t;

R01AN3109EJ0120 Rev.1.20 Page 132 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

(1) (RSCAN: CANGE) – A callback function which is called on occurrence of a can global error
Interrupt handler: void user_gl_err_isr(void)
Callback function: void user_gl_err_callback(void)
This callback function is called by the given interrupt handler on the occurrence of an error in the global portion of
the CAN module.
A flowchart for the interrupt handling routine and the corresponding callback function is shown below.

Figure 10.33 Handling of the Callback Function for a CAN Global Error

Return

Yes

Interrupt handling routine is ended
VIC.HVA0.LONG = CAN_HVA_WRITE_DATA

Has the callback function been registered?

No

Call the callback function
gb_can_handles[gb_ch_no].can_callback.pintr_ge()

Global error flag is set
gl_err_flag=true

Get the interrupt source
get_gl_err_interrupt_source()

Start

Return

Start

Callback function

Interrupt handling routine

R01AN3109EJ0120 Rev.1.20 Page 133 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

(2) (RSCAN:CANIEm) – A callback function which is called on occurrence of a CANm error
Interrupt handler: void user_ch0_err_isr(void), void user_ch1_err_isr(void)
Callback function: void user_ch0_err_callback(void), void user_ch1_err_callback(void)
This callback function is called by the given interrupt handler on the occurrence of an error in the channel (CAN0 or
CAN1) of the CAN module.
A flowchart for the interrupt handling routine and the corresponding callback function is shown below.

Figure 10.34 Handling of the Callback Function for a CANm Error

Return

Yes

Interrupt handling routine is ended
VIC.HVA0.LONG = CAN_HVA_WRITE_DATA

Has the callback function been registered?

No

Call the callback function
gb_can_handles[gb_ch_no].can_callback.pintr_ie0()

Channel error flag is set
ch_err_flag= true

Get the interrupt source
get_ch_err_interrupt_source(ch)

Start

Return

Start

Callback function

Interrupt handling routine

R01AN3109EJ0120 Rev.1.20 Page 134 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

(3) (RSCAN:CANRFI) – A callback function which is called on occurrence of a CAN reception FIFO interrupt
Interrupt handler: void user_rx_fifo_isr(void)
Callback function: void user_rx_fifo_callback(void)
With the settings for the reception of messages by the reception FIFO buffer, the interrupt handler calls this callback
function when the reception FIFO buffer becomes full of messages.
A flowchart for the interrupt handling routine and the corresponding callback function is shown below.

Figure 10.35 Handling of the Callback Function for a CAN Reception FIFO Interrupt

Return

Yes

Interrupt handling routine is ended
VIC.HVA0.LONG = CAN_HVA_WRITE_DATA

Has the callback function been registered?
No

Call the callback function
gb_can_handles[gb_ch_no].can_callback.pintr_rfi()

The reception FIFO reception completion flag is set
ch_rx_fifo_intr_flag= true

Clear the sources for the reception FIFO buffer
interrupt

Start

Return

Start

Callback function

Interrupt handling routine

R01AN3109EJ0120 Rev.1.20 Page 135 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

(4) (RSCAN:CANTIm) – A callback function which is called on occurrence of a CANm transmission interrupt
Interrupt handler: void user_ch0_tx_isr(void), void user_ch1_tx_isr(void)
Callback function: void user_ch0_tx_callback(void), void user_ch1_tx_callback(void)
This callback function is called by the given interrupt handler on completion of transmission of a message.
A flowchart for the interrupt handling routine and the corresponding callback function is shown below.

Figure 10.36 Handling of the Callback Function for a CANm Transmission Interrupt

Return

Yes

Interrupt handling routine is ended
VIC.HVA0.LONG = CAN_HVA_WRITE_DATA

Has the callback function been registered?
No

Call the callback function
gb_can_handles[gb_ch_no].can_callback.pintr_ti0()

The transmission completion flag is set
ch_tx_intr_flag= true

Get the interrupt source
get_ch_tx_interrupt_source(ch)

Start

Return

Start

Callback function

Interrupt handling routine

R01AN3109EJ0120 Rev.1.20 Page 136 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

(5) (RSCAN:CANFIRm) – A callback function that is called on occurrence of a CANm transmission-and-reception
FIFO reception interrupt
Interrupt handler: void user_ch0_rx_fifo_isr(void), void user_ch1_rx_fifo_isr(void)
Callback function: void user_ch0_rx_fifo_callback(void), void user_ch1_rx_fifo_callback(void)
With the settings for the reception of messages by the transmission-and-reception FIFO buffer, the interrupt handler
calls this callback function when the transmission-and-reception FIFO buffer becomes full of messages.
A flowchart for the interrupt handling routine and the corresponding callback function is shown below.

Figure 10.37 Handling of the Callback Function for a CANm Transmission-and-Reception FIFO Reception
Completion Interrupt

Return

Yes

Interrupt handling routine is ended
VIC.HVA0.LONG = CAN_HVA_WRITE_DATA

Has the callback function been registered?

No

Call the callback function
gb_can_handles[gb_ch_no].can_callback.pintr_fir0()

Transmission-and-reception FIFO reception completion flag is set
ch_fifo_intr_flag= true

Get the interrupt source
get_ch_fifo_rx_interrupt_source(ch)

Start

Return

Start

Callback function

Interrupt handling routine

R01AN3109EJ0120 Rev.1.20 Page 137 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

(6) (SCIFA:RXIF2) – A callback function which is called on occurrence of a reception FIFO data full interrupt
Interrupt handler: void scifa_key_input_isr(void)
Callback function: void key_handler_callback(void)
This callback function is called from the handling routine for the pressing of a key producing an interrupt from the
SCIFA module.
When this sample program is being used for transmission, messages are repeatedly transmitted to the receiving side.
The repeated transmission is stopped by pressing any key, which causes the SCIFA module to set a flag
(key_in_flag).
A flowchart for the interrupt handler and the corresponding callback function is shown below.

Figure 10.38 Handling of the Callback Function for a Reception FIFO Data Full Interrupt of SCIFA

Return

Yes

Interrupt handling routine is ended
VIC.HVA0.LONG = SCIFA_HVA_WRITE_DATA

Has the callback function been registered?

No

Call the callback function
scifa_handle.scifa_callback.pintr_ski()

Key entry flag is set
key_in_flag=true

Clear the SCIFA interrupt sources
R_SCIFA_ResetltrReg()

Start

Return

Start

Callback function

Interrupt handling routine

Yes

Was entering of keys enabled?
No

Clear the reception data
dmy_data=SCIFA2.FRDR
SCIFA2.FSR.BIT.RDF = 0

R01AN3109EJ0120 Rev.1.20 Page 138 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

11. Sample Codes
Download the sample program from the Renesas Electronics website.

R01AN3109EJ0120 Rev.1.20 Page 139 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

12. Reference Documents
• User’s Manual: Hardware

RZ/T1 Group User’s Manual: Hardware
(Download the latest version from the Renesas Electronics website.)

• RZ/T1 CPU Board RTK7910022C00000BR User’s Manual
(Download the latest version from the Renesas Electronics website.)

• Technical Update/Technical News
(Download the latest version from the Renesas Electronics website.)

• User’s Manual: Development Environment
For IAR integrated development environment (IAR Embedded Workbench® for Arm), download the latest version
from the IAR systems website.
For Arm software development tools (Arm compiler toolchain, Arm DS-5™, etc.), download the latest version from
the Arm website.
For Renesas integrated development environment (e2studio, etc.), download the latest version from the Renesas
Electronics website.

R01AN3109EJ0120 Rev.1.20 Page 140 of 140
Dec. 12, 2018

RZ/T1 Group CAN Interface Sample Program

Website and Support
Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/contact/

 Application Note: CAN Interface Sample Program

C - 1

Rev. Date
Description

Page Summary
1.00 May. 24, 2016 — First Edition issued
1.10 Sep. 19, 2017 2. Operating Environment

9 Table 2.1 Operating Environment, modified
6. CAN Configuration

15 Figure 6.2 Transitions between Global Modes: Arrow directions corrected
17 Figure 6.3 Transition Diagram among Channel Modes: Changed (SCF → SOF, TEC > 256

→ TEC > 255)
10. Software

85 10.6, can_rx_rule_t: Comment modified
90 Figure 10.13 Transitions between Global Modes: Changed (arrow directions corrected)
92 Figure 10.14 Transition Diagram among Channel Modes: Changed (SCF → SOF, TEC >

256 → TEC > 255)
117 10.8.4, (1) void trx_demo_fifo(void): Function name changed
118 10.8.4, (1) Message transmission while receiving a different message at the same time:

Function name changed
129 Figure 10.32 Sending a Message from the Transmission-and-Reception FIFO Buffer in

Transmission Mode and Receiving It at the Transmission-and-Reception FIFO Buffer in
Reception Mode (2/2): Function name changed (write_buffer → write_fifo)

131 10.8.6 Callback Processing: can_handle_t gb_can_handles[CAN_NUM]: Comment modi-
fied

12. Reference Documents
139 RZ/T1 CPU Board RTK7910022C00000BR User’s Manual; Revision number deleted

1.20 Dec. 12, 2018 2. Operating Environment
9 Table 2.1 Operating Environment: The description on the integrated development environ-

ment, modified
10. Software

102 10.7.27 R_CAN_GetInterruptSource: Description and Arguments, modified
12. Reference Documents

139 "ARM" changed to "Arm"

All trademarks and registered trademarks are the property of their respective owners.

Revision History

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas.

For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well

as any technical updates that have been issued for the products.

1. Handling of Unused Pins
Handle unused pins in accordance with the directions given under Handling of Unused Pins in the
manual.
� The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
� The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
� The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.
� When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to a product with a different part number, confirm
that the change will not lead to problems.
� The characteristics of Microprocessing unit or Microcontroller unit products in the same group but

having a different part number may differ in terms of the internal memory capacity, layout pattern,
and other factors, which can affect the ranges of electrical characteristics, such as characteristic
values, operating margins, immunity to noise, and amount of radiated noise. When changing to a
product with a different part number, implement a system-evaluation test for the given product.

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics Corporation
TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan
Renesas Electronics America Inc.
1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A.
Tel: +1-408-432-8888, Fax: +1-408-434-5351
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709 Quantum Plaza, No.27 ZhichunLu, Haidian District, Beijing, 100191 P. R. China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, 200333 P. R. China
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5338

SALES OFFICES

© 2018 Renesas Electronics Corporation. All rights reserved.
Colophon 7.2

(Rev.4.0-1 November 2017)

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by

you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or

arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application

examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by

you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each Renesas Electronics product depends on the

product’s quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; industrial robots; etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

 Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are

not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause

serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all

liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or

other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the

reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation

characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified

ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a

certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas

Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury

or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult

and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and

sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics

products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable

laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws

or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or

transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third

party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

Notice

	Summary
	Target Devices
	Table of Contents
	1. Specifications
	2. Operating Environment
	3. Related Application Note
	4. Peripheral Modules
	5. Hardware
	5.1 Pins
	5.2 Sample Circuit

	6. CAN Configuration
	6.1 Configuring the CAN Module
	6.2 CAN State (Mode) Transitions
	6.2.1 Global Modes
	6.2.2 Channel Modes
	6.2.3 Changes of Channel Mode Caused by Transitions between Global Modes

	6.3 Transfer Rate
	6.3.1 CAN Bit Time Setting
	6.3.2 Calculating Transfer Rates
	6.3.3 Procedure for Setting CAN Bit Time and Transfer Rates

	6.4 Global Facilities
	6.4.1 Transmission Priority
	6.4.2 DLC Checking
	6.4.3 DLC Replacement
	6.4.4 Mirroring Function
	6.4.5 CAN Clock Source
	6.4.6 Timestamp Clock
	6.4.7 Global Facilities

	6.5 Reception Rule Table
	6.5.1 Number of Reception Rules
	6.5.2 Setting of the IDE, RTR, and ID Bits
	6.5.3 Processing Using Reception Rules
	6.5.4 Settings to Mask the IDE, RTR, and ID Bits
	6.5.5 Values for DLC Checking
	6.5.6 Reception Rule Labeling
	6.5.7 Buffer for Storing Messages
	6.5.8 Usage Example of Reception Rule
	6.5.9 Procedure for Setting the Reception Rule Table

	6.6 Buffers and FIFO Buffers
	6.6.1 Reception Buffer
	6.6.2 Reception FIFO Buffer
	6.6.3 Transmission-and-Reception FIFO Buffer
	6.6.4 Transmission Buffers
	6.6.5 Transmission History Buffers
	6.6.6 Procedures for Setting Buffers

	6.7 Global Error Interrupt
	6.7.1 Global Error Interrupts
	6.7.2 Procedure for Setting the Global Error Interrupt

	6.8 Channel Functions
	6.8.1 CANi Error Interrupts
	6.8.2 CANi Transmission Abort Interrupts
	6.8.3 Bus-Off Recovery Mode
	6.8.4 Error Display Modes
	6.8.5 Transfer Test Mode
	6.8.6 Procedures for Setting the Channel Functions

	6.9 Configurations Required for Each CAN State (Mode)
	6.9.1 CAN State (Mode) Transition
	6.9.2 Global Facilities
	6.9.3 Transfer Rate
	6.9.4 Reception Rule Table
	6.9.5 Buffers
	6.9.6 Global Error Interrupts
	6.9.7 Channels

	7. Reception
	7.1 Receiving Functions
	7.2 Reception by Using the Reception Buffers
	7.2.1 Procedures for Reading from a Reception Buffer

	7.3 Reception by Using the Reception FIFO Buffers
	7.3.1 Procedure for Reading from the Reception FIFO Buffers
	7.3.2 Handling of Reception FIFO-Related Interrupts

	7.4 Reception by Using the Transmission-and-Reception FIFO Buffers
	7.4.1 Procedure for Reading from the Transmission-and-Reception FIFO Buffers
	7.4.2 Handling of Transmission-and-Reception FIFO Buffer-Related Interrupts (When Used in Reception Mode)

	8. Transmission
	8.1 Transmitting Functions
	8.2 Transmission by Using the Transmission Buffers
	8.2.1 Message Transmission
	8.2.2 Procedure for Transmitting Messages from the Transmission Buffer
	8.2.3 Transmission Abort
	8.2.4 Procedure for Aborting Message Transmission
	8.2.5 One-Shot Transmission Function
	8.2.6 Procedure for Transmission by Using the One-Shot Transmission Function
	8.2.7 Handling of Transmission Buffer-Related Interrupts
	8.2.8 Processing after Completion of Message Transmission or Transmission Abort

	8.3 Transmission by Using the Transmission-and-Reception FIFO Buffers
	8.3.1 Message Transmission
	8.3.2 Procedure for Transmitting Messages from a Transmission-and-Reception FIFO Buffer
	8.3.3 Transmission Abort
	8.3.4 Interval Transmission
	8.3.5 Handling of Transmission-and-Reception FIFO Interrupts (Transmission Mode)

	8.4 Transmission History Buffers
	8.4.1 Storing Transmission History Data
	8.4.2 Procedure for Reading From a Transmission History Buffer
	8.4.3 Handling of Transmission History Interrupts

	9. CAN-Related Interrupts
	9.1 CAN-Related Interrupts
	9.1.1 Procedure for Setting the CAN Related Interrupts

	10. Software
	10.1 Operational Outline
	10.1.1 Setting of Projects
	10.1.2 Preparation for Self-Test
	10.1.3 Preparation for Transmission and Reception Tests
	10.1.4 Terminal Software (Tera Term)
	10.1.5 Sample Program Menu
	10.1.6 Setting Values for the Sample Program
	10.1.7 Transmission Test
	10.1.8 Reception Test
	10.1.9 Test for Transmission While Receiving Data at the Same Time
	10.1.10 Self-Test

	10.2 Interrupts
	10.3 Fixed-Width Integer Types
	10.4 Constants and Error Codes
	10.5 Functions
	10.6 Structures/Unions/Enumerated Types
	10.7 Function Specifications
	10.7.1 R_CAN_Open
	10.7.2 R_CAN_Close
	10.7.3 R_CAN_GlobalControl
	10.7.4 R_CAN_ChannelControl
	10.7.5 R_CAN_SetBitrate
	10.7.6 R_CAN_UseBufferEntry
	10.7.7 R_CAN_SetRxFifoBuffer
	10.7.8 R_CAN_SetFifoBuffer
	10.7.9 R_CAN_ReleaseFifoBuffer
	10.7.10 R_CAN_ReleaseRxFifoBuffer
	10.7.11 R_CAN_ReleaseBuffer
	10.7.12 R_CAN_GetTxBufferStatus
	10.7.13 R_CAN_WriteBuffer
	10.7.14 R_CAN_GetFifoStatus
	10.7.15 R_CAN_WriteFifo
	10.7.16 R_CAN_Tx
	10.7.17 R_CAN_RxSet
	10.7.18 R_CAN_ReadBuff
	10.7.19 R_CAN_GetRxFifoMessageNum
	10.7.20 R_CAN_ReadRxFifo
	10.7.21 R_CAN_GetFifoMessageNum
	10.7.22 R_CAN_ReadFifo
	10.7.23 R_CAN_SetCommTestMode
	10.7.24 R_CAN_ResetTestMode
	10.7.25 R_CAN_SetInterruptHandler
	10.7.26 R_CAN_SetInterruptEnableDisable
	10.7.27 R_CAN_GetInterruptSource
	10.7.28 R_CAN_ClearInterruptSource
	10.7.29 main

	10.8 Flowchart
	10.8.1 Main Processing
	10.8.2 Transmission Test
	10.8.3 Reception Test
	10.8.4 Test for Transmission While Receiving Data at the Same Time
	10.8.5 Self-Tests
	10.8.6 Callback Processing

	11. Sample Codes
	12. Reference Documents
	Website and Support
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

