LENESANS APPLICATION NOTE

R-IN32M3 Module (RY9012A0) RADANO4OGE0200
Modbus TCP Start-Up Manual Aug.05.2022

Introduction

This document describes sample software for Modbus TCP communication with R-IN32M3 Module
(RY9012A0).

Target Device
R-IN32M3 Module (RY9012A0)

R30AN0406EJ0200 Rev.2.00 Page 1 of 45
Aug.05.2022 RENESAS

R-IN32M3 Module (RY9012A0) Modbus TCP Start-Up Manual

Contents

e OV OIVIOW ...ttt —— 3
11 Features..........oo 3
1.2 Operating ENVIFONMENT ... et e e s e e e anreee e 4
1.21 Hardware Environment ..., 4
1.2.2 Software Environment ... 5
1.3 Reference DOCUMENL ... e e e e e e e e e e e et e e e e e e e e eanbereeeaaas 6
2. Sample APPIICAtIONueeiii e 7
2.1 SYSEEM STIUCTUIE....... ..ot e e e e e e e e te e e e e e e e s e st areeeeeeesesnsraaeeeaeas 7
2% e B V{0 7Y IR 7
2.1.2 Modbus StaCK Programoooiiiiiiiiii et e e e e e e e e e e e e e e e s rraaaaas 8
2.1.3 Modbus APPLICAtiON ... oot e e e e e e e e e e e e e e e e e nnnneeeaeas 8
b2 =1 (e Yo QI E=Te | - 11 o IO PR SROR 9
2.3 FIle SIrUCLUIe ..., 10
2.4 BUIIA STrUCIUIE........cooeiiee et e e e sttt e e e ea bt e e e e sate e e e e anteeeeeanbaeeeeanbeeeeeanteeeeaas 10
2.5 RESOUICE STTUCIUIE ..., 11
2.6 MOADUS STACKoooiiiiiii e e ettt e e ettt e e e et e e e e be e e e e e tae e e e anteeeeeanreeaeaas 12
2.6.1 Modbus TCP Server Stack.............cooooiiiiiiiiiii i, 12
2.6.2 Modbus TCP Gateway StacCKooooiiiiiiii e e e 13
2.6.3 PaCKet Parsing............ooiiiiiiiiiiiiiii e e e e e e e e e aabeee e 14
2.6.4 TCP Connection and diSCONNECHIONcccoiiiiiiiiiiii e 15
3. Application Implementation guide...................c.ouuiiiiiiiiiiii s 16
B B ' = T o1 e T D 7 | - PR RR 16
311 UGOAL PArt.... ...ttt e e e e e e et a e e e e e e e e e ettt e e e e eaeeeaeattbaeeaaaeeaann 19
3.1.2 MOADbUS STACK Partooiiiiiiiiiii e aa e e baaaasaeaasassssasssssasssasssnnssnnnnnnnsnnnes 25
3.1.2.1 Configuration Settings............oooiiiiiiiii e e 25
3.1.2.2 Stack INIHAliZationouiiiiiii bbb ——————————————————————————————————_ 27
3.1.2.3 FUNCLION COAE@ ...ttt e e e e e e et e e e e e e e e e b aeeeeaeeeeeeastreeeeaaeeeanns 28
3.1.2.4 TCPI/IP connection Management 31
3.1.3 Serial CommUNICAtIONooiiiiii e e aaa e e e 32
4. Communication Test with Evaluation Tool.....................ooooo 33
41 MOADUS TCOP SEIVEN ..ottt e ettt e e e e e e e e et e e e e e e e e s et e reeeeeeeeeanaraneeeaeas 33
4.2 ModbUs TCP Gat@Wayoooiiiiiiiiiiiiii et e ettt e e e et e e e e sate e e e e anbeeeeeanneeeeaas 37
APPENAIX.... . e 40
A Structure for funNction Codes ..., 40
B. APLSPECIHTICAtIONooiiiiiii e e e e e e e e e e e aaa s 45
C. Sample software Startup..... ... e e e e e 56
ReVISION HISTOIYo e r e e e e e e et s e e e e e e e eereaa e eeaaeeeenes 62
R30AN0406EJ0200 Rev.2.00 Page 2 of 45

Aug.05.2022 RENESAS

R-IN32M3 Module (RY9012A0) Modbus TCP Start-Up Manual

1. Overview

This document describes Modbus TCP protocol stack running on host MCU connected to R-IN32M3
Module, and provides the functional outline for developing and implementing user applications with the
protocol stack, APIs, and sample programs.

This package supports Ethernet-based Modbus TCP slave.

1.1 Features

The Modbus protocol is a communication protocol developed by Modicon Inc. (Schneider Electric SA.) for
programmable logic controllers (PLC), and the specification is published. Refer to protocol specifications (PI-
MBUS-300 Rev.J).

Modbus TCP stack for host MCU of R-IN32M3 Module described in this document enables rapid and easy
development of the following applications.

® Modbus TCP server
® Modbus Gateway

Modbus TCP stack for host MCU of R-IN32M3 Module supports the following nine function codes:

1(0x01) — Read coils

2(0x02) — Read discrete input

3(0x03) — Read holding registers
4(0x04) — Read input registers

5(0x05) — Write single coll

6(0x06) — Write single register

15(0x0F) — Write multiple coils

16(0x10) — Write multiple registers
23(0x17) — Read/Write multiple registers

For more information about Modbus, please refer to the following site.
http://www.modbus.org
'Modicon Modbus Protocol Reference Guide Rev.J] (PI_MBUS_300.pdf)

'Modbus Application Protocol Specification V1.1b3] (Modbus_Application_Protocol_V1_1b3.pdf)

* The version number may vary depending on the update. Please refer to the latest manual.

R30AN0406EJ0200 Rev.2.00 Page 3 of 45
Aug.05.2022 RENESAS

http://www.modbus.org/

R-IN32M3 Module (RY9012A0) Modbus TCP Start-Up Manual

1.2 Operating Environment
This chapter explains the operating environment.

1.2.1 Hardware Environment

Modbus TCP communication described in this document convers one of the following configurations.
This document is described based on RX66T environment (SEMB1320 evaluation board).

(1) R-IN32M3 Module RX66T CPU Card [SEMB1320]
(2) Adapter Board with R-IN32M3 Module combined with EK-RA6M3 or EK-RA6M4
(3) Adapter Board with R-IN32M3 Module combined with RL78/G14 Fast Prototyping Board

(1) R-IN32M3 Module RX66T CPU Card (2) Adapter Board (3) Adapter Board

+ RL78/G14 Fast Prototyping Board
[SEMB1320] + EK-RA6M4

Figure 1-1 Development Environment

Table 1-1 Hardware environment

Name Type Name Maker Link

RX66T CPU Card with R- | SEMB1320 SHIMAFUJI Electric SEMB1320

IN32M3 Module Incorporated

Adapter Board with R- YCONNECT-IT-I-RJ4501 Renesas Electronics R-IN32M3-Module-

IN32M3 Module Corporation Solution-Kit

EK-RA6M3 RTK7EKA6M3S00001BU Renesas Electronics RA6M3 MCU Group
Corporation Evaluation Board

EK-RA6M4 RTK7EKA6M4S00001BE Renesas Electronics Evaluation Kit for RA6M4
Corporation MCU Group

RL78/G14 Fast RTK5RLG140C00000BJ Renesas Electronics RL78/G14 fast Prototyping

Prototyping Board Corporation Boad

R30AN0406EJ0200 Rev.2.00 Page 4 of 45

Aug.05.2022 RENESAS

https://www.renesas.com/SEMB1320
https://www.renesas.com/r-in-module-solution-kit
https://www.renesas.com/r-in-module-solution-kit
https://www.renesas.com/jp/en/products/microcontrollers-microprocessors/ra-cortex-m-mcus/ek-ra6m3-ra6m3-mcu-group-evaluation-board
https://www.renesas.com/jp/en/products/microcontrollers-microprocessors/ra-cortex-m-mcus/ek-ra6m3-ra6m3-mcu-group-evaluation-board
https://www.renesas.com/jp/en/products/microcontrollers-microprocessors/ra-cortex-m-mcus/ek-ra6m4-evaluation-kit-ra6m4-mcu-group
https://www.renesas.com/jp/en/products/microcontrollers-microprocessors/ra-cortex-m-mcus/ek-ra6m4-evaluation-kit-ra6m4-mcu-group
https://www.renesas.com/products/microcontrollers-microprocessors/rl78-low-power-8-16-bit-mcus/rl78g14-fast-prototyping-board-rl78g14-fast-prototyping-board
https://www.renesas.com/products/microcontrollers-microprocessors/rl78-low-power-8-16-bit-mcus/rl78g14-fast-prototyping-board-rl78g14-fast-prototyping-board

R-IN32M3 Module (RY9012A0)

Modbus TCP Start-Up Manual

1.2.2 Software Environment

This document is described based on RX66T environment (SEMB1320 evaluation board).

Table 1-2 Software Environment

Category Name Version Link Note
R-IN32M3 Package of | Rev.1.™ https://www.renesas.com/
Module sample
sample software
package
RA MCU
IDE e2studio 2022-04 e? studio 2022-04 Windows|
Renesas
Flexible FSP V3.6.0 - Included in installer of
Software
Package FSPv3.6.0 | GitHub
GNU Arm GCC V10.3.1.20210824 — Included in installer of
Embedded Toolchain
Toolchain
RX MCU
IDE e2studio 2022-04 e? studio 2022-04 Windows|
Renesas
GNU GCC for Vv8.3.0.202102 — Included in installer of
Toolchain for Renesas RX
RZ Family
RL MCU
IDE e2studio 2022-04 e? studio 2022-04 Windows|
Renesas
GNU GCC for V4.9.2.202103 — Included in installer of
Toolchain for Renesas
RL Family RL78

R30AN0406EJ0200 Rev.2.00

Aug.05.2022

RENESAS

Page 5 of 45

https://www.renesas.com/r-in-module
https://www.renesas.com/document/uid/e-studio-2022-04-installer-windows
https://www.renesas.com/document/uid/e-studio-2022-04-installer-windows
https://github.com/renesas/fsp/releases/tag/v3.6.0
https://www.renesas.com/document/uid/e-studio-2022-04-installer-windows
https://www.renesas.com/document/uid/e-studio-2022-04-installer-windows
https://www.renesas.com/document/uid/e-studio-2022-04-installer-windows
https://www.renesas.com/document/uid/e-studio-2022-04-installer-windows

R-IN32M3 Module (RY9012A0) Modbus TCP Start-Up Manual

1.3 Reference Document

Technical information about Modbus is available on the Modbus Organization website, and information

about R-IN32M3 Module is available on the Renesas Electronics website.

* Modbus Organization website : http://www.modbus.org

» Renesas Electronics website . http://www.renesas.com

Table1-3 Modbus Documentation

Document
1 Modbus_Application_Protocol_V1_1b3.pdf

2 PI_MBUS_300.pdf

3 Modbus_over_serial_line_V1_02.pdf

4 Modbus_Messaging_Implementation_Guide_V1_0b.pdf

Table1-4 R-IN32M3 Module Documentation

Document title

Document No.

R-IN32M3 Module (RY9012A0) Datasheet R19DS0109ED****
R-IN32M3 Module (RY9012A0) User's Manual: Hardware R19UH0122ED****
R-IN32M3 Module (RY9012A0) User's Manual: Software R17US0002ED****
User's Implementation Guide (uGOAL Edition) R30AN0402EJ****
Adaptor Board with R-IN32M3 module YCONNECT-IT-I-RJ4501 User's Manual R12UZ0094EJ****
Management Tool Instruction Guide R30ANO390EJ****
RA Sample Application (uUGOAL Edition) R30ANOQ398EJ****
RX66T Sample Application (UGOAL Edition) R30ANO399EJ****
RL78/G14 Sample Application (uUGOAL Edition) R30ANO400EJ****
R30AN0406EJ0200 Rev.2.00 Page 6 of 45

Aug.05.2022 RENESAS

http://www.modbus.org/
http://www.renesas.com/

R-IN32M3 Module (RY9012A0) Modbus TCP Start-Up Manual

2. Sample Application

2.1 System Structure
The sample application is roughly divided into three function blocks.
1. uGOAL Abstraction layer stack
2. Modbus protocol stack program that uses the TCP/IP protocol stack

3. Application sample program that uses the uGOAL and Modbus protocol stacks

User application

Modbus Master/Client Modbus Serer/Slave

Modbus Application object

$ ¢

Modbus Protocol stack

$

uGOAL
Interface dirver
T Serial Interface{R5485)
TCP/IP Metwork Modbus RTU/ASCI Metwork

Figure 1-1 System Structure

211 uGOAL

The R-IN32M3 Module software includes uGOAL (domain-specific middleware), which consists of a
software stack that can be used to build applications in the industrial communications domain. In this sample
program, it is used as TCP/IP stack control.

For details of uUGOAL, refer to "R-IN32M3 Module (RY9012A0) User's Manual : Software
(R17US0002ED****)".

R30AN0406EJ0200 Rev.2.00 Page 7 of 45
Aug.05.2022 RENESAS

R-IN32M3 Module (RY9012A0) Modbus TCP Start-Up Manual

2.1.2 Modbus Stack Program

The sample application includes a sample program in the protocol stack that provides communication
functionality based on the Modbus protocol.

In Modbus TCP serial gateway mode, it behaves as a Modbus RTU / ASCII master stack as a gateway to
the serial network. The Modbus RTU / ASCII master stack initialization is done within the gateway stack
initialization. The user can choose either the Modbus RTU or the Modbus ASCII gateway stack (serial mode
selection: MBAPP_INIT_GW_SERIAL_MODE).

TCP/IP Stack
Serial Interface (R5485) Ethernet Interface

| User application Modbus RTU/ASCII Network
MODBUS Stack

Interface driver and stack

TCF/IP Network

2.1.3 Modbus Application
The sample application realizes Modbus protocol communication by using the sample program of uUGOAL
and Modbus protocol stack.

For more information, see Chapter 2.5, "Application Implementation Guide".

R30AN0406EJ0200 Rev.2.00 Page 8 of 45
Aug.05.2022 RENESAS

R-IN32M3 Module (RY9012A0) Modbus TCP Start-Up Manual

2.2 Block Diagram
The Modbus sample application block diagram for RX66T

Modbus Application (src)

SOERRRE

| !

goal_appl_modbus.c function_code.c plat_modbus.c

Serial communication GPLED/GPSW

Control

. Initialization of TCP/IP Communication for
of TCP/IP Com Modbus Stack TCP Server Callback for Function code

Stack Initialization API Slave Mode Callbacks Serial Communication I/F

Gateway parse

Modbus
Protocol stack

(r_modbus_rx/) TCP/IP Communication I/F

|P Management TCP/IP Communication for TCP Server

Middleware System timer SPI Communication

- I B N R

ﬁ_olﬂaﬁMa Ether PHY, RJ45 = SPI I/F | | SEMB1320 SPII/F - IDSW,GPSW,GPLED -

Figure 2-2 Block Diagram of RX66T sample application

R30AN0406EJ0200 Rev.2.00 Page 9 of 45

Aug.05.2022 RENESAS

R-IN32M3 Module (RY9012A0)

Modbus TCP Start-Up Manual

2.3 File Structure

File structure (partially abbreviated) of the sample program

Table2-1 File Structure

Folder / File

Description

07_mbus_tcp_server/

Modbus TCP sample program

goal_appl.c

UGOAL application implementation part

goal config.h

uGOAL configuration header file

goal_appl_modbus.c (.h)

Modbus protocol stack initialization and packet parsing program

mbapp_slave/

Modbus slave mode program

function_code.c (.h)

Function code and Call-back program of Modbus slave mode

address.c (.h)

Data addressing program of Modbus slave mode

r_modbus_rx/

Modbus protocol stack Sample program

| src/ (inc/)

Modbus protocol stack sample program & header file

2.4 Build Structure

The sample application has a build configuration that corresponds to each mode of operation of the

Modbus protocol.

Table2-2 Build Structure

Stack mode

Build Name

Modbus TCP Server Stack

TCP_SERVER_UGOAL

Modbus TCP Gateway Stack

TCP_GATEWAY_UGOAL

R30ANO406EJ0200 Rev.2.00
Aug.05.2022

RENESAS

Page 10 of 45

R-IN32M3 Module (RY9012A0) Modbus TCP Start-Up Manual

2.5 Resource Structure
Hardware resources used by the sample program.

1) Module
Hardware resources for the SEMB1320 evaluation board with RX66T to use as a Modbus stack.
When adding functions to this sample program, please take care about resource contention.

Table2-3 Hardware Module

SW block HW module 10 Remark
Modbus SCI12 P21 (TXD12) Modbus RTU/ASCII serial (RS485) Connection
Protocol stack P22 (RXD12)
GP I/0 P20 Modbus RTU/ASCII serial Connection
RS485 k5 ¥ L —/\AMFIE AT
CMT - RTU/ASCII mode RS485 timing Control
Modbus GP I/O0 PE3 LED: LEDS5, LEDG6, LED8, LED9 on SEMB1320
Application PE4
PE1
PEO
PB4 Switch: SW2, SW4, SW5, SW6 on SEMB1320
PB2
PB1
PBO

* CMT: Compare match timer, SCI: Serial communication interface

2) Heap size
Uses the heap area under uGOAL management. If change the macro value of
"CONFIG_UGOAL_HEAP_BUFFER_SIZE" included in \plat \plat.h.

R30AN0406EJ0200 Rev.2.00 Page 11 of 45
Aug.05.2022 RENESAS

R-IN32M3 Module (RY9012A0)

Modbus TCP Start-Up Manual

2.6 Modbus Stack

The sample software is equipped with uGOAL middleware and is structured based on its design concept.
In addition, the Modbus TCP sample has a structure that passes TCP information generated by uGOAL to

the Modbus stack.

2.6.1 Modbus TCP Server Stack

Modbus TCP server program flow. [Build configuration: TCP_SERVER_UGOAL]

uGOAL

start)

uGOAL initial phase

A

User application User application
Modbus stack
(Modbus) (uGOAL)
applinit) [2105
mbapp_address_init() | ___, ; appl_initModbus() 4_- ________ ; appl_setup() |- ________;
A
1
L2222 eppi_setupTepSocket()
== = === 4. _____
cb_func_codeXX() % __p| appl_parseModbusPacket() | _ _p| topCallback() | ___ >
[

UGOAL loop phase

.

Figure 2-3 Modbus TCP server program flow

uGOAL provides functions of appl_init() and appl_setup() for specific processing of user application. In
addition, tcpCallback() is registered as a callback function for event processing of tcp protocol in the sample
software. In the initial phase of uUGOAL, appl_init () and appl_setup () are executed, and fcpCallback() is
executed every time a TCP communication event occurs in the subsequent loop phase.

For more information, see Chapter 2.6.3.

Taking the opportunity of tcp events generated by uGOAL, data is passed to the Modbus stack and
processed as Modbus TCP. The Modbus stack is roughly divided into two parts, appl_modbusinit () for
initializing the stack and appl_parseModbusPacket () for packet parsing. In this sample software, some
functions for user's own coding are prepared, such as mbapp_address_init (), cb_func_code01 () and else.
User implements each function, depending on the device and the features they want to make.

For more information about the process, see Chapter 3.1.2.

R30ANO406EJ0200 Rev.2.00
Aug.05.2022

RENESAS

Page 12 of 45

R-IN32M3 Module (RY9012A0)

Modbus TCP Start-Up Manual

2.6.2 Modbus TCP Gateway Stack

Modbus TCP Gateway program flow. [Build configuration: TCP_GATEWAY_UGOAL]

User application

Modbus stack

User application

uGOAL

(Modbus) (uGOAL)
(start)
appl_init) [T____p
uGOAL initial phase
mbapp_address_init() [, ; appl_initModbus() ‘_- ________ ; appl_setup() _________;
A
o «——
L% appl_setupTepSocket()
appl_parseModbusPacket() _4______; tcpCallback() ________: UGOAL loop phase
: A
! 1
r— L

r_modbus_gateway_packet()

G A
1

A 4

r_modbus_gw_xxx()

LT

A
A

h 4
r_modbus_xxx() —‘

A

i |
v)
r_modbus_serial_process()
T A

]

1

Figure 2-4 Modbus TCP Gateway program flow

The Modbus gateway flow is the same as Modbus TCP, but the behavior after Modbus packet analysis is
different.

When appl_parseModbusPacket() recognizes a gateway packet, it shifts to gateway packet processing.

Gateway packet processing converts a request packet received from a client into an RTU or ASCIl mode
request packet and sends it to the connected serial device. After sending, it waits for a response to the

request, converts the received response packet to a Modbus TCP response packet, and sends it to the
client.

R30AN0406EJ0200 Rev.2.00

Page 13 of 45
Aug.05.2022

RENESAS

R-IN32M3 Module (RY9012A0)
2.6.3 Packet Parsing

Modbus TCP Start-Up Manual

uGOAL parses received TCP packets and executes functions implemented by each function code. The
functions described in this section are implemented in the function appl_parseModbusPacket of the sample
software.

The Modbus TCP communication format includes the Modbus RTU excluding the CRC. Modbus RTU
needs to add a CRC check code at the end for error check, but Modbus TCP is not necessary because it
uses the check mechanism of the TCP / IP protocol.

In Modbus TCP communication format, it is necessary to add transaction identifier, protocol identifier,
message length and unit identifier, which did not exist in Modbus RTU.

The difference between Modbus RTU format and Modbus TCP / IP format is shown in Figure 2-5

k4

€——— Modbus RTU Message

Start SlavelD Function Data CAC/LAC End
Transaction |D Protocol ID Leneth UnitID Function Data
{2Byie) {2Byte) {2Byte) {1Bytes) {18y12) {NByie)
< MBAP Header »€— Modbus TCP/IP PDU —
€——— Modbus TCP/IP ADU >

PDU : Protocol Data Unit

ADU : Application Data Unit MBAP : Modbus Application

Figure 2-5 Modbus RTU format and Modbus TCP / IP format

In accordance with the above communication format, the received TCP packet is parsed. Here are the key
points for packet parsing:

® If received packet validation experiences a mismatch of length checks, packet integrity, slave ID, and
so on, discard the inbound packets.

If received packet is correct, user-registered callback function is called to process the request.

In case unicast request is received, if there is an abnormality in process of the function code, an
exception response message is created and sent to the master device.

® In case broadcast request is received, if the received packet is a write-related function code, it will be
accepted as a normal packet, but the response message will not be sent to the master device. Also, if
the received packet is read-related function code, the request packet is dropped as a slave ID
abnormality.

R30AN0406EJ0200 Rev.2.00 Page 14 of 45

Aug.05.2022 RENESAS

R-IN32M3 Module (RY9012A0) Modbus TCP Start-Up Manual

2.6.4 TCP Connection and disconnection
Modbus stack manages the number of TCP clients that can be connected simultaneously.

1) IP address function
Supports a function to allow (whitelist) and deny (blacklist) clients connecting to the relevant TCP server
by IP address.
When the list function [MBAPP_INIT_IP_TABLE_FLAG] is enabled, it checks the IP address of the client
that requested the connection according to the operation mode, and decides whether to accept or reject
the connection request. In the sample software, it is implemented with the function appl_tcpCallback.

The target IP address must be registered in advance by the user. The number of IP addresses that can
be registered depends on MAXIMUM_NUMBER_OF_CLIENTS.

2) Multiclient function
When the multi-client function is enabled [ENABLE_MULTIPLE_CLIENT_CONNECTION], connections are
accepted up to the number of clients specified by MAXIMUM_NUMBER_OF_CLIENTS in the FIFO
method. If the maximum number of connection requests is exceeded, the oldest connection will be closed
before accepting a new client connection. If the multi-client function is disabled, all connection requests
from the second and subsequent clients will be rejected.

The Modbus stack manages the number of TCP clients that can be connected simultaneously.

When TCP connection/disconnection is detected, it is also reported to the Modbus stack side. On the
Modbus stack side, if the maximum number of connections has been reached, the oldest connection will
be closed and the new connection will be registered as a valid connection.

The content explained in this section is implemented by the function tcpCallback on the sample software.

UGOAL E v
g_modbusConnectList

TCP evnet
GOALTCP instance

close open
GOALTCP instance
User application (uGOAL)

h J h J

= MAXIMUM_NUMBER_OF_CLIENTS+1

tepCallback()
Modbus stack | ;- GOALTCP instance
Ll o -
appl_modbusTcpRegistConnectionList() @
N Discard from old

appl_modbusTcpDeleteConnectionList() connection

Figure 2-6 TCP Connection Management

R30AN0406EJ0200 Rev.2.00 Page 15 of 45
Aug.05.2022 RENESAS

R-IN32M3 Module (RY9012A0) Modbus TCP Start-Up Manual

3. Application Implementation guide

3.1 Mapping Data
The Modbus data model implemented in the sample software is described. The contents described in this

chapter are defined in address .c (.h) of each sample application.
- Each Modbus data type has 2,048 pieces of data and uses reference addresses 0x0001 to 0x0800 (*1).
- Reference addresses are allocated to RAM memory as an array buffer of static global variables.

- Implemented functions to accesses (Reads/Writes) each array buffer of each Modbus data type which is
used by the callback function of Modbus function code (*2).

» Coil address 0x0001 to 0x0004 : GPIO ports for LEDs
» Discrete Input address 0x0001 to 0x0004: GPIO port for SWs

- Returns the exception code 0x04: SLAVE DEVICE FAILURE when accessing 0x07D1 of each Modbus
data address(* 3).

- Implemented a function that checks whether the address range specified by each Modbus data type
contains an incorrect address.

- Callback functions corresponding to each Modbus function code use these check functions to detect
incorrect addresses and return illegal DATA ADDRESS before accessing buffer arrays 0x02 exception
code (*4)

Figure 2-6 shows the reference address design and physical memory mapping of each Modbus data type.

Application Specific Modbus standard
Device application Modbus data model Modbus PDU addresses
RXE6T Memory Map Buffers on RAM DISCRETE INPUTS address DISCRETE INPUTS address
00001h <+—— 00000h (DISCRETE_INPUTS_ADDR_START)
USED
Read SW <us buf discrete 0000h 'l 00800h <—— 007FFh
EsuB_bul_(- 00801h +—— 00800h (DISCRETE_INPUTS_ADDR_END)
Peripheral I/O et Lol ot Uses
eriphera 10000h «—— OFFFFh
register 0000h
bl
i COILS address COILS address
iz e gsud_buf_coil[]
— 1000lh <+—— 00000h (COILS_ADDR_START)
~ USED
10800h <+——— 0O7FFh
T 10801h <«—— 00800h (COILS_ADDR_END)
'\ Not USED
20000h «—— OFFFFh
gsu&_buf_input_regi
ster{] INPUT REGISTERS address INPUT REGISTERS address
30001h +—— 00000h (INPUT_REGISTER_ADDR_START)
[CE— UsED
07FFh |
Buffer on RAM T 3 0800h <«—— OO7FFh
30801h +——— D0800h (INPUT_REGISTER_ADDR_END)
0000h \ Not USED
40000h «+—— OFFFFh
gsuB_bUf_thU[l]de_r HOLDING REGISTERS address HOLDING REGISTERS address
egister| -
40001h +—— D0000h (HOLDING_ REGISER_ADDR_START)
07FFh USED
e — 40800h <——— 007FFh
40801h <«—— 00800h (HOLDING_ REGISTER_ADDR_END)
Not USED
50000h «—— OFFFFh
1 byte

Figure 2-1 Modbus data model and memory mapping

R30AN0406EJ0200 Rev.2.00 Page 16 of 45
Aug.05.2022 RENESAS

R-IN32M3 Module (RY9012A0) Modbus TCP Start-Up Manual

*1: The range of reference addresses are specified in the constant macro corresponding to each Modbus
data type.

- For example, COILS_ADDR_START, COILS_ADDR_END constant macros specify the start and end
addresses of reference addresses of data type Coils.

- By default, each Modbus data address 0x0000 as the start address and 0x0800 as the end address.
- Note that the address value specified here is the start of 0x0000, not 0x0001.

- This is to comply with the address value representation described in the Protocol Data Unit (PDU)
that makes up the Modbus request. Hereafter the address representation is called PDU address.

- In this sample software, all reference addresses are processed with PDU addresses.

- Note that valid address termination values, such as COILS _ADDR_END, are exclusive, and addresses
with the specified values are invalid addresses.

*2: In the sample program, the reference address assigned to the Device peripheral function register is
determined relative to the COILS ADDR _START and the DISCRETE_INPUT_ADDR_START,
respectively.

- For example, if the COILS_ADDR_START is 0x1000, the Coil address 0x1001 to 0x1004 will be linked
to GPIO port corresponding to LED 5, 6, 8, and 9 on the SEMB1320 board.

*3: Address values that return 0x04 exception codes can be specified in the constant macro
PUSEDO_SLAVE_FAILURE_ADDR. Note that the specified value is a PDU address.

*4: By changing the check function of incorrect addresses, any address can be designed as an incorrect
address.

R30AN0406EJ0200 Rev.2.00 Page 17 of 45
Aug.05.2022 RENESAS

R-IN32M3 Module (RY9012A0) Modbus TCP Start-Up Manual

Sample code example of a data access function to Coils region called by a callback function when Read
Coil (function code 01h) is executed.

Example) File: 07_mbus _tcp server\mbapp_slave\address.c

uint8 t read coil address(uintl6 t ul6 address, uint8 t *u8 bit)
{

if (ul6_address == PUSEDO_SLAVE FAILURE_ADDR)

{ @

return ERR_SLAVE DEVICE FAILURE;
}

/% calculate buffer index from address structure */
uintl6 t buf addr = ul6 address — COILS ADDR START;

/% assign LEDs to coil address ADDR START ~ ADDR START+3 =/
if (buf addr < GPLED NUM)

{ @
/* write LEDs data in buffer */
write bit buf(gsu8 buf coil, buf addr, plat remoteloLedGet (buf addr));

}

/% read buffer */
*u8 bit = read bit buf(gsu8 buf coil, buf addr); <>

return ERR OK;

(@ Test code that returns a device error in the case of a specific address.
@ Read status of the device corresponding to the Coils area (in this case LEDs for remote 1/0).

@ Stores data in the Coils area into a buffer.

R30AN0406EJ0200 Rev.2.00 Page 18 of 45
Aug.05.2022 RENESAS

R-IN32M3 Module (RY9012A0) Modbus TCP Start-Up Manual
3.1.1 uGOAL Part

This chapter describes the implementation related to uGOAL middleware in Modbus TCP sample software.
The contents described in this section are defined in goal_appl.c of each sample application. For details of
each API, refer to "R-IN32M3 Module (RY9012A0) User's Manual : Software (R17US0002ED****)."

1) appl_init

This function includes application-specific initialization steps before initializing uUGOAL core modules, etc.
In the Modbus TCP sample software, network functions are initialized for TCP/IP communication.

GOAL STATUS T appl init(
void
)
{
GOAL _STATUS T res; /* result */

/% initialize goal net */

res = goal netRpcInit(GOAL NET ID DEFAULT) ;

if (GOAL RES ERR(res)) { @
goal logErr (“Initialization of goal net RPC failed”);

}

return res;

@ Initialize RPC function of the network.

R30AN0406EJ0200 Rev.2.00 Page 19 of 45
Aug.05.2022 RENESAS

R-IN32M3 Module (RY9012A0)

Modbus TCP Start-Up Manual

2) appl_setup

This function sets network configuration and initializes Modbus stack.

GOAL STATUS T appl setup(

void

)

{
GOAL STATUS T res; /%
uint32_t ip; /%
uint32 t nm; /%
uint32 t gw; /%
uint32 t cnt; /%

result */
IP address */
netmask */
gateway */
counter */

goal malLedSet (pWlaled, GUAL MA LED LEDI RED, GOAL MA LED STATE OFFJ;

goal maLedSet (pMaLed, GOAL MA LED LED1 GREEN, GOAL MA LED STATE OFF) ;

goal maLedSet (pMaLed, GOAL MA LED LED2 RED, GOAL MA LED STATE OFF);

goal maLedSet (pMaLed, GOAL MA LED LED2 GREEN, GOAL MA LED STATE OFF) ;

goal malLedSet (pMaLed, GOAL MA LED ETHERCAT, GOAL MA LED STATE OFF); (:>
goal maledSet (pMaLed, GOAL MA LED PROFINET, GOAL MA LED STATE OFF);

goal maLedSet (pMaLed, GOAL MA LED MODBUS, GOAL |
goal malLedSet (pMaLed, GOAL MA LED ETHERNETIP, GOAL MA LED STATE OFF);

MA_LED STATE ON) ;

if (GOAL_RES ERR(res)) {
goal logErr (“error opening network MA”);

}

res = goal maNetOpen (GOAL NET ID DEFAULT, &pMaNet) ;

/% set IP address */
ip = MAIN APPL IP;
nm = MAIN APPL NM;
gw = MAIN APPL GW;

if (GOAL_RES ERR(res)) {
goal logErr(“Set IP failed”);
return res;

}

res = goal maNetIpSet(pMaNet, ip, nm, gw, GOAL |

FALSE) : ©)

appl modbusInit() ;

return GOAL_OK;

(@ Set the initial state of LED.

@ Open the network media adapter (MA) to use.

@ Set IP address for TCP/IP protocol.
@ Initialize Modbus stack

R30AN0406EJ0200 Rev.2.00

Page 20 of 45

Aug.05.2022 RENESAS

R-IN32M3 Module (RY9012A0) Modbus TCP Start-Up Manual
3) tcpCallback

In this function, TCP communication events occurred are processed.

static void tcpCallback(
)
{
GOAL_NET _ADDR T remote; /* remote address */
GOAL STATUS T res; /% result */
if (cbType == GOAL NET CB NEW SOCKET) {
/* check connectable TP address */
res = r modbus chk connectable ip(remote.remotelp);
if (GOAL RES_ERR(res)) { @
return;
}
/* check multiple connection */
res = r modbus tcp multi connection();
if (GOAL_RES_ERR(res)) { ®
return;
}
res = r modbus tcp multi connection(pChan) ;
if (GOAL_RES ERR(res)) {
/* Close oldest connection if new connection cannot be registered */
res = goal maChanTcpClose (pMaTcpHdl, appl modbusTcpGetOldestConnection()) ;
if (GOAL_RES_ERR(res)) {
goal logErr (“Failed to get Remote Address for socket %p”, (void *) pChan);
J ©)
r modbus tcp del connection list(r modbus tcp get oldest connection());
/* regist new connection */
res = r modbus tcp reg connection list(pChan) ;
if (GOAL_RES ERR(res)) {
goal logErr(“Failed to get Remote Address for socket %p”, (void *) pChan) ;
}
}
}
else if (cbType == GOAL NET CB NEW DATA) {
goal logInfo(”Data received on tcp socket %p”, (void *) pChan);
res = appl parseModbusPacket (pMaTcpHdl, pChan, pBuf);
if (GOAL_RES ERR(res)) {
/% Close oldest connection if new connection cannot be registered %/
res = goal maChanTcpClose (pMaTcpHdl, pChan) ;
if (GOAL_RES ERR(res)) { @
goal logErr(“Failed to get Remote Address for socket %p”, (void *) pChan);
}
r modbus tcp del connection list(r modbus tcp get oldest connection());
}
1
else if (cbType == GOAL NET CB CLOSING) {
goal logInfo(”"Closing TCP socket %p”, (void *) pChan);
r modbus tcp del connection list(pChan);
res = goal maChanTcpGetRemoteAddr (pMaTcpHdl, pChan, &remote) ;
if (GOAL_RES_ERR(res)) { ©
goal logErr (“Failed to get Remote Address for socket %p”, (void *) pChan);
}
1
}
R30AN0406EJ0200 Rev.2.00 Page 21 of 45

Aug.05.2022 RENESAS

R-IN32M3 Module (RY9012A0) Modbus TCP Start-Up Manual

(@ Checks whether to accept connections from the IP address that requested the connection. If the target IP
address is not reachable, the requested instance will be closed.

@ Checks whether to accept multiple client connections. If the multi-client function is disabled and it is the
second or subsequent connection request, the TCP instance for the new connection request is closed.

@ Registers a net channel for a newly opened TCP/IP connection with the Modbus stack. The maximum
number of simultaneous connections is managed by the Modbus stack, so net channel disconnection
processing is performed as necessary.

@ Pass the received TCP packet to Modbus packet analysis processing.

® Get notified of net-channels whose connections have been closed and exclude them from Modbus stack
management.

R30AN0406EJ0200 Rev.2.00 Page 22 of 45
Aug.05.2022 RENESAS

R-IN32M3 Module (RY9012A0) Modbus TCP Start-Up Manual

4) appl_setupTcpSocket

This function is called from Modbus stack when TCP socket is generated.

GOAL STATUS T appl setupTcpSocket (uint32 t additionalPort)
{

GOAL STATUS T res; /% result %/
GOAL NET ADDR T addr; /* net address */
GOAL NET CHAN T *pChan; /* channel */

uint32 t clients;

res = goal maChanTcpOpen(GOAL NET ID DEFAULT, &pMaTcp);

if (GOAL_RES ERR(res)) f @
goal logErr(“error getting tcp MA”);
return res;

}

for (clients = 0; clients < MAXIMUM NUMBER OF CLIENTS + 1; clients++) {

/* register TCP server */ C)

GOAL MEMSET (&addr, 0, sizeof (GOAL NET ADDR T));

addr. localPort = (uintl6 t) (TCP_PORT NUMBER) ;

res = goal maChanTcpNew (pMaTcp, &pChan, NULL, &addr, GOAL NET TCP LISTENER, tcpCallback) ;

if (GOAL_OK != res) {
goal logErr (“error while opening TCP server channel on port %”FMT u32, (uint32 t) TCP PORT NUMBER) ;
return res;

/* set TCP channel to non-blocking */

res = goal maChanTcpSetNonBlocking(pMaTcp, pChan, GOAL TRUE) ;

if (GOAL_OK != res) {
goal logErr (“error while setting TCP channel to non-blocking”);
return res;

}

/% greet */
goal logInfo(“waiting for TCP connections on port %”FMT u32” (n=%"FMT u32”)”, TCP PORT NUMBER, clients);

if (0 != additionalPort)

{

res = goal maChanTcpOpen (GOAL NET ID DEFAULT, &pMaTcpAdditional);

if (COAL RES FRR(res)) | ©)
goal logErr ("error getting tcp MA”);
return res;

}

for (clients = 0; clients < MAXIMUM NUMBER OF CLIENTS + 1; clients++)

{ @
GOAL MEMSET (&addr, 0, sizeof (GOAL NET ADDR T));
addr. localPort = (uintl6 t) (additionalPort);
res = goal maChanTcpNew (pMaTcpAdditional, &pChan, NULL, &addr, GOAL NET TCP LISTENER, tcpCallback) ;

}

/% greet */
goal logInfo(“waiting for TCP connections on port % FMT u32” (n=%"FMT u32”)”, additionalPort, clients);

return res;

R30AN0406EJ0200 Rev.2.00 Page 23 of 45
Aug.05.2022 RENESAS

R-IN32M3 Module (RY9012A0) Modbus TCP Start-Up Manual

@ Open the TCP Channel Media Adapter (MA).

@ Generate (MAXIMUM_NUMBER_OF_CLIENTS + 1) TCP channels for normal connection ports
(TCP_PORT_NUMBER). TCP channels are prepared in non-blocking mode.

@ Open the TCP Channel Media Adapter (MA) for additional connection ports.

@ Generate (MAXIMUM_NUMBER_ OF_CLIENTS+1) TCP channels for additional connection ports
(TCP_ADDITIONAL_PORT_NUMBER).

In this function, generate uGOAL instances by the maximum number +1 which is specified in the
MAXIMUM_NUMBER_OF_CLIENTS.

Note that if increase the maximum number of MAXIMUM_NUMBER _OF CLIENTS, also need to increase
UGOAL resources (e.g. CONFIG_UGOAL_HEAP_BUFFER_SIZE).

R30AN0406EJ0200 Rev.2.00 Page 24 of 45
Aug.05.2022 RENESAS

R-IN32M3 Module (RY9012A0)

Modbus TCP Start-Up Manual

3.1.2 Modbus Stack Part

This chapter describes the operation of Modbus stack part. Modbus stack in the sample software realizes
the function in conjunction with uGOAL's TCP/IP function. The processing details are explained below.

3.1.2.1 Configuration Settings

The following table shows the configuration settings of Modbus stack which users can change. Each
setting is defined in the macro in modbusTcpConfig.h.

Table 2-1 Modbus stack configuration settings

Macro Name Default Description

1 TCP_PORT_NUMBER 502 Specifies TCP port number to accept as a Modbus
connection.

2 TCP_ADDITIONAL_PORT_NUMBER 1024 Specifies additional ports to accept for ports
configured in the TCP_PORT_NUMBER . If set to 0,
additional ports are disabled.

3 MAXIMUM_NUMBER_OF_CLIENTS 7 Specifies the upper limit number of TCP clients that
can be connected in the Modbus stack.

4 MBAPP_INIT_MULTIPLE_CLIENT_FLAG | ENABLE | Multiclient setting

ENABLE:
ENABLE_MULTIPLE_CLIENT_CONNECTION
DISABLE:
DISABLE_MULTIPLE_CLIENT_CONNECTION
5 MBAPP_INIT_IP_TABLE_FLAG DISABLE | IP address linting
6 MBAPP_INIT_IP_TABLE_MODE ACCEPT | IP address Whitelist and Blacklist

R30ANO406EJ0200 Rev.2.00
Aug.05.2022

Page 25 of 45

RENESAS

R-IN32M3 Module (RY9012A0)

Modbus TCP Start-Up Manual

Table 2-2 Modbus Serial stack configuration settings

Macro Name Default Description
1 MBAPP_INIT_GW_SERIAL_MODE RTU mode | Connection Type

RTU mode: MODBUS_RTU_MASTER_MODE

ASCIl mode:MODBUS_ASCII_MASTER_MODE
2 MBAPP_INIT_SLAVE_ID 1 Modbus Serial device ID

1-247
3 MBAPP_SERIAL_BAUDRATE 115200 Connection Speed

bps
4 MBAPP_SERIAL_PARITY Notting Parity setting.

Parity Setting value depends on the serial driver I/F.

5 MBAPP_SERIAL_STOPBITS 1 bit Stop bits setting

Setting value depends on the serial driver I/F.
6 MBAPP_INIT_RESPONSE_TIMEOUT_MS | 2000 Serial connection timeout

msec
7 MBAPP_INIT_TURNAROUND_DELAY_MS | 200 Broadcast delay time

msec
8 MBAPP_INIT_RETRY_COUNT 3 Connection retry setting

R30AN0406EJ0200 Rev.2.00

Aug.05.2022

RENESAS

Page 26 of 45

R-IN32M3 Module (RY9012A0) Modbus TCP Start-Up Manual

3.1.2.2 Stack Initialization

Execute various initializations and start Modbus stack. These initializations must be done after uGOAL
initialization. The following describes what to do with initialization. The functions described in this section are
implemented in the app/_modbusinit function in the sample software.

1) Callback functions corresponding to each function code

Associates a processing request from the client for each function code with a user-defined function. When
Modbus stack receives a request, it calls the registered function.

Registration settings are made by the Stack APl (Modbus_slave_map_init). Here are the details of the
arguments to set in the stack API. The corresponding callback function in the table below is set, and it is
registered in the stack by executing the stack API.

Table 2-3 Callback function with Function Code

Code | Function Name Default callback function
1 Read Coils cb_func code01
2 Read Discrete Inputs cb_func_code02
3 Read Holding Registers cb_func_code03
4 Read Input Registers cb_func_code04
5 Write Single Coil cb_func_code05
6 Write Single Register cb_func_code06
15 Write Multiple Coils cb_func_code15
16 Write Multiple Registers cb_func_code16
23 Read/Write Multiple Registers | cb_func_code23

- Mapping Table of Function Code (slave_map_init_t)
typedef struct _slave_map_init{

fp_function_code1_t fp_function_code1; /* function code-1 Read coils pointer */
fp_function_code2_t fp_function_code2; /* function code-2 Read discrete inputs pointer */
fp_function_code3 t fp_function_code3; /* function code-3 Read holding registers pointer */
fp_function_code4_t fp_function_code4; /* function code-4 Read input registers pointer */
fp_function_code5_t fp_function_code5; /* function code-5 Write single coil pointer */
fp_function_code6 _t fp_function_code6; /* function code-6 Write single register pointer */
fp_function_code15_t fp_function_code15; /* function code-15 Write multiple coils pointer */
fp_function_code16_t fp_function_code16; /* function code-16 Write multiple registers pointer */
fp_function_code23 t fp_function_code23; /* function code-23 Read/Write multiple registers pointer*/

}slave_map_init_t, *p_slave_map_init_t;

2) Initialization Modbus Stack

Initialize the Modbus stack with the stack API (r_modbus_tcp_init_stack or
r_modbus_tcp_init_gateway_stack). Via the API, the _appl_setupTcpSocket is called to create the necessary
TCP sockets.

R30AN0406EJ0200 Rev.2.00 Page 27 of 45
Aug.05.2022 RENESAS

R-IN32M3 Module (RY9012A0) Modbus TCP Start-Up Manual
3.1.2.3 Function Code

In Modbus stack of the sample software, function code processing to access Modbus data model is
implemented as a callback function, which allows users to design arbitrary Modbus data model. The function
code is included in function_code.c of sample software.

The followings are the main points for implementing function code:

- Modbus protocol stack can register callback functions for Table 2-5 function code. The sample software
shows an example implementation of all callback functions.

- Modbus protocol has a unique data model, and the data model consists of four data types and an
address space corresponding to each data type. Table 2-6 shows the corresponding Modbus data type
of this protocol stack.

- Each callback function that processes function code is required to access the corresponding data type.

- In Modbus protocol, slave can have up to 65536 (0x10000) of data for each data type, each assigned a
reference address in the range of 1 to 65536 (0x00001 to 0x10000).

- The reference address can refer to arbitrary physical address.

Table 2-4 Modbus Function Code

Code celz Function Name Description
(Hex)

1 1h Read Coils Read multiple data of specified Coils addresses

2 2h Read Discrete Inputs Read multiple data of specified Discrete Inputs addresses.

3 3h Read Holding Registers Read multiple data of specified Holding Registers addresses.

4 4h Read Input Registers Read multiple data of specified Input Registers addresses.

5 5h Write Single Coll Write single data of specified Coils addresses.

6 6h Write Single Register Write single data of specified Holding Registers addresses.

15 Fh Write Multiple Coils Write multiple data of specified Coils addresses.

16 10h Write Multiple Registers Write multiple data of specified Holding Registers addresses.
First, write multiple data of specified Coils addresses.

23 17h Read/Write Multiple Registers | Second, write multiple data of specified Holding registers
address.

Table 2-5 Modbus Data Type

Name Bits | Type of access Description

Discrete Inputs 1 Read Data type provided from I/O system

Coils 1 Read/Write Data type modified from application program.

Input Registers 16 Read Data type provided from I/O system

Holding Registers 16 Read/Write Data type modified from application program.
R30AN0406EJ0200 Rev.2.00 Page 28 of 45

Aug.05.2022 RENESAS

R-IN32M3 Module (RY9012A0)

Modbus TCP Start-Up Manual

There are two things to do with callback function of Modbus function code:

1. Refer to the request structure of the pointer argument and set the processing result of the function code
in the response structure of the pointer argument.

2. When a reference address that the designed Modbus data model does not have is referenced, the
exception code 0x02 is set in the response structure.

Also, an exception code 0x04 can be set for unrecoverable errors that occur during function code
processing.

Table 2-6 Exception code of function code

Code Code Function Name Description
(Hex)
2 2h lllegal Data Address Return this code when specified addresses in request includes
incorrect address for user-designed Modbus data model.
4 4h Slave Device Failure Return this code when unrecoverable error occurs during function
code process.

R30ANO406EJ0200 Rev.2.00
Aug.05.2022

Page 29 of 45
RENESAS

R-IN32M3 Module (RY9012A0) Modbus TCP Start-Up Manual

The callback function for each function code is defined in the following format. For more information about
the structure used to argument each callback function, see Appendix A.

[Format]
uint32_t (*fp_function_code<function code>_t)(p_req_<function code>_t pt_request,
p_resp_<function code>_t pt_response);

[Argument]
p_req_<function code>_t pt_request Pointer to structure containing function code request information
p_resp_<function code>_t pt_response Pointer to structure that stores function code response data
[Return Value)
uint32_t 0 : Success,

1 : Fail

The following is an example of the sample code of a callback function called when Read Coil (function
code 01h) is executed.

ex.) File : 07_mbus_tcp_server\mbapp_slave\function_code.c

uint32 t cb func code0l(p req read coils t pt request,
p resp read coils t pt response)
{
uint8 t u8 data;
int i;

/% Copy invariant fields between response and request. */

pt_response—>ul6 transaction id = pt request—>ul6 transaction id;

pt response—>ul6 protocol id = pt _request—>ul6 protocol id; (:>
pt response—>u8 slave id = pt request—>u8 slave id;

/% Check starting address and ending address. (START <= address < END) %/ |
pt response—>u8 exception code = check illegal coils address(pt request—>ul6 start addr,

pt request—>ul6 num of coils); @
if (ERR OK != pt response—>u8 exception code) { return ERR OK; } |

* Get response data by accessing address *
for(i =0; i < pt request—>ul6 num of coils; i++) (j
{
/* Get response data by accessing address. */
pt_response—>u8 exception code = read coil address(pt request—>ul6 start addr+i, &u8 data);
if (ERR OK != pt response—>u8 exception code) { return ERR OK; } /* Return value is ignored on stack. */

/* Set a bit into a response byte which are cleared every byte. */
if(i%8==0) {pt response—>aru8 datali/8] = 0; }
pt response—>aru8 datali/8] [= u8 data << (i % 8);

}

/% Calculate the number of bytes of response data. */
pt response—>u8 num of bytes = num of bytes(pt request—>ul6 num of coils);

return ERR OK; // Return value is ignored on stack

@ Sets information to be stored in the header of response packet.
@ Check the indicated address and data length for anomalies in the access range.

® Get data with specified address range from Coils area and store it in the response packet.

R30AN0406EJ0200 Rev.2.00 Page 30 of 45
Aug.05.2022 RENESAS

R-IN32M3 Module (RY9012A0) Modbus TCP Start-Up Manual

3.1.2.4 TCPI/IP connection Management

This chapter describes the TCP/IP communication implementation of the Modbus stack project.

Whitelist and Blacklist

To use the IP address whitelist and blacklist functions, you must register the target IP address. To
register IP address, use r_modbus_tcp_add_ip_addr.

In the sample program, r_modbus_enable_host_ip is registered before stack initialization.

R30AN0406EJ0200 Rev.2.00 Page 31 of 45
Aug.05.2022 RENESAS

R-IN32M3 Module (RY9012A0) Modbus TCP Start-Up Manual

3.1.3 Serial Communication

This section describes the implementation of processing to communicate with Modbus serial
devices in Modbus TCP/serial gateway mode. The contents explained in this section are defined in
plat_modbus.c of each sample application.

1) Serial communication
The RX66T sample project uses a FIT (Firmware Integration Technology) serial
communication interface (SCI) module to communicate with serial devices. Since serial
communication is called from the Modbus stack component, the following APIs are set for the
I/F with the Modbus stack.

Table 3-7 Modbus Serial stack configuration settings

APl Name Description

1 r_modbus_serial_open Open the Serial communication
2 r_modbus_serial_read Read the Serial data

3 r_modbus_serial_write Write the Serial data

4 r_ modbus_rs485 tx enable Enable Serial communication

5 r_ modbus_rs485 tx_disable Disable Serial communication

2) RS485 communication by RTU/ASCII mode
RTU mode begins with at least 3.5 characters of idle time and ends with 3.5 characters of idle
time.
In this sample, FIT's Compare Match Timer (CMT) module is used to measure this idle time.
Since the non-communication time measurement is performed in the Modbus stack
component, the following APl is set for the I/F with the Modbus stack.

Table 3-8 Modbus Serial stack configuration settings

APl Name Description
1 r_modbus_init_timer Measurement timer initialization
2 r_modbus_timer_oneshot Start Measurement
3 r_modbus_timer_stop Stop Measurement
R30ANO0406EJ0200 Rev.2.00 Page 32 of 45

Aug.05.2022 RENESAS

R-IN32M3 Module (RY9012A0) Modbus TCP Start-Up Manual

4. Communication Test with Evaluation Tool

Use the evaluation tool (ModbusDemoApplication.exe) to see how Modbus protocol stack sample program
and Modbus application sample program works.

Evaluation Tool: ModbusDemoApplication

r18an0064**xxx \ tool \ ModbusDemoApplication.zip

4.1 Modbus TCP Server

1) Environment Structure

Use SEMB1320 evaluation board and evaluation tools to check the operation of Modbus TCP.

Debug - JTAG

e’ studio

Modbus Demo e? studio
- 07_mbus_tep_slave

=

Ethernet LAN

Figure2-1 Modbus TCP Server Environment

[Note] When Modbus TCP sample app is run, all protocol LEDs (LED1, LED2 and LED3) are off.

R30AN0406EJ0200 Rev.2.00 Page 33 of 45
Aug.05.2022 RENESAS

R-IN32M3 Module (RY9012A0)

Modbus TCP Start-Up Manual

2) Modbus TCP application

The evaluation tool runs on Windows PC and acts as an oncoming software for Modbus application
sample program running on SEMB1320 evaluation board.

SEMB1320 evaluation board transmits switch(SW) status or controls the LED lighting according to Modbus
communication with the evaluation tool. The Coil address corresponding to the LED is shown in Table2-2,

and the Dispatch Input address corresponding to SW is shown in Table2-3.

Table2-1 Coil address and LED

Coil address Corresponding LED
0001h LED5
0002h LED6
0003h LED8
0004h LED9

Table2-2 Discrete Input address and SW

Discrete Input .
Corresponding SW
Address
0001h SW2
0002h SW4
0003h SW5
0004h SW6

R30AN0406EJ0200 Rev.2.00

Aug.05.2022

RENESAS

Page 34 of 45

R-IN32M3 Module (RY9012A0)

Modbus TCP Start-Up Manual

3)

Modbus Demo tool

Select the operation mode in "Connection" and set various parameters.

- Connection

» Select TCP server

* Serial Master and Serial Slave are not supported by this sample software.

- Serial setting

» Do not use.

- Remote Modbus

Server

» Set the IP address and Port number according to the device.

g5 Modbus Demo - O b 4
File(F) Help
Gonnection Gonnect
TCP server
/o
Coils 00
116200bps Discrete lputs (00 |
RTU
Slave ID

NONE Parity

1 stop bit

55

Gonnection Timeout

Remote Modbus Server (5000 J
IP Adress Port
192.168.1.100 | [502

Ready

Figure 4-2 Modbus Demo tool setting [TCP server]

(Continue to next page)

R30AN0406EJ0200 Rev.2.00

Aug.05.2022

RENESAS

Page 35 of 45

R-IN32M3 Module (RY9012A0) Modbus TCP Start-Up Manual

When the sample application is Modbus slave, the evaluation tool acts as a Modbus master and operate as
follows:

Run "Connect" and the evaluation tool sends "Read Discrete Inputs" request.

Sample application receives "Read Discrete Inputs" request and reflects the status of SW (SW2,
SW4, SW5, SW6) on SEMB1320 to "Discrete Inputs".

® Modbus Demo tool determines how to update the LEDs on the SEMB1320 evaluation board
according to the SW status received as a response to “Read Discrete Inputs” request, and sends a

“Write Multiple Coils” request.
- SW = 0 : The value in Coils text box changes 01—02—04—08—01...
The Coils value is reflected in the LED (LED5, LED6, LEDS8, LED9).

- SW# 0 : Enter any value in the Coils text box.
The Coils value is reflected in the LED (LED5, LED6, LEDS8, LED9).

85 Modbus Demo = (] X
File(F) Help
et Disconnect
TGP server
|¥(s]
Goils 05
115200bps Discrete Inputs

RTU
Slave ID

NONE Parity 255
1 stop bit

Connection Timeout
Remote Modbus Server 5000

IP Adress Port
192.168.0.100 502

Figure 4-3 Modbus Client demo tool

R30AN0406EJ0200 Rev.2.00 Page 36 of 45
Aug.05.2022 RENESAS

R-IN32M3 Module (RY9012A0) Modbus TCP Start-Up Manual

4.2 Modbus TCP Gateway

1) Environment Structure
Use SEMB1320 evaluation board and evaluation tools to check the operation of Modbus TCP Gateway.

Renesas has evaluated the RX72M communication board [TS-TCS07298 by Tessera Technology] as a
Modbus RTU/ASCII slave device in a serial connection (RS-485: Half Duplex) environment.

For more information on RX72M, please refer to “RX72M Communications Board Modbus Startup
Manual[RO1AN4862****]".

Modbus Demo €2 studio
- Modbus Client - 07_mbus_tcp_server

RS485

| A
Converter L i e

_ Modbus TCP Gateway Modbus RTU/ASCII
— \/ i Device Slave Device
<—- - ModbusTCP —--> <— — Modbus RTU/ASCII —-->

Figure4-4 Modbus TCP Gateway Environment

[Note] When Modbus TCP sample app is run, all protocol LEDs (LED1, LED2 and LED3) are off.

R30AN0406EJ0200 Rev.2.00 Page 37 of 45
Aug.05.2022 RENESAS

R-IN32M3 Module (RY9012A0) Modbus TCP Start-Up Manual

2) Modbus Gateway application

As with Modbus TCP, the Modbus Demo tool acts as a Modbus client. However, since instructions from
the evaluation tool are sent to the Modbus RTU/ASCII slave device serially connected to the SEMB1320
evaluation board, its operation depends on the target device.

As an example, we will explain an application in combination with the sample software [an-
r01an4862xx****-rx72m-modbus] for the RX72M communication board used as a serial slave.

GPIO LEDs 1-4 on the RX72M evaluation board light up with the Coils setting.

#8 Modbus Demo - a X
File(F) Help Sl |||||l|\l]l\l‘i‘l|l|] 5
Gonnection Disconnect ;
TGP Gates
/o
Coils 0s L
115200bps iscrete ts |]
Bl Slave ID
NC Parity 1
1 stop bit
Connection Timeout
Remote Modbus Server 5000
IP Adress Port
192.168.0.100 502

Figure4-5 Modbus TCP Gateway Application by RX72M Serial Slave

R30AN0406EJ0200 Rev.2.00 Page 38 of 45
Aug.05.2022 RENESAS

R-IN32M3 Module (RY9012A0) Modbus TCP Start-Up Manual

3) Modbus Demo tool
Select the operation mode in "Connection" and set various parameters.

- Connection
» Select “TCP Gateway”
* Serial Master and Serial Slave are not supported by this sample software.

- Serial setting

» Do not use.

- Remote Modbus Server
» Set the IP address and Port number according to the device.

a5 Modbus Demo — O b4
File(F) Help
Connection Gonnect
|TCF' Gateway -
Lo
Cails IEIIIIIIII
115200bps Discrete Inputs
in Slave ID
MNOME Par ity I:I
1 ztop bit

Connection Timeout

2
IP Adress Part
[192.168.1.100 | [502

Ready

Figure 2-6 Modbus Demo tool setting [TCP Gateway]

When the sample application is Modbus TCP Gateway, the evaluation tool acts as a Modbus master and
operate as follows:

® Run "Connect" and the evaluation tool sends "Read Discrete Inputs" and “Write Multiple Coils”
requests.

® Modbus TCP Gateway sample application on RX66T receives a “Read Discrete Inputs” or “Write
Multiple Coils” request and issues the same request to the RX72M Modbus serial slave device.

@ After issuing a request, it receives a response packet from the Modbus serial slave device and
issues a “Read Discrete Inputs” or “Write Multiple Coils” response with the same content to the client
in the opposite direction of the request.

R30AN0406EJ0200 Rev.2.00 Page 39 of 45
Aug.05.2022 RENESAS

R-IN32M3 Module (RY9012A0) Modbus TCP Start-Up Manual

Appendix

A. Structure for function codes

Describes the structure definition of the arguments used for each function code callback function
registered in Modbus stack.

= Read coils request table (req read coils t)
typedef struct _req_read_coils{

uint16_t u16_transaction_id; /* Specifies the transaction ID */

uint16_t u16_protocol_id; [* Specifies the protocol ID */

uint8_t u8_slave_id; /* Identification of a remote slave connected */
uint16_t u16_start_addr; /* Specifies address of the first coil */

uint16_t u16_num_of_coils; [* Specifies the number of coils to be read */

}req_read_coils_t, *p_req_read_coils_t;

= Read coils response table (resp _read coils t)
struct _resp_read_coils{

uint16_t u16_transaction_id; /* Specifies the transaction ID */

uint16_t u16_protocol_id; /* Specifies the protocol ID */

uint8_t u8_slave_id; [* Identification of a remote slave connected(Own ID) */
uint8_t u8_exception_code; /* Error detected during processing the request. On

success the exception code should be zero, if the
exception code is non-zero, the aru8_data will be null */
uint8_t u8_num_of_bytes; [* Specifies the number of bytes of data */
uint8_t aru8_data[MAX_DISCRETE_DATA]; /* Data to be read */
}resp_read_coils_t, *p_resp_read_coils_t;

= Read inputs request table(req read inputs t)
typedef struct _req_read_inputs{

uint16_t u16_transaction_id; /* Specifies the transaction ID */

uint16_t u16_protocol_id; /* Specifies the protocol ID */

uint8_t u8_slave_id; [* Identification of a remote slave connected */
uint16_t u16_start_addr; [* Specifies address of the first discrete input */
uint16_t u16_num_of inputs; /* Specifies the number of discrete inputs to be read */

}req_read_inputs_t, *p_req_read_inputs_t;

R30AN0406EJ0200 Rev.2.00 Page 40 of 45
Aug.05.2022 RENESAS

R-IN32M3 Module (RY9012A0) Modbus TCP Start-Up Manual

= Read inputs response table (resp read inputs t)
typedef struct _resp_read_inputs{

uint16_t u16_transaction_id; [* Specifies the transaction ID */

uint16_t u16_protocol_id; /* Specifies the protocol ID */

uint8_t u8_slave id; /* Identification of a remote slave connected */
uint8_t u8_exception_code; [* Error detected during processing the request. On

success the exception code should be zero, if the
exception code is non-zero the aru8_data will be null */
uint8_t u8_num_of_bytes; [* Specifies the number of bytes of data */
uint8_t aru8_data[MAX_DISCRETE_DATA]; /* Buffer to store the read data */
}resp_read_inputs_t, *p_resp_read_inputs_t;

- Read holding registers request table(req read holding req t)
typedef struct _req_read_holding_reg{

uint16_t u16_transaction_id; I* Specifies the transaction ID */

uint16_t u16_protocol_id; [* Specifies the protocol ID */

uint8_t u8_slave_id; [* Identification of a remote slave connected */
uint16_t u16_start_addr; * Specifies address of the first holding register */
uint16_t u16_num_of reg; [* Specifies the number of registers to be read */

}req_read_holding_reg_t, *p_req_read_holding_reg_t;

= Read holding registers response table(resp read holding reg t)
typedef struct _resp_read_holding_reg{

uint16_t u16_transaction_id; [* Specifies the transaction ID */

uint16_t u16_protocol_id; I* Specifies the protocol ID */

uint8_t u8_slave_id; [* Identification of a remote slave connected */

uint8_t u8_exception_code; [* error detected during processing the request. On success

the exception code should be zero, if the exception code is
non-zero the aru16_data will be null */
uint8_t u8 num_of bytes; /* specifies the number of bytes of data */
uint16_t aru16_data[MAX_REG_DATA]; /* buffer to store the read data */
}resp_read_holding_reg_t, p_resp_read_holding_reg_t;

= Read input registers request table (req read input reg t)
typedef struct _req_read_input_reg{

uint16_t u16_transaction_id; [* Specifies the transaction ID */

uint16_t u16_protocol_id; I* Specifies the protocol ID */

uint8_t u8_slave_id; /* Identification of a remote slave connected */
uint16_t u16_start_addr; [* Specifies address of the first input register */
uint16_t u16_num_of_reg; /* Specifies the number of registers to be read */

}req_read_input_reg_t, *p_req_read_input_reg_t;

R30AN0406EJ0200 Rev.2.00 Page 41 of 45
Aug.05.2022 RENESAS

R-IN32M3 Module (RY9012A0) Modbus TCP Start-Up Manual

= Read input registers response table(resp read input reg t)
typedef struct _resp_read_input_reg{

uint16_t u16_transaction_id; I* Specifies the transaction ID */

uint16_t u16_protocol_id; [* Specifies the protocol ID */

uint8_t u8_slave id; /* Identification of a remote slave connected */

uint8_t u8_exception_code; [* Error detected during processing the request. On success

the exception code should be zero, if the exception code is
non-zero the aru16_data will be null */
uint8_t u8_num_of_bytes; I* Specifies the number of bytes of data */
uint16_t aru16_data[MAX_REG_DATA]; /* Buffer to store the read data */
}resp_read_input_reg_t, p_resp_read_input_reg_t;

= Write single coil request table(req write single coil t)

typedef struct _req_write_single_caoill

uint16_t u16_transaction_id; I* Specifies the transaction ID */

uint16_t u16_protocol_id; [* Specifies the protocol ID */

uint8_t u8_slave_id; /* Identification of a remote slave connected */
uint16_t u16_output_addr; I* Specifies address of the coil */

uint16_t u16_output_value; [* Data to be written */

}req_write_single_coil_t, *p_req_write_single_coil_t;

= Write single coil response table(resp write single coil t)
typedef struct _resp_write_single_coil{

uint16_t u16_transaction_id; /* Specifies the transaction ID */

uint16_t u16_protocol_id; I* Specifies the protocol ID */

uint8_t u8_slave_id; [* Identification of a remote slave connected */

uint8_t u8_exception_code; [* Error detected during processing the request. On success the
exception code should be zero */

uint16_t u16_output_addr; [* Specifies address of the coil */

uint16_t u16_output_value; /* Data to be written */

}resp_write_single_coil_t, *p_resp_write_single_coil_t;

= Write single register request table(req write single reg t)
typedef struct _req_write_single_reg{

uint16_t u16_transaction_id; [* Specifies the transaction ID */

uint16_t u16_protocol_id; [* Specifies the protocol ID */

uint8_t u8_slave_id; /* Identification of a remote slave connected */
uint16_t u16_register_addr; [* Specifies address of the register */

uint16_t u16_register_value; [* Data to be written */

}req_write_single_reg_t, *p_req_write_single_reg_t;

R30AN0406EJ0200 Rev.2.00 Page 42 of 45
Aug.05.2022 RENESAS

R-IN32M3 Module (RY9012A0) Modbus TCP Start-Up Manual

= Write single register response table(resp write single req t)
typedef struct _resp_write_single_reg{

uint16_t u16_transaction_id; I* Specifies the transaction ID */

uint16_t u16_protocol_id; [* Specifies the protocol ID */

uint8_t u8_slave _id; /* Identification of a remote slave connected */

uint8_t u8_exception_code; /* Error detected during processing the request. On success the
exception code should be zero */

uint16_t u16_register_addr; [* Specifies address of the register */

uint16_t u16_register_value; /* Data to be written */

lresp_write_single_reg_t, *p_resp_write_single_reg_t;

= Write multiple coils request table(req write multiple coils t)
typedef struct _req_write_single_reg{

uint16_t u16_transaction_id; /* Specifies the transaction ID */

uint16_t u16_protocol_id; * Specifies the protocol ID */

uint8_t u8_slave_id; /[* Identification of a remote slave connected */
uint16_t u16_start_addr; /* Specifies address of the first coil */

uint16_t u16_num_of_outputs; [* Specifies the number of coils to be written */
uint8_t u8_num_of_bytes; [* Specifies the number of bytes of data */

uint8_t aru8_data[MAX_DISCRETE_DATA]; /* Data to be written */
}req_write_single_reg_t, *p_req_write_single_reg_t;

= Write multiple coils response table(resp write multiple coils t)
typedef struct _resp_write_multiple_coils{

uint16_t u16_transaction_id; [* Specifies the transaction ID */

uint16_t u16_protocol_id; [* Specifies the protocol ID */

uint8_t u8_slave id; /* Identification of a remote slave connected */

uint8_t u8_exception_code; [* Error detected during processing the request. On
success the exception code should be zero */

uint16_t u16_start_addr; /* Specifies address of the coils */

uint16_t u16_num_of_outputs; [* Specifies the number of coils to be written */

}resp_write_multiple_coils_t, *p_resp_write_multiple_coils_t;

= Write multiple registers request table(req write multiple reg t)
typedef struct _req_write_multiple_reg{

uint16_t u16_transaction_id; /* Specifies the transaction ID */

uint16_t u16_protocol_id; /* Specifies the protocol ID */

uint8_t u8_slave_id; /* Identification of a remote slave connected */
uint16_t u16_start_addr; /* Specifies address of the first register */

uint16_t u16_num_of_reg; [* Specifies the number of registers to be written */
uint8_t u8_num_of_bytes; /* Specifies the number of bytes of data */

uint16_t aru16_data[MAX_REG_DATA]; /* Data to be written */
}req_write_multiple_reg_t, *p_req_write_multiple_reg_t;

R30AN0406EJ0200 Rev.2.00 Page 43 of 45
Aug.05.2022 RENESAS

R-IN32M3 Module (RY9012A0) Modbus TCP Start-Up Manual

= Write multiple registers response table(resp write multiple req t)
typedef struct _resp_write_multiple_reg{

uint16_t u16_transaction_id; [* Specifies the transaction ID */

uint16_t u16_protocol_id; /* Specifies the protocol ID */

uint8_t u8_slave id; /* Identification of a remote slave connected */

uint8_t u8_exception_code; [* Error detected during processing the request. On success the
exception code should be zero */

uint16_t u16_start_addr; /* Specifies address of the first register */

uint16_t u16_num_of_reg; [* Specifies the number of registers to be written */

}resp_write_multiple_reg_t, *p_resp_write_multiple_reg_t;

= Read/Write multiple registers request table(req read write multiple reg t)
typedef struct _req_read_write_multiple_reg{

uint16_t u16_transaction_id; /* Specifies the transaction ID */

uint16_t u16_protocol_id; [* Specifies the protocol ID */

uint8_t u8_slave_id; /[* Identification of a remote slave connected */

uint16_t u16_read_start_addr; /* Specifies address of the first register to be read from */
uint16_t u16_num_to_read; [* Specifies the number of registers to be read */
uint16_t u16_write_start_addr; [* Specifies address of the first register to be written */
uint16_t u16_num_to_write; /* Specifies the number of registers to be written */
uint8_t u8_write_num_of_bytes; [* Specifies the number of bytes of data */

uint16_t aru16_data[MAX_REG_DATA]; /* Data to be written */

treq_read_write_multiple_reg_t, *p_req_read_write_multiple_reg_t;

= Read/Write multiple registers response table(resp read write multiple req t)
typedef struct _resp_read_write_multiple_reg{

uint16_t u16_transaction_id; /* Specifies the transaction ID */

uint16_t u16_protocol_id; * Specifies the protocol ID */

uint8_t u8_slave_id; /* Identification of a remote slave connected */
uint8_t u8_exception_code; /* Error detected during processing the request. On

success the exception code should be zero, if the
exception code is non-zero the aru16_read_data will be
null */
uint16_t u8_num_of_bytes; /* Specifies the number of complete bytes of data */
uint16_t aru16_read_data]MAX_REG_DATA]; /* Data to be read */
}resp_read_write_multiple_reg_t, *p_resp_read_write_multiple_reg_t;

R30AN0406EJ0200 Rev.2.00 Page 44 of 45
Aug.05.2022 RENESAS

R-IN32M3 Module (RY9012A0) Modbus TCP Start-Up Manual

B. API specification

Details the specifications of the Modbus stack-related Application Programming Interfaces (API) used in
this document.

1) Stack Initialization
API used to initialize the Modbus stack

Initialize the Modbus stack_as Modbus TCP

r_modbus_tcp_init_stack Modbus TCP stack initialization

[FORMAT]
uint32_t r_modbus_tcp_init_stack(uint8_t u8_stack_mode,
uint8_t u8_tcp_multiple_client,
uint32_t u32_additional_port)

[ARGUMENT]
uint8_t u8_stack_mode Set stack mode
uint8 t u8_tcp_multiple_client Set Multi client
uint32_t u32_additional_port Additional port Number
[RETURN]
uint32_t Error code
[Error Code]
ERR_OK Success
ERR_STACK_INIT Fail

[Comment] Argument:
u8_stack_mode: MODBUS_TCP_SERVER_MODE fixed

u8_tcp_multiple_client: Set whether to accept communication from multiple clients.

macro
ENABLE_MULTIPLE_CLIENT_CONNECTION Enable Multiclient
DISABLE_MULTIPLE_CLIENT_CONNECTION Disable Multiclient

u32_additional_port: Using a communication port other than the default [502].
Set 0 when not adding.

R30AN0406EJ0200 Rev.2.00 Page 45 of 45
Aug.05.2022 RENESAS

R-IN32M3 Module (RY9012A0) Modbus TCP Start-Up Manual

Initialize the Modbus stack as Modbus TCP Gateway

r_modbus_tcp_init_gateway_stack Modbus TCP Gateway stack initialization

[FORMAT]
uint32_t r_modbus_tcp_init_gateway_stack(uint8_t u8_stack _mode,
uint8_t u8_tcp_multiple_client,
uint32_t u32_additional_port);

[ARGUMENT]
uint8_t u8_stack_mode Set stack mode
uint8_t u8_tcp_multiple_client Set Multi client
uint32_t u32_additional_port Additional port Number

[RETURN]
uint32_t Error Code

[Error Code]
ERR_OK Success
ERR_INVALID_STACK_MODE Invalid stack mode
ERR_INVALID_SLAVE_ID Invalid Slave ID
ERR_INVALID_STACK_INIT_PARAMS Invalid user set parameter
ERR_STACK_INIT Fail

[Comment] Argument:

u8_stack_mode: Set the Serial master mode

Stack mode
MODBUS_RTU_MASTER_MODE RTU master mode
MODBUS_ASCII_MASTER_MODE ASCII master mode

u8_tcp_multiple_client: Set whether to accept communication from multiple clients.

macro
ENABLE_MULTIPLE_CLIENT_CONNECTION Enable Multiclient
DISABLE_MULTIPLE_CLIENT_CONNECTION Disable Multiclient

u32_additional_port: Using a communication port other than the default [502].
Set 0 when not adding.

R30AN0406EJ0200 Rev.2.00 Page 46 of 45
Aug.05.2022 RENESAS

R-IN32M3 Module (RY9012A0) Modbus TCP Start-Up Manual

Associate the processing request for each function code from the client with the user-defined function.

r_modbus_slave_map_init _Function code mapping

[FORMAT]
uint32_t r_modbus_slave_map_init(p_slave_map_init_t pt_slave_func_req);

[ARGUMENT]
p_slave_map_init_t pt_slave_func_req Pointer of Function code mapping table

[RETURN]
uint32_t Error Code

[Error Code]
ERR_OK Success
ERR_INVALID_STACK_INIT_PARAMS Argument is NULL

[Comment] Argument:

Calls the registered function when the Modbus slave stack receives a request.

This APl is valid only in slave mode.

- Function Code mapping table (_slave_map_init_t)

typedef struct _slave_map_init{
fp_function_code1_t fp_function_codef;
fp_function_code2_t fp_function_code2;
fp_function_code3_t fp_function_code3;
fp_function_code4 _t fp_function_code4;
fp_function_code5 t fp_function_code5;
fp_function_code6_t fp_function_code6;
fp_function_code15_t fp_function_code15;
fp_function_code16_t fp_function_code16;
fp_function_code23_t fp_function_code23;

}slave_map_init_t, *p_slave_map_init_t;

R30AN0406EJ0200 Rev.2.00 Page 47 of 45
Aug.05.2022 RENESAS

R-IN32M3 Module (RY9012A0) Modbus TCP Start-Up Manual

The callback function corresponding to each function code is defined in the following format. See

Appendix. A for details on the structure used for each callback function argument.

function code 1 (Read Coils)

fp_function_code1_t Callback for Function Code 1 (Read coils)

[FORMAT]
uint32_t (*fp_function_code1_t)(p_req_read_coils_t pt_req_read_caoils,
p_resp_read_coils_t pt_resp_read_coils);

[ARGUMENT]
p_req_read_coils_t pt_req_read_coils Read coil request pointer
p_resp_read_coils_t pt_resp_read_coils Read coil response pointer
[RETURN]
uint32_t 0 : Success,1 : Fail

function code 2 (Read Discrete Inputs)

fp_function_code2_t Callback for Function 2(Read discrete inputs)

[FORMAT]
uint32_t (*fp_function_code2_t)(p_req_read_inputs_tpt_req_read_inputs,
p_resp_read_inputs_t pt_resp_read_inputs);

[ARGUMENT]
p_req_read_inputs_t pt_req_read_inputs Read discrete inputs request pointer
p_resp_read_inputs_t pt resp _read inputs Read discrete inputs response pointer

[RETURN]
uint32_t 0 : Success,1 : Fail

function code 3 (Read Holding Registers)

fp_function_code3 t Callback for Function 3(Read holding register)

[FORMAT]
uint32_t (*fp_function_code3_t)(p_req_read_holding_reg_t pt_req_read_holding_reg,
p_resp_read_holding_reg_t pt_resp_read_holding_reg);

[ARGUMENT]
p_req_read_holding_reg_t pt_req_read_holding_reg Read holding register request pointer
p_resp_read_holding_reg_t pt resp_read_holding_reg Read holding register response pointer

[RETURN]
uint32_t 0 : Success,1 : Fail

R30AN0406EJ0200 Rev.2.00 Page 48 of 45
Aug.05.2022 RENESAS

R-IN32M3 Module (RY9012A0) Modbus TCP Start-Up Manual

function code 4 (Read Input Registers)

fp_function_code4 t Callback for Function 4(Read input register)

[FORMAT]
uint32_t (*fp_function_code4_t)(p_req_read_input_reg_t pt_req_read_input_reg,
p_resp_read_input_reg_t pt_resp_read_input_reg);

[ARGUMENT]
p_req_read_input_reg_t pt_req_read_input_reg Read Input register request pointer
p_resp_read_input_reg_t pt_resp _read_input reg Read holding register response pointer
[RETURN]
uint32_t 0 : Success,1 : Fail

function code 5 (Write Single Coil)

fp_function_code5_t Callback for Function 5(Write single coil)

[FORMAT]
uint32_t (*fp_function_code5_t)(p_req_write_single_coil_t pt_req_write_single_coil,
p_resp_write_single_coil_t pt_resp_write_single_coil);

[ARGUMENT]
p_req_write_single_coil_t pt_req_write_single_coil Write single coil request pointer
p_resp_write_single_coil_t pt_resp_write_single_coil Write single coil response pointer
[RETURN]
uint32_t 0 : Success,1 : Fall

function code 6 (Write Single Register)

fp_function_code6_t Callback for Function 6(Write single register)

[FORMAT]
uint32_t (*fp_function_code6_t)(p_req_write_single_reg_t pt_req_write_single_reg,
p_resp_write_single_reg_t pt_resp_write_single_regq);

(31%]
p_req_write_single_reg_t pt_req_write_single_reg Write single register request pointer
p_resp_write_single_reg_t pt_resp_write_single_reg Write single register response pointer
[RETURN]
uint32_t 0 : Success,1 : Fail

R30AN0406EJ0200 Rev.2.00 Page 49 of 45
Aug.05.2022 RENESAS

R-IN32M3 Module (RY9012A0) Modbus TCP Start-Up Manual

function code 15 (Write Multiple Coils)

fp_function_code15 t Callback for Function 15(Write multiple coils)

[FORMAT]
uint32_t (*fp_function_code15_t) (p_req_write_multiple_coils_t pt_req_write_multiple_caoils,
p_resp_write_multiple_coils_t pt_resp_write_multiple_coils);

[ARGUMENT]
p_req_write_multiple_coils_t pt_req_write_multiple_coils Write multiple coils request pointer
p_resp_write_multiple_coils_t pt_resp_write_multiple_coils = Write multiple coils response pointer
[RETURN]
uint32_t 0 : Success,1 : Fail

function code 16 (Write Multiple Registers)

fp_function_code16_t Callback for Function 16(Write multiple registers)

[FORMAT]
uint32_t (*fp_function_code16_t) (p_req_write_multiple_reg_t pt_req_write_multiple_reg,
p_resp_write_multiple_reg_t pt_resp_write_multiple_reg);

(51%]
p_req_write_multiple_reg_t pt_req_write_multiple_reg Write multiple registers request pointer
p_resp_write_multiple_reg_t pt_resp_write_multiple_reg Write multiple registers response pointer
[RETURN]
uint32_t 0 : Success,1 : Fail

function code 23 (Read/Write Multiple Registers)

fp_function_code23_t Callback for Function 23(Read/Write multiple registers)

[FORMAT]
uint32_t (*fp_function_code23_t) (p_req_read_write_multiple_reg_t pt_req_read_write_multiple_reg,
p_resp_read_write_multiple_reg_t pt_resp_read_write_multiple_reg);

[ARGUMENT]
p_req_read_write_multiple_reg_t pt_req_read_write_multiple_reg = Read/Write multiple registers request
pointer
p_resp_read_write_multiple_reg_t pt_resp_read_write_multiple_reg Read/Write multiple registers response
pointer
[RETURN]
uint32_t 0 : Success,1 : Fail
R30AN0406EJ0200 Rev.2.00 Page 50 of 45

Aug.05.2022 RENESAS

R-IN32M3 Module (RY9012A0) Modbus TCP Start-Up Manual

2) IP address list
API used to IP address List function

Specify whether to enable/disable the IP address list function and access rights for the IP addresses
registered in the list. B

r_modbus_tcp_init_ip_table _IP address list function status setting

[FORMAT]
void_t r_modbus_tcp_init_ip_table(ENABLE_FLAG e_flag,
TABLE_MODE e_mode);

[ARGUMENT]
ENABLE_FLAG e_flag Enabling/disabling the IP address list
ENABLE, DISABLE
TABLE_MODE e_mode Specify access rights for IP addresses included in the list
ACCEPT, REJECT
[RETURN]
void_t
[RETURN]

[Comment] Argument:

If the list function is enabled and the mode specification is access permission, the list function works as a
whitelist. Also, if the list function is enabled and the mode is set to prohibit access, the list function will

operate as a blacklist. The IP address list function is disabled by default

Adding the IP address list

r_modbus_tcp_add_ip_addr Adding the IP address list
[FORMAT]
uint32_t r_modbus_tcp_add_ip_addr(uint32_t u32_host_ip);
[ARGUMENT]
uint32_t u32_host_ip Set IP address (IPv4)
GOAL_NET_IPV4(192,168,1,100)
[RETURN]
uint32_t Error Code
[RETURN]
ERR_OK Success
ERR_IP_ALREADY_PRESENT IP address is already listed
ERR_MAX_CLIENT Full reqgistrations
ERR_TABLE_DISABLED Invalid host IP list

[Comment] Argument:

Use GOAL_NET_IPV4 macro to Set the IP address.

R30AN0406EJ0200 Rev.2.00 Page 51 of 45
Aug.05.2022 RENESAS

R-IN32M3 Module (RY9012A0) Modbus TCP Start-Up Manual

Checks whether the specified IP address is a target IP address for the IP address list function.

r_modbus_chk_connectable_ip IP address list function determination
[FORMAT]
GOAL_STATUS_T r_modbus_chk_connectable_ip(uint32_t ipaddr);
[ARGUMENT]
uint32_t ipaddr Set IP address (IPv4)
GOAL_NET_IPV4(192,168,1,100)
[RETURN]
GOAL_STATUS_ T Error Code
[RETURN]
GOAL_OK Access permission
GOAL_ERR_BUSY Access denial
R30ANO0406EJ0200 Rev.2.00 Page 52 of 45

Aug.05.2022 RENESAS

R-IN32M3 Module (RY9012A0) Modbus TCP Start-Up Manual

3) TCP connection management
API used to management the TCP connection

TCP connection management is done with GOAL_ENT_CHAN_T instances created by uGOAL.

Determines whether a running Modbus stack can accept new TCP connections.

r_modbus_tcp_multi_connection TCP connection availability judgment

[FORMAT]
GOAL_STATUS_T r_modbus_tcp_multi_connection(void);
[ARGUMENT]
void — —
[RETURN]
GOAL_STATUS_ T Error Code
[Error Code]
GOAL_OK Connection permission state
GOAL_ERR _BUSY connection prohibited state

[Comment] Return:

GOAL_OK if the connection is possible.
GOAL_ERR_BUSY if multi-connection is not supported and TCP connection is already established.

Register a TCP connection in the connection list.

r_modbus_tcp_reg_connection_list Registration to the connection list

[FORMAT]

void r_modbus_tcp_reg_connection_list(GOAL_NET_CHAN_T *pChan);
[ARGUMENT]

GOAL_NET_CHAN_T* pChan TCP connection instance
[RETURN]

GOAL_STATUS_T Error Code
[Error Code]

GOAL_OK Success

GOAL_ERR_FULL Full registration

[Comment] Return:

GOAL_OK: successful registration.
GOAL_ ERR_FULL.: If the number of TCP connections registered in the connection list has already
reached the value specified by MAXIMUM_NUMBER_OF_CLIENTS

R30AN0406EJ0200 Rev.2.00 Page 53 of 45
Aug.05.2022 RENESAS

R-IN32M3 Module (RY9012A0) Modbus TCP Start-Up Manual

Removes the specified TCP connection from the connection list.

r_modbus_tcp_del_connection_list Remove the connection
[FORMAT]
void r_modbus_tcp_del_connection_list(GOAL_NET_CHAN_T *pChan);
[ARGUMENT]
GOAL_NET_CHAN_T* pChan TCP connection instance
[RETURN]
void Error code

Returns the oldest TCP connection instance registered in the connection list.

r_modbus_tcp_get_oldest_connection Get Oldest TCP Connection

[FORMAT]

GOAL_NET_CHAN_T *r_modbus_tcp_get_oldest_connection(void);
[ARGUMENT]

void — —
[RETURN]

GOAL_NET_CHAN_T* pChan TCP connection instance

R30AN0406EJ0200 Rev.2.00 Page 54 of 45
Aug.05.2022 RENESAS

R-IN32M3 Module (RY9012A0) Modbus TCP Start-Up Manual

4) Modbus packet analysis
API to analysis Modbus packet.

Bridge function that passes TCP packets received by uGOAL to the Modbus stack for execution.

appl_parseModbusPacket Modbus packet analysis

[(FORMAT]

GOAL_STATUS_T appl_parseModbusPacket(
GOAL_MA_CHAN_TCP_T *pMaTcpHdl,
GOAL_NET_CHAN_T *pChan,
GOAL_BUFFER_T *pBuf);

[ARGUMENT]
GOAL_MA _CHAN TCP_T* pMaTcpHdl Pointer of MA handler
GOAL_NET_CHAN_T * pChan Pointer of instance which is stored the TCP connection information
GOAL_BUFFER_T * pBuf GOAL buffer which is stored TCP packet
[RETURN]
GOAL_STATUS T Error code
[ERROR CODE]
GOAL_OK Success
[Comment]

Since packet analysis is performed based on TCP information generated by uGOAL, it is called as part of
data processing from the TCP callback process (tcpCallback corresponds to this sample) registered in
uGOAL.

If the stack is initialized as Modbus TCP, after packet analysis, the user function registered at initialization

is executed as a slave operation. A response packet is then generated and sent.

If the stack is initialized as a Modbus gateway, it converts received packets to Modbus RTU or Modbus
ASCII packets and sends them to the specified serial slave device. Also, when it receives a response
packet from a slave device, it converts the received packet to a Modbus TCP packet and sends it to the

Modbus master side.

R30AN0406EJ0200 Rev.2.00 Page 55 of 45
Aug.05.2022 RENESAS

R-IN32M3 Module (RY9012A0)

Modbus TCP Start-Up Manual

C. Sample software startup

Describes how to operate the integrated development environment e2studio.

Complete the hardware connection according to the stack mode to operate in advance. Please refer to 4
Communication Test with Evaluation Tool.

This manual describes the SEMB1320 as the target. For the RX72M communication board used as an
example of a Modbus RTU/ASCII slave device in Modbus TCP gateway mode, refer to "RX72M Group
Communication Board Modbus Startup Manual (RO1AN4862****)".

1) After launching e2studio, click “File” — “Import”.

2) In the Select dialog, select “General” — “Existing Projects into Workspace” and click Next.

Q Import

Select

Create new projects frem an archive file or directory.

Select an import wizard:

| type filter text

I =% Existing Projects into Workspace
Eile Susiar

w [= General

B Archive File

[Preferences

(5 Projects from Folder or Archive

1= Rename & Import Existing C/C++ Project into Workspace
e Renesas CCRX project cenversion to Renesas GCCRX

la# Renesas CS+ Project for CA7EKOR/CATEKD

e Renesas CS+ Project for CC-RX and CC-RL

la# Renesas GitHub FreeRTOS (with loT libraries) Project

" Sample Projects on Renesas Website

= UC++
= Cods Gensratar

I:?)'

Back Finish

Cancel

Figure C-1 Import Project

R30ANO406EJ0200 Rev.2.00
Aug.05.2022

RENESAS

Page 56 of 45

R-IN32M3 Module (RY9012A0) Modbus TCP Start-Up Manual

3) Select the “Select Root Directory” check box in the Import Project dialog and click “Browse”.
Select the project that matches environment and click "Open". Click Finish to complete the project

import.
&) Import O X
Import Projects —
Select a directory to search for existing Eclipse projects.
¥ g eclipse proj /4
(®) Select root directony: | D:¥r1Ban 0064 0X XX ¥projects¥remote_io_sal Browse...
Ty praj r
() Select archive file: Browse...
Projects:
[remote_io_sample_07_mbus_tcp_server__ra4m3_osless (D:¥riGan Select All
[remote_io_sample__07_mbus_tcp_server__raém3_osless (D:¥r18an
[] remote_io_sample__07_mbus_tcp_server__ra6md_osless (Di¥ri8an Deselect All
[remote_io_sample__07_mbus_tcp_server__rl7Bg14_osless (D:¥r1Ban
H w2 P e el D Refresh
I remote_io_sample__07_mbus_tcp_server__nx66t_osless (D:¥r18an00

Figure C-2 Select Project

The project file for Modbus TCP is stored in the following directory.

Modbus TCP project File:
RX66T_uCCM_V***\ projects \ remote_io_sample \ 07_mbus_tcp_server

R30AN0406EJ0200 Rev.2.00 Page 57 of 45
Aug.05.2022 RENESAS

R-IN32M3 Module (RY9012A0)

Modbus TCP Start-Up Manual

4) Right-click the sample project and select the stack mode to run from "Activate" in "Build Configuration".

8} workspace_RINmodule-Modbus - €* studio - u] X
File Edit Source Refactor Navigate Search Project RenesasViews Run Window Help
45 Debug [E7] remote_io_sample_07_mbus_tcp_s i | ® - R~ i w R R
- - i e E @@ - - - M Q E| Rucs
B Project Explorer = = B |Z= Outline x = 8
= <§.; 7 8 There is no active editor that
1% remote_io_sample 07 mbus tcp serve provides an outline.
[Includes New >
5 sre Golnto
[f uGOAL
5 remote_ic Open in New Window
[¥] remote_ic Show In Alt+Shift+W »
[¥] remote_io
Copy Ctrl+C
Paste Cerl+V
¥® Delete Delete
Source >
Move...
Rename... F2
g Import..
9 Export..
Build Project
Clean Project
Refresh F5
Close Project
Close Unrelated Project = - g o=
e Y-k F59- G AV-+-¥I27W r 3]
Build Targets »
ek L, D Locai L
Build Configurations » Set Active 1 TCP_GATEWAY_UGOAL (TCP serial gateway mode on uGOAL)
5 Manage... ~ 2 TCP_SERVER_UGOAL (TCP server mode on uGOAL)
P 45 DebugAs » Build All
Team > Clean All
C With > Build Selected...
e I == TS
n P P ——

Table C-1

Figure C-3 Set Build configuration [Set Stack mode]

Build structure and Stack mode

Build Name

Stack mode

Connection Type

TCP_GATEWAY_UGOAL

Modbus TCP Gateway Stack

2.6.2 Modbus TCP Gateway Stack

TCP_SERVER_UGOAL

Modbus TCP Server stack

2.6.1 Modbus TCP Server Stack

R30AN0406EJ0200 Rev.2.00

Aug.05.2022

RENESAS

Page 58 of 45

R-

IN32M3 Module (RY9012A0)

Modbus TCP Start-Up Manual

5)

Double-click the configuration file to open the "Configuration" window.

Click "Generate Code" to generate a pre-registered driver. Confirm that the various drivers registered in

"Components" are activated (the icon turns light blue).

a workspace_ RINmodule-Modbus - remote_io_sample_07_mbus_tcp_server_rx66t_osless/remote_io_sample 07 mbus_tcp_server _rxG6t_osless.scfg - e” studio — m] X
File Edit MNavigate Search Project RenesasViews Run Window Help
%5 Debug v remote_io_sample_(07_mbus_tcp_s v - ‘ By R & B &l oy Qv
. - B A R I RS Rl Q, iF | EC/CH+ | Smart Configurator
RT3 I il = Wl 1 remote io_sample_07_mbus_tcp_server_m66t_oslessscfg = 0 » =0
<&, 2 . = -
2% 7 | software component configuration] =
~ 5 remote_io_sample_07_mbu Generate Code (fenerate Report
[Includes
&8 src Comp... pay g =] Configure @
v ° ®
197 remote_io_sample_07_n
— — type filter text
|X] remote_ic_sample_ 07 _nj
v = Startup -~
w [= Generic
& rbsp
w = Drivers
w (= DMA
E" r.dmaca_rx
~ = /O Ports
@ Config POF
w [= Communicatio
ﬁ; r_sci_ne
v [= Timers
ﬁ#' rcmt_rx
v = Middleware
~ [z Generic
O hwten ¥
< L |
< > | | Overview | Board | Clocks | Systerg | Components Pins | Interrupts
& Console X S BE :-dl ™ ~ [~ = B8 [[2 Configuration Problems < 7Y 8§ = B8
Smart Configurator Qutput 0items
MB3000084: File modified:srchsmc gen\r confighr bsp config.h A || Description - Type
Meepeeee2: Code generation is successful:D:\rl8an@@64xx@XXX\projects)
v
< >

Figure C-4 Generate Code

R30AN0406EJ0200 Rev.2.00

Aug.05.2022 RENESAS

Page 59 of 45

R-IN32M3 Module (RY9012A0)

Modbus TCP Start-Up Manual

6) Select "Build Project" to run the build.

If the build finishes without any errors, it is successful.

ﬁ workspace_RINmodule-Modbus - remote_io_sample_07_mbus_tcp_server__m66t_osless/remote_io_sample

File Edit MNavigate Search Project RenesasViews Run Window Help
4 Debug [E7] remote_io_sample_07_mbus_tcp_s [
- - R H P R - RS -

B Project Explor < (M| ﬁ} remote_io_sample_07_mbus_tcp_server_mB6t_osless.scfg X

R Software component configuration
~ [% remote_io_samole 07 mbi
[Includes New s
5 src Go Into
2H uGOoAL
4 remote_io s Open in New Window
|%] remote_io_si Show In Alt+Shift+W >
|%] remote_io_si H_ Copy coc
Paste Ctrl+V
¥ Delete Delet=
Source 5
Move...
Rename... F2
Eag Import..
&y Export..
€an Projec
Refresh Fs

7)

Figure C-5 Build

If the download finishes without any errors, it is successful.

Select "Renesas GDB Hardware Debugging" from "Debug" and execute the program download.

&) workspaceRINmodule-M "
File Edit MNavigate Search

4 e
B oo [
B Y

+ [remote_io_sample_07_i ®
#¥ Binaries
a1 Includes
B src
() uGOAL
7= TCP_GATEWAY_UGQO, N
(= trash -
i:ﬂ:} remote_io_sample_0 (]
remote ic_sample_0

L]
[£] remote_jio_sample_0

0

< i
B Console x x ‘ 4
\CDT Build Console [remote_io_s
rx-elt-size --tormat=be:

text
69224

data
3892

bss

43080
R+

@9:57:49 Build Finished

New

Golnto
-
Open in New Window o

-

Show In Alt+Shift+W > v|

Copy Cil+C fescfg X

Paste

Delete

Cirl+V
Delete
Source >
Move...

Rename...

Import...
Export...

Build Project
Clean Project
Refresh

Close Project

Close Unrelated Project

Build Targets >
Index >

v

Build Configurations

Run As
Debug As

Team

viv v

1 GDB OpenOCD Hardware Debugging (DSF)
2 GDB Simulator Debugging (RH850)

' isfremote_io_sample_07_mbus_tcp_server__rx66t_osless.scfg - e’ studic
>

[-/~ B R -G
Q E| R §
E

&l =

Generate Code Generate Report

@

Compare With
Restore from Local History...
MISRA-C

gl Nelw]

O T AppTCaneT

4 Renesas GDB Hardware Debugging
saenesas Simulator Debugging (BX BIZS)

pe

C/C++ Project Settings Crl+Alt+P

Debug Configurations...

Renesas C/C++ Project Settings >

Figure C-6 Program Download

R30ANO406EJ0200 Rev.2.00
Aug.05.2022

RENESAS

Page 60 of 45

R-IN32M3 Module (RY9012A0)

Modbus TCP Start-Up Manual

8) Click “Resume” to run the program.

a workspace_RINmodule-Modbus - remote_io_sample_07_mbus_tcp_server_r«66t_osless/src/smc_gen/r_bsp/mcu/all/reset_program.s - & stu

File Edit Mavigate Search Project RenesasViews Run Window Help

Ee3 ?ﬁ; Debug remote_io_sample_07_mbus_tcp_s - | B or % - |m ‘%}
1 (WS T N BiR| - Qilk s e RESViIFF® P i

Q ®|Ec
45 Debug X | 2 4¢|iF &8 = B {5 remote io_sample_07_mbus_tcp_server_m66t B reset_program.5 (=
v remote_ic_sample_07_mbus_tcp_server, 52 mvtec # ustack,UsP

v [remote_jo_sample_07_mbus_tcp_ser 53

54 ;s;initialise interrupt st inter
~ uf':’lhread #11 (single core) [core: 0] ;5 ’)m;\;tilhe#iziact?iss tack pointe 13
= PowerOMN_Reset_PC() at reset_g 56 e
- - el
o re-elf-gdb -re-force-isa=v3 (7.8.2) 57 ;3jump to Power ON Reset main function in RESETPF |
w1 Renesas GDB server (Host) 58 bra _PowerON_Reset_PC_Prg

59

Figure C-7 Program Run

This completes starting the sample program for the R-IN32M3 module evaluation environment SEMB1320.

R30AN0406EJ0200 Rev.2.00

Aug.05.2022

RENESAS

Page 61 of 45

LENESANS

Application Note

Revision History

Description
Rev. Date Page Summary
1.00 Jan/07/2022 | - First Edition
2.00 Apr/05/2022 | - Add Modbus Gateway function
Trademark

- Ethernet is a registered trademark of Fuji Xerox Co., Ltd.

- EtherNet/IP is a registered trademark of ODVA Inc.
- PROFINET is a registered trademark of PROFIBUS Nutzerorganisation e.V. (PNO)

- Modbus is a registered trademark of Schneider Electric SA.

respective owners.

- ARM and Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved.

- EtherCAT® and TwinCAT® are registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.

- Additionally, all product names and service names in this document are a trademark or a registered trademark which belongs to the

R30AN0406EJ0200
Rev.2.00 RENESAS

Page 62 of 45

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit
Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.
1. Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps
must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be
adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.
Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and
measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of
register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset
pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins
in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an 1/0 pull-up power supply while the device is powered off. The current injection that results from input of such a signal or /0
pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are
generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of
the LS|, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program
execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator
during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between Vi
(Max.) and Vin (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between Vi. (Max.) and Vin (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LS| is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.
The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms
of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,
operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-
evaluation test for the given product.

10.

11.
12.

Notice

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.
Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.
Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled

subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters Contact information

TOYOSU FORESIA, 3-2-24 Toyosu, For further information on a product, technology, the most up-to-date
Koto-ku, Tokyo 135-0061, Japan version of a document, or your nearest sales office, please visit:
WWW.renesas.com www.renesas.com/contact/.

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

© 2021 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 Features
	1.2 Operating Environment
	1.2.1 Hardware Environment
	1.2.2 Software Environment

	1.3 Reference Document

	2. Sample Application
	2.1 System Structure
	2.1.1 uGOAL
	2.1.2 Modbus Stack Program
	2.1.3 Modbus Application

	2.2 Block Diagram
	2.3 File Structure
	2.4 Build Structure
	2.5 Resource Structure
	2.6 Modbus Stack
	2.6.1 Modbus TCP Server Stack
	2.6.2 Modbus TCP Gateway Stack
	2.6.3 Packet Parsing
	2.6.4 TCP Connection and disconnection

	3. Application Implementation guide
	3.1 Mapping Data
	3.1.1 uGOAL Part
	1) appl_init
	2) appl_setup
	3) tcpCallback
	4) appl_setupTcpSocket

	3.1.2 Modbus Stack Part
	3.1.2.1 Configuration Settings
	3.1.2.2 Stack Initialization
	1) Callback functions corresponding to each function code
	2) Initialization Modbus Stack

	3.1.2.3 Function Code
	3.1.2.4 TCP/IP connection Management

	3.1.3 Serial Communication

	4. Communication Test with Evaluation Tool
	4.1 Modbus TCP Server
	4.2 Modbus TCP Gateway

	Appendix
	A. Structure for function codes
	B. API specification
	C. Sample software startup

	Revision History

