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Renesas RA FSP™ Platform 

RA FSP MQTT/TLS Azure Cloud Connectivity Solution 
Introduction  
This application note describes IoT Cloud connectivity solutions in general and introduces you briefly to the 
IoT Cloud provider Microsoft Azure. It covers the RA FSP MQTT/TLS module along with the Azure IoT SDK 
for embedded C.  

This application project is built with the integrated “Azure IoT SDK for Embedded C” package which allows 
small embedded (IoT) devices like Renesas RA family of MCUs RA6M3/RAM6M4/RAM6M5 to communicate 
with Azure services. 

The application example uses Azure IoT DPS (Device Provisioning Service) to provision, register the IoT 
device, and send and receive data to and from the development kit.  

This application note enables you to effectively use the RA FSP modules in your own design with the Azure 
IoT SDK. Upon completion of this guide, you will be able to add the FSP modules to your own design, 
configure it correctly with Azure IoT SDK for the target application, and write code using the included 
application example code as a reference and efficient starting point. References to more detailed API 
descriptions and sample code that demonstrates advanced usage of FSP modules are available in the RA 
FSP Software Package (FSP) User’s Manual (see Next Steps section) and serve as valuable resources in 
creating more complex designs. Explaining the underlying operation of Azure IoT SDK for Embedded C is 
beyond the scope of this document. Users should refer to the documentation from Microsoft for education on 
topics related to Azure IoT SDK section: https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-
sdks 

In this release, the EK-RA6M5 kit is used for the application project.   

Required Resources 
To build and run the MQTT/TLS application example, you need: 

Development Tools and Software 
• e2 studio version: v2022-04 or later  
• RA FSP Software Package (FSP) v3.7.0 or later  
• SEGGER J-Link® RTT viewer version: 7.54 or later 
• Azure IoT explorer 0.14.5.0 or later (PC tool for validating the Cloud side) 
• Azure CLI 2.24 or later (Azure command-line interface is a set of commands used to create and manage 

Azure resources) 
• Access to Azure Cloud Connectivity Portal (https://portal.azure.com/#home) to create IoT Devices (If you 

are new to Azure IoT) 
  
Hardware 
• Renesas RA FSP™ EK-RA6M5 kit  
• PC running Windows® 10, Tera Term console or similar application, and an installed web browser 

(Google Chrome, Internet Explorer, Microsoft Edge, Mozilla Firefox, or Safari). 
• Micro USB cables 
• Ethernet cable (CAT5/6) 
• Router with ethernet port or ethernet switch to connecting to the router for Internet connectivity 
 

Prerequisites and Intended Audience 
This application note assumes that you have some experience with the Renesas e2 studio ISDE and RA FSP 
Software Package (FSP). Before you perform the procedures in this application note, follow the procedure in 
the FSP User Manual to build and run the Blinky project. Doing so enables you to become familiar with the 
e2 studio and the FSP, and also validates that the debug connection to your board functions properly. In 

https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-sdks
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-sdks
https://portal.azure.com/#home
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addition, this application note assumes you have some knowledge of MQTT/TLS and its communication 
protocols. 

The intended audience are users who want to connect to Azure Cloud using the Azure IoT SDK for 
Embedded C on the Renesas RA RA6 MCU Series.  

Note:  If you are a first-time user of e2 studio and FSP, we highly recommend you install e2 studio and FSP 
on your system in order to run the Blinky Project and to get familiar with the e2 studio and FSP 
development environment before proceeding to the next sections.  

Note:  If you are new to Azure Internet of Things, we recommend you get started with Introduction the Azure 
IoT https://docs.microsoft.com/en-us/azure/iot-fundamentals/iot-introduction  

Prerequisites 

1. Access to online documentation available in the Cloud Connectivity References section 
2. Access to latest documentation for identified Renesas Flexible Software Package 
3. Prior knowledge of operating e2 studio and built-in (or standalone) RA Configurator 
4. Access to associated hardware documentation such as User Manuals and Schematics 
 

Using this Application Note 
Section 1 of this document covers the General Overview of the Cloud Connectivity, Azure IoT Solution using 
IoT Central, and Azure DPS, MQTT and TLS Protocols and Device certificates and Keys used in the Cloud 
Connectivity. 

Section 2 covers the modules provided by RA FSP to establish connectivity to Cloud service providers and 
the features supported by the module. 

Section 3 covers the architecture of the reference application project, an overview of the software 
components included, and step-by-step guidelines for recreation using the FSP configurator. 

Section 1.1 covers the setup of the Azure Cloud required for the application. 

Sections 4 covers building and running the Application project for quick validation.  

Note:  We recommend that you operate with your own Microsoft Azure Cloud credentials and use your 
created Cloud configurations to run the application. The default sample configuration detailed in this 
project is for reference only and may have access issues to Azure since the application is 
communicating with a test account. 

Note:  For a quick validation using the provided application project, you can skip sections 1 to 3 and go to 
section 4 for instructions on importing, building, and running the application project on the EK board. 
You are still required to provide necessary user credentials for the application as described in section 
1.1.  

  

https://docs.microsoft.com/en-us/azure/iot-fundamentals/iot-introduction
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1. Introduction to Cloud Connectivity 
1.1 Cloud Connectivity Overview 
Internet of Things (IoT) is a sprawling set of technologies described as connecting everyday objects, like 
sensors or smartphones, to the World Wide Web. IoT devices are intelligently linked together to enable new 
forms of communication between things and people, and among things. 

These devices, or things, connect to the network. Using sensors, they provide the information they gather 
from the environment or allow other systems to reach out and act on the world through actuators. In the 
process, IoT devices generate massive amounts of data, and cloud computing provides a pathway, enabling 
data to travel to its destination. 

The IoT Cloud Connectivity Solution includes the following major components: 

1. Devices or Sensors 
2. Gateway 
3. IoT Cloud services 
4. End user application/system 
 

IoT Cloud 

Devices

Sensors
Gateway

 

Figure 1.   IoT Cloud Connectivity Architecture 
Devices or Sensors 
A device includes hardware and software that interacts directly with the world. Devices connect to a network 
to communicate with each other, or to centralized applications. Devices may connect to the Internet either 
directly or indirectly. 

Gateway 
A gateway enables devices that are not directly connected to the Internet to reach cloud services. The data 
from each device is sent to the Cloud Platform, where it is processed and combined with data from other 
devices, and potentially with other business-transactional data. Most of the common communication 
gateways support one or more communication technologies such as Wi-Fi, Ethernet, or cellular to connect to 
the IoT Cloud Service provider. 

IoT Cloud 
Many IoT devices produce lots of data. You need an efficient, scalable, affordable way to manage those 
devices, handle all that information, and make it work for you. When it comes to storing, processing, and 
analyzing data, especially big data, it is hard to surpass the cloud.  
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1.2 Microsoft Azure IoT Solution 
1.2.1 Overview 
Microsoft’s end-to-end IoT platform is a complete IoT offering so that enterprises can build and realize value 
from IoT solutions quickly and efficiently. Azure IoT Central solutions are used with backend support from the 
Azure IoT Hub Device Provisioning Service. 

 

Figure 2.   Microsoft Azure IoT Cloud Solution 

1.2.2 IoT Hub and Device Provisioning Service 
Azure IoT Hub and IoT Hub Device Provisioning Service (DPS) 
IoT Hub provides built-in support for the MQTT v3.1.1 protocol. Please review the following webpage for 
more understanding of the IoT Hub and Device Provisioning Services (DPS). 

https://docs.microsoft.com/en-us/azure/iot-dps/ 

Device Provisioning Service 
High-level sequence of events to connect a Device to IoT Hub: 

1. After the device is manufactured, the device enrollment information is added to the DPS. This is the only 
manual step in the process! 

2. At some point afterwards, which could be a day or it could be several months, the device goes online 
and connects to DPS to find its IoT solution home. 

3. DPS and the device go through an attestation handshake using the device enrollment info. DPS proves 
the device’s identity. 

4. DPS registers the device to IoT hub and populates the initial desired device state. 
5. IoT hub returns the connection info for the device. 
6. DPS gives the device its IoT Hub connection info. 
7. The device now establishes a connection with IoT hub and retrieves its initial configuration from IoT hub 

and makes any changes/updates, as needed. 
8. The device starts sending telemetry to IoT hub. 
 
Embedded C SDK 
The Embedded C SDK, the newer addition to the Azure SDKs family, was designed to allow embedded IoT 
devices to leverage Azure services, like device to cloud telemetry, cloud to device messages, direct 
methods, device twin, device provisioning, and IoT Plug and play, all while maintaining a minimal footprint. 

It allows full control over memory allocation and the flexibility to bring your own MQTT client, TLS, and 
Socket layers. 

Written in C, this version of the SDK is optimized to be used on small and embedded devices with limited 
capabilities and resources. 

The Azure IoT SDK is open source and published on GitHub (https://github.com/Azure/azure-sdk-for-c). This 
is also distributed with FSP version 3.7.0 and above. 

https://docs.microsoft.com/en-us/azure/iot-dps/
https://github.com/Azure/azure-sdk-for-c
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Authentication Methods 
Security is a critical concern when deploying and managing IoT devices. IoT Hub offers the following security 
features: 

• X.509 
The communication path between devices and Azure IoT Hub, or between gateways and Azure IoT Hub, 
is secured using the industry-standard Transport Layer Security (TLS) with Azure IoT Hub authenticated 
using the X.509 standard. 
To protect devices from unsolicited inbound connections, Azure IoT Hub does not open any connection 
to the device. The device initiates all connections. 
Azure IoT Hub reliably stores messages for devices and waits for the device to connect. These 
messages are stored for two days, enabling devices connecting sporadically due to power or 
connectivity concerns to receive these messages. Azure IoT Hub maintains a per-device queue for each 
device. 
Note: The reference application project attached to this application note doesn’t use X509 authentication. 
Instead it uses the SAS token. 

• Per-Device Key Authentication 
Figure 3 shows authentication in the IoT Hub using security tokens. 

 

Figure 3.   Authentication using Security Tokens 

1. The device prepares a shared access signature (SAS) token using the device endpoint, device id, 
and primary key (generated as part of the device addition to the IoT Hub). 

2. When connecting to the IoT Hub, the device presents the SAS token as the password in the MQTT 
CONNECT message. The username content is the combination of device endpoint and device name 
along with the additional Azure defined string. 

3. The IoT Hub verifies the SAS token and registers the device and connection is established. 
4. IoT hub provides Symmetric key for Data encryption. 
Note: The connection is closed when the SAS token expires. 

 
1.3 MQTT Protocol Overview 
MQTT stands for Message Queuing Telemetry Transport. MQTT is a Client Server publish-subscribe 
messaging transport protocol. It is an extremely light-weight, open, simple messaging protocol, designed for 
constrained devices, as well as low-bandwidth, high-latency, or unreliable networks. These characteristics 
make it ideal for use in many situations, including constrained environments, such as communication in 
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Machine to Machine (M2M) and IoT contexts, where a small code footprint is required, and/or network 
bandwidth is at a premium. 

An MQTT client can publish information to other clients through a broker. A client, if interested in a topic, can 
subscribe to the topic through the broker. A broker is responsible for authentication and authorization of 
clients, as well as delivering published messages to any of its clients who subscribe to the topic. In this 
publisher/subscriber model, multiple clients may publish data with the same topic. A client will receive the 
messages published if the client subscribes to the same topic. 

Thing 1

MQTT
Broker

PUBLISH to Thing N/Data Thing 2

PUBLISH to Thing N/Data

Thing N

SUBSCRIBE to Thing 1/Data

SUBSCRIBE to Thing 2/Data

 

Figure 4.   MQTT Client Publish/Subscribe Model 
In the Pub/Sub model used by MQTT, there is no direct connection between a publisher and the subscriber. 
To handle the challenges of a Pub/Sub system, the MQTT generally uses quality of service (QoS) levels. 
There are three QoS levels in MQTT: 

• At most once (0) 
• At least once (1) 
• Exactly once (2) 
 
At most once (0) 
A message will not be acknowledged by the receiver or stored and redelivered by the sender. 

At least once (1) 
It is guaranteed that a message will be delivered at least once to the receiver. But the message can also be 
delivered more than once. The sender will store the message until it gets an acknowledgment in form of a 
PUBACK command message from the receiver. 

Exactly once (2) 
It guarantees that each message is received only once by the counterpart. It is the safest and the slowest 
QoS level. 

1.4 TLS Protocol Overview 
Transport Layer Security (TLS) protocol and its predecessor, Secure Sockets Layer (SSL), are cryptographic 
protocols that provide communications security over a computer network. 
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The TLS/SSL protocol provides privacy and reliability between two communicating applications. It has the 
following basic properties: 

Encryption: The messages exchanged between communicating applications are encrypted to ensure that 
the connection is private. Symmetric cryptography mechanism such as AES (Advanced Encryption 
Standard) is used for data encryption. 

Authentication: A mechanism to check the peer’s identity using certificates. 

Integrity: A mechanism to detect message tampering and forgery ensures that connection is reliable. A 
Message Authentication Code (MAC), such as Secure Hash Algorithm (SHA), ensures message integrity. 

 

Figure 5.   SSL/TLS Hierarchy 

1.4.1 Device Certificates and Keys 
Device certificates, public and private keys, and the ways they can be generated, are discussed in this 
section. 

Security is a critical concern when deploying and managing IoT devices. In general, each of the IoT devices 
needs an identity before they can communicate with the Cloud. Digital certificates are the most common 
method for authenticating a remote host in TLS. Essentially, a digital certificate is a document with specific 
formatting that provides identity information for a device. 

TLS normally uses a format called X.509, a standard developed by the International Telecommunication 
Union (ITU), though other formats for certificates may apply if TLS hosts can agree on a format to use. X.509 
defines a specific format for certificates and various encodings that can be used to produce a digital 
document. Most X.509 certificates used with TLS are encoded using a variant of ASN.1, which is another 
telecommunication standard. Within ASN.1 there are various digital encodings, but the most common 
encoding for TLS certificates is the Distinguished Encoding Rules (DER) standard. DER is a simplified 
subset of the ASN.1 Basic Encoding Rules (BER) and designed to be unambiguous, making parsing easier.  

Though DER-formatted binary certificates are used in the actual TLS protocol, they may be generated and 
stored in a number of different encodings, with file extensions such as .pem, .crt, and .p12. The most 
common of the alternative certificate encodings is Privacy-Enhanced Mail (PEM). The PEM format is a base-
64 encoded version of the DER encoding.  

Depending on your application, you may generate your own certificates, be provided certificates by a 
manufacturer or government organization, or purchase certificates from a commercial certificate authority.  

Loading Certificates onto your Device 
To use a digital certificate in your NetX™ Secure application, you must first convert your certificate into a 
binary DER format, and optionally convert the associated private key into a binary format, typically, a 
PKCS#1-formatted, DER-encoded RSA key. Once converted, it is up to you how to load the certificate and 
the private key on to the device. Possible options include using a flash-based file system or generating a C 
array from the data (using a tool such as xxd from Linux® with the -i option) and compiling the certificate 
and key into your application as constant data. 

Once your certificate is loaded on the device, you can use the TLS API to associate your certificate with a 
TLS session. 
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1.4.2 Device Security Recommendations 
The following security recommendations are not enforced by Cloud IoT Core but will help you secure your 
devices and connections. 

• The private key of the device should be kept secret. 
• Use the latest version of TLS (v1.2 or above) when communicating with IoT Cloud and verify that the 

server certificate is valid using trusted root certificate authorities.  
• Each device should have a unique public/private key pair. If multiple devices share a single key and one 

of those devices is compromised, an attacker could impersonate all the devices that have been 
configured with that one key. 

• Keep the public key secure when registering it with Cloud IoT Core. If an attacker can tamper with the 
public key and trick the provisioner into swapping the public key and registering the wrong public key, the 
attacker will subsequently be able to authenticate on behalf of the device. 

• The key pair is used to authenticate the device to Cloud IoT Core and should not be used for other 
purpose or protocols. 

• Depending on the device’s ability to store keys securely, key pairs should be rotated periodically. When 
practical, all keys should be discarded when the device is reset. 

• If your device runs an operating system, make sure you have a way to securely update it. Android 
Things provides a service for secure updates. For devices that don’t have an operating system, ensure 
that you can securely update the device’s software if security vulnerabilities are discovered after 
deployment. 

 

2. RA FSP MQTT/TLS Cloud Solution 
2.1 MQTT Client Module Introduction 
The NetX Duo MQTT Client module provides high-level APIs for a Message Queuing Telemetry Transport 
(MQTT) protocol-based client. The MQTT protocol works on top of TCP/IP and therefore the MQTT client is 
implemented on top of NetX Duo IP and NetX Duo Packet pool. NetX Duo IP attaches itself to the 
appropriate link layer frameworks, such as Ethernet, Wi-Fi, or cellular.  

The NetX Duo MQTT client module can be used in normal or in secure mode. In normal mode, the 
communication between the MQTT client and broker is not secure. In secure mode, the communication 
between the MQTT client and broker is secured using the TLS protocol.  

2.1.1 Design Considerations 
• By default, the MQTT client does not use TLS; communication is not secure between a MQTT client and 

broker. 
• The RA FSP MQTT client does not add the NetX Duo TLS session block. It only adds NetX Duo TLS 

common block. This block defines/controls the common properties of NetX secure. 
• It is the responsibility of the user/application code to create the TLS session, configure the security 

parameters, and load the relevant certificates manually under the TLS setup callback provided by the 
nxd_mqtt_client_secure_connect() API. 

 
2.1.2 Supported Features 
NetX Duo MQTT Client supports the following features: 

• Compliant with OASIS MQTT Version 3.1.1 Oct 29, 2014. The specification can be found at 
http://mqtt.org/. 

• Provides an option to enable/disable TLS for secure communication using NetX Secure in FSP. 
• Supports QoS and provides the ability to choose the levels that can be selected while publishing the 

message. 
• Internally buffers and maintains the queue of received messages. 
• Provides a mechanism to register callback when a new message is received. 
• Provides a mechanism to register callback when connection with the broker is terminated. 
 

http://mqtt.org/
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2.2 TLS Session Module Introduction 
The NetX Duo TLS session module provides high-level APIs for the TLS protocol-based client. It uses 
services provided by the RA FSP Crypto Engine (SCE) to carry out hardware-accelerated encryption and 
decryption. 

The NetX Duo TLS Session module is based on Azure RTOS NetX Secure which implements the Secure 
Socket Layer (SSL) and its replacement, TLS protocol, as described in RFC 2246 (version 1.0) and 5246 
(version 1.2). NetX Secure also includes routines for the basic X.509 (RFC 5280) format. NetX Secure is 
intended for applications using ThreadX RTOS in the project. 

2.2.1 Design Considerations 
• NetX Secure TLS performs only basic path validation on incoming server certificates.  

Once the basic path validation is complete, TLS then invokes the certificate verification callback supplied 
by the application.  

• It is the responsibility of the application to perform any additional validation of the certificate. 
To help with the additional validation, NetX Secure provides X.509 routines for common validation 
operations, including DNS validation and Certificate Revocation List checking. 

• Software-based cryptography is processor-intensive.  
NetX Secure software-based cryptographic routines have been optimized for performance but depending 
on the capabilities of the target processor, performance may result in very long operations. When 
hardware-based cryptography is available, it should be used for optimal performance of the NetX secure 
TLS. 

• Due to the nature of embedded devices, some applications may not have the resources to support the 
maximum TLS record size of 16 KB.  
NetX Secure can handle 16 KB records on devices with sufficient resources. 

 
2.2.2 Supported Features 
• Support for RFC 2246 Transport Layer Security (TLS) Protocol Version 1.0 
• Support for RFC 5246 TLS Protocol Version 1.2 
• Support for RFC 5280 X.509 PKI Certificates (v3) 
• Support for RFC 3268 Advanced Encryption Standard (AES) Cipher suites for TLS 
• RFC 3447 Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications Version 

2.1 
• RFC 2104 HMAC: Keyed-Hashing for Message Authentication 
• RFC 6234 US Secure Hash Algorithms (SHA and SHA-based HMAC and HKDF) 
• RFC 4279 Pre-Shared Key Cipher suites for TLS 
 
2.3 Azure IoT Device SDK Module Introduction 
The Azure IoT device SDK is a set of libraries designed to simplify the process of developing IoT applications 
for Azure Cloud to make sending and receiving messages easy from the Azure IoT Hub service. There are 
different variations of the SDK, each targeting a specific platform, but in this app note we will be describing 
the Azure IoT device SDK for C. 

The Azure IoT device SDK for C is written in ANSI C (C99) to maximize portability. This feature makes the 
libraries well suited to operate on multiple platforms and devices, especially where minimizing disk and 
memory footprint is a priority. 

In this app note we will cover how to initialize the device library, send data to IoT Hub, and receive messages 
from it. 

More details on the Azure IoT Device SDK can be found in the reference link The Azure IoT device SDK for 
C | Microsoft Docs. 

2.3.1 Design Considerations 
The Azure IoT Device SDK is integrated with FSP and is available for the customers to use. To add the SDK 
to the application, users are required to use the Stacks tab and select Networking→Azure RTOS NetX 
Duo IOT Middleware. 

https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-device-sdk-c-intro
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-device-sdk-c-intro
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When the components are selected using the Stacks tab, and the project is created, the SDK and libraries 
can be seen under the ra/microsoft/azure-rtos/netxduo/addons/azure_iot and 
ra/microsoft/azure-rtos/netxduo/addons/cloud folders. 

Note: In the later sections, step by step procedure of adding the Azure IoT middleware is explained in detail 

2.3.2 Supported Features 
Table 1. IoT SDK Supported features 

Features Descriptions 
Send device-to-cloud messages Send device-to-cloud messages to IoT Hub with the option to add 

custom message properties. 
Receive cloud-to-device messages Receive cloud-to-device messages and associated properties 

from IoT Hub 
Device twins IoT Hub persists a device twin for each device that you connect 

to IoT Hub. The device can perform operations like get twin 
document and subscribe to desired property updates. 

Direct methods IoT Hub gives you the ability to invoke direct methods on devices 
from the cloud. 

Device Provisioning Service (DPS) This SDK supports connecting your device to the Device 
Provisioning Service via, for example, individual enrollment using 
an X.509 leaf certificate. 

Protocol The Azure SDK for Embedded C supports only MQTT. 
Retry policies The Azure SDK for Embedded C provides guidelines for retries, 

but actual retries should be handled by the application. 
IoT plug and play IoT Plug and Play enables solution builders to integrate smart 

devices with their solutions without any manual configuration. 
 

3. MQTT/TLS Application Example 
3.1 Application Overview 
This application project demonstrates the Renesas RA IoT Cloud Connectivity solution using the FSP and 
uses Microsoft® Azure as the cloud provider. Ethernet is used as the primary communication interface 
between the MQTT device and the Azure IoT Services. 

The EK-RA6M5 kit acts as an MQTT node, connects to the Azure IoT service using MQTT/TLS protocol over 
the Ethernet interface. The application periodically reads the on-chip temperature sensor values and 
publishes this information to the Azure IoT Hub. It also subscribes to a User LED state MQTT topic. You can 
turn the User LEDs ON/OFF by publishing the LED state remotely. This application reads the updated LED 
state and turns the User LEDs ON/OFF. 

(Or)

  

 

Figure 6.   RA MQTT/TLS Application Overview 

EK IoT Hub 
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Figure 7.   MQTT Publish/Subscribe to/from Azure IoT Centrale 
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The following files from this application project serve as a reference.  

Table 2. Files Used in Application Project 

No. Filename Purpose 
1 src/application_thread_entry.c Contains data structures functions and main 

thread used in Cloud Connectivity application.  
2 src/common_utils.h Contains macros, data structures, and functions 

commonly used across the project. 
3 src/hal_entry.c Unused file automatically generated by FSP. This 

file is used for non-RTOS based projects. 
4 src/usr_hal.c Contains data structures and functions used for 

the Hardware Abstraction Layer initialization and 
associated utilities. 

5 src/usr_hal.h Accompanying header for exposing functionality 
provided by usr_hal.c. 

6 src/usr_app.c Contains data structures and functions used to 
operate the user application functions.  

7 src/usr_app.h Accompanying header for exposing functionality 
provided by usr_app.c.  

8 src/usr_network.c Contains data structures and functions used to 
operate the NetX Duo TCP/IP and Ethernet 
Module. This file is for Ethernet-specific usage.  

9 src/usr_network.h Accompanying header for exposing functionality 
provided by usr_network.c. This file is for 
Ethernet-specific usage. 

10 src/c2d_thread_entry.c Cloud to Device handling thread 
11 src/nx_azure_iot_cert.c Azure IoT Interface code. These have the 

reference to the working sample implementation 
and other features such as Device Twin and 
Direct Method. These files can be used as 
reference for developing the application  

12 src/nx_azure_iot_cert.h 
13 src/nx_azure_iot_ciphersuites.c 
14 src/nx_azure_iot_ciphersuites.h 
15 src/sample_azure_iot_embedded_sdk.c 
16 src/sample_config.h 
17 src/sample_device_identity.c 
18 src/SEGGER_RTT/SEGGER_RTT.c Implementation of SEGGER real-time transfer 

(RTT) which allows real-time communication on 
targets which support debugger memory 
accesses while the CPU is running. 

19 src/SEGGER_RTT/SEGGER_RTT.h 
20 src/SEGGER_RTT/SEGGER_RTT_Conf.h 
21 src/SEGGER_RTT/SEGGER_RTT_printf.c 
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Figure 8.   Application Example Implementation Details 

3.2 Creating the Application Project using the FSP configurator 
Complete steps to create the project from the start using the e2 studio and FSP configurator. The table below 
shows the step-by-step process in creating the project. It is assumed that the user is familiar with the 
e2 studio and FSP configurator. Launch the installed e2 studio for the FSP. 

Table 3. Step-by-step Details for Creating the Application Project 

 Steps Intermediate Steps 
1 Project Creation:  File → New → Renesas C/C++ Project → Renesas RA 
2 Project Template: 

Templates for Renesas RA Project 
Renesas RA C/C++ Project → Next 
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 Steps Intermediate Steps 
3 e2 studio - Project Configuration: 

Renesas RA C/C++ Project  
Project Name and Location 

Project Name (Name for the project of your choice) → Next 

4  Device and Tools Selection  
Device Selection FSP Version: 3.7.0 

Board: EK-RA6M5 
Device: R7FA6M5BH3CFC 
RTOS: Azure RTOS ThreadX 
Language: C 

5 Toolchains Toolchain: GNU ARM Embedded (Default) 
Toolchain version: 10.3.1.20210824 
Debugger: J-Link ARM 
→ Next  

6 Project Type Selection Flat (Non-TrustZone) Project 
→ Next  

7 Build Artifact and RTOS Selection Build Artifact Selection: Executable 
RTOS Selection: Azure RTOS ThreadX (v6.1.10+fsp3.7.0)  
→ Next  

8 Project Template Selection Azure RTOS ThreadX – Minimal → Finish 
9 Stacks Tab (Part of the FSP 

Configurator) 
Threads → New Thread 

10 Configure Properties → Thread Symbol: application_thread 
Name: Application Thread 
Stack size (bytes): 4096  
Priority: 2 
Auto start: Enabled 
Time slicing interval (ticks): 1 
Note: The stack size of the application thread needs to be a 
minimum of 4096 or greater. This is the requirement for the 
NetX Duo Crypto use. 

11 Adding the NetX DHCP, IoT Middleware, SNTP Clients and Packet Pool to the Application Thread  
Keep the default names g_dhcp_client0, g_dns0, g_sntp_client0. The default configuration provided 
by FSP configurator is used, so there is no need to change any of the specific configuration in the 
Property window. 
Adding DHCP Client  
New Stack  Networking → Azure RTOS NetX Duo DHCP IPv4 Client 
Adding Packet Pool for the DHCP 
Client 

Click on Add NetX Duo Packet Pool → Use→ 
g_packet_pool0 NetX Duo Packet Pool Instance 

Adding NetX Duo Network Driver Click on Add NetX Duo Network Driver → New → NetX 
Duo Ethernet Driver 

Modifying the BSP tab → Properties → RA Common for Main stack and Heap Settings) 
Property settings for RA Common Main stack size(bytes): 0x1000 

Heap size (bytes): 0x1000 
Adding Azure RTOS NetX Duo IoT Middleware 
New Stack  Networking → Azure RTOS NetX Duo IoT  Middleware 
Adding NetX Duo IP instance for DNS 
Client  

Click on Add NetX Duo IP Instance → Use → g_ip0 NetX 
Duo IP Instance 
 

Adding Packet Pool for the DNS Client Click on Add NetX Duo Packet Pool →Use → 
g_packet_pool0 NetX Duo Packet Pool Instance 
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 Steps Intermediate Steps 
Note: After the Azure IoT Middleware is added, the configurator reports following errors when you 
hover over the red Blocks. 
Error: NetX Duo Azure IoT Middleware Requires NetX Secure to be enabled. 
Error: NetX Duo Azure IoT Middleware Requires IP Packet Filter to be enabled. 
Error: NetX Duo Azure IoT Middleware Requires MQTT Cloud to be enabled.  
Error: A NetX Crypto Implementation must be added.  
Note: To fix these errors, enable them as explained in the following steps 
Enable the NetX Secure  g_dns0 Azure RTOS NetX Duo DNS Client →Property → 

Common → MQTT → Client → NX Secure: Enable  
Enable MQTT Cloud g_dns0 Azure RTOS NetX Duo DNS Client →Property → 

Common → MQTT → Client → Cloud Enable: Enable  
Enable IP Packet Filter g_dns0 Azure RTOS NetX Duo DNS Client →Property → 

Common → Common → IP Packet Filter: Enabled 
Add NetX Crypto Implementation Click on Add NetX SW Only or HW/SW Implementation → 

New → Azure RTOS NetX Crypto HW Acceleration 
 Enable the Extended Notify Support g_dns0 Azure RTOS NetX Duo DNS Client →Property → 

Common → Common →Extended Notify Support: 
Enabled 

12 NetX Secure Component is added from the HW Crypto perspective. IoT SDK also works with SW 
crypto. But in this application the HW Crypto Accelerators are used. 
Configure NetX Secure property values (Only values which changed from the default are shown here) 
PSK Cipher Suite Enable 
ECC Cipher Suite Enable 
TLSv1.0 Enable 
TLSv1.1 Legacy Mode Enable 
TLSV1.1 Enable 
TLSV1.3 Enable 
Server Mode Disable 
Configure Azure RTOS NetX Crypto HW Acceleration property values (Only values which changed 
from the default are shown here) 
Common→Hardware Acceleration→
Public Key Cryptography (PKC)→
RSA→RSA 3072 Verify/Encryption 
(HW) 

Enabled 

Common→Hardware Acceleration 
→ Public Key Cryptography (PKC) 
→ RSA → RSA 4096 
Verify/Encryption (HW) 

Enabled 

Common-> Standalone Usage Use with TLS 
Note: Increase the Stack size in the 
BSP Tab to get rid of the error in 
configurator for NetX Crypto HW 
Acceleration 

Refer to the Modifying the BSP tab → Properties → RA 
Common for (Main stack and Heap Settings) section in step 
11 of this table 
Note: For crypto operation it is recommended to have astack 
size of 4K or more. 

Adding SNTP Client  
New Stack  Networking → Azure RTOS NetX Duo SNTP Client 
Adding NetX Duo IP instance for SNTP 
Client  

Click on Add NetX Duo IP Instance →Use → g_ip0 NetX 
Duo  IP Instance 

Adding Packet Pool for the SNTP 
Client 

Click on Add NetX Duo Packet Pool →Use → 
g_packet_pool0 NetX Duo Packet Pool Instance 
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 Steps Intermediate Steps 
Increase the Number of Packets in Pool 
 Click on g_packet_pool0 NetX Duo Packet Pool Instance 

→ Properties window → Number of Packets in Pool. 
Change from 16 to 50 (To allow enough buffer for the 
packets). This can be tuned based on the frequency and size  

Note: After adding the SNTP the configurator reports the  ollowing errors when you hover over the red 
Blocks. 
Error: Maximum time adjustment (milliseconds) should be greater than unicast poll interval 
(seconds). 
Note: To fix these errors, enable them as explained in the following steps 
Reduce the starting poll interval for 
unicast update request (seconds) 

g_sntp_client0 Azure RTOS NetX Duo SNTP Client →
Property → Common → SNTP →  Client →Starting poll 
interval for unicast update request (seconds): 36 

13 
 

Add Cloud to Device Processing Thread to the Application 
Stacks tab (Part of the FSP 
Configurator) 

Threads → New Thread 

Configure Thread Properties 
Symbol c2d_thread 
Name Cloud2Device Thread 
Stack size 2048 Bytes 
Priority 2 
Auto start Disabled 
Time slicing interval (ticks) 1 

14 Adding the HAL Modules as required for the Application Project: Here, ADC, Timer0, External IRQ are 
used for MCU temperature, 30-second periodic timer, and push button switches, respectively. 
HAL/Common Stacks → New Stack Input → External IRQ Driver on r_icu 
Property Settings for r_icu Name: pushButtonS1 

Channel: 10 
Trigger: Rising 
Digital Filtering: Enabled 
Digital Filtering Sample Clock: PCLK/64 
Pin Interrupt Priority: Priority 10 
Callback: pb_callback 

HAL/Common Stacks → New Stack Driver → Input → External IRQ Driver on r_icu 
Property Settings for r_icu Name: pushButtonS2 

Channel: 9 
Trigger: Rising 
Digital Filtering: Enabled 
Digital Filtering Sample Clock: PCLK/64 
Pin Interrupt Priority: Priority 10 
Callback: pb_callback 

HAL/Common Stacks → New Stack Timers → Timer Driver on r_gpt 
Property Settings for r_gpt → General Name: gpt 

Channel: 0 
Mode: Periodic 
Period: 30 
Period Unit: Seconds 

Interrupts: Callback: g_gpt_timer_cb 
Overflow/Crest Interrupt Priority: Priority 10 

HAL/Common Stacks → New Stack Analog → ADC Driver on r_adc 
Property Settings for r_adc → General Name: adc 
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 Steps Intermediate Steps 
Unit: 0 
Resolution: 12-bit 
Alignment: Right 
Clear after read: On 
Mode: Continuous Scan 
Double-trigger: Disabled 

Property Settings for r_adc → Input  Channel Scan Mask: Temperature Sensor 
16 Adding Azure RTOS Objects for the Application (Topic Queue needs to be created for the application – 

Message Queue) 
Stacks Tab → Objects  New Object → Queue 
Property Settings for the Queue Name: Topic Queue 

Symbol: g_topic_queue 
Message Size (Words): 16 
Queue Size (Bytes): 64 

 
The above configuration is a prerequisite to generate the required stack and features for the cloud 
connectivity application provided with this app note. Once the Generate Project Content button is clicked, 
e2 studio generates the source code for the project. The generated source code contains the required 
drivers, stacks, and middleware. The user application files must be added into the src folder.  

For the validation of the created project, the same source files listed in the section MQTT/TLS Application 
SW Architecture Overview (Table 2) may be added. This is the quickest way to create and build the 
application without writing the code for the configuration created in the above section.  

Note:  After you follow instructions in section 3.2 to recreate the Application project using FSP configurator 
and add the src code to the project, the project is ready for building. 

3.3 Install Azure CLI 
To prepare Azure cloud resources and connect a device to Azure, you can use Azure CLI. Azure CLI can be 
installed locally on your PC.  

1. Azure CLI can be downloaded from the Microsoft site (https://docs.microsoft.com/en-us/cli/azure/install-
azure-cli) 

2. Note: The installer name will be similar to azure-cli-2.24.x.msi. or later. Click on the installer and 
the install shield will guide you through the installation process. 

3. Install the current release of the Azure CLI. After the installation is complete, you will need to close and 
reopen any active Windows Command Prompt or PowerShell windows to use the Azure CLI. 

4. After the Azure CLI installation is successful, open and launch the Windows PowerShell to use the Azure 
CLI. A screenshot of the Windows PowerShell is shown below.  

 

Figure 9.   Windows Power Shell 

https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
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5. If you already have Azure CLI installed locally, run az --version to check the version. This app note 
requires Azure CLI 2.24.0 or later.  

 

Figure 10.   Azure CLI Version 

3.4 Create an IoT Hub 
You can use Azure CLI to create an IoT hub that handles events and messaging for your device. 

Note 1: Before you start creating the IoT Hub you are required to have a login to your Azure Portal via web 
browser. If not, then you may notice an error that you are not logged in while creating the IoT hub, you may 
notice an error that you are not logged in. 

https://portal.azure.com/ 

Note 2: If you do not have the Azure Account, you can create one which is valid for 12 months with limited 
features from the following link  

https://azure.microsoft.com/en-us/free/  

To create an IoT hub:  
Note 3: Some of the user parameters while creating the IoT Hub needs to be unique. Users are required to 
take care of this while creating the IoT Hub credentials. 

1. In your CLI console, run the az extension add command to add the Microsoft Azure IoT Extension 
for Azure CLI to your CLI shell. The IoT Extension adds IoT Hub, IoT Edge, and IoT Device Provisioning 
Service (DPS) specific commands to Azure CLI.  
  az extension add --name azure-iot 

Note 4: When you run the command for the first time you may not notice output on the console as shown 
below. It just accepts the command. 

 

Figure 11.   Add Extension for Azure CLI 

https://portal.azure.com/
https://azure.microsoft.com/en-us/free/
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2. Run the az login command to login to the Azure account. Running the az login command opens 
the browser for login. You can enter the login credentials to login to the Azure account. You will notice a 
similar message on the browser on successful login. 
Note: You can find more info on the Azure CLI at Overview of the Azure CLI | Microsoft Docs 

 

Figure 12.   Successful Login to the Azure account  
3. Run the az group create command to create a resource group. The following command creates a 

resource group named MyRAResourceGroup in the westus region.  
4. Note: Optionally, to set an alternate location, run az account list-locations to see available 

locations. Then specify the alternate location in the following command in place of westus.  
  az group create --name MyRAResourceGroup --location westus 

 

Figure 13.   Create Resource Group 
5. Run the az iot hub create command to create an IoT hub. It might take a few minutes to create an 

IoT hub. 
Replace the YourIotHubName placeholder below with the name you chose for your IoT hub. An IoT 
hub name must be globally unique in Azure. This placeholder is used in the rest of this tutorial to 
represent your unique IoT hub name.   
 az iot hub create --resource-group MyRAResourceGroup --name 

{YourIoTHubName}  
Note: It may take few minutes to create the IoT Hub. In this case the IoTHub name used is 
RACLOUDHUB. 

 

Figure 14.   IoT Hub Creation in Progress 

https://docs.microsoft.com/en-us/cli/azure/
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6. After the IoT hub is created, view the JSON output in the console, and copy the hostName value to a 
safe place. You use this value in a later step. The hostName value looks like the following example:  
 {Your IoT hub name}.azure-devices.net  

 

Figure 15.   JSON Output after IoT Hub Creation  

3.5 Register an IoT Hub Device  
In this section, you create a new device instance and register it with the IoT Hub you created. You will use 
the connection information for the newly registered device to securely connect your physical device in a later 
section.  
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To register a device:  
1. In your console, run the az iot hub device-identity create command. This creates the 

simulated device identity.  
2. Replace the YourIotHubName placeholder below with the name you chose for your IoT hub.  
3. You can use the MyRADevKit name directly for the device in CLI commands in this tutorial. Optionally, 

use a different name.  
 az iot hub device-identity create --device-id MyRADevKit --hub-name 

{YourIoTHubName}  

 

Figure 16.   IoT Hub Creation in Progress 
4. After the device is created, view the JSON output in the console, and copy the deviceId and 

primaryKey values for use in a later step. 
5. Confirm that you have saved or copied the following values from the JSON outputs from the previous 

sections to use in the next section 
 Hostname 
 deviceId 
 primaryKey 

 
3.6 Prepare the Device  
To connect the device to Azure, modify a configuration file for Azure IoT settings, build and flash the image 
to the device.  

Add configuration  
1. Import the application project into an empty e2 studio.  pen sample_config.h and make the changes 

to the configuration as shown in the snapshot with your Hostname, deviceId and primaryKey. 
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Figure 17.   Configuration Changes to sample_config.h 

Constant name  Value  
HOST_NAME  {Your IoT hub hostName value}  
DEVICE_ID  {Your deviceID value}  
DEVICE_SYMMETRIC_KEY  {Your primaryKey value}  
 

3.7 Building and Running the Application 
The project is now ready to compile. Press the Build (hammer icon) to start building the project. 

 

Figure 18.   Starting to Build the Project 
The toolchain will report compilation and build status to the console pane in the lower-right corner of 
e2 studio. When the build has completed, confirm that there are zero errors and few warnings. Warnings, if 
any, may result from highly restrictive compilation warnings settings being applied by e2 studio to third party 
code. 

 

Figure 19.   Compilation and Build Status Report 
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3.8 Download and Run the Project  
1. Connect the micro USB cable to the DEBUG port (J10) of the EK-RA6M5 Cloud Kit and other end to the 

host computer.  
2. Make sure the Ethernet Cable is connected to the RJ-45 connector of the board and other end to the 

router/switch as applicable for the internet access.  
3. In e2 studio, open the Debug Configurations dialog and launch the AzureCloudRA6M5SAS 

Debug_Flat debug configuration.  
4. Open your RTT viewer terminal (version 6.98 or later). Configure the following values for the RTT 

terminal:  

 

Figure 20.   RTT Terminal  
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5. As the project runs, the demo prints out status information to the terminal output window. The demo also 
publishes the MCU Temperature message to IoT Hub every 30 seconds. Check the terminal output to 
verify that messages have been successfully sent to the Azure IoT hub:  

 

Figure 21.   RTT Terminal Output 
Keep the terminal window open to monitor device output in subsequent steps. 

3.9 View Device Properties  
You can use the Azure IoT Explorer (https://docs.microsoft.com/en-us/azure/iot-pnp/howto-use-iot-explorer) 
to view and manage the properties of your devices. In the following steps, you'll add a connection to your IoT 
hub in IoT Explorer. With the connection, you can view properties for devices associated with the IoT hub.  

Download and install latest (above v0.14.2.0) Azure IoT Explorer from: https://github.com/Azure/azure-iot-
explorer/releases 

Note: Click and install the downloaded msi file Azure.IoT.Explorer.preview.0.14.2.msi or newer 
version of the downloaded file. The install shield guides you through the installation process. 

https://docs.microsoft.com/en-us/azure/iot-pnp/howto-use-iot-explorer
https://github.com/Azure/azure-iot-explorer/releases
https://github.com/Azure/azure-iot-explorer/releases
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3.10 Set IoT Hub  
To add a connection to your IoT hub:  
1. In your CLI console, run the az iot hub show-connection-string command to get the 

connection string for your IoT hub. 
  az iot hub show-connection-string --name {YourIoTHubName}  

 

Figure 22.   Connection String   

2. Copy the connection string.  
3. Open the Azure IoT Explorer and select IoT hubs > Add connection.  
4. Paste the connection string into the Connection string box.  
5. Select Save.  
 

 

Figure 23.   Adding Connection String   
Note: In some cases, Azure IoT Explorer may report an error that the default port that IoT Explorer is trying 

to use is being used by another application. In order to overcome this error, you can add a different 
port number for the Azure IoT Explorer as shown below. 
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Go to your PC, edit the system environmental variables similarly to the screenshots shown below. 

 
 

 

Figure 24.   Editing System Environment Variable  
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Figure 25.   Adding System Environment Variable for Alternate Port - Azure IoT Explorer  
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Figure 26.   Added Alternate Port for Azure IoT Explorer  
If the connection succeeds, the Azure IoT Explorer switches to a Devices view and lists your device.  

 

Figure 27.   Listed Devices   
To view device properties using Azure IoT Explorer:  

1. Click the link for your device. IoT Explorer displays details for the device.  
2. Inspect the properties for your device in the Device identity panel 
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Figure 28.   Device Details   

3.11 View Device Telemetry  
With Azure IoT Explorer, you can view the flow of telemetry from your device to the cloud. To view telemetry 
in Azure IoT Explorer: 

1. In IoT Explorer select Telemetry. Confirm that Use built-in event hub is set to Yes.  
2. Select Start.  
3. View the telemetry as the device sends messages to the cloud.  
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Figure 29.   Device Telemetry Details   

3.12 Send Cloud-to-Device Message  
To send a cloud-to-device message in Azure IoT Explorer:  

1. In IoT Explorer select Cloud-to-device message.  
2. Enter the message in the Message body = "LED", Key = LED, Value = ON  
3. Check Add timestamp to message body.  
4. Select Send message to device.  
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Figure 30.   Device Telemetry Details   

5. In the terminal window, you can see that the message is received by the IoT Device.   
 
Note: The Cloud-to-device message in this application is sent to turn on the green LED. You can see the 

green LED on the board is turned ON. 
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Figure 31.   Console Output   

3.13 Use Device Provisioning Service (DPS) 
The IoT Hub Device Provisioning Service (DPS) is a helper service for IoT Hub that enables zero-touch, just-
in-time provisioning devices to the right IoT hub in a secure and scalable manner. In the following steps, you 
will enroll the board in DPS using Symmetric Key and provision it automatically in IoT Hub when connecting 
to the Internet.  

Create a Device Provisioning Service (DPS)  
You can use Azure CLI to create a DPS to provision the device in IoT Hub automatically. 
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1. Run the az iot dps create command to create a DPS. It might take a few minutes to create it.   
Replace the YourDPSName placeholder below with the name you chose for your DPS. An IoT hub name 
must be globally unique in Azure. This placeholder is used in the rest of this tutorial to represent your 
unique DPS name.  
 az iot dps create --resource-group MyRAResourceGroup --name {YourDPSName}  

 

Figure 32.   DPS Creation JSON Output   

2. After the DPS is created, view the JSON output in the console, and copy the 
serviceOperationsHostName and idScope values to a safe place. You use this value in a later 
step. The serviceOperationsHostName and idScope values looks like the following example:  
serviceOperationsHostName: {Your DPS name}.azure-devices-provisioning.net  
idScope : 0nexxxxxxxx  

3. You can also run the az iot dps show command to view the values again:  
 az iot dps show --resource-group MyRAResourceGroup --name {YourDPSName} 

 
3.14 Link an IoT Hub for DPS  
To make the DPS provision the device in IoT Hub, you need to link an IoT Hub for it.  

1. Run the az iot hub show-connection-string command to get the IoT Hub connection string:  
 az iot hub show-connection-string --name {YourIoTHubName}  

2. Run the az iot dps linked-hub create command to create a linked IoT Hub in DPS, and replace 
the YourIoTHubConnectionString with the actual one you get:  
 az iot dps linked-hub create --dps-name {YourDPSName} --resource-group 

MyRAResourceGroup  --connection-string {YourIoTHubConnectionString}  --
location westus 

 

Figure 33.   Linking IoT HUB to DPS   
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3.15 Add Enrollment in DPS  
Now you need to add an individual enrollment record in DPS which your device can use later to connect to 
DPS and perform the provisioning in IoT Hub.  

1. Run the az iot dps enrollment create command to create a device enrollment in DPS:  
 az iot dps enrollment create --dps-name {YourDPSName} --resource-group 

MyRAResourceGroup --attestation-type symmetricKey --enrollment-id 
{MyDPSDevKit}  

 

Figure 34.   DPS Enrollment Creation   
2. After the device is created, view the JSON output in the console, and copy the registrationId and 

primaryKey values to use in a later step.  
3. Confirm that you have copied the following values from the JSON output from previous steps to use in 

the next section:  
 serviceOperationsHostName  
 idScope  
 registrationId  
 primaryKey  

 
Add configuration:  
1. Open sample_config.h and enable the DPS by uncommenting the line #define 

ENABLE_DPS_SAMPLE and make the changes to the configuration as shown in the snapshot with your 
serviceOperationsHostName, idScope, registrationId, and PrimaryKey. 
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Figure 35.   Configuration Changes to sample_config.h 

Constant name  Value  
ENDPOINT  {Your serviceOperationsHostName value}  
ID_SCOPE  {Your idScope value}  
REGISTRATION_ID  {Your registrationId  value}  
DEVICE_SYMMETRIC_KEY {Your primaryKey value} 
 
2. Build and run the project. As the project runs, the demo prints out status information to the terminal 

output window. The demo application successfully provisions the device using the DPS and publishes 
the MCU Temperature message to IoT Hub every 30 seconds. Check the terminal output to verify that 
messages have been successfully sent to the Azure IoT hub.  

 
Note: Press the pushbutton S1 or S2 to send the asynchronous data to the cloud. 

 

Figure 36.   RTT Terminal Output 
Now the Device can be seen on the IoT Explorer. You can click on the newly created DPS ID and verify the 
Device Telemetry and Cloud-to-device messaging as explained in the sections 3.11 and 3.12  
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Figure 37.   DPS Config on the IoT Explorer 
Note: Users can verify the communication from the Device to the Cloud and Cloud to the Device as well. 

4. Importing, Building and Loading the Project 
For a quick validation of this application project, import and build the project. The following steps show how 
to import, build, and download the project.  

Note: To run the application project successfully and to communicate to the cloud, follow the instructions for 
setting up the cloud interface as described in section 3, which details making changes to the 
credentials and creating your own cloud devices, running and validating the application. 

4.1 Importing  
The application project bundled as part of this app note can be imported into e2 studio using instructions 
provided in the RA FSP User’s Manual. See Section Starting Development > e2 studio ISDE User Guide > 
Importing an Existing Project into e2 studio ISDE. 

4.2 Building the Latest Executable Binary 
Upon successfully importing and/or modifying the project into e2 studio IDE, follow instructions provided in 
the RA FSP User’s Manual to build an executable binary/hex/mot/elf file. See Section Starting Development 
> e2 studio ISDE User Guide > Tutorial: Your First RA MCU Project > Build the Blinky Project. 

4.3 Loading the Executable Binary into the Target MCU 
The executable file may be programmed into the target MCU through any one of three means. 

4.3.1 Using a Debugging Interface with e2 studio 
Instructions to program the executable binary are found in the latest RA FSP User Manual. See Section 
Starting Development > e2 studio ISDE User Guide > Tutorial: Your First RA MCU Project > Debug the 
Blinky Project. 
This is the preferred method for programming as it allows for additional debugging functionality available 
through the on-chip debugger. 

4.3.2 Using J-Link Tools 
SEGGER J-Link Tools such as J-Flash, J-Flash Lite, and J-Link Commander can be used program the 
executable binary into the target MCU. Refer User Manuals UM08001, and UM08003 on www.segger.com.  

4.3.3 Using Renesas Flash Programmer 
The Renesas Flash Programmer provides usable and functional support for programming the on-chip flash 
memory of Renesas microcontrollers in each phase of development and mass production. The software 
supports all RA MCUs and the software user’s manual is available online (Renesas Electronics Corporation, 
n.d.). 

http://www.segger.com/
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5. Next Steps and References 
• Refer to the following GitHub repository for various FSP modules example projects and application 

projects (https://github.com/renesas/ra-fsp-examples/) 
• Refer to Establishing and Protecting Device Identity using SCE7 and Security MPU (R11AN0449) on 

renesas.com 
• Refer to Securing Data at Rest Utilizing the RA Security MPU (R11AN0416) on renesas.com 
• Refer to Azure GitHub link for more details on Azure SDK for Embedded C 

(https://github.com/Azure/azure-sdk-for-c) 
 

6. MQTT/TLS References 
• FSP v3.0.0 User’s Manual (www.renesas.com/RA/FSP). 
• Azure IoT documentation  https://docs.microsoft.com/en-us/azure/iot-hub/  
 

7. Known Issues and Limitations 
1. Occasional outages in cloud connectivity may be noticed during the demonstration due to changes in the 

cloud server. Contact the Renesas support team for questions.  
2. Currently, there is no support for direct device-to-device communications with Azure IoT Hub.  
3. Device will reconnect after 65 minutes due to SAS token refresh. Currently it is under SDK control. Users 

need to know this when developing the application. 
 
  

https://github.com/renesas/ra-fsp-examples/
https://github.com/Azure/azure-sdk-for-c
http://www.renesas.com/RA/FSP
https://docs.microsoft.com/en-us/azure/iot-hub/
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Website and Support  
Visit the following URLs to learn about key elements of the RA FSP Platform, download components and 
related documentation, and get support. 

RA Product Information  www.renesas.com/ra 

RA Product Support Forum  www.renesas.com/ra/forum 

RA Flexible Software Package  www.renesas.com/FSP 

  

Renesas Support  www.renesas.com/support 

 
 
 
 
 

 

 

 

 

 

https://www.renesas.com/ra
https://www.renesas.com/ra/forum
https://www.renesas.com/FSP
https://www.renesas.com/support
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Notice 
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products 

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your 
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use 
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and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering. 
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each Renesas Electronics product depends on the product’s quality grade, as indicated below. 
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electronic appliances; machine tools; personal electronic equipment; industrial robots; etc. 
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Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas 
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that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document. 

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for 
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by 
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas 
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such 
specified ranges. 

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific 
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability 
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics 
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily 
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as 
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for 
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are 
responsible for evaluating the safety of the final products or systems manufactured by you. 

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas 
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of 
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these 
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance 
with applicable laws and regulations. 

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is 
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations 
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions. 

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or 
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document. 

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics. 
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas 

Electronics products. 

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled 
subsidiaries. 

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics. 
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