
APPLICATION NOTE

R01AN3956EJ0100 Rev.1.00 Page 1 of 20
Oct. 02, 2017

RX Family RXv2 CPU Products
An example of C-language program to use DSP instructions
Introduction
This document shows definitions of RXv2 DSP instructions as assembly-language inline functions to use in C-language
program.

This document is intended for users who have knowledge of digital signal processing and make digital signal processing
programs in C language.

Target Device
RX Family, RXv2 CPU products

Contents

1. Assembly-language inline functions of DSP instruction ... 2

2. Definition of DSP inline function ... 2
2.1 Multiply, Multiply-add, Multiply-subtract .. 4
2.2 Saturation, Rounding .. 10
2.3 Reading accumulator .. 12
2.4 Writing accumulator ... 16

3. An usage example .. 18

4. Reference documents .. 19

R01AN3956EJ0100
Rev.1.00

Oct. 02, 2017

RX Family RXv2 CPU Products
An example of C-language program to use DSP instructions

R01AN3956EJ0100 Rev.1.00 Page 2 of 20
Oct. 02, 2017

1. Assembly-language inline functions of DSP instruction
RXv2 CPU has DSP instruction which executes 16bit or 32bit fixed point multiply-add calculation, saturation and
rounding in one cycle. DSP instruction operates fast and keeping precision with overflow margin for multiply-add and
multiply-subtract using 72bit accumulator (ACC0, ACC1).

This document declares DSP instructions as assembly-language inline functions to use them in C-language program,
and defines macro functions (DSP inline function) which are collected the same operation of assembly-language inline
functions.

2. Definition of DSP inline function
This section shows DSP inline functions declared in r_dsp_inst_rxv2.h in Table 1. And it describes them by
classification of operations with assembly-language inline functions. Each DSP inline function is associated with an
assembly-language instruction. DSP inline functions used in “An usage example” is indicated as bold in Table 1.

Refer to “RX Family RXv2 Instruction Set Architecture User’s Manual: Software (R01US0071)” for each assembly
instruction in detail.

NOTE: Specify ACC1 for DSP inline function to avoid conflict ACC0.

In case of using ACC0, confirm the two items below between calculation by DSP inline functions, with list file
or something.

1. Confirm the following instructions which use ACC0 are not existed.
- EMUL
- EMULU
- FMUL
- MUL
- RMPA

2. Confirm the unintentional instructions are not existed. DSP instructions MULLO and MACLO which are

used ACC0 could be created in complier parameters (“- speed” and “-save_acc”).

RX Family RXv2 CPU Products
An example of C-language program to use DSP instructions

R01AN3956EJ0100 Rev.1.00 Page 3 of 20
Oct. 02, 2017

Table 1 List of DSP inline functions

operation
classification

Function Name Description

Multiply,
Multiply-add,
Multiply-subtract

__emula 32bit multiply macro function
__emaca 32bit multiply-add macro function
__emsba 32bit multiply-sub macro function
__mulhi 16bit multiply macro function, upper 16bit x upper 16bit
__mullh 16bit multiply macro function, 16bit x upper 16bit
__mullo 16bit multiply macro function, 16bit x 16bit
__machi 16bit multiply-add macro function, upper 16bit x upper 16bit
__maclh 16bit multiply-add macro function, 16bit x upper 16bit
__maclo 16bit multiply-add macro function, 16bit x 16bit
__msbhi 16bit multiply-sub macro function, upper 16bit x upper 16bit
__msblh 16bit multiply-sub macro function, 16bit x upper 16bit
__msblo 16bit multiply-sub macro function, 16bit x 16bit

Saturation,
Rounding

__racl 32bit saturation and rounding macro function
__rdacl 32bit saturation and truncation macro function
__racw 16bit saturation and rounding macro function
__rdacw 16bit saturation and truncation macro function

Reading
accumulator

__mvfachi Reading upper 32bit of accumulator macro functions
__mvfacmi Reading middle-order 32bit of accumulator macro functions
__mvfaclo Reading lower 32bit of accumulator macro functions
__mvfacgu Reading accumulator guard bit macro functions

Writing
accumulator

__mvtachi Writing upper 32bit of accumulator macro functions
__mvtaclo Writing lower 32bit of accumulator macro functions
__mvtacgu Writing accumulator Guard bit macro functions

RX Family RXv2 CPU Products
An example of C-language program to use DSP instructions

R01AN3956EJ0100 Rev.1.00 Page 4 of 20
Oct. 02, 2017

2.1 Multiply, Multiply-add, Multiply-subtract

__emula: 32bit multiply

Format
void __emula(int32_t src, int32_t src2, int adest);

Parameters
src: 32bit fixed point multiplicand
src2: 32bit fixed point multiplier
adest: Assignment of an accumulator to store result (0: ACC0, 1: ACC1). This parameter should

be specified by immediate value.

Return Value
none.

Description
This function calculates product of 32bit x 32bit, then stores 64bit result to the assigned accumulator by LSB alignment.

This function is a macro definition function, and replaced by one of following assembly-language inline functions
depending on the adest value.

adest assembly-language inline function corresponding assembly
instruction

0 void __emula_a0(int32_t src, int32_t src2) EMULA R1,R2,A0
1 void __emula_a1(int32_t src, int32_t src2) EMULA R1,R2,A1

__emaca: 32bit multiply-add

Format
void __emaca(int32_t src, int32_t src2, int adest);

Parameters
src: 32bit fixed point multiplicand
src2: 32bit fixed point multiplier
adest: Assignment of an accumulator to add the product (0: ACC0, 1: ACC1). This parameter

should be specified by immediate value.

Return Value
none.

Description
This function calculates product of 32bit x 32bit, then add 64bit result to the assigned accumulator by LSB alignment.

This function is a macro definition function, and replaced by one of following assembly-language inline functions
depending on the adest value.

adest assembly-language inline function corresponding assembly
instruction

0 void __emaca_a0(int32_t src, int32_t src2) EMACA R1,R2,A0
1 void __emaca_a1(int32_t src, int32_t src2) EMACA R1,R2,A1

RX Family RXv2 CPU Products
An example of C-language program to use DSP instructions

R01AN3956EJ0100 Rev.1.00 Page 5 of 20
Oct. 02, 2017

__emsba: 32bit multiply-subtract

Format
void __emsba(int32_t src, int32_t src2, int adest);

Parameters
src: 32bit fixed point multiplicand
src2: 32bit fixed point multiplier
adest: Assignment of an accumulator to subtract the product (0: ACC0, 1: ACC1). This

parameter should be specified by immediate value.

Return Value
none.

Description
This function calculates product of 32bit x 32bit, then subtract 64bit result from the assigned accumulator by LSB
alignment.

This function is a macro definition function, and replaced by one of following assembly-language inline functions
depending on the adest value.

adest assembly-language inline function corresponding assembly
instruction

0 void __emsba_a0(int32_t src, int32_t src2) EMSBA R1,R2,A0
1 void __emsba_a1(int32_t src, int32_t src2) EMSBA R1,R2,A1

__mulhi: 16bit multiply, upper 16bit x upper 16bit

Format
void __mulhi(int32_t src, int32_t src2, int adest);

Parameters
src: 16bit fixed point multiplicand in upper 16bit
src2: 16bit fixed point multiplier in upper 16bit
adest: Assignment of an accumulator to store result (0: ACC0, 1: ACC1). This parameter should

be specified by immediate value.

Return Value
none.

Description
This function calculates product of 16bit x 16bit, then stores 32bit result to the assigned accumulator. The
multiplication targets are upper 16bit part of src and src2.

This function is a macro definition function, and replaced by one of following assembly-language inline functions
depending on the adest value.

adest assembly-language inline function corresponding assembly
instruction

0 void __mulhi_a0(int32_t src, int32_t src2) MULHI R1,R2,A0
1 void __mulhi_a1(int32_t src, int32_t src2) MULHI R1,R2,A1

RX Family RXv2 CPU Products
An example of C-language program to use DSP instructions

R01AN3956EJ0100 Rev.1.00 Page 6 of 20
Oct. 02, 2017

__mullh: 16bit multiply, 16bit x upper 16bit

Format
void __mullh(int16_t src, int32_t src2, int adest);

Parameters
src: 16bit fixed point multiplicand
src2: 16bit fixed point multiplier in upper 16bit
adest: Assignment of an accumulator to store result (0: ACC0, 1: ACC1). This parameter should

be specified by immediate value.

Return Value
none.

Description
This function calculates product of 16bit x 16bit, then stores 32bit result to the assigned accumulator. The
multiplication target of src2 is upper 16bit part.

This function is a macro definition function, and replaced by one of following assembly-language inline functions
depending on the adest value.

adest assembly-language inline function corresponding assembly
instruction

0 void __mullh_a0(int16_t src, int32_t src2) MULLH R1,R2,A0
1 void __mullh_a1(int16_t src, int32_t src2) MULLH R1,R2,A1

__mullo: 16bit multiply, 16bit x 16bit

Format
void __mullo(int16_t src, int16_t src2, int adest);

Parameters
src: 16bit fixed point multiplicand
src2: 16bit fixed point multiplier
adest: Assignment of an accumulator to store result (0: ACC0, 1: ACC1). This parameter should

be specified by immediate value.

Return Value
none.

Description
This function calculates product of 16bit x 16bit, then stores 32bit result to assigned accumulator.

This function is a macro definition function, and replaced by one of following assembly-language inline functions
depending on the adest value.

adest assembly-language inline function corresponding assembly
instruction

0 void __mullo_a0(int16_t src, int16_t src2) MULLO R1,R2,A0
1 void __mullo_a1(int16_t src, int16_t src2) MULLO R1,R2,A1

RX Family RXv2 CPU Products
An example of C-language program to use DSP instructions

R01AN3956EJ0100 Rev.1.00 Page 7 of 20
Oct. 02, 2017

__machi: 16bit multiply-add, upper 16bit x upper 16bit

Format
void __machi(int32_t src, int32_t src2, int adest);

Parameters
src: 16bit fixed point multiplicand in upper 16bit
src2: 16bit fixed point multiplier in upper 16bit
adest: Assignment of an accumulator to add the product (0: ACC0, 1: ACC1). This parameter

should be specified by immediate value.

Return Value
none.

Description
This function calculates product of 16bit x 16bit, then add 32bit result to the assigned accumulator. The multiplication
targets are upper 16bit part of src and src2.

This function is a macro definition function, and replaced by one of following assembly-language inline functions
depending on the adest value.

adest assembly-language inline function corresponding assembly
instruction

0 void _machi_a0(int32_t src, int32_t src2) MACHI R1,R2,A0
1 void _machi_a1(int32_t src, int32_t src2) MACHI R1,R2,A1

__maclh: 16bit multiply-add, 16bit x upper 16bit

Format
void __maclh(int16_t src, int32_t src2, int adest);

Parameters
src: 16bit fixed point multiplicand
src2: 16bit fixed point multiplier in upper 16bit
adest: Assignment of an accumulator to add the product (0: ACC0, 1: ACC1). This parameter

should be specified by immediate value.

Return Value
none.

Description
This function calculates product of 16bit x 16bit, then add 32bit result to the assigned accumulator. The multiplication
target of src2 is upper 16bit part.

This function is a macro definition function, and replaced by one of following assembly-language inline functions
depending on the adest value.

adest assembly-language inline function corresponding assembly
instruction

0 void __maclh_a0(int16_t src, int32_t src2) MACLH R1,R2,A0
1 void __maclh_a1(int16_t src, int32_t src2) MACLH R1,R2,A1

RX Family RXv2 CPU Products
An example of C-language program to use DSP instructions

R01AN3956EJ0100 Rev.1.00 Page 8 of 20
Oct. 02, 2017

__maclo: 16bit multiply-add, 16bit x 16bit

Format
void __maclo(int32_t src, int32_t src2, int adest);

Parameters
src: 16bit fixed point multiplicand
src2: 16bit fixed point multiplier
adest: Assignment of an accumulator to subtract the product (0: ACC0, 1: ACC1). This

parameter should be specified by immediate value.

Return Value
none.

Description
This function calculates product of 16bit x 16bit, then add 32bit result to the assigned accumulator.

This function is a macro definition function, and replaced by one of following assembly-language inline functions
depending on the adest value.

adest assembly-language inline function corresponding assembly
instruction

0 void __maclo_a0(int16_t src, int16_t src2) MACLO R1,R2,A0
1 void __maclo_a1(int16_t src, int16_t src2) MACLO R1,R2,A1

__msbhi: 16bit multiply- subtract, upper 16bit x upper 16bit

Format
void __msbhi(int32_t src, int32_t src2, int adest);

Parameters
src: 16bit fixed point multiplicand in upper 16bit
src2: 16bit fixed point multiplier in upper 16bit
adest: Assignment of an accumulator to subtract the product (0: ACC0, 1: ACC1). This

parameter should be specified by immediate value.

Return Value
none.

Description
This function calculates product of 16bit x 16bit, then subtract 32bit result from the assigned accumulator. The
multiplication targets are upper 16bit part of src and src2.

This function is a macro definition function, and replaced by one of following assembly-language inline functions
depending on the adest value.

adest assembly-language inline function corresponding assembly
instruction

0 void __msbhi_a0(int32_t src, int32_t src2) MSBHI R1,R2,A0
1 void __msbhi_a1(int32_t src, int32_t src2) MSBHI R1,R2,A1

RX Family RXv2 CPU Products
An example of C-language program to use DSP instructions

R01AN3956EJ0100 Rev.1.00 Page 9 of 20
Oct. 02, 2017

__msblh: 16bit multiply- subtract, 16bit x upper 16bit

Format
void __msblh(int16_t src, int32_t src2, int adest);

Parameters
src: 16bit fixed point multiplicand
src2: 16bit fixed point multiplier in upper 16bit
adest: Assignment of an accumulator to subtract the product (0: ACC0, 1: ACC1). This

parameter should be specified by immediate value.

Return Value
none.

Description
This function calculates product of 16bit x 16bit, then subtract 32bit result from the assigned accumulator. The
multiplication target of src2 is upper 16bit part.

This function is a macro definition function, and replaced by one of following assembly-language inline functions
depending on the adest value.

adest assembly-language inline function corresponding assembly
instruction

0 void __msblh_a0(int16_t src, int32_t src2) MSBLH R1,R2,A0
1 void __msblh_a1(int16_t src, int32_t src2) MSBLH R1,R2,A1

__msblo: 16bit multiply-subtract, 16bit x 16bit

Format
void __msblo(int16_t src, int16_t src2, int adest);

Parameters
src: 16bit fixed point multiplicand
src2: 16bit fixed point multiplier
adest: Assignment of an accumulator to subtract the product (0: ACC0, 1: ACC1). This

parameter should be specified by immediate value.

Return Value
none.

Description
This function calculates product of 16bit x 16bit, then subtract 32bit result from the assigned accumulator.

This function is a macro definition function, and replaced by one of following assembly-language inline functions
depending on the adest value.

adest assembly-language inline function corresponding assembly
instruction

0 void __msblo_a0(int16_t src, int16_t src2) MSBLO R1,R2,A0
1 void __msblo_a1(int16_t src, int16_t src2) MSBLO R1,R2,A1

RX Family RXv2 CPU Products
An example of C-language program to use DSP instructions

R01AN3956EJ0100 Rev.1.00 Page 10 of 20
Oct. 02, 2017

2.2 Saturation, Rounding

__racl: 32bit saturation and rounding

Format
void __racl(int shift, int asrc);

Parameters
shift: bit count of shift-left (1: 1bit, 2: 2bit). This parameter should be specified by immediate

value.
asrc: Assignment of an accumulator to operate (0: ACC0, 1: ACC1). This parameter should be

specified by immediate value.
Return Value
none.

Description
This function shifts the assigned accumulator value to the left by shift, then stores the same accumulator by MSB
alignment as 32bit value by saturation and rounding.

This function is a macro definition function, and replaced by one of following assembly-language inline functions
depending on the shift and asrc value.

shift asrc assembly-language inline function corresponding assembly instruction
1 0 void __racl_s1_a0(void) RACL #1,A0
2 0 void __racl_s2_a0(void) RACL #2,A0
1 1 void __racl_s1_a1(void) RACL #1,A1
2 1 void __racl_s2_a1(void) RACL #2,A1

__rdacl: 32bit saturation and truncation

Format
void __rdacl(int shift, int asrc);

Parameters
shift: bit count of shift-left (1: 1bit, 2: 2bit). This parameter should be specified by immediate

value.
asrc: Assignment of an accumulator to operate (0: ACC0, 1: ACC1). This parameter should be

specified by immediate value.
Return Value
none.

Description
This function shifts the assigned accumulator value to the left by shift, then stores the same accumulator by MSB
alignment as 32bit value by saturation and truncation.

This function is a macro definition function, and replaced by one of following assembly-language inline functions
depending on the shift and asrc value.

shift asrc assembly-language inline function corresponding assembly instruction
1 0 void __rdacl_s1_a0(void) RDACL #1,A0
2 0 void __rdacl_s2_a0(void) RDACL #2,A0
1 1 void __rdacl_s1_a1(void) RDACL #1,A1
2 1 void __rdacl_s2_a1(void) RDACL #2,A1

RX Family RXv2 CPU Products
An example of C-language program to use DSP instructions

R01AN3956EJ0100 Rev.1.00 Page 11 of 20
Oct. 02, 2017

__racw: 16bit saturation and rounding

Format
void __racw(int shift, int asrc);

Parameters
shift: bit count of shift-left (1: 1bit, 2: 2bit). This parameter should be specified by immediate

value.
asrc: Assignment of an accumulator to operate (0: ACC0, 1: ACC1). This parameter should be

specified by immediate value.
Return Value
none.

Description
This function shifts the accumulator value to the left by shift, then stores the same accumulator as 16bit value by
saturation and rounding.

This function is a macro definition function, and replaced by one of following assembly-language inline functions
depending on the shift and asrc value.

shift asrc assembly-language inline function corresponding assembly instruction
1 0 void __racw_s1_a0(void) RACW #1,A0
2 0 void __racw_s2_a0(void) RACW #2,A0
1 1 void __racw_s1_a1(void) RACW #1,A1
2 1 void __racw_s2_a1(void) RACW #2,A1

__rdacw: 16bit saturation and truncation

Format
void __rdacw(int shift, int asrc);

Parameters
shift: bit count of shift-left (1: 1bit, 2: 2bit). This parameter should be specified by immediate

value.
asrc: Assignment of an accumulator to operate (0: ACC0, 1: ACC1). This parameter should be

specified by immediate value.
Return Value
none.

Description
This function shifts the assigned accumulator value by shift, then store the same accumulator as 16bit value by
saturation and truncation.

This function is a macro definition function, and replaced by one of following assembly-language inline functions
depending on the shift and asrc value.

shift asrc assembly-language inline function corresponding assembly instruction
1 0 void __rdacw_s1_a0(void) RDACW #1,A0
2 0 void __rdacw_s2_a0(void) RDACW #2,A0
1 1 void __rdacw_s1_a1(void) RDACW #1,A1
2 1 void __rdacw_s2_a1(void) RDACW #2,A1

RX Family RXv2 CPU Products
An example of C-language program to use DSP instructions

R01AN3956EJ0100 Rev.1.00 Page 12 of 20
Oct. 02, 2017

2.3 Reading accumulator

__mvfachi: Reading upper 32bit of accumulator

Format
int32_t __mvfachi(int shift, int asrc);

Parameters
shift: bit count of shift-left (0: 0bit, 1: 1bit, 2: 2bit). This parameter should be specified by

immediate value.
asrc: Assignment of an accumulator to read (0: ACC0, 1: ACC1). This parameter should be

specified by immediate value.

Return Value
Upper 32bit value of accumulator

Description
This function shifts the assigned accumulator value to the left by shift, then returns upper 32bit value for getting 32bit
calculation result.

This function is a macro definition function, and replaced by one of following assembly-language inline functions
depending on the shift and asrc value.

shift asrc assembly-language inline function corresponding assembly instruction
0 0 int32_t __mvfachi_s0_a0 (void) MVFACHI #0,A0
1 0 int32_t __mvfachi_s1_a0 (void) MVFACHI #1,A0
2 0 int32_t __mvfachi_s2_a0 (void) MVFACHI #2,A0
0 1 int32_t __mvfachi_s0_a1 (void) MVFACHI #0,A1
1 1 int32_t __mvfachi_s1_a1 (void) MVFACHI #1,A1
2 1 int32_t __mvfachi_s2_a1 (void) MVFACHI #2,A1

RX Family RXv2 CPU Products
An example of C-language program to use DSP instructions

R01AN3956EJ0100 Rev.1.00 Page 13 of 20
Oct. 02, 2017

__mvfacmi: Reading middle-order 32bit of accumulator

Format
int32_t __mvfacmi(int shift, int asrc);

Parameters
shift: bit count of shift-left (0: 0bit, 1: 1bit, 2: 2bit). This parameter should be specified by

immediate value.
asrc: Assignment of an accumulator to read (0: ACC0, 1: ACC1). This parameter should be

specified by immediate value.

Return Value
middle-order 32bit value of accumulator.

Description
This function operates shifts the assigned accumulator value to the left by shift, then returns middle-order 32bit value
for getting 16bit calculation result as LSB alignment.

This function is a macro definition function, and replaced by one of following assembly-language inline functions
depending on the shift and asrc value.

shift asrc assembly-language inline function corresponding assembly instruction
0 0 int32_t __mvfacmi_s0_a0 (void) MVFACMI #0,A0
1 0 int32_t __mvfacmi_s1_a0 (void) MVFACMI #1,A0
2 0 int32_t __mvfacmi_s2_a0 (void) MVFACMI #2,A0
0 1 int32_t __mvfacmi_s0_a1 (void) MVFACMI #0,A1
1 1 int32_t __mvfacmi_s1_a1 (void) MVFACMI #1,A1
2 1 int32_t __mvfacmi_s2_a1 (void) MVFACMI #2,A1

RX Family RXv2 CPU Products
An example of C-language program to use DSP instructions

R01AN3956EJ0100 Rev.1.00 Page 14 of 20
Oct. 02, 2017

__mvfaclo: Reading lower 32bit of accumulator

Format
uint32_t __mvfaclo(int shift, int asrc);

Parameters
shift: bit count of shift-left (0: 0bit, 1: 1bit, 2: 2bit). This parameter should be specified by

immediate value.
asrc: Assignment of an accumulator to read (0: ACC0, 1: ACC1). This parameter should be

specified by immediate value.

Return Value
Lower 32bit value of accumulator

Description
This function shifts the assigned accumulator value to the left by shift, then returns lower 32bit value for getting 32bit
calculation result.

This function is a macro definition function, and replaced by one of following assembly-language inline functions
depending on the shift and asrc value.

shift asrc assembly-language inline function corresponding assembly instruction
0 0 uint32_t __mvfaclo_s0_a0 (void) MVFACLO #0,A0
1 0 uint32_t __mvfaclo_s1_a0 (void) MVFACLO #1,A0
2 0 uint32_t __mvfaclo_s2_a0 (void) MVFACLO #2,A0
0 1 uint32_t __mvfaclo_s0_a1 (void) MVFACLO #0,A1
1 1 uint32_t __mvfaclo_s1_a1 (void) MVFACLO #1,A1
2 1 uint32_t __mvfaclo_s2_a1 (void) MVFACLO #2,A1

RX Family RXv2 CPU Products
An example of C-language program to use DSP instructions

R01AN3956EJ0100 Rev.1.00 Page 15 of 20
Oct. 02, 2017

__mvfacgu: Reading accumulator guard bit

Format
uint32_t __mvfacgu(int shift, int asrc);

Parameters
shift: bit count of shift-left (0: 0bit, 1: 1bit, 2: 2bit). This parameter should be specified by

immediate value.
asrc: Assignment of an accumulator to read (0: ACC0, 1: ACC1). This parameter should be

specified by immediate value.

Return Value
Accumulator guard bit value as 32bit LSB alignment.

Description
This function shifts the assigned accumulator value to the left by shift, then returns accumulator guard bit value as LSB
aligned 32bit value.

This function is a macro definition function, and replaced by one of following assembly-language inline functions
depending on the shift and asrc value.

shift asrc assembly-language inline function corresponding assembly instruction
0 0 uint32_t __mvfaclo_s0_a0 (void) MVFACLO #0,A0
1 0 uint32_t __mvfaclo_s1_a0 (void) MVFACLO #1,A0
2 0 uint32_t __mvfaclo_s2_a0 (void) MVFACLO #2,A0
0 1 uint32_t __mvfaclo_s0_a1 (void) MVFACLO #0,A1
1 1 uint32_t __mvfaclo_s1_a1 (void) MVFACLO #1,A1
2 1 uint32_t __mvfaclo_s2_a1 (void) MVFACLO #2,A1

RX Family RXv2 CPU Products
An example of C-language program to use DSP instructions

R01AN3956EJ0100 Rev.1.00 Page 16 of 20
Oct. 02, 2017

2.4 Writing accumulator

__mvtachi: Writing upper 32bit of accumulator

Format
void __mvtachi(int32_t src, int adest);

Parameters
src: writing value to upper 32bit of accumulator.
adest: Assignment of an accumulator to write (0: ACC0, 1: ACC1). This parameter should be

specified by immediate value.

Return Value
none.

Description
This function writes src value to upper 32bit of accumulator

This function is a macro definition function, and replaced by one of following assembly-language inline functions
depending on adest value.

adest assembly-language inline function corresponding assembly
instruction

0 void __mvtachi_a0 (int32_t src) MVTACHI R1,A0
1 void __mvtachi_a1 (int32_t src) MVTACHI R1,A1

__mvtaclo: Writing lower 32bit of accumulator

Format
void __mvtaclo(int32_t src, int adest);

Parameters
src: writing value to lower 32bit of accumulator.
adest: Assignment of an accumulator to write (0: ACC0, 1: ACC1). This parameter should be

specified by immediate value.

Return Value
none.

Description
This function writes src value to lower 32bit of accumulator

This function is a macro definition function, and replaced by one of following assembly-language inline functions
depending on adest value.

adest assembly-language inline function corresponding assembly
instruction

0 void __mvtaclo_a0 (uint32_t src) MVTACLO R1,A0
1 void __mvtaclo_a1 (uint32_t src) MVTACLO R1,A1

RX Family RXv2 CPU Products
An example of C-language program to use DSP instructions

R01AN3956EJ0100 Rev.1.00 Page 17 of 20
Oct. 02, 2017

__mvtacgu: Writing accumulator guard bit

Format
void __mvtacgu(uint32_t src, int adest);

Parameters
src: writing value to accumulator guard bit.
adest: Assignment of an accumulator to write (0: ACC0, 1: ACC1). This parameter should be

specified by immediate value.

Return Value
none.

Description
This function writes src value to accumulator guard bit as LSB aligned.

This function is a macro definition function, and replaced by one of following assembly-language inline functions
depending on adest value.

adest assembly-language inline function corresponding assembly
instruction

0 void __mvtacgu_a0 (uint32_t src) MVTACGU R1,A0
1 void __mvtacgu_a1 (uint32_t src) MVTACGU R1,A1

RX Family RXv2 CPU Products
An example of C-language program to use DSP instructions

R01AN3956EJ0100 Rev.1.00 Page 18 of 20
Oct. 02, 2017

3. An usage example
An example of a program using DSP inline functions are shown below using the single pole IIR filter shown in Figure
1.

Note: Qm.nn represents the fixed point format.
 m: bit count of sign and integer part
 nn: bit count of fractional part

Figure 1 Signal Flow Chart of Single-pole IIR filter

#include "r_dsp_inst_rxv2.h"

int32_t singlepoleiir(int32_t input, int32_t coeff[2], int32_t *delay)
{
 __emula(coeff[0], input, 1); // acc1 = a * x(n)
 __emaca(coeff[1], *delay, 1); // acc1 += b * y(n-1)
 __racl(1, 1); // saturation, rounding and MSB alignment
 *delay = __mvfachi(0, 1); // extract filter output

 return *delay;
}

a Saturation
& Round

Z-1

b

int32_t
(Q1.31)

(Q2.62)

int32_t
(Q1.31)

x(n)

int32_t
(Q1.31)

int32_t
(Q1.31) y(n)

y(n) = a0x(n) + b1y(n-1)

int32_t
(Q1.31)

RX Family RXv2 CPU Products
An example of C-language program to use DSP instructions

R01AN3956EJ0100 Rev.1.00 Page 19 of 20
Oct. 02, 2017

4. Reference documents
• RX Family RXv2 Instruction Set Architecture User's Manual: Software (R01US0071)
• CC-RX Compiler User’s Manual (R20UT3248)

The latest version can be downloaded from the Renesas Electronics website.

RX Family RXv2 CPU Products
An example of C-language program to use DSP instructions

R01AN3956EJ0100 Rev.1.00 Page 20 of 20
Oct. 02, 2017

Website and Support
Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/contact/

Revision History

Rev. Date
Description
Page Summary

1.00 Oct. 02, 2017 - First issue

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas.
For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as
well as any technical updates that have been issued for the products.

1. Handling of Unused Pins
Handle unused pins in accordance with the directions given under Handling of Unused Pins in the
manual.
 The input pins of CMOS products are generally in the high-impedance state. In operation with

an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of
LSI, an associated shoot-through current flows internally, and malfunctions occur due to the
false recognition of the pin state as an input signal become possible. Unused pins should be
handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
 The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of
pins are not guaranteed from the moment when power is supplied until the reset process is
completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset
function are not guaranteed from the moment when power is supplied until the power reaches
the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
 The reserved addresses are provided for the possible future expansion of functions. Do not

access these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become
stable. When switching the clock signal during program execution, wait until the target clock signal
has stabilized.
 When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock
signal. Moreover, when switching to a clock signal produced with an external resonator (or by
an external oscillator) while program execution is in progress, wait until the target clock signal is
stable.

5. Differences between Products
Before changing from one product to another, i.e. to a product with a different part number, confirm
that the change will not lead to problems.
 The characteristics of Microprocessing unit or Microcontroller unit products in the same group

but having a different part number may differ in terms of the internal memory capacity, layout
pattern, and other factors, which can affect the ranges of electrical characteristics, such as
characteristic values, operating margins, immunity to noise, and amount of radiated noise.
When changing to a product with a different part number, implement a system-evaluation test
for the given product.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by

you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other disputes involving patents, copyrights, or other intellectual property rights of third parties, by or

arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawing, chart, program, algorithm, application

examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages

incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics products.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the

product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (space and undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas

Electronics disclaims any and all liability for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas

Electronics.

6. When using the Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the

reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat radiation

characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions or failure or accident arising out of the use of Renesas Electronics products beyond such specified

ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics such as the occurrence of failure at a

certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please ensure to implement safety measures to guard them

against the possibility of bodily injury, injury or damage caused by fire, and social damage in the event of failure or malfunction of Renesas Electronics products, such as safety design for hardware and

software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures by your own responsibility as warranty

for your products/system. Because the evaluation of microcomputer software alone is very difficult and not practical, please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please investigate applicable laws and

regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive carefully and sufficiently and use Renesas Electronics products in compliance with all

these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws

or regulations. You shall not use Renesas Electronics products or technologies for (1) any purpose relating to the development, design, manufacture, use, stockpiling, etc., of weapons of mass destruction,

such as nuclear weapons, chemical weapons, or biological weapons, or missiles (including unmanned aerial vehicles (UAVs)) for delivering such weapons, (2) any purpose relating to the development,

design, manufacture, or use of conventional weapons, or (3) any other purpose of disturbing international peace and security, and you shall not sell, export, lease, transfer, or release Renesas Electronics

products or technologies to any third party whether directly or indirectly with knowledge or reason to know that the third party or any other party will engage in the activities described above. When exporting,

selling, transferring, etc., Renesas Electronics products or technologies, you shall comply with any applicable export control laws and regulations promulgated and administered by the governments of the

countries asserting jurisdiction over the parties or transactions.

10. Please acknowledge and agree that you shall bear all the losses and damages which are incurred from the misuse or violation of the terms and conditions described in this document, including this notice,

and hold Renesas Electronics harmless, if such misuse or violation results from your resale or making Renesas Electronics products available any third party.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2017 Renesas Electronics Corporation. All rights reserved.
Colophon 6.0

(Rev.3.0-1 November 2016)

	1. Assembly-language inline functions of DSP instruction
	2. Definition of DSP inline function
	2.1 Multiply, Multiply-add, Multiply-subtract
	2.2 Saturation, Rounding
	2.3 Reading accumulator
	2.4 Writing accumulator

	3. An usage example
	4. Reference documents

