

RX140 Group, RX130 Group

Differences Between the RX140 Group and the RX130 Group

Introduction

This application note is intended as a reference to points of difference between the peripheral functions, I/O registers, and pin functions of the RX140 Group and RX130 Group, as well as a guide to key points to consider when migrating between the two groups.

Unless specifically otherwise noted, the information in this application note applies to the 80-pin package version of the RX140 Group and the 100-pin package version of the RX130 Group as the maximum specifications. To confirm details of differences in the specifications of the electrical characteristics, usage notes, and setting procedures, refer to the User's Manual: Hardware of the products in question.

Target Devices

RX140 Group and RX130 Group

Contents

1.	Comparison of Built-In Functions of RX140 Group and RX130 Group	4
2.	Comparative Overview of Specifications	6
2.1	CPU	6
2.2	Address Space	7
2.3	Option-Setting Memory	8
2.4	Voltage Detection Circuit	9
2.5	Clock Generation Circuit	10
2.6	Low Power Consumption	15
2.7	Register Write Protection Function	20
2.8	Exception Handling	21
2.9	Buses	22
2.10	Data Transfer Controller	23
2.11	Event Link Controller	25
2.12	I/O Ports	27
2.13	Multi-Function Pin Controller	30
2.14	8-Bit Timer	44
2.15	Realtime Clock	45
2.16	Low-Power Timer	46
2.17	Serial Communications Interface	48
2.18	Serial Peripheral Interface	53
2.19	Capacitive Touch Sensing Unit	56
2.20	12-Bit A/D Converter	66
2.21	Temperature Sensor	71
2.22	RAM	72
2.23	Flash Memory	73
2.24	Packages	76
3.	Comparison of Pin Functions	77
3.1	80-Pin Package	77
3.2	64-Pin Package	80
3.3	48-Pin Package	83
4.	Important Information when Migrating Between MCUs	85
4.1	Notes on Functional Design	85
4.1.1	Exception Vector Table	85
4.1.2	Port Direction Register (PDR) Initialization	85
4.1.3	Suppressing Noise on the I ² C Bus Interface	85
4.1.4	Sampling Interval Setting for Frequency Diffusion	85
4.1.5	Transmit Pins when Using Self-Capacitance Method	85

RX1	40 Group, RX130 Group	Differences Between the RX140 Group and the RX130 Group
5.	Reference Documents	86
Rev	ision History	88

1. Comparison of Built-In Functions of RX140 Group and RX130 Group

A comparison of the built-in functions of the RX140 Group and RX130 Group is provided below. For details of the functions, see section 2, Comparative Overview of Specifications and section 5, Reference Documents.

Table 1.1 is a comparison of built-in functions of RX140 Group and RX130 Group.

Table 1.1 Comparison of Built-In Functions of RX140 Group and RX130 Group

Function	RX130	RX140
<u>CPU</u>		
Operating modes		C
Address space	4	
Resets	()
Option-setting memory (OFSM)	4	
Voltage detection circuit (LVDAb)	4	
Clock generation circuit		/
Clock frequency accuracy measurement circuit (CAC)	()
Low power consumption		
Register write protection function	4	
Exception handling		
Interrupt controller (ICUb)	()
Buses	4	
Data transfer controller (DTCa): RX130, (DTCb): RX140		
Event link controller (ELC)		
I/O ports		/
Multi-function pin controller (MPC)		/_
Multi-function timer pulse unit 2 (MTU2a)	()
Port output enable 2 (POE2a)	()
8-bit timer (TMR)		
Compare match timer (CMT)	()
Realtime clock (RTCc)		
Low-power timer (LPT): RX130, (LPTa): RX140		
Independent watchdog timer (IWDTa)	()
Serial communications interface (SClg, SClh): RX130, (SClg*1, SClk, SClh): RX140		
Remote control signal receiver (REMC)	0	X
I ² C bus interface (RIICa)	()
CAN module (RSCAN)	X	O*1
Serial peripheral interface (RSPIa): RX130, (RSPIc): RX140		/_
CRC calculator (CRC)	()
Capacitive touch sensing unit (CTSUa): RX130, (CTSU2SL*1, CTSU2SL): RX140		
AESA	X	0
RNGA	X	0
12-bit A/D converter (S12ADE)		
D/A converter (DAa)	()
Temperature sensor (TEMPSA)		<u> </u>
Comparator B (CMPBa))
Data operation circuit (DOC)	()
RAM		/
Flash memory (FLASH)		/
<u>Packages</u>		/

- ○: Available, X: Unavailable, •: Differs due to added functionality,
- ▲: Differs due to change in functionality, ■: Differs due to removed functionality.

Note: 1. Not implemented on products with ROM capacity of 64 KB.

2. Comparative Overview of Specifications

This section presents a comparative overview of specifications, including registers.

In the comparative overview, red text indicates functions which are included only in one of the MCU groups and also functions for which the specifications differ between the two groups.

In the register comparison, red text indicates differences in specifications for registers that are included in both groups and **black text** indicates registers which are included only in one of the MCU groups. Differences in register specifications are not listed.

2.1 CPU

Table 2.1 is a comparative overview of CPU, and Table 2.2 is a comparison of CPU registers.

Table 2.1 Comparative Overview of CPU

Item	RX130	RX140
CPU	 Maximum operating frequency: 32 MHz 32-bit RX CPU Minimum instruction execution time: One instruction per clock cycle Address space: 4 GB, linear Register set of the CPU — General purpose: Sixteen 32-bit registers — Control: Eight 32-bit registers — Accumulator: One 64-bit register Basic instructions: 73, variable-length instruction format DSP instructions: 9 Addressing modes: 10 Data arrangement — Instructions: Little endian — Data: Selectable between little endian or big endian On-chip 32-bit multiplier: 32 × 32 → 64 bits On-chip divider: 32 / 32 → 32 bits Barrel shifter: 32 bits 	 Maximum operating frequency: 48 MHz 32-bit RX CPU (RXv2) Minimum instruction execution time: One instruction per clock cycle Address space: 4 GB, linear Register set of the CPU — General purpose: Sixteen 32-bit registers — Control: Ten 32-bit registers — Accumulator: Two 72-bit registers Basic instructions: 75, variable-length instruction format Floating point instructions: 11 DSP instructions: 23 Addressing modes: 11 Data arrangement — Instructions: Little endian — Data: Selectable between little endian or big endian On-chip 32-bit multiplier: 32 × 32 → 64 bits On-chip divider: 32 / 32 → 32 bits Barrel shifter: 32 bits
FPU		 Single-precision floating-point (32 bits) Data types and floating-point exceptions conform to IEEE 754 standard

Table 2.2 Comparison of CPU Registers

Register	Bit	RX130	RX140
EXTB	_	_	Exception table register
FPSW	_	_	Floating-point status word
ACC (RX130)	_	Accumulator	Accumulator 0, accumulator 1
ACC0, ACC1			
(RX140)			

2.2 Address Space

Figure 2.1 is a comparative memory map of single-chip mode.

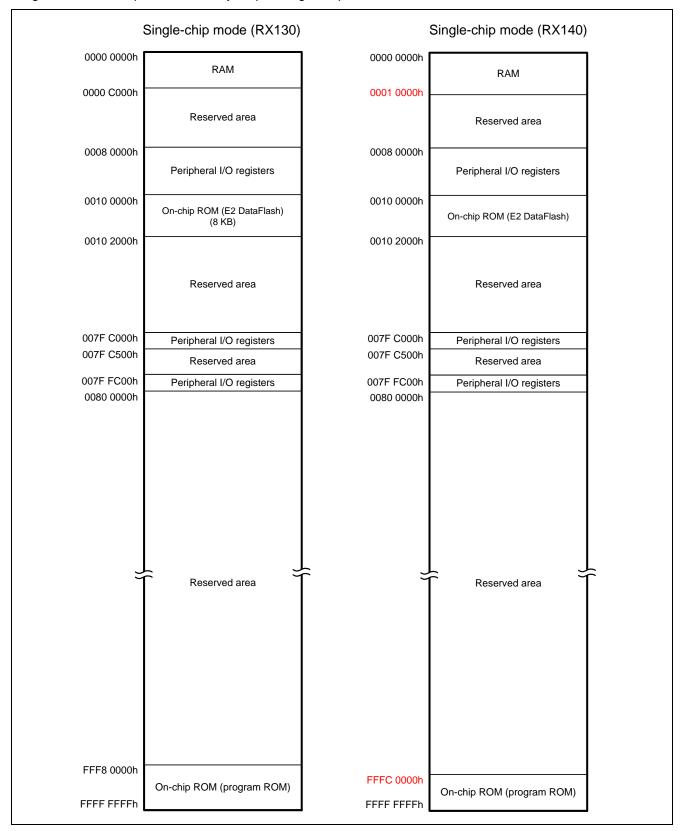


Figure 2.1 Comparative Memory Map of Single-Chip Mode

2.3 Option-Setting Memory

Table 2.3 is a comparison of option-setting memory registers.

Table 2.3 Comparison of Option-Setting Memory Registers

Register	Bit	RX130 (OFSM)	RX140 (OFSM)
OFS1	VDSEL[1:0]	Voltage detection 0 level select bits	Voltage detection 0 level select bits
		b1 b0	b1 b0
		0 0: 3.84 V is selected	0 0: 3.85 V is selected
		0 1: 2.82 V is selected	0 1: 2.85 V is selected
		1 0: 2.51 V is selected	1 0: 2.53 V is selected
		1 1: 1.90 V is selected	1 1: 1.90 V is selected
	HOCOFQ[1:0]	_	HOCO frequency selection bits

2.4 Voltage Detection Circuit

Table 2.4 is a comparison of voltage detection circuit registers.

Table 2.4 Comparison of Voltage Detection Circuit Registers

Register	Bit	RX130 (LVDAb)	RX140 (LVDAb)
LVDLVLR	LVD1LVL[3:0]	Voltage detection 1 level select bits (Standard voltage during drop in voltage)	Voltage detection 1 level select bits (Standard voltage during drop in voltage)
		b3 b0 0 0 0 0: 4.29 V 0 0 0 1: 4.14 V 0 0 1 0: 4.02 V 0 1 1: 3.84 V 0 1 0 0: 3.10 V 0 1 0 1: 3.00 V 0 1 1 0: 2.90 V 0 1 1 1: 2.79 V 1 0 0 0: 2.68 V 1 0 1 0: 2.48 V 1 0 1 0: 2.48 V 1 0 1 1: 2.20 V	b3 b0 0 0 0 0: 4.29 V 0 0 0 1: 4.16 V 0 0 1 0: 4.03 V 0 1 0 0: 3.10 V 0 1 0 1: 3.00 V 0 1 1 0: 2.90 V 0 1 1 1: 2.80 V 1 0 0 0: 2.68 V 1 0 1 0: 2.48 V 1 0 1 1: 2.20 V
		1 1 0 0: 1.96 V 1 1 0 1: 1.86 V Settings other than the above are prohibited.	1 1 0 0: 1.96 V 1 1 0 1: 1.86 V Settings other than the above are prohibited.
	LVD2LVL[1:0]	Voltage detection 2 level select bits (Standard voltage during drop in voltage)	Voltage detection 2 level select bits (Standard voltage during drop in voltage)
		b5 b4 0 0: 4.29 V 0 1: 4.14 V 1 0: 4.02 V 1 1: 3.84 V	b5 b4 0 0: 4.32 V 0 1: 4.17 V 1 0: 4.03 V 1 1: 3.84 V

2.5 Clock Generation Circuit

Table 2.5 is a comparative overview of the clock generation circuits, and Table 2.6 is a comparison of clock generation circuit registers.

Table 2.5 Comparative Overview of Clock Generation Circuits

Item	RX130	RX140
Use	Generates the system clock (ICLK) to be supplied to the CPU, DTC, ROM, and RAM.	Generates the system clock (ICLK) to be supplied to the CPU, DTC, ROM, and RAM.
	 Of the peripheral module clocks (PCLKB and PCLKD) supplied to the peripheral modules, PCLKD is the operating clock for the S12AD, and PCLKB is the operating clock for modules other than S12AD. Generates the FlashIF clock (FCLK) to be supplied to the FlashIF. 	 Of the peripheral module clocks (PCLKB and PCLKD) supplied to the peripheral modules, PCLKD is the operating clock for the S12AD, and PCLKB is the operating clock for modules other than S12AD. Generates the FlashIF clock (FCLK) to be supplied to the FlashIF.
	Generates the CAC clock (CACCLK) to be supplied to the CAC.	 Generates the CAC clock (CACCLK) to be supplied to the CAC. Generates the CAN clock (CANMCLK) to be supplied to the CAN.
	Generates the RTC-dedicated sub- clock (RTCSCLK) to be supplied to the RTC.	Generates the RTC-dedicated sub- clock (RTCSCLK) to be supplied to the RTC.
	 Generates the IWDT-dedicated clock (IWDTCLK) to be supplied to the IWDT. Generates the LPT clock (LPTCLK) to be supplied to the LPT. Generates the REMC clock (REMCLK) to be supplied to the REMC. 	 Generates the IWDT-dedicated clock (IWDTCLK) to be supplied to the IWDT Generates the LPT clock (LPTCLK) to be supplied to the LPT.
Operating frequency	 ICLK: 32 MHz (max.) PCLKB: 32 MHz (max.) PCLKD: 32 MHz (max.) FCLK: — 1 MHz to 32 MHz (for programming and erasing the ROM and E2 DataFlash) — 32 MHz (max.) (for reading from the E2 DataFlash) CACCLK: Same as clock from respective oscillators RTCSCLK: 32.768 kHz 	 ICLK: 48 MHz (max.) PCLKB: 32 MHz (max.) PCLKD: 48 MHz (max.) FCLK: — 1 MHz to 48 MHz (for programming and erasing the ROM and E2 DataFlash) — 48 MHz (max.) (for reading from the E2 DataFlash) CACCLK: Same as clock from respective oscillators CANMCLK: 20 MHz (max.) RTCSCLK: 32.768 kHz
	IWDTCLK: 15 kHz LPTCLK: Same as clock from selected oscillator REMCLK: Same as clock from respective oscillators	IWDTCLK: 15 kHz LPTCLK: Same as clock from selected oscillator

Item	RX130	RX140
Main clock oscillator	 Resonator frequency: MHz to 20 MHz (VCC ≥ 2.4 V), MHz to 8 MHz (VCC < 2.4 V) External clock input frequency: MHz (max.) Connectable resonator or additional circuit: ceramic resonator, crystal Connection pins: EXTAL, XTAL Oscillation stop detection function: When a main clock oscillation stop is detected, the system clock source is switched to LOCO and MTU pin can be forcedly driven to high-impedance. 	Resonator frequency: 1 MHz to 20 MHz External clock input frequency: 20 MHz (max.) Connectable resonator or additional circuit: ceramic resonator, crystal Connection pins: EXTAL, XTAL Oscillation stop detection function: When a main clock oscillation stop is detected, the system clock source is switched to LOCO and MTU pin can be forcedly driven to high-impedance.
Sub-clock oscillator	 Drive capacity switching function Resonator frequency: 32.768 kHz Connectable resonator or additional circuit: crystal Connection pins: XCIN and XCOUT Drive capacity switching function 	 Drive capacity switching function Resonator frequency: 32.768 kHz Connectable resonator or additional circuit: crystal Connection pins: XCIN and XCOUT Drive capacity switching function
PLL circuit	 Input clock source: Main clock Input pulse frequency division ratio: Selectable from 1, 2, and 4 Input frequency: 4 MHz to 8 MHz Frequency multiplication ratio: Selectable from 4 to 8 (increments of 0.5) Oscillation frequency: 24 MHz to 32 MHz (VCC ≥ 2.4 V) 	 Input clock source: Main clock Input pulse frequency division ratio: Selectable from 1, 2, and 4 Input frequency: 4 MHz to 12 MHz Frequency multiplication ratio: Selectable from 4 to 12 (increments of 0.5) Oscillation frequency: 24 MHz to 48 MHz
High-speed on- chip oscillator (HOCO)	Oscillation frequency: 32 MHz	Oscillation frequency: 24 MHz, 32 MHz, 48 MHz
Low-speed on- chip oscillator (LOCO)	Oscillation frequency: 4 MHz	Oscillation frequency: 4 MHz
IWDT-dedicated on-chip oscillator	Oscillation frequency: 15 kHz	Oscillation frequency: 15 kHz

Table 2.6 Comparison of Clock Generation Circuit Registers

Register	Bit	RX130	RX140
PLLCR	STC[5:0]	Frequency multiplication factor select bits	Frequency multiplication factor select bits
		b13 b8 0 0 0 1 1 1: ×4 0 0 1 0 0 0: ×4.5 0 0 1 0 1 0: ×5.5 0 0 1 0 1 1: ×6 0 0 1 1 0 0: ×6.5 0 0 1 1 0 1: ×7 0 0 1 1 1 0: ×7.5 0 0 1 1 1: ×8 Settings other than the above are prohibited.	b13 b8 0 0 0 1 1 1: ×4 0 0 1 0 0 0: ×4.5 0 0 1 0 1 0: ×5.5 0 0 1 0 1 1: ×6 0 0 1 0 1 1: ×6 0 0 1 1 0 0: ×6.5 0 0 1 1 0 1: ×7 0 0 1 1 1 0: ×7.5 0 0 1 1 1 1: ×8 0 1 0 0 0 0: ×8.5 0 1 0 0 0 1: ×9 0 1 0 0 1 0: ×9.5 0 1 0 0 1 1: ×10 0 1 0 1 0 0: ×10.5 0 1 0 1 1 1: ×12 Settings other than the above are
SOSCCR	SOSTP	Sub-clock oscillator stop bit	prohibited. Sub-clock oscillator stop bit This bit is not initialized by reset sources other than a power-on reset.
HOFCR	_	Initial value after a reset differs. High-speed on-chip oscillator forced oscillation control register	_

Register	Bit	RX130	RX140
MOSCWTCR	MSTS[4:0]	Main clock oscillator wait time bits	Main clock oscillator wait time bits
		b4 b0	b4 b0
		0 0 0 0 0: Wait time	0 0 0 0 0: Wait time
		= 2 cycles (0.5 μs)	= 0 cycles (0 µs)
		0 0 0 0 1: Wait time	0 0 0 0 1: Wait time
		= 1,024 cycles (256 µs)	= 1,024 cycles (256 μs)
		0 0 0 1 0: Wait time	0 0 0 1 0: Wait time
		= 2,048 cycles (512 μs)	= 2,048 cycles (512 µs) 0 0 0 1 1: Wait time
		0 0 0 1 1: Wait time = 4,096 cycles (1.024 ms)	= 4,096 cycles (1.024 ms)
		0 0 1 0 0: Wait time	0 0 1 0 0: Wait time
		= 8,192 cycles (2.048 ms)	= 8,192 cycles (2.048 ms)
		0 0 1 0 1: Wait time	0 0 1 0 1: Wait time
		= 16,384 cycles	= 16,384 cycles
		(4.096 ms)	(4.096 ms)
		0 0 1 1 0: Wait time	0 0 1 1 0: Wait time
		= 32,768 cycles	= 32,768 cycles
		(8.192 ms)	(8.192 ms)
		0 0 1 1 1: Wait time	0 0 1 1 1: Wait time
		= 65,536 cycles	= 65,536 cycles
		(16.384 ms)	(16.384 ms) 0 1 0 0 0: Wait time
			= 131,072 cycles
			(32.768 ms)
		Settings other than the above are	Settings other than the above are
		prohibited.	prohibited.
		Wait time when LOCO = 4.0 MHz	Wait time when LOCO = 4.0 MHz
		(0.25 μs, typ.)	(0.25 μs, typ.)
LOFCR		_	Low-speed on-chip oscillator forced
			oscillation control register
CKOCR	CKOSEL[3:0]	CLKOUT output source select bit	CLKOUT output source select bit
		b11 b8	b11 b8
		0 0 0 0: LOCO clock	0 0 0 0: LOCO clock
		0 0 0 1: HOCO clock	0 0 0 1: HOCO clock
		0 0 1 0: Main clock	0 0 1 0: Main clock
		0 0 1 1: Sub-clock	0 0 1 1: Sub-clock
		0 1 0 0: PLL	0 1 0 0: PLL 1 0 0 0: CTSU internal clock
		Settings other than the above are	Settings other than the above are
		prohibited.	prohibited.
	CKODIV[2:0]	CLKOUT output division ratio select	CLKOUT output division ratio select
	UNUDIV[2.0]	bits	bits
		b14 b12	b14 b12
		0 0 0: No division	0 0 0: No division
		0 0 1: ×1/2	0 0 1: ×1/2
		0 1 0: ×1/4	0 1 0: ×1/4
		0 1 1: ×1/8	0 1 1: ×1/8
		1 0 0: ×1/16	1 0 0: ×1/16
		Settings other than the above are	1 0 1: ×1/32
		prohibited.	1 1 0: ×1/64

RENESAS

Register	Bit	RX130	RX140
MOFCR	MODRV21	Main clock oscillator drive capability switch bit	Main clock oscillator drive capability switch bit
		VCC ≥ 2.4 V 0: 1 MHz to 10 MHz	0: 1 MHz to less than 10 MHz
		1: 10 MHz to 20 MHz VCC < 2.4 V	1: 10 MHz to 20 MHz
		0: 1 MHz to 8 MHz 1: Setting prohibited	
LOCOTRR (RX130) LOCOTRR2	LOCOTRD [4:0] (RX130) LOCOTRD2	Low-speed on-chip oscillator frequency adjustment bits	Low-speed on-chip oscillator frequency adjustment bits 2
(RX140)	[7:0] (RX140)	b4 b0	b7 b0 0 0 0 0 0 0 0 0: 0 (frequency: low) 0 0 0 0 0 0 1: 1
		1 0 0 0 0: –16 (frequency: low) 1 0 0 0 1: –15	
		: : 0 1 1 1 0: 14 0 1 1 1 1: 15 (frequency: high)	: :
			0 1 1 1 1 1 1 0: 254 1 1 1 1 1 1 1 1: 255
201105			(frequency: high)
SOMCR		_	Sub-clock oscillator mode control register

2.6 Low Power Consumption

Table 2.7 is a comparative overview of the low power consumption functions, Table 2.8 is a comparison of procedures for entering and exiting low power consumption modes and operating states in each mode, and Table 2.9 is a comparison of low power consumption registers.

Table 2.7 Comparative Overview of Low Power Consumption Functions

Item	RX130	RX140
Reducing power consumption by switching clock signals	The frequency division ratio can be set independently for the system clock (ICLK), peripheral module clock (PCLKB), S12AD clock (PCLKD), and FlashIF clock (FCLK).	The frequency division ratio can be set independently for the system clock (ICLK), peripheral module clock (PCLKB), S12AD clock (PCLKD), and FlashIF clock (FCLK).
Module stop function	Each peripheral module can be stopped independently by the module stop control register.	Each peripheral module can be stopped independently by the module stop control register.
Function for transition to low power consumption mode	Transition to a low power consumption mode in which the CPU, peripheral modules, or oscillators are stopped is enabled.	Transition to a low power consumption mode in which the CPU, peripheral modules, or oscillators are stopped is enabled.
Low power consumption modes	Sleep modeDeep sleep modeSoftware standby mode	Sleep modeDeep sleep modeSoftware standby modeSnooze mode
Function for lower operating power consumption	Power consumption can be reduced in normal operation, sleep mode, and deep sleep mode by selecting an appropriate operating power control mode according to the operating frequency and operating voltage.	Power consumption can be reduced in normal operation, sleep mode, deep sleep mode, and snooze mode by selecting an appropriate operating power control mode according to the operating frequency and operating voltage.
	 Three operating power control modes are available High-speed operating mode Middle-speed operating mode Low-speed operating mode 	 Four operating power control modes are available High-speed operating mode Middle-speed operating mode Middle-speed operating mode 2 Low-speed operating mode

Table 2.8 Comparison of Procedures for Entering and Exiting Low Power Consumption Modes and Operating States in Each Mode

	Entering and Exiting Low Power Consumption Modes and		
Mode	Operating States	RX130	RX140
Sleep mode	Transition method	Control register	Control register
		+ instruction	+ instruction
	Method of cancellation other than reset	Interrupt	Interrupt
	State after cancellation	Program execution	Program execution
		state (interrupt	state (interrupt
		processing)	processing)
	Main clock oscillator	Operation possible	Operation possible
	Sub-clock oscillator	Operation possible	Operation possible
	High-speed on-chip oscillator	Operation possible	Operation possible
	Low-speed on-chip oscillator	Operation possible	Operation possible
	IWDT-dedicated on-chip oscillator	Operation possible	Operation possible
	PLL	Operation possible	Operation possible
	CPU	Stopped (retained)	Stopped (retained)
	RAMO	Operation possible	Operation possible
	(0000 0000h to 0000 BFFFh: RX130, 0000 0000h to 0000 FFFFh: RX140)	(retained)	(retained)
	DTC	Operation possible	Operation possible
	Flash memory	Operation	Operation
	Independent watchdog timer (IWDT)	Operation possible	Operation possible
	Remote control signal receiver (REMC)	Operation possible	_
	Realtime clock (RTC)	Operation possible	Operation possible
	Low-power timer (LPT)	Operation possible	Operation possible
	Voltage detection circuit (LVD)	Operation possible	Operation possible
	Power-on reset circuit	Operation	Operation
	Peripheral modules	Operation possible	Operation possible
	I/O ports	Operation	Operation
	RTCOUT output	Operation possible	Operation possible
	CLKOUT output	Operation possible	Operation possible
	Comparator B	Operation possible	Operation possible
Deep sleep	Transition method	Control register	Control register
mode		+ instruction	+ instruction
	Method of cancellation other than reset	Interrupt	Interrupt
	State after cancellation	Program execution	Program execution
		state (interrupt	state (interrupt
		processing)	processing)
	Main clock oscillator	Operation possible	Operation possible
	Sub-clock oscillator	Operation possible	Operation possible
	High-speed on-chip oscillator	Operation possible	Operation possible
	Low-speed on-chip oscillator	Operation possible	Operation possible
	IWDT-dedicated on-chip oscillator	Operation possible	Operation possible
	PLL	Operation possible	Operation possible
	CPU	Stopped (retained)	Stopped (retained)
	RAM0	Stopped (retained)	Stopped (retained)
	(0000 0000h to 0000 BFFFh: RX130, 0000 0000h to 0000 2FFFh: RX140)		
	DTC	Stopped (retained)	Stopped (retained)
	Flash memory	Stopped (retained)	Stopped (retained) Stopped (retained)
	Independent watchdog timer (IWDT)	Operation possible	Operation possible

	Entering and Exiting Low Power Consumption Modes and		
Mode	Operating States	RX130	RX140
Deep sleep	Remote control signal receiver (REMC)	Operation possible	_
mode	Realtime clock (RTC)	Operation possible	Operation possible
	Low-power timer (LPT)	Operation possible	Operation possible
	Voltage detection circuit (LVD)	Operation possible	Operation possible
	Power-on reset circuit	Operation	Operation
	Peripheral modules	Operation possible	Operation possible
	I/O ports	Operation	Operation
	RTCOUT output	Operation possible	Operation possible
	CLKOUT output	Operation possible	Operation possible
	Comparator B	Operation possible	Operation possible
Software standby mode	Transition method	Control register + instruction	Control register + instruction
	Method of cancellation other than reset	Interrupt	Interrupt
	State after cancellation	Program execution state (interrupt processing)	Program execution state (interrupt processing)
	Main clock oscillator	Stopped	Stopped
	Sub-clock oscillator	Operation possible	Operation possible
	High-speed on-chip oscillator	Operation possible	Operation possible
	Low-speed on-chip oscillator	Stopped	Operation possible
	IWDT-dedicated on-chip oscillator	Operation possible	Operation possible
	PLL	Stopped	Stopped
	CPU	Stopped (retained)	Stopped (retained)
	RAM0 (0000 0000h to 0000 BFFFh: RX130, 0000 0000h to 0000 2FFFh: RX140)	Stopped (retained)	Stopped (retained)
	DTC	Stopped (retained)	Stopped (retained)
	Flash memory	Stopped (retained)	Stopped (retained)
	Independent watchdog timer (IWDT)	Operation possible	Operation possible
	Remote control signal receiver (REMC)	Operation possible	_
	Realtime clock (RTC)	Operation possible	Operation possible
	Low-power timer (LPT)	Operation possible	Operation possible
	Voltage detection circuit (LVD)	Operation possible	Operation possible
	Power-on reset circuit	Operation	Operation
	Peripheral modules	Stopped (retained)	Stopped (retained)
	I/O ports	Retained	Retained
	RTCOUT output	Operation possible	Operation possible
	CLKOUT output	Operation possible	Operation possible
	Comparator B	Operation possible	Operation possible
Snooze mode	Transition method		When snooze transition conditions are met while in software standby mode
	Method of cancellation other than reset	_	Interrupt or occurrence of snooze end condition

Mode	Entering and Exiting Low Power Consumption Modes and Operating States	RX130	RX140
Snooze mode	State after cancellation	_	Program execution state (interrupt processing) or software standby mode
	Main clock oscillator		Operation possible
	Sub-clock oscillator	_	Operation possible
	High-speed on-chip oscillator	_	Operation possible
	Low-speed on-chip oscillator	_	Operation possible
	IWDT-dedicated on-chip oscillator	_	Operation possible
	PLL	_	Operation possible
	CPU	_	Stopped (retained)
	RAM0 (0000 0000h to 0000 BFFFh: RX130, 0000 0000h to 0000 FFFFh: RX140)	_	Operation possible (retained)
	DTC	_	Operation possible
	Flash memory	_	Stopped (retained)
	Independent watchdog timer (IWDT)	_	Operation possible
	Realtime clock (RTC)	_	Operation possible
	Low-power timer (LPT)	_	Operation possible
	Voltage detection circuit (LVD)	_	Operation possible
	Power-on reset circuit	_	Operation
	Peripheral modules	_	Operation possible
	I/O ports	_	Operation
	RTCOUT output		Operation possible
	CLKOUT output	_	Operation possible
	Comparator B		Operation possible

Note: "Operation possible" means that whether the state is operating or stopped is controlled by the control register setting.

Table 2.9 Comparison of Low Power Consumption Registers

[&]quot;Stopped (retained)" means that internal register values are retained and internal operations are suspended.

[&]quot;Stopped (undefined)" means that internal register values are undefined and power is not supplied to the internal circuit.

Register	Bit	RX130	RX140
MSTPCRB	MSTPB0	_	CAN module stop bit
	MSTPB31	Serial communication interface 0 module stop bit	
MSTPCRC	MSTPC28	Remote control signal receiver 1 module stop bit	_
	MSTPC29	Remote control signal receiver 0 module stop bit	_
MSTPCRD	MSTPD29	_	True random number generator module stop bit
	MSTPD30	_	ASE hardware accelerator module stop bit
OPCCR	OPCM [2:0]	Operating power control mode select bits	Operating power control mode select bits
		b2 b0	b2 b0
		0 0 0: High-speed operating mode	0 0 0: High-speed operating mode
		0 1 0: Middle-speed operating mode	0 1 0: Middle-speed operating mode 1 0 0: Middle-speed operating mode 2
		Settings other than the above are prohibited.	Settings other than the above are prohibited.
SNZCR	_	_	Snooze control register
SNZCR2	_	_	Snooze control register 2

2.7 Register Write Protection Function

Table 2.10 is a comparative overview of the register write protection functions.

Table 2.10 Comparative Overview of Register Write Protection Functions

Item	RX130	RX140
PRC0 bit	Registers related to the clock generation circuit: SCKCR, SCKCR3, PLLCR, PLLCR2, MOSCCR, SOSCCR, LOCOCR, ILOCOCR, HOCOCR, HOFCR, OSTDCR, OSTDSR, CKOCR, LOCOTRR, ILOCOTRR, HOCOTRR0	Registers related to the clock generation circuit: SCKCR, SCKCR3, PLLCR, PLLCR2, MOSCCR, SOSCCR, LOCOCR, ILOCOCR, HOCOCR, LOFCR, OSTDCR, OSTDSR, CKOCR, LOCOTRR2, ILOCOTRR, HOCOTRR0, SOMCR
PRC1 bit	 Register related to the operating modes: SYSCR1 Registers related to the low power consumption functions: SBYCR, MSTPCRA, MSTPCRB, MSTPCRC, MSTPCRD, OPCCR, RSTCKCR, SOPCCR 	Register related to the operating modes: SYSCR1 Registers related to the low power consumption functions: SBYCR, MSTPCRA, MSTPCRB, MSTPCRC, MSTPCRD, OPCCR, RSTCKCR, SOPCCR, SNZCR, SNZCR2
	 Registers related to the clock generation circuit: MOFCR, MOSCWTCR Software reset register: SWRR 	 Registers related to the clock generation circuit: MOFCR, MOSCWTCR Software reset register: SWRR
PRC2 bit	Registers related to the low power timer: LPTCR1, LPTCR2, LPTCR3, LPTPRD, LPCMR0, LPWUCR	Registers related to the low power timer: LPTCR1, LPTCR2, LPTCR3, LPTPRD, LPCMR0, LPCMR1, LPWUCR
PRC3 bit	Registers related to LVD: LVCMPCR, LVDLVLR, LVD1CR0, LVD1CR1, LVD1SR, LVD2CR0, LVD2CR1, LVD2SR	Registers related to LVD: LVCMPCR, LVDLVLR, LVD1CR0, LVD1CR1, LVD1SR, LVD2CR0, LVD2CR1, LVD2SR

2.8 Exception Handling

Table 2.11 is a comparative overview of exception handling, Table 2.12 is a comparative listing of vectors, and Table 2.13 is a comparative listing of instructions for returning from exception handling routines.

Table 2.11 Comparative Overview of Exception Handling

Item	RX130	RX140
Exception events	Undefined instruction exception	Undefined instruction exception
	Privileged instruction exception	Privileged instruction exception
		Access exception
		Floating-point exception
	Reset	Reset
	Non-maskable interrupt	Non-maskable interrupt
	Interrupt	Interrupt
	Unconditional trap	Unconditional trap

Table 2.12 Comparative Listing of Vectors

Item		RX130	RX140
Undefined i	nstruction exception	Fixed vector table	Exception vector table (EXTB)
Privileged in	nstruction exception	Fixed vector table	Exception vector table (EXTB)
Access exc	eption	_	Exception vector table (EXTB)
Floating-po	int exception	_	Exception vector table (EXTB)
Reset		Fixed vector table	Exception vector table (EXTB)
Non-maska	ble interrupt	Fixed vector table	Exception vector table (EXTB)
Interrupt	Fast interrupt	FINTV	FINTV
	Other than fast interrupt	Relocatable vector table (INTB)	Relocatable vector table (INTB)
Uncondition		Relocatable vector table (INTB)	Relocatable vector table (INTB)

Table 2.13 Comparative Listing of Instructions for Returning from Exception Handling Routines

Item		RX130	RX140
Undefined i	instruction exception	RTE	RTE
Privileged i	nstruction exception	RTE	RTE
Access exc	eption	_	RTE
Floating-po	int exception	_	RTE
Reset		Return not possible	Return not possible
Non-maska	able interrupt	Return not possible	Prohibited
Interrupt	Fast interrupt	RTFI	RTFI
	Other than fast	RTE	RTE
	interrupt		
Unconditional trap		RTE	RTE

2.9 Buses

Table 2.14 is a comparative overview of the buses.

Table 2.14 Comparative Overview of Buses

Bus Type		RX130	RX140
CPU buses	Instruction bus	 Connected to the CPU (for instructions) Connected to on-chip memory (RAM, ROM) Operates in synchronization with the system clock (ICLK) 	 Connected to the CPU (for instructions) Connected to on-chip memory (RAM, ROM) Operates in synchronization with the system clock (ICLK)
	Operand bus	 Connected to the CPU (for operands) Connected to on-chip memory (RAM, ROM) Operates in synchronization with the system clock (ICLK) 	 Connected to the CPU (for operands) Connected to on-chip memory (RAM, ROM) Operates in synchronization with the system clock (ICLK)
Memory buses	Memory bus 1 Memory bus 2	Connected to RAM Connected to ROM	Connected to RAM Connected to ROM
Internal main buses	Internal main bus 1	Connected to the CPU Operates in synchronization with the system clock (ICLK)	Connected to the CPU Operates in synchronization with the system clock (ICLK)
	Internal main bus 2	 Connected to the DTC Connected to on-chip memory (RAM, ROM) Operates in synchronization with the system clock (ICLK) 	 Connected to the DTC Connected to on-chip memory (RAM, ROM) Operates in synchronization with the system clock (ICLK)
Internal peripheral buses	Internal peripheral bus 1	 Connected to peripheral modules (DTC, interrupt controller, and bus error monitoring section) Operates in synchronization with the system clock (ICLK) 	 Connected to peripheral modules (DTC, interrupt controller, and bus error monitoring section) Operates in synchronization with the system clock (ICLK)
	Internal peripheral bus 2	Connected to peripheral modules Operates in synchronization with the peripheral-module clock (PCLKB, PCLKD)	 Connected to peripheral modules Operates in synchronization with the peripheral-module clock (PCLKB, PCLKD)
	Internal peripheral bus 3	 Connected to peripheral modules (Touch) Operates in synchronization with the peripheral-module clock (PCLKB) 	 Connected to peripheral modules (CTSU, RSCAN) Operates in synchronization with the peripheral-module clock (PCLKB)
	Internal peripheral bus 6	 Connected to ROM (P/E) and E2 DataFlash Operates in synchronization with the FlashIF clock (FCLK) 	 Connected to ROM (P/E) and E2 DataFlash Operates in synchronization with the FlashIF clock (FCLK)

2.10 Data Transfer Controller

Table 2.15 is a comparative overview of the data transfer controllers, and Table 2.16 is a comparison of data transfer controller registers.

Table 2.15 Comparative Overview of Data Transfer Controllers

Item	RX130 (DTCa)	RX140 (DTCb)
Number of	Equal to number of all interrupt sources	Equal to number of all interrupt sources
transfer channels	that can start a DTC transfer.	that can start a DTC transfer.
Transfer modes	 Normal transfer mode A single activation leads to a single data transfer. Repeat transfer mode A single activation leads to a single data transfer. The transfer address returns to the transfer start address when the number of data transfers equals the repeat size. The maximum number of repeat transfers is 256, and the maximum data transfer size is 256 × 32 bits, or 1,024 bytes. Block transfer mode A single activation leads to the transfer of a single block of data. The maximum block size is 	 Normal transfer mode A single activation leads to a single data transfer. Repeat transfer mode A single activation leads to a single data transfer. The transfer address returns to the transfer start address when the number of data transfers equals the repeat size. The maximum number of repeat transfers is 256, and the maximum data transfer size is 256 × 32 bits, or 1,024 bytes. Block transfer mode A single activation leads to the transfer of a single block of data. The maximum block size is
Chain transfer function	 256 × 32 bits = 1,024 bytes. Multiple data transfer types can be executed sequentially in response to a single transfer request. Either "performed only when the transfer counter reaches 0" or "every time" can be selected. 	 256 × 32 bits = 1,024 bytes. Multiple data transfer types can be executed sequentially in response to a single transfer request. Either "performed only when the transfer counter reaches 0" or "every time" can be selected.
Sequence transfer		 A complex series of transfers can be registered as a sequence. Any sequence can be selected by the transfer data and executed. Only one sequence transfer trigger source can be selected at a time. Up to 256 sequences can correspond to a single trigger source. The data that is initially transferred in response to a transfer request determines the sequence. The entire sequence can be executed on a single request, or the sequence can be suspended in the middle and resumed on the next transfer request (sequence division).

Item	RX130 (DTCa)	RX140 (DTCb)
Transfer space	 16 MB in short-address mode (within 0000 0000h to 007F FFFFh or FF80 0000h to FFFF FFFFh, excluding reserved areas) 4 GB in full-address mode (within 0000 0000h to FFFF FFFFh, excluding reserved areas) 	 16 MB in short-address mode (within 0000 0000h to 007F FFFFh or FF80 0000h to FFFF FFFFh, excluding reserved areas) 4 GB in full-address mode (within 0000 0000h to FFFF FFFFh, excluding reserved areas)
Data transfer units	 Single data unit: byte (8 bits), 1 word (16 bits), or longword (32 bits) Single block size: 1 to 256 data units 	 Single data unit: 1 byte (8 bits), 1 word (16 bits), or 1 longword (32 bits) Single block size: 1 to 256 data units
CPU interrupt requests	 An interrupt request to the CPU can be generated by a DTC activation interrupt. An interrupt request to the CPU can be generated after a single data transfer. An interrupt request to the CPU can be generated after transfer of the specified number of data units. 	 An interrupt request to the CPU can be generated by a DTC activation interrupt. An interrupt request to the CPU can be generated after a single data transfer. An interrupt request to the CPU can be generated after transfer of the specified number of data units.
Event link function	An event link request is generated after one data transfer (for block transfers, after one block).	An event link request is generated after one data transfer (for block transfers, after one block).
Read skip	Reading of the transfer information can be skipped when the same transfer is repeated.	Reading of the transfer information can be skipped when the same transfer is repeated.
Write-back skip	Write-back of transferred data that is not updated can be skipped when the address of the transfer source or destination is fixed.	Write-back of transferred data that is not updated can be skipped when the address of the transfer source or destination is fixed.
Write-back disable	_	Ability to disable write-back of transfer information
Displacement addition	_	Ability to add displacement to the transfer source address (selectable by each transfer information)
Low power consumption function	Ability to transition to module stop state	Ability to transition to module stop state

Table 2.16 Comparison of Data Transfer Controller Registers

Register	Bit	RX130 (DTCa)	RX140 (DTCb)
MRA	WBDIS	_	Write-back disable bit*1
MRB	SQEND	_	Sequence transfer end bit
	INDX	_	Index table reference bit
MRC	_	_	DTC mode register C
DTCIBR	_		DTC index table base register
DTCOR	_	_	DTC operation register
DTCSQE	_		DTC sequence transfer enable
			register
DTCDISP	_	_	DTC address displacement register

Note: 1. Transfer information is usually allocated to a RAM area, but it can be allocated to a ROM area by setting the MRA.WBDIS bit to 1 (no write-back).

2.11 Event Link Controller

Table 2.17 is a comparative overview of the event link controllers, and Table 2.18 shows correspondences between values set in ELSRn.ELS[7:0] and event signal names and numbers.

Table 2.17 Comparative Overview of Event Link Controllers

Event link function	 47 event signals can be directly connected to modules. Operation of timer modules while inputting an event signal can be 	 48 event signals can be directly connected to modules. Operation of timer modules while
	selected. Event linkage operation is possible on port B. — Single port: Event link operation can be enabled on a single port corresponding to the specified bit. — Port group: Among the eight I/O ports, event link operation can be enabled for a group of ports corresponding to multiple specified bits.	 inputting an event signal can be selected. Event linkage operation is possible on port B. Single port:
1 - 1	Ability to transition to module stop state	Ability to transition to module stop state

Table 2.18 Correspondence between Values Set in ELSRn.ELS[7:0] Bits and Event Signal Names and Numbers

Value of	Peripheral		
ELS[7:0] Bits	Module	RX130 (ELC)	RX140 (ELC)
08h	Multi-function	MTU1 compare match 1A	MTU1 compare match 1A
09h	timer pulse unit	MTU1 compare match 1B	MTU1 compare match 1B
0Ah	2	MTU1 overflow signal	MTU1 overflow signal
0Bh		MTU1 underflow signal	MTU1 underflow signal
0Ch		MTU2 compare match 2A	MTU2 compare match 2A
0Dh		MTU2 compare match 2B	MTU2 compare match 2B
0Eh		MTU2 overflow signal	MTU2 overflow signal
0Fh		MTU2 underflow signal	MTU2 underflow signal
10h		MTU3 compare match 3A	MTU3 compare match 3A
11h		MTU3 compare match 3B	MTU3 compare match 3B
12h		MTU3 compare match 3C	MTU3 compare match 3C
13h		MTU3 compare match 3D	MTU3 compare match 3D
14h		MTU3 overflow signal	MTU3 overflow signal
15h		MTU4 compare match 4A	MTU4 compare match 4A
16h		MTU4 compare match 4B	MTU4 compare match 4B
17h		MTU4 compare match 4C	MTU4 compare match 4C
18h		MTU4 compare match 4D	MTU4 compare match 4D
19h		MTU4 overflow signal	MTU4 overflow signal
1Ah		MTU4 underflow signal	MTU4 underflow signal

Value of ELS[7:0] Bits	Peripheral Module	RX130 (ELC)	RX140 (ELC)
1Fh	Compare match timer	CMT1 compare match 1	CMT1 compare match 1
22h	8-bit timer	TMR0 compare match A0	TMR0 compare match A0
23h		TMR0 compare match B0	TMR0 compare match B0
24h		TMR0 overflow signal	TMR0 overflow signal
28h		TMR2 compare match A2	TMR2 compare match A2
29h		TMR2 compare match B2	TMR2 compare match B2
2Ah		TMR2 overflow signal	TMR2 overflow signal
32h	Low-power timer	LPT compare match	LPT compare match 0
33h	1		LPT compare match 1
34h	12-bit A/D converter	S12AD compare condition satisfied	S12AD compare condition satisfied
35h		S12AD compare condition not satisfied	S12AD compare condition not satisfied
3Ah	Serial communications	SCI5 error (receive error or error signal detection)	SCI5 error (receive error or error signal detection)
3Bh	interface	SCI5 receive data full signal	SCI5 receive data full signal
3Ch		SCI5 transmit data empty signal	SCI5 transmit data empty signal
3Dh		SCI5 transmit end signal	SCI5 transmit end signal
4Eh	I ² C bus interface	RIIC0 communication error or event generation signal	RIIC0 communication error or event generation signal
4Fh		RIIC0 receive data full signal	RIIC0 receive data full signal
50h		RIIC0 transmit data empty signal	RIIC0 transmit data empty signal
51h		RIIC0 transmit end signal	RIIC0 transmit end signal
58h	12-bit A/D converter	S12AD A/D conversion end	S12AD A/D conversion end
59h	Comparator B0	Comparator B0 comparison result change signal	Comparator B0 comparison result change signal
5Ah	Comparator B0 and B1	Comparator B0 and B1 common comparison result change signal	Comparator B0 and B1 common comparison result change signal
5Bh	Voltage detection circuit	LVD1 voltage detection signal	LVD1 voltage detection signal
61h	Data transfer controller	DTC transfer end	DTC transfer end
63h	I/O ports	Input edge detection signal of input port group 1	Input edge detection signal of input port group 1
65h		Input edge detection signal of single input port 0	Input edge detection signal of single input port 0
66h		Input edge detection signal of single input port 1	Input edge detection signal of single input port 1
69h	Event link controller	Software event signal	Software event signal
6Ah	Data operation circuit	DOC data operation condition met	DOC data operation condition met
Settings other the	han the above are p	rohibited.	

2.12 I/O Ports

Table 2.19 to Table 2.21 are comparative overviews of the I/O ports, Table 2.22 is a comparison of I/O port functions, and Table 2.23 is a comparison of I/O port registers.

Table 2.19 Comparative Overview of I/O Ports (80-Pin)

Port Symbol	RX130 (80-Pin)	RX140 (80-Pin)
PORT0	P03 to P07	P03 to P07
PORT1	P12 to P17	P12 to P17
PORT2	P20, P21, P26, P27	P20, P21, P26, P27
PORT3	P30 to P32, P34 to P37	P30 to P32, P34 to P37
PORT4	P40 to P47	P40 to P47
PORT5	P54, P55	P54, P55
PORTA	PA0 to PA6	PA0 to PA6
PORTB	PB0 to PB7	PB0 to PB7
PORTC	PC0 to PC7	PC0 to PC7
PORTD	PD0 to PD2	PD0 to PD2
PORTE	PE0 to PE5	PE0 to PE5
PORTG	—	PG7
PORTH	PH0 to PH3	PH0 to PH3, PH6, PH7
PORTJ	PJ1, PJ6, PJ7	PJ1, PJ6, PJ7

Table 2.20 Comparative Overview of I/O Ports (64-Pin)

Port Symbol	RX130 (64-Pin)	RX140 (64-Pin)
PORT0	P03, P05	P03, P05
PORT1	P14 to P17	P14 to P17
PORT2	P26, P27	P26, P27
PORT3	P30 to P32, P35 to P37	P30 to P32, P35 to P37
PORT4	P40 to P47	P40 to P47
PORT5	P54, P55	P54, P55
PORTA	PA0, PA1, PA3, PA4, PA6	PA0, PA1, PA3, PA4, PA6
PORTB	PB0, PB1, PB3, PB5 to PB7	PB0, PB1, PB3, PB5 to PB7
PORTC	PC0 to PC7	PC0 to PC7
PORTE	PE0 to PE5	PE0 to PE5
PORTG	_	PG7
PORTH	PH0 to PH3	PH0 to PH3, PH6*1, PH7*1
PORTJ	PJ6, PJ7	PJ6, PJ7

Note: 1. A product with a ROM capacity of 64 KB is not equipped with this pin.

Table 2.21 Comparative Overview of I/O Ports (48-Pin)

Port Symbol	RX130 (48-Pin)	RX140 (48-Pin)
PORT1	P14 to P17	P14 to P17
PORT2	P26, P27	P26, P27
PORT3	P30, P31, P35 to P37	P30, P31, P35 to P37
PORT4	P40 to P42, P45 to P47	P40 to P42, P45 to P47
PORTA	PA1, PA3, PA4, PA6	PA1, PA3, PA4, PA6
PORTB	PB0, PB1, PB3, PB5	PB0, PB1, PB3, PB5
PORTC	PC0 to PC7	PC0 to PC7
PORTE	PE1 to PE4	PE1 to PE4
PORTG	_	PG7
PORTH	PH0 to PH3	PH0 to PH3
PORTJ	PJ6, PJ7	PJ6, PJ7

Table 2.22 Comparison of I/O Port Functions

Item	Port Symbol	RX130	RX140
Input pull-up function	PORT0	P03 to P07	P03 to P07
	PORT1	P12 to P17	P12 to P17
	PORT2	P20 to P27	P20, P21, P26, P27
	PORT3	P30 to P34, P36, P37	P30 to P32, P34, P36, P37
	PORT4	P40 to P47	P40 to P47
	PORT5	P50 to P55	P54, P55
	PORTA	PA0 to PA7	PA0 to PA6
	PORTB	PB0 to PB7	PB0 to PB7
	PORTC	PC0 to PC7	PC2 to PC7
	PORTD	PD0 to PD7	PD0 to PD2
	PORTE	PE0 to PE7	PE0 to PE3, PE4, PE5
	PORTG	_	PG7
	PORTH	PH0 to PH3	PH0 to PH3
	PORTJ	PJ1, PJ3, PJ6, PJ7	PJ1, PJ6, PJ7
Open drain output	PORT1	P12 to P17	P12 to P17
function	PORT2	P20, P21 to P23, P26, P27	P20, P21, P26, P27
	PORT3	P30 to P34, P36, P37	P30 to P32, P34, P36, P37
	PORTA	PA0 to PA7	PA0 to PA6
	PORTB	PB0 to PB7	PB0 to PB7
	PORTC	PC0 to PC7	PC2 to PC7
	PORTD	PD0 to PD2	PD0 to PD2
	PORTE	PE0 to PE3	PE0 to PE3
	PORTG	_	PG7
	PORTJ	PJ3	

Item	Port Symbol	RX130	RX140
Drive capacity switching	PORT0	P03 to P07	_
function	PORT1	P12 to P17	_
	PORT2	P20 to P27	_
	PORT3	P30 to P34, P36, P37	_
	PORT4	P40 to P47	_
	PORT5	P50 to P55	_
	PORTA	PA0 to PA7	_
	PORTB	PB0 to PB7	_
	PORTC	PC0 to PC7	_
	PORTD	PD0 to PD7	_
	PORTE	PE0 to PE7	_
	PORTH	PH0 to PH3	_
	PORTJ	PJ1, PJ3, PJ6, PJ7	_
5 V tolerant	PORT1	P12, P13, P16, P17	P12, P13, P16, P17

Table 2.23 Comparison of I/O Port Registers

Register	Bit	RX130	RX140
PDR	B0 to B7	Pm0 to Pm7 I/O select bits	Pm0 to Pm7 I/O select bits
		(m = 0 to 5, A to E, H, J)	(m = 0 to 5, A to E, G, H, J)
PODR	B0 to B7	Pm0 to Pm7 output data store bits	Pm0 to Pm7 output data store bits
		(m = 0 to 5, A to E, H, J)	(m = 0 to 5, A to E, G, H, J)
PIDR	B0 to B7	Pm0 to Pm7 bits	Pm0 to Pm7 bits
		(m = 0 to 5, A to E, H, J)	(m = 0 to 5, A to E, G, H, J)
PMR	B0 to B7	Pm0 pin mode control bits	Pm0 to Pm7 pin mode control bits
		(m = 0 to 5, A to E, H, J)	(m = 0 to 5, A to E, G, H, J)
		O. Haa nin oo ganayal I/O nast	O. Haa nin oo ganayal I/O nagt
		0: Use pin as general I/O port.	0: Use pin as general I/O port.
		1: Use pin as I/O port for	1: Use pin as I/O port for
		peripheral function.	peripheral function.
			PG7 only
			0: Use pin as general I/O port.
			1: Use pin as I/O port for MD
			function (initial value).
ODR1	B0, B2, B4, B6	Pm4, Pm5, Pm6, and Pm7 output	Pm4, Pm5, Pm6, and Pm7 output
		type select bits	type select bits
		(m = 1 to 3, A to C)	(m =1 to 3, A to C, G)
PCR	B0 to B7	Pm0 to Pm7 input pull-up resistor	Pm0 to Pm7 input pull-up resistor
		control bits	control bits
		(m = 0 to 5, A to E, H, J)	(m = 0 to 5, A to E, G, H, J)
DSCR	_	Drive capacity control register	<u> </u>
PRWCNTR	_	<u> </u>	Port read wait control register

2.13 Multi-Function Pin Controller

Table 2.24 is a comparison of the assignments of multiplexed pins, and Table 2.25 to Table 2.35 are comparisons of multi-function pin controller registers.

In the following comparison of the assignments of multiplexed pins, blue text designates pins that exist on the RX140 Group only. A circle (()) indicates that a function is assigned, a cross (X) that the pin does not exist or that no function is assigned, and grayed out items mean that the function is not implemented.

Table 2.24 Comparison of Multiplexed Pin Assignments

			RX130			RX140)	
Module/		Port	80	64	48	80	64	48
Function	Pin Function	Allocation	-Pin	-Pin	-Pin	-Pin	-Pin	-Pin
Interrupt	NMI (input)	P35	0	0	0	0	0	0
	IRQ0 (input)	P30	0	0	0	0	0	0
		PD0	0	×	×	0	×	X
		PH1	0	0	0	0	0	0
	IRQ1 (input)	P31	0	0	0	0	0	0
		PD1	0	×	×	0	×	X
		PH2	0	0	0	0	0	0
	IRQ2 (input)	P32	0	0	×	0	0	X
		P12	0	×	×	0	×	×
		PD2	0	×	×	0	×	×
		P36	X	×	×	0	0	0
	IRQ3 (input)	P13	0	×	×	0	X	X
	IRQ4 (input)	PB1	0	0	0	0	0	0
		P14	0	0	0	0	0	0
		P34	0	X	×	0	×	X
		P37	X	X	×	0	0	0
	IRQ5 (input)	PA4	0	0	0	0	0	0
		P15	0	0	0	0	0	0
		PE5	0	0	×	0	0	X
	IRQ6 (input)	PA3	0	0	0	0	0	0
		P16	0	0	0	0	0	0
	IRQ7 (input)	PE2	0	0	0	0	0	0
		P17	0	0	0	0	0	0
Clock generation	CLKOUT (output)	PE3	0	0	0	0	0	0
circuit		PE4	0	0	0	0	0	0
Multi-function	MTIOC0A (input/output)	P34	0	X	×	0	×	X
timer unit 2		PB3	0	0	0	0	0	0
		PC4	X	X	×	0	0	0
	MTIOC0B (input/output)	P13	0	×	×	0	×	×
		P15	0	0	0	0	0	0
		PA1	0	0	0	0	0	0
	MTIOC0C (input/output)	P32	0	0	×	0	0	X
		PB1	0	0	0	0	0	0
		PC5	×	×	×	0	0	0
	MTIOC0D (input/output)	PA3	0	0	0	0	0	0
	MTIOC1A (input/output)	P20	0	X	×	0	×	X
		PE4	0	0	0	0	0	0

Feb.21.22

			RX130)		RX140)	
Module/		Port	80	64	48	80	64	48
Function	Pin Function	Allocation	-Pin	-Pin	-Pin	-Pin	-Pin	-Pin
Multi-function	MTIOC1B (input/output)	P21	0	X	X	0	X	X
timer unit 2		PB5	0	0	0	0	0	0
		PE3	X	X	X	0	0	0
	MTIOC2A (input/output)	P26	0	0	0	0	0	0
		PB5	0	0	0	0	0	0
	MTIOC2B (input/output)	P27	0	0	0	0	0	0
		PE5	0	0	X	0	0	X
	MTIOC3A (input/output)	P14	0	0	0	0	0	0
		P17	0	0	0	0	0	0
		PC7	0	0	0	0	0	0
		PJ1	0	X	X	0	X	X
	MTIOC3B (input/output)	P17	0	0	0	0	0	0
		PB7	0	0	X	0	0	X
		PC5	0	0	0	0	0	0
		PA1	×	×	×	0	0	0
		PH0	X	×	Χ	0	0	0
	MTIOC3C (input/output)	P16	0	0	0	0	0	0
		PC6	0	0	0	0	0	0
	MTIOC3D (input/output)	P16	0	0	0	0	0	0
		PB6	0	0	X	0	0	X
		PC4	0	0	0	0	0	0
		PA6	X	×	×	0	0	0
		PB0	X	×	×	0	0	0
		PH1	X	×	×	0	0	0
	MTIOC4A (input/output)	PA0	0	0	×	0	0	X
		PB3	0	0	0	0	0	0
		PE2	0	0	0	0	0	0
		P55	X	X	×	0	0	X
		PE4	X	×	×	0	0	0
	MTIOC4B (input/output)	P30	0	0	0	0	0	0
		P54	0	0	X	0	0	×
		PC2	0	0	×	0	0	X
		PD1	0	X	×	0	×	×
		PE3	0	0	0	0	0	0
	MTIOC4C (input/output)	PB1	0	0	0	0	0	0
		PE1	0	0	0	0	0	0
		PE5	0	0	×	0	0	×
		PA4	×	×	×	0	0	0
		PH2	×	×	×	0	0	0
	MTIOC4D (input/output)	P31	0	0	0	0	0	0
		P55	0	0	×	0	0	X
		PC3	0	0	×	0	0	X
		PD2	0	×	×	0	×	X
		PE4	0	0	0	0	0	0
		PA3	×	×	×	0	0	0
		PH3	×	×	×	0	0	0
	MTIC5U (input)	PA4	0	0	0	0	0	0
	MTIC5V (input)	PA6	0	0	0	0	0	0
		PA3	×	×	×	0	0	0

			RX130			RX140			
Module/		Port	80	64	48	80	64	48	
Function	Pin Function	Allocation	-Pin	-Pin	-Pin	-Pin	-Pin	-Pin	
Multi-function	MTIC5W (input)	PB0	0	0	0	0	0	0	
timer unit 2	MTCLKA (input)	P14	0	0	0	0	0	0	
		PA4	0	0	0	0	0	0	
		PC6	0	0	0	0	0	0	
	MTCLKB (input)	P15	0	0	0	0	0	0	
		PA6	0	0	0	0	0	0	
		PC7	0	0	0	0	0	0	
	MTCLKC (input)	PA1	0	0	0	0	0	0	
	1.501.15	PC4	0	0	0	0	0	0	
	MTCLKD (input)	PA3	0	0	0	0	0	0	
5	DOE: (')	PC5	0	0	0	0	0	0	
Port output enable 2	POE0# (input)	PC4	0	0	0	0	0	0	
enable 2	POE1# (input)	PB5	0	0	0	0	0	0	
	POE2# (input)	P34	0	X	X	0	X	X	
	7.7.7.4	PA6	0	0	0	0	0	0	
	POE3# (input)	PB3	0	0	00	0	0	0	
	POE8# (input)	P17	0	0	00	0	0	0	
		P30	0	0	0	0	0	0	
0.1.77	T1400 (1 1)	PE3	0	0	0	0	0	0	
8-bit timer	TMO0 (output)	PB3	0	0	0	0	0	0	
	TMOIO ('are 1)	PH1	0	0	0	0	0	0	
	TMCI0 (input)	P21	0	X	X	0	X	X	
		PB1	0	0	0	0	0	0	
	TMDIO ('see 1)	PH3	0	0	0	0	0	0	
	TMRI0 (input)	P20	0	X	X	0	X	X	
		PA4	0	0	0	0	0	0	
	TMO1 (output)	PH2 P17	0	0	0	0	0	0	
	TMO1 (output)		0	0	0	0	0	0	
	TMCI4 (input)	P26	0	_		0	_	X	
	TMCI1 (input)	P12	0	X	X	0	X		
		P54 PC4	0	0	X	0	0	X	
	TMRI1 (input)	PB5	0	0	0	0	0	0	
	TMO2 (output)	P16	0	0	0	0	0	0	
	TWO2 (output)	PC7	0	0	0	0	0	0	
	TMCI2 (input)	P15	0	0	0	0	0	0	
	TWOIZ (IIIput)	P31	0	0	0	0	0	0	
		PC6	0	0	0	0	0	0	
	TMRI2 (input)	P14	0	0	0	0	0	0	
	Ινικίζ (πραί)	PC5	0	0	0	0	0	0	
	TMO3 (output)	P13	0	×	×	0	X	X	
		P32	0	Ô	X	0	Ô	X	
		P55	0	0	X	0	0	X	
	TMCI3 (input)	P27	0	0	fô	0	0	Ô	
		P34	0	X	X	0	X	X	
		PA6	0	fô	 	0	Ô	Ô	
	TMRI3 (input)	P30	0	0	0	0	0	0	
	Tivitalo (ilipat)	11.00							

			RX130			RX140			
Module/		Port	80	64	48	80	64	48	
Function	Pin Function	Allocation	-Pin	-Pin	-Pin	-Pin	-Pin	-Pin	
Serial	RXD1 (input) /	P15	0	0	0	0	0	0	
communications	SMISO1 (input/output) /	P30	0	0	0	0	0	0	
interface	SSCL1 (input/output)								
	TXD1 (output) /	P16	0	0	0	0	0	0	
	SMOSI1 (input/output) /	P26	0	0	0	0	0	0	
	SSDA1 (input/output)								
	SCK1 (input/output)	P17	0	0	0	0	0	0	
		P27	0	0	0	0	0	0	
	CTS1# (input) /	P14	0	0	0	0	0	0	
	RTS1# (output) /	P31	0	0	0	0	0	0	
	SS1# (input)								
	RXD5 (input) /	PA2	0	×	×	0	×	×	
	SMISO5 (input/output) /	PA3	0	0	0	0	0	0	
	SSCL5 (input/output)	PC2	0	0	×	0	0	X	
	TXD5 (output) /	PA4	0	0	0	0	0	0	
	SMOSI5 (input/output) /	PC3	0	0	×	0	0	×	
	SSDA5 (input/output)								
	SCK5 (input/output)	PA1	0	0	0	0	0	0	
		PC4	0	0	0	0	0	0	
	CTS5# (input) /	PA6	0	0	0	0	0	0	
	RTS5# (output) /								
	SS5# (input)								
	RXD6 (input) /	PB0	0	0	0	0	O *1	O *1	
	SMISO6 (input/output) /	PD1	0	×	×	0	×	X	
	SSCL6 (input/output)								
	TXD6 (output) /	PB1	0	0	0	0	O *1	O *1	
	SMOSI6 (input/output) /	PD0	0	×	×	0	×	X	
	SSDA6 (input/output)	P32	0	0	×	0	O *1	X	
	SCK6 (input/output)	P34	0	×	×	0	×	×	
		PB3	0	0	0	0	O *1	O*1	
		PD2	0	×	×	0	×	X	
	CTS6# (input) /	PB2	0	×	×	0	×	X	
	RTS6# (output) /								
	SS6# (input)								
	RXD8 (input) /	PC6	×	×	×	0	O*1	O*1	
	SMISO8 (input/output) /								
	SSCL8 (input/output)								
	TXD8 (output) /	PC7	×	×	×	0	O*1	O*1	
	SMOSI8 (input/output) /								
	SSDA8 (input/output)								
	SCK8 (input/output)	PC5	×	×	×	0	O*1	O*1	
	CTS8# (input) /	PC4	×	×	×	0	O*1	O*1	
	RTS8# (output) /								
	SS8# (input)								
	RXD9 (input) /	PB6	×	×	×	0	O*1	×	
	SMISO9 (input/output) /								
	SSCL9 (input/output)								

			RX130			RX140			
Module/		Port	80	64	48	80	64	48	
Function	Pin Function	Allocation	-Pin	-Pin	-Pin	-Pin	-Pin	-Pin	
Serial	TXD9 (output) /	PB7	×	×	×	0	O*1	×	
communications	SMOSI9 (input/output) /								
interface	SSDA9 (input/output)	DDE							
	SCK9 (input/output)	PB5	X	X	X	0	O*1	X	
	CTS9# (input) /	PB4	×	×	×	0	×	×	
	RTS9# (output) / SS9# (input)								
	RXD12 (input) /	PE2	0	0	O *2	0	0	O *2	
	SMISO12 (input/output) /	LZ							
	SSCL12 (input/output) /								
	RXDX12 (input)								
	TXD12 (output) /	PE1	0	0	O *2	0	0	O *2	
	SMOSI12 (input/output) /								
	SSDA12 (input/output) /								
	TXDX12 (output) /								
	SIOX12 (input/output)								
	SCK12 (input/output)	PE0	0	0	X	0	0	X	
	CTS12# (input) /	PE3	0	0	O*3	0	0	O *3	
	RTS12# (output) /								
1201	SS12# (input)	540							
I ² C bus interface	SCL (input/output)	P16	0	0	0	0	0	0	
	ODA ('a a t/a ta t)	P12	0	X	X	0	X	X	
	SDA (input/output)	P17	0	0	0	0	0	_	
Serial peripheral	DCDCKA (input/output)	P13 PA5	0	×	×	0	×	X	
interface	RSPCKA (input/output)	PB0	0	$\frac{1}{0}$	0	0	0	X	
menace		PC5	0	0	0	0	0	0	
	MOSIA (input/output)	P16	0	0	0	0	0	0	
	WOSIA (Input/output)	PA6	0	0	0	0	0	0	
		PC6	0	 0	0	0	0	0	
	MISOA (input/output)	P17	0	 0	0	0	0	0	
	imeer (input output)	PC7	Ŏ	Ŏ	Ŏ	Ö	Ŏ	Ŏ	
	SSLA0 (input/output)	PA4	Ō	0	Ō	Ö	Ö	Ō	
	(PC4	Ō	Ō	Ō	Ō	Ō	Ō	
	SSLA1 (output)	PA0	0	0	×	0	0	X	
	SSLA2 (output)	PA1	0	0	0	0	0	0	
	SSLA3 (output)	PA2	0	×	×	0	×	X	
		PC2	0	0	×	0	0	×	
Realtime clock	RTCOUT (output)	P16	0	0	×	0	0	0	
		P32	0	0	×	0	0	×	
12-bit A/D	AN000 (input)*4	P40	0	0	0	0	0	0	
converter	AN001 (input)*4	P41	0	0	0	0	0	0	
	AN002 (input)*4	P42	0	0	0	0	0	0	
	AN003 (input)*4	P43	0	0	X	0	0	×	
	AN004 (input)*4	P44	0	0	X	0	0	X	
	AN005 (input)*4	P45	0	0	0	0	0	0	
	AN006 (input)*4	P46	0	0	0	0	0	0	
	AN007 (input)*4	P47	0	0	0	0	0	0	
	AN016 (input)*4	PE0	0	0	X	0	0	×	

			RX130			RX140			
Module/		Port	80	64	48	80	64	48	
Function	Pin Function	Allocation	-Pin	-Pin	-Pin	-Pin	-Pin	-Pin	
12-bit A/D	AN017 (input)*4	PE1	0	0	0	0	0	0	
converter	AN018 (input)*4	PE2	0	0	0	0	0	0	
	AN019 (input)*4	PE3	0	0	0	0	0	0	
	AN020 (input)*4	PE4	0	0	0	0	0	0	
	AN021 (input)*4	PE5	0	0	×	0	0	×	
	AN024 (input)*4	PD0	0	×	×	0	×	X	
	AN025 (input)*4	PD1	0	×	×	0	×	X	
	AN026 (input)*4	PD2	0	×	×	0	×	×	
	ADTRG0# (input)	P07	0	X	×	0	×	X	
		P16	0	0	0	0	0	0	
D/A converter	DA0 (output)*4	P03	0	0	×	0	0	X	
	DA1 (output)*4	P05	0	0	×	0	0	X	
Clock frequency	CACREF (input)	PA0	0	0	×	0	0	×	
accuracy		PC7	0	0	0	0	0	0	
measurement		PH0	0	0	0	0	0	0	
circuit LVD voltage	CMPA2 (input)*4	PE4	0	0	0	0	0	0	
detection input	CIVIPAZ (INPUL)**	PE4							
Comparator B	CMPB0 (input)*4	PE1	0	0	0	0	0	0	
Comparator B	CVREFB0 (input)*4	PE2	0	0	0	0	0	0	
	CMPOB0 (output)	PE5	0	0	X	0	0	×	
	CMPB1 (input)*4	PA3	0	0	Ô	0	0	Ô	
	CVREFB1 (input)*4	PA4	0	0	0	0	0	0	
	CMPOB1 (output)	PB1	0	0	0	0	0	0	
Capacitive	TSCAP (—)	PC4	0	0	0	0	0	0	
Touch Sensing	TS0 (input/output)	P32	0	0	X	0	O*1	×	
Unit (CTSU)	TS1 (input/output)	P31	0	0	 	0	O*1	O*1	
,	TS2 (input/output)	P30	0	0	0	0	O*1	O*1	
	TS3 (input/output)	P27	0	0	0	0	0	0	
	TS4 (input/output)	P26	0	0	0	 0	0	0	
	TS5 (input/output)	P15	0	0	0	0	O*1	O*1	
	TS6 (input/output)	P14	0	0	0	0	O*1	O*1	
	TS7 (input/output)	PH3	0	0	0	0	O*1	O*1	
	TS8 (input/output)	PH2	0	0	0	0	O*1	O*1	
	TS9 (input/output)	PH1	0	0	0	0	O*1	O*1	
	TS10 (input/output)	PH0	0	0	0	0	O*1	O*1	
	TS11 (input/output)	P55	0	0	X	0	O*1	×	
	TS12 (input/output)	P54	0	0	X	0	O*1	×	
	TS13 (input/output)	PC7	0	0	 	0	0	Ô	
	TS14 (input/output)	PC6	0	0	0	0	0	0	
	TS15 (input/output)	PC5	0	0	0	0	0	0	
	TS16 (input/output)	PC3	0	0	X	0	O*1	×	
	TS17 (input/output)	PC2	0	0	X	0	O *1	X	
	TS18 (input/output)	PB7	0	0	×	0	O *1	X	
	TS19 (input/output)	PB6	0	0	×	0	O *1	X	
	TS20 (input/output)	PB5	0	0	6	0	O *1	O*1	
	TS21 (input/output)	PB4	0	×	X	0	X	X	
	TS21 (input/output)	PB3	0	0	6	0	O*1	O*1	
	TS23 (input/output)	PB3	0	×	X	0		_	
	1323 (inpuroutput)	FDZ		1^	1^		X	×	

			RX130			RX140)	
Module/		Port	80	64	48	80	64	48
Function	Pin Function	Allocation	-Pin	-Pin	-Pin	-Pin	-Pin	-Pin
Capacitive	TS24 (input/output)	PB1	0	0	0	0	O *1	O *1
Touch Sensing	TS25 (input/output)	PB0	0	0	0	0	0	0
Unit (CTSU)	TS26 (input/output)	PA6	0	0	0	0	O*1	O *1
	TS27 (input/output)	PA5	0	X	X	0	×	X
	TS28 (input/output)	PA4	0	0	0	0	0	0
	TS29 (input/output)	PA3	0	0	0	0	0	0
	TS30 (input/output)	PA2	0	X	X	0	×	X
	TS31 (input/output)	PA1	0	0	0	0	0	0
	TS32 (input/output)	PA0	0	0	X	0	O*1	X
	TS33 (input/output)	PE4	0	0	0	0	0	0
	TS34 (input/output)	PE3	0	0	0	0	0	0
	TS35 (input/output)	PE2	0	0	0	0	0	0
Low-power timer	LPTO (output)	P26				0	0	0
		PB3				0	0	0
		PC7				0	0	0
CAN module	CTXD0 (output)	P14				0	O*1	O*1
		P54				0	O*1	×
	CRXD0 (input)	P15				0	O*1	O*1
		P55				0	O*1	×

Notes: 1. This function is not implemented on RX140 Group products with ROM capacity of 64 KB.

- 2. The SMISO12 function is not implemented on 48-pin package products.
- 3. The SS12# function is not implemented on 48-pin package products.
- 4. To use these pin functions, set the relevant pins as general I/O ports (PORT.PDR.Bm and PORT.PMR.Bm bits both cleared to 0).

Table 2.25 Comparison of P1n Pin Function Control Register (P1nPFS)

Register	Bit	RX130 (n = 2 to 7)	RX140 (n = 2 to 7)
P14PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00000b: Hi-Z	00000b: Hi-Z
		00001b: MTIOC3A	00001b: MTIOC3A
		00010b: MTCLKA	00010b: MTCLKA
		00101b: TMRI2	00101b: TMRI2
		01011b: CTS1#/RTS1#/SS1#	01011b: CTS1#/RTS1#/SS1#
		11001b: TS6	11001b: TS6
			11100b: CTXD0
P15PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00000b: Hi-Z	00000b: Hi-Z
		00001b: MTIOC0B	00001b: MTIOC0B
		00010b: MTCLKB	00010b: MTCLKB
		00101b: TMCl2	00101b: TMCl2
		01010b: RXD1/SMISO1/SSCL1	01010b: RXD1/SMISO1/SSCL1
		11001b: TS5	11001b: TS5
			11100b: CRXD0

Table 2.26 Comparison of P2n Pin Function Control Register (P2nPFS)

Register	Bit	RX130 (n = 0 to 7)	RX140 (n = 0, 1, 6, 7)
P20PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00000b: Hi-Z	00000b: Hi-Z
		00001b: MTIOC1A	00001b: MTIOC1A
		00101b: TMRI0	00101b: TMRI0
		01010b: TXD0/SMOSI0/SSDA0	
P21PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00000b: Hi-Z	00000b: Hi-Z
		00001b: MTIOC1B	00001b: MTIOC1B
		00101b: TMCI0	00101b: TMCI0
		01010b: RXD0/SMISO0/SSCL0	
P22PFS	_	P22 pin function control register	_
P23PFS	_	P23 pin function control register	_
P24PFS		P24 pin function control register	_
P25PFS		P25 pin function control register	_
P26PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00000b: Hi-Z	00000b: Hi-Z
		00001b: MTIOC2A	00001b: MTIOC2A
		00101b: TMO1	00101b: TMO1
		01010b: TXD1/SMOSI1/SSDA1	01010b: TXD1/SMOSI1/SSDA
		11001b: TS4	11001b: TS4
			11011b: LPTO

Table 2.27 Comparison of P3n Pin Function Control Register (P3nPFS)

Register	Bit	RX130 (n = 0 to 4)	RX140 (n = 0 to 2, 4, 6, 7)
P33PFS		P33 pin function control register	_
P36PFS		_	P36 pin function control register
P37PFS		_	P37 pin function control register
P3nPFS	ISEL	Interrupt input function select bit	Interrupt input function select bit
		0: Not used as IRQn input pin 1: Used as IRQn input pin P30: IRQ0 (100/80/64/48-pin) P31: IRQ1 (100/80/64/48-pin) P32: IRQ2 (100/80/64-pin) P33: IRQ3 (100-pin) P34: IRQ4 (100/80-pin)	0: Not used as IRQn input pin 1: Used as IRQn input pin P30: IRQ0 (80/64/48/32-pin) P31: IRQ1 (80/64/48/32-pin) P32: IRQ2 (80/64-pin) P34: IRQ4 (80-pin) P36: IRQ2 (80/64/48/32-pin) P37: IRQ4 (80/64/48-pin)

Table 2.28 Comparison of P5n Pin Function Control Register (P5nPFS)

Register	Bit	RX130 (n = 1, 2, 4, 5)	RX140 (n = 4, 5)
P51PFS		P51 pin function control register	_
P52PFS		P52 pin function control register	_
P54PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00000b: Hi-Z	00000b: Hi-Z
		00001b: MTIOC4B	00001b: MTIOC4B
		00101b: TMCI1	00101b: TMCI1
		11001b: TS12	11001b: TS12
			11100b: CTXD0
P55PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00000b: Hi-Z	00000b: Hi-Z
		00001b: MTIOC4D	00001b: MTIOC4D
		00101b: TMO3	00101b: TMO3
		11001b: TS11	11001b: TS11
			11100b: CRXT0

Table 2.29 Comparison of PAn Pin Function Control Register (PAnPFS)

Register	Bit	RX130 (n = 0 to 7)	RX140 (n = 0 to 6)
PA1PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00000b: Hi-Z	00000b: Hi-Z
		00001b: MTIOC0B	00001b: MTIOC0B
		00010b: MTCLKC	00010b: MTCLKC
			00011b: MTIOC3B
		01010b: SCK5	01010b: SCK5
		01101b: SSLA2	01101b: SSLA2
		11001b: TS31	11001b: TS31
PA3PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00000b: Hi-Z	00000b: Hi-Z
		00001b: MTIOC0D	00001b: MTIOC0D
		00010b: MTCLKD	00010b: MTCLKD
			00011b: MTIOC4D
			00100b: MTIC5V
		01010b: RXD5/SMISO5/SSCL5	01010b: RXD5/SMISO5/SSCL5
		11001b: TS29	11001b: TS29
PA4PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00000b: Hi-Z	00000b: Hi-Z
		00001b: MTIC5U	00001b: MTIC5U
		00010b: MTCLKA	00010b: MTCLKA
			00011b: MTIOC4C
		00101b: TMRI0	00101b: TMRI0
		01010b: TXD5/SMOSI5/SSDA5	01010b: TXD5/SMOSI5/SSDA5
		01101b: SSLA0	01101b: SSLA0
		11001b: TS28	11001b: TS28
PA6PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00000b: Hi-Z	00000b: Hi-Z
		00001b: MTIC5V	00001b: MTIC5V
		00010b: MTCLKB	00010b: MTCLKB
		OOAOAL TMOIO	00011b: MTIOC3D
		00101b: TMCI3	00101b: TMCI3
		00111b: POE2#	00111b: POE2#
		01011b: CTS5#/RTS5#/SS5#	01011b: CTS5#/RTS5#/SS5#
		01101b: MOSIA	01101b: MOSIA
DAZDEC	 	11001b: TS26	11001b: TS26
PA7PFS	<u> — </u>	PA7 pin function control register	_

Table 2.30 Comparison of PBn Pin Function Control Register (PBnPFS)

Register	Bit	RX130 (n = 0 to 7)	RX140 (n = 0 to 7)
PB0PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00000b: Hi-Z	00000b: Hi-Z
		00001b: MTIC5W	00001b: MTIC5W
			00010b: MTIOC3D
		01011b: RXD6/SMISO6/SSCL6	01011b: RXD6/SMISO6/SSCL6
		01101b: RSPCKA	01101b: RSPCKA
		11001b: TS25	11001b: TS25
PB3PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00000b: Hi-Z	00000b: Hi-Z
		00001b: MTIOC0A	00001b: MTIOC0A
		00010b: MTIOC4A	00010b: MTIOC4A
		00101b: TMO0	00101b: TMO0
		00111b: POE3#	00111b: POE3#
		01011b: SCK6	01011b: SCK6
		11001b: TS22	11001b: TS22
			11011b: LPTO

Table 2.31 Comparison of PCn Pin Function Control Register (PCnPFS)

Register	Bit	RX130 (n = 0 to 7)	RX140 (n = 2 to 7)
PC0PFS	_	PC0 pin function select register	_
PC1PFS	_	PC1 pin function select register	_
PC4PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00000b: Hi-Z 00001b: MTIOC3D 00010b: MTCLKC 00101b: TMCI1 00111b: POE0# 01010b: SCK5 01011b: CTS8#/RTS8#/SS8# 01101b: SSLA0	00000b: Hi-Z 00001b: MTIOC3D 00010b: MTCLKC 00011b: MTIOC0A 00101b: TMCI1 00111b: POE0# 01010b: SCK5 01011b: CTS8#/RTS8#/SS8# 01101b: SSLA0
		11001b: TSCAP	11001b: TSCAP
PC5PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00000b: Hi-Z 00001b: MTIOC3B 00010b: MTCLKD 00101b: TMRI2 01010b: SCK8 01101b: RSPCKA 11001b: TS15	00000b: Hi-Z 00001b: MTIOC3B 00010b: MTCLKD 00011b: MTIOC0C 00101b: TMRI2 01010b: SCK8 01101b: RSPCKA 11001b: TS15

Register	Bit	RX130 (n = 0 to 7)	RX140 (n = 2 to 7)
PC7PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00000b: Hi-Z	00000b: Hi-Z
		00001b: MTIOC3A	00001b: MTIOC3A
		00010b: MTCLKB	00010b: MTCLKB
		00101b: TMO2	00101b: TMO2
		00111b: CACREF	00111b: CACREF
		01010b: TXD8/SMOSI8/SSDA8	01010b: TXD8/SMOSI8/SSDA8
		01101b: MISOA	01101b: MISOA
		11001b: TS13	11001b: TS13
			11011b: LPTO

Table 2.32 Comparison of PDn Pin Function Control Register (PDnPFS)

Register	Bit	RX130 (n = 0 to 7)	RX140 (n = 0 to 2)
PD3PFS	_	PD3 pin function select register	_
PD4PFS		PD4 pin function select register	_
PD5PFS	_	PD5 pin function select register	_
PD6PFS	_	PD6 pin function select register	_
PD7PFS		PD7 pin function select register	_
PDnPFS	ISEL	Interrupt input function select bit	Interrupt input function select bit
		0: Not used as IRQn input pin 1: Used as IRQn input pin PD0: IRQ0 (100/80-pin) PD1: IRQ1 (100/80-pin) PD2: IRQ2 (100/80-pin) PD3: IRQ3 (100-pin) PD4: IRQ4 (100-pin) PD5: IRQ5 (100-pin) PD6: IRQ6 (100-pin) PD7: IRQ7 (100-pin)	0: Not used as IRQn input pin 1: Used as IRQn input pin PD0: IRQ0 (80-pin) PD1: IRQ1 (80-pin) PD2: IRQ2 (80-pin)
	ASEL	Analog function select bit 0: Used as other than as analog pin 1: Used as analog pin PD0: AN024 (100/80-pin) PD1: AN025 (100/80-pin) PD2: AN026 (100/80-pin) PD3: AN027 (100-pin) PD4: AN028 (100-pin) PD5: AN029 (100-pin) PD6: AN030 (100-pin) PD7: AN031 (100-pin)	Analog function select bit 0: Used as other than as analog pin 1: Used as analog pin PD0: AN024 (80-pin) PD1: AN025 (80-pin) PD2: AN026 (80-pin)

Table 2.33 Comparison of PEn Pin Function Control Register (PEnPFS)

Register	Bit	RX130 (n = 0 to 7)	RX140 (n = 0 to 5)
PE3PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00000b: Hi-Z	00000b: Hi-Z
		00001b: MTIOC4B	00001b: MTIOC4B
			00010b: MTIOC1B
		00111b: POE8#	00111b: POE8#
		01001b: CLKOUT	01001b: CLKOUT
		01100b: CTS12#/RTS12#/SS12#	01100b: CTS12#/RTS12#/SS12#
		11001b: TS34	11001b: TS34
PE4PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00000b: Hi-Z	00000b: Hi-Z
		00001b: MTIOC4D	00001b: MTIOC4D
		00010b: MTIOC1A	00010b: MTIOC1A
			00011b: MTIOC4A
		01001b: CLKOUT	01001b: CLKOUT
		11001b: TS33	11001b: TS33
PE6PFS	_	PE6 pin function control register	_
PE7PFS	_	PE7 pin function control register	_
PEnPFS	ISEL	Interrupt input function select bit	Interrupt input function select bit
		0: Not used as IRQn input pin	0: Not used as IRQn input pin
		1: Used as IRQn input pin	1: Used as IRQn input pin
		PE2: IRQ7 (100/80/64/48-pin)	PE2: IRQ7 (80/64/48/32-pin)
		PE5: IRQ5 (100/80/64-pin)	PE5: IRQ5 (80/64-pin)
		PE6: IRQ6 (100-pin)	
		PE7: IRQ7 (100-pin)	
	ASEL	Analog function select bit	Analog function select bit
		0: Used as other than as analog pin	0: Used as other than as analog pin
		1: Used as analog pin	1: Used as analog pin
		PE0: AN016 (100/80/64-pin)	PE0: AN016 (80/64-pin)
		PE1: AN017, CMPB0	PE1: AN017, CMPB0
		(100/80/64/48-pin)	(80/64/48/32-pin)
		PE2: AN018, CVREFB0	PE2: AN018, CVREFB0
		(100/80/64/48-pin)	(80/64/48/32-pin)
		PE3: AN019 (100/80/64/48-pin)	PE3: AN019 (80/64/48/32-pin)
		PE4: AN020, CMPA2	PE4: AN020, CMPA2
		(100/80/64/48-pin)	(80/64/48/32-pin)
		PE5: AN021 (100/80/64-pin)	PE5: AN021 (80/64-pin)
		PE6: AN022 (100-pin)	
		PE7: AN023 (100-pin)	

Table 2.34 Comparison of PHn Pin Function Control Register (PHnPFS)

Register	Bit	RX130 (n = 0 to 3)	RX140 (n = 0 to 3)
PH0PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00000b: Hi-Z	00000b: Hi-Z
			00001b: MTIOC3B
		00111b: CACREF	00111b: CACREF
		11001b: TS10	11001b: TS10
PH1PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00000b: Hi-Z	00000b: Hi-Z
			00001b: MTIOC3D
		00101b: TMO0	00101b: TMO0
		11001b: TS9	11001b: TS9
PH2PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00000b: Hi-Z	00000b: Hi-Z
			00001b: MTIOC4C
		00101b: TMRI0	00101b: TMRI0
		11001b: TS8	11001b: TS8
PH3PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00000b: Hi-Z	00000b: Hi-Z
			00001b: MTIOC4D
		00101b: TMCI0	00101b: TMCI0
		11001b: TS7	11001b: TS7

Table 2.35 Comparison of PJn Pin Function Control Register (PJnPFS)

Register	Bit	RX130 (n = 1, 3, 6, 7)	RX140 (n = 1, 6, 7)
PJ3PFS		PJ3 pin function control register	_

2.14 8-Bit Timer

Table 2.36 is a comparative overview of 8-bit timers.

Table 2.36 Comparative Overview of 8-Bit Timers

Item	RX130 (TMR)	RX140 (TMRa)
Count clocks	 Frequency-divided clock: PCLK/1, PCLK/2, PCLK/8, PCLK/32, PCLK/64, PCLK/1,024, PCLK/8,192 External clock: external count clock 	Internal clock: PCLK/1, PCLK/2, PCLK/8, PCLK/32, PCLK/64, PCLK/1,024, PCLK/8,192 External clock: external count clock
Number of channels	(8 bits × 2 channels) × 2 units	(8 bits × 2 channels) × 2 units
Compare match	 8-bit mode (compare match A, compare match B) 16-bit mode (compare match A, compare match B) 	 8-bit mode (compare match A, compare match B) 16-bit mode (compare match A, compare match B)
Counter clear	Selectable among compare match A, compare match B, and external reset signal.	Selectable among compare match A, compare match B, and external counter reset signal.
Timer output	Output pulses with a user-defined duty cycle or PWM output	Output pulses with a user-defined duty cycle or PWM output
Cascading of two channels	16-bit count mode 16-bit timer using TMR0 for the upper 8 bits and TMR1 for the lower 8 bits (TMR2 for the upper 8 bits and TMR3 for the lower 8 bits)	16-bit count mode 16-bit timer using TMR0 for the upper 8 bits and TMR1 for the lower 8 bits (TMR2 for the upper 8 bits and TMR3 for the lower 8 bits)
	Compare match count mode TMR1 can be used to count TMR0 compare matches (TMR3 can be used to count TMR2 compare matches).	Compare match count mode TMR1 can be used to count TMR0 compare matches (TMR3 can be used to count TMR2 compare matches).
Interrupt sources	Compare match A, compare match B, and overflow	Compare match A, compare match B, and overflow
Event link function (output)	Compare match A, compare match B, and overflow (TMR0, TMR2)	Compare match A, compare match B, and overflow (TMR0, TMR2)
Event link function (input)	Ability to perform one of three actions according to accepted event (1) Counter start (TMR0, TMR2) (2) Event counter (TMR0, TMR2) (3) Counter restart (TMR0, TMR2)	Ability to perform one of three actions according to accepted event (1) Counter start (TMR0, TMR2) (2) Event counter (TMR0, TMR2) (3) Counter restart (TMR0, TMR2)
DTC activation	The DTC can be activated by compare match A interrupts or compare match B interrupts.	The DTC can be activated by compare match A interrupts or compare match B interrupts.
Generation of baud rate clock for SCI	Generation of baud rate clock for SCI	Generation of basic clock for SCI
Generation of REMC receive clock	Generation of operating clock for remote control signal reception function (REMC)	_
Low power consumption function	Each unit can be placed in a module stop state.	Each unit can be placed in a module stop state.

2.15 Realtime Clock

Table 2.37 is a comparison of realtime clock registers.

Table 2.37 Comparison of Realtime Clock Registers

Register	Bit	RX130 (RTCc)	RX140 (RTCc)
RCR3		RTC control register 3	

2.16 Low-Power Timer

Table 2.38 is a comparative overview of the low-power timers, and Table 2.39 is a comparison of low-power timer registers.

Table 2.38 Comparative Overview of Low-Power Timers

Item	RX130 (LPT)	RX140 (LPTa)
Clock source	Sub-clock oscillator or IWDT-dedicated on-chip oscillator	Sub-clock, LOCO clock (divided by 4), or IWDT-dedicated clock
Clock division ratio	Divided by 2, 4, 8, 16, or 32	No division, or divided by 2, 4, 8, 16, or 32
Count operation	 Count up using the 16-bit up-counter Count operation can be continued even in software standby mode 	 Count up using the 16-bit up-counter. Count operation can be continued even in software standby mode.
Compare match	Compare match 0 (A compare match signal is generated only in software standby mode)	 Compare match 0 (A compare match signal is generated only in software standby mode.) Compare match 1
PWM waveform generation		A PWM waveform can be output on the LPT0 pin.
Interrupt	_	Compare match 1
Event link function (output)	Compare match 0 An event signal is output (a compare match signal is generated only in software standby mode).	 Compare match 0 (A compare match signal is generated only in software standby mode.) Compare match 1

Table 2.39 Comparison of Low-Power Timer Registers

Register	Bit	RX130 (LPT)	RX140 (LPTa)
LPTCR1	LPCNTPSSEL	Low-power timer clock division	Clock division ratio select bits
	[2:0]	ratio select bits	
		b2 b0	LO LO
		02 00	b2 b0
		0 0 1: Source clock divided by 2	0 0 0: No division
		0 1 0: Source clock divided by 4	0 0 1: Divided by 2 0 1 0: Divided by 4
		0 1 1: Source clock divided by 8	0 1 1: Divided by 8
		1 0 0: Source clock divided by 16	0 0 0: Divided by 8
		1 0 1: Source clock divided by 10	1 0 1: Divided by 16
		Settings other than the above are	Settings other than the above are
		prohibited.	prohibited.
	LPCNTCKSEL	Low-power timer clock source	Clock source select bit 2 (b3),
	(RX130)	select bit	clock source select bit (b4)
	LPCNTCKSEL2,		
	LPCNTCKSEL		b4 b3
	(RX140)	0: Sub-clock oscillator is selected.	0 0: Sub-clock
		1: IWDT-dedicated on-chip oscillator is selected.	0 1: LOCO clock divided by 4*1
			1 0: IWDT-dedicated clock (IWDTCLK)
			1 1: LOCO clock divided by 4*1
			Make settings such that the
			frequency of the system clock
			(ICLK) and peripheral module
			clock (PCLKB) $\geq 4 \times$ (the
			frequency of the clock source).
	LPCMRE1	_	Compare match 1 enable bit
LPTCR2	OPOL	_	Output polarity select bit
	OLVL	_	Output level select bit
	PWME	_	PWM mode enable bit
LPCMR1	_	_	Low-power timer compare register 1

Note: 1. The clock generated by the low-speed on-chip oscillator (LOCO), divided by 4, is supplied to the low-power timer. To ensure that operation of the LOCO clock continues in software standby mode when it being used as the clock source of the low-power timer, set the LFOCR.LOFXIN bit to 1.

2.17 Serial Communications Interface

Table 2.40 is a comparative overview of the serial communications interfaces, and Table 2.41 is a comparison of serial communications interface channel specifications, and Table 2.42 is a comparison of serial communications interface registers.

Table 2.40 Comparative Overview of Serial Communications Interfaces

Item		RX130 (SCIg, SCIh)	RX140 (SCIg, SCIk, SCIh)
Number of channels		SCIg: 6 channels	SCIg: 3 channels
			SClk: 2 channels
		SCIh: 1 channel	SCIh: 1 channel
Serial communi	cations modes	Asynchronous	Asynchronous
		Clock synchronous	Clock synchronous
		Smart card interface	Smart card interface
		Simple I ² C bus	Simple I ² C bus
		Simple SPI bus	Simple SPI bus
Transfer speed		Bit rate specifiable by on-chip baud rate generator.	Bit rate specifiable by on-chip baud rate generator.
Full-duplex com	nmunication	Transmitter:	Transmitter:
		Continuous transmission	Continuous transmission
		possible using double-buffer	possible using double-buffer
		structure.	structure.
		• Receiver:	Receiver:
		Continuous reception possible	Continuous reception possible
Data transfer		using double-buffer structure. Selectable as LSB first or MSB	using double-buffer structure. Selectable as LSB first or MSB
		first transfer.	first transfer.
I/O signal level	inversion	-	The levels of input and output
			signals can be inverted
			independently (SCI1 and SCI5).
Interrupt source	es .	Transmit end, transmit data	Transmit end, transmit data
		empty, receive data full, and receive error, completion of	empty, receive data full, receive error, and data match (SCI1 and
		generation of a start condition,	SCI5), completion of generation
		restart condition, or stop condition	of a start condition, restart
		(for simple I ² C mode)	condition, or stop condition (for
			simple I ² C mode)
Low power cons	sumption function	Individual channels can be	Individual channels can be
		transitioned to the module stop	transitioned to the module stop
		state.	state.
Asynchronous	Data length	7, 8, or 9 bits	7, 8, or 9 bits
mode	Transmission stop bits	1 or 2 bits	1 or 2 bits
	Parity	Even parity, odd parity, or no parity	Even parity, odd parity, or no parity
	Receive error	Parity, overrun, and framing	Parity, overrun, and framing
	detection function	errors	errors
	Hardware flow	CTSn# and RTSn# pins can be	CTSn# and RTSn# pins can be
	control	used in controlling	used in controlling
		transmission/reception.	transmission/reception.
	Data match		Compares receive data and
	detection		comparison data, and generates
			interrupt when they are matched
			(SCI1 and SCI5)

Item		RX130 (SCIg, SCIh)	RX140 (SCIg, SCIk, SCIh)
Asynchronous	Start-bit	Low level or falling edge is	Low level or falling edge is
mode	detection	selectable.	selectable.
	Receive data	_	The receive data sampling point
	sampling timing		can be shifted from the center of
	adjustment		the data forward or backward to a
	Transmit signal		base point (SCI1 and SCI5). Either the falling or rising edge of
	change timing	_	the transmit data can be delayed
	adjustment		(SCI1 and SCI5).
	Break detection	When a framing error occurs, a	When a framing error occurs, a
		break can be detected by reading	break can be detected by reading
		the RXDn pin level directly.	the RXDn pin level directly or by
			reading the SPTR.RXDMON flag
	Clock source	An internal or external clock	(SCI1 or SCI5). • An internal or external clock
	Clock Source	can be selected.	can be selected.
		Transfer rate clock input from	Transfer rate clock input from
		the TMR can be used (SCI5,	the TMR can be used (SCI5,
		SCI6, and SCI12).	SCI6, and SCI12).
	Double-speed	Baud rate generator double-	Baud rate generator double-
	mode	speed mode is selectable.	speed mode is selectable.
	Multi-processor	Serial communication among	Serial communication among
	communications function	multiple processors	multiple processors
	Noise	The signal paths from input on	The signal paths from input on
	cancellation	the RXDn pins incorporate digital	the RXDn pins incorporate digital
		noise filters.	noise filters.
Clock	Data length	8 bits	8 bits
synchronous mode	Receive error detection	Overrun error	Overrun error
	Hardware flow	CTSn# and RTSn# pins can be	CTSn# and RTSn# pins can be
	control	used in controlling transmission/	used in controlling transmission/
		reception.	reception.
Smart card	Error processing	An error signal can be	An error signal can be
interface mode		automatically transmitted when detecting a parity error	automatically transmitted when detecting a parity error
		during reception	during reception
		Data can be automatically	Data can be automatically
		retransmitted when receiving	retransmitted when receiving
		an error signal during	an error signal during
		transmission	transmission
	Data type	Both direct convention and	Both direct convention and
		inverse convention are supported.	inverse convention are supported.
Simple I ² C	Communication	I ² C bus format	I ² C bus format
mode	format	. J Sac format	
	Operating mode	Master	Master
		(single-master operation only)	(single-master operation only)
	Transfer rate	Fast mode is supported.	Fast mode is supported.
	Noise	The signal paths from input on	The signal paths from input on
	cancellation	the SSCLn and SSDAn pins incorporate digital noise filters,	the SSCLn and SSDAn pins incorporate digital noise filters,
		and the interval for noise	and the interval for noise
		cancellation is adjustable.	cancellation is adjustable.
	l .		

Item		RX130 (SCIg, SCIh)	RX140 (SCIg, SCIk, SCIh)
Simple SPI	Data length	8 bits	8 bits
mode	Detection of errors	Overrun error	Overrun error
	SS input pin function	Applying the high level to the SSn# pin can cause the output pins to enter the high-impedance state.	Applying the high level to the SSn# pin can cause the output pins to enter the high-impedance state.
	Clock settings	Four kinds of settings for clock phase and clock polarity are selectable.	Four kinds of settings for clock phase and clock polarity are selectable.
Extended serial mode (supported by SCI12 only)	Start frame transmission	 Break field low width output and generation of interrupt on completion Detection of bus collision and generation of interrupt on detection 	 Break field low width output and generation of interrupt on completion Detection of bus collision and generation of interrupt on detection
	Start frame reception	 Detection of break field low width and generation of interrupt on detection Data comparison of control fields 0 and 1 and generation of interrupt when they match Ability to specify two kinds of data for comparison (primary and secondary) in control field 1 Ability to specify priority interrupt bit in control field 1 Support for start frames that do not include a break field Support for start frames that do not include a control field 0 Function for measuring bit rates 	 Detection of break field low width and generation of interrupt on detection Data comparison of control fields 0 and 1 and generation of interrupt when they match Ability to specify two kinds of data for comparison (primary and secondary) in control field 1 Ability to specify priority interrupt bit in control field 1 Support for start frames that do not include a break field Support for start frames that do not include a control field 0 Function for measuring bit rates
	I/O control function	 Ability to select polarity or TXDX12 and RXDX12 signals Ability to specify digital filtering of RXDX12 signal Half-duplex operation employing RXDX12 and TXDX12 signals multiplexed on the same pin Ability to select receive data sampling timing of RXDX12 pin Usable as reloading timer 	 Ability to select polarity or TXDX12 and RXDX12 signals Ability to specify digital filtering of RXDX12 signal Half-duplex operation employing RXDX12 and TXDX12 signals multiplexed on the same pin Ability to select receive data sampling timing of RXDX12 pin Usable as reloading timer
Bit rate modulation function		Correction of outputs from the on-chip baud rate generator can reduce errors.	Correction of outputs from the on-chip baud rate generator can reduce errors.

Item	RX130 (SCIg, SCIh)	RX140 (SCIg, SCIk, SCIh)
Event link function (supported by	Error (receive error or error	Error (receive error or error
SCI5 only)	signal detection) event output	signal detection) event output
	Receive data full event output	Receive data full event output
	Transmit data empty event	Transmit data empty event
	output	output
	Transmit end event output	Transmit end event output

Table 2.41 Comparison of Serial Communications Interface Channel Specifications

Item	RX130 (SCIg, SCIh)	RX140 (SCIg, SCIk, SCIh)
Synchronous mode	SCI0, SCI1, SCI5, SCI6, SCI8, SCI9, SCI12	SCI1, SCI5, SCI6, SCI8, SCI9, SCI12
Clock synchronous mode	SCI0, SCI1, SCI5, SCI6, SCI8, SCI9, SCI12	SCI1, SCI5, SCI6, SCI8, SCI9, SCI12
Smart card interface mode	SCI0, SCI1, SCI5, SCI6, SCI8, SCI9, SCI12	SCI1, SCI5, SCI6, SCI8, SCI9, SCI12
Simple I ² C mode	SCI0, SCI1, SCI5, SCI6, SCI8, SCI9, SCI12	SCI1, SCI5, SCI6, SCI8, SCI9, SCI12
Simple SPI mode	SCI0, SCI1, SCI5, SCI6, SCI8, SCI9, SCI12	SCI1, SCI5, SCI6, SCI8, SCI9, SCI12
Data match detection	_	SCI1, SCI5
Extended serial mode	SCI12	SCI12
TMR clock input	SCI5, SCI6, SCI12	SCI5, SCI6, SCI12
Event link function	SCI5	SCI5
Peripheral module clock	PCLKB: SCI0, SCI1, SCI5, SCI6, SCI8, SCI9, SCI12	PCLKB: SCI1, SCI5, SCI6, SCI8, SCI9, SCI12

Table 2.42 Comparison of Serial Communications Interface Registers

Register	Bit	RX130 (SCIg, SCIh)	RX140 (SCIg, SCIk, SCIh)
SCR	MPIE	Multi-processor interrupt enable bit (Valid in asynchronous mode	Multi-processor interrupt enable bit (Valid in asynchronous mode
		when SMR.MP bit = 1)	when SMR.MP bit = 1)
		0: Normal receive operation	0: Normal receive operation
		1: When data is received while the multi-processor bit is set to 0, the data is skipped, and setting of status flags ORER and FER in SSR is disabled. When data is received while the multi-processor bit is set to 1, the MPIE bit is automatically cleared to 0, and normal receive operation resumes.	1: When data is received while the multi-processor bit is set to 0, the data is skipped, and setting (to 1) of status flags RDRF, ORER, and FER in SSR is disabled. When data is received while the multi-processor bit is set to 1, the MPIE bit is automatically cleared to 0, and normal receive operation resumes.
SEMR	ITE	_	Immediate transmission enable bit
	ABCSE	_	Asynchronous basic clock select extended bit
CDR		_	Comparison data register
DCCR		_	Data comparison control register
SPTR		_	Serial port register
TMGR	_	_	Transmit/receive timing select register

2.18 Serial Peripheral Interface

Table 2.43 is a comparative overview of serial peripheral interfaces, and Table 2.44 is a comparison of serial peripheral interface registers.

 Table 2.43 Comparative Overview of Serial Peripheral Interfaces

Item	RX130 (RSPIa)	RX140 (RSPIc)
Number of channels	1 channel	1 channel
RSPI transfer functions	 Use of MOSI (master out/slave in), MISO (master in/slave out), SSL (slave select), and RSPCK (RSPI clock) signals allows serial communications through SPI operation (4-wire method) or clock synchronous operation (3-wire method). Transmit-only operation is available. 	Use of MOSI (master out/slave in), MISO (master in/slave out), SSL (slave select), and RSPCK (RSPI clock) signals allows serial communications through SPI operation (4-wire method) or clock synchronous operation (3-wire method).
	 Communication mode: Full-duplex or transmit-only can be selected. Switching of the polarity of RSPCK Switching of the phase of RSPCK 	 Communication mode: Full-duplex or transmit-only can be selected. Switching of the polarity of RSPCK Switching of the phase of RSPCK
Data format	MSB first/LSB first selectable	MSB first/LSB first selectable
	 Transfer bit length is selectable as 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 24, or 32 bits. 128-bit transmit/receive buffers 	 Transfer bit length is selectable as 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 24, or 32 bits. 128-bit transmit/receive buffers
	Up to four frames can be transferred in one round of transmission/reception (each frame consisting of up to 32 bits).	 Up to four frames can be transferred in one round of transmission/reception (each frame consisting of up to 32 bits). Byte swapping of transmit and receive data is selectable
Bit rate	In master mode, the on-chip baud rate generator generates RSPCK by frequency-dividing PCLK (the division ratio ranges from divided by 2 to divided by 4096).	In master mode, the on-chip baud rate generator generates RSPCK by frequency-dividing PCLK (the division ratio ranges from divided by 2 to divided by 4096).
	In slave mode, the minimum PCLK clock divided by 8 can be input as RSPCK (the maximum frequency of RSPCK is that of PCLK divided by 8). Width at high level: 4 cycles of PCLK Width at low level: 4 cycles of PCLK PCLK	In slave mode, the minimum PCLK clock divided by 4 can be input as RSPCK (the maximum frequency of RSPCK is that of PCLK divided by 4). Width at high level: 2 cycles of PCLK Width at low level: 2 cycles of PCLK
Buffer configuration	 Double buffer configuration for the transmit/receive buffers 128 bits for the transmit/receive 	 Double buffer configuration for the transmit/receive buffers 128 bits for the transmit/receive
	buffers	buffers
Error detection	Mode fault error detectionOverrun error detectionParity error detection	 Mode fault error detection Overrun error detection Parity error detection Underrun error detection

Item	RX130 (RSPIa)	RX140 (RSPIc)
SSL control function	Four SSL pins (SSLA0 to SSLA3) for	Four SSL pins (SSLA0 to SSLA3) for
	each channel	each channel
	In single-master mode, SSLA0 to	In single-master mode, SSLA0 to
	SSLA3 pins are output.	SSLA3 pins are output.
	In multi-master mode: OCI A0 min for input, and CCI A1 to	In multi-master mode: On An air for input, and ON A4 to
	SSLA0 pin for input, and SSLA1 to SSLA3 pins for either output or	SSLA0 pin for input, and SSLA1 to SSLA3 pins for either output or
	unused.	unused.
	In slave mode:	In slave mode:
	SSLA0 pin for input, and SSLA1 to SSLA3 pins for unused.	SSLA0 pin for input, and SSLA1 to SSLA3 pins for unused.
	Controllable delay from SSL output assertion to RSPCK operation (RSPCK delay)	Controllable delay from SSL output assertion to RSPCK operation (RSPCK delay)
	 Range: 1 to 8 RSPCK cycles (set in RSPCK-cycle units) 	 Range: 1 to 8 RSPCK cycles (set in RSPCK-cycle units)
	Controllable delay from RSPCK stop to SSL output negation (SSL	Controllable delay from RSPCK stop to SSL output negation (SSL)
	negation delay)	negation delay)
	 Range: 1 to 8 RSPCK cycles (set in RSPCK-cycle units) 	 Range: 1 to 8 RSPCK cycles (set in RSPCK-cycle units)
	Controllable wait for next-access	Controllable wait for next-access
	SSL output assertion (next-access	SSL output assertion (next-access
	delay)	delay)
	Range:1 to 8 RSPCK cycles (set in RSPCK-cycle units)	Range:1 to 8 RSPCK cycles (set in RSPCK-cycle units)
Control in master	Function for changing SSL polarity	Function for changing SSL polarity
transfer	A transfer of up to eight commands can be executed sequentially in	A transfer of up to eight commands can be executed sequentially in
transion	looped execution.	looped execution.
	For each command, the following	For each command, the following
	can be set:	can be set:
	SSL signal value, bit rate, RSPCK	SSL signal value, bit rate, RSPCK
	polarity/phase, transfer data length, MSB/LSB first, burst, RSPCK delay,	polarity/phase, transfer data length, MSB/LSB first, burst, RSPCK delay,
	SSL negation delay, and next-access delay	SSL negation delay, and next-access delay
	A transfer can be initiated by writing	A transfer can be initiated by writing
	to the transmit buffer.	to the transmit buffer.
	MOSI signal value specifiable in SSL	MOSI signal value specifiable in SSL
	negationRSPCK auto-stop function	negationRSPCK auto-stop function
Interrupt sources	RSPCK auto-stop function Receive buffer full interrupt	RSPCK auto-stop function Receive buffer full interrupt
micriapi sources	Transmit buffer empty interrupt	Transmit buffer empty interrupt
	RSPI error interrupt (mode fault,	Error interrupt (mode fault, overrun,
	overrun, or parity error)	underrun, or parity error)
	RSPI idle interrupt (RSPI idle)	Idle interrupt
Other functions	Function for switching between	
	CMOS output and open-drain output	_ , , , , , , , , , , , , , , , , , , ,
	Function for initializing the RSPI	Function for initializing the RSPI
Lawas	Loopback mode Ability to an acify module step state	Loopback mode Ability to an acifu madula stan state
Low power consumption	Ability to specify module stop state.	Ability to specify module stop state.
function		
131100011		

Table 2.44 Comparison of Serial Peripheral Interface Registers

Register	Bit	RX130 (RSPIa)	RX140 (RSPIc)
SPSR	MODF	Mode fault error flag	Mode fault error flag
		0: No mode fault error occurs	0: Neither a mode fault error nor an underrun error occurs
		1: A mode fault error occurs	A mode fault error or an underrun error occurs
	UDRF	_	Underrun error flag
SPDR	_	RSPI data register	RSPI data register
		Accessible size	Accessible size
		 Longwords access (SPDCR.SPLW = 1) 	• Longwords access (SPDCR.SPLW = 1, SPBYTE = 0)
		Words access (SPDCR.SPLW = 0)	• Words access (SPDCR.SPLW = 0, SPBYTE = 0)
		(er berner in a sy	 Bytes access (SPDCR.SPBYT = 1)
SPDCR	SPBYT	_	RSPI byte access specification bit
SPCR2	SPPE	Parity enable bit	Parity enable bit
		A parity bit is not added to transmit data, and no parity checking of receive data is performed.	A parity bit is not added to transmit data, and no parity checking of receive data is performed.
		1: A parity bit is added to transmit data, and parity checking of receive data is performed (when SPCR.TXMD = 0).	A parity bit is added to transmit data, and parity checking of receive data is performed.
		A parity bit is added to transmit data, but no parity checking of receive data is performed (when SPCR.TXMD = 1).	
SPDCR2	_	_	RSPI data control register 2

2.19 Capacitive Touch Sensing Unit

Table 2.45 is a comparative overview of the capacitive touch sensing units, and Table 2.46 is a comparison of capacitive touch sensing unit registers.

Table 2.45 Comparative Overview of Capacitive Touch Sensing Units

Item		RX130 (CTSUa)	RX140 (CTSU2SL, CTSU2L)
Operating clock		PCLK, PCLK/2, or PCLK/4	Selectable among PCLKB (1 MHz and above), PCLKB/2, or PCLKB/4, and PCLKB/8
I/O pins	Electrostatic capacitance measurement pins	Electrostatic capacitance measurement pins (36 channels)	Electrostatic capacitance measurement pins (36*1/12 channels)
	Measurement power supply capacitor connection pin	TSCAP	TSCAP (0.01 μF)
Measurement modes	Self-capacitance method	A single touch key is assigned to a single touch pin, and the electrostatic capacitance when in proximity to the human body is measured.	The electrostatic capacitance of pins is determined by measuring the current flow to a switched capacitor.
	Mutual capacitance method	The electrostatic capacitance between two electrodes facing each other (transmission electrode and reception electrode) is measured.	The mutual capacitance between two pins is determined by measuring the current flow to a switched capacitor.
		The transmission power supply can be switched between the internal logic power supply and VCC (dedicated).	The transmission power supply can be switched among the internal logic power supply, I/O power supply, and VCC (dedicated).
	Current measurement mode		Direct reading of current flowing to pin
Scan modes	Single-scan mode	Electrostatic capacitance is measured on a user-defined channel.	Electrostatic capacitance is measured on one channel.
	Multi-scan mode	Electrostatic capacitance is measured on multiple user-defined channels successively.	Electrostatic capacitance is measured on multiple channels successively.
Noise prevention		Synchronous noise prevention, high-range noise prevention	 Sensor drive pulse spectrum diffusion function Sensor drive pulse random phase shift function Noise hopping function using multiple-frequency sensor drive pulses
Individual pin adjustments		 Offset current adjustment function Specification of sensor drive pulse frequency Specification of measurement duration 	 Offset current adjustment function Specification of sensor drive pulse frequency Specification of measurement duration

Item	RX130 (CTSUa)	RX140 (CTSU2SL, CTSU2L)
Measurement start conditions	 Software trigger External trigger (event input from event link controller (ELC)) 	 Software trigger External trigger (event input from event link controller (ELC))
Automatic processing functions		 Automatic correction function*¹ Automatic determination function*¹
Low-power functions		Ability to perform measurement in snooze mode • Measurement start by external trigger input via ELC • Ability to end snooze mode by contactless determination using automatic determination function* • Ability to cancel snooze mode by measurement end interrupt
Interrupt sources	 Channel-specific setting register write request interrupt (CTSUWR) Measurement data transfer request interrupt (CTSURD) Measurement end interrupt (CTSUFN) 	 Register setting request interrupt (CTSUWR) Measurement result read request interrupt (CTSURD) Measurement end interrupt (CTSUFN)
Event link function		Measurement start trigger input

Note: 1. These functions are implemented on products with ROM capacity of 128 KB or greater.

Table 2.46 Comparison of Capacitive Touch Sensing Unit Registers

Register	Bit	RX130 (CTSUa)	RX140 (CTSU2SL, CTSU2L)
CTSUCR0, CTSUCR1 (RX130)	_	CTSU control register 0, CTSU control register 1	CTSU control register A
CTSUCRA (RX140)		CTSUCR0 and CTSUCR1 are 8-bit registers.	CTSUCRA is a 32-bit register.
	CTSUCR0.CTSUSTRT (RX130) STRT (RX140)	CTSU measurement operation start bit	Measurement operation start bit
	CTSUCRO.CTSUCAP (RX130) CAP (RX140)	CTSU measurement operation start trigger select bit	Measurement start trigger select bit
	CTSUCR0.CTSUSNZ (RX130) SNZ (RX140)	CTSU wait state power- saving enable bit	Snooze function enable bit
	CTSUCR0.CTSUIOC	CTSU transmit pin control bit	_
			(The CTSUCALIB.IOC bit performs the same function.)
	CTSUCR0.CTSUINIT (RX130) INIT (RX140)	CTSU control block initialization bit	Control block initialization bit
	CTSUCR0.CTSUTXVSEL (RX130) TXVSEL[1:0] (RX140)	CTSU transmission power supply select bit (b7)	Transmission power supply select bit (b7 and b6)
		0: VCC selected. 1: Internal logic power supply selected.	b7 b6 0 0: I/O power supply 0 1: VCC 1 0: Internal logic power supply 1 1: VCC
	CTSUCR1.CTSUPON (RX130) PON (RX140)	CTSU power supply enable bit (b0)	Measurement power supply enable bit (b8)
	CTSUCR1.CTSUCSW (RX130) CSW (RX140)	CTSU LPF capacitance charging control bit (b1)	LPF capacitance charging control bit (b9)
	CTSUCR1.CTSUATUNE0 (RX130) ATUNE0 (RX140)	CTSU power supply operating mode setting bit (b2)	Power supply operating mode setting bit (b10)
			Set this bit to 1 when the VCC voltage is less than 2.4 V.

Register	Bit	RX130 (CTSUa)	RX140 (CTSU2SL, CTSU2L)
CTSUCR0,	CTSUCR1.CTSUATUNE1	CTSU power supply	Current range setting bit 1
CTSUCR1	(RX130)	capacity adjustment bit	(b11)
(RX130)	ATUNE1, ATUNE2 (RX140)	(b3)	Current range setting bit 2
CTSUCRA			(b17)
(RX140)			
			ATUNE2 ATUNE1
		0: Normal output	0 0: 80 μΑ
		1: High-current output	0 1: 40 μΑ
			0 0: 20 μA 1 1: 160 μA
	CTSUCR1.CTSUCLK[1:0]	CTSU operating clock	Operating clock select bits
	(RX130)	select bits (b5 and b4)	(b13 and b12)
	CLK[1:0] (RX140)	Sciect bits (bo and b4)	(D13 and D12)
	CER(1.0] (RX140)	b5 b4	b13 b12
		0 0: PCLK	0 0: PCLKB
		0 1: PCLK/2	0 1: PCLKB/2
		(PCLK divided by 2)	(PCLKB divided by 2)
		1 0: PCLK/4	1 0: PCLKB/4
		(PCLK divided by 4)	(PCLKB divided by 4)
		1 1: Setting prohibited.	1 1: PCLKB/8
			(PCLKB divided by 4)
	CTSUCR1.CTSUMD[1:0]	CTSU measurement	Measurement mode select
	(RX130)	mode select bits	bits 0 and 1
	MD0, MD1 (RX140)	(b7 and b6)	(b15 and b14)
		b7 b6	b15 b14
		0 0: Self-capacitance	0 0: Self-capacitance
		single-scan mode	single-scan mode
		0 1: Self-capacitance	0 1: Self-capacitance
		multi-scan mode	multi-scan mode
		1 0: Setting prohibited.	1 0: Mutual capacitance
			single-scan mode
		1 1: Mutual capacitance	1 1: Mutual capacitance
	DUMPON	full-scan mode	multi-scan mode
	PUMPON	_	Step-up circuit activation bit
			Dit
			Set this bit to 1 when the
			VCC voltage is less than
			4.5 V.
	LOAD[1:0]	_	Measurement load control
			bits
	POSEL[1:0]	-	Non-measurement
	000051		channel output select bits
	SDPSEL		Sensor drive panel select
	PCSEL		bit Step-up circuit clock select
	1 COLL	_	bit
	STCLK[5:0]	1_	State clock select bits
	DCMODE	_	Current measurement
			mode select bit
	DCBACK	_	Current measurement
			feedback select bit

Register	Bit	RX130 (CTSUa)	RX140 (CTSU2SL, CTSU2L)
CTSUSDPRS, CTSUSST (RX130) CTSUCRB		CTSU synchronous noise reduction setting register, CTSU sensor stabilization wait control register	CTSU control register B
(RX140)		CTSUSDPRS and CTSUSST are 8-bit registers.	CTSUCRB is a 32-bit register.
	CTSUSDPRS.CTSUPRRATIO [3:0] (RX130) PRRATIO (RX140)	CTSU measurement time and pulse count adjustment bits	Pseudorandom number update period setting bit*1
		Recommended setting value: 3 (0011b)	Sets the shift period of the linear feedback shift register (LFSR) used to generate pseudorandom numbers.
	CTSUSDPRS.CTSUPRMODE [1:0] (RX130) PRMODE (RX140)	CTSU base period and pulse count setting bits	Pseudorandom number generation cycle setting bit*1
		b5 b4 0 0: 510 pulses 0 1: 126 pulses 1 0: 62 pulses (recommended setting value)	b5 b4 0 0: 255 cycles 0 1: 63 cycles 1 0: 31 cycles
	CTSUSDPRS.CTSUSOFF (RX130) SOFF (RX140)	1 1: Setting prohibited. CTSU high-pass noise reduction function off setting bit	1 1: 3 cycles Frequency diffusion function off bit
	PROFF	_	Pseudorandom number off bit
	CTSUSST.CTSUSST[7:0] (RX130) SST[7:0] (RX140)	CTSU sensor stabilization wait control bits (b7 to b0)	Sensor stabilization wait time setting bits (b15 to b8)
		The value of these bits should be fixed at 0001 0000b.	 Random pulse mode If n is defined as the setting value when (CTSUCRA.SDPSEL = 0), the stabilization wait time is 2 (n + 1) cycles of the PCLKB- synchronous sensor drive pulse. High-resolution pulse mode If n is defined as the setting value when (CTSUCRA.SDPSEL = 1), the stabilization wait time is n + 1 cycles of STCLK.

Register	Bit	RX130 (CTSUa)	RX140 (CTSU2SL, CTSU2L)
CTSUSDPRS,	SSMOD[2:0]	_	SUCLK diffusion mode
CTSUSST	0001774 01		select bits
(RX130)	SSCNT[1:0]	_	SUCLK diffusion control bits
CTSUCRB (RX140)			DILS
CTSUMCH0,		CTSU measurement	CTSU measurement
CTSUMCH1		channel register 0,	channel register
(RX130)		CTSU measurement	
CTSUMCH		channel register 1	
(RX140)		CTSUMCH0 and	CTSUMCHCTSUCRB is a
		CTSUMCH1 are 8-bit	32-bit register.
		registers.	g
	CTSUMCH0.CTSUMCH0[5:0]	CTSU measurement	Measurement channel 0
	(RX130)	channel 0 bits (b5 to b0)	bits (b5 to b0)
	MCH0[5:0] (RX140)	- Solf consoitance	Single-scan mode
		Self-capacitance single-scan mode	Specifies the number
		b5 b0	of the receive channel
		0 0 0 0 0 0: TS0	to be measured.
		: : : : : : : : : : : : : : : : : : :	
		1 0 0 0 1 1: TS35	
		Other than above: Starting measurement	
		operation	
		(CTSUCR0.CTSUSTRT	
		bit = 1) is prohibited after	
		these bits are set.	
		Measurement modes	Multi-scan mode
		other than	Specifies the number
		self-capacitance	of the receive channel currently being
		single-scan mode b5 b0	measured.
		0 0 0 0 0 0: TS0	
		: :	
		1 0 0 0 1 1: TS35	
		1 1 1 1 1 1: Measurement	
	CTCLINACLIA CTCLINACLIAIS.O	is stopped.	Management sharped 4
	CTSUMCH1.CTSUMCH1[5:0] (RX130)	CTSU measurement channel 1 bits (b5 to b0)	Measurement channel 1 bits (b13 to b8)
	MCH1[5:0] (RX140)	onarmor i bito (bo to bo)	
		b5 b0	Single-scan mode
		0 0 0 0 0 0: TS0	Specifies the number
		: : : : : : : : : : : : : : : : : : : :	of the transmit channel to be measured.
		1 0 0 0 1 1: TS35	Multi-scan mode
		1 1 1 1 1 1: Measurement is stopped.	Specifies the number
		.3 515 F 5 5 1	of the transmit channel
			currently being measured.
	<u> </u>	<u> </u>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Register	Bit	RX130 (CTSUa)	RX140 (CTSU2SL, CTSU2L)
CTSUMCH0, CTSUMCH1 (RX130) CTSUMCH (RX140)	MCAn		Multi-clock n enable bit (n = 0 to 3)
CTSUCHACn (RX130) CTSUCHACx (RX140)		CTSU channel enable control register n (n = 0 to 4)	CTSU channel enable control register x (x = A, B)
		CTSUCHACn is an 8-bit register.	CTSUCHACx is a 32-bit register.
	CTSUCHACnj (RX130) CHACm (RX140)	CTSU channel enable control nj bit (n = 0 to 4) (j = 0 to 7)	Channel m enable control bit (m = 0 to 35)
CTSUCHTRCn (RX130) CTSUCHTRCx (RX140)		CTSU channel transmit/receive control register n (n = 0 to 4)	CTSU channel transmit/receive control register x (x = A, B)
		CTSUCHTRCn is an 8-bit register.	CTSUCHTRCA is a 32-bit register.
	CTSUCHTRCnj (RX130) CHTRCm (RX140)	CTSU channel transmit/ receive control nj bit (n = 0 to 4) (j = 0 to 7)	Channel m transmit/ receive control bit (m = 0 to 35)
CTSUDCLKC	CTSUSSMOD[1:0]	CTSU diffusion clock mode select bits	(The CTSUCRB.SSMOD[2:0] bits perform the same function.)
	CTSUSSCNT[1:0]	CTSU diffusion clock control bits	(The CTSUCRB.CTSUSSCNT [1:0] bits perform the same function.)
CTSUST (RX130) CTSUSR (RX140)	_	CTSU status register CTSUST is an 8-bit register.	CTSU status register CTSUSR is a 32-bit register.
	CTSUSTC[2:0] (RX130) STC[2:0] (RX140)	CTSU measurement status counter (b2 to b0)	Measurement status counter (b10 to b8)
	CTSUDTSR (RX130) DTSR (RX140)	CTSU data transfer status flag (b4)	Data transfer status flag (b12)
	CTSUSOVF (RX130) SOVF (RX140)	CTSU sensor counter overflow flag (b5)	Sensor counter overflow flag (b13)
	CTSUROVF (RX130) UCOVF (RX140)	CTSU reference counter overflow flag (b6)	Sensor unit clock counter overflow flag (b14)
	CTSUPS (RX130) PS (RX140)	CTSU mutual capacitance status flag (b7)	Mutual capacitance status flag (b15)
	MFC[1:0]	_	Multi-clock counter
	ICOMPRST	_	ICOMP0 and ICOMP1 flag reset bit

Register	Bit	RX130 (CTSUa)	RX140 (CTSU2SL, CTSU2L)
CTSUST	ICOMP1	_	Overcurrent detection flag
(RX130) CTSUSR (RX140)	ICOMP0	_	Overvoltage detection flag
CTSUSSC	_	CTSU high-pass noise reduction spectrum diffusion control register	_
CTSUSO0, CTSUSO1 (RX130) CTSUSO (RX140)		CTSU sensor offset registers 0 and 1 CTSUSO0 and CTSUSO1 are 16-bit registers.	CTSU sensor offset register CTSUSO is a 32-bit register.
	CTSUSO0.CTSUSO[9:0] (RX130) SO[9:0] (RX140)	CTSU sensor offset adjustment bits	Sensor offset adjustment bits
	CTSUSO0.CTSUSNUM[5:0] (RX130) SNUM[7:0] (RX140)	CTSU measurement count setting bits (b15 to b10) These bits specify the number of measurements by the CTSU.	Measurement period setting bits (b17 to b10) Random pulse mode (CTSUCRA.SDPSEL = 0) The CTSU measurement period is specified as the number of times the basic measurement unit is repeated. The allowable setting range is 00h to 3Fh. If the setting value is n, the basic measurement unit is repeated n + 1
			times. High-resolution pulse mode (CTSUCRA.SDPSEL = 1) The CTSU measurement period is based on STCLK cycles. If the setting value is n, measurement takes place for a period equal to 8 (n + 1) cycles of STCLK.
	CTSUSO1.CTSURICOA[7:0]	CTSU reference ICO current adjustment bits	_

Register	Bit	RX130 (CTSUa)	RX140 (CTSU2SL, CTSU2L)
CTSUSO0,	CTSUSO1.CTSUSDPA[4:0]	CTSU base clock setting	Base clock setting bits
CTSUSO1	(RX130)	bits (b12 to b8)	(b31 to b24)
(RX130)	SDPA[7:0] (RX140)		
CTSUSO		b12 b8	 Random pulse mode
(RX140)		0 0 0 0 0: Operating clock	(CTSUCRA.SDPSEL
		divided by 2	
		0 0 0 0 1: Operating clock divided by 4	If the setting value is n, the base clock
		divided by 4	frequency is the
		1 1 1 1 0: Operating clock	operating clock divided
		divided by 62	by 2 (n + 1).
		1 1 1 1 1: Operating clock	High-resolution pulse
		divided by 64	mode (CTSUCRA.SDPSEL
			= 1)
			If the setting value is n,
			the base clock
			frequency is n + 1
	CTSUSO1.CTSUICOG[1:0]	CTSUICO gain adjustment	SUCLK cycles.
	C150501.C1501C0G[1.0]	bits	
	SSDIV[3:0]	-	Spectrum diffusion
0.701100	0.701100145 01	0.701	sampling cycle control bits
CTSUSC	CTSUSC[15:0]	CTSU sensor counter bits	_
CTSURC	-	CTSU reference counter	
CTSUERRS (RX130)	<u> </u>	CTSU error status register	CTSU calibration register
CTSUCALIB		CTSUERRS is a 16-bit	CTSUCALIB is a 32-bit
(RX140)		register.	register.
(**************************************	CTSUSPMD[1:0]	Calibration mode bits	_
	CTSUTSOD (RX130)	TS pin fixed output bit	TS all-pin output control
	TSOD (RX140)		bit
	CTSUDRV (RX130)	Calibration setting bit 1	Calibration setting bit 1
	DRV (RX140)		
	CTSUTSOC (RX130)	Calibration setting bit 2	Calibration setting bit 2
	TSOC (RX140)		
	CTSUICOMP	TSCAP voltage error monitor bit	_
	CLKSEL[1:0]		Monitor clock select bits
	SUCLKEN		SUCLK enable bit
	IOC	_	Transmit pin control bit
	DCOFF	_	Down-convert off bit
	IOCSEL*2	_	TS pin IOC fixed select bit
	DACCARRY	_	DAC upper current source
	SUCARRY		carry input
	SUCARRY DACCLK	_	CCO carry input DAC modulation circuit
	DACCEN		clock select bit
	CCOCLK	 	CCO modulation circuit
			clock select bit

Register	Bit	RX130 (CTSUa)	RX140 (CTSU2SL, CTSU2L)
CTSUERRS	CCOCALIB	_	CCO calibration mode
(RX130)			select bit
CTSUCALIB	TXREV	_	Transit pin inverted output
(RX140)			bit
CTSUTRMR	_	CTSU reference current	_
		calibration register	
CTSUSUCLKA	_	_	CTSU sensor unit clock
0.701101101145			control register A
CTSUSUCLKB		_	CTSU sensor unit clock
0.701.170.114			control register B
CTSUTRIMA	_	-	CTSU trimming register A
CTSUTRIMB	_	_	CTSU trimming register B
CTSUOPT*2		_	CTSU option setting
			register
CTSUSCNTA	_	_	CTSU sensor counter
CT*2			automatic correction table
			access register
CTSUAJCR*2	_	<u> </u>	CTSU automatic judgment
			control register
CTSUAJTHR	_	<u> </u>	CTSU threshold register
*2			
CTSUAJMMA	_	_	CTSU moving average
R*2			result register
CTSUAJBLAC	_	_	CTSU baseline average
T*2			intermediate result register
CTSUAJBLAR	_		CTSU baseline average
*2			result register
CTSUAJRR*2	_	—	CTSU automatic judgment
			result register
CTSUADCC	_	_	CTSU A/D converter
			connection control register

Note: 1. Valid only when the value of the CTSUCRA.SDPSEL bit is 0 (random pulse mode).

Note: 2. These registers are implemented on products with ROM capacity of 128 KB or greater.

2.20 12-Bit A/D Converter

Table 2.47 is a comparative overview of the 12-bit A/D converters, and Table 2.48 is a comparison of 12-bit A/D converter registers.

Table 2.47 Comparative Overview of 12-Bit A/D Converters

Item	RX130 (S12ADE)	RX140 (S12ADE)
Number of units	1 unit	1 unit
Input channels	24 channels	18 channels
Extended analog	Temperature sensor output, internal	Temperature sensor output, internal
function	reference voltage	reference voltage
A/D conversion method	Successive approximation method	Successive approximation method
Resolution	12 bits	12 bits
Conversion time	1.4 µs per channel	Per channel
	(when A/D conversion clock ADCLK = 32 MHz)	0.88 μs when value of conversion cycle bit is 0, 0.67 μs when value of conversion cycle bit is 1 (when A/D conversion clock (ADCLK) = 48 MHz)
A/D conversion	Peripheral module clock PCLK and A/D	Peripheral module clock PCLK and A/D
clock	conversion clock ADCLK can be set so	conversion clock ADCLK can be set so
	that the frequency ratio should be one of	that the frequency ratio should be one of
	the following. PCLK to ADCLK frequency ratio	the following. PCLK to ADCLK frequency ratio
	= 1:1, 1:2, 2:1, 4:1, 8:1	= 1:1, 1:2, 2:1, 4:1, 8:1
	,,,	,,,
	ADCLK is set using the clock generation	ADCLK is set using the clock generation
	circuit.	circuit.
Data register	 24 registers for analog input and one for A/D-converted data duplication in double trigger mode One register for temperature sensor output One register for internal reference One register for self-diagnosis The results of A/D conversion are stored in 12-bit A/D data registers. 12-bit accuracy output for the results of A/D conversion The value obtained by adding up A/D-converted results is stored as a value in the number of bit for conversion accuracy + 2 bits/4 bits in the A/D data registers in A/D-converted value addition mode. Double trigger mode (selectable in single scan and group scan modes): The first piece of A/D-converted analog-input data on one selected channel is stored in the data register for the channel, and the second piece is stored in the duplication register. 	 18 registers for analog input, one for A/D-converted data duplication in double trigger mode One register for temperature sensor output One register for internal reference One register for self-diagnosis The results of A/D conversion are stored in 12-bit A/D data registers. 12-bit accuracy output for the results of A/D conversion The value obtained by adding up A/D-converted results is stored as a value in the number of bit for conversion accuracy + 2 bits/4 bits in the A/D data registers in A/D-converted value addition mode. Double trigger mode (selectable in single scan and group scan modes): The first piece of A/D-converted analog-input data on one selected channel is stored in the data register for the channel, and the second piece is stored in the duplication register.

Item	RX130 (S12ADE)	RX140 (S12ADE)
Operating modes	 Single scan mode: A/D conversion is performed only once on the analog inputs of up to 24 channels arbitrarily selected. A/D conversion is performed only once on the temperature sensor output. A/D conversion is performed only once on the internal reference voltage. Continuous scan mode: A/D conversion is performed repeatedly on the analog inputs of up to 24 channels arbitrarily selected. 	 Single scan mode: A/D conversion is performed only once on the analog inputs of up to 18 channels arbitrarily selected. A/D conversion is performed only once on the temperature sensor output. A/D conversion is performed only once on the internal reference voltage. Continuous scan mode: A/D conversion is performed repeatedly on the analog inputs of up to 18 channels arbitrarily selected.
	 Group scan mode: Analog inputs of up to 24 arbitrarily selected channels are divided into group A and group B, and A/D conversion of the analog inputs selected on a group basis is performed only once. Conversion start conditions (synchronous trigger) can be selected independently for group A and group B, allowing A/D conversion of the groups to start at different times. Group scan mode (when group A is given priority):	 Group scan mode: Analog inputs of up to 18 arbitrarily selected channels are divided into group A and group B, and A/D conversion of the analog inputs selected on a group basis is performed only once. Conversion start conditions (synchronous trigger) can be selected independently for group A and group B, allowing A/D conversion of the groups to start at different times. Group scan mode (when group A is given priority): If a group A trigger is input during A/D conversion on group B, A/D conversion on group B is stopped and A/D conversion is performed on group A. Restart (rescan) of A/D conversion on group A can be enabled. Group a after completion of A/D conversion on group B after completion of A/D conversion on group A can be enabled. Head of the province of the provi
Conditions for A/D conversion start	 Software trigger Synchronous trigger Trigger by the multi-function timer pulse unit (MTU) or event link controller (ELC) Asynchronous trigger A/D conversion can be triggered by the external trigger ADTRG0# pin. 	 Software trigger Synchronous trigger Trigger by the multi-function timer pulse unit (MTU) or event link controller (ELC) Asynchronous trigger A/D conversion can be triggered by the external trigger ADTRG0# pin.

Item	RX130 (S12ADE)	RX140 (S12ADE)
Functions	Variable sampling state count	Variable sampling state count
	Self-diagnosis of 12-bit A/D converter	Self-diagnosis of 12-bit A/D converter
	Selectable A/D-converted value	Selectable A/D-converted value
	addition mode or average mode	addition mode or average mode
	Analog input disconnection detection	Analog input disconnection detection
	function (discharge function/precharge function)	function (discharge function/precharge function)
	Double trigger mode (duplication of	Double trigger mode (duplication of
	A/D conversion data)	A/D conversion data)
	Automatic clear function of A/D data	Automatic clear function of A/D data
	registers	registers
	Compare function (window A and	Compare function (window A and
	window B)	window B)
	16 ring buffers when the compare function is used.	16 ring buffers when the compare the stipp is used.
Interrupt courses	function is used	function is used
Interrupt sources	In the modes except double trigger mode and group scan mode, A/D scan	In the modes except double trigger mode and group scan mode, A/D scan
	end interrupt request (S12ADI0) can	end interrupt request (S12ADI0) can
	be generated on completion of single	be generated on completion of single
	scan.	scan.
	In double trigger mode, A/D scan end	In double trigger mode, A/D scan end
	interrupt request (S12ADI0) can be	interrupt request (S12ADI0) can be
	generated on completion of double	generated on completion of double
	scan.In group scan mode, an A/D scan end	scan.In group scan mode, an A/D scan end
	interrupt request (S12ADI0) can be	interrupt request (S12ADI0) can be
	generated on completion of group A	generated on completion of group A
	scan, whereas an A/D scan end	scan, whereas an A/D scan end
	interrupt request (GBADI) for group B	interrupt request (GBADI) for group B
	can be generated on completion of	can be generated on completion of
	group B scan.	group B scan.
	When double trigger mode is selected in group scan mode, A/D scan end	When double trigger mode is selected in group scan mode, A/D scan end
	interrupt request (S12ADI0) can be	interrupt request (S12ADI0) can be
	generated on completion of double	generated on completion of double
	scan of group A, whereas A/D scan	scan of group A, whereas A/D scan
	end interrupt request (GBADI)	end interrupt request (GBADI)
	specially for group B can be generated	specially for group B can be generated
	on completion of group B scan.	on completion of group B scan.
	The S12ADI and GBADI interrupts can activate the data transfer controller	The S12ADI0 and GBADI interrupts can activate the data transfer
	(DTC).	controller (DTC).
Event link	An ELC event is generated on	An ELC event is generated on
function	completion of scans other than group	completion of scans other than group
	B scan in group scan mode.	B scan in group scan mode.
	An ELC event is generated on	An ELC event is generated on
	completion of group B scan in group	completion of group B scan in group
	scan mode.	scan mode.
	An ELC event is generated on completion of all scans.	An ELC event is generated on completion of all scans.
	Scan can be started by a trigger output	 Scan can be started by a trigger output
	by the ELC.	by the ELC.
	An ELC event is generated according	An ELC event is generated according
	to the event conditions of the window	to the event conditions of the window
	compare function in single scan mode.	compare function in single scan mode.

Item	RX130 (S12ADE)	RX140 (S12ADE)
Low power consumption	Ability to specify module stop state	Ability to specify module stop state
function		

Table 2.48 Comparison of 12-Bit A/D Converter Registers

Register	Bit	RX130 (S12ADE)	RX140 (S12ADE)
ADANSA0	ANSA008	_	A/D conversion channel select bit
ADANSA1	ANSA106, ANSA107, ANSA111 to ANSA115	A/D conversion channel select bits	
ADANSB0	ANSB008	_	A/D conversion channel select bit
ADANSB1	ANSB106, ANSB107, ANSB111 to ANSB115	A/D conversion channel select bits	
ADADS0	ADS008	_	A/D-converted value addition/ average channel select bit
ADADS1	ADS106, ADS107, ADS111 to ADS115	A/D-converted value addition/ average channel select bits	
ADSSTRn	_	A/D sampling state register n (n = 0 to 7, L, T, O)	A/D sampling state register n (n = 0 to 8, L, T, O)
ADCMPANSR0	CMPCHA008	_	Compare window A channel select bit
ADCMPANSR1	CMPCHA106, CMPCHA107, CMPCHA111 to CMPCHA115	Compare window A channel select bits	
ADCMPLR0	CMPLCHA008	_	Compare window A comparison condition select bit
ADCMPLR1	CMPLCHA106, CMPLCHA107, CMPLCHA111 to CMPLCHA115	Compare window A comparison condition select bits	
ADCMPSR0	CMPSTCHA008	_	Compare window A flag
ADCMPSR1	CMPSTCHA106, CMPSTCHA107, CMPSTCHA111 to CMPSTCHA115	Compare window A flag	

Register	Bit	RX130 (S12ADE)	RX140 (S12ADE)
ADHVREFCNT	HVSEL[1:0]	High-potential reference	High-potential reference
	' '	voltage select bits	voltage select bits
		b1 b0	b1 b0
		0 0: AVCC0 is selected as the	0 0: AVCC0 is selected as the
		high-potential reference	high-potential reference
		voltage.	voltage.
		0 1: VREFH0 is selected as the	0 1: VREFH0 is selected as the
		high-potential reference voltage.	high-potential reference voltage.
		Settings other than the above	Settings other than the above
		are prohibited.	are prohibited.
		·	'
			On 32-pin package products,
			set these bits to 01b.
ADCMPBNSR	CMPCHB[5:0]	Compare window B channel	Compare window B channel
		select bits	select bits
		These bits select channels to be	These bits select channels to be
		compared with the compare window B conditions.	compared with the compare window B conditions.
		window B conditions.	Wildow B conditions.
		b5 b0	b5 b0
		0 0 0 0 0 0: AN000	0 0 0 0 0 0: AN000
		0 0 0 0 0 1: AN001	0 0 0 0 0 1: AN001
		0 0 0 0 1 0: AN002	0 0 0 0 1 0: AN002
		:	:
		:	:
		0 0 0 1 1 0: AN006	0 0 0 1 1 0: AN006
		0 0 0 1 1 1: AN007	0 0 0 1 1 1: AN007
			0 0 1 0 0 0: AN008
		0 1 0 0 0 0: AN016	0 1 0 0 0 0: AN016
		0 1 0 0 0 1: AN017	0 1 0 0 0 1: AN017
		:	:
		0 1 0 1 0 1: AN021	0 1 0 1 0 1: AN021
		0 1 0 1 1 0: AN022	
		0 1 0 1 1 1: AN023 0 1 1 0 0 0: AN024	0 1 1 0 0 0: AN024
		0 1 1 0 0 0. AN024 0 1 1 0 0 1: AN025	0 1 1 0 0 0. AN024 0 1 1 0 0 1: AN025
		0 1 1 0 0 1. AN025 0 1 1 0 1 0: AN026	0 1 1 0 0 1. AN025 0 1 1 0 1 0: AN026
		0 1 1 0 1 0. AN020	5 1 1 5 1 5. ANOZO
		0 1 1 1 0 0: AN028	
		0 1 1 1 0 1: AN029	
		0 1 1 1 1 0: AN030	
		0 1 1 1 1 1: AN031	
		1 0 0 0 0 0: Temperature sensor	1 0 0 0 0 0: Temperature sensor
		1 0 0 0 0 1: Internal reference	1 0 0 0 0 1: Internal reference
		voltage	voltage
		Settings other than the above	Settings other than the above
ADOOD		are prohibited.	are prohibited.
ADCCR		_	A/D conversion cycle control
			register

2.21 Temperature Sensor

Table 2.49 is a comparison of temperature sensor registers.

Table 2.49 Comparison of Temperature Sensor Registers

Register	Bit	RX130 (TEMPSA)	RX140 (TEMPSA)
TSCDRH,		Temperature sensor calibration	Temperature sensor calibration
TSCDRL (RX130)		data register	data register
TSCDR (RX140)			

2.22 **RAM**

Table 2.50 is a comparative overview of RAM.

Table 2.50 Comparative Overview of RAM

Item	RX130	RX140
RAM capacity	Max. 48 KB	Max. 64 KB
RAM address		RAM capacity 64 KB RAM0: 0000 0000h to 0000 FFFFh
	RAM capacity 48 KB RAM0: 0000 0000h to 0000 BFFFh	
	RAM capacity 32 KB RAM0: 0000 0000h to 0000 7FFFh	RAM capacity 32 KB RAM0: 0000 0000h to 0000 7FFFh
	RAM capacity 16 KB RAM0: 0000 0000h to 0000 3FFFh	RAM capacity 16 KB RAM0: 0000 0000h to 0000 3FFFh
	 RAM capacity 10 KB RAM0: 0000 0000h to 0000 27FFh 	
Access	 Single-cycle access is possible for both reading and writing. On-chip RAM can be enabled or disabled. 	 Single-cycle access is possible for both reading and writing. On-chip RAM can be enabled or disabled.
Low power consumption function	Ability to specify module stop state.	Ability to specify module stop state.

2.23 Flash Memory

Table 2.51 is a comparative overview of flash memory, and Table 2.52 is a comparison of flash memory registers.

Table 2.51 Comparative Overview of Flash Memory

Item	RX130	RX140 (FLASH)
Memory capacity	 User area: Up to 512 KB Data area: 8 KB Extra area: Stores the start-up area information, access window information, and unique ID 	 User area: Up to 256 KB Data area: 8 KB Extra area: Stores the start-up area information, access window information, and unique ID
Addresses	 Products with capacity of 512 KB FFF8 0000h to FFFF FFFFh Products with capacity of 384 KB FFFA 0000h to FFFF FFFFh Products with capacity of 256 KB FFFC 0000h to FFFF FFFFh Products with capacity of 128 KB FFFE 0000h to FFFF FFFFh Products with capacity of 64 KB FFFF 0000h to FFFF FFFFh The following software commands are 	 Products with capacity of 256 KB FFFC 0000h to FFFF FFFFh Products with capacity of 128 KB FFFE 0000h to FFFF FFFFh Products with capacity of 64 KB FFFF 0000h to FFFF FFFFh The following software commands are
commands	 The following software commands are implemented: Program, blank check, block erase, and unique ID read The following commands are implemented for programming the extra area: Start-up area information program and access window information program 	 The following software commands are implemented: Program, blank check, block erase, and all-block erase The following commands are implemented for programming the extra area: Start-up area information program, access window protect, and access window information program
Value after	ROM: FFh	ROM: FFh
Interrupt	E2 DataFlash: FFh An interrupt (FRDYI) is generated upon completion of software command processing or forced stop processing.	E2 DataFlash: FFh An interrupt (FRDYI) is generated upon completion of software command processing or forced stop processing.
On-board programming	Boot mode (SCI interface) Channel 1 of the serial communications interface (SCI1) is used for asynchronous communication. The user area and data area can be programmed. Boot mode (FINE interface) The FINE interface is used. The user area and data area can be programmed. Self-programming (single-chip mode) The user area and data area can be programmed using a flash programming routine in a user program.	Boot mode (SCI interface) Channel 1 of the serial communications interface (SCI1) is used for asynchronous communication. The user area and data area can be programmed. Boot mode (FINE interface) The FINE interface is used. The user area and data area can be programmed. Self-programming (single-chip mode) The user area and data area can be programmed using a flash programming routine in a user program.

Item	RX130	RX140 (FLASH)
Off-board programming	The user area and data area can be programmed using a flash programmer compatible with the MCU.	The user area and data area can be programmed using a flash programmer compatible with the MCU.
ID codes protection	 Connection with a serial programmer can be controlled using ID codes in boot mode. Connection with an on-chip debugging emulator can be controlled using ID codes. 	 Connection with a serial programmer can be controlled using ID codes in boot mode. Connection with an on-chip debugging emulator can be controlled using ID codes.
Start-up program protection function	This function is used to safely program blocks 0 to 15.	This function is used to safely program blocks 0 to 7.
Area protection	During self-programming, this function enables programming only of specified blocks in the user area and disables programming of the other blocks.	During self-programming, this function enables programming only of specified blocks in the user area and disables programming of the other blocks.
Background operation (BGO) function	Programs in the ROM can run while the E2 DataFlash is being programmed.	Programs in the ROM can run while the E2 DataFlash is being programmed.

Table 2.52 Comparison of Flash Memory Registers

Register	Bit	RX130	RX140 (FLASH)
MEMWAITR	_	_	Memory wait cycle setting register
DFLWAITR	_	_	Data flash wait cycle setting register
FPMCR	FMS0, FMS1, FSM2 (RX130)	Flash operating mode select bits 0, 1, and 2	Flash operating mode select bits 0 and 1
	FMS0, FMS1	FMS2 FMS1 FMS0	FMS1 FMS0
	(RX140)	0 0 0: ROM/E2 DataFlash read mode	0 0: ROM/E2 DataFlash read mode
		0 1 0: E2 DataFlash P/E mode	0 1: ROMP/E mode
		0 1 1: Discharge mode 1	1 0: E2 DataFlash P/E mode
		1 0 1: ROM P/E mode	1 1: Setting prohibited.
		1 1 1: Discharge mode 2	
		Settings other than the above are prohibited.	
	LVPE	Low-voltage P/E mode enable bit	_
FISR	PCKA[4:0] (RX130) PCKA[5:0] (RX140)	Peripheral clock notification bits	Peripheral clock notification bits

Register	Bit	RX130	RX140 (FLASH)
FCR	CMD[3:0]	Software command setting bits	Software command setting bits
		-	
		b3 b0	b3 b0
		0 0 0 1: Program	0 0 0 1: Program
		0 0 1 1: Blank check	0 0 1 1: Blank check
		0 1 0 0: Block erase	0 1 0 0: Block erase
		0 1 0 1: Unique ID read	
		Settings other than the above are	0 1 1 0: All-block erase
		prohibited.	Settings other than the above are prohibited.
	DRC	Data read completion bit	_
FEXCR	CMD[2:0]	Software command setting bits	Software command setting bits
		h2 h2	h2 h0
		b2 b0	b2 b0 0 0 1: Start-up area information
		0 0 1: Start-up area information program	program/access window protect
		0 1 0: Access window information program	0 1 0: Access window information program
		Settings other than the above are	Settings other than the above are
		prohibited.	prohibited.
FSARH	_	Flash processing start address register H	Flash processing start address register H
		FSARH is an 8-bit register.	FSARH is a 16-bit register.
FEARH	_	Flash processing end address register H	Flash processing end address register H
		FEARH is an 8-bit register.	FEARH is a 16-bit register.
FRBH	_	Flash read buffer register H	_
FRBL		Flash read buffer register L	_
FWBH, FWBL (RX130)	_	Flash write buffer register H, Flash write buffer register L	Flash write buffer register n (n = 0 to 3)
FWBn			,
(RX140)			
FSTATR1	DRRDY	Data read ready flag	-
FEAMH	_	Flash error address monitor register H	Flash error address monitor register H
		FEAMH is an 8-bit register.	FEAMH is a 16-bit register.
FSCMR	AWPR		Access window protect flag
FAWSMR	_	Flash access window start	Flash access window start
		address monitor register	address monitor register
		Initial value after a reset differs.	
FAWEMR	_	Flash access window end address	Flash access window end address
monitor register		monitor register	monitor register
		Initial value after a reset differs.	
UIDRn		Unique ID register n (n = 0 to 31)	Unique ID register n (n = 0 to 3)
		UIDRn is an 8-bit register.	UIDRn is a 32-bit register.

2.24 Packages

As indicated in Table 2.53, there are discrepancies in the package drawing codes and availability of some package types, and this should be borne in mind at the board design stage.

Table 2.53 Packages

	Renesas Code		
Package Type	RX130	RX140	
100-pin LFQFP	0	X	
48-pin HWQFN	PWQN0048KB-A	PWQN0048KC-A	
32-pin LQFP	×	0	
32-pin HWQFN	×	0	

^{○:} Package available (Renesas code omitted); X: Package not available

3. Comparison of Pin Functions

This section presents a comparative description of pin functions as well as a comparison of the pins for the power supply, clocks, and system control. Items that exist only on one group are indicated by **blue text**. Items that exists on both groups with different specifications are indicated by **red text**. **Black text** indicates there is no differences in the item's specifications between groups.

3.1 80-Pin Package

Table 3.1 is a comparative listing of the pin functions of 80-pin package products.

Table 3.1 Comparative Listing of 80-Pin Package Pin Functions

80-Pin LFQFP	RX130	RX140
1	P06*1	P06*1
2	P03*1/DA0	P03*1/DA0
3	P04*1	P04*1
4	VCL	VCL
5	PJ1/MTIOC3A	PJ1/MTIOC3A
6	MD/FINED	MD/PG7/FINED
7	XCIN	XCIN/PH7
8	XCOUT	XCOUT/PH6
9	RES#	RES#
10	XTAL/P37	XTAL/P37/IRQ4
11	VSS	VSS
12	EXTAL/P36	EXTAL/P36/IRQ2
13	VCC	VCC
14	P35/NMI	P35/NMI
15	P34/MTIOC0A/TMCI3/POE2#/SCK6/IRQ4	P34/MTIOC0A/TMCI3/POE2#/SCK6/IRQ4
16	P32/MTIOC0C/TMO3/TXD6/SMOSI6/	P32/MTIOC0C/TMO3/TXD6/SMOSI6/
	SSDA6/TS0/IRQ2/RTCOUT	SSDA6/TS0/IRQ2/RTCOUT
17	P31/MTIOC4D/TMCI2/CTS1#/RTS1#/SS1#/ TS1/IRQ1	P31/MTIOC4D/TMCI2/CTS1#/RTS1#/SS1#/ TS1/IRQ1
18	P30/MTIOC4B/TMRI3/POE8#/RXD1/	P30/MTIOC4B/TMRI3/POE8#/RXD1/
	SMISO1/SSCL1/TS2/IRQ0	SMISO1/SSCL1/TS2/IRQ0
19	P27/MTIOC2B/TMCI3/SCK1/TS3	P27/MTIOC2B/TMCI3/SCK1/TS3
20	P26/MTIOC2A/TMO1/TXD1/SMOSI1/ SSDA1/TS4	P26/MTIOC2A/TMO1/LPTO/TXD1/SMOSI1/ SSDA1/TS4
21	P21/MTIOC1B/TMCI0	P21/MTIOC1B/TMCI0
22	P20/MTIOC1A/TMRI0	P20/MTIOC1A/TMRI0
23	P17/MTIOC3A/MTIOC3B/TMO1/POE8#/ SCK1/MISOA/SDA0/IRQ7	P17/MTIOC3A/MTIOC3B/TMO1/POE8#/ SCK1/MISOA/SDA0/IRQ7
24	P16/MTIOC3C/MTIOC3D/TMO2/TXD1/ SMOSI1/SSDA1/MOSIA/SCL0/IRQ6/ RTCOUT/ADTRG0#	P16/MTIOC3C/MTIOC3D/TMO2/TXD1/ SMOSI1/SSDA1/MOSIA/SCL0/IRQ6/ RTCOUT/ADTRG0#
25	P15/MTIOC0B/MTCLKB/TMCI2/RXD1/ SMISO1/SSCL1/TS5/IRQ5	P15/MTIOC0B/MTCLKB/TMCI2/RXD1/ SMISO1/SSCL1/CRXD0/TS5/IRQ5
26	P14/MTIOC3A/MTCLKA/TMRI2/CTS1#/ RTS1#/SS1#/TS6/IRQ4	P14/MTIOC3A/MTCLKA/TMRI2/CTS1#/ RTS1#/SS1#/CTXD0/TS6/IRQ4
27	P13/MTIOC0B/TMO3/SDA0/IRQ3	P13/MTIOC0B/TMO3/SDA0/IRQ3
28	P12/TMCI1/SCL0/IRQ2	P12/TMCI1/SCL0/IRQ2
29	PH3/TMCI0/TS7	PH3/MTIOC4D/TMCI0/TS7
30	PH2/TMRI0/TS8/IRQ1	PH2/MTIOC4C/TMRI0/TS8/IRQ1

00 Dim		
80-Pin LFQFP	RX130	RX140
31	PH1/TMO0/TS9/IRQ0	PH1/MTIOC3D/TMO0/TS9/IRQ0
32	PH0/TS10/CACREF	PH0/MTIOC3B/TS10/CACREF
33	P55/MTIOC4D/TMO3/TS11	P55/MTIOC4A/MTIOC4D/TMO3/CRXD0/
		TS11
34	P54/MTIOC4B/TMCI1/TS12	P54/MTIOC4B/TMCI1/CTXD0/TS12
35	PC7/MTIOC3A/TMO2/MTCLKB/MISOA/	PC7/MTCLKB/MTIOC3A/TMO2/LPTO/
	TS13/CACREF	MISOA/TXD8/SMOSI8/SSDA8/TS13/ CACREF
36	PC6/MTIOC3C/MTCLKA/TMCI2/MOSIA/	PC6/MTIOC3C/MTCLKA/TMCI2/MOSIA/
	TS14	RXD8/SMISO8/SSCL8/TS14
37	PC5/MTIOC3B/MTCLKD/TMRI2/RSPCKA/	PC5/MTIOC0C/MTIOC3B/MTCLKD/TMRI2/
	TS15	RSPCKA/SCK8/TS15
38	PC4/MTIOC3D/MTCLKC/TMCI1/POE0#/	PC4/MTIOC0A/MTIOC3D/MTCLKC/TMCI1/
	SCK5/SSLA0/TSCAP	POE0#/SCK5/CTS8#/RTS8#/SS8#/SSLA0/
39	PC3/MTIOC4D/TXD5/SMOSI5/SSDA5/TS16	TSCAP PC3/MTIOC4D/TXD5/SMOSI5/SSDA5/TS16
40	PC2/MTIOC4B/RXD5/SMISO5/SSCL5/	PC2/MTIOC4B/RXD5/SMISO5/SSCL5/
40	SSLA3/TS17	SSLA3/TS17
41	PB7/PC1*2/MTIOC3B/TS18	PB7/PC1*2/MTIOC3B/TXD9/SMOSI9/
		SSDA9/TS18
42	PB6/PC0*2/MTIOC3D/TS19	PB6/PC0*2/MTIOC3D/RXD9/SMISO9/
42	PB5/MTIOC2A/MTIOC1B/TMRI1/POE1#/	SSCL9/TS19
43	TS20	PB5/MTIOC2A/MTIOC1B/TMRI1/POE1#/ SCK9/TS20
44	PB4/TS21	PB4/CTS9#/RTS9#/SS9#/TS21
45	PB3/MTIOC0A/MTIOC4A/TMO0/POE3#/	PB3/MTIOC0A/MTIOC4A/TMO0/POE3#/
	SCK6/TS22	LPTO/SCK6/TS22
46	PB2/CTS6#/RTS6#/SS6#/TS23	PB2/CTS6#/RTS6#/SS6#/TS23
47	PB1/MTIOC0C/MTIOC4C/TMCI0/TXD6/	PB1/MTIOC0C/MTIOC4C/TMCI0/TXD6/
	SMOSI6/SSDA6/TS24/IRQ4/CMPOB1	SMOSI6/SSDA6/TS24/IRQ4/CMPOB1
48	VCC	VCC
49	PB0/MTIC5W/RXD6/SMISO6/SSCL6/ RSPCKA/TS25	PB0/MTIOC3D/MTIC5W/RXD6/SMISO6/ SSCL6/RSPCKA/TS25
50	VSS	VSS
51	PA6/MTIC5V/MTCLKB/TMCI3/POE2#/	PA6/MTIOC3D/MTIC5V/MTCLKB/TMCI3/
	CTS5#/RTS5#/SS5#/MOSIA/TS26	POE2#/CTS5#/RTS5#/SS5#/MOSIA/TS26
52	PA5/RSPCKA/TS27	PA5/RSPCKA/TS27
53	PA4/MTIC5U/MTCLKA/TMRI0/TXD5/	PA4/MTIOC4C/MTIC5U/MTCLKA/TMRI0/
	SMOSI5/SSDA5/SSLA0/TS28/IRQ5/	TXD5/SMOSI5/SSDA5/SSLA0/TS28/IRQ5/
	CVREFB1	CVREFB1
54	PA3/MTIOC0D/MTCLKD/RXD5/SMISO5/	PA3/MTIOC0D/MTIOC4D/MTIC5V/MTCLKD/
EE	SSCL5/TS29/IRQ6/CMPB1	RXD5/SMISO5/SSCL5/TS29/IRQ6/CMPB1
55	PA2/RXD5/SMISO5/SSCL5/SSLA3/TS30 PA1/MTIOC0B/MTCLKC/SCK5/SSLA2/TS31	PA2/RXD5/SMISO5/SSCL5/SSLA3/TS30 PA1/MTIOC0B/MTIOC3B/MTCLKC/SCK5/
56	FAT/WITIOCUB/WITCLNC/SCNS/SSLAZ/TS3T	SSLA2/TS31
57	PA0/MTIOC4A/SSLA1/TS32/CACREF	PA0/MTIOC4A/SSLA1/TS32/CACREF
58	PE5/MTIOC4C/MTIOC2B/IRQ5/AN021/	PE5/MTIOC4C/MTIOC2B/IRQ5/AN021/
	CMPOB0	CMPOB0
59	PE4/MTIOC4D/MTIOC1A/TS33/AN020/	PE4/MTIOC4D/MTIOC1A/MTIOC4A/TS33/
60	CMPA2/CLKOUT PE3/MTIOC4B/POE8#/CTS12#/RTS12#/	AN020/CMPA2/CLKOUT PE3/MTIOC1B/MTIOC4B/POE8#/CTS12#/
00	PE3/MTIOC4B/POE8#/CTS12#/RTS12#/ SS12#/TS34/AN019/CLKOUT	RTS12#/SS12#/TS34/AN019/CLKOUT
<u> </u>	33.2m 133 m 110 To/OLINO	1.1.512m/0512m/1004//111010/0111001

80-Pin		
LFQFP	RX130	RX140
61	PE2/MTIOC4A/RXD12/RXDX12/SMISO12/	PE2/MTIOC4A/RXD12/RXDX12/SMISO12/
	SSCL12/TS35/IRQ7/AN018/CVREFB0	SSCL12/TS35/IRQ7/AN018/CVREFB0
62	PE1/MTIOC4C/TXD12/TXDX12/SIOX12/	PE1/MTIOC4C/TXD12/TXDX12/SIOX12/
	SMOSI12/SSDA12/AN017/CMPB0	SMOSI12/SSDA12/AN017/CMPB0
63	PE0/SCK12/AN016	PE0/SCK12/AN016
64	PD2/MTIOC4D/SCK6/IRQ2/AN026	PD2/MTIOC4D/SCK6/IRQ2/AN026
65	PD1/MTIOC4B/RXD6/SMISO6/SSCL6/IRQ1/	PD1/MTIOC4B/RXD6/SMISO6/SSCL6/IRQ1/
	AN025	AN025
66	PD0/TXD6/SMOSI6/SSDA6/IRQ0/AN024	PD0/TXD6/SMOSI6/SSDA6/IRQ0/AN024
67	P47* ¹ /AN007	P47* ¹ /AN007
68	P46*1/AN006	P46*1/AN006
69	P45* ¹ /AN005	P45*1/AN005
70	P44* ¹ /AN004	P44*1/AN004
71	P43*1/AN003	P43*1/AN003
72	P42*1/AN002	P42*1/AN002
73	P41* ¹ /AN001	P41*1/AN001
74	VREFL0/PJ7*1	VREFL0/PJ7*1
75	P40*1/AN000	P40*1/AN000
76	VREFH0/PJ6*1	VREFH0/PJ6*1
77	AVCC0	AVCC0
78	P07*1/ADTRG0#	P07*1/ADTRG0#
79	AVSS0	AVSS0
80	P05* ¹ /DA1	P05*1/DA1

Notes: 1. The power supply of the I/O buffer for these pins is AVCCO.

^{2.} PC0 and PC1 are valid only when the port switching function is selected.

3.2 64-Pin Package

Table 3.2 is a comparative listing of the pin functions of 64-pin package products.

Table 3.2 Comparative Listing of 64-Pin Package Pin Functions

64-Pin LFQFP/		
LQFP	RX130	RX140
1	P03*1/DA0	P03* ¹ /DA0
2	VCL	VCL
3	MD/FINED	MD/PG7/FINED
4	XCIN	XCIN/PH7*3
5	XCOUT	XCOUT/PH6*3
6	RES#	RES#
7	XTAL/P37	XTAL/P37/IRQ4
8	VSS	VSS
9	EXTAL/P36	EXTAL/P36/IRQ2
10	VCC	VCC
11	P35/NMI	P35/NMI
12	P32/MTIOC0C/TMO3/TXD6/SMOSI6/	P32/MTIOC0C/TMO3/TXD6*3/SMOSI6*3/
	SSDA6/TS0/IRQ2/RTCOUT	SSDA6*3/TS0*3/IRQ2/RTCOUT
13	P31/MTIOC4D/TMCI2/CTS1#/RTS1#/SS1#/	P31/MTIOC4D/TMCI2/CTS1#/RTS1#/SS1#/
	TS1/IRQ1	TS1* ³ /IRQ1
14	P30/MTIOC4B/TMRI3/POE8#/RXD1/	P30/MTIOC4B/TMRI3/POE8#/RXD1/
	SMISO1/SSCL1/TS2/IRQ0	SMISO1/SSCL1/TS2*3/IRQ0
15	P27/MTIOC2B/TMCI3/SCK1/TS3	P27/MTIOC2B/TMCI3/SCK1/TS3
16	P26/MTIOC2A/TMO1/TXD1/SMOSI1/ SSDA1/TS4	P26/MTIOC2A/TMO1/LPTO/TXD1/SMOSI1/ SSDA1/TS4
17	P17/MTIOC3A/MTIOC3B/TMO1/POE8#/ SCK1/MISOA/SDA0/IRQ7	P17/MTIOC3A/MTIOC3B/TMO1/POE8#/ SCK1/MISOA/SDA0/IRQ7
18	P16/MTIOC3C/MTIOC3D/TMO2/TXD1/ SMOSI1/SSDA1/MOSIA/SCL0/IRQ6/ RTCOUT/ADTRG0#	P16/MTIOC3C/MTIOC3D/TMO2/TXD1/ SMOSI1/SSDA1/MOSIA/SCL0/IRQ6/ RTCOUT/ADTRG0#
19	P15/MTIOC0B/MTCLKB/TMCI2/RXD1/ SMISO1/SSCL1/TS5/IRQ5	P15/MTIOC0B/MTCLKB/TMCI2/RXD1/ SMISO1/SSCL1/CRXD0/TS5*3/IRQ5
20	P14/MTIOC3A/MTCLKA/TMRI2/CTS1#/ RTS1#/SS1#/TS6/IRQ4	P14/MTIOC3A/MTCLKA/TMRI2/CTS1#/ RTS1#/SS1#/CTXD0/TS6* ³ /IRQ4
21	PH3/TMCI0/TS7	PH3/MTIOC4D/TMCI0/TS7*3
22	PH2/TMRI0/TS8/IRQ1	PH2/MTIOC4C/TMRI0/TS8*3/IRQ1
23	PH1/TMO0/TS9/IRQ0	PH1/MTIOC3D/TMO0/TS9*3/IRQ0
24	PH0/TS10/CACREF	PH0/MTIOC3B/TS10*3/CACREF
25	P55/MTIOC4D/TMO3/TS11	P55/MTIOC4A/MTIOC4D/TMO3/CRXD0/ TS11*3
26	P54/MTIOC4B/TMCI1/TS12	P54/MTIOC4B/TMCI1/CTXD0/TS12*3
27	PC7/MTIOC3A/TMO2/MTCLKB/MISOA/ TS13/CACREF	PC7/MTIOC3A/MTCLKB/TMO2/LPTO/ TXD8*3/SMOSI8*3/SSDA8*3/MISOA/ TS13/ CACREF
28	PC6/MTIOC3C/MTCLKA/TMCI2/MOSIA/ TS14	PC6/MTIOC3C/MTCLKA/TMCI2/RXD8*3/ SMISO8*3/SSCL8*3/MOSIA/TS14
29	PC5/MTIOC3B/MTCLKD/TMRI2/RSPCKA/ TS15	PC5/MTIOC0C/MTIOC3B/MTCLKD/TMRI2/ SCK8*3/RSPCKA/TS15

64-Pin		
LFQFP/ LQFP	RX130	RX140
30	PC4/MTIOC3D/MTCLKC/TMCI1/POE0#/ SCK5/SSLA0/TSCAP	PC4/MTIOC0A/MTIOC3D/MTCLKC/TMCI1/ POE0#/SCK5/CTS8#* ³ /RTS8#* ³ /SS8#* ³ / SSLA0/TSCAP
31	PC3/MTIOC4D/TXD5/SMOSI5/SSDA5/TS16	PC3/MTIOC4D/TXD5/SMOSI5/SSDA5/ TS16* ³
32	PC2/MTIOC4B/RXD5/SMISO5/SSCL5/ SSLA3/TS17	PC2/MTIOC4B/RXD5/SMISO5/SSCL5/ SSLA3/TS17* ³
33	PB7/PC1*2/MTIOC3B/TS18	PB7/PC1*2/MTIOC3B/TXD9*3/SMOSI9*3/ SSDA9*3/TS18*3
34	PB6/PC0*2/MTIOC3D/TS19	PB6/PC0*2/MTIOC3D/RXD9*3/SMISO9*3/ SSCL9*3/TS19*3
35	PB5/MTIOC2A/MTIOC1B/TMRI1/POE1#/ TS20	PB5/MTIOC2A/MTIOC1B/TMRI1/POE1#/ SCK9*3/TS20*3
36	PB3/MTIOC0A/MTIOC4A/TMO0/POE3#/ SCK6/TS22	PB3/MTIOC0A/MTIOC4A/TMO0/POE3#/ LPTO/SCK6*3/TS22*3
37	PB1/MTIOC0C/MTIOC4C/TMCI0/TXD6/ SMOSI6/SSDA6/TS24/IRQ4/CMPOB1	PB1/MTIOC0C/MTIOC4C/TMCI0/TXD6*3/ SMOSI6*3/SSDA6*3/TS24*3/IRQ4/CMPOB1
38	VCC	VCC
39	PB0/MTIC5W/RXD6/SMISO6/SSCL6/ RSPCKA/TS25	PB0/MTIOC3D/MTIC5W/RXD6*3/SMISO6*3/ SSCL6*3/RSPCKA/TS25
40	VSS	VSS
41	PA6/MTIC5V/MTCLKB/TMCI3/POE2#/ CTS5#/RTS5#/SS5#/MOSIA/TS26	PA6/MTIOC3D/MTIC5V/MTCLKB/TMCI3/ POE2#/CTS5#/RTS5#/SS5#/MOSIA/TS26* ³
42	PA4/MTIC5U/MTCLKA/TMRI0/TXD5/ SMOSI5/SSDA5/SSLA0/TS28/IRQ5/ CVREFB1	PA4/MTIOC4C/MTIC5U/MTCLKA/TMRI0/ TXD5/SMOSI5/SSDA5/SSLA0/TS28/IRQ5/ CVREFB1
43	PA3/MTIOC0D/MTCLKD/RXD5/SMISO5/ SSCL5/TS29/IRQ6/CMPB1	PA3/MTIOC0D/MTIOC4D/MTIC5V/MTCLKD/ RXD5/SMISO5/SSCL5/TS29/IRQ6/CMPB1
44	PA1/MTIOC0B/MTCLKC/SCK5/SSLA2/TS31	PA1/MTIOC0B/MTIOC3B/MTCLKC/SCK5/ SSLA2/TS31
45	PA0/MTIOC4A/SSLA1/TS32/CACREF	PA0/MTIOC4A/SSLA1/TS32*3/CACREF
46	PE5/MTIOC4C/MTIOC2B/IRQ5/AN021/ CMPOB0	PE5/MTIOC4C/MTIOC2B/IRQ5/AN021/ CMPOB0
47	PE4/MTIOC4D/MTIOC1A/TS33/AN020/ CMPA2/CLKOUT	PE4/MTIOC4D/MTIOC1A/MTIOC4A/TS33/ AN020/CMPA2/CLKOUT
48	PE3/MTIOC4B/POE8#/CTS12#/RTS12#/ SS12#/TS34/AN019/CLKOUT	PE3/MTIOC1B/MTIOC4B/POE8#/CTS12#/ RTS12#/SS12#/TS34/AN019/CLKOUT
49	PE2/MTIOC4A/RXD12/RXDX12/SMISO12/ SSCL12/TS35/IRQ7/AN018/CVREFB0	PE2/MTIOC4A/RXD12/RXDX12/SMISO12/ SSCL12/TS35/IRQ7/AN018/CVREFB0
50	PE1/MTIOC4C/TXD12/TXDX12/SIOX12/ SMOSI12/SSDA12/AN017/CMPB0	PE1/MTIOC4C/TXD12/TXDX12/SIOX12/ SMOSI12/SSDA12/AN017/CMPB0
51	PE0/SCK12/AN016	PE0/SCK12/AN016
52	P47*1/AN007	P47* ¹ /AN007
53	P46*1/AN006	P46* ¹ /AN006
54	P45*1/AN005	P45*1/AN005
55	P44* ¹ /AN004	P44* ¹ /AN004
56	P43* ¹ /AN003	P43* ¹ /AN003
57	P42* ¹ /AN002	P42* ¹ /AN002
58	P41* ¹ /AN001	P41* ¹ /AN001
59	VREFL0/PJ7*1	VREFL0/PJ7*1
60	P40*1/AN000	P40* ¹ /AN000

64-Pin LFQFP/ LQFP	RX130	RX140
61	VREFH0/PJ6*1	VREFH0/PJ6*1
62	AVCC0	AVCC0
63	P05*1/DA1	P05* ¹ /DA1
64	AVSS0	AVSS0/

Notes: 1. The power supply of the I/O buffer for these pins is AVCCO.

- 2. PC0 and PC1 are valid only when the port switching function is selected.
- 3. Not implemented on products with ROM capacity of 64 KB.

3.3 48-Pin Package

Table 3.3 is a comparative listing of the pin functions of 48-pin package products.

Table 3.3 Comparative Listing of 48-Pin Package Pin Functions

48-Pin LFQFP/		
HWQFN	RX130	RX140
1	VCL	VCL
2	MD/FINED	MD/PG7/FINED
3	RES#	RES#
4	XTAL/P37	XTAL/P37/IRQ4
5	VSS	VSS
6	EXTAL/P36	EXTAL/P36/IRQ2
7	VCC	VCC
8	P35/NMI	P35/NMI
9	P31/MTIOC4D/TMCI2/CTS1#/RTS1#/SS1#/	P31/MTIOC4D/TMCI2/CTS1#/RTS1#/SS1#/
	TS1/IRQ1	TS1*3/IRQ1
10	P30/MTIOC4B/TMRI3/POE8#/RXD1/	P30/MTIOC4B/TMRI3/POE8#/RXD1/
	SMISO1/SSCL1/TS2/IRQ0	SMISO1/SSCL1/TS2*3/IRQ0
11	P27/MTIOC2B/TMCI3/SCK1/TS3	P27/MTIOC2B/TMCI3/SCK1/TS3
12	P26/MTIOC2A/TMO1/TXD1/SMOSI1/	P26/MTIOC2A/TMO1/LPTO/TXD1/SMOSI1/
	SSDA1/TS4	SSDA1/TS4
13	P17/MTIOC3A/MTIOC3B/TMO1/POE8#/ SCK1/MISOA/SDA0/IRQ7	P17/MTIOC3A/MTIOC3B/TMO1/POE8#/ SCK1/MISOA/SDA0/IRQ7
14	P16/MTIOC3C/MTIOC3D/TMO2/TXD1/	P16/MTIOC3C/MTIOC3D/TMO2/TXD1/
	SMOSI1/SSDA1/MOSIA/SCL0/IRQ6/	SMOSI1/SSDA1/MOSIA/SCL0/IRQ6/
	ADTRG0#	ADTRG0#/RTCOUT
15	P15/MTIOC0B/MTCLKB/TMCI2/RXD1/ SMISO1/SSCL1/TS5/IRQ5	P15/MTIOC0B/MTCLKB/TMCI2/RXD1/ SMISO1/SSCL1/CRXD0/TS5*3/IRQ5
16	P14/MTIOC3A/MTCLKA/TMRI2/CTS1#/	P14/MTIOC3A/MTCLKA/TMRI2/CTS1#/
	RTS1#/SS1#/TS6/IRQ4	RTS1#/SS1#/CTXD0/TS6*3/IRQ4
17	PH3/TMCI0/TS7	PH3/MTIOC4D/TMCI0/TS7*3
18	PH2/TMRI0/TS8/IRQ1	PH2/MTIOC4C/TMRI0/TS8*3/IRQ1
19	PH1/TMO0/TS9/IRQ0	PH1/MTIOC3D/TMO0/TS9*3/IRQ0
20	PH0/TS10/CACREF	PH0/MTIOC3B/TS10*3/CACREF
21	PC7/MTIOC3A/TMO2/MTCLKB/MISOA/	PC7/MTIOC3A/TMO2/MTCLKB/LPTO/
	TS13/CACREF	TXD8*3/SMOSI8*3/SSDA8*3/MISOA/TS13/CACREF
22	PC6/MTIOC3C/MTCLKA/TMCI2/MOSIA/	PC6/MTIOC3C/MTCLKA/TMCI2/RXD8*3/
22	TS14	SMISO8*3/SSCL8*3/MOSIA/TS14
23	PC5/MTIOC3B/MTCLKD/TMRI2/RSPCKA/	PC5/MTIOC0C/MTIOC3B/MTCLKD/TMRI2/
20	TS15	SCK8*3/RSPCKA/TS15
24	PC4/MTIOC3D/MTCLKC/TMCI1/POE0#/	PC4/MTIOC0A/MTIOC3D/MTCLKC/TMCI1/
	SCK5/SSLA0/TSCAP	POE0#/SCK5/CTS8#*3/RTS8#*3/SS8#*3/
		SSLA0/TSCAP
25	PB5/PC3*1/MTIOC2A/MTIOC1B/TMRI1/ POE1#/TS20	PB5/PC3*1/MTIOC2A/MTIOC1B/TMRI1/ POE1#/TS20*3
26	PB3/PC2*1/MTIOC0A/MTIOC4A/TMO0/	PB3/PC2*1/MTIOC0A/MTIOC4A/TMO0/
	POE3#/SCK6/TS22	POE3#/LPTO/SCK6* ³ /TS22* ³
27	PB1/PC1*1/MTIOC0C/MTIOC4C/TMCI0/	PB1/PC1*1/MTIOC0C/MTIOC4C/TMCI0/
	TXD6/SMOSI6/SSDA6/TS24/IRQ4/CMPOB1	TXD6*3/SMOSI6*3/SSDA6*3/TS24*3/ IRQ4/
		CMPOB1
28	VCC	VCC

RX130	48-Pin		
HWQFN RX130 PB0/PC0*\frac{1}\minimal PB0			
RSPCKA/TS25		RX130	RX140
30	29	PB0/PC0*1/MTIC5W/RXD6/SMISO6/SSCL6/	PB0/PC0*1/MTIOC3D/MTIC5W/RXD6*3/
PA6/MTIC5V/MTCLKB/TMCI3/POE2#/ CTS5#/RTS5#/SS5#/MOSIA/TS26		RSPCKA/TS25	SMISO6*3/SSCL6*3/RSPCKA/TS25
CTS5#/RTS5#/SS5#/MOSIA/TS26	30	VSS	VSS
32 PA4/MTIC5U/MTCLKA/TMRI0/TXD5/ SMOSIS/SSDA5/SSLA0/TS28/IRQ5/ CVREFB1 PA4/MTIOC4C/MTIC5U/MTCLKA/TMRI0/ TXD5/SMOSIS/SSDA5/SSLA0/TS28/IRQ5/ CVREFB1 33 PA3/MTIOC0D/MTCLKD/RXD5/SMISO5/ SSCL5/TS29/IRQ6/CMPB1 PA3/MTIOC0D/MTIOC4D/MTIC5V/MTCLKD/ RXD5/SMISO5/SSCL5/TS29/IRQ6/CMPB1 34 PA1/MTIOC0B/MTCLKC/SCK5/SSLA2/TS31 PA1/MTIOC0B/MTCLKC/SCK5/ SSLA2/TS31 35 PE4/MTIOC4D/MTIOC1A/TS33/AN020/ CMPA2/CLKOUT PE4/MTIOC4D/MTIOC1A/MTIOC4A/TS33/ AN020/CMPA2/CLKOUT 36 PE3/MTIOC4B/POE8#/CTS12#/RTS12#/ TS34/AN019/CLKOUT PE3/MTIOC4B/POE8#/CTS12#/ RTS12#/TS34/AN019/CLKOUT 37 PE2/MTIOC4A/RXD12/RXDX12/SSCL12/ TS35/IRQ7/AN018/CVREFB0 PE2/MTIOC4A/RXD12/RXDX12/SSCL12/ TS35/IRQ7/AN018/CVREFB0 38 PE1/MTIOC4C/TXD12/TXDX12/SIOX12/ SSDA12/AN017/CMPB0 PE1/MTIOC4C/TXD12/TXDX12/SIOX12/ SSDA12/AN017/CMPB0 39 P47*2/AN007 P47*2/AN007 40 P46*2/AN006 P46*2/AN006 41 P45*2/AN005 P45*2/AN005 42 P42*2/AN002 P42*2/AN002 43 P41*2/AN001 P41*2/AN001 44 VREFLO/PJ7*2 VREFLO/PJ7*2 45 P40*2/AN000 P40*2/AN000 46 VREFH0/PJ6*2 VREFH0/PJ6*2 <td>31</td> <td>PA6/MTIC5V/MTCLKB/TMCI3/POE2#/</td> <td>PA6/MTIOC3D/MTIC5V/MTCLKB/TMCI3/</td>	31	PA6/MTIC5V/MTCLKB/TMCI3/POE2#/	PA6/MTIOC3D/MTIC5V/MTCLKB/TMCI3/
SMOSI5/SSDA5/SSLA0/TS28/IRQ5/ CVREFB1		CTS5#/RTS5#/SS5#/MOSIA/TS26	POE2#/CTS5#/RTS5#/SS5#/MOSIA/TS26*3
CVREFB1 CVREFB1 33 PA3/MTIOCOD/MTCLKD/RXD5/SMISO5/ SSCL5/TS29/IRQ6/CMPB1 PA3/MTIOCOD/MTIOC4D/MTIC5V/MTCLKD/ RXD5/SMISO5/SSCL5/TS29/IRQ6/CMPB1 34 PA1/MTIOCOB/MTCLKC/SCK5/SSLA2/TS31 PA1/MTIOCOB/MTIOC3B/MTCLKC/SCK5/ SSLA2/TS31 35 PE4/MTIOC4D/MTIOC1A/TS33/AN020/ CMPA2/CLKOUT PE4/MTIOC4D/MTIOC1A/MTIOC4A/TS33/ AN020/CMPA2/CLKOUT 36 PE3/MTIOC4B/POE8#/CTS12#/RTS12#/ TS34/AN019/CLKOUT PE3/MTIOC4B/POE8#/CTS12#/ RTS12#/TS34/AN019/CLKOUT 37 PE2/MTIOC4A/RXD12/RXDX12/SSCL12/ TS35/IRQ7/AN018/CVREFB0 PE2/MTIOC4A/RXD12/RXDX12/SSCL12/ TS35/IRQ7/AN018/CVREFB0 38 PE1/MTIOC4C/TXD12/TXDX12/SIOX12/ SSDA12/AN017/CMPB0 PE1/MTIOC4C/TXD12/TXDX12/SIOX12/ SSDA12/AN017/CMPB0 39 P47*2/AN007 P47*2/AN007 40 P46*2/AN006 P46*2/AN006 41 P45*2/AN005 P45*2/AN005 42 P42*2/AN002 P42*2/AN002 43 P41*2/AN001 P41*2/AN001 44 VREFL0/PJ7*2 VREFL0/PJ7*2 45 P40*2/AN000 P40*2/AN000 46 VREFH0/PJ6*2 VREFH0/PJ6*2 47 AVCC0 AVCC0	32	PA4/MTIC5U/MTCLKA/TMRI0/TXD5/	PA4/MTIOC4C/MTIC5U/MTCLKA/TMRI0/
33 PA3/MTIOCOD/MTCLKD/RXD5/SMISO5/ SSCL5/TS29/IRQ6/CMPB1 PA3/MTIOCOD/MTIOC4D/MTIC5V/MTCLKD/ RXD5/SMISO5/SSCL5/TS29/IRQ6/CMPB1 34 PA1/MTIOCOB/MTCLKC/SCK5/SSLA2/TS31 PA1/MTIOCOB/MTIOC3B/MTCLKC/SCK5/ SSLA2/TS31 35 PE4/MTIOC4D/MTIOC1A/TS33/AN020/ CMPA2/CLKOUT PE4/MTIOC4D/MTIOC1A/MTIOC4A/TS33/ AN020/CMPA2/CLKOUT 36 PE3/MTIOC4B/POE8#/CTS12#/RTS12#/ TS34/AN019/CLKOUT PE3/MTIOC4B/POE8#/CTS12#/ RTS12#/TS34/AN019/CLKOUT 37 PE2/MTIOC4A/RXD12/RXDX12/SSCL12/ TS35/IRQ7/AN018/CVREFB0 PE2/MTIOC4C/TXD12/TXDX12/SSCL12/ TS35/IRQ7/AN018/CVREFB0 38 PE1/MTIOC4C/TXD12/TXDX12/SIOX12/ SSDA12/AN017/CMPB0 PE1/MTIOC4C/TXD12/TXDX12/SIOX12/ SSDA12/AN0017/CMPB0 39 P47*2/AN007 P47*2/AN007 40 P46*2/AN006 P46*2/AN006 41 P45*2/AN005 P45*2/AN005 42 P42*2/AN002 P42*2/AN002 43 P41*2/AN001 P41*2/AN001 44 VREFL0/PJ7*2 VREFL0/PJ7*2 45 P40*2/AN000 P40*2/AN000 46 VREFH0/PJ6*2 VREFH0/PJ6*2 47 AVCC0 AVCC0			
SSCL5/TS29/IRQ6/CMPB1 RXD5/SMISO5/SSCL5/TS29/IRQ6/CMPB1 34		CVREFB1	011121
34 PA1/MTIOC0B/MTCLKC/SCK5/SSLA2/TS31 PA1/MTIOC0B/MTIOC3B/MTCLKC/SCK5/ SSLA2/TS31 35 PE4/MTIOC4D/MTIOC1A/TS33/AN020/ CMPA2/CLKOUT PE4/MTIOC4D/MTIOC1A/MTIOC4A/TS33/ AN020/CMPA2/CLKOUT 36 PE3/MTIOC4B/POE8#/CTS12#/RTS12#/ TS34/AN019/CLKOUT PE3/MTIOC4B/POE8#/CTS12#/ RTS12#/TS34/AN019/CLKOUT 37 PE2/MTIOC4A/RXD12/RXDX12/SSCL12/ TS35/IRQ7/AN018/CVREFB0 PE2/MTIOC4A/RXD12/RXDX12/SSCL12/ TS35/IRQ7/AN018/CVREFB0 38 PE1/MTIOC4C/TXD12/TXDX12/SIOX12/ SSDA12/AN017/CMPB0 PE1/MTIOC4C/TXD12/TXDX12/SIOX12/ SSDA12/AN017/CMPB0 39 P47*2/AN007 P47*2/AN007 40 P46*2/AN006 P46*2/AN006 41 P45*2/AN005 P45*2/AN005 42 P42*2/AN002 P42*2/AN002 43 P41*2/AN001 P41*2/AN001 44 VREFLO/PJ7*2 VREFLO/PJ7*2 45 P40*2/AN000 P40*2/AN000 46 VREFH0/PJ6*2 VREFH0/PJ6*2 47 AVCC0 AVCC0	33		
SSLA2/TS31 SSLA2/TS31 PE4/MTIOC4D/MTIOC1A/MTIOC4A/TS33/ AN020/ CMPA2/CLKOUT PE4/MTIOC4D/MTIOC1A/MTIOC4A/TS33/ AN020/CMPA2/CLKOUT AN020/CMPA2/CLKOUT AN020/CMPA2/CLKOUT PE3/MTIOC4B/POE8#/CTS12#/ TS34/AN019/CLKOUT RTS12#/TS34/AN019/CLKOUT RTS12#/TS34/AN019/CLKOUT RTS12#/TS35/IRQ7/AN018/CVREFB0 TS35/IRQ7/AN018/CVREFB0 TS35/IRQ7/AN018/CVREFB0 TS35/IRQ7/AN018/CVREFB0 TS35/IRQ7/AN018/CVREFB0 SDA12/AN017/CMPB0 SDA12/AN017/CMPB0 SDA12/AN017/CMPB0 SDA12/AN017/CMPB0 SDA12/AN0017/CMPB0 SP47*2/AN007 P47*2/AN007 P46*2/AN006 P46*2/AN006 P46*2/AN006 P45*2/AN005 P45*2/AN005 P42*2/AN002 P42*2/AN002 P42*2/AN001 P41*2/AN001 P41*2/AN001 P41*2/AN001 P41*2/AN001 P41*2/AN001 P41*2/AN000 P40*2/AN000		·	·
PE4/MTIOC4D/MTIOC1A/TS33/AN020/ CMPA2/CLKOUT	34	PA1/MTIOC0B/MTCLKC/SCK5/SSLA2/TS31	
CMPA2/CLKOUT AN020/CMPA2/CLKOUT 36 PE3/MTIOC4B/POE8#/CTS12#/RTS12#/ TS34/AN019/CLKOUT PE3/MTIOC1B/MTIOC4B/POE8#/CTS12#/ RTS12#/TS34/AN019/CLKOUT 37 PE2/MTIOC4A/RXD12/RXDX12/SSCL12/ TS35/IRQ7/AN018/CVREFB0 PE2/MTIOC4A/RXD12/RXDX12/SSCL12/ TS35/IRQ7/AN018/CVREFB0 38 PE1/MTIOC4C/TXD12/TXDX12/SIOX12/ SSDA12/AN017/CMPB0 PE1/MTIOC4C/TXD12/TXDX12/SIOX12/ SSDA12/AN017/CMPB0 39 P47*2/AN007 P47*2/AN007 40 P46*2/AN006 P46*2/AN006 41 P45*2/AN005 P45*2/AN005 42 P42*2/AN002 P42*2/AN002 43 P41*2/AN001 P41*2/AN001 44 VREFL0/PJ7*2 VREFL0/PJ7*2 45 P40*2/AN000 P40*2/AN000 46 VREFH0/PJ6*2 VREFH0/PJ6*2 47 AVCC0 AVCC0			
36 PE3/MTIOC4B/POE8#/CTS12#/RTS12#/ TS34/AN019/CLKOUT PE3/MTIOC1B/MTIOC4B/POE8#/CTS12#/ RTS12#/TS34/AN019/CLKOUT 37 PE2/MTIOC4A/RXD12/RXDX12/SSCL12/ TS35/IRQ7/AN018/CVREFB0 PE2/MTIOC4A/RXD12/RXDX12/SSCL12/ TS35/IRQ7/AN018/CVREFB0 38 PE1/MTIOC4C/TXD12/TXDX12/SIOX12/ SSDA12/AN017/CMPB0 PE1/MTIOC4C/TXD12/TXDX12/SIOX12/ SSDA12/AN017/CMPB0 39 P47*²/AN007 P47*²/AN007 40 P46*²/AN006 P46*²/AN006 41 P45*²/AN005 P45*²/AN005 42 P42*²/AN002 P42*²/AN002 43 P41*²/AN001 P41*²/AN001 44 VREFL0/PJ7*² VREFL0/PJ7*² 45 P40*²/AN000 P40*²/AN000 46 VREFH0/PJ6*² VREFH0/PJ6*² 47 AVCC0 AVCC0	35		
TS34/AN019/CLKOUT RTS12#/TS34/AN019/CLKOUT 37 PE2/MTIOC4A/RXD12/RXDX12/SSCL12/ TS35/IRQ7/AN018/CVREFB0 PE2/MTIOC4A/RXD12/RXDX12/SSCL12/ TS35/IRQ7/AN018/CVREFB0 38 PE1/MTIOC4C/TXD12/TXDX12/SIOX12/ SSDA12/AN017/CMPB0 PE1/MTIOC4C/TXD12/TXDX12/SIOX12/ SSDA12/AN001/CMPB0 39 P47*2/AN007 P47*2/AN007 40 P46*2/AN006 P46*2/AN006 41 P45*2/AN005 P45*2/AN005 42 P42*2/AN002 P42*2/AN002 43 P41*2/AN001 P41*2/AN001 44 VREFL0/PJ7*2 VREFL0/PJ7*2 45 P40*2/AN000 P40*2/AN000 46 VREFH0/PJ6*2 VREFH0/PJ6*2 47 AVCC0 AVCC0			
37 PE2/MTIOC4A/RXD12/RXDX12/SSCL12/ TS35/IRQ7/AN018/CVREFB0 PE2/MTIOC4A/RXD12/RXDX12/SSCL12/ TS35/IRQ7/AN018/CVREFB0 38 PE1/MTIOC4C/TXD12/TXDX12/SIOX12/ SSDA12/AN017/CMPB0 PE1/MTIOC4C/TXD12/TXDX12/SIOX12/ SSDA12/AN017/CMPB0 39 P47*2/AN007 P47*2/AN007 40 P46*2/AN006 P46*2/AN006 41 P45*2/AN005 P45*2/AN005 42 P42*2/AN002 P42*2/AN002 43 P41*2/AN001 P41*2/AN001 44 VREFLO/PJ7*2 VREFLO/PJ7*2 45 P40*2/AN000 P40*2/AN000 46 VREFH0/PJ6*2 VREFH0/PJ6*2 47 AVCC0 AVCC0	36		
TS35/IRQ7/AN018/CVREFB0 TS35/IRQ7/AN012/TXDX12/SIOX1			
38 PE1/MTIOC4C/TXD12/TXDX12/SIOX12/ SSDA12/AN017/CMPB0 SSDA12/AN017/CMPB0 39 P47*2/AN007 P47*2/AN007 40 P46*2/AN006 P46*2/AN006 41 P45*2/AN005 P45*2/AN005 42 P42*2/AN002 P42*2/AN002 43 P41*2/AN001 P41*2/AN001 44 VREFL0/PJ7*2 VREFL0/PJ7*2 45 P40*2/AN000 P40*2/AN000 46 VREFH0/PJ6*2 VREFH0/PJ6*2 47 AVCC0 AVCC0	37		
SSDA12/AN017/CMPB0 SSDA12/AN017/CMPB0 39 P47*²/AN007 P47*²/AN007 40 P46*²/AN006 P46*²/AN006 41 P45*²/AN005 P45*²/AN005 42 P42*²/AN002 P42*²/AN002 43 P41*²/AN001 P41*²/AN001 44 VREFL0/PJ7*² VREFL0/PJ7*² 45 P40*²/AN000 P40*²/AN000 46 VREFH0/PJ6*² VREFH0/PJ6*² 47 AVCC0 AVCC0			
39 P47*²/AN007 40 P46*²/AN006 P46*²/AN006 41 P45*²/AN005 P45*²/AN005 42 P42*²/AN002 P42*²/AN002 43 P41*²/AN001 P41*²/AN001 44 VREFL0/PJ7*² VREFL0/PJ7*² 45 P40*²/AN000 P40*²/AN000 VREFH0/PJ6*² AVCC0 P47*²/AN007 P46*²/AN000 P40*²/AN000 AVCC0	38		
40 P46*²/AN006 P46*²/AN006 41 P45*²/AN005 P45*²/AN005 42 P42*²/AN002 P42*²/AN002 43 P41*²/AN001 P41*²/AN001 44 VREFLO/PJ7*² VREFLO/PJ7*² 45 P40*²/AN000 P40*²/AN000 46 VREFHO/PJ6*² VREFHO/PJ6*² 47 AVCC0 AVCC0			
41 P45*²/AN005 P45*²/AN005 42 P42*²/AN002 P42*²/AN002 43 P41*²/AN001 P41*²/AN001 44 VREFL0/PJ7*² VREFL0/PJ7*² 45 P40*²/AN000 P40*²/AN000 46 VREFH0/PJ6*² VREFH0/PJ6*² 47 AVCC0 AVCC0			
42 P42*²/AN002 P42*²/AN002 43 P41*²/AN001 P41*²/AN001 44 VREFL0/PJ7*² VREFL0/PJ7*² 45 P40*²/AN000 P40*²/AN000 46 VREFH0/PJ6*² VREFH0/PJ6*² 47 AVCC0 AVCC0			
43 P41*2/AN001 P41*2/AN001 44 VREFL0/PJ7*2 VREFL0/PJ7*2 45 P40*2/AN000 P40*2/AN000 46 VREFH0/PJ6*2 VREFH0/PJ6*2 47 AVCC0 AVCC0	41		
44 VREFL0/PJ7*2 VREFL0/PJ7*2 45 P40*2/AN000 P40*2/AN000 46 VREFH0/PJ6*2 VREFH0/PJ6*2 47 AVCC0 AVCC0	42		
45 P40*²/AN000 P40*²/AN000 46 VREFH0/PJ6*² VREFH0/PJ6*² 47 AVCC0 AVCC0	43	P41* ² /AN001	P41*2/AN001
46 VREFH0/PJ6* ² VREFH0/PJ6* ² 47 AVCC0 AVCC0	44	VREFL0/PJ7*2	VREFL0/PJ7*2
47 AVCC0 AVCC0	45	P40* ² /AN000	
	46	VREFH0/PJ6* ²	VREFH0/PJ6* ²
48 AVSS0 AVSS0	47	AVCC0	AVCC0
	48	AVSS0	AVSS0

Notes: 1. PC0 to PC3 are valid only when the port switching function is selected.

- 2. The power supply of the I/O buffer for these pins is AVCCO.
- 3. Not implemented on products with ROM capacity of 64 KB.

4. Important Information when Migrating Between MCUs

This section presents important information on differences between the RX140 Group and the RX130 Group. 4.1, Notes on Functional Design, presents information regarding the software.

4.1 Notes on Functional Design

Some software that runs on the RX130 Group is compatible with the RX140 Group. Nevertheless, appropriate caution must be exercised due to differences in aspects such as operation timing and electrical characteristics.

Software-related considerations regarding function settings that differ between the RX140 Group and RX130 Group are as follows:

For differences between modules and functions, refer to 2, Comparative Overview of Specifications. For further information, refer to the User's Manual: Hardware of each MCU group, listed in 5, Reference Documents.

4.1.1 Exception Vector Table

On the RX130 Group the vector table is assigned to a fixed address space, but on the RX140 Group the vector table address can be changed by specifying a value for the start address in the exception table register (EXTB).

4.1.2 Port Direction Register (PDR) Initialization

PDR register initialization differs even between products with the same pin count.

4.1.3 Suppressing Noise on the I²C Bus Interface

The RX130 Group has integrated analog noise filters for the SCL and SDA lines, but no such integrated analog noise filters are provided on the RX140 Group.

4.1.4 Sampling Interval Setting for Frequency Diffusion

When the frequency diffusion function is turned on (CTSUCRB.SOFF = 0) for the capacitive touch sensing unit of the RX140 Group, set the CTSUCRA.CLK[1:0] and CTSUSO.SDPA[7:0] bits such as that sensor drive pulse sampling interval is less than one-fourth (1/4) the sensor drive pulse interval.

4.1.5 Transmit Pins when Using Self-Capacitance Method

On the RX140 Group, the transmit pins of the capacitive touch sensing unit cannot be used for measurement when using the self-capacitance method. Pulses that are in-phase with the measurement pulses are output on the transmit pins. These should be used as a shield on the board. Also, do not select multiple transmit pins when using the self-capacitance method.

5. Reference Documents

User's Manual: Hardware

RX130 Group User's Manual: Hardware Rev.3.00 (R01UH0560EJ0300)

(The latest version can be downloaded from the Renesas Electronics website.)

RX140 Group User's Manual: Hardware Rev1.10 (R01UH0905EJ0110)

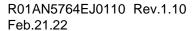
(The latest version can be downloaded from the Renesas Electronics website.)

Technical Update/Technical News

(The latest information can be downloaded from the Renesas Electronics website.)

Related Technical Updates

This module reflects the content of the following technical updates:


TN-RX*-A0217A/E

TN-RX*-A0224B/E

TN-RX*-A0227A/E

TN-RX*-A0238B/E

TN-RX*-A0258A/E

Revision History

		Description	
Rev.	Date	Page	Summary
1.00	Aug. 26, 2021	_	First edition issued
1.10	Feb. 21, 2022	13	Revised: Table 2.6 Comparison of Clock Generation Circuit Registers
		27	Revised: Table 2.19 Comparative Overview of I/O Ports (80-Pin) Revised: Table 2.20 Comparative Overview of I/O Ports (64-Pin)
		65	Revised: Table 2.46 Comparison of Capacitive Touch Sensing Unit Registers
		77	Revised: Table 3.1 Comparative Listing of 80-Pin Package Pin Functions
		80	Revised: Table 3.2 Comparative Listing of 64-Pin Package Pin Functions

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2 Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

- 6. Voltage application waveform at input pin
 - Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.).
- 7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
- 5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 6. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION ("Vulnerability Issues"). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY. OR FITNESS FOR A PARTICULAR PURPOSE.
- 8. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/.