
 Application Note

R11AN0096EU0104 Rev.1.04 Page 1 of 26
Apr.24.23

Renesas Synergy™ Platform

Messaging Framework Module Guide
Introduction
This module guide will enable you to effectively use a module in your own design. Upon completion of this
guide, you will be able to add this module to your own design, configure it correctly for the target application
and write code, using the included application project code as a reference and efficient starting point.
References to more detailed API descriptions and suggestions of other application projects that illustrate
more advanced uses of the module are available on the Renesas Synergy Knowledge Base (as described in
the References section at the end of this document) and should be valuable resources for creating more
complex designs.

The Messaging Framework module is implemented on sf_message. It includes a lightweight and event-
driven framework API for passing messages between threads. The Messaging Framework module allows
applications to communicate messages between two or more threads. The framework uses the ThreadX®

message-queue primitive for message passing and provides more benefits than the ThreadX RTOS
message-queue services alone. The Messaging Framework API is purely a software API and does not
access any hardware peripherals. The Messaging Framework callback allows an event-producer thread and
a message-subscriber thread to handshake after the message passing is done.

You can use the messaging tab to create your own custom event classes, events, and subscribers for the
Messaging Framework module or to customize preconfigured events such as the audio playback events
used by the Audio Framework module.

Contents

1. Messaging Framework Module Features .. 3

2. Messaging Framework Module APIs Overview ... 3

3. Messaging Framework Module Operational Overview .. 5
3.1 Messaging Framework Module Message Producer and Subscribers ... 6
3.2 Messaging Framework Module Events, Subscribers, and Messages .. 7
3.2.1 Messaging Framework Module Event Class Code ... 7
3.3 Messaging Framework Module Event Class Instance Number .. 8
3.4 Messaging Framework Module Event Code ... 8
3.5 Messaging Framework Module Subscriber List .. 9
3.6 Messaging Framework Module Message Payload ... 11
3.6.1 Messaging Framework Module SSP Predefined Payload .. 11
3.6.2 Messaging Framework Module User-Defined Payload ... 11
3.7 Messaging Framework Module Important Operational Notes and Limitations 11
3.7.1 Messaging Framework Module Operational Notes ... 11
3.7.2 Messaging Framework Module Limitations ... 12

4. Including the Messaging Framework Module in an Application ... 12

5. Configuring the Messaging Framework Module .. 13
5.1 Messaging Framework Module Creating a Messaging Queue ... 14
5.2 Messaging Framework Module Configuring an Event Class and Event ... 14

Renesas Synergy™ Platform Messaging Framework Module Guide

R11AN0096EU0104 Rev.1.04 Page 2 of 26
Apr.24.23

5.3 Messaging Framework Module Configuring the Subscriber List ... 15
5.4 Messaging Framework Module Configuring the Event Class Code and Event Code 15
5.4.1 Messaging Framework Module Defining the Message Payload ... 15
5.4.2 Opening the Messaging Module in the Messaging Framework Module ... 16
5.4.3 Messaging Framework Module Acquiring a Buffer ... 16
5.4.4 Messaging Framework Module Releasing a Buffer .. 16
5.5 Messaging Framework Module Interrupts ... 17

6. Using the Messaging Framework Module in an Application .. 17

7. The Messaging Framework Module Application Project ... 18

8. Customizing the Messaging Framework Module for a Target Application 22

9. Running the Messaging Framework Module Application Project .. 22

10. Messaging Framework Module Conclusion ... 24

11. Messaging Framework Module Next Steps ... 24

12. Messaging Framework Module Reference Information ... 24

Renesas Synergy™ Platform Messaging Framework Module Guide

R11AN0096EU0104 Rev.1.04 Page 3 of 26
Apr.24.23

1. Messaging Framework Module Features
The Messaging Framework module supports the following functions:

• Inter-Thread Communication: Allows application threads which control disparate devices or manage
subsystems to communicate with each other.

• Publishing/Subscribe scheme: Based on the loosely-coupled messaging paradigm, this scheme allows
multiple threads to listen to an event class. The message producer thread does not need to know who is
subscribing to a message for the event class. Subscribers do not need to know who produces the
message.

• Message management: Supports buffer control blocks to manage each message, including flags to
control the buffer and a callback function pointer for handshaking.

• Message buffering: Manages buffer allocation and release for messaging. An application use the
allocated buffer to write a message and discard the message should it is no longer be needed.

• Synchronous communication: Supports asynchronous messaging by using the ThreadX message-
queue, and also provides an option to create a handshake between a message producer and a
subscriber thread. The handshake is implemented by invoking a user-callback function of the producer
thread from a subscriber thread.

• Message formatting: To provide a predefined common message header and also provides some typical
payload structure templates as examples.

• Message Priority: Sends a high-priority message so a subscriber thread can retrieve the message prior
to other messages which are located in the message queue.

Figure 1. Messaging Framework Module Organization and Use Example

2. Messaging Framework Module APIs Overview
The Messaging Framework module defines APIs for opening and closing the framework, acquiring and
releasing buffers, and posting messages to subscribers. A complete list of the available APIs, an example
API call, and a short description of each can be found in the following table. A table of status return values
follows.

Renesas Synergy™ Platform Messaging Framework Module Guide

R11AN0096EU0104 Rev.1.04 Page 4 of 26
Apr.24.23

Table 1. Messaging Framework Module API Summary
Function Name Example API Call and Description
.open g_sf_message.p_api->open (g_sf_message.p_ctrl, g_sf_message.p_cfg);

Initialize message framework. Initiate the messaging framework control block,
configure the work memory corresponding to the configuration parameters.

.close g_sf_message.p_api->close (g_sf_message.p_ctrl);
Finalize message framework.

.bufferAcquire g_sf_message.p_api->bufferAcquire (g_sf_message.p_ctrl, &p_buffer,
&acquire_cfg, wait_option);
Acquire buffer for message passing from the block.

.bufferRelease g_sf_message.p_api->bufferRelease (g_sf_message.p_ctrl, &p_buffer,
option);
Release buffer obtained from .bufferAcquire API.

.post g_sf_message.p_api->post (g_sf_message.p_ctrl,
(sf_message_header_t *) p_payload, &post_cfg, &err_post,
wait_option);
Post message to the subscribers.

.pend g_sf_message.p_api->pend (g_sf_message.p_ctrl,
&my_queue, &p_buffer, wait_option);
Pend message.

.versionGet g_sf_message.p_api->versionGet (&version);
Retrieve the API version with the version pointer.

Note: For details on operation and definitions for the function data structures, typedefs, defines, API data,
API structures, and function variables, see the SSP User’s Manual API References for the associated
module.

Table 2. Status Return Values

Name Description
SSP_SUCCESS API call successful.
SSP_ERR_ASSERTION Required pointer is NULL.
SSP_ERR_BUFFER_RELEASED The buffer is released.
SSP_ERR_ILLEGAL_SUBSCRIBER_LISTS Message subscriber lists is illegal.
SSP_ERR_IN_USE The messaging framework is in use.
SSP_ERR_INTERNAL OS service call fails.
SSP_ERR_INVALID_MSG_BUFFER_SIZE Message buffer size is invalid.
SSP_ERR_INVALID_WORKBUFFER_SIZE Invalid work buffer size.
SSP_ERR_MESSAGE_QUEUE_EMPTY Queue is empty. (Timeout occurs before receiving a

message if timeout option is specified.)
SSP_ERR_MESSAGE_QUEUE_FULL Queue is full. (Timeout occurs before sending a message if

timeout option is specified.)
SSP_ERR_NO_MORE_BUFFER No more buffer found in the memory block pool.
SSP_ERR_NO_SUBSCRIBER_FOUND No subscriber found.
SSP_ERR_NOT_OPEN Message framework module has yet to be opened.
SSP_ERR_TIMEOUT OS service call returns timeout.
SSP_ERR_TOO_MANY_BUFFERS Too many message buffers.

Note: Lower-level drivers may return common error codes. Refer to the SSP User’s Manual API References
for the associated module for a definition of all relevant status return values.

Renesas Synergy™ Platform Messaging Framework Module Guide

R11AN0096EU0104 Rev.1.04 Page 5 of 26
Apr.24.23

3. Messaging Framework Module Operational Overview
The following figure shows the overview of the messaging data flow between a message producer thread and
subscriber thread(s) in the system making use of the Messaging Framework module.

Figure 2. Messaging Framework - Data Flow
The following is a description for each stage of the message passing procedure:

Note: A thread in the system has been called using the open API and message subscriber threads have
called the pend API to pend on a message for the event class.

1. An event (Event A) happens on a message producer thread.
2. A message producer thread calls bufferAcquire to acquire a buffer from the ThreadX memory pool

managed by the Messaging Framework module. bufferAcquire returns the address of the allocated
buffer.

3. A message producer writes the message to the allocated buffer.
4. A message producer calls post to post the message.
5. The Messaging Framework module looks up the event subscriber list and sends a message to the

message queue of the message subscriber threads using the ThreadX message-queue primitive. The
framework just sends the pointer to the buffer but does not send the entire message, thereby performing
lightweight message passing.

Renesas Synergy™ Platform Messaging Framework Module Guide

R11AN0096EU0104 Rev.1.04 Page 6 of 26
Apr.24.23

6. The message reaches the message queue of the message subscriber threads and the message
subscriber threads return from pend. The API function returns the buffer address where the message is
stored to message subscriber threads.

7. The message subscriber threads receive the message and perform an action corresponding to the
event.

8. The message subscriber threads call bufferRelease to try to release the allocated buffer for the
message. If the message subscriber thread is not the last one subscribing to the message, the
framework does not release the buffer as the message has to be kept in the buffer until all subscribers
have received the message.

9. The Messaging Framework module invokes a user-callback function which is specified by an event
producer thread if the message subscriber thread is the last one in the message subscriber group.

10. The Messaging Framework module releases the buffer if the message subscriber thread is the last one
in the message subscriber group. (There is an option ‘SF_MESSAGE_ACQUIRE_OPTION_KEEP’ to
not release the buffer.)

3.1 Messaging Framework Module Message Producer and Subscribers
The Message Framework module is an inter-thread messaging system based on the publish/subscribe
model. A message is posted with an event class code by an event producer thread. The message subscriber
threads which subscribe to the event class can check for pending messages. Subscribers are registered in
the subscriber list, which is referred to by the framework. The subscriber list allows the framework to deliver
a message to multiple subscribers.

Every thread which joins the Messaging Framework module system network can send a message, and all
threads in the network can listen to the message.

Figure 3. Messaging Framework — Subscribing

Renesas Synergy™ Platform Messaging Framework Module Guide

R11AN0096EU0104 Rev.1.04 Page 7 of 26
Apr.24.23

3.2 Messaging Framework Module Events, Subscribers, and Messages
3.2.1 Messaging Framework Module Event Class Code
The event class code is the most important definition for the Messaging module. The Messaging module
uses the event class code as the mechanism to connect a message producer with subscribers. The event
class code is the class definition of the events which occur in the application. The classification of the event
class relies on the user definition, but it is intended to be the group name of the particular events which can
occur in a subsystem. For example, you can use the 'Audio Playback' event class, which is part of the Audio
Playback Framework module. The 'Audio Playback' Event Class is automatically loaded into the event
classes window. This window is available on the Messaging tab in the Project Configurator when you add the
Audio Playback Framework to your Synergy project.

The event class code is defined in the sf_message_event_class_t enumeration and has a prefix
SF_MESSAGE_EVENT_CLASS_XXX. Since the definition of the event class code is different for each system, the
framework does not provide a concrete event class code but instead provides a set of event class codes as
examples. (See the Configuring the Messaging Framework Module section.) The maximum number for the
event class is 255.

An application can use the event class code as follows:

• The message producer thread sets the event class code to the event_b.class_code bit fields in the
sf_message_header_t type common message header before posting the message.

• The message subscriber thread branches to the event processing corresponding to the event class code
which is set to the message header after receiving the message.

• The subscribers for the event class code must be grouped and registered in the subscriber list so that the
Message Framework can deliver the message to the subscribers.

The following screen capture illustrates how you can configure an event class using the ISDE:

Figure 4. Messaging — ISDE Event Class Configuration

Renesas Synergy™ Platform Messaging Framework Module Guide

R11AN0096EU0104 Rev.1.04 Page 8 of 26
Apr.24.23

3.3 Messaging Framework Module Event Class Instance Number
The event class instance number is used when an application needs to have different event class instances.
For example, the audio streaming event class can have instance N which represents the streaming channel
N. Message subscribers can receive a message only if the event class instance number in the message
common header matches to the number it owns.

In other words, messages for which the event class instance number is out of range for the subscriber are
filtered out and not delivered to the subscriber even though it is the event class subscriber. The maximum for
the event class instance number is 255.

An application can use the event class instance number as follows:

• The message producer thread sets the event class instance number to the event_b.class_instance bit
fields in the sf_message_header_t type common message header before posting the message.

• Each subscriber instance in the Subscriber List has to specify the range of the event class instance
numbers to receive the message (sf_message_subscriber_t::instance_range.start and
sf_message_subscriber_t::instance_range.end).

• If there is no need for multiple instances for an event class, just set
sf_message_header_t::event_b.class_instance,
sf_message_subscriber_t::instance_range.start, and
sf_message_subscriber_t::instance_range.end to zero in the subscriber instance for the
subscriber list.

3.4 Messaging Framework Module Event Code
The event code includes the details of the event definition. For instance, the event codes for the audio
playback event class are “playback start” and “playback stop.” Another example is ‘set’ or ‘get’ for the ‘time’
Event Class. The event code is enumerated in the sf_message_event_t and has a prefix
SF_MESSAGE_EVENT_XXX. The definition of the event code relies on the user code as well as the event class
code. The framework provides some code as examples. See Configuring the event class code and event
code for configuring the event code. The maximum for the event class instance number is 65535.

An application can use the event code as follows:

• The message producer thread sets the event code to the event_b.code bit fields in the
sf_message_header_t type common message header before posting the message.

• The message subscriber thread performs an action corresponding to the event code which is set to the
message header after receiving the message.

Renesas Synergy™ Platform Messaging Framework Module Guide

R11AN0096EU0104 Rev.1.04 Page 9 of 26
Apr.24.23

Figure 5. Messaging — ISDE Event Configuration

3.5 Messaging Framework Module Subscriber List
The subscriber list is used for message delivery. The framework looks up the subscriber list.

The framework starts to look up the message queues of each subscriber thread from the subscriber group
listed in the head of the pointer array to the sf_message_subscriber_list_t instance. The important point
of the subscriber list is that it is grouped by event class code (event_class).

When the framework looks up the subscriber list in the post API function at runtime, it compares the Event
Class code in the message header (sf_message_header_t::event_b.class_code), which is included in
the message payload data, with the one in the subscriber group instance (event_class). If there is a match,
the framework goes to the next level to get the message queue instance
(sf_message_subscriber_t::queue) until the iterations reach number_of_nodes). If there is no match, the
framework looks up the next subscriber group and continues until encountering a NULL in the pointer array
to the sf_message_subscriber_list_t instance.

In the look-up procedure, the subscriber group listed at the head of the subscriber list gets the highest
throughput for messaging, but lower subscriber groups encounter a penalty and get lower throughput for
messaging.

The subscriber list is the look-up table for all message subscribers. The subscriber list is configured at
compile time. It is statically mapped to the memory and looked up by the framework when the post API
function is called. The subscriber list allows the framework to determine message queues to deliver a
message to. The subscriber list consists of two structures sf_message_subscriber_list_t and
sf_message_subscriber_t as shown in the following figure:

Renesas Synergy™ Platform Messaging Framework Module Guide

R11AN0096EU0104 Rev.1.04 Page 10 of 26
Apr.24.23

• A queue for a subscriber thread is registered in sf_message_subscriber_t instance.
• The instances above for the same event class code are grouped and listed in a pointer array.
• The pointer array for a subscriber group is registered in a sf_message_subscriber_list_t instance.
• The subscriber list is the pointer array to the subscriber group structures. Subscribers are grouped by the

event class code.
• The pointer array must be terminated by NULL.

Figure 6. Message Framework — Subscriber List
In the ISDE, you can configure a subscriber grouped by the event class for the thread you named in the
Threads tab. In the following example, the thread is named “My Thread” in the Threads tab. The start and
end values reflect the event class instance numbers this thread accepts.

Figure 7. Messaging — ISDE Subscriber Configuration

Renesas Synergy™ Platform Messaging Framework Module Guide

R11AN0096EU0104 Rev.1.04 Page 11 of 26
Apr.24.23

3.6 Messaging Framework Module Message Payload
The message payload is structured data used by the message producer and the message subscribers to
communicate with each other. The message payload contains event class and event code in the common
header (sf_message_header_t type data, see event class and event code) so that a message producer
can post a message to the subscribers to inform the subscribers which event happened.

You must define a system specific message payload structure except for modules for which the SSP
provides predefined structures such as the Audio Playback Framework module. The message payload can
contain additional data that is required for the event processing, in addition to the common header.

3.6.1 Messaging Framework Module SSP Predefined Payload
The SSP contains the following predefined message payload structure:

• sf_audio_playback_data_t type for the Audio Playback Framework module

The Audio Playback Framework module uses the Messaging Framework internally and defines suitable
message payload structures. An application thread that posts audio event messages to the Audio Playback
Framework module can use sf_audio_playback_api.h.

3.6.2 Messaging Framework Module User-Defined Payload
You must define a message payload structure for each event class code; exceptions include the SSP
predefined payloads described previously or payloads that require only the common header. To create a new
message payload structure, add a common message header (sf_message_header_t type structure) at the
head in the user-specific message payload structure. The size of the header is 4 bytes.

Note: The payload size must not be greater than the buffer size.

The buffer size limit is critical. Oversized data written beyond the buffer may destroy data in the block
memory pool, which is required by ThreadX kernel. Violating the size limit results in a hard fault exception.
The buffer size can be configured in sf_message_ctrl_t::buffer_size.

3.7 Messaging Framework Module Important Operational Notes and Limitations
3.7.1 Messaging Framework Module Operational Notes
Messaging Framework and OS Message Queue Service
The Messaging Framework module uses the ThreadX primitive-message queue and kernel services and
supports some enhancement over the ThreadX RTOS features. For this reason, the Messaging Framework
module does not work exactly the same as the ThreadX message-queue service. However, a messaging
system with the Messaging Framework module can work simultaneously with the ThreadX message queue
services in an application if the two messaging systems are separated.

API Calls Contexts

• The open API can only be called from a thread. It can be called only once per the message framework
control block instance. The behavior is undefined if the function is called twice.

• The close API can only be called from a thread.
• The bufferAcquire API can be called from a thread and an ISR.
• The bufferRelease API can only be called from a thread.
• The post API can be called from a thread and an ISR.
• The pend API can be called from a thread and an ISR.

Estimating the Number of Buffers

The number of buffers available to be allocated in the work memory should be estimated properly when
designing the messaging system. The number of buffers is estimated as follows:

𝑁𝑁 ≈
𝑊𝑊𝑚𝑚

𝑀𝑀𝑏𝑏 + 𝐵𝐵𝑐𝑐𝑏𝑏 + 𝑇𝑇𝑥𝑥
=

𝑊𝑊𝑚𝑚

𝑀𝑀𝑏𝑏 + 12 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 4 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

where:

𝑁𝑁 – number of buffers,

𝑊𝑊𝑚𝑚 – work memory size (in bytes),

Renesas Synergy™ Platform Messaging Framework Module Guide

R11AN0096EU0104 Rev.1.04 Page 12 of 26
Apr.24.23

𝑀𝑀𝑏𝑏 – message buffer size (in bytes),

𝐵𝐵𝑐𝑐𝑏𝑏 = 12 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 – size of buffer control block,

𝑇𝑇𝑥𝑥 = 4 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 – reserved bytes for ThreadX.

The maximum number possible for buffers allocated at the same time equals the total amount of depth of
message queues in the system. Ideally, the number of buffers for a robust system should be the sum of the
depths of the message queues in the system.

For example, in current project, the work memory size is set to “2048” in g_sfmessage Messaging framework
of Threads Configuration which means 𝑊𝑊𝑚𝑚 is equal to “2048”. 𝑀𝑀𝑏𝑏 is “4” bytes. So, for current project, we can
estimate

the number of message buffers is 2048
4+12+4

 ≈102.

Message Queue Size and Depth Setting
The Messaging Framework module needs a 4-byte memory block on the message queue as it delivers the
pointer to the buffer which contains a message payload. For this reason, the size of the message queue
should be fixed to 4 bytes. A size greater than 4 bytes negatively affects the performance, as the extra
memory copy resides in the ThreadX message queue service, which is internally invoked by the Messaging
Framework API functions.

The depth of the message queue is arbitrary, but it should accommodate the number of queued messages at
runtime. As a guideline, estimate the value as follows:

𝐷𝐷 ≈
𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎
𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎

where:

𝐷𝐷 – queue depth,

𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 – average message delivery rate from producers,

𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎 – average event loop completion time in the subscriber.
For example, the average message delivery rate from producers is 1ms, but the average event loop
completion time is 4ms. Then queue depth should be 4.

3.7.2 Messaging Framework Module Limitations
Refer to the latest SSP Release Notes for any additional operational limitations for this module.

4. Including the Messaging Framework Module in an Application
This section describes how to include the Messaging Framework module in an application using the SSP
configurator.

Note: It is assumed you are familiar with creating a project, adding threads, adding a stack to a thread, and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few
chapters of the SSP User’s Manual to learn how to manage each of these important steps in creating
SSP-based applications.

To add the Messaging Framework to an application, simply add it to a thread using the stacks selection
sequence given in the following table. (The default name for the Messaging Framework is g_sf_message0.
This name can be changed in the associated Properties window.)

Table 3. Messaging Framework Module Selection Sequence
Resource ISDE Tab Stacks Selection Sequence
g_sf_message Messaging
Framework on sf_message

Threads New Stack> Framework> Services> Messaging
Framework on sf_message

When the Messaging Framework module on sf_message is added to the thread stack as shown in the following
figure, the configurator automatically adds any needed lower-level modules. Modules with a Blue band are
shared or common and need only be added once and can be used by multiple stacks.

Renesas Synergy™ Platform Messaging Framework Module Guide

R11AN0096EU0104 Rev.1.04 Page 13 of 26
Apr.24.23

Figure 8. Messaging Framework Module Stack

5. Configuring the Messaging Framework Module
You must configure the Messaging Framework module for the desired operation. The SSP configuration
window will automatically identify (by highlighting the block in red) any required configuration selections, such
as interrupts or operating modes, which must be configured for lower-level modules for successful operation.
Furthermore, only those properties that can be changed without causing conflicts are available for
modification. Other properties are ‘locked’ and not available for changes and are identified with a lock icon
for the ‘locked’ property in the Properties window in the ISDE. This approach simplifies the configuration
process and makes it much less error-prone than previous ‘manual’ approaches to configuration. The
available configuration settings and defaults for all the user-accessible properties are given in the properties
tab within the SSP configurator and shown in the following tables for easy reference.

One of the properties most often identified as requiring a change is the interrupt priority. This configuration
setting is available with the Properties window of the associated module. Simply select the indicated module
and then view the Properties window. The interrupt settings are often toward the bottom of the properties list,
so scroll down until they become available. Also note that the interrupt priorities listed in the Properties
window in the ISDE will include an indication as to the validity of the setting based on the MCU targeted
(CM4 or CM0+). This level of detail is not included in the following configuration properties tables but is
easily visible with the ISDE when configuring interrupt-priority levels.

Note: You may want to open your ISDE and create the module and explore the property settings in parallel
with looking over the following configuration table settings. This helps to orient you and can be a
useful ‘hands-on’ approach to learning the ins and outs of developing with SSP.

Table 4. Configuration Settings for the Messaging Framework Module on sf_message

ISDE Property Value Description
Parameter Checking BSP, Enabled,

Disabled

Default: BSP

Enables or disables the parameter checking.

Message Queue Depth
(Total number of
messages to be
enqueued in a
Message Queue)

16 Specify the size of Thread X Message Queue in bytes for
Message Subscribers. This value is applied to all the
Message Queues.

Name g_sf_message The name of Messaging Framework module control block
instance.

Work memory size in
bytes

2048 Specify the work memory size in bytes. Choosing a small
number results a small number of buffers which can be
allocated at the same time (You can confirm the total
buffer number on:
sf_message_ctrl_t::number_of_buffers). If the value
is smaller than the peak number of messages to be posted
at the same time, the Framework occurs a buffer allocation
failure affecting system performance.

Pointer to subscriber
list array

p_subscriber_lists Specify the name of pointer to the Subscriber List array.

Renesas Synergy™ Platform Messaging Framework Module Guide

R11AN0096EU0104 Rev.1.04 Page 14 of 26
Apr.24.23

ISDE Property Value Description
name of the block pool
internally used in the
messaging framework

sf_msg_blk_pool The name of memory block memory the Framework
creates in the control block. This parameter might be
useful for debugging purposes, but NULL can be specified
for saving memory.

Name of generated
initialization function

sf_message_init Name of generated initialization function

Auto Initialization Enable, Disable
Default: Enable

Auto initialization selection

Note: The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs
may have different default values and available configuration settings.

5.1 Messaging Framework Module Creating a Messaging Queue
The messaging configurator automatically creates the message queue for the subscribers.

5.2 Messaging Framework Module Configuring an Event Class and Event
To use the Messaging Framework with your own event class, use the Threads tab and the Messaging tab of
the project configurator in the ISDE.

In the Threads tab, do the following:

1. Add a new thread in the Threads window and give it a unique name.
2. Add the Messaging Framework component in the Thread Stacks panel of the Threads window.
3. In the Messaging tab (see event class code), do the following:

A. In the Event Class window, add an event class.
B. Enter the name of the event class for your thread to subscribe to in the New Event Class dialog box.

Figure 9. Messaging — e2 studio New Event Class Configuration

Renesas Synergy™ Platform Messaging Framework Module Guide

R11AN0096EU0104 Rev.1.04 Page 15 of 26
Apr.24.23

4. In the Events window, add any events that your application may support (see event code).

Figure 10. Messaging – e2 studio New Event Configuration
Your custom event class code and event code are stored in a file named sf_message_port.h. The Audio
Playback event class is a predefined event class in the SSP.

5.3 Messaging Framework Module Configuring the Subscriber List
In the Messaging tab (see also Subscriber List), do the following:

1. Select the event class in the Event Classes window and configure a thread for the subscriber list in the
event class Subscribers window.

2. Select your thread from the drop-down list in the Threads dialog box.
3. Next to start, enter the start number of the event class instance(s). If your system does not use multiple

event class instances for the event class, or you are not sure what number to specify, just keep the
default number (0). Allowed values range from 0 to 255.

4. Next to End, enter the last number of the event class instance(s). If your system does not use multiple
event class instances for the event class, or you are not sure what number to specify, just keep the
default number (0). Allowed values range from 0 to 255.

5. Click OK. A subscriber for your specified event is added in the subscriber list.
6. Repeat these steps for all event class instances if there are more than one.

Figure 11. Messaging — e2 studio New Subscriber Configuration

5.4 Messaging Framework Module Configuring the Event Class Code and Event
Code

5.4.1 Messaging Framework Module Defining the Message Payload
You can define your own message payload structure. Every user-defined message structure must include
the sf_message_header_t type structure as one of the members, but the other members are entirely user-
definable. The Messaging Framework does not care where the message payload structures are defined. You
can include the file which defines your own message payload structure in the source file for your message
producer and subscriber threads.

Renesas Synergy™ Platform Messaging Framework Module Guide

R11AN0096EU0104 Rev.1.04 Page 16 of 26
Apr.24.23

5.4.2 Opening the Messaging Module in the Messaging Framework Module
Configure the sf_message_cfg_t type configuration parameters to match your system. You can generate
code for the configuration structure through the Synergy Configuration tool. Add a Messaging Framework
component to the thread stacks in the Threads tab and modify the properties for the Messaging Framework
module in the Properties window. When you press the Generate Project Content button, the code for the
Messaging Framework module is generated on the thread code.

5.4.3 Messaging Framework Module Acquiring a Buffer
Before posting a message, an event producer thread must acquire a buffer for the message from the
Messaging Framework module. An event producer thread can acquire the buffer by calling bufferAcquire.

When the API function returns SSP_SUCCESS, the buffer with message buffer size in bytes configured on
Synergy Configuration tool is allocated in the memory pool managed by the Messaging Framework. The
maximum number allowed to be allocated depends on the configuration Work memory size in bytes
specified on the Synergy Configuration tool. For the estimation of the maximum number, see Estimating the
Number of Buffers.

The bufferAcquire API has several options to change the message passing behavior:

• buffer keep: This option allows the application thread to hold the buffer not to be released by the API
function bufferRelease if set to true. Typically, the buffer is to be released by bufferRelease when the
message passing is done; however, in a scenario to have periodical or repeated message passing
between threads, this same buffer can be re-used for the messaging without allocating and releasing the
buffer each time. Enabling this option reduces the overhead in the buffer allocation/release operation
and improve the system throughput.

• wait_options: The wait time option is valid if all buffers have been acquired. Any arbitrary thread tick
count, TX_WAIT_FOREVER, TX_NO_WAIT can be set for this option. For details, see the
tx_block_allocate() description for the ThreadX service call in the ThreadX User Guide.

5.4.4 Messaging Framework Module Releasing a Buffer
After message subscriber threads receive a message posted by an event producer, the message subscriber
threads must release the buffer to the framework. Buffer releasing is performed by calling bufferRelease.
Since the API function can be called multiple times if there are multiple event subscribers in the system, the
actual buffer release is performed only by the last message subscriber thread in the event subscribers. For
instance, if there were three subscribers in the subscriber group for the event class, the first and second
threads which call bufferRelease do not release the buffer, only the third thread releases the buffer. Note
that if the buffer keep option is specified by bufferAcquire, the buffer is never being released except when
option SF_MESSAGE_RELEASE_OPTION_FORCED_RELEASE is passed to the API function argument option.
(Also see Messaging Framework callbacks for bufferRelease API function use.)

The API is also used for invoking a user-callback function to create a handshake between an event producer
thread and a message subscriber thread.

Posting a message
1. After getting a buffer by bufferAcquire, an event producer can write the message payload data to the

buffer location.
2. ATTENTION: Writing data to the buffer is the user's responsibility and writing more data than the buffer

size causes a fatal error in the Messaging Framework module.
3. Write an event class code to the sf_message_header_t::event_b.class_code in the payload

structure.
4. Write an event code to the sf_message_header_t::event_b.code in the payload structure. It is not

mandatory to specify this but necessary in most cases.
5. Write an event class instance number to sf_message_header_t::event_b.class_instance. Specify a

number from 0 to 255 if your system has multiple instances for an event class. Specify 0 if your system
simply uses single event class instance.

6. Post the message by the post API. Note that the pointer to the buffer must be cast to the
sf_message_header_t * type when given to the API. The message will be delivered to the message
subscribers which are registered in the message subscriber list. The post API has several options to
change the message passing behavior.

Renesas Synergy™ Platform Messaging Framework Module Guide

R11AN0096EU0104 Rev.1.04 Page 17 of 26
Apr.24.23

 Message priority: Message can take one of two message priority levels,
SF_MESSAGE_PRIORITY_NORMAL or SF_MESSAGE_PRIORITY_HIGH. When
SF_MESSAGE_PRIORITY_HIGH is specified, the message is queued at the front of the message queue
of the message subscriber. This is typically used for the emergency message to make the message
subscribers handle the event prior to the events which might have been queued in the message
queue.

 User-callback function: This function is registered in the buffer control block of the Messaging
Framework module. The callback function is invoked by bufferRelease. This function can be used
for handshaking between an event producer thread and a message subscriber thread.

 Wait_options: The wait time option is valid if a message queue of the message subscriber thread is
full. Any arbitrary ThreadX tick count, TX_WAIT_FOREVER and TX_NO_WAIT can be set to this option.
For details, see the description of tx_queue_send() ThreadX service call in the ThreadX User Guide.

Checking for a Pending Message

1. After the Messaging Framework module is opened, the message subscriber threads can wait for a
message by calling pend. In general use, the second API argument specifies the pointer to a message
queue, which you configured for the message subscriber thread in the Thread Subscribers pane in the
Messaging tab, but you can specify the other message queues instead if required.

2. When a message is delivered from an event producer, the thread returns from pend.
3. The API returns the pointer to the buffer which contains the message to the thread through the third

argument of the API.
4. The message subscriber casts the pointer above with a pointer type for the user custom message

payload structure and does the event processing corresponding to the Event Class code
sf_message_header_t::event_b.class_code, Event code sf_message_header_t::event_b.code and
the user defined arbitrary data in the message.

Note that pend has the wait_option to change the behavior of the API function:

The fourth argument of pend is the wait time option, which is only valid if the message queue of the message
subscriber thread is empty. Any arbitrary ThreadX tick count, TX_WAIT_FOREVER, and TX_NO_WAIT can be
set to this option. For details, see tx_queue_send() ThreadX service call in the ThreadX User Guide.

5.5 Messaging Framework Module Interrupts
The Messaging Framework module does not use any interrupts.

6. Using the Messaging Framework Module in an Application
The typical steps in using the Messaging Framework module in an application are to first configure all the
required settings as follows:

• Create a Message Queue
• Configure the Event Class and Event
• Configure the Subscriber List
• Configure the Event Class Code and Event Code

Once configuration is complete, the module’s APIs can be used in the target application as follows:

1. Initialize the Messaging Framework with the open API
2. Acquire a buffer with the bufferAcquire API
3. Post a message with the post API
4. Check for a pending message with the pend API
5. Release a buffer using the bufferRelease API
6. Close the Messaging Framework with the close API

Renesas Synergy™ Platform Messaging Framework Module Guide

R11AN0096EU0104 Rev.1.04 Page 18 of 26
Apr.24.23

Figure 12. Flow Diagram of a Typical Messaging Framework Module Application

7. The Messaging Framework Module Application Project
The application project associated with this module guide demonstrates the aforementioned steps in a full
design. The project can be found using the link provided in the References section at the end of this
document. You may want to import and open the application project within ISDE and view the configuration
settings for the messaging framework module. You can also read over the code (in
producer_thread_entry.c, led1_thread_entry.c, led2_thread_entry.c, and
led3_thread_entry.c) which illustrates the Messaging Framework APIs in a complete design.

The application project demonstrates the typical use of the Messaging Framework module APIs. The
application project producer thread entry initializes the Messaging Framework and periodically selects a
random message. The message contains information which determines which LED should be turned on or
off. Each LED has its own handler thread which controls the diode; in these threads the message is received
and handled. It executes the command and waits for the new one. The producer thread prints sent
messages and the handler threads print received messages on the Debug Console using the common semi-
hosting function. The following table identifies the target versions for the associated software and hardware
used by the application project:

Renesas Synergy™ Platform Messaging Framework Module Guide

R11AN0096EU0104 Rev.1.04 Page 19 of 26
Apr.24.23

Table 5. Software and Hardware Resources Used by the Application Project
Resource Revision Description
e2 studio 6.2.1 Integrated Solution Development Environment
SSP 1.5.0 Synergy Software Platform
IAR EW for Synergy 8.23.1 IAR Embedded Workbench® for Renesas Synergy™
SSC 1.5.0 Synergy Standalone Configurator
SK-S7G2 v3.0 to v3.3 Starter Kit

A simple flow diagram of the application project is given in the following figure:

Figure 13. Messaging Framework Module Application Project Flow Diagram
The complete application project can be found using the link provided in the References section at the end of
this document. The producer_thread_entry.c, led1_thread_entry.c, led2_thread_entry.c, and
led3_thread_entry.c files are located in the project once they have been imported into the ISDE. You can
open each of these files within the ISDE and follow along with the description provided to help identify key
uses of APIs.

The first section of producer_thread_entry.c has the header files which reference the Messaging
Framework instance structure and a code section which allows semi-hosting to display results using
printf(). The next section contains macro constants definition for a pseudo-random number generator.
The pseudo-random number generator is used to select a message. Afterwards, global variables for the
producer thread are defined followed by function prototypes.

The next section has function definitions. The first function toggles the binary state stored in a variable;
based on its value, one of two events is returned. The function for selecting a random message follows.
There are four event classes to select, each one can be chosen with a 25% probability. If the semi-hosting
capability is enabled, a simple function is defined which maps an event code to a string literal. The last
function gets a random message and sends it through the Messaging Framework instance. A short
information message is displayed using semi-hosting showing which event has been sent.

Renesas Synergy™ Platform Messaging Framework Module Guide

R11AN0096EU0104 Rev.1.04 Page 20 of 26
Apr.24.23

The last section is the thread-entry function. This function initializes semi-hosting (if necessary) and acquires
the message buffer with the bufferAcquire API. In the infinite while loop, the function for selecting and
positing a message is called and the thread falls asleep for several ticks.

The first section of the LED Thread entry file (one of led1_thread_entry.c, led2_thread_entry.c, or
led3_thread_entry.c) has header files which reference necessary thread-related variables and structures,
including LED Thread configuration structure. Declaration of global variables follows: the first one is used as
a pointer to a received message and the second contains thread configuration settings, including index of the
controlled LED, LED-specific event class, and event codes for turning the diode on and off. The next section
has the thread-entry function. At first, LED configuration is initialized; then in the ‘forever’ loop, the message
is received. If the message is available, then the function for the message processing is called using thread-
specific configuration settings. It checks for the type of event (an event class and a code) and executes the
appropriate command.

Note: This description assumes you are familiar with using printf() with the Debug Console in the
Synergy Software Package. If you are unfamiliar with printf(), see the Knowledge Base article, How
do I Use Printf() with the Debug Console in the Synergy Software Package, available in the
References section at the end of this document. Alternatively, you can see results via the watch
variables in the debug mode.

A few key properties are configured in this application project to support the required operations and the
physical properties of the target board and MCU. The properties with the values set for this specific project
are listed in the following tables. You can also open the application project and view these settings in the
Properties window as a hands-on exercise.

Table 6. Messaging Framework Configuration Settings for the Application Project

ISDE Property Value Set
Parameter Checking Default (BSP)
Message Queue Depth (Total number of
messages to be enqueued in a Message Queue)

16

Name g_sf_message
Work memory size in bytes 2048
Pointer to subscriber list array p_subscriber_lists
Name of the block pool internally used in the
messaging framework

sf_msg_blk_pool

To configure event classes, events, and subscriber lists, you should open Messaging tab and use the
following settings.

Table 7. LED1 Event Class definition for the Application Project

ISDE Property Value Set
Symbol SF_MESSAGE_EVENT_CLASS_LED1
Name LED1
Payload header file led1_api.h
Payload led1_payload
Payload type led1_payload_t

Table 8. LED2 Event Class definition for the Application Project

ISDE Property Value Set
Symbol SF_MESSAGE_EVENT_CLASS_LED2
Name LED2
Payload header file led2_api.h
Payload led2_payload
Payload type led2_payload_t

Renesas Synergy™ Platform Messaging Framework Module Guide

R11AN0096EU0104 Rev.1.04 Page 21 of 26
Apr.24.23

Table 9. LED3 Event Class definition for the Application Project

ISDE Property Value Set
Symbol SF_MESSAGE_EVENT_CLASS_LED3
Name LED3
Payload header file led3_api.h
Payload led3_payload
Payload type led3_payload_t

Table 10. LED All Event Class definition for the Application Project

ISDE Property Value Set
Symbol SF_MESSAGE_EVENT_CLASS_LED_ALL
Name LED All
Payload header file led_all_api.h
Payload led_all_payload
Payload type led_all_payload_t

Table 11. LED1_ON Event definition for the Application Project

ISDE Property Value Set
Symbol SF_MESSAGE_EVENT_LED1_ON
Name LED1_ON

Table 12. LED1_OFF Event definition for the Application Project

ISDE Property Value Set
Symbol SF_MESSAGE_EVENT_LED1_OFF
Name LED1_OFF

Table 13. LED2_ON Event definition for the Application Project

ISDE Property Value Set
Symbol SF_MESSAGE_EVENT_LED2_ON
Name LED2_ON

Table 14. LED2_OFF Event definition for the Application Project

ISDE Property Value Set
Symbol SF_MESSAGE_EVENT_LED2_OFF
Name LED2_OFF

Table 15. LED3_ON Event definition for the Application Project

ISDE Property Value Set
Symbol SF_MESSAGE_EVENT_LED3_ON
Name LED3_ON

Table 16. LED3_OFF Event definition for the Application Project

ISDE Property Value Set
Symbol SF_MESSAGE_EVENT_LED3_OFF
Name LED3_OFF

Renesas Synergy™ Platform Messaging Framework Module Guide

R11AN0096EU0104 Rev.1.04 Page 22 of 26
Apr.24.23

Table 17. LED_ALL_ON Event definition for the Application Project

ISDE Property Value Set
Symbol SF_MESSAGE_EVENT_LED_ALL_ON
Name LED_ALL_ON

Table 18. LED_ALL_OFF Event definition for the Application Project

ISDE Property Value Set
Symbol SF_MESSAGE_EVENT_LED_ALL_OFF
Name LED_ALL_OFF

Table 19. Event Subscribers configuration for the Application Project

Thread\Event Class LED1 LED2 LED3 LED All
LED1 Thread ✓ ✓
LED2 Thread ✓ ✓
LED3 Thread ✓ ✓

Note: The application project uses only one instance of each event class, so start and end values for all
event classes and threads should be set to 0.

8. Customizing the Messaging Framework Module for a Target Application
Some configuration settings will normally be changed by the developer from those shown in the application
project. For example, the user can easily add new event classes or events. The user can also change the
subscriber list for each event; this can be done using the Messaging tab in the configurator.

9. Running the Messaging Framework Module Application Project
To run the Messaging Framework module application project and to see it executed on a target kit, you can
simply import it into your ISDE, compile, and run debug.

To implement the Messaging Framework application in a new project, follow the steps for defining,
configuring, auto-generating files, adding code, compiling, and debugging on the target kit. Following these
steps is a hands-on approach that can help make the development process with SSP more practical, while
just reading over this guide tends to be more theoretical.

Note: The following steps are described in sufficient detail for someone experienced with the basic flow
through the Synergy development process. If these steps are not familiar, refer to the first few
chapters of the SSP User’s Manual for a description of how to accomplish these steps.

To create and run the Messaging Framework application project, simply follow these steps:

1. Create a new Renesas Synergy project for the SK-S7G2 called Messaging_FW_MG_AP.
2. Select the Threads tab.
3. Add a new thread called

Symbol led1_thread
Name LED1 Thread

4. Add a new thread called
Symbol led2_thread
Name LED2 Thread

5. Add a new thread called
Symbol led3_thread
Name LED3 Thread

6. Add a new thread called
Symbol producer_thread
Name Producer Thread

7. Add the Messaging Framework to Producer Thread.
8. Configure the Messaging Framework instance.
9. Select the Messaging tab.

Renesas Synergy™ Platform Messaging Framework Module Guide

R11AN0096EU0104 Rev.1.04 Page 23 of 26
Apr.24.23

10. Add a new event class called
Name LED1

11. Add a new event class called
Name LED2

12. Add a new event class called
Name LED3

13. Add a new event class called
Name LED All

14. Add LED1 Thread to LED1 Subscribers and LED All Subscribers.
15. Add LED2 Thread to LED2 Subscribers and LED All Subscribers.
16. Add LED3 Thread to LED3 Subscribers and LED All Subscribers.
17. Add an event called

Name LED1_ON
18. Add an event called

Name LED1_OFF
19. Add an event called

Name LED2_ON
20. Add an event called

Name LED2_OFF
21. Add an event called

Name LED3_ON
22. Add an event called

Name LED3_OFF
23. Add an event called

Name LED_ALL_ON
24. Add an event called

Name LED_ALL_OFF
25. Click on the Generate Project Content button.
26. Add the code from supplied project files led1_api.h, led2_api.h, led3_api.h, led_all_api.h,

led_api.c, led_api.h, semihosting_cfg.h, led1_thread_entry.c, led2_thread_entry.c,
led3_thread_entry.c, and producer_thread_entry.c or copy over these files.

27. Connect to the host PC via a micro USB cable to J19 on SK-S7G2 Kit.
28. Start to debug the application.
29. The output can be viewed on the debug console (Renesas Debug Virtual Console).

Figure 14. Example Output from Messaging Framework Application Project

Renesas Synergy™ Platform Messaging Framework Module Guide

R11AN0096EU0104 Rev.1.04 Page 24 of 26
Apr.24.23

10. Messaging Framework Module Conclusion
This module guide has provided all the background information needed to select, add, configure, and use the
module in an example project. Many of these steps were time consuming and error-prone activities in
previous generations of embedded systems. The Renesas Synergy™ Platform makes these steps much less
time consuming and removes the common errors, like conflicting configuration settings or the incorrect
selection of lower-level drivers. The use of high-level APIs (as demonstrated in the application project)
illustrates additional development time savings by allowing work to begin at a high level and avoiding the
time required in older development environments to use or, in some cases, create, lower-level drivers.

11. Messaging Framework Module Next Steps
After you have mastered a simple Messaging Framework project, you may want to review a more complex
example. Refer to the Audio Playback Framework Module Guide, which makes use of the Messaging
Framework.

You may find that simple ThreadX message queue is a better fit for your target application. If you would like
to review ThreadX APIs, then the ThreadX User’s Manual is the right place to start.

The SSP User’s Manual and ThreadX® User’s Manual are available as described in the References section
at the end of this document.

12. Messaging Framework Module Reference Information
SSP User Manual: Available from the Renesas Synergy Software Package website:
https://www.renesas.com/us/en/products/synergy/software/ssp.html

Links to all the most up-to-date sf_message module reference materials and resources are available on the
Synergy Knowledge Base: https://en-support.renesas.com/knowledgeBase/16977549.

https://www.renesas.com/us/en/products/synergy/software/ssp.html
https://en-support.renesas.com/knowledgeBase/16977549

Renesas Synergy™ Platform Messaging Framework Module Guide

R11AN0096EU0104 Rev.1.04 Page 25 of 26
Apr.24.23

Website and Support
Visit the following vanity URLs to learn about key elements of the Synergy Platform, download components
and related documentation, and get support.

Synergy Software www.renesas.com/synergy/software
 Synergy Software Package www.renesas.com/synergy/ssp
 Software add-ons www.renesas.com/synergy/addons
 Software glossary www.renesas.com/synergy/softwareglossary

Development tools www.renesas.com/synergy/tools

Synergy Hardware www.renesas.com/synergy/hardware
 Microcontrollers www.renesas.com/synergy/mcus
 MCU glossary www.renesas.com/synergy/mcuglossary
 Parametric search www.renesas.com/synergy/parametric

Kits www.renesas.com/synergy/kits

Synergy Solutions Gallery www.renesas.com/synergy/solutionsgallery
 Partner projects www.renesas.com/synergy/partnerprojects

Application projects www.renesas.com/synergy/applicationprojects

Self-service support resources:

Documentation www.renesas.com/synergy/docs
Knowledgebase www.renesas.com/synergy/knowledgebase
Forums www.renesas.com/synergy/forum
Training www.renesas.com/synergy/training
Videos www.renesas.com/synergy/videos
Chat and web ticket www.renesas.com/synergy/resourcelibrary

https://www.renesas.com/synergy/software
https://www.renesas.com/synergy/ssp
https://www.renesas.com/synergy/addons
https://www.renesas.com/synergy/softwareglossary
https://www.renesas.com/synergy/tools
https://www.renesas.com/synergy/hardware
https://www.renesas.com/synergy/mcus
https://www.renesas.com/synergy/mcuglossary
https://www.renesas.com/synergy/parametric
https://www.renesas.com/synergy/kits
https://www.renesas.com/synergy/solutionsgallery
https://www.renesas.com/synergy/partnerprojects
https://www.renesas.com/synergy/applicationprojects
https://www.renesas.com/synergy/docs
https://www.renesas.com/synergy/knowledgebase
https://www.renesas.com/synergy/forum
https://www.renesas.com/synergy/training
https://www.renesas.com/synergy/videos
https://www.renesas.com/synergy/resourcelibrary

Renesas Synergy™ Platform Messaging Framework Module Guide

R11AN0096EU0104 Rev.1.04 Page 26 of 26
Apr.24.23

Revision History

Rev. Date
Description
Page Summary

1.00 Jun.15.17 — Initial version
1.01 Aug.01.17 — Update to Hardware and Software Resources Table
1.02 Sep.06.17 — Added checks for debugging to semi-hosted output

Updated this doc with feedback from outside reviewer
1.03 Feb.01.19 — Updates to api calls and configuration settings throughout
1.04 Apr.24.23 — Removed references to deprecated Touch Panel Framework

module

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external

reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states

of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power

reaches the level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity

of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in

terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic

values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a

system-evaluation test for the given product.

© 2023 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Messaging Framework Module Features
	2. Messaging Framework Module APIs Overview
	3. Messaging Framework Module Operational Overview
	1.1
	3.1 Messaging Framework Module Message Producer and Subscribers
	3.2 Messaging Framework Module Events, Subscribers, and Messages
	3.2.1 Messaging Framework Module Event Class Code

	3.3 Messaging Framework Module Event Class Instance Number
	3.4 Messaging Framework Module Event Code
	3.5 Messaging Framework Module Subscriber List
	3.6 Messaging Framework Module Message Payload
	3.6.1 Messaging Framework Module SSP Predefined Payload
	3.6.2 Messaging Framework Module User-Defined Payload

	3.7 Messaging Framework Module Important Operational Notes and Limitations
	3.7.1 Messaging Framework Module Operational Notes
	3.7.2 Messaging Framework Module Limitations

	4. Including the Messaging Framework Module in an Application
	5. Configuring the Messaging Framework Module
	1.1
	5.1 Messaging Framework Module Creating a Messaging Queue
	5.2 Messaging Framework Module Configuring an Event Class and Event
	5.3 Messaging Framework Module Configuring the Subscriber List
	5.4 Messaging Framework Module Configuring the Event Class Code and Event Code
	5.4.1 Messaging Framework Module Defining the Message Payload
	5.4.2 Opening the Messaging Module in the Messaging Framework Module
	5.4.3 Messaging Framework Module Acquiring a Buffer
	5.4.4 Messaging Framework Module Releasing a Buffer

	5.5 Messaging Framework Module Interrupts

	6. Using the Messaging Framework Module in an Application
	7. The Messaging Framework Module Application Project
	8. Customizing the Messaging Framework Module for a Target Application
	9. Running the Messaging Framework Module Application Project
	10. Messaging Framework Module Conclusion
	11. Messaging Framework Module Next Steps
	12. Messaging Framework Module Reference Information
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

