
 Application Note

R11AN0531EU0103 Rev.1.03 Page 1 of 41
May.23.22

Renesas RA FSP™ Platform

RA FSP MQTT/TLS Azure Cloud Connectivity Solution
Introduction
This application note describes IoT Cloud connectivity solutions in general and introduces you briefly to the
IoT Cloud provider Microsoft Azure. It covers the RA FSP MQTT/TLS module along with the Azure IoT SDK
for embedded C.

This application project is built with the integrated “Azure IoT SDK for Embedded C” package which allows
small embedded (IoT) devices like Renesas RA family of MCUs RA6M3/RAM6M4/RAM6M5 to communicate
with Azure services.

The application example uses Azure IoT DPS (Device Provisioning Service) to provision, register the IoT
device, and send and receive data to and from the development kit.

This application note enables you to effectively use the RA FSP modules in your own design with the Azure
IoT SDK. Upon completion of this guide, you will be able to add the FSP modules to your own design,
configure it correctly with Azure IoT SDK for the target application, and write code using the included
application example code as a reference and efficient starting point. References to more detailed API
descriptions and sample code that demonstrates advanced usage of FSP modules are available in the RA
FSP Software Package (FSP) User’s Manual (see Next Steps section) and serve as valuable resources in
creating more complex designs. Explaining the underlying operation of Azure IoT SDK for Embedded C is
beyond the scope of this document. Users should refer to the documentation from Microsoft for education on
topics related to Azure IoT SDK section: https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-
sdks

In this release, the EK-RA6M5 kit is used for the application project.

Required Resources
To build and run the MQTT/TLS application example, you need:

Development Tools and Software
• e2 studio version: v2022-04 or later
• RA FSP Software Package (FSP) v3.7.0 or later
• SEGGER J-Link® RTT viewer version: 7.54 or later
• Azure IoT explorer 0.14.5.0 or later (PC tool for validating the Cloud side)
• Azure CLI 2.24 or later (Azure command-line interface is a set of commands used to create and manage

Azure resources)
• Access to Azure Cloud Connectivity Portal (https://portal.azure.com/#home) to create IoT Devices (If you

are new to Azure IoT)

Hardware
• Renesas RA FSP™ EK-RA6M5 kit
• PC running Windows® 10, Tera Term console or similar application, and an installed web browser

(Google Chrome, Internet Explorer, Microsoft Edge, Mozilla Firefox, or Safari).
• Micro USB cables
• Ethernet cable (CAT5/6)
• Router with ethernet port or ethernet switch to connecting to the router for Internet connectivity

Prerequisites and Intended Audience
This application note assumes that you have some experience with the Renesas e2 studio ISDE and RA FSP
Software Package (FSP). Before you perform the procedures in this application note, follow the procedure in
the FSP User Manual to build and run the Blinky project. Doing so enables you to become familiar with the
e2 studio and the FSP, and also validates that the debug connection to your board functions properly. In

https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-sdks
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-sdks
https://portal.azure.com/#home

Renesas RA FSP™ Platform RA FSP MQTT/TLS Azure Cloud Connectivity Solution

R11AN0531EU0103 Rev.1.03 Page 2 of 41
May.23.22

addition, this application note assumes you have some knowledge of MQTT/TLS and its communication
protocols.

The intended audience are users who want to connect to Azure Cloud using the Azure IoT SDK for
Embedded C on the Renesas RA RA6 MCU Series.

Note: If you are a first-time user of e2 studio and FSP, we highly recommend you install e2 studio and FSP
on your system in order to run the Blinky Project and to get familiar with the e2 studio and FSP
development environment before proceeding to the next sections.

Note: If you are new to Azure Internet of Things, we recommend you get started with Introduction the Azure
IoT https://docs.microsoft.com/en-us/azure/iot-fundamentals/iot-introduction

Prerequisites

1. Access to online documentation available in the Cloud Connectivity References section
2. Access to latest documentation for identified Renesas Flexible Software Package
3. Prior knowledge of operating e2 studio and built-in (or standalone) RA Configurator
4. Access to associated hardware documentation such as User Manuals and Schematics

Using this Application Note
Section 1 of this document covers the General Overview of the Cloud Connectivity, Azure IoT Solution using
IoT Central, and Azure DPS, MQTT and TLS Protocols and Device certificates and Keys used in the Cloud
Connectivity.

Section 2 covers the modules provided by RA FSP to establish connectivity to Cloud service providers and
the features supported by the module.

Section 3 covers the architecture of the reference application project, an overview of the software
components included, and step-by-step guidelines for recreation using the FSP configurator.

Section 1.1 covers the setup of the Azure Cloud required for the application.

Sections 4 covers building and running the Application project for quick validation.

Note: We recommend that you operate with your own Microsoft Azure Cloud credentials and use your
created Cloud configurations to run the application. The default sample configuration detailed in this
project is for reference only and may have access issues to Azure since the application is
communicating with a test account.

Note: For a quick validation using the provided application project, you can skip sections 1 to 3 and go to
section 4 for instructions on importing, building, and running the application project on the EK board.
You are still required to provide necessary user credentials for the application as described in section
1.1.

https://docs.microsoft.com/en-us/azure/iot-fundamentals/iot-introduction

Renesas RA FSP™ Platform RA FSP MQTT/TLS Azure Cloud Connectivity Solution

R11AN0531EU0103 Rev.1.03 Page 3 of 41
May.23.22

Contents

1. Introduction to Cloud Connectivity ... 5
1.1 Cloud Connectivity Overview .. 5
1.2 Microsoft Azure IoT Solution ... 6
1.2.1 Overview .. 6
1.2.2 IoT Hub and Device Provisioning Service ... 6
1.3 MQTT Protocol Overview .. 7
1.4 TLS Protocol Overview .. 8
1.4.1 Device Certificates and Keys .. 9
1.4.2 Device Security Recommendations .. 10

2. RA FSP MQTT/TLS Cloud Solution ... 10
2.1 MQTT Client Module Introduction ... 10
2.1.1 Design Considerations .. 10
2.1.2 Supported Features ... 10
2.2 TLS Session Module Introduction ... 11
2.2.1 Design Considerations .. 11
2.2.2 Supported Features ... 11
2.3 Azure IoT Device SDK Module Introduction .. 11
2.3.1 Design Considerations .. 11
2.3.2 Supported Features ... 12

3. MQTT/TLS Application Example .. 12
3.1 Application Overview ... 12
3.2 Creating the Application Project using the FSP configurator .. 15
3.3 Install Azure CLI .. 19
3.4 Create an IoT Hub ... 20
3.5 Register an IoT Hub Device .. 22
3.6 Prepare the Device .. 23
3.7 Building and Running the Application.. 24
3.8 Download and Run the Project .. 25
3.9 View Device Properties ... 26
3.10 Set IoT Hub ... 27
3.11 View Device Telemetry .. 31
3.12 Send Cloud-to-Device Message .. 32
3.13 Use Device Provisioning Service (DPS).. 34
3.14 Link an IoT Hub for DPS ... 35
3.15 Add Enrollment in DPS .. 36

4. Importing, Building and Loading the Project ... 38
4.1 Importing .. 38
4.2 Building the Latest Executable Binary ... 38

Renesas RA FSP™ Platform RA FSP MQTT/TLS Azure Cloud Connectivity Solution

R11AN0531EU0103 Rev.1.03 Page 4 of 41
May.23.22

4.3 Loading the Executable Binary into the Target MCU .. 38
4.3.1 Using a Debugging Interface with e2 studio .. 38
4.3.2 Using J-Link Tools ... 38
4.3.3 Using Renesas Flash Programmer ... 38

5. Next Steps and References ... 39

6. MQTT/TLS References .. 39

7. Known Issues and Limitations ... 39

Revision History .. 41

Renesas RA FSP™ Platform RA FSP MQTT/TLS Azure Cloud Connectivity Solution

R11AN0531EU0103 Rev.1.03 Page 5 of 41
May.23.22

1. Introduction to Cloud Connectivity
1.1 Cloud Connectivity Overview
Internet of Things (IoT) is a sprawling set of technologies described as connecting everyday objects, like
sensors or smartphones, to the World Wide Web. IoT devices are intelligently linked together to enable new
forms of communication between things and people, and among things.

These devices, or things, connect to the network. Using sensors, they provide the information they gather
from the environment or allow other systems to reach out and act on the world through actuators. In the
process, IoT devices generate massive amounts of data, and cloud computing provides a pathway, enabling
data to travel to its destination.

The IoT Cloud Connectivity Solution includes the following major components:

1. Devices or Sensors
2. Gateway
3. IoT Cloud services
4. End user application/system

IoT Cloud

Devices

Sensors
Gateway

Figure 1. IoT Cloud Connectivity Architecture
Devices or Sensors
A device includes hardware and software that interacts directly with the world. Devices connect to a network
to communicate with each other, or to centralized applications. Devices may connect to the Internet either
directly or indirectly.

Gateway
A gateway enables devices that are not directly connected to the Internet to reach cloud services. The data
from each device is sent to the Cloud Platform, where it is processed and combined with data from other
devices, and potentially with other business-transactional data. Most of the common communication
gateways support one or more communication technologies such as Wi-Fi, Ethernet, or cellular to connect to
the IoT Cloud Service provider.

IoT Cloud
Many IoT devices produce lots of data. You need an efficient, scalable, affordable way to manage those
devices, handle all that information, and make it work for you. When it comes to storing, processing, and
analyzing data, especially big data, it is hard to surpass the cloud.

Renesas RA FSP™ Platform RA FSP MQTT/TLS Azure Cloud Connectivity Solution

R11AN0531EU0103 Rev.1.03 Page 6 of 41
May.23.22

1.2 Microsoft Azure IoT Solution
1.2.1 Overview
Microsoft’s end-to-end IoT platform is a complete IoT offering so that enterprises can build and realize value
from IoT solutions quickly and efficiently. Azure IoT Central solutions are used with backend support from the
Azure IoT Hub Device Provisioning Service.

Figure 2. Microsoft Azure IoT Cloud Solution

1.2.2 IoT Hub and Device Provisioning Service
Azure IoT Hub and IoT Hub Device Provisioning Service (DPS)
IoT Hub provides built-in support for the MQTT v3.1.1 protocol. Please review the following webpage for
more understanding of the IoT Hub and Device Provisioning Services (DPS).

https://docs.microsoft.com/en-us/azure/iot-dps/

Device Provisioning Service
High-level sequence of events to connect a Device to IoT Hub:

1. After the device is manufactured, the device enrollment information is added to the DPS. This is the only
manual step in the process!

2. At some point afterwards, which could be a day or it could be several months, the device goes online
and connects to DPS to find its IoT solution home.

3. DPS and the device go through an attestation handshake using the device enrollment info. DPS proves
the device’s identity.

4. DPS registers the device to IoT hub and populates the initial desired device state.
5. IoT hub returns the connection info for the device.
6. DPS gives the device its IoT Hub connection info.
7. The device now establishes a connection with IoT hub and retrieves its initial configuration from IoT hub

and makes any changes/updates, as needed.
8. The device starts sending telemetry to IoT hub.

Embedded C SDK
The Embedded C SDK, the newer addition to the Azure SDKs family, was designed to allow embedded IoT
devices to leverage Azure services, like device to cloud telemetry, cloud to device messages, direct
methods, device twin, device provisioning, and IoT Plug and play, all while maintaining a minimal footprint.

It allows full control over memory allocation and the flexibility to bring your own MQTT client, TLS, and
Socket layers.

Written in C, this version of the SDK is optimized to be used on small and embedded devices with limited
capabilities and resources.

The Azure IoT SDK is open source and published on GitHub (https://github.com/Azure/azure-sdk-for-c). This
is also distributed with FSP version 3.7.0 and above.

https://docs.microsoft.com/en-us/azure/iot-dps/
https://github.com/Azure/azure-sdk-for-c

Renesas RA FSP™ Platform RA FSP MQTT/TLS Azure Cloud Connectivity Solution

R11AN0531EU0103 Rev.1.03 Page 7 of 41
May.23.22

Authentication Methods
Security is a critical concern when deploying and managing IoT devices. IoT Hub offers the following security
features:

• X.509
The communication path between devices and Azure IoT Hub, or between gateways and Azure IoT Hub,
is secured using the industry-standard Transport Layer Security (TLS) with Azure IoT Hub authenticated
using the X.509 standard.
To protect devices from unsolicited inbound connections, Azure IoT Hub does not open any connection
to the device. The device initiates all connections.
Azure IoT Hub reliably stores messages for devices and waits for the device to connect. These
messages are stored for two days, enabling devices connecting sporadically due to power or
connectivity concerns to receive these messages. Azure IoT Hub maintains a per-device queue for each
device.
Note: The reference application project attached to this application note doesn’t use X509 authentication.
Instead it uses the SAS token.

• Per-Device Key Authentication
Figure 3 shows authentication in the IoT Hub using security tokens.

Figure 3. Authentication using Security Tokens

1. The device prepares a shared access signature (SAS) token using the device endpoint, device id,
and primary key (generated as part of the device addition to the IoT Hub).

2. When connecting to the IoT Hub, the device presents the SAS token as the password in the MQTT
CONNECT message. The username content is the combination of device endpoint and device name
along with the additional Azure defined string.

3. The IoT Hub verifies the SAS token and registers the device and connection is established.
4. IoT hub provides Symmetric key for Data encryption.
Note: The connection is closed when the SAS token expires.

1.3 MQTT Protocol Overview
MQTT stands for Message Queuing Telemetry Transport. MQTT is a Client Server publish-subscribe
messaging transport protocol. It is an extremely light-weight, open, simple messaging protocol, designed for
constrained devices, as well as low-bandwidth, high-latency, or unreliable networks. These characteristics
make it ideal for use in many situations, including constrained environments, such as communication in

Renesas RA FSP™ Platform RA FSP MQTT/TLS Azure Cloud Connectivity Solution

R11AN0531EU0103 Rev.1.03 Page 8 of 41
May.23.22

Machine to Machine (M2M) and IoT contexts, where a small code footprint is required, and/or network
bandwidth is at a premium.

An MQTT client can publish information to other clients through a broker. A client, if interested in a topic, can
subscribe to the topic through the broker. A broker is responsible for authentication and authorization of
clients, as well as delivering published messages to any of its clients who subscribe to the topic. In this
publisher/subscriber model, multiple clients may publish data with the same topic. A client will receive the
messages published if the client subscribes to the same topic.

Thing 1

MQTT
Broker

PUBLISH to Thing N/Data Thing 2

PUBLISH to Thing N/Data

Thing N

SUBSCRIBE to Thing 1/Data

SUBSCRIBE to Thing 2/Data

Figure 4. MQTT Client Publish/Subscribe Model
In the Pub/Sub model used by MQTT, there is no direct connection between a publisher and the subscriber.
To handle the challenges of a Pub/Sub system, the MQTT generally uses quality of service (QoS) levels.
There are three QoS levels in MQTT:

• At most once (0)
• At least once (1)
• Exactly once (2)

At most once (0)
A message will not be acknowledged by the receiver or stored and redelivered by the sender.

At least once (1)
It is guaranteed that a message will be delivered at least once to the receiver. But the message can also be
delivered more than once. The sender will store the message until it gets an acknowledgment in form of a
PUBACK command message from the receiver.

Exactly once (2)
It guarantees that each message is received only once by the counterpart. It is the safest and the slowest
QoS level.

1.4 TLS Protocol Overview
Transport Layer Security (TLS) protocol and its predecessor, Secure Sockets Layer (SSL), are cryptographic
protocols that provide communications security over a computer network.

Renesas RA FSP™ Platform RA FSP MQTT/TLS Azure Cloud Connectivity Solution

R11AN0531EU0103 Rev.1.03 Page 9 of 41
May.23.22

The TLS/SSL protocol provides privacy and reliability between two communicating applications. It has the
following basic properties:

Encryption: The messages exchanged between communicating applications are encrypted to ensure that
the connection is private. Symmetric cryptography mechanism such as AES (Advanced Encryption
Standard) is used for data encryption.

Authentication: A mechanism to check the peer’s identity using certificates.

Integrity: A mechanism to detect message tampering and forgery ensures that connection is reliable. A
Message Authentication Code (MAC), such as Secure Hash Algorithm (SHA), ensures message integrity.

Figure 5. SSL/TLS Hierarchy

1.4.1 Device Certificates and Keys
Device certificates, public and private keys, and the ways they can be generated, are discussed in this
section.

Security is a critical concern when deploying and managing IoT devices. In general, each of the IoT devices
needs an identity before they can communicate with the Cloud. Digital certificates are the most common
method for authenticating a remote host in TLS. Essentially, a digital certificate is a document with specific
formatting that provides identity information for a device.

TLS normally uses a format called X.509, a standard developed by the International Telecommunication
Union (ITU), though other formats for certificates may apply if TLS hosts can agree on a format to use. X.509
defines a specific format for certificates and various encodings that can be used to produce a digital
document. Most X.509 certificates used with TLS are encoded using a variant of ASN.1, which is another
telecommunication standard. Within ASN.1 there are various digital encodings, but the most common
encoding for TLS certificates is the Distinguished Encoding Rules (DER) standard. DER is a simplified
subset of the ASN.1 Basic Encoding Rules (BER) and designed to be unambiguous, making parsing easier.

Though DER-formatted binary certificates are used in the actual TLS protocol, they may be generated and
stored in a number of different encodings, with file extensions such as .pem, .crt, and .p12. The most
common of the alternative certificate encodings is Privacy-Enhanced Mail (PEM). The PEM format is a base-
64 encoded version of the DER encoding.

Depending on your application, you may generate your own certificates, be provided certificates by a
manufacturer or government organization, or purchase certificates from a commercial certificate authority.

Loading Certificates onto your Device
To use a digital certificate in your NetX™ Secure application, you must first convert your certificate into a
binary DER format, and optionally convert the associated private key into a binary format, typically, a
PKCS#1-formatted, DER-encoded RSA key. Once converted, it is up to you how to load the certificate and
the private key on to the device. Possible options include using a flash-based file system or generating a C
array from the data (using a tool such as xxd from Linux® with the -i option) and compiling the certificate
and key into your application as constant data.

Once your certificate is loaded on the device, you can use the TLS API to associate your certificate with a
TLS session.

Renesas RA FSP™ Platform RA FSP MQTT/TLS Azure Cloud Connectivity Solution

R11AN0531EU0103 Rev.1.03 Page 10 of 41
May.23.22

1.4.2 Device Security Recommendations
The following security recommendations are not enforced by Cloud IoT Core but will help you secure your
devices and connections.

• The private key of the device should be kept secret.
• Use the latest version of TLS (v1.2 or above) when communicating with IoT Cloud and verify that the

server certificate is valid using trusted root certificate authorities.
• Each device should have a unique public/private key pair. If multiple devices share a single key and one

of those devices is compromised, an attacker could impersonate all the devices that have been
configured with that one key.

• Keep the public key secure when registering it with Cloud IoT Core. If an attacker can tamper with the
public key and trick the provisioner into swapping the public key and registering the wrong public key, the
attacker will subsequently be able to authenticate on behalf of the device.

• The key pair is used to authenticate the device to Cloud IoT Core and should not be used for other
purpose or protocols.

• Depending on the device’s ability to store keys securely, key pairs should be rotated periodically. When
practical, all keys should be discarded when the device is reset.

• If your device runs an operating system, make sure you have a way to securely update it. Android
Things provides a service for secure updates. For devices that don’t have an operating system, ensure
that you can securely update the device’s software if security vulnerabilities are discovered after
deployment.

2. RA FSP MQTT/TLS Cloud Solution
2.1 MQTT Client Module Introduction
The NetX Duo MQTT Client module provides high-level APIs for a Message Queuing Telemetry Transport
(MQTT) protocol-based client. The MQTT protocol works on top of TCP/IP and therefore the MQTT client is
implemented on top of NetX Duo IP and NetX Duo Packet pool. NetX Duo IP attaches itself to the
appropriate link layer frameworks, such as Ethernet, Wi-Fi, or cellular.

The NetX Duo MQTT client module can be used in normal or in secure mode. In normal mode, the
communication between the MQTT client and broker is not secure. In secure mode, the communication
between the MQTT client and broker is secured using the TLS protocol.

2.1.1 Design Considerations
• By default, the MQTT client does not use TLS; communication is not secure between a MQTT client and

broker.
• The RA FSP MQTT client does not add the NetX Duo TLS session block. It only adds NetX Duo TLS

common block. This block defines/controls the common properties of NetX secure.
• It is the responsibility of the user/application code to create the TLS session, configure the security

parameters, and load the relevant certificates manually under the TLS setup callback provided by the
nxd_mqtt_client_secure_connect() API.

2.1.2 Supported Features
NetX Duo MQTT Client supports the following features:

• Compliant with OASIS MQTT Version 3.1.1 Oct 29, 2014. The specification can be found at
http://mqtt.org/.

• Provides an option to enable/disable TLS for secure communication using NetX Secure in FSP.
• Supports QoS and provides the ability to choose the levels that can be selected while publishing the

message.
• Internally buffers and maintains the queue of received messages.
• Provides a mechanism to register callback when a new message is received.
• Provides a mechanism to register callback when connection with the broker is terminated.

http://mqtt.org/

Renesas RA FSP™ Platform RA FSP MQTT/TLS Azure Cloud Connectivity Solution

R11AN0531EU0103 Rev.1.03 Page 11 of 41
May.23.22

2.2 TLS Session Module Introduction
The NetX Duo TLS session module provides high-level APIs for the TLS protocol-based client. It uses
services provided by the RA FSP Crypto Engine (SCE) to carry out hardware-accelerated encryption and
decryption.

The NetX Duo TLS Session module is based on Azure RTOS NetX Secure which implements the Secure
Socket Layer (SSL) and its replacement, TLS protocol, as described in RFC 2246 (version 1.0) and 5246
(version 1.2). NetX Secure also includes routines for the basic X.509 (RFC 5280) format. NetX Secure is
intended for applications using ThreadX RTOS in the project.

2.2.1 Design Considerations
• NetX Secure TLS performs only basic path validation on incoming server certificates.

Once the basic path validation is complete, TLS then invokes the certificate verification callback supplied
by the application.

• It is the responsibility of the application to perform any additional validation of the certificate.
To help with the additional validation, NetX Secure provides X.509 routines for common validation
operations, including DNS validation and Certificate Revocation List checking.

• Software-based cryptography is processor-intensive.
NetX Secure software-based cryptographic routines have been optimized for performance but depending
on the capabilities of the target processor, performance may result in very long operations. When
hardware-based cryptography is available, it should be used for optimal performance of the NetX secure
TLS.

• Due to the nature of embedded devices, some applications may not have the resources to support the
maximum TLS record size of 16 KB.
NetX Secure can handle 16 KB records on devices with sufficient resources.

2.2.2 Supported Features
• Support for RFC 2246 Transport Layer Security (TLS) Protocol Version 1.0
• Support for RFC 5246 TLS Protocol Version 1.2
• Support for RFC 5280 X.509 PKI Certificates (v3)
• Support for RFC 3268 Advanced Encryption Standard (AES) Cipher suites for TLS
• RFC 3447 Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications Version

2.1
• RFC 2104 HMAC: Keyed-Hashing for Message Authentication
• RFC 6234 US Secure Hash Algorithms (SHA and SHA-based HMAC and HKDF)
• RFC 4279 Pre-Shared Key Cipher suites for TLS

2.3 Azure IoT Device SDK Module Introduction
The Azure IoT device SDK is a set of libraries designed to simplify the process of developing IoT applications
for Azure Cloud to make sending and receiving messages easy from the Azure IoT Hub service. There are
different variations of the SDK, each targeting a specific platform, but in this app note we will be describing
the Azure IoT device SDK for C.

The Azure IoT device SDK for C is written in ANSI C (C99) to maximize portability. This feature makes the
libraries well suited to operate on multiple platforms and devices, especially where minimizing disk and
memory footprint is a priority.

In this app note we will cover how to initialize the device library, send data to IoT Hub, and receive messages
from it.

More details on the Azure IoT Device SDK can be found in the reference link The Azure IoT device SDK for
C | Microsoft Docs.

2.3.1 Design Considerations
The Azure IoT Device SDK is integrated with FSP and is available for the customers to use. To add the SDK
to the application, users are required to use the Stacks tab and select Networking→Azure RTOS NetX
Duo IOT Middleware.

https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-device-sdk-c-intro
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-device-sdk-c-intro

Renesas RA FSP™ Platform RA FSP MQTT/TLS Azure Cloud Connectivity Solution

R11AN0531EU0103 Rev.1.03 Page 12 of 41
May.23.22

When the components are selected using the Stacks tab, and the project is created, the SDK and libraries
can be seen under the ra/microsoft/azure-rtos/netxduo/addons/azure_iot and
ra/microsoft/azure-rtos/netxduo/addons/cloud folders.

Note: In the later sections, step by step procedure of adding the Azure IoT middleware is explained in detail

2.3.2 Supported Features
Table 1. IoT SDK Supported features

Features Descriptions
Send device-to-cloud messages Send device-to-cloud messages to IoT Hub with the option to add

custom message properties.
Receive cloud-to-device messages Receive cloud-to-device messages and associated properties

from IoT Hub
Device twins IoT Hub persists a device twin for each device that you connect

to IoT Hub. The device can perform operations like get twin
document and subscribe to desired property updates.

Direct methods IoT Hub gives you the ability to invoke direct methods on devices
from the cloud.

Device Provisioning Service (DPS) This SDK supports connecting your device to the Device
Provisioning Service via, for example, individual enrollment using
an X.509 leaf certificate.

Protocol The Azure SDK for Embedded C supports only MQTT.
Retry policies The Azure SDK for Embedded C provides guidelines for retries,

but actual retries should be handled by the application.
IoT plug and play IoT Plug and Play enables solution builders to integrate smart

devices with their solutions without any manual configuration.

3. MQTT/TLS Application Example
3.1 Application Overview
This application project demonstrates the Renesas RA IoT Cloud Connectivity solution using the FSP and
uses Microsoft® Azure as the cloud provider. Ethernet is used as the primary communication interface
between the MQTT device and the Azure IoT Services.

The EK-RA6M5 kit acts as an MQTT node, connects to the Azure IoT service using MQTT/TLS protocol over
the Ethernet interface. The application periodically reads the on-chip temperature sensor values and
publishes this information to the Azure IoT Hub. It also subscribes to a User LED state MQTT topic. You can
turn the User LEDs ON/OFF by publishing the LED state remotely. This application reads the updated LED
state and turns the User LEDs ON/OFF.

(Or)

Figure 6. RA MQTT/TLS Application Overview

EK IoT Hub

Renesas RA FSP™ Platform RA FSP MQTT/TLS Azure Cloud Connectivity Solution

R11AN0531EU0103 Rev.1.03 Page 13 of 41
May.23.22

Figure 7. MQTT Publish/Subscribe to/from Azure IoT Centrale

Renesas RA FSP™ Platform RA FSP MQTT/TLS Azure Cloud Connectivity Solution

R11AN0531EU0103 Rev.1.03 Page 14 of 41
May.23.22

The following files from this application project serve as a reference.

Table 2. Files Used in Application Project

No. Filename Purpose
1 src/application_thread_entry.c Contains data structures functions and main

thread used in Cloud Connectivity application.
2 src/common_utils.h Contains macros, data structures, and functions

commonly used across the project.
3 src/hal_entry.c Unused file automatically generated by FSP. This

file is used for non-RTOS based projects.
4 src/usr_hal.c Contains data structures and functions used for

the Hardware Abstraction Layer initialization and
associated utilities.

5 src/usr_hal.h Accompanying header for exposing functionality
provided by usr_hal.c.

6 src/usr_app.c Contains data structures and functions used to
operate the user application functions.

7 src/usr_app.h Accompanying header for exposing functionality
provided by usr_app.c.

8 src/usr_network.c Contains data structures and functions used to
operate the NetX Duo TCP/IP and Ethernet
Module. This file is for Ethernet-specific usage.

9 src/usr_network.h Accompanying header for exposing functionality
provided by usr_network.c. This file is for
Ethernet-specific usage.

10 src/c2d_thread_entry.c Cloud to Device handling thread
11 src/nx_azure_iot_cert.c Azure IoT Interface code. These have the

reference to the working sample implementation
and other features such as Device Twin and
Direct Method. These files can be used as
reference for developing the application

12 src/nx_azure_iot_cert.h
13 src/nx_azure_iot_ciphersuites.c
14 src/nx_azure_iot_ciphersuites.h
15 src/sample_azure_iot_embedded_sdk.c
16 src/sample_config.h
17 src/sample_device_identity.c
18 src/SEGGER_RTT/SEGGER_RTT.c Implementation of SEGGER real-time transfer

(RTT) which allows real-time communication on
targets which support debugger memory
accesses while the CPU is running.

19 src/SEGGER_RTT/SEGGER_RTT.h
20 src/SEGGER_RTT/SEGGER_RTT_Conf.h
21 src/SEGGER_RTT/SEGGER_RTT_printf.c

Renesas RA FSP™ Platform RA FSP MQTT/TLS Azure Cloud Connectivity Solution

R11AN0531EU0103 Rev.1.03 Page 15 of 41
May.23.22

Figure 8. Application Example Implementation Details

3.2 Creating the Application Project using the FSP configurator
Complete steps to create the project from the start using the e2 studio and FSP configurator. The table below
shows the step-by-step process in creating the project. It is assumed that the user is familiar with the
e2 studio and FSP configurator. Launch the installed e2 studio for the FSP.

Table 3. Step-by-step Details for Creating the Application Project

 Steps Intermediate Steps
1 Project Creation: File → New → Renesas C/C++ Project → Renesas RA
2 Project Template:

Templates for Renesas RA Project
Renesas RA C/C++ Project → Next

Renesas RA FSP™ Platform RA FSP MQTT/TLS Azure Cloud Connectivity Solution

R11AN0531EU0103 Rev.1.03 Page 16 of 41
May.23.22

 Steps Intermediate Steps
3 e2 studio - Project Configuration:

Renesas RA C/C++ Project
Project Name and Location

Project Name (Name for the project of your choice) → Next

4 Device and Tools Selection
Device Selection FSP Version: 3.7.0

Board: EK-RA6M5
Device: R7FA6M5BH3CFC
RTOS: Azure RTOS ThreadX
Language: C

5 Toolchains Toolchain: GNU ARM Embedded (Default)
Toolchain version: 10.3.1.20210824
Debugger: J-Link ARM
→ Next

6 Project Type Selection Flat (Non-TrustZone) Project
→ Next

7 Build Artifact and RTOS Selection Build Artifact Selection: Executable
RTOS Selection: Azure RTOS ThreadX (v6.1.10+fsp3.7.0)
→ Next

8 Project Template Selection Azure RTOS ThreadX – Minimal → Finish
9 Stacks Tab (Part of the FSP

Configurator)
Threads → New Thread

10 Configure Properties → Thread Symbol: application_thread
Name: Application Thread
Stack size (bytes): 4096
Priority: 2
Auto start: Enabled
Time slicing interval (ticks): 1
Note: The stack size of the application thread needs to be a
minimum of 4096 or greater. This is the requirement for the
NetX Duo Crypto use.

11 Adding the NetX DHCP, IoT Middleware, SNTP Clients and Packet Pool to the Application Thread
Keep the default names g_dhcp_client0, g_dns0, g_sntp_client0. The default configuration provided
by FSP configurator is used, so there is no need to change any of the specific configuration in the
Property window.
Adding DHCP Client
New Stack Networking → Azure RTOS NetX Duo DHCP IPv4 Client
Adding Packet Pool for the DHCP
Client

Click on Add NetX Duo Packet Pool → Use→
g_packet_pool0 NetX Duo Packet Pool Instance

Adding NetX Duo Network Driver Click on Add NetX Duo Network Driver → New → NetX
Duo Ethernet Driver

Modifying the BSP tab → Properties → RA Common for Main stack and Heap Settings)
Property settings for RA Common Main stack size(bytes): 0x1000

Heap size (bytes): 0x1000
Adding Azure RTOS NetX Duo IoT Middleware
New Stack Networking → Azure RTOS NetX Duo IoT Middleware
Adding NetX Duo IP instance for DNS
Client

Click on Add NetX Duo IP Instance → Use → g_ip0 NetX
Duo IP Instance

Adding Packet Pool for the DNS Client Click on Add NetX Duo Packet Pool →Use →
g_packet_pool0 NetX Duo Packet Pool Instance

Renesas RA FSP™ Platform RA FSP MQTT/TLS Azure Cloud Connectivity Solution

R11AN0531EU0103 Rev.1.03 Page 17 of 41
May.23.22

 Steps Intermediate Steps
Note: After the Azure IoT Middleware is added, the configurator reports following errors when you
hover over the red Blocks.
Error: NetX Duo Azure IoT Middleware Requires NetX Secure to be enabled.
Error: NetX Duo Azure IoT Middleware Requires IP Packet Filter to be enabled.
Error: NetX Duo Azure IoT Middleware Requires MQTT Cloud to be enabled.
Error: A NetX Crypto Implementation must be added.
Note: To fix these errors, enable them as explained in the following steps
Enable the NetX Secure g_dns0 Azure RTOS NetX Duo DNS Client →Property →

Common → MQTT → Client → NX Secure: Enable
Enable MQTT Cloud g_dns0 Azure RTOS NetX Duo DNS Client →Property →

Common → MQTT → Client → Cloud Enable: Enable
Enable IP Packet Filter g_dns0 Azure RTOS NetX Duo DNS Client →Property →

Common → Common → IP Packet Filter: Enabled
Add NetX Crypto Implementation Click on Add NetX SW Only or HW/SW Implementation →

New → Azure RTOS NetX Crypto HW Acceleration
 Enable the Extended Notify Support g_dns0 Azure RTOS NetX Duo DNS Client →Property →

Common → Common →Extended Notify Support:
Enabled

12 NetX Secure Component is added from the HW Crypto perspective. IoT SDK also works with SW
crypto. But in this application the HW Crypto Accelerators are used.
Configure NetX Secure property values (Only values which changed from the default are shown here)
PSK Cipher Suite Enable
ECC Cipher Suite Enable
TLSv1.0 Enable
TLSv1.1 Legacy Mode Enable
TLSV1.1 Enable
TLSV1.3 Enable
Server Mode Disable
Configure Azure RTOS NetX Crypto HW Acceleration property values (Only values which changed
from the default are shown here)
Common→Hardware Acceleration→
Public Key Cryptography (PKC)→
RSA→RSA 3072 Verify/Encryption
(HW)

Enabled

Common→Hardware Acceleration
→ Public Key Cryptography (PKC)
→ RSA → RSA 4096
Verify/Encryption (HW)

Enabled

Common-> Standalone Usage Use with TLS
Note: Increase the Stack size in the
BSP Tab to get rid of the error in
configurator for NetX Crypto HW
Acceleration

Refer to the Modifying the BSP tab → Properties → RA
Common for (Main stack and Heap Settings) section in step
11 of this table
Note: For crypto operation it is recommended to have astack
size of 4K or more.

Adding SNTP Client
New Stack Networking → Azure RTOS NetX Duo SNTP Client
Adding NetX Duo IP instance for SNTP
Client

Click on Add NetX Duo IP Instance →Use → g_ip0 NetX
Duo IP Instance

Adding Packet Pool for the SNTP
Client

Click on Add NetX Duo Packet Pool →Use →
g_packet_pool0 NetX Duo Packet Pool Instance

Renesas RA FSP™ Platform RA FSP MQTT/TLS Azure Cloud Connectivity Solution

R11AN0531EU0103 Rev.1.03 Page 18 of 41
May.23.22

 Steps Intermediate Steps
Increase the Number of Packets in Pool
 Click on g_packet_pool0 NetX Duo Packet Pool Instance

→ Properties window → Number of Packets in Pool.
Change from 16 to 50 (To allow enough buffer for the
packets). This can be tuned based on the frequency and size

Note: After adding the SNTP the configurator reports the ollowing errors when you hover over the red
Blocks.
Error: Maximum time adjustment (milliseconds) should be greater than unicast poll interval
(seconds).
Note: To fix these errors, enable them as explained in the following steps
Reduce the starting poll interval for
unicast update request (seconds)

g_sntp_client0 Azure RTOS NetX Duo SNTP Client →
Property → Common → SNTP → Client →Starting poll
interval for unicast update request (seconds): 36

13

Add Cloud to Device Processing Thread to the Application
Stacks tab (Part of the FSP
Configurator)

Threads → New Thread

Configure Thread Properties
Symbol c2d_thread
Name Cloud2Device Thread
Stack size 2048 Bytes
Priority 2
Auto start Disabled
Time slicing interval (ticks) 1

14 Adding the HAL Modules as required for the Application Project: Here, ADC, Timer0, External IRQ are
used for MCU temperature, 30-second periodic timer, and push button switches, respectively.
HAL/Common Stacks → New Stack Input → External IRQ Driver on r_icu
Property Settings for r_icu Name: pushButtonS1

Channel: 10
Trigger: Rising
Digital Filtering: Enabled
Digital Filtering Sample Clock: PCLK/64
Pin Interrupt Priority: Priority 10
Callback: pb_callback

HAL/Common Stacks → New Stack Driver → Input → External IRQ Driver on r_icu
Property Settings for r_icu Name: pushButtonS2

Channel: 9
Trigger: Rising
Digital Filtering: Enabled
Digital Filtering Sample Clock: PCLK/64
Pin Interrupt Priority: Priority 10
Callback: pb_callback

HAL/Common Stacks → New Stack Timers → Timer Driver on r_gpt
Property Settings for r_gpt → General Name: gpt

Channel: 0
Mode: Periodic
Period: 30
Period Unit: Seconds

Interrupts: Callback: g_gpt_timer_cb
Overflow/Crest Interrupt Priority: Priority 10

HAL/Common Stacks → New Stack Analog → ADC Driver on r_adc
Property Settings for r_adc → General Name: adc

Renesas RA FSP™ Platform RA FSP MQTT/TLS Azure Cloud Connectivity Solution

R11AN0531EU0103 Rev.1.03 Page 19 of 41
May.23.22

 Steps Intermediate Steps
Unit: 0
Resolution: 12-bit
Alignment: Right
Clear after read: On
Mode: Continuous Scan
Double-trigger: Disabled

Property Settings for r_adc → Input Channel Scan Mask: Temperature Sensor
16 Adding Azure RTOS Objects for the Application (Topic Queue needs to be created for the application –

Message Queue)
Stacks Tab → Objects New Object → Queue
Property Settings for the Queue Name: Topic Queue

Symbol: g_topic_queue
Message Size (Words): 16
Queue Size (Bytes): 64

The above configuration is a prerequisite to generate the required stack and features for the cloud
connectivity application provided with this app note. Once the Generate Project Content button is clicked,
e2 studio generates the source code for the project. The generated source code contains the required
drivers, stacks, and middleware. The user application files must be added into the src folder.

For the validation of the created project, the same source files listed in the section MQTT/TLS Application
SW Architecture Overview (Table 2) may be added. This is the quickest way to create and build the
application without writing the code for the configuration created in the above section.

Note: After you follow instructions in section 3.2 to recreate the Application project using FSP configurator
and add the src code to the project, the project is ready for building.

3.3 Install Azure CLI
To prepare Azure cloud resources and connect a device to Azure, you can use Azure CLI. Azure CLI can be
installed locally on your PC.

1. Azure CLI can be downloaded from the Microsoft site (https://docs.microsoft.com/en-us/cli/azure/install-
azure-cli)

2. Note: The installer name will be similar to azure-cli-2.24.x.msi. or later. Click on the installer and
the install shield will guide you through the installation process.

3. Install the current release of the Azure CLI. After the installation is complete, you will need to close and
reopen any active Windows Command Prompt or PowerShell windows to use the Azure CLI.

4. After the Azure CLI installation is successful, open and launch the Windows PowerShell to use the Azure
CLI. A screenshot of the Windows PowerShell is shown below.

Figure 9. Windows Power Shell

https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli

Renesas RA FSP™ Platform RA FSP MQTT/TLS Azure Cloud Connectivity Solution

R11AN0531EU0103 Rev.1.03 Page 20 of 41
May.23.22

5. If you already have Azure CLI installed locally, run az --version to check the version. This app note
requires Azure CLI 2.24.0 or later.

Figure 10. Azure CLI Version

3.4 Create an IoT Hub
You can use Azure CLI to create an IoT hub that handles events and messaging for your device.

Note 1: Before you start creating the IoT Hub you are required to have a login to your Azure Portal via web
browser. If not, then you may notice an error that you are not logged in while creating the IoT hub, you may
notice an error that you are not logged in.

https://portal.azure.com/

Note 2: If you do not have the Azure Account, you can create one which is valid for 12 months with limited
features from the following link

https://azure.microsoft.com/en-us/free/

To create an IoT hub:
Note 3: Some of the user parameters while creating the IoT Hub needs to be unique. Users are required to
take care of this while creating the IoT Hub credentials.

1. In your CLI console, run the az extension add command to add the Microsoft Azure IoT Extension
for Azure CLI to your CLI shell. The IoT Extension adds IoT Hub, IoT Edge, and IoT Device Provisioning
Service (DPS) specific commands to Azure CLI.
 az extension add --name azure-iot

Note 4: When you run the command for the first time you may not notice output on the console as shown
below. It just accepts the command.

Figure 11. Add Extension for Azure CLI

https://portal.azure.com/
https://azure.microsoft.com/en-us/free/

Renesas RA FSP™ Platform RA FSP MQTT/TLS Azure Cloud Connectivity Solution

R11AN0531EU0103 Rev.1.03 Page 21 of 41
May.23.22

2. Run the az login command to login to the Azure account. Running the az login command opens
the browser for login. You can enter the login credentials to login to the Azure account. You will notice a
similar message on the browser on successful login.
Note: You can find more info on the Azure CLI at Overview of the Azure CLI | Microsoft Docs

Figure 12. Successful Login to the Azure account
3. Run the az group create command to create a resource group. The following command creates a

resource group named MyRAResourceGroup in the westus region.
4. Note: Optionally, to set an alternate location, run az account list-locations to see available

locations. Then specify the alternate location in the following command in place of westus.
 az group create --name MyRAResourceGroup --location westus

Figure 13. Create Resource Group
5. Run the az iot hub create command to create an IoT hub. It might take a few minutes to create an

IoT hub.
Replace the YourIotHubName placeholder below with the name you chose for your IoT hub. An IoT
hub name must be globally unique in Azure. This placeholder is used in the rest of this tutorial to
represent your unique IoT hub name.
 az iot hub create --resource-group MyRAResourceGroup --name

{YourIoTHubName}
Note: It may take few minutes to create the IoT Hub. In this case the IoTHub name used is
RACLOUDHUB.

Figure 14. IoT Hub Creation in Progress

https://docs.microsoft.com/en-us/cli/azure/

Renesas RA FSP™ Platform RA FSP MQTT/TLS Azure Cloud Connectivity Solution

R11AN0531EU0103 Rev.1.03 Page 22 of 41
May.23.22

6. After the IoT hub is created, view the JSON output in the console, and copy the hostName value to a
safe place. You use this value in a later step. The hostName value looks like the following example:
 {Your IoT hub name}.azure-devices.net

Figure 15. JSON Output after IoT Hub Creation

3.5 Register an IoT Hub Device
In this section, you create a new device instance and register it with the IoT Hub you created. You will use
the connection information for the newly registered device to securely connect your physical device in a later
section.

Renesas RA FSP™ Platform RA FSP MQTT/TLS Azure Cloud Connectivity Solution

R11AN0531EU0103 Rev.1.03 Page 23 of 41
May.23.22

To register a device:
1. In your console, run the az iot hub device-identity create command. This creates the

simulated device identity.
2. Replace the YourIotHubName placeholder below with the name you chose for your IoT hub.
3. You can use the MyRADevKit name directly for the device in CLI commands in this tutorial. Optionally,

use a different name.
 az iot hub device-identity create --device-id MyRADevKit --hub-name

{YourIoTHubName}

Figure 16. IoT Hub Creation in Progress
4. After the device is created, view the JSON output in the console, and copy the deviceId and

primaryKey values for use in a later step.
5. Confirm that you have saved or copied the following values from the JSON outputs from the previous

sections to use in the next section
 Hostname
 deviceId
 primaryKey

3.6 Prepare the Device
To connect the device to Azure, modify a configuration file for Azure IoT settings, build and flash the image
to the device.

Add configuration
1. Import the application project into an empty e2 studio. pen sample_config.h and make the changes

to the configuration as shown in the snapshot with your Hostname, deviceId and primaryKey.

Renesas RA FSP™ Platform RA FSP MQTT/TLS Azure Cloud Connectivity Solution

R11AN0531EU0103 Rev.1.03 Page 24 of 41
May.23.22

Figure 17. Configuration Changes to sample_config.h

Constant name Value
HOST_NAME {Your IoT hub hostName value}
DEVICE_ID {Your deviceID value}
DEVICE_SYMMETRIC_KEY {Your primaryKey value}

3.7 Building and Running the Application
The project is now ready to compile. Press the Build (hammer icon) to start building the project.

Figure 18. Starting to Build the Project
The toolchain will report compilation and build status to the console pane in the lower-right corner of
e2 studio. When the build has completed, confirm that there are zero errors and few warnings. Warnings, if
any, may result from highly restrictive compilation warnings settings being applied by e2 studio to third party
code.

Figure 19. Compilation and Build Status Report

Renesas RA FSP™ Platform RA FSP MQTT/TLS Azure Cloud Connectivity Solution

R11AN0531EU0103 Rev.1.03 Page 25 of 41
May.23.22

3.8 Download and Run the Project
1. Connect the micro USB cable to the DEBUG port (J10) of the EK-RA6M5 Cloud Kit and other end to the

host computer.
2. Make sure the Ethernet Cable is connected to the RJ-45 connector of the board and other end to the

router/switch as applicable for the internet access.
3. In e2 studio, open the Debug Configurations dialog and launch the AzureCloudRA6M5SAS

Debug_Flat debug configuration.
4. Open your RTT viewer terminal (version 6.98 or later). Configure the following values for the RTT

terminal:

Figure 20. RTT Terminal

Renesas RA FSP™ Platform RA FSP MQTT/TLS Azure Cloud Connectivity Solution

R11AN0531EU0103 Rev.1.03 Page 26 of 41
May.23.22

5. As the project runs, the demo prints out status information to the terminal output window. The demo also
publishes the MCU Temperature message to IoT Hub every 30 seconds. Check the terminal output to
verify that messages have been successfully sent to the Azure IoT hub:

Figure 21. RTT Terminal Output
Keep the terminal window open to monitor device output in subsequent steps.

3.9 View Device Properties
You can use the Azure IoT Explorer (https://docs.microsoft.com/en-us/azure/iot-pnp/howto-use-iot-explorer)
to view and manage the properties of your devices. In the following steps, you'll add a connection to your IoT
hub in IoT Explorer. With the connection, you can view properties for devices associated with the IoT hub.

Download and install latest (above v0.14.2.0) Azure IoT Explorer from: https://github.com/Azure/azure-iot-
explorer/releases

Note: Click and install the downloaded msi file Azure.IoT.Explorer.preview.0.14.2.msi or newer
version of the downloaded file. The install shield guides you through the installation process.

https://docs.microsoft.com/en-us/azure/iot-pnp/howto-use-iot-explorer
https://github.com/Azure/azure-iot-explorer/releases
https://github.com/Azure/azure-iot-explorer/releases

Renesas RA FSP™ Platform RA FSP MQTT/TLS Azure Cloud Connectivity Solution

R11AN0531EU0103 Rev.1.03 Page 27 of 41
May.23.22

3.10 Set IoT Hub
To add a connection to your IoT hub:
1. In your CLI console, run the az iot hub show-connection-string command to get the

connection string for your IoT hub.
 az iot hub show-connection-string --name {YourIoTHubName}

Figure 22. Connection String

2. Copy the connection string.
3. Open the Azure IoT Explorer and select IoT hubs > Add connection.
4. Paste the connection string into the Connection string box.
5. Select Save.

Figure 23. Adding Connection String
Note: In some cases, Azure IoT Explorer may report an error that the default port that IoT Explorer is trying

to use is being used by another application. In order to overcome this error, you can add a different
port number for the Azure IoT Explorer as shown below.

Renesas RA FSP™ Platform RA FSP MQTT/TLS Azure Cloud Connectivity Solution

R11AN0531EU0103 Rev.1.03 Page 28 of 41
May.23.22

Go to your PC, edit the system environmental variables similarly to the screenshots shown below.

Figure 24. Editing System Environment Variable

Renesas RA FSP™ Platform RA FSP MQTT/TLS Azure Cloud Connectivity Solution

R11AN0531EU0103 Rev.1.03 Page 29 of 41
May.23.22

Figure 25. Adding System Environment Variable for Alternate Port - Azure IoT Explorer

Renesas RA FSP™ Platform RA FSP MQTT/TLS Azure Cloud Connectivity Solution

R11AN0531EU0103 Rev.1.03 Page 30 of 41
May.23.22

Figure 26. Added Alternate Port for Azure IoT Explorer
If the connection succeeds, the Azure IoT Explorer switches to a Devices view and lists your device.

Figure 27. Listed Devices
To view device properties using Azure IoT Explorer:

1. Click the link for your device. IoT Explorer displays details for the device.
2. Inspect the properties for your device in the Device identity panel

Renesas RA FSP™ Platform RA FSP MQTT/TLS Azure Cloud Connectivity Solution

R11AN0531EU0103 Rev.1.03 Page 31 of 41
May.23.22

Figure 28. Device Details

3.11 View Device Telemetry
With Azure IoT Explorer, you can view the flow of telemetry from your device to the cloud. To view telemetry
in Azure IoT Explorer:

1. In IoT Explorer select Telemetry. Confirm that Use built-in event hub is set to Yes.
2. Select Start.
3. View the telemetry as the device sends messages to the cloud.

Renesas RA FSP™ Platform RA FSP MQTT/TLS Azure Cloud Connectivity Solution

R11AN0531EU0103 Rev.1.03 Page 32 of 41
May.23.22

Figure 29. Device Telemetry Details

3.12 Send Cloud-to-Device Message
To send a cloud-to-device message in Azure IoT Explorer:

1. In IoT Explorer select Cloud-to-device message.
2. Enter the message in the Message body = "LED", Key = LED, Value = ON
3. Check Add timestamp to message body.
4. Select Send message to device.

Renesas RA FSP™ Platform RA FSP MQTT/TLS Azure Cloud Connectivity Solution

R11AN0531EU0103 Rev.1.03 Page 33 of 41
May.23.22

Figure 30. Device Telemetry Details

5. In the terminal window, you can see that the message is received by the IoT Device.

Note: The Cloud-to-device message in this application is sent to turn on the green LED. You can see the

green LED on the board is turned ON.

Renesas RA FSP™ Platform RA FSP MQTT/TLS Azure Cloud Connectivity Solution

R11AN0531EU0103 Rev.1.03 Page 34 of 41
May.23.22

Figure 31. Console Output

3.13 Use Device Provisioning Service (DPS)
The IoT Hub Device Provisioning Service (DPS) is a helper service for IoT Hub that enables zero-touch, just-
in-time provisioning devices to the right IoT hub in a secure and scalable manner. In the following steps, you
will enroll the board in DPS using Symmetric Key and provision it automatically in IoT Hub when connecting
to the Internet.

Create a Device Provisioning Service (DPS)
You can use Azure CLI to create a DPS to provision the device in IoT Hub automatically.

Renesas RA FSP™ Platform RA FSP MQTT/TLS Azure Cloud Connectivity Solution

R11AN0531EU0103 Rev.1.03 Page 35 of 41
May.23.22

1. Run the az iot dps create command to create a DPS. It might take a few minutes to create it.
Replace the YourDPSName placeholder below with the name you chose for your DPS. An IoT hub name
must be globally unique in Azure. This placeholder is used in the rest of this tutorial to represent your
unique DPS name.
 az iot dps create --resource-group MyRAResourceGroup --name {YourDPSName}

Figure 32. DPS Creation JSON Output

2. After the DPS is created, view the JSON output in the console, and copy the
serviceOperationsHostName and idScope values to a safe place. You use this value in a later
step. The serviceOperationsHostName and idScope values looks like the following example:
serviceOperationsHostName: {Your DPS name}.azure-devices-provisioning.net
idScope : 0nexxxxxxxx

3. You can also run the az iot dps show command to view the values again:
 az iot dps show --resource-group MyRAResourceGroup --name {YourDPSName}

3.14 Link an IoT Hub for DPS
To make the DPS provision the device in IoT Hub, you need to link an IoT Hub for it.

1. Run the az iot hub show-connection-string command to get the IoT Hub connection string:
 az iot hub show-connection-string --name {YourIoTHubName}

2. Run the az iot dps linked-hub create command to create a linked IoT Hub in DPS, and replace
the YourIoTHubConnectionString with the actual one you get:
 az iot dps linked-hub create --dps-name {YourDPSName} --resource-group

MyRAResourceGroup --connection-string {YourIoTHubConnectionString} --
location westus

Figure 33. Linking IoT HUB to DPS

Renesas RA FSP™ Platform RA FSP MQTT/TLS Azure Cloud Connectivity Solution

R11AN0531EU0103 Rev.1.03 Page 36 of 41
May.23.22

3.15 Add Enrollment in DPS
Now you need to add an individual enrollment record in DPS which your device can use later to connect to
DPS and perform the provisioning in IoT Hub.

1. Run the az iot dps enrollment create command to create a device enrollment in DPS:
 az iot dps enrollment create --dps-name {YourDPSName} --resource-group

MyRAResourceGroup --attestation-type symmetricKey --enrollment-id
{MyDPSDevKit}

Figure 34. DPS Enrollment Creation
2. After the device is created, view the JSON output in the console, and copy the registrationId and

primaryKey values to use in a later step.
3. Confirm that you have copied the following values from the JSON output from previous steps to use in

the next section:
 serviceOperationsHostName
 idScope
 registrationId
 primaryKey

Add configuration:
1. Open sample_config.h and enable the DPS by uncommenting the line #define

ENABLE_DPS_SAMPLE and make the changes to the configuration as shown in the snapshot with your
serviceOperationsHostName, idScope, registrationId, and PrimaryKey.

Renesas RA FSP™ Platform RA FSP MQTT/TLS Azure Cloud Connectivity Solution

R11AN0531EU0103 Rev.1.03 Page 37 of 41
May.23.22

Figure 35. Configuration Changes to sample_config.h

Constant name Value
ENDPOINT {Your serviceOperationsHostName value}
ID_SCOPE {Your idScope value}
REGISTRATION_ID {Your registrationId value}
DEVICE_SYMMETRIC_KEY {Your primaryKey value}

2. Build and run the project. As the project runs, the demo prints out status information to the terminal

output window. The demo application successfully provisions the device using the DPS and publishes
the MCU Temperature message to IoT Hub every 30 seconds. Check the terminal output to verify that
messages have been successfully sent to the Azure IoT hub.

Note: Press the pushbutton S1 or S2 to send the asynchronous data to the cloud.

Figure 36. RTT Terminal Output
Now the Device can be seen on the IoT Explorer. You can click on the newly created DPS ID and verify the
Device Telemetry and Cloud-to-device messaging as explained in the sections 3.11 and 3.12

Renesas RA FSP™ Platform RA FSP MQTT/TLS Azure Cloud Connectivity Solution

R11AN0531EU0103 Rev.1.03 Page 38 of 41
May.23.22

Figure 37. DPS Config on the IoT Explorer
Note: Users can verify the communication from the Device to the Cloud and Cloud to the Device as well.

4. Importing, Building and Loading the Project
For a quick validation of this application project, import and build the project. The following steps show how
to import, build, and download the project.

Note: To run the application project successfully and to communicate to the cloud, follow the instructions for
setting up the cloud interface as described in section 3, which details making changes to the
credentials and creating your own cloud devices, running and validating the application.

4.1 Importing
The application project bundled as part of this app note can be imported into e2 studio using instructions
provided in the RA FSP User’s Manual. See Section Starting Development > e2 studio ISDE User Guide >
Importing an Existing Project into e2 studio ISDE.

4.2 Building the Latest Executable Binary
Upon successfully importing and/or modifying the project into e2 studio IDE, follow instructions provided in
the RA FSP User’s Manual to build an executable binary/hex/mot/elf file. See Section Starting Development
> e2 studio ISDE User Guide > Tutorial: Your First RA MCU Project > Build the Blinky Project.

4.3 Loading the Executable Binary into the Target MCU
The executable file may be programmed into the target MCU through any one of three means.

4.3.1 Using a Debugging Interface with e2 studio
Instructions to program the executable binary are found in the latest RA FSP User Manual. See Section
Starting Development > e2 studio ISDE User Guide > Tutorial: Your First RA MCU Project > Debug the
Blinky Project.
This is the preferred method for programming as it allows for additional debugging functionality available
through the on-chip debugger.

4.3.2 Using J-Link Tools
SEGGER J-Link Tools such as J-Flash, J-Flash Lite, and J-Link Commander can be used program the
executable binary into the target MCU. Refer User Manuals UM08001, and UM08003 on www.segger.com.

4.3.3 Using Renesas Flash Programmer
The Renesas Flash Programmer provides usable and functional support for programming the on-chip flash
memory of Renesas microcontrollers in each phase of development and mass production. The software
supports all RA MCUs and the software user’s manual is available online (Renesas Electronics Corporation,
n.d.).

http://www.segger.com/

Renesas RA FSP™ Platform RA FSP MQTT/TLS Azure Cloud Connectivity Solution

R11AN0531EU0103 Rev.1.03 Page 39 of 41
May.23.22

5. Next Steps and References
• Refer to the following GitHub repository for various FSP modules example projects and application

projects (https://github.com/renesas/ra-fsp-examples/)
• Refer to Establishing and Protecting Device Identity using SCE7 and Security MPU (R11AN0449) on

renesas.com
• Refer to Securing Data at Rest Utilizing the RA Security MPU (R11AN0416) on renesas.com
• Refer to Azure GitHub link for more details on Azure SDK for Embedded C

(https://github.com/Azure/azure-sdk-for-c)

6. MQTT/TLS References
• FSP v3.0.0 User’s Manual (www.renesas.com/RA/FSP).
• Azure IoT documentation https://docs.microsoft.com/en-us/azure/iot-hub/

7. Known Issues and Limitations
1. Occasional outages in cloud connectivity may be noticed during the demonstration due to changes in the

cloud server. Contact the Renesas support team for questions.
2. Currently, there is no support for direct device-to-device communications with Azure IoT Hub.
3. Device will reconnect after 65 minutes due to SAS token refresh. Currently it is under SDK control. Users

need to know this when developing the application.

https://github.com/renesas/ra-fsp-examples/
https://github.com/Azure/azure-sdk-for-c
http://www.renesas.com/RA/FSP
https://docs.microsoft.com/en-us/azure/iot-hub/

Renesas RA FSP™ Platform RA FSP MQTT/TLS Azure Cloud Connectivity Solution

R11AN0531EU0103 Rev.1.03 Page 40 of 41
May.23.22

Website and Support
Visit the following URLs to learn about key elements of the RA FSP Platform, download components and
related documentation, and get support.

RA Product Information www.renesas.com/ra

RA Product Support Forum www.renesas.com/ra/forum

RA Flexible Software Package www.renesas.com/FSP

Renesas Support www.renesas.com/support

https://www.renesas.com/ra
https://www.renesas.com/ra/forum
https://www.renesas.com/FSP
https://www.renesas.com/support

Renesas RA FSP™ Platform RA FSP MQTT/TLS Azure Cloud Connectivity Solution

R11AN0531EU0103 Rev.1.03 Page 41 of 41
May.23.22

Revision History

Rev. Date
Description
Page Summary

1.00 Jul.19.21 — Initial version
1.02 Oct.27.21 — Migrated to FSP 3.3.0 which has the full-fledged Configurator

support.
1.03 May. 23.22 — Updated to FSP 3.7.0

© 2022 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Introduction to Cloud Connectivity
	1.1 Cloud Connectivity Overview
	1.2 Microsoft Azure IoT Solution
	1.2.1 Overview
	1.2.2 IoT Hub and Device Provisioning Service

	1.3 MQTT Protocol Overview
	1.4 TLS Protocol Overview
	1.4.1 Device Certificates and Keys
	1.4.2 Device Security Recommendations

	2. RA FSP MQTT/TLS Cloud Solution
	2.1 MQTT Client Module Introduction
	2.1.1 Design Considerations
	2.1.2 Supported Features

	2.2 TLS Session Module Introduction
	2.2.1 Design Considerations
	2.2.2 Supported Features

	2.3 Azure IoT Device SDK Module Introduction
	2.3.1 Design Considerations
	2.3.2 Supported Features

	3. MQTT/TLS Application Example
	3.1 Application Overview
	3.2 Creating the Application Project using the FSP configurator
	3.3 Install Azure CLI
	3.4 Create an IoT Hub
	3.5 Register an IoT Hub Device
	3.6 Prepare the Device
	3.7 Building and Running the Application
	3.8 Download and Run the Project
	3.9 View Device Properties
	3.10 Set IoT Hub
	3.11 View Device Telemetry
	3.12 Send Cloud-to-Device Message
	3.13 Use Device Provisioning Service (DPS)
	3.14 Link an IoT Hub for DPS
	3.15 Add Enrollment in DPS

	4. Importing, Building and Loading the Project
	4.1 Importing
	4.2 Building the Latest Executable Binary
	4.3 Loading the Executable Binary into the Target MCU
	4.3.1 Using a Debugging Interface with e2 studio
	4.3.2 Using J-Link Tools
	4.3.3 Using Renesas Flash Programmer

	5. Next Steps and References
	6. MQTT/TLS References
	7. Known Issues and Limitations
	Revision History

