
 APPLICATION NOTE

SH7216 Group R01AN0062EJ0101
Rev. 1.01

Feb. 10, 2012Reading/Writing EEPROM
Using I2C Bus Interface 3

Summary
This application note describes examples of reading/writing EEPROM using the SH7216 Microcomputers (MCUs) I2C
Bus Interface 3 (IIC3) transmission and reception in master mode.

Target Device
SH7216 MCU

Contents

1. Introduction.. 2

2. Applications ... 3

3. Sample Program Listing.. 18

4. References .. 31

R01AN0062EJ0101 Rev. 1.01 Page 1 of 32
Feb. 10, 2012

SH7216 Group Reading/Writing EEPROM
 Using I2C Bus Interface 3

R01AN0062EJ0101 Rev. 1.01 Page 2 of 32
Feb. 10, 2012

1. Introduction

1.1 Specifications
• Specifies the SH7216 MCU as the master device, and EEPROM as the slave device to write data to EEPROM
• Specifies the SH7216 MCU as the master device, and EEPROM as the slave device to read data from EEPROM
• The transfer rate is set to 195 kHz
Note: Set the transfer rate to satisfy the EEPROM specifications.

1.2 Modules Used
• I2C Bus Interface (IIC3)

1.3 Applicable Conditions
MCU SH7216
Operating Frequency Internal clock: 200 MHz
 Bus clock: 50 MHz
 Peripheral clock: 50 MHz
Integrated Development
Environment

Renesas Electronics Corporation
High-performance Embedded Workshop Ver.4.07.00

C Compiler Renesas Electronics SuperH RISC engine Family
C/C++ compiler package Ver.9.03 Release 00

Compiler Options Default setting in the High-performance Embedded Workshop
(-cpu=sh2afpu -fpu=single -debug -gbr=auto -global_volatile=0
-opt_range=all -infinite_loop=0 -del_vacant_loop=0 -struct_alloc=1)

1.4 Related Application Note
For more information, refer to the following application note:

• SH7216 Group Example of Initialization

1.5 About Active-low Pins (Signals)
The symbol "#" suffixed to the pin (or signal) names indicates that the pins (or signals) are active-low.

SH7216 Group Reading/Writing EEPROM
 Using I2C Bus Interface 3

R01AN0062EJ0101 Rev. 1.01 Page 3 of 32
Feb. 10, 2012

2. Applications
The SH7216 (master device) writes data to an EEPROM (slave device) using the IIC3 and then receives data from the
EEPROM.

2.1 IIC3 Operation
IIC3 is compliant to the I2C bus (Inter IC Bus) interface specifications invented by Phillips and supports subsets,
However, the configuration of registers to control the I2C bus partly differs from that of Philips.

The SH7216 IIC3 has the following features:

• Format options selectable, I2C bus format or clocked synchronous serial format
• Transmits or receives data continuously

As the shift register, transmit data register and receive data register are separate registers, IIC3 can transmit and
receive data continuously.

Table 1 lists the features of two format options. Figure 1 shows the IIC3 block diagram. For details on IIC3, refer to I2C
Bus Interface 3 chapter in the SH7214 Group, SH7216 Group Hardware User’s Manual.

Table 1 Format Options

Format Name Description
• Automatically generates the START and STOP conditions in master mode
• An output level of an ACK can be selected when receiving data
• Automatically loads an ACK bit when transmitting data
• Includes the bit synchronization/wait function

IIC3 monitors the SCL status per bit in master mode to synchronize automatically.
When it is not ready for transfer, it specifies the SCL to low level to wait

• Six interrupt sources
(1) Transmit data empty (including when slave address match)
(2) Transmit end
(3) Receive data full (including when slave address match)
(4) Arbitration lost
(5) NACK detection
(6) Stop condition detection

• Using the transmit data empty interrupt and the receive data full interrupt to
activate the Direct Memory Access Controller (DMAC) and transfer data

I2C Bus Format

• Bus can be driven directly
SCL and SDA pins are driven by an NMOS open-drain output when selecting the
bus drive function

Clocked Synchronous
Serial Format

• Four interrupt sources
(1) Transmit data empty
(2) Transmit end
(3) Receive data full
(4) Overrun error

• Using the transmit data empty interrupt and the receive data full interrupt to
activate the Direct Memory Access Controller (DMAC) and transfer data

SH7216 Group Reading/Writing EEPROM
 Using I2C Bus Interface 3

SCL

ICCR1

ICCR2

ICMR

ICSR

ICIER

ICDRR

ICDRS

ICDRT

SAR
SDA

NF2CYC

Transfer clock
generation

circuit

Address
comparator

Interrupt
generator

Interrupt
request

Bus state
decision circuit

Arbitration
decision circuit

Noise canceler

Noise filter

Output
control

Output
control

Transmission/
reception

control circuit

I2C bus control register 1
I2C bus control register 2
I2C bus mode register
I2C bus status register
I2C bus interrupt enable register
I2C bus transmit data register
I2C bus receive data register
I2C bus shift register
Slave address register
NF2CYC register

[Legend]
ICCR1:
ICCR2:
ICMR:
ICSR:
ICIER:
ICDRT:
ICDRR:
ICDRS:
SAR:
NF2CYC:

In
te

rn
al

 d
at

a
bu

s

Figure 1 IIC3 Block Diagram

R01AN0062EJ0101 Rev. 1.01 Page 4 of 32
Feb. 10, 2012

SH7216 Group Reading/Writing EEPROM
 Using I2C Bus Interface 3

2.2 IIC3 Setting Procedure
This section describes how to set up IIC3. Make sure to specify the transfer rate to satisfy EEPROM electrical
characteristics. Pφ/256 is specified in the sample program. Figure 2 shows the flow chart for configuring IIC3. For more
information about the register setting, refer to the SH7214 Group, SH7216 Group Hardware User’s Manual.

START

Set Standby control register 3 (STBCR3)

Set Port B control register L4 (PBCRL4)

Set I2C Bus control register 1 (ICCR1)

Set the I2C bus mode register (ICMR)

END

• Enable supplying the clock to IIC3 (STBCR3)
 Clear MSTP33 (module stop 33) bit to 0
 Function: Supply the clock to IIC3

• Set port B pin (PBCRL4)
 Specify PB13MD (PB13 mode) bit to 1
 Function: Set the SDA pin
 Specify PB12MD (PB12 mode) bit to 1
 Function: Set the SCL pin

• Set I2C bus control register 1 (ICCR1)
 Specify the ICE (I2C Bus Interface 3 enable) bit to 1
 Function: Module function is enabled to operate
 Specify the RCVD (Receive disable) bit to 0
 Function: Continue to the next reception
 Specify the MST (Master /Slave select) bit to 1
 Function: Master mode
 Specify the TRS (Transmission/reception select) bit to 1
 Function: Transmit mode
 Specify the CKS (Transfer clock select) bit to 8
 Function: P-clock/256

• Set the I2C bus mode register (ICMR)
 Specify the MLS (MSB first/LSB first select) bit to 0
 Function: MSB first
 Specify the BCWP (BC write protect) bit to 0
 Function: Specify BC [2:0] values when writing data
 Specify the BC (Bit counter) bit to 0
 Function: 9 bits

Figure 2 IIC3 Configuration Flow Chart

R01AN0062EJ0101 Rev. 1.01 Page 5 of 32
Feb. 10, 2012

SH7216 Group Reading/Writing EEPROM
 Using I2C Bus Interface 3

2.3 Sample Program Operation
The sample program specifies IIC3 in master transmit mode to write 10-byte data in pages (page write). Then, it
specifies IIC3 in master receive mode to read 10-byte data sequentially (sequential read).

For device codes, refer to the EEPROM data sheet provided by the manufacturer. The sample program uses the device
code "B'1010".

The sample program uses the device address "B'000". For more information, refer to the EEPROM data sheet provided
by the manufacturer.

The memory address indicates the write start address or read start address, and the address is incremented at every time
writing or reading to/from EEPROM. Figure 3 shows the page write operation. Figure 4 shows the sequential read
operation. Figure 5 shows the operating environment of the sample program.

The sample program is tested with the EEPROM (part number: R1EX24064ASA00A, Renesas Electronics).

Device
code

Device
address

1st memory
address

2nd memory
address

Notes:
1. Don't care bits for 128k and 256k.
2. Don't care bit for 128k.

Write data 1 Write data 10

1 10 0 0 0 0 W
A
1
4

A
1
3

A
1
2

A
1
1

A
1
0

A
9

A
8

A
C
K

A
0

A
7

A
6

A
5

A
4

A
3

A
2

A
1

A
C
K

D
0

D
7

D
6

D
5

D
4

D
3

D
2

D
1

A
C
K

A
C
K

D
0

D
5

D
4

D
3

D
2

D
1

A
C
K

StopStart

*1 *2

R/W

Figure 3 Page Write Operation

Device
code

Device
address

1st memory
address

2nd memory
address

Notes:
 1. Don't care bits for 128k and 256k.
 2. Don't care bit for 128k.

Read data 1 Read data 10

1 10 0 0 0 0 W
A
1
4

A
1
3

A
1
2

A
1
1

A
1
0

A
9

A
8

A
C
K

A
0

A
7

A
6

A
5

A
4

A
3

A
2

A
1

A
C
K

D
0

D
7

D
6

D
5

D
4

D
3

D
2

D
1

A
C
K

D
0

D
5

D
4

D
3

D
2

D
1

N
A
C
K

StopStart

*1 *2

Device
code

Device
address

1 10 0 0 0 0
A
C
K

Start

A
C
K

Dummy write Sequential read

R

R/W

Figure 4 Sequential Read Operation

R01AN0062EJ0101 Rev. 1.01 Page 6 of 32
Feb. 10, 2012

SH7216 Group Reading/Writing EEPROM
 Using I2C Bus Interface 3

SCL

SDA

PB12/SCL

PB13/SDA

SH7216

EEPROM
EXTALCLK

Figure 5 Sample Program Operating Environment

R01AN0062EJ0101 Rev. 1.01 Page 7 of 32
Feb. 10, 2012

SH7216 Group Reading/Writing EEPROM
 Using I2C Bus Interface 3

R01AN0062EJ0101 Rev. 1.01 Page 8 of 32
Feb. 10, 2012

2.4 Sample Program Procedure
Table 2 lists the register settings in the sample program. Table 3 lists the macro definitions used in the sample program.
Figure 6 to Figure 13 show flow charts of the sample program.

Table 2 Register Settings (Default)

Register Name Address Setting Description
Standby control register 3
(STBCR3) H'FFFE 0408 H'00 MSTP33 = "0": IIC3 is operating

I2C bus control register 1
(ICCR1) H'FFFE E000 H'B8

ICE = "1": SCL/SDA pins are driven by bus
RCVD = "0": Following reception is enabled
MST = "1", TRS = "1": Master transmit mode
CKS = "B'1000": Transfer rate is Pφ/256

I2C bus mode register (ICMR) H'FFFE E002 H'30
MLS = "0": MSB first
BCWP = "0": Sets BC value when writing
BC = "B'000": 9 bits

Table 3 Macro Definitions

Macro Definitions Setting Function
EEPROM_MEM_ADDR H'0000 EEPROM start address
DEVICE_CODE H'A0 Device code
DEVICE_ADDR H'00 Device address
IIC_DATA_WR H'00 Write code
IIC_DATA_RD H'01 Read code
IIC3_DATA 10 Data transfer size
E_OK 0 Normal end
E_ERR −1 Error end

SH7216 Group Reading/Writing EEPROM
 Using I2C Bus Interface 3

START

Initialize the write data

Initialize IIC3: io_iic3_init function • Refer to Figure 2, IIC3 Configuration Flow Chart

Main flow

• Set IIC3 in master receive mode to read data from EEPROMRead data from EEPROM:
io_iic3_eeprom_read function

END

Initialize the buffer to store the read data

Write data to EEPROM:
io_iic3_eeprom_write function

ACK received?

ERROR

Acknowledge Polling:
io_iic3_ack_polling function

No

Yes

ACK received?
No

Yes

Compare the write data and read data

• Specify IIC3 in master transmit mode to write data to EEPROM

• Execute the io_iic3_ack_polling function to wait until the EEPROM data is
 replaced

Figure 6 Sample Program Flow Chart (1/8)

R01AN0062EJ0101 Rev. 1.01 Page 9 of 32
Feb. 10, 2012

SH7216 Group Reading/Writing EEPROM
 Using I2C Bus Interface 3

Issue START condition

• The first byte: Device code, device address, write code
• The second byte: Memory address (upper byte)
• The third byte: Memory address (lower byte)

• Transmit data (10 bytes)

ACK received?

Yes

No

Set IIC3 in master transmit mode

Transmit the slave address:
io_iic3_address_send

Transmit data:
io_iic3_data_send function

ACK received?

Yes

No

Specified
number of bytes

transmitted?

Yes

No

Issue STOP condition, slave receive
mode: io_iic3_mst_send_end function

End

• Issue STOP condition
• Set IIC3 in slave receive mode

Start

Write data to EEPROM
(io_iic3_eeprom_write)

Figure 7 Sample Program Flow Chart (2/8)

R01AN0062EJ0101 Rev. 1.01 Page 10 of 32
Feb. 10, 2012

SH7216 Group Reading/Writing EEPROM
 Using I2C Bus Interface 3

Start

return (E_OK)

Transmit the slave device address
(io_iic3_address_send)

Transmit data:
io_iic3_data_send function

Yes

No

Transmit data:
io_iic3_data_send function

Yes

No

Transmit data:
io_iic3_data_send function

Yes

No

return (E_ERR)

• The first byte: Device code, device address, write code

• The second byte: Memory address (upper byte)

• The third byte: Memory address (lower byte)

• Return an error when not receiving an ACK

ACK received?

ACK received?

ACK received?

Figure 8 Sample Program Flow Chart (3/8)

R01AN0062EJ0101 Rev. 1.01 Page 11 of 32
Feb. 10, 2012

SH7216 Group Reading/Writing EEPROM
 Using I2C Bus Interface 3

Start

return (E_OK)

Transmit data
(io_iic3_data_send)

Yes

• Make sure that the transmit data register is
 empty, and set the transmit data

• After the transmission is completed, check if an ACK is
 received

No

Set the transmit data

Yes

No

Yes

No

return (E_ERR)

• Return an error when not receiving an ACK

Start

End

Issue STOP condition, Slave Receive Mode
(io_iic3_mst_send_end)

Yes • After issuing the STOP condition, continue to poll
 until the STOP bit in the I2C bus status register
 (ICSR) becomes 1

STOP bit =1?

Yes

No

Clear the TEND bit
Clear the STOP bit

Issue STOP condition

Set IIC3 in slave receive mode
Clear the TDRE bit

• I2C bus status register (ICSR)
 TEND: Transmit end
 STOP: STOP condition detect flag

• I2C bus status register (ICSR)
 TDRE: Transmit data empty

ACK received?

Transmit data
register is empty?

Transmission
completed?

Figure 9 Sample Program Flow Chart (4/8)

R01AN0062EJ0101 Rev. 1.01 Page 12 of 32
Feb. 10, 2012

SH7216 Group Reading/Writing EEPROM
 Using I2C Bus Interface 3

Acknowledge Polling
(io_iic3_ack_polling)

Issue START condition

Set IIC3 in master transmit mode

Start

Transmit data:
io_iic3_data_send function

Issue STOP condition, slave receive
mode: io_iic3_mst_send_end function

Yes

No

Issue STOP condition, slave receive
mode: io_iic3_mst_send_end function

return (E_OK)

return (E_ERR)

• Return E_OK when receiving an ACK from EEPROM
• Return E_ERR when not receiving an ACK from EEPROM
• EEPROM is writing data until it returns an ACK. During the
 write operation, all SCL and SDA inputs are ignored

• This function executes the Acknowledge Polling.
 For more information, refer to the EEPROM datasheet.

• Device code, device address, write code
Note: Read/write code used for the Acknowledge Polling
depends on the type of EEPROM.

ACK received?

Figure 10 Sample Program Flow Chart (5/8)

R01AN0062EJ0101 Rev. 1.01 Page 13 of 32
Feb. 10, 2012

SH7216 Group Reading/Writing EEPROM
 Using I2C Bus Interface 3

Issue START condition
• The first byte: Device code, device address, write code
• The second byte: Memory address (upper byte)
• The third byte: Memory address (lower byte)

No

Set IIC3 in master transmit mode

Transmit the slave device address:
io_iic3_address_send function

Start

Read data from EEPROM
(io_iic3_eeprom_read)

Issue START condition

YesNo

Transmit data:
io_iic3_data_send function

Receive data:
io_iic3_data_receive function

Issue STOP condition, slave receive
mode: io_iic3_mst_send_end function

End

Yes

• The fourth byte: Device code, device address, read code

ACK received?

ACK received?

Figure 11 Sample Program Flow Chart (6/8)

R01AN0062EJ0101 Rev. 1.01 Page 14 of 32
Feb. 10, 2012

SH7216 Group Reading/Writing EEPROM
 Using I2C Bus Interface 3

Clear the TEND bit

Start

Read data
(io_iic3_data_receive)

Set IIC3 in master transmit mode

Clear the TDRE bit

Set the RCVD bit to 0 • Continue to receive data

Yes

No

Set the ACKBT bit to 0

Dummy read

Read data

Set the ACKBT bit to 1

Set the ACKBT bit to 1

Dummy read

Yes

No

Yes

No • Read the data until the last 2 bytes

• Specify to transmit an NACK

• Specify to transmit an ACK

Disable interrupts

Enable interrupts Enable interrupts

Yes

No

Set the RCDV bit to 1
(Disable to continue receiving data)

Set the RCDV bit to 1
(Disable to continue receiving data)

A B

Read size =
1 byte?

Completed to
receive 1 byte?

Data end?

Completed to
receive 1 byte?

Figure 12 Sample Program Flow Chart (7/8)

R01AN0062EJ0101 Rev. 1.01 Page 15 of 32
Feb. 10, 2012

SH7216 Group Reading/Writing EEPROM
 Using I2C Bus Interface 3

Clear the STOP bit

Issue STOP condition

Read data

Yes

No

Yes

No

Clear the RCVD bit

Set IIC3 in slave receive mode

End

• Receive data (The last byte)

• Receive data (The last byte - 1)Read data

A B

Completed to
receive 1 byte?

STOP bit = 1?

Figure 13 Sample Program Flow Chart (8/8)

R01AN0062EJ0101 Rev. 1.01 Page 16 of 32
Feb. 10, 2012

SH7216 Group Reading/Writing EEPROM
 Using I2C Bus Interface 3

R01AN0062EJ0101 Rev. 1.01 Page 17 of 32
Feb. 10, 2012

2.5 Notes for Master Receive Mode
When reading the I2C bus receive data register (ICDRR) at the falling edge of around the 8th clock, the receive data may
not be retrieved.

When the receive buffer is full and specifying the receive disable bit (RCVD) in the ICDRR at the falling edge of
around the 8th clock, STOP condition may not be issued.

Read the ICDRR in master receive mode before the rising edge of the 8th clock.

2.6 Notes for Setting the ACKBT Bit in Master Receive Mode
When IIC3 is in master receive mode, set the ACKBT bit before falling the 8th SCL signal of the last data which is
continuously transferred. Otherwise, a slave device may overrun.

2.7 Notes for Using the IICRST Bit
When writing 0 to the ICE bit in ICCR1 register or writing 1 to the IICRST bit in ICCR2 register while I2C bus is
operating, the BBSY bit in ICCR2 register and STOP bit in the ICSR register are not defined.

For more information, refer to the Renesas Technical Update (document number: TN-MC*-A022A/E).

SH7216 Group Reading/Writing EEPROM
 Using I2C Bus Interface 3

R01AN0062EJ0101 Rev. 1.01 Page 18 of 32
Feb. 10, 2012

3. Sample Program Listing

3.1 Sample Program Listing "main.c" (1/13)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

/***

* DISCLAIMER

*

* This software is supplied by Renesas Electronics Corp. and is only

* intended for use with Renesas products. No other uses are authorized.

*

* This software is owned by Renesas Electronics Corp. and is protected under

* all applicable laws, including copyright laws.

*

* THIS SOFTWARE IS PROVIDED "AS IS" AND RENESAS MAKES NO WARRANTIES

* REGARDING THIS SOFTWARE, WHETHER EXPRESS, IMPLIED OR STATUTORY,

* INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

* PARTICULAR PURPOSE AND NON-INFRINGEMENT. ALL SUCH WARRANTIES ARE EXPRESSLY

* DISCLAIMED.

*

* TO THE MAXIMUM EXTENT PERMITTED NOT PROHIBITED BY LAW, NEITHER RENESAS

* ELECTRONICS CORP. NOR ANY OF ITS AFFILIATED COMPANIES SHALL BE LIABLE

* FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES

* FOR ANY REASON RELATED TO THIS SOFTWARE, EVEN IF RENESAS OR ITS

* AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

*

* Renesas reserves the right, without notice, to make changes to this

* software and to discontinue the availability of this software.

* By using this software, you agree to the additional terms and

* conditions found by accessing the following link:

* http://www.renesas.com/disclaimer

**

* Copyright (C) 2010 Renesas Electronics Corporation. All rights reserved.

*""FILE COMMENT""*********** Technical reference data **************************

* System Name : SH7216 Sample Program

* File Name : main.c

* Abstract : Reading/Writing EEPROM Using IIC3

* Version : 1.00.00

* Device : SH7216

* Tool-Chain : High-performance Embedded Workshop (Ver.4.07.00).

* : C/C++ compiler package for the SuperH RISC engine family

* : (Ver.9.03 Release00).

* OS : None

* H/W Platform: R0K572167 (CPU board)

* Description :

**

* History : Jun.30,2010 Ver.1.00.00

*""FILE COMMENT END""**/

#include <machine.h>

#include <stdio.h>

#include "iodefine.h"

SH7216 Group Reading/Writing EEPROM
 Using I2C Bus Interface 3

R01AN0062EJ0101 Rev. 1.01 Page 19 of 32
Feb. 10, 2012

3.2 Sample Program Listing "main.c" (2/13)

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

/* ==== symbol definition ==== */

#define EEPROM_MEM_ADDR 0x0000

#define DEVICE_CODE 0xA0 /* EEPROM device code :b'1010 */

#define DEVICE_ADDR 0x00 /* EEPROM device address:b'000 */

#define IIC_DATA_WR 0x00 /* Data write code :b'0 */

#define IIC_DATA_RD 0x01 /* Data read code :b'1 */

#define IIC3_DATA 10

#define E_OK 0

#define E_ERR -1

/* ==== RAM allocation variable declaration ==== */

unsigned char ReadData[IIC3_DATA];

unsigned char WriteData[IIC3_DATA];

/* ==== prototype declaration ==== */

void main(void);

int io_iic3_init(void);

int io_iic3_eeprom_read(unsigned char d_code,unsigned char d_adr,unsigned short r_adr,

 unsigned int r_size,unsigned char* r_buf);

int io_iic3_eeprom_write(unsigned char d_code,unsigned char d_adr,

 unsigned short w_adr,unsigned int w_size,unsigned char* w_buf);

int io_iic3_address_send(unsigned char* data);

int io_iic3_data_receive(unsigned char* r_buf,unsigned int r_size);

int io_iic3_data_send(unsigned char data);

void io_iic3_mst_send_end(void);

int io_iic3_ack_polling(void);

/*""FUNC COMMENT""**

 * ID :

 * Outline : Sample program main

 *--

 * Include :

 *--

 * Declaration : void main(void);

 *--

 * Description : Writes data to EEPROM using IIC3 master transmit mode.

 * : Reads data from EEPROM using IIC3 master receive mode.

 *--

 * Argument : void

 *--

 * Return Value : void

 *--

 * Note : None

 *""FUNC COMMENT END""**/

void main(void)

{

 int i,ack;

SH7216 Group Reading/Writing EEPROM
 Using I2C Bus Interface 3

R01AN0062EJ0101 Rev. 1.01 Page 20 of 32
Feb. 10, 2012

3.3 Sample Program Listing "main.c" (3/13)

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

 /* ==== Clears the buffer storing the data ==== */

 for(i=0;i<IIC3_DATA;i++){

 ReadData[i] = 0x00;

 }

 /* ==== Creates the write data ==== */

 for(i=0;i<IIC3_DATA;i++){

 WriteData[i] = IIC3_DATA+i;

 }

 /* ==== Configures IIC3 ==== */

 io_iic3_init();

 /* ==== Transmits data in IIC3 master transmit mode ==== */

 ack = io_iic3_eeprom_write(DEVICE_CODE, /* Device code */

 DEVICE_ADDR, /* Device address */

 0x0000, /* Write start address */

 sizeof(WriteData), /* Write data size */

 WriteData); /* Buffer storing data */

 /* ==== Write error check ==== */

 if(ack != E_OK){

 while(1){

 /* error */

 }

 }

 /* ==== Acknowledge Polling ==== */

 while(io_iic3_ack_polling() != E_OK){

 /* Waits until reprogramming EEPROM internally is completed */

 }

 /* ==== Receives data in IIC3 master receive mode ==== */

 io_iic3_eeprom_read(DEVICE_CODE, /* Device code */

 DEVICE_ADDR, /* Device address */

 0x0000, /* Read start address */

 sizeof(ReadData), /* Read data size */

 ReadData); /* Buffer storing data */

 /* ==== Compares the result ==== */

 for(i=0; i<IIC3_DATA; i++){

 if(WriteData[i] != ReadData[i]){

 while(1){

 /* error */

 }

 }

 }

 while(1){

 /* Loop */

 }

}

SH7216 Group Reading/Writing EEPROM
 Using I2C Bus Interface 3

R01AN0062EJ0101 Rev. 1.01 Page 21 of 32
Feb. 10, 2012

3.4 Sample Program Listing "main.c" (4/13)

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

/*""FUNC COMMENT""**

 * ID :

 * Outline : IIC3 module configuration

 *--

 * Include : iodefine.h

 *--

 * Declaration : int io_iic3_init(void);

 *--

 * Description : Configures IIC3

 *--

 * Argument : void

 *--

 * Return Value : E_OK

 *--

 * Note : None

 *""FUNC COMMENT END""**/

int io_iic3_init(void)

{

 /* ---- STBCR3 ---- */

 STB.CR3.BIT._IIC3 = 0; /* IIC3 is operating */

 /* ---- PORT ---- */

 PFC.PBCRL4.BIT.PB13MD = 6; /* SDA select */

 PFC.PBCRL4.BIT.PB12MD = 6; /* SCL select */

 /* ----IIC31 module operation enabled ---- */

 IIC3.ICCR1.BIT.ICE = 1u; /* IIC3 module is enabled to operate */

 IIC3.ICCR1.BIT.RCVD = 0u; /* Continues the next reception */

 IIC3.ICCR1.BIT.MST = 1u; /* Specifies master mode */

 IIC3.ICCR1.BIT.TRS = 1u; /* Specifies transmit mode */

 IIC3.ICCR1.BIT.CKS = 8u; /* Transfer clock rate: P-clock/256 (195 kHz) */

 /* ---IIC bus mode register (ICMR) setting --- */

 IIC3.ICMR.BYTE = 0x30u;

 /*

 bit 7 : MLS:0 --------------------- MSB first

 bit 6 : Reserve:0 ----------------- Reserve bit

 bits 5 to 4 : Reserve:1 ----------------- Reserve bit

 bit 3 : BCWP:0--------------------- Not set

 bits 2 to 0 : BC0:0, BC1:0,BC0:0--------- IIC format 9-bit

 */

 return(E_OK);

}

SH7216 Group Reading/Writing EEPROM
 Using I2C Bus Interface 3

R01AN0062EJ0101 Rev. 1.01 Page 22 of 32
Feb. 10, 2012

3.5 Sample Program Listing "main.c" (5/13)

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

/*""FUNC COMMENT""**

 * ID :

 * Outline : Read data from EEPROM

 *--

 * Include : iodefine.h

 *--

 * Declaration : int io_iic3_eeprom_read(unsigned char d_code,

 * : unsigned char d_adr,

 * : unsigned short r_adr,

 * : unsigned int r_size,

 * : unsigned char* r_buf);

 *--

 * Description : Reads the r_size bytes of data from EEPROM specified by the

 * : device code (d_code), device address (d_adr), and stores the

 * : read data in the buffer specified by the r_buf. Specify the EEPROM

 * : memory address by the r_adr.

 *--

 * Argument : unsigned char d_code : Device code

 * : unsigned char d_adr : Device address

 * : unsigned short r_adr : Read start address

 * : unsigned int r_size : Read data size

 * : unsigned char* r_buf : Buffer storing the read data

 *--

 * Return Value : ACK received: E_OK

 * : ACK not received: E_ERR

 *--

 * Note : None

 *""FUNC COMMENT END""**/

int io_iic3_eeprom_read(unsigned char d_code,unsigned char d_adr,unsigned short r_adr,

 unsigned int r_size,unsigned char* r_buf)

{

 int ack = E_OK;

 unsigned char send[4];

 send[0] = (unsigned char)(d_code|((d_adr & 0x7)<<1)|IIC_DATA_WR);

 send[1] = (unsigned char)((r_adr>>8) & 0x00ff);

 send[2] = (unsigned char)(r_adr & 0x00ff);

 send[3] = (unsigned char)(d_code|((d_adr & 0x7)<<1)|IIC_DATA_RD);

 while(IIC3.ICCR2.BIT.BBSY == 1u){

 /* Waits until the bus is released */

 }

 IIC3.ICCR1.BYTE |= 0x30u; /* Sets IIC3 in */

 /* master transmit mode */

 IIC3.ICCR2.BYTE = ((IIC3.ICCR2.BYTE & 0xbfu)|0x80u); /* Issues START condition */

 ack = io_iic3_address_send(send); /* Transmits the 1st, 2nd, */

 /* and 3rd bytes */

SH7216 Group Reading/Writing EEPROM
 Using I2C Bus Interface 3

R01AN0062EJ0101 Rev. 1.01 Page 23 of 32
Feb. 10, 2012

3.6 Sample Program Listing "main.c" (6/13)

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

 if(ack == E_OK){

 /* ACK received from the specified device */

 IIC3.ICCR2.BYTE=((IIC3.ICCR2.BYTE & 0xbfu) | 0x80u); /* Issues START condition */

 ack = io_iic3_data_send(send[3]); /* Transmits the 4th byte */

 if(ack == E_OK){

 io_iic3_data_receive(r_buf,r_size); /* Receives data */

 }

 else{

 io_iic3_mst_send_end();

 }

 }

 else{

 /* ACK not received from the specified device */

 io_iic3_mst_send_end();

 }

 return(ack);

}

/*""FUNC COMMENT""**

 * ID :

 * Outline : Master receive mode

 *--

 * Include : #include "iodefine.h"

 *--

 * Declaration : int io_iic3_data_receive(unsigned char* r_buf,

 * : unsigned int r_size);

 *--

 * Description : Sets IIC3 in master receive mode to receive the r_size bytes

 * : of data, and stores the receive data in the r_buf.

 * : After receiving the specified number of bytes of data is completed,

 * : it switches IIC3 in slave receive mode.

 *--

 * Argument : unsigned char* r_buf : Buffer storing the read data

 * : unsigned int r_size : Read data size

 *--

 * Return Value : Always returns E_OK

 *--

 * Note : None

 *""FUNC COMMENT END""**/

int io_iic3_data_receive(unsigned char* r_buf,unsigned int r_size)

{

 int cnt, mask;

 unsigned char dummy;

 mask = get_imask();

 set_imask(15); /* Interrupts are disabled */

SH7216 Group Reading/Writing EEPROM
 Using I2C Bus Interface 3

R01AN0062EJ0101 Rev. 1.01 Page 24 of 32
Feb. 10, 2012

3.7 Sample Program Listing "main.c" (7/13)

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

 /* ==== Sets IIC3 in master receive mode (continuous reception) ==== */

 IIC3.ICSR.BIT.TEND = 0u; /* Clears the TEND bit */

 IIC3.ICCR1.BIT.MST = 1u; /* Master mode */

 IIC3.ICCR1.BIT.TRS = 0u; /* Receive mode */

 IIC3.ICSR.BIT.TDRE = 0u; /* Clears the TDRE bit */

 IIC3.ICCR1.BIT.RCVD = 0u; /* Receives data continuously */

 /* ==== Starts receiving data (only one byte) ==== */

 if(r_size == 1){ /* When receiving a single byte */

 IIC3.ICCR1.BIT.RCVD = 1u; /* Disables to receive data continuously */

 IIC3.ICIER.BIT.ACKBT = 1u; /* Sets the ACK bit to high */

 dummy = IIC3.ICDRR; /* Dummy read */

 set_imask(mask); /* Interrupts are enabled */

 }

 /* ==== Starts receiving data (more than two bytes) ==== */

 else{

 IIC3.ICIER.BIT.ACKBT = 0u; /* Sets the ACK bit to low */

 dummy = IIC3.ICDRR; /* Dummy read */

 set_imask(mask); /* Interrupts are enabled */

 /* ==== Reads data until the last 2 bytes ==== */

 cnt = r_size;

 while(cnt > 2){

 /* ---- Waits until receiving one byte of data is completed ---- */

 while(IIC3.ICSR.BIT.RDRF == 0u){

 /* wait */

 }

 /* ---- Reads data ---- */

 *r_buf++ = IIC3.ICDRR;

 cnt--;

 }

 /* ==== Waits until receiving the last byte -1 data is completed ==== */

 while(IIC3.ICSR.BIT.RDRF == 0u){

 /* wait */

 }

 /* ==== Prepares for receiving the last byte ==== */

 IIC3.ICCR1.BIT.RCVD = 1u; /* Disables to receive data continuously */

 IIC3.ICIER.BIT.ACKBT = 1u; /* Sets the ACK bit to high */

 /* ==== Reads the last byte -1 data ==== */

 *r_buf++ = IIC3.ICDRR;

 }

 /* ==== Waits until receiving the last byte data is completed==== */

 while(IIC3.ICSR.BIT.RDRF == 0u){

 /* wait */

 }

SH7216 Group Reading/Writing EEPROM
 Using I2C Bus Interface 3

R01AN0062EJ0101 Rev. 1.01 Page 25 of 32
Feb. 10, 2012

3.8 Sample Program Listing "main.c" (8/13)

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

 /* ==== Issues STOP condition ==== */

 /* ---- Starts issuing ---- */

 IIC3.ICSR.BIT.STOP = 0u; /* Clears the STOP flag */

 IIC3.ICCR2.BYTE &= 0x3fu; /* Issues STOP condition */

 /* ---- Waits until issuing STOP condition is completed ---- */

 while(IIC3.ICSR.BIT.STOP == 0u){

 /* wait */

 }

 /* ==== Reads the last byte data ==== */

 r_buf = IIC3.ICDRR; / The last byte */

 /* ==== Sets IIC3 in slave receive mode again ==== */

 IIC3.ICCR1.BIT.RCVD = 0u; /* Clears the RCVD bit */

 IIC3.ICCR1.BYTE &= 0xcfu; /* Slave receive mode */

 return(E_OK);

}

/*""FUNC COMMENT""**

 * ID :

 * Outline : Write data to EEPROM

 *--

 * Include : iodefine.h

 *--

 * Declaration : int io_iic3_eeprom_write(unsigned char d_code,

 * : unsigned char d_adr,

 * : unsigned short w_adr,

 * : unsigned int w_size,

 * : unsigned char* w_buf);

 *--

 * Description : Writes the w_size bytes of data stored in the buffer specified

 * : by the w_buf to EEPROM specified by the device code d_code,

 * : device address d_adr. Specify the memory address of EEPROM by

 * : the w_adr.

 *--

 * Argument : unsigned char d_code ; I : Device code

 * : unsigned char d_adr ; I : Device address

 * : unsigned short w_adr ; I : Write start address

 * : unsigned int w_size ; I : Write data size

 * : unsigned char* w_buf ; O : Buffer storing the write data

 *--

 * Return Value : ACK received: E_OK

 * : ACK not received: E_ERR

 *--

 * Note : None

 *""FUNC COMMENT END""**/

int io_iic3_eeprom_write(unsigned char d_code,unsigned char d_adr,unsigned short w_adr,

 unsigned int w_size,unsigned char* w_buf)

SH7216 Group Reading/Writing EEPROM
 Using I2C Bus Interface 3

R01AN0062EJ0101 Rev. 1.01 Page 26 of 32
Feb. 10, 2012

3.9 Sample Program Listing "main.c" (9/13)

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

{

 int ack = E_OK;

 int i;

 unsigned char send[3];

 send[0] = (unsigned char)(d_code|((d_adr & 0x7)<<1)|IIC_DATA_WR);

 send[1] = (unsigned char)((w_adr>>8) & 0x00ff);

 send[2] = (unsigned char)(w_adr & 0x00ff);

 while(IIC3.ICCR2.BIT.BBSY == 1u){

 /* Waits until the bus is released */

 }

 IIC3.ICCR1.BYTE |= 0x30u; /* Sets IIC3 in */

 /* master transmit mode */

 IIC3.ICCR2.BYTE = ((IIC3.ICCR2.BYTE & 0xbfu)|0x80u); /* Issues START condition */

 ack = io_iic3_address_send(send); /* Transmits the first, second */

 /* and third bytes */

 if(ack == E_OK){

 /* Receives an ACK from the specified device */

 for(i=0;i<w_size;i++){

 ack = io_iic3_data_send(*w_buf++); /* Transmits data */

 if(ack == E_ERR){

 break;

 }

 }

 io_iic3_mst_send_end();

 }

 else{

 /* ACK not received from the specified device */

 io_iic3_mst_send_end();

 }

 return(ack);

}

SH7216 Group Reading/Writing EEPROM
 Using I2C Bus Interface 3

R01AN0062EJ0101 Rev. 1.01 Page 27 of 32
Feb. 10, 2012

3.10 Sample Program Listing "main.c" (10/13)

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

/*""FUNC COMMENT""**

 * ID :

 * Outline : Transmits the slave device address

 *--

 * Include :

 *--

 * Declaration : int io_iic3_address_send(unsigned char* data);

 *--

 * Description : Transmits the slave device address (1 byte) and memory address

 * : (2 bytes) specified by the argument data.

 *--

 * Argument : unsigned char* data ; I : Transmit data

 *--

 * Return Value : ACK received: E_OK

 * : ACK not received: E_ERR

 *--

 * Note : None

 *""FUNC COMMENT END""**/

int io_iic3_address_send(unsigned char* data)

{

 int ack;

 ack = io_iic3_data_send(*data++); /* Slave device address */

 if(ack == E_ERR){

 return(ack);

 }

 ack = io_iic3_data_send(*data++); /* 1st memory address */

 if(ack == E_ERR){

 return(ack);

 }

 ack = io_iic3_data_send(*data); /* 2nd memory address */

 if(ack == E_ERR){

 return(ack);

 }

 return(ack);

}

SH7216 Group Reading/Writing EEPROM
 Using I2C Bus Interface 3

R01AN0062EJ0101 Rev. 1.01 Page 28 of 32
Feb. 10, 2012

3.11 Sample Program Listing "main.c" (11/13)

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

/*""FUNC COMMENT""**

 * ID :

 * Outline : Transmit one byte of data

 *--

 * Include : iodefine.h

 *--

 * Declaration : int io_iic3_data_send(unsigned char data);

 *--

 * Description : Transmits the "data" as the following steps.

 * : 1. Waits until the ICDRT is empty

 * : 2. Sets the transmit data

 * : 3. Confirms the transmission is completed

 * : 4. Confirms an ACK is received

 *--

 * Argument : unsigned char data : Transmit data

 *--

 * Return Value : ACK received: E_OK

 * : ACK not received: E_ERR

 *--

 * Note : None

 *""FUNC COMMENT END""**/

int io_iic3_data_send(unsigned char data)

{

 int ack;

 while(IIC3.ICSR.BIT.TDRE == 0u){

 /* Waits until the ICDRT is empty */

 }

 IIC3.ICDRT = data;

 while(IIC3.ICSR.BIT.TEND == 0u){

 /* Waits until transmitting data is completed */

 }

 if(IIC3.ICIER.BIT.ACKBR == 0u){

 ack = E_OK;

 }

 else{

 ack = E_ERR;

 }

 return(ack);

}

SH7216 Group Reading/Writing EEPROM
 Using I2C Bus Interface 3

R01AN0062EJ0101 Rev. 1.01 Page 29 of 32
Feb. 10, 2012

3.12 Sample Program Listing "main.c" (12/13)

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

/*""FUNC COMMENT""**

 * ID :

 * Outline : Issue STOP condition

 *--

 * Include : iodefine.h

 *--

 * Declaration : void io_iic3_mst_send_end(void);

 *--

 * Description : Issues STOP condition, and switches IIC3 in slave receive mode.

 *--

 * Argument : void

 *--

 * Return Value : void

 *--

 * Note : None

 *""FUNC COMMENT END""**/

void io_iic3_mst_send_end(void)

{

 IIC3.ICSR.BIT.TEND = 0u; /* Clears the TEND flag */

 IIC3.ICSR.BIT.STOP = 0u; /* Clears the STOP flag */

 IIC3.ICCR2.BYTE &= 0x3fu; /* Issues STOP condition */

 while(IIC3.ICSR.BIT.STOP == 0u){

 /* Waits until the bus is released */

 }

 IIC3.ICCR1.BYTE &= 0xcfu; /* Slave receive mode */

 IIC3.ICSR.BIT.TDRE = 0u; /* Clears the TDRE bit */

}

SH7216 Group Reading/Writing EEPROM
 Using I2C Bus Interface 3

R01AN0062EJ0101 Rev. 1.01 Page 30 of 32
Feb. 10, 2012

3.13 Sample Program Listing "main.c" (13/13)

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

/*""FUNC COMMENT""**

 * ID :

 * Outline : Acknowledge Polling

 *--

 * Include : iodefine.h

 *--

 * Declaration : io_iic3_ack_polling

 *--

 * Description : This function checks if the write cycle of EEPROM is finished

 * : or not. When the write cycle is not finished, EEPROM ignores

 * : the input command and does not return an ACK. Make sure that

 * : the write cycle of EEPROM is finished by this function before

 * : accessing EEPROM. Read/Write codes to transmit upon the

 * : Acknowledge Polling depends on the type of EEPROM. For more

 * : information, refer to the EEPROM datasheet.

 *--

 * Argument : void

 *--

 * Return Value : E_OK : NOT_BUSY

 * : E_ERR: BUSY (EEPROM is in the write cycle)

 *--

 * Note : None

 *""FUNC COMMENT END""**/

int io_iic3_ack_polling(void)

{

 int ack = E_OK;

 unsigned char send = (unsigned char)(DEVICE_CODE|((DEVICE_ADDR & 0x7)<<1)|IIC_DATA_WR);

 while(IIC3.ICCR2.BIT.BBSY == 1u){

 /* Waits until the bus is released */

 }

 IIC3.ICCR1.BYTE |= 0x30u; /* Sets IIC3 in */

 /* master transmit mode */

 IIC3.ICCR2.BYTE = ((IIC3.ICCR2.BYTE & 0xbfu)|0x80u); /* Issues START condition */

 ack = io_iic3_data_send(send);

 io_iic3_mst_send_end(); /* Issues STOP condition */

 return(ack);

}

/* End of File */

SH7216 Group Reading/Writing EEPROM
 Using I2C Bus Interface 3

R01AN0062EJ0101 Rev. 1.01 Page 31 of 32
Feb. 10, 2012

4. References
• Software Manual

SH-2A/SH2A-FPU Software Manual Rev. 3.00
The latest version of the software manual can be downloaded from the Renesas Electronics website.

• Hardware Manual

SH7214 Group, SH7216 Group Hardware User’s Manual Rev. 2.00
• The latest version of the hardware manual can be downloaded from the Renesas Electronics website.

SH7216 Group Reading/Writing EEPROM
 Using I2C Bus Interface 3

R01AN0062EJ0101 Rev. 1.01 Page 32 of 32
Feb. 10, 2012

Website and Support
Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/inquiry

A-1

Revision Record
Description

Rev.

Date Page Summary

1.00 Nov.19.10 — First edition issued
1.01 Feb.10.12 17 Description amended

2.5 Notes for Master Receive Mode
Read the ICDRR bit in master receive mode before the
rising edge of the 8th clock

General Precautions in the Handling of MPU/MCU Products
The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the
products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General
Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the
description in the body of the manual takes precedence.

1. Handling of Unused Pins
Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
⎯ The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
⎯ The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
⎯ The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.
⎯ When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to one with a different type number, confirm that the
change will not lead to problems.
⎯ The characteristics of MPU/MCU in the same group but having different type numbers may differ

because of the differences in internal memory capacity and layout pattern. When changing to
products of different type numbers, implement a system-evaluation test for each of the products.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas

Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to

be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and

regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to

the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is

prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product

depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas

Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for

which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the

use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics.

The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools;

 personal electronic equipment; and industrial robots.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically

 designed for life support.

 "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical

 implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-65030, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632
Tel: +65-6213-0200, Fax: +65-6278-8001
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2012 Renesas Electronics Corporation. All rights reserved.

Colophon 1.1

	1. Introduction
	1.1 Specifications
	1.2 Modules Used
	1.3 Applicable Conditions
	1.4 Related Application Note
	1.5 About Active-low Pins (Signals)

	2. Applications
	2.1 IIC3 Operation
	2.2 IIC3 Setting Procedure
	2.3 Sample Program Operation
	2.4 Sample Program Procedure
	2.5 Notes for Master Receive Mode
	2.6 Notes for Setting the ACKBT Bit in Master Receive Mode
	2.7 Notes for Using the IICRST Bit

	3. Sample Program Listing
	3.1 Sample Program Listing "main.c" (1/13)
	3.2 Sample Program Listing "main.c" (2/13)
	3.3 Sample Program Listing "main.c" (3/13)
	3.4 Sample Program Listing "main.c" (4/13)
	3.5 Sample Program Listing "main.c" (5/13)
	3.6 Sample Program Listing "main.c" (6/13)
	3.7 Sample Program Listing "main.c" (7/13)
	3.8 Sample Program Listing "main.c" (8/13)
	3.9 Sample Program Listing "main.c" (9/13)
	3.10 Sample Program Listing "main.c" (10/13)
	3.11 Sample Program Listing "main.c" (11/13)
	3.12 Sample Program Listing "main.c" (12/13)
	3.13 Sample Program Listing "main.c" (13/13)

	4. References

