
 APPLICATION NOTE

R01AN2199EJ0280 Rev.2.80 Page 1 of 38
Aug.15.22

RX Family
CMTW Module Using Firmware Integration Technology

Introduction
The RX Family MCUs supported by this module have two CMTW units. Throughout this document these
units are referred as channels. Each channel has one compare match (CM), two output compares (OC0 and
OC1), and two input captures (IC0 and IC1). Compare match is a general purpose timer that can be used to
generate timer ticks. Output compare and input capture are timers but also have MCU pins associated with
them. They are used to generate waveforms based on the timer settings or detect external events and
capture the time of the event. The CMTW timers are 32-bit wide allowing from hundreds of nanoseconds to
hours of time events to be specified.

This document describes the CMTW FIT Module API for the supported RX class MCUs. Software
architecture, system interfaces and usage details are provided here to facilitate integration of the CMTW FIT
module into a user's application.

Target Device
• RX26T Group

• RX64M Group

• RX651, RX65N Groups

• RX66N Group

• RX660 Group

• RX671 Group

• RX71M Group

• RX72M Group

• RX72N Group

Target Compilers
• Renesas Electronics C/C++ Compiler Package for RX Family
• GCC for Renesas RX
• IAR C/C++ Compiler for Renesas RX
For details of the confirmed operation contents of each compiler, refer to “6.1 Operation Confirmation
Environment".

RX Family CMTW Module Using Firmware Integration Technology

R01AN2199EJ0280 Rev.2.80 Page 2 of 38
Aug.15.22

Contents

1. Overview ... 4
1.1 Using the CMTW Firmware Integration Technology (FIT) module ... 4
1.2 Interrupts ... 5
1.3 Callback Functions .. 6
1.3.1 Example callback function prototype declaration. .. 6
1.3.2 Dereferencing of pdata argument. ... 6

1.4 Using the FIT CMTW module .. 6
1.4.1 Using FIT CMTW module in C++ project ... 6

2. API Information.. 7
2.1 Hardware Requirements ... 7
2.2 Hardware Resource Requirements ... 7
2.3 Software Requirements ... 7
2.4 Limitations ... 7
2.4.1 RAM Location Limitations .. 7

2.5 Supported Toolchains ... 7
2.6 Interrupt Vector.. 8
2.7 Header Files .. 8
2.8 Integer Types .. 9
2.9 Configuration Overview ... 10
2.10 Code Size .. 11
2.11 API Data Types ... 14
2.11.1 Special Data Types .. 14

2.12 Return Values.. 16
2.13 Adding the FIT Module to Your Project ... 17
2.14 “for”, “while” and “do while” statements ... 17

3. API Functions .. 18
R_CMTW_Open() ... 18
R_CMTW_Control() ... 21
R_CMTW_Close() ... 23
R_CMTW_GetVersion() .. 24

4. Pin Setting ... 25

5. Demo Projects ... 26
5.1 cmtw_demo_rskrx64m, cmtw_demo_rskrx64m_gcc .. 26
5.2 cmtw_demo_rskrx71m, cmtw_demo_rskrx71m_gcc .. 26
5.3 cmtw_demo_rskrx72m, cmtw_demo_rskrx72m_gcc .. 27
5.4 cmtw_demo_rskrx65n, cmtw_demo_rskrx65n_gcc .. 27
5.5 cmtw_demo_rskrx65n_2m, cmtw_demo_rskrx65n_2m_gcc .. 28
5.6 cmtw_demo_rskrx671, cmtw_demo_rskrx671_gcc .. 28
5.7 Adding a Demo to a Workspace ... 28
5.8 Downloading Demo Projects ... 28

6. Appendices .. 29
6.1 Operation Confirmation Environment .. 29
6.2 Troubleshooting .. 35

RX Family CMTW Module Using Firmware Integration Technology

R01AN2199EJ0280 Rev.2.80 Page 3 of 38
Aug.15.22

Related Technical Updates ... 36

Revision History... 37

RX Family CMTW Module Using Firmware Integration Technology

R01AN2199EJ0280 Rev.2.80 Page 4 of 38
Aug.15.22

1. Overview
This software provides a unified, abstracted interface for setting up the CMTW peripheral for the supported
RX class MCUs. The software also provides support for interrupt handling for the CMTW peripheral and a
notification mechanism to the user’s application through a callback function.

There are two CMTW channels and therefore a means to identify a particular CMTW channel in each API
function is provided. The setup operations are performed in the R_CMTW_Open() API function. This API
powers on the specified CMTW channel, initializes it based on the user supplied configuration parameters
and enables the interrupts if needed. A pointer to a function called a “callback function” can be provided
through this API so that the user is notified when a timer event occurs. This notification operation take place
in the CMTW interrupt handlers. Therefore, it is advised that user supplied callback functions complete
quickly to allow time to other processes in the system. The API also supports one-shot operations where the
requested action is executed only once.

After initialization is complete, the user can start, stop, resume, or restart the timers. This is done by
R_CMTW_Control() API. When the CMTW operations are no longer needed, the channel can be closed by
R_CMTW_Close() API. This API disables the CMTW channel and powers it off to reduce power
consumption.

Figure 1 below shows an example of a high level project view using CMTW FIT module.

User application code and
callback functions

CMTW FIT Module
FIT BSP

RX MCU CMTW Peripheral
Figure 1 - Example Figure Showing Project Layers

1.1 Using the CMTW Firmware Integration Technology (FIT) module
The primary use of the CMTW module is to make it easy to setup and control the CMTW timers. The user's
application can arbitrarily assign a callback function that will execute when a timer event occurs.

After adding the CMTW module to your project you will need to modify the r_cmtw_rx_config.h file to
configure the software for your installation. See Section 2.9 for details on configuration options.

Output and input pins used by the CMTW peripheral must be correctly set up before the use of the CMTW
module. The module does not provide any means to initialize the pin registers, which needs to be done
externally prior to calling CMTW API functions. Typically, this would be accomplished at system startup time
as part of a general pin initialization routine. GPIO and MPC FIT modules can be used to setup the pins.
Table 1 shows the output and input pin assignments for the CMTW peripheral.

RX Family CMTW Module Using Firmware Integration Technology

R01AN2199EJ0280 Rev.2.80 Page 5 of 38
Aug.15.22

Output and Input Pin Assignments for CMTW

Channel 0

RX64M, RX651, RX65N,
RX66N ,RX660, RX671,
RX71M, RX72M, RX72N

Output compare 0 (TOC0) PC7

Output compare 1 (TOC1) PE7

Input capture 0 (TIC0) PC6

Input capture 1 (TIC1) PE6

RX26T Output compare 0 (TOC0) PB6

Output compare 1 (TOC1) PB3

Input capture 0 (TIC0) PB5

Input capture 1 (TIC1) PB2

Channel 1

RX64M, RX651, RX65N,
RX66N ,RX660, RX671,
RX71M, RX72M, RX72N

Output compare 0 (TOC2) PD3

Output compare 1 (TOC3) PE3

Input capture 0 (TIC2) PD2

Input capture 1 (TIC3) PE2

RX26T Output compare 0 (TOC2) PB1

Output compare 1 (TOC3) P11

Input capture 0 (TIC2) PB0

Input capture 1 (TIC3) P00

Table 1 – Pin Configurations for the CMTW

1.2 Interrupts
There is no need to set up interrupt vectors for CMTW as this software provides the interrupt handlers for all
CMTW interrupts. Depending on the user supplied configuration parameters to the R_CMTW_Open() API,
interrupt only or callback actions can be taken. Interrupt only action is useful if CMTW is used with another
peripheral e.g. DTC or DMAC. However, this software does not setup other peripherals that can be used
with CMTW.

Callback action is used to notify the user about the CMTW timer events. If requested by the user, the CMTW
ISR calls the user supplied callback function. It is within the callback that user code is run in response to the
ISR. Since callbacks are being processed within the context of the interrupt and interrupts are disabled at
this time, it is strongly recommended that callback function completes as quickly as possible to avoid missing
other interrupts that might occur in the system.

In case no interrupts are needed, timer only action can be used. This is useful for producing output compare
waveforms without generating interrupts and consuming CPU time.

RX Family CMTW Module Using Firmware Integration Technology

R01AN2199EJ0280 Rev.2.80 Page 6 of 38
Aug.15.22

1.3 Callback Functions
1.3.1 Example callback function prototype declaration.
void my_cmtw_callback(void *pdata);

1.3.2 Dereferencing of pdata argument.
The ISR code uses a pointer to a structure defined in the r_cmtw_rx_if.h file to pass the event information to
the user callback function. This structure is of type cmtw_callback_data_t. Since FIT callback functions
take a void pointer, this pointer must be type-casted to (cmtw_callback_data_t *) before it can be
dereferenced and access the information provided by the CMTW interrupt handler. The interrupt data
structure and types are defined in section 2.11.1.

Example:
void my_cmtw_callback(void *pdata)
{
 cmtw_callback_data_t *p_cb_data = (cmtw_callback_data_t *)pdata;

 cb_data.channel = p_cb_data->channel;
 cb_data.event = p_cb_data->event;
 cb_data.count = p_cb_data->count;
 ...
}

1.4 Using the FIT CMTW module
1.4.1 Using FIT CMTW module in C++ project
For C++ project, add FIT CMTW module interface header file within extern “C”{}:

Extern “C”
{

#include “r_smc_entry.h”
#include “r_cmtw_rx_if.h”

}

RX Family CMTW Module Using Firmware Integration Technology

R01AN2199EJ0280 Rev.2.80 Page 7 of 38
Aug.15.22

2. API Information
This driver API follows the Renesas API naming standards.

2.1 Hardware Requirements
This driver requires that your MCU supports the following peripheral(s):

• CMTW

2.2 Hardware Resource Requirements
This section details the hardware peripherals that this driver requires. Unless explicitly stated, these
resources must be reserved for the driver, and the user cannot use them.

None.

2.3 Software Requirements
This driver is dependent upon the following FIT packages:

• Renesas Board Support Package (r_bsp) v5.20 or higher.

This driver assumes that the related I/O pins have been correctly initialized elsewhere prior to calling this
software's API functions.

2.4 Limitations
This driver is applicable only to CMTW operations. If another peripheral is linked with CMTW, it must be
setup externally. Please see section 2.9 for limitations on the usage of locks and dependency to the BSP.

2.4.1 RAM Location Limitations
In FIT, if a value equivalent to NULL is set as the pointer argument of an API function, error might be
returned due to parameter check. Therefore, do not pass a NULL equivalent value as pointer argument to an
API function.

The NULL value is defined as 0 because of the library function specifications. Therefore, the above
phenomenon would occur when the variable or function passed to the API function pointer argument is
located at the start address of RAM (address 0x0). In this case, change the section settings or prepare a
dummy variable at the top of the RAM so that the variable or function passed to the API function pointer
argument is not located at address 0x0.

In the case of the CCRX project (e2 studio V7.5.0), the RAM start address is set as 0x4 to prevent the
variable from being located at address 0x0. In the case of the GCC project (e2 studio V7.5.0) and IAR
project (EWRX V4.12.1), the start address of RAM is 0x0, so the above measures are necessary.

The default settings of the section may be changed due to the IDE version upgrade. Please check the
section settings when using the latest IDE.

2.5 Supported Toolchains
This driver has been confirmed to work with the toolchain listed in 6.1 Operation Confirmation Environment.

RX Family CMTW Module Using Firmware Integration Technology

R01AN2199EJ0280 Rev.2.80 Page 8 of 38
Aug.15.22

2.6 Interrupt Vector
CMTW interrupt is enabled by execution R_CMTW_Open() function.

Table 2.1 Interrupt Vector Used in the CMTW FIT Module lists the interrupt vector used in the CMTW
FIT Module.

Table 2.1 Interrupt Vector Used in the CMTW FIT Module

Device Interrupt Vector
RX64M

RX651, RX65N
RX66N
RX660
RX671
RX71M, RX72M
RX72N

 CMWI0 interrupt[channel 0] (vector no.: 30)

 CMWI1 interrupt[channel 1] (vector no.: 31)

 IC0I0 interrupt[channel 0] (vector no.: 168)*1

 IC1I0 interrupt[channel 0] (vector no.: 169) *1

 OC0I0 interrupt[channel 0] (vector no.: 170) *1

 OC1I0 interrupt[channel 0] (vector no.: 171) *1

 IC0I1 interrupt[channel 1] (vector no.: 172) *1

 IC1I1 interrupt[channel 1] (vector no.: 173) *1

 OC0I1 interrupt[channel 1] (vector no.: 174) *1

 OC1I1 interrupt[channel 1] (vector no.: 175) *1

RX26T  CMWI0 interrupt[channel 0] (vector no.: 186)

 CMWI1 interrupt[channel 1] (vector no.: 191)

 IC0I0 interrupt[channel 0] (vector no.: 187)

 IC1I0 interrupt[channel 0] (vector no.: 188)

 OC0I0 interrupt[channel 0] (vector no.: 189)

 OC1I0 interrupt[channel 0] (vector no.: 190)

 IC0I1 interrupt[channel 1] (vector no.: 192)

 IC1I1 interrupt[channel 1] (vector no.: 193)

 OC0I1 interrupt[channel 1] (vector no.: 194)

 OC1I1 interrupt[channel 1] (vector no.: 195)

Note 1. The interrupt vector numbers for software configurable interrupt B show the default values specified
in the board support package FIT module (BSP module).

2.7 Header Files
All API calls and their supporting interface definitions are located in "r_cmtw_rx_if.h ".

Build-time configuration options are selected or defined in the file "r_cmtw_rx_config.h".

Both of these files should be included by the user’s application.

RX Family CMTW Module Using Firmware Integration Technology

R01AN2199EJ0280 Rev.2.80 Page 9 of 38
Aug.15.22

2.8 Integer Types
This project uses ANSI C99 “Exact width integer types” in order to make the code clearer and more portable.
These types are defined in stdint.h.

RX Family CMTW Module Using Firmware Integration Technology

R01AN2199EJ0280 Rev.2.80 Page 10 of 38
Aug.15.22

2.9 Configuration Overview
Some features or behavior of the software are determined at build-time by configuration options that the user
must select.

Configuration options in r_cmtw_rx_config.h

CMTW_CFG_PARAM_CHECKING_ENABLE

This macro is used to enable parameter checking for
CMTW API functions. Disabling the parameter checking
is provided for systems that absolutely require faster and
smaller code.

By default the module is configured to use the setting of
the system-wide
BSP_CFG_PARAM_CHECKING_ENABLE macro. This
can be locally overridden for the CMTW module by
redefining the macro. To control parameter checking
locally, set the macro to 1 to enable or to 0 to disable the
checking.

CMTW_CGF_REQUIRE_LOCK

This macro is used to lock the API functions while they
are being used to prevent simultaneous calls to them.
This prevents multiple accesses to the API function
within an RTOS environment.

By default the module is configured to enable the locking.
If the system is not multitasked and there is no possibility
of running multiple instances of the API functions, this
macro can be set to 0 to disable the locking to save code
space.

CWTW_CFG_IPR_CM_CH0 This macro defines the priority level for compare match
interrupt for channel 0. Valid values are 1 to 15.

CMTW_CFG_IPR_OC0_CH0 This macro defines the priority level for output compare 0
interrupt for channel 0. Valid values are 1 to 15.

CMTW_CFG_IPR_OC1_CH0 This macro defines the priority level for output compare 1
interrupt for channel 0. Valid values are 1 to 15.

CMTW_CFG_IPR_IC0_CH0 This macro defines the priority level for input capture 0
interrupt for channel 0. Valid values are 1 to 15.

CMTW_CFG_IPR_IC1_CH0 This macro defines the priority level for input capture 1
interrupt for channel 0. Valid values are 1 to 15.

CWTW_CFG_IPR_CM_CH1 This macro defines the priority level for compare match
interrupt for channel 1. Valid values are 1 to 15.

CMTW_CFG_IPR_OC0_CH1 This macro defines the priority level for output compare 0
interrupt for channel 1. Valid values are 1 to 15.

CMTW_CFG_IPR_OC1_CH1 This macro defines the priority level for output compare 1
interrupt for channel 1. Valid values are 1 to 15.

CMTW_CFG_IPR_IC0_CH1 This macro defines the priority level for input capture 0
interrupt for channel 1. Valid values are 1 to 15.

CMTW_CFG_IPR_IC1_CH1 This macro defines the priority level for input capture 1
interrupt for channel 1. Valid values are 1 to 15.

Table 2 - List of CMTW module configuration options

RX Family CMTW Module Using Firmware Integration Technology

R01AN2199EJ0280 Rev.2.80 Page 11 of 38
Aug.15.22

2.10 Code Size
Typical code sizes associated with this module are listed below.

The ROM (code and constants) and RAM (global data) sizes are determined by the build-time configuration
options described in 2.9, Configuration Overview. The table lists reference values when the C compiler’s
compile options are set to their default values, as described in 2.5, Supported Toolchains. The compile
option default values are optimization level: 2, optimization type: for size, and data endianness: little-endian.
The code size varies depending on the C compiler version and compile options.

ROM, RAM and Stack Code Sizes
Devices Category Memory Used Remarks

Renesas Compiler GCC IAR Compiler
With

Parameter
Checking

and
Require
Locking

Without
Parameter
Checking

and
Require
Locking

With
Parameter
Checking

and
Require
Locking

Without
Parameter
Checking

and
Require
Locking

With
Parameter
Checking

and
Require
Locking

Without
Parameter
Checking

and
Require
Locking

RX64M

ROM

1 channel
used 2025 bytes 1798 bytes

3036

bytes

2708

bytes

4746

bytes

4439

bytes

2 channels
used 2522 bytes 2295 bytes

3632

bytes

3304

bytes

5199

bytes

4892 bytes

RAM 1 channel
used 32 bytes 32 bytes 0 bytes 0 bytes 16 bytes 16 bytes

2 channels
used 64 bytes 64 bytes 0 bytes 0 bytes 32 bytes 32 bytes

Maximum stack
usage 64 bytes 64 bytes - -

176 bytes 176 bytes

RX65N

ROM

1 channel
used 2025 bytes 1798 bytes

3036

bytes

2708

bytes

4746

bytes

4439

bytes

2 channels
used 2522 bytes 2295 bytes

3632

bytes

3304

bytes

5199

bytes
4892 bytes

RAM 1 channel
used 32 bytes 32 bytes 0 bytes 0 bytes 16 bytes 16 bytes

2 channels
used 64 bytes 64 bytes 0 bytes 0 bytes 32 bytes 32 bytes

Maximum stack
usage 64 bytes 64 bytes - - 176 bytes 176 bytes

RX71M

ROM

1 channel
used 2025 bytes 1664 bytes

3036

bytes

2708

bytes

4746

bytes

4439

bytes

2 channels
used 2522 bytes 2161 bytes

3632

bytes

3304

bytes

5199

bytes
4892 bytes

RAM 1 channel
used 32 bytes 32 bytes 0 bytes 0 bytes 16 bytes 16 bytes

2 channels
used 64 bytes 64 bytes 0 bytes 0 bytes 32 bytes 32 bytes

Maximum stack
usage 64 bytes 64 bytes - - 176 bytes 176 bytes

RX Family CMTW Module Using Firmware Integration Technology

R01AN2199EJ0280 Rev.2.80 Page 12 of 38
Aug.15.22

ROM, RAM and Stack Code Sizes
Devices Category Memory Used Remarks

Renesas Compiler GCC IAR Compiler
With

Parameter
Checking

and
Require
Locking

Without
Parameter
Checking

and
Require
Locking

With
Parameter
Checking

and
Require
Locking

Without
Parameter
Checking

and
Require
Locking

With
Parameter
Checking

and
Require
Locking

Without
Parameter
Checking

and
Require
Locking

RX72M

ROM

1 channel
used 2033 bytes 1806 bytes

3356

bytes

2972

bytes

2917

bytes

2606

bytes

2 channels
used 2530 bytes 2303 bytes

3952

bytes

3568

bytes

3371

bytes

3060

bytes

RAM 1 channel
used 32 bytes 32 bytes 0 bytes 0 bytes 16 bytes 16 bytes

2 channels
used 64 bytes 64 bytes 0 bytes 0 bytes 32 bytes 32 bytes

Maximum stack
usage 120 bytes 120 bytes - - 220 bytes 220 bytes

RX72N

ROM

1 channel
used 2089 bytes 1862 bytes

3401

bytes

3020

bytes

4599

bytes

4288

bytes

2 channels
used 2586 bytes 2359 bytes

3997

bytes

3616

bytes

5048

bytes

4737

bytes

RAM 1 channel
used 32 bytes 32 bytes 32 bytes 32 bytes 16 bytes 16 bytes

2 channels
used 64 bytes 64 bytes 64 bytes 64 bytes 32 bytes 32 bytes

Maximum stack
usage 80 bytes 80 bytes - - 136 bytes 136 bytes

RX66N

ROM

1 channel
used 2089 bytes 1862 bytes

3448

bytes

2996

bytes

4591

bytes

4292

bytes

2 channels
used 2586 bytes 2359 bytes

4044

bytes

3592

bytes

5040

bytes

4741

bytes

RAM 1 channel
used 32 bytes 32 bytes 32 bytes 32 bytes 16 bytes 16 bytes

2 channels
used 64 bytes 64 bytes 64 bytes 64 bytes 32 bytes 32 bytes

Maximum stack
usage 80 bytes 80 bytes - - 136 bytes 136 bytes

RX671

ROM

1 channel
used 2061 bytes 1859 bytes 3404 bytes 3020 bytes 2786 bytes 2546 bytes

2 channels
used 2558 bytes 2392 bytes 3960 bytes 3576 bytes 3230 bytes 2990 bytes

RAM 1 channel
used 32 bytes 32 bytes 32 bytes 32 bytes 16 bytes 16 bytes

2 channels
used 64 bytes 64 Bytes 64 bytes 64 bytes 32 bytes 32 bytes

Maximum stack
usage 64 bytes 64 bytes - - 136 bytes 136 bytes

RX660
ROM

1 channel
used 2030 bytes 1831 bytes 3404 bytes 3020 bytes 4653 bytes 4346 bytes

RX Family CMTW Module Using Firmware Integration Technology

R01AN2199EJ0280 Rev.2.80 Page 13 of 38
Aug.15.22

ROM, RAM and Stack Code Sizes
Devices Category Memory Used Remarks

Renesas Compiler GCC IAR Compiler
With

Parameter
Checking

and
Require
Locking

Without
Parameter
Checking

and
Require
Locking

With
Parameter
Checking

and
Require
Locking

Without
Parameter
Checking

and
Require
Locking

With
Parameter
Checking

and
Require
Locking

Without
Parameter
Checking

and
Require
Locking

 2 channels
used 2527 bytes 2328 bytes 3960bytes 3408 bytes 5012 bytes 4795 bytes

RAM 1 channel
used 32 bytes 32 bytes 0 bytes 0 bytes 16 bytes 16 bytes

2 channels
used 64 bytes 64 bytes 128 bytes 128 bytes 32 bytes 32 bytes

Maximum stack
usage 76 bytes 76 bytes - - 136 bytes 136 bytes

RX26T

ROM 1 channel
used 2120 bytes 1921 bytes 2364 bytes 2036 bytes 4570 bytes 4263 bytes

2 channels
used 2707 bytes 2508 bytes 2904 bytes 2576 bytes 5015 bytes 4708 bytes

RAM 1 channel
used 32 bytes 32 bytes 128 bytes 128 bytes 16 bytes 16 bytes

2 channels
used 64 bytes 64 bytes 128 bytes 128 bytes 32 bytes 32 bytes

Maximum stack
usage 76 bytes 76 bytes - - 152 bytes 152 bytes

RX Family CMTW Module Using Firmware Integration Technology

R01AN2199EJ0280 Rev.2.80 Page 14 of 38
Aug.15.22

2.11 API Data Types
This section details the data structures that are used with the driver’s API functions.

2.11.1 Special Data Types
To provide strong type checking and reduce errors, many parameters used in API functions require
arguments to be passed using the provided type definitions. Allowable values are defined in the public
interface file r_cmtw_rx_if.h. The following special types have been defined:
/* Channel numbers */
typedef enum
{
 CMTW_CHANNEL_0 = 0,
 CMTW_CHANNEL_1,
 CMTW_CHANNEL_MAX,
} cmtw_channel_t;

/* Time base */
typedef enum
{
 CMTW_TIME_NSEC = 0,
 CMTW_TIME_USEC,
 CMTW_TIME_MSEC,
 CMTW_TIME_SEC,
 CMTW_TIME_MAX,
} cmtw_time_unit_t;

/* PCLK divisor */
typedef enum
{
 CMTW_CLK_DIV_8 = 0, // PCLK/8
 CMTW_CLK_DIV_32, // PCLK/32
 CMTW_CLK_DIV_128, // PCLK/128
 CMTW_CLK_DIV_512, // PCLK/512
 CMTW_CLK_DIV_MAX,
} cmtw_clock_divisor_t;

/* Counter clearing source */
typedef enum
{
 CMTW_CLR_CMT = 0,
 CMTW_CLR_DISABLED = 1,
 CMTW_CLR_IC0 = 4,
 CMTW_CLR_IC1 = 5,
 CMTW_CLR_OC0 = 6,
 CMTW_CLR_OC1 = 7,
 CMTW_CLR_MAX,
} cmtw_clear_source_t;

/* Actions to take */
typedef enum
{
 CMTW_ACTION_NONE = 0x00, // Do nothing with this timer
 CMTW_ACTION_TIMER = 0x01, // Run timer only no interrupt
 CMTW_ACTION_INTERRUPT = 0x02, // Generate interrupt request
 CMTW_ACTION_CALLBACK = 0x04, // Generate interrupt request and
 // execute user-defined callback
 CMTW_ACTION_ONESHOT = 0x08, // Generate interrupt, act only once,
 // and turn off
} cmtw_actions_t;

/* Output pin states */

RX Family CMTW Module Using Firmware Integration Technology

R01AN2199EJ0280 Rev.2.80 Page 15 of 38
Aug.15.22

typedef enum
{
 CMTW_OUTPUT_RETAIN = 0, // Do not change the pin state
 CMTW_OUTPUT_LO_TOGGLE, // Output low initially and toggle
 CMTW_OUTPUT_HI_TOGGLE, // Output hi initially and toggle
 CMTW_OUTPUT_MAX,
} cmtw_output_states_t;

/* Input pin edges to capture */
typedef enum
{
 CMTW_EDGE_RISING = 0, // Capture rising edge
 CMTW_EDGE_FALLING, // Capture falling edge
 CMTW_EDGE_ANY, // Capture both rising and falling edges
 CMTW_EDGE_MAX,
} cmtw_edge_states_t;

/* Control function command codes. */
typedef enum
{
 CMTW_CMD_START, // Activate clocking
 CMTW_CMD_RESUME, // Same as start
 CMTW_CMD_STOP, // Pause clocking
 CMTW_CMD_RESTART, // Zero the timer counter then activate clocking
 CMTW_CMD_MAX, // Not a valid command.
} cmtw_cmd_t;

/* Open function CM settings */
typedef struct
{
 uint32_t time;
 cmtw_actions_t actions;
} cmtw_cm_settings_t;

/* Open function OC settings */
typedef struct
{
 uint32_t time;
 cmtw_actions_t actions;
 cmtw_output_states_t output;
} cmtw_oc_settings_t;

/* Open function IC settings */
typedef struct
{
 cmtw_actions_t actions;
 cmtw_edge_states_t edge;
} cmtw_ic_settings_t;

/* Open function channel settings */
typedef struct
{
 cmtw_time_unit_t time_unit;
 cmtw_clock_divisor_t clock_divisor;
 cmtw_clear_source_t clear_source;
 cmtw_cm_settings_t cm_timer;
 cmtw_oc_settings_t oc_timer_0;
 cmtw_oc_settings_t oc_timer_1;
 cmtw_ic_settings_t ic_timer_0;
 cmtw_ic_settings_t ic_timer_1;
} cmtw_channel_settings_t;

RX Family CMTW Module Using Firmware Integration Technology

R01AN2199EJ0280 Rev.2.80 Page 16 of 38
Aug.15.22

/* Callback function events */
typedef enum
{
 CMTW_EVENT_CM = 0, //compare match
 CMTW_EVENT_IC0, //input capture 0
 CMTW_EVENT_IC1, //input capture 1
 CMTW_EVENT_OC0, //output compare 0
 CMTW_EVENT_OC1, //output compare 1
} cmtw_event_t;

/* Callback function data structure */
typedef struct
{
 cmtw_channel_t channel; //event channel number
 cmtw_event_t event; //type of event
 uint32_t count; //timer counter at event
} cmtw_callback_data_t;

2.12 Return Values
This shows the different values API functions can return. This return type is defined in “r_cmtw_rx_if.h”.

/* CMTW function return codes */
typedef enum
{
 CMTW_SUCCESS = 0,
 CMTW_ERR_BAD_CHAN, // Invalid channel number
 CMTW_ERR_CH_NOT_ENABLED, // Channel is disabled by user configuration
 CMTW_ERR_CH_NOT_OPENED, // Channel not yet opened
 CMTW_ERR_CH_NOT_CLOSED, // Channel still open from previous open
 CMTW_ERR_CH_NOT_RUNNIG, // Channel open and received stop command
 CMTW_ERR_CH_NOT_STOPPED, // Channel running and received start command
 CMTW_ERR_UNKNOWN_CMD, // Control command is not recognized
 CMTW_ERR_INVALID_ARG, // Argument is not valid for parameter
 CMTW_ERR_NULL_PTR, // Rcvd null pointer; missing required arg
 CMTW_ERR_LOCK, // The lock procedure failed
 CMTW_ERR_OUT_OF_RANGE, // Calculated count value is not in range
} cmtw_err_t;

RX Family CMTW Module Using Firmware Integration Technology

R01AN2199EJ0280 Rev.2.80 Page 17 of 38
Aug.15.22

2.13 Adding the FIT Module to Your Project
This module must be added to each project in which it is used. Renesas recommends the method using the
Smart Configurator described in (1) or (3) below. However, the Smart Configurator only supports some RX
devices. Please use the methods of (2) or (4) for RX devices that are not supported by the Smart
Configurator.

(1) Adding the FIT module to your project using the Smart Configurator in e2 studio
By using the Smart Configurator in e2 studio, the FIT module is automatically added to your project.
Refer to “Renesas e2 studio Smart Configurator User Guide (R20AN0451)” for details.

(2) Adding the FIT module to your project using the FIT Configurator in e2 studio
By using the FIT Configurator in e2 studio, the FIT module is automatically added to your project.
Refer to “Adding Firmware Integration Technology Modules to Projects (R01AN1723)” for details.

(3) Adding the FIT module to your project using the Smart Configurator in CS+
By using the Smart Configurator Standalone version in CS+, the FIT module is automatically added
to your project. Refer to “Renesas e2 studio Smart Configurator User Guide (R20AN0451)” for
details.

(4) Adding the FIT module to your project in CS+
In CS+, please manually add the FIT module to your project. Refer to “Adding Firmware Integration
Technology Modules to CS+ Projects (R01AN1826)” for details.

2.14 “for”, “while” and “do while” statements
In this module, “for”, “while” and “do while” statements (loop processing) are used in processing to wait for
register to be reflected and so on. For these loop processing, comments with “WAIT_LOOP” as a keyword
are described. Therefore, if user incorporates fail-safe processing into loop processing, user can search the
corresponding processing with “WAIT_LOOP”.

The following shows example of description.

while statement example :
/* WAIT_LOOP */
while(0 == SYSTEM.OSCOVFSR.BIT.PLOVF)
{
 /* The delay period needed is to make sure that the PLL has stabilized. */
}

for statement example :
/* Initialize reference counters to 0. */
/* WAIT_LOOP */
for (i = 0; i < BSP_REG_PROTECT_TOTAL_ITEMS; i++)
{
 g_protect_counters[i] = 0;
}

do while statement example :
/* Reset completion waiting */
do
{
 reg = phy_read(ether_channel, PHY_REG_CONTROL);
 count++;
} while ((reg & PHY_CONTROL_RESET) && (count < ETHER_CFG_PHY_DELAY_RESET)); /* WAIT_LOOP */

RX Family CMTW Module Using Firmware Integration Technology

R01AN2199EJ0280 Rev.2.80 Page 18 of 38
Aug.15.22

3. API Functions
R_CMTW_Open()
This function powers up the specified CMTW channel, initializes the associated CMTW registers and
enables interrupts if requested. Takes a callback function pointer for responding to interrupt events. After
successful completion, the channel moves to open state. This function must be called before calling any
other API functions.

Format
cmtw_err_t R_CMTW_Open(cmtw_channel_t channel,
 cmtw_channel_settings_t *pconfig,
 void (* const pcallback)(void *pdata));

Parameters
channel

Number of the CMTW channel to initialize

pconfig

Pointer to the CMTW channel settings data structure

pcallback

Pointer to the user function to call from the interrupt

Return Values
CMTW_SUCCESS Successful, channel is initialized

CMTW_ERR_BAD_CHAN Invalid channel number

CMTW_ERR_CH_NOT_ENABLED Channel is disabled by user configuration

CMTW_ERR_CH_NOT_CLOSED Channel currently in operation, perform R_CMTW_Close() first

CMTW_ERR_INVALID_ARG An element of the pconfig structure contains an invalid value

CMTW_ERR_OUT_OF_RANGE Calculated count value is not in range

CMTW_ERR_NULL_PTR Either pconfig or pcallback is null

CMTW_ERR_LOCK The lock could not be acquired, the channel is busy

Properties
Prototyped in file “r_cmtw_rx_if.h”

Description
This function sets up a CMTW channel. After completion of the open function the CMTW channel will be
initialized and ready to be started by calling R_CMTW_Control(). This function must be called once prior to
calling any other CMTW API functions. Once successfully completed, the status of the selected CMTW
channel will be set to "open". After that this function should not be called again for the same CMTW channel
without first performing a "close" by calling R_CMTW_Close().

Example 1
This example sets up channel 0 for 500 ms compare match operation with callback. Note that the clear
source is set to CMTW_CLR_CMT to generate 500 ms timer tick. There is only one clear source that can be
set for a given channel among the available clear source events. If an incorrect clear source is selected, the
timer counter will not be cleared until it rolls over which may take a long time or never happen. The example
shows a user provided callback function cb that will be called to notify the user each time compare match
event occurs.
cmtw_err_t rc;
cmtw_channel_settings_t ch;

/* Clear all fields of the cmtw_channel_settings_t structure */
memset(&ch, 0, sizeof(ch));

RX Family CMTW Module Using Firmware Integration Technology

R01AN2199EJ0280 Rev.2.80 Page 19 of 38
Aug.15.22

/* Setup for 500 ms compare match with callback */
ch.time_unit = CMTW_TIME_MSEC;
ch.clock_divisor = CMTW_CLK_DIV_8;
ch.clear_source = CMTW_CLR_CMT;
ch.cm_timer.time = 500;
ch.cm_timer.actions = CMTW_ACTION_CALLBACK;
rc = R_CMTW_Open(CMTW_CHANNEL_0, &ch, &cb);

if (CMTW_SUCCESS != rc)
{
/* Handle the error */
}

Example 2
This example sets up channel 0 for output compare 0 (OC0) and output compare 1 (OC1) operation. OC0
action is set to CMTW_ACTION_TIMER so no interrupt will be generated for that event. If the PC7 pin is
setup for TOC0, it will toggle at a rate of 50 ms. The reason for this is that the clear source is
CMTW_CLR_OC1. This means that the timer counter will clear at every OC1 event which is set to 50 ms.
10 ms into this time, OC0 event will happen thus generating 2 events that have the same period with a
phase shift. To toggle the PE7 pin, it must be setup for TOC1. Since OC1 action is setup for callback, the
user provided callback function cb will be called from the OC1 ISR for channel 0.

In this example if the clear source is set to CMTW_CLR_OC0, it will result in TOC0 toggling at 10 ms rate.
Since the timer counter will clear at 10 ms, it will not reach 50 ms and OC1 event will not occur.
cmtw_err_t rc;
cmtw_channel_settings_t ch;

/* Clear all fields of the cmtw_channel_settings_t structure */
memset(&ch, 0, sizeof(ch));

/* Setup 50 ms output compare with TOC0 and TOC1 toggle */
ch.time_unit = CMTW_TIME_MSEC;
ch.clock_divisor = CMTW_CLK_DIV_8;
ch.clear_source = CMTW_CLR_OC1;
ch.oc_timer_0.time = 10;
ch.oc_timer_0.actions = CMTW_ACTION_TIMER;
ch.oc_timer_0.output = CMTW_OUTPUT_HI_TOGGLE;
ch.oc_timer_1.time = 50;
ch.oc_timer_1.actions = CMTW_ACTION_CALLBACK;
ch.oc_timer_1.output = CMTW_OUTPUT_HI_TOGGLE;
rc = R_CMTW_Open(CMTW_CHANNEL_0, &ch, &cb);

if (CMTW_SUCCESS != rc)
{
/* Handle the error */
}

Example 3
This example sets up channel 1 for input capture 0 (IC0) operation. The PD2 pin must be assigned to TIC2
prior to calling CMTW API functions for correct behavior. The clear source is set to CMTW_CLR_DISABLED
and therefore timer counter is not cleared when a TIC2 event, which is set to any edge, occurs. The user
provided callback function cb will be called from the IC0 ISR for channel 1 when an edge change is detected.
Channel number, ISR event, and the timer value (in timer tick count) at which the event happened are
passed to the callback function. If the number of counts between the two TIC2 events are needed, it can be
calculated by subtracting the current count from the previous one in the callback function.

cmtw_err_t rc;
cmtw_channel_settings_t ch;

RX Family CMTW Module Using Firmware Integration Technology

R01AN2199EJ0280 Rev.2.80 Page 20 of 38
Aug.15.22

/* Clear all fields of the cmtw_channel_settings_t structure */
memset(&ch, 0, sizeof(ch));

/* Setup input capture with no clear */
ch.time_unit = CMTW_TIME_USEC;
ch.clock_divisor = CMTW_CLK_DIV_128;
ch.clear_source = CMTW_CLR_DISABLED;
ch.ic_timer_0.actions = CMTW_ACTION_CALLBACK;
ch.ic_timer_0.edge = CMTW_EDGE_ANY;
rc = R_CMTW_Open(CMTW_CHANNEL_1, &ch, &cb);

if (CMTW_SUCCESS != rc)
{
/* Handle the error */
}

Example 4
This is an example of a callback function for example 3. The void pointer pdata is type-casted to
(cmtw_callback_data_t *) to properly access the data. The data type information is available in the
r_cmtw_rx_if.h file. Previous and current count values are saved in the global variables. The time between
two TIC2 events is simply the difference of these values. Since the timer tick information is available to the
user (e.g. the peripheral clock and CMTW clock divisor), actual time can be calculated easily.
/* Global variables */
uint32_t g_previous_count;
uint32_t g_current_count;
uint32_t g_delta_count;

void cb(void *pdata)
{
 cmtw_callback_data_t cb_data;
 cmtw_callback_data_t *p_cb_data = (cmtw_callback_data_t *)pdata;

 cb_data.channel = p_cb_data->channel;
 cb_data.event = p_cb_data->event;
 cb_data.count = p_cb_data->count;

 g_previous_count = g_current_count;
 g_current_count = cb_data.count;
 g_delta_count = g_current_count - g_previous_count;

}

Special Notes:
None

RX Family CMTW Module Using Firmware Integration Technology

R01AN2199EJ0280 Rev.2.80 Page 21 of 38
Aug.15.22

R_CMTW_Control()
This function starts, stops, resumes, or restarts a CMTW channel that is in the open state.

Format
cmtw_err_t R_CMTW_Control(cmtw_channel_t channel,
 cmtw_cmd_t cmd);

Parameters
channel

Number of the CMTW channel to control

cmd

 Enumerated command codes:

CMTW_CMD_START Activate the timer

CMTW_CMD_RESUME Same as start

CMTW_CMD_STOP Pause the timer

CMTW_CMD_RESTART Zero the counter then activate the timer

Return Values
CMTW_SUCCESS Successful, the command is executed

CMTW_ERR_BAD_CHAN Invalid channel number

CMTW_ERR_CH_NOT_ENABLED Channel is disabled by user configuration

CMTW_ERR_CH_NOT_OPENED Channel currently closed, perform R_CMTW_Open() first

CMTW_ERR_CH_NOT_RUNNIG Channel currently not started - perform R_CMTW_Control() to start

CMTW_ERR_CH_NOT_STOPPED Channel currently running - perform R_CMTW_Control() to stop

CMTW_ERR_UNKNOWN_CMD Invalid command

CMTW_ERR_LOCK The lock could not be acquired, the channel is busy

Properties
Prototyped in file “r_cmtw_rx_if.h”

Description
This function starts or resumes a CMTW channel that is in the open state. Once successfully completed, the
status of the selected CMTW channel will be set to "running". Stop command pauses a channel that is in a
running state. In this state the timer registers retain their values immediately before executing the stop
command. Timer operations can be continued by start or resume commands. The restart command clears
the timer counter and resumes the operations.

Example 1
This example starts channel 0 that is in the open state.
/* Open the timer */
rc = R_CMTW_Open(CMTW_CHANNEL_0, &ch, &cb);

if (CMTW_SUCCESS != rc)
{
/* Handle the error */
}

/* And start it */
rc = R_CMTW_Control(CMTW_CHANNEL_0, CMTW_CMD_START);

if (CMTW_SUCCESS != rc)
{

RX Family CMTW Module Using Firmware Integration Technology

R01AN2199EJ0280 Rev.2.80 Page 22 of 38
Aug.15.22

/* Handle the error */
}

Example 2
This example stops channel 0 that is in the running state.
/* Open the timer */
rc = R_CMTW_Open(CMTW_CHANNEL_0, &ch, &cb);

if (CMTW_SUCCESS != rc)
{
/* Handle the error */
}

/* And start it */
rc = R_CMTW_Control(CMTW_CHANNEL_0, CMTW_CMD_START);

if (CMTW_SUCCESS != rc)
{
/* Handle the error */
}

/* Now stop it */
rc = R_CMTW_Control(CMTW_CHANNEL_0, CMTW_CMD_STOP);

if (CMTW_SUCCESS != rc)
{
/* Handle the error */
}

Special Notes:
None

RX Family CMTW Module Using Firmware Integration Technology

R01AN2199EJ0280 Rev.2.80 Page 23 of 38
Aug.15.22

R_CMTW_Close()
Disables the specified CMTW channel and powers it down. The channel moves to the closed state.

Format
cmtw_err_t R_CMTW_Close(cmtw_channel_t channel);

Parameters
channel

Number of the CMTW channel to close

Return Values
CMTW_SUCCESS Successful, channel is closed

CMTW_ERR_BAD_CHAN Invalid channel number

CMTW_ERR_CH_NOT_ENABLED Channel is disabled by user configuration

CMTW_ERR_CH_NOT_OPENED Channel currently closed, perform R_CMTW_Open() first

CMTW_ERR_LOCK The lock could not be acquired, the channel is busy

Properties
Prototyped in file “r_cmtw_rx_if.h”

Description
This function stops and disables a CMTW channel that is in the open or running state. Once successfully
completed, the status of the selected CMTW channel will be set to "stopped" and the channel is powered
down to reduce power consumption. The channel cannot be used again until it has been reopened with the
R_CMTW_Open() function.

Example 1
This example closes channel 0.
/* Close the timer */
rc = R_CMTW_Close(CMTW_CHANNEL_0);

if (CMTW_SUCCESS != rc)
{
/* Handle the error */
}

Special Notes:
None

RX Family CMTW Module Using Firmware Integration Technology

R01AN2199EJ0280 Rev.2.80 Page 24 of 38
Aug.15.22

R_CMTW_GetVersion()
This function returns the driver version number at runtime.

Format
uint32_t R_CMTW_GetVersion(void);

Parameters
None

Return Values
Version number with major and minor version digits packed into a single 32-bit value.

Properties
Prototyped in file “r_cmtw_rx_if.h”

Description
This function returns the version of this module. The version number is encoded such that the top 2 bytes
are the major version number and the bottom 2 bytes are the minor version number.

Example
This example shows how this function may be used.
/* Retrieve the version number and convert it to a string. */
uint32_t version, major, minor;
char version_str[11];

version = R_CMTW_GetVersion();

major = (version >> 16)&0xf;
minor = version & 0xff;

sprintf(version_str, "CMTW v%1.0hu.%2.2hu", major, minor);

Special Notes:
None

RX Family CMTW Module Using Firmware Integration Technology

R01AN2199EJ0280 Rev.2.80 Page 25 of 38
Aug.15.22

4. Pin Setting
To use the CMTW FIT module, assign input/output signals of the peripheral function to pins with the multi-
function pin controller (MPC). The pin assignment is referred to as the “Pin Setting” in this document. Please
perform the pin setting after calling the R_CMTW_Open() function.

When performing the Pin Setting in the e2 studio, the Pin Setting feature of the FIT configurator or the Smart
Configurator can be used. When using the Pin Setting feature, a source file is generated according to the
option selected in the Pin Setting window in the FIT configurator or the Smart Configurator. Pins are
configured by calling the function defined in the source file.

RX Family CMTW Module Using Firmware Integration Technology

R01AN2199EJ0280 Rev.2.80 Page 26 of 38
Aug.15.22

5. Demo Projects
Demo projects are complete stand-alone programs. They include function main() that utilizes the module
and its dependent modules (e.g.. r_bsp). The standard naming convention for the demo project is
<module>_demo_<board> where <module> is the peripheral acronym (e.g. s12ad, cmt, sci) and the
<board> is the standard RSK (e.g. rskrx113). For example, s12ad FIT module demo project for RSKRX113
will be named as s12ad_demo_rskrx113. Similarly the exported .zip file will be
<module>_demo_<board>.zip. For the same example, the zipped export/import file will be named as
s12ad_demo_rskrx113.zip

5.1 cmtw_demo_rskrx64m, cmtw_demo_rskrx64m_gcc
Description
This is a simple demo of the RX64M Compare Match Timer Wide (CMTW) for the RSKRX64M starter kit
(FIT module "r_cmtw_rx"). The demo configures channel 0 for a 500 ms compare match operation with
interrupt callback, and channel 1 is configured for a 1 sec compare match operation with interrupt callback.
When a compare match interrupt is generated by channel 0, the interrupt callback function is called and LED
0 is toggled (every 500 ms). When a compare match interrupt is generated by channel 1, the interrupt
callback function is called and LED 1 is toggled (every 1 sec).

Setup and Execution
Compile and download the sample code.

Click 'Reset Go' to start the software. If PC stops at Main, press F8 to resume.

Set breakpoints and watch global variables

Boards Supported
RSKRX64M

5.2 cmtw_demo_rskrx71m, cmtw_demo_rskrx71m_gcc
Description
This is a simple demo of the RX71M Compare Match Timer Wide (CMTW) for the RSKRX71M starter kit
(FIT module "r_cmtw_rx"). The demo configures channel 0 for a 500 ms compare match operation with
interrupt callback, and channel 1 is configured for a 1 sec compare match operation with interrupt callback.
When a compare match interrupt is generated by channel 0, the interrupt callback function is called and LED
0 is toggled (every 500 ms). When a compare match interrupt is generated by channel 1, the interrupt
callback function is called and LED 1 is toggled (every 1 sec).

Setup and Execution
1. Compile and download the sample code.

2. Click 'Reset Go' to start the software. If PC stops at Main, press F8 to resume.

3. Set breakpoints and watch global variables

Click 'Reset Go' to start the software. If PC stops at Main, press F8 to resume.

Set breakpoints and watch global variables

Boards Supported
RSKRX71M

RX Family CMTW Module Using Firmware Integration Technology

R01AN2199EJ0280 Rev.2.80 Page 27 of 38
Aug.15.22

5.3 cmtw_demo_rskrx72m, cmtw_demo_rskrx72m_gcc
Description
This is a simple demo of the RX72M Compare Match Timer Wide (CMTW) for the RSKRX72M starter kit
(FIT module "r_cmtw_rx"). The demo configures channel 0 for a 500 ms compare match operation with
interrupt callback, and channel 1 is configured for a 1 sec compare match operation with interrupt callback.
When a compare match interrupt is generated by channel 0, the interrupt callback function is called and LED
0 is toggled (every 500 ms). When a compare match interrupt is generated by channel 1, the interrupt
callback function is called and LED 1 is toggled (every 1 sec).

Setup and Execution
1. Compile and download the sample code.

2. Click 'Reset Go' to start the software. If PC stops at Main, press F8 to resume.

3. Set breakpoints and watch global variables

Boards Supported
RSKRX72M

5.4 cmtw_demo_rskrx65n, cmtw_demo_rskrx65n_gcc
Description
This is a simple demo of the RX65N Compare Match Timer Wide (CMTW) for the RSKRX65N starter kit (FIT
module "r_cmtw_rx"). The demo configures channel 0 for a 500 ms compare match operation with interrupt
callback, and channel 1 is configured for a 1 sec compare match operation with interrupt callback. When a
compare match interrupt is generated by channel 0, the interrupt callback function is called and LED 0 is
toggled (every 500 ms). When a compare match interrupt is generated by channel 1, the interrupt callback
function is called and LED 1 is toggled (every 1 sec).

Setup and Execution
1. Compile and download the sample code.

2. Click 'Reset Go' to start the software. If PC stops at Main, press F8 to resume.

3. Set breakpoints and watch global variables

Boards Supported
RSKRX65N

RX Family CMTW Module Using Firmware Integration Technology

R01AN2199EJ0280 Rev.2.80 Page 28 of 38
Aug.15.22

5.5 cmtw_demo_rskrx65n_2m, cmtw_demo_rskrx65n_2m_gcc
Description
This is a simple demo of the RX65N-2MB Compare Match Timer Wide (CMTW) for the RSKRX65N-2MB
starter kit (FIT module "r_cmtw_rx"). The demo configures channel 0 for a 500 ms compare match operation
with interrupt callback, and channel 1 is configured for a 1 sec compare match operation with interrupt
callback. When a compare match interrupt is generated by channel 0, the interrupt callback function is called
and LED 0 is toggled (every 500 ms). When a compare match interrupt is generated by channel 1, the
interrupt callback function is called and LED 1 is toggled (every 1 sec).

Setup and Execution
1. Compile and download the sample code.

2. Click 'Reset Go' to start the software. If PC stops at Main, press F8 to resume.

3. Set breakpoints and watch global variables

Boards Supported
RSKRX65N-2MB

5.6 cmtw_demo_rskrx671, cmtw_demo_rskrx671_gcc
Description
This is a simple demo of the RX671 Compare Match Timer Wide (CMTW) for the RSKRX671 starter kit (FIT
module "r_cmtw_rx"). The demo configures channel 0 for a 500 ms compare match operation with interrupt
callback, and channel 1 is configured for a 1 sec compare match operation with interrupt callback. When a
compare match interrupt is generated by channel 0, the interrupt callback function is called and LED 0 is
toggled (every 500 ms). When a compare match interrupt is generated by channel 1, the interrupt callback
function is called and LED 1 is toggled (every 1 sec).

Setup and Execution
4. Compile and download the sample code.

5. Click 'Reset Go' to start the software. If PC stops at Main, press F8 to resume.

6. Set breakpoints and watch global variables

Boards Supported
RSKRX671

5.7 Adding a Demo to a Workspace
Demo projects are found in the FITDemos subdirectory of the distribution file for this application note. To
add a demo project to a workspace, select File >> Import >> General >> Existing Projects into Workspace,
then click “Next”. From the Import Projects dialog, choose the “Select archive file” radio button. “Browse” to
the FITDemos subdirectory, select the desired demo zip file, then click “Finish”.

5.8 Downloading Demo Projects
Demo projects are not included in the RX Driver Package. When using the demo project, the FIT module
needs to be downloaded. To download the FIT module, right click on this application note and select
“Sample Code (download)” from the context menu in the Smart Brower >> Application Notes tab.

RX Family CMTW Module Using Firmware Integration Technology

R01AN2199EJ0280 Rev.2.80 Page 29 of 38
Aug.15.22

6. Appendices
6.1 Operation Confirmation Environment
This section describes operation confirmation environment for the CMTW FIT module.

Table 6.1 Confirmed Operation Environment (Rev.2.80)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2022-10
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.05.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202204
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.2.80
Board used Renesas Flexible Motor Control Kit for RX26T (Part Number:

RTK0EMXE70S00020BJ)

RX Family CMTW Module Using Firmware Integration Technology

R01AN2199EJ0280 Rev.2.80 Page 30 of 38
Aug.15.22

Table 6.2 Confirmed Operation Environment (Rev.2.70)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2022-07
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.04.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202104
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.2.70
Board used Renesas Starter Kit for RX64M (product No.: R0K50564MxxxxBE)

Renesas Starter Kit+ for RX65N (product No.: RTK5005651CxxxxxBE)
Renesas Starter Kit+ for RX65N-2MB (product No.: RTK50565N2CxxxxxBR)
Renesas Starter Kit for RX71M (product No.: R0K50571MCxxxBE)
Renesas Starter Kit+ for RX72M (product No.: RTK5572MNDCxxxxxBJ)
Renesas Starter Kit+ for RX671 (product No.: RTK55671EDCxxxxxBJ)

Table 6.3 Confirmed Operation Environment (Rev.2.60)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2022-04
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.04.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202104
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.2.60
Board used Renesas Starter Kit for RX660 (product No: RTK556609HCxxxxxBJ)

RX Family CMTW Module Using Firmware Integration Technology

R01AN2199EJ0280 Rev.2.80 Page 31 of 38
Aug.15.22

Table 6.4 Confirmed Operation Environment (Rev.2.50)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2021-07
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.03.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202004
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.2.50
Board used Renesas Starter Kit+ for RX671 (product No.: RTK55671xxxxxxxxxx)

Table 6.5 Confirmed Operation Environment (Rev.2.40)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2021-07
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.03.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202004
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.2.40
Board used Renesas Starter Kit+ for RX671 (product No.: RTK55671xxxxxxxxxx)

RX Family CMTW Module Using Firmware Integration Technology

R01AN2199EJ0280 Rev.2.80 Page 32 of 38
Aug.15.22

Table 6.6 Confirmed Operation Environment (Rev.2.30)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 7.8.0

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.02.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.201904
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

Endian Little endian
Revision of the module Rev.2.30
Board used Renesas Starter Kit+ for RX72M (product No.: RTK5572Mxxxxxxxxxx)

Renesas Starter Kit+ for RX65N-2MB (product No.: RTK50565N2CxxxxxBR)
Renesas Starter Kit+ for RX65N (product No.: RTK50565NCxxxxxBE)
Renesas Starter Kit+ for RX64M (product No.: RTK50564Mxxxxxxxx)
Renesas Starter Kit+ for RX71M (product No.: RTK50571Mxxxxxxxx)

Table 6.7 Confirmed Operation Environment (Rev.2.20)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 7.7.0
IAR Embedded Workbench for Renesas RX 4.12.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 4.8.4.201902
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.12.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.2.20
Board used Renesas Starter Kit+ for RX72N (product No.: RTK5572Nxxxxxxxxxx)

RX Family CMTW Module Using Firmware Integration Technology

R01AN2199EJ0280 Rev.2.80 Page 33 of 38
Aug.15.22

Table 6.8 Confirmed Operation Environment (Rev.2.10)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 7.5.0
IAR Embedded Workbench for Renesas RX 4.12.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 4.8.4.201902
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.12.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.2.10
Board used Renesas Starter Kit+ for RX72M (product No.: RTK5572Mxxxxxxxxxx)

Table 6.9 Confirmed Operation Environment (Rev.2.00)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 7.4.0
IAR Embedded Workbench for Renesas RX 4.10.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 4.8.4.201803
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.10.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.2.00
Board used Renesas Starter Kit+ for RX65N-2MB (product No.: RTK50565Nxxxxxxxxx)

RX Family CMTW Module Using Firmware Integration Technology

R01AN2199EJ0280 Rev.2.80 Page 34 of 38
Aug.15.22

Table 6.10 Operation Confirmation Environment (Rev.1.32)

Item Contents
Integrated development
environment Renesas Electronics e2 studio Version 7.3.0

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

Endian Big endian/little endian
Revision of the module Rev.1.32
Board used Renesas Starter Kit+ for RX65N-2MB (product No.: RTK50565N2CxxxxxBR)

Table 6.11 Operation Confirmation Environment (Rev.1.31)

Item Contents
Integrated development
environment Renesas Electronics e2 studio Version 6.0.0

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V2.07.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

Endian Big endian/little endian
Revision of the module Rev.1.31
Board used Renesas Starter Kit+ for RX65N-2MB (product No.: RTK50565N2CxxxxxBR)

Table 6.12 Operation Confirmation Environment (Rev.1.30)

Item Contents
Integrated development
environment Renesas Electronics e2 studio Version 6.0.0

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V2.07.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

Endian Big endian/little endian
Revision of the module Rev.1.30
Board used Renesas Starter Kit+ for RX65N-2MB (product No.: RTK50565N2CxxxxxBR)

RX Family CMTW Module Using Firmware Integration Technology

R01AN2199EJ0280 Rev.2.80 Page 35 of 38
Aug.15.22

6.2 Troubleshooting
(1) Q: I have added the FIT module to the project and built it. Then I got the error: Could not open source file

“platform.h”.

A: The FIT module may not be added to the project properly. Check if the method for adding FIT modules
is correct with the following documents:

 Using CS+:

Application note “Adding Firmware Integration Technology Modules to CS+ Projects (R01AN1826)”
 Using e2 studio:

Application note “Adding Firmware Integration Technology Modules to Projects (R01AN1723)”

When using a FIT module, the board support package FIT module (BSP module) must also be added to
the project. Refer to the application note “Board Support Package Module Using Firmware Integration
Technology (R01AN1685)”.

(2) Q: I have added the FIT module to the project and built it. Then I got the error: This MCU is not supported
by the current r_cmtw_rx module.

A: The FIT module you added may not support the target device chosen in your project. Check the
supported devices of added FIT modules.

(3) Q: I have added the FIT module to the project and built it. Then I got an error for when the configuration
setting is wrong.

A: The setting in the file “r_cmtw_rx_config.h” may be wrong. Check the file “r_cmtw_rx_config.h”. If there
is a wrong setting, set the correct value for that. Refer to 2.9 Configuration Overview for details.

(4) Q: The expected waveform is not output.

A: The pin setting may not be performed correctly. When using this FIT module, the pin setting must be
performed. Refer to 4. Pin Setting for details.

RX Family CMTW Module Using Firmware Integration Technology

R01AN2199EJ0280 Rev.2.80 Page 36 of 38
Aug.15.22

Related Technical Updates
This module reflects the content of the following technical updates.
 None

RX Family CMTW Module Using Firmware Integration Technology

R01AN2199EJ0280 Rev.2.80 Page 37 of 38
Aug.15.22

Revision History

Rev.

Date

Description
Page Summary

1.00 Sept 3, 2014 -- First edition issued
1.10 Mar 2, 2015 -- Added support for the RX71M Group
1.20 Oct 1, 2016 --

8

21
23

Added support for the RX65N Group
Changed the tabular format of Code Size.
Updated the Code Size table for the RX65N Group.
Added “4. Pin Setting”.
Added “Related Technical Updates”.

1.30 Jul 21, 2017 --
6

7
13
22

Added support for the RX65N-2MB.
Added RXC v2.06.00, RXC v2.07.00 to “2.5 Supported
Toolchains”
Added “2.6 Interrupt Vector”
Updated “2.13 Adding the FIT Module to Your Project”
Updated “4. Pin Setting”.

1.31 Oct 31, 2017 24
24
24
25

Added “5.3 cmtw_demo_rskrx65n”
Added “5.4 cmtw_demo_rskrx65n_2m”
Added “5.6 Downloading Demo Projects”
Added “6. Appendices”

1.32 Nov 16, 2018 -- Added document number in XML
 6 Added RXC v3.01.00 to “2.5 Supported Toolchains”
 13 Updated “2.13 Adding the FIT Module to Your Project”
 14 Added “2.14 “for”, “while” and “do while” statements”
 26 Added table for Rev.1.32
1.40 Feb 01, 2019 8

16-22
Corrected interrupt priority level macro names
Removed ‘Reentrant’ description in each API function.

2.00 May.20.19 —

Supported the following compilers:
- GCC for Renesas RX
- IAR C/C++ Compiler for Renesas RX

1 Added the section of Target compilers.

6

Deleted related documents.
2.3 Software Requirements
Requires r_bsp v5.20 or higher

9 Updated the section of 2.10 Code Size
26

29
Program

Table 6.1 Confirmed Operation Environment:
Added table for Rev.2.00
Deleted the section of Website and Support.
Changed below for support GCC and IAR compiler:
1. Deleted the inline expansion of the R_CMTW_GetVersion
function.
2. Replaced evenaccess with the macro definition of BSP.
3. Replaced the declaration of interrupt functions with the macro
definition of BSP.

RX Family CMTW Module Using Firmware Integration Technology

R01AN2199EJ0280 Rev.2.80 Page 38 of 38
Aug.15.22

2.10 Aug.15.19 1, 7 Added support for RX72M
 10 Added code size corresponding to RX72M
 26

Program

6.1 Confirmed Operation Environment:
Added Table for Rev.2.10
Added support for RX72M.

2.20 Dec.30.19 1, 7 Added support for RX66N, RX72N
 6 2.4 Limitations

Added limitations.
 10 Added code size corresponding to RX66N, RX72N
 25

Program

6.1 Confirmed Operation Environment:
Added Table for Rev.2.20
Added support for RX66N, RX72N.

2.30 Jun.30.20 23-25
24
26

Updated and added new demo project
Added RSKRX72M to “5. Demo Projects”
6.1 Confirmed Operation Environment:
Added Table for Rev.2.30

 Program Updated and added new demo project
2.40 Mar.31.21 1

7

12
29

Added support for RX671.
Added 1.4 Using the FIT CMTW module.
Added 1.4.1 Using FIT CMTW module in C++ project.
Added code size corresponding to RX671.
6.1 Confirmed Operation Environment:
Added Table for Rev.2.40.

 Program Added support for RX671
2.50 Sep.13.21 28

30

Program

Added “5.6 cmtw_demo_rskrx671, cmtw_demo_rskrx671_gcc”
6.1: Confirm Operation Environment:
Added Table for Rev. 2.50.
Updated and added new demo projects
Added CS+ support for demo project.

2.60 Nov.22.21 1, 9
13
31

Added support for RX660.
Added code size corresponding to RX660.
6.1: Confirm Operation Environment:
Added Table for Rev. 2.60.

 Program Added support for RX660
2.70 Jun.28.22 28

6.1: Confirm Operation Environment:
Added Table for Rev. 2.70.

 Program Updated demo projects
2.80 Aug.15.22 1, 5, 8

13
29

Added support for RX26T.
Added code size corresponding to RX26T.
6.1: Confirm Operation Environment:
Added Table for Rev. 2.80.

 Program Added support for RX26T

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor
devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the
level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal
elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal
become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal
produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the
input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these
addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-
evaluation test for the given product.

 © 2022 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 Using the CMTW Firmware Integration Technology (FIT) module
	1.2 Interrupts
	1.3 Callback Functions
	1.3.1 Example callback function prototype declaration.
	1.3.2 Dereferencing of pdata argument.

	1.4 Using the FIT CMTW module
	1.4.1 Using FIT CMTW module in C++ project

	2. API Information
	2.1 Hardware Requirements
	2.2 Hardware Resource Requirements
	2.3 Software Requirements
	2.4 Limitations
	2.4.1 RAM Location Limitations

	2.5 Supported Toolchains
	2.6 Interrupt Vector
	2.7 Header Files
	2.8 Integer Types
	2.9 Configuration Overview
	2.10 Code Size
	2.11 API Data Types
	2.11.1 Special Data Types

	2.12 Return Values
	2.13 Adding the FIT Module to Your Project
	2.14 “for”, “while” and “do while” statements

	3. API Functions
	R_CMTW_Open()
	R_CMTW_Control()
	R_CMTW_Close()
	R_CMTW_GetVersion()

	4. Pin Setting
	5. Demo Projects
	5.1 cmtw_demo_rskrx64m, cmtw_demo_rskrx64m_gcc
	5.2 cmtw_demo_rskrx71m, cmtw_demo_rskrx71m_gcc
	5.3 cmtw_demo_rskrx72m, cmtw_demo_rskrx72m_gcc
	5.4 cmtw_demo_rskrx65n, cmtw_demo_rskrx65n_gcc
	5.5 cmtw_demo_rskrx65n_2m, cmtw_demo_rskrx65n_2m_gcc
	5.6 cmtw_demo_rskrx671, cmtw_demo_rskrx671_gcc
	5.7 Adding a Demo to a Workspace
	5.8 Downloading Demo Projects

	6. Appendices
	6.1 Operation Confirmation Environment
	6.2 Troubleshooting

	Related Technical Updates
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

