

Configuration File Generator for RL78 Motor Control Sample Software

User's Manual

Summary

This application note explains how to use the Configuration File Generator for the RL78 motor control sample code. Read the document carefully in order to use the software correctly. This tool is made for the purpose of supporting the redesign of various parameters of the sample software, but it does not completely guarantee the operation. Please use it with great care. No liability shall be accepted for any consequences arising from the use of this tool.

Contents

1.	Overview of the Configuration File Generator for the RL78 motor control sample code	2
1.1	Functions	3
1.2	System requirements	3
1.3	Procedures for use of CFG	4
1.4	CFG versions and target software	5
1.5	Reference	5
_		_
2.	CFG function descriptions	
2.1	Descriptions of "RL78_CFG" sheets	
2.1.1	Setting file save location	6
2.1.2	File output buttons	7
2.1.3	Target software selection	7
2.1.4	Control mode selection	8
2.1.5	Setting inverter characteristic parameters	9
2.1.6	5	
2.1.7	Setting control parameters	. 14
2.1.8	Setting scaling parameters	.16
2.2	Descriptions of "Checker" sheets	. 18
3.	CFG operational procedures	.19
3.1	Preparations	
3.2	Changing inverters and motors	. 19
3.3	Operation with FOC version	. 20
3.3.1	Launch CFG	. 20
3.3.2	Inverter registration	.21
3.3.3	Motor registration	. 22
3.3.4	Creating configuration files	.23
3.3.5	Reflection in sample code	.24
3.3.6	Changing parameter settable range	.24

1. Overview of the Configuration File Generator for the RL78 motor control sample code

The Configuration File Generator (CFG) for the RL 78 motor control sample software sets fixed points and various parameters for inverters and motors, which are evaluation environments for the RL 78 family motor control microcomputer (RL 78/G 14, G1F) sample software. CFG is a tool that supports parameter setting in conjunction with changes in the motors and inverters.

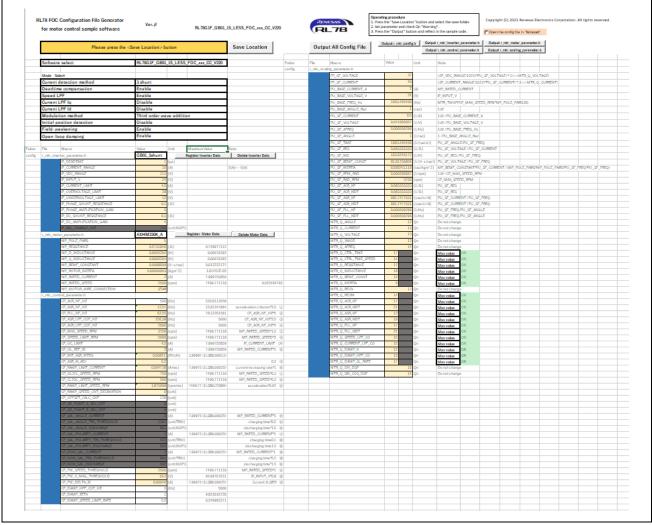


Figure 1-1 RL78 FOC Configuration File Generator Display Screen

1.1 Functions

CFG has the following functions.

- Registering motor inverter characteristic parameters
- Setting control parameters for the target sample code and calculating scaling parameters (Fixed point)
- Creating configuration files for the target sample code

CFG is a tool for motor control sample code released on our website. Download and use the sample code from the RL78 Motor Control Solutions page.

(RL78 Motor Control Solutions | Renesas)

The sample code has various types of parameters set in the following files for specific motors and inverters. When changing motors or inverters, it is necessary to reset each type of parameter in these files.

- r_mtr_config.h: Configuration definition file
- r_mtr_control_parameter.h: Control parameter definition file
- r_mtr_inverter_parameter.h: Inverter parameter definition file
- r_mtr_motor_parameter.h: Motor parameter definition file
- r_mtr_scaling_parameter.h: Scaling parameter definition file

CFG is a tool that supports the creation of these files.

This tool cannot create microcontroller setting of register and pin assignments. Please set appropriately according to the specifications of your system.

1.2 System requirements

The system requirements needed for operating CFG are shown below.

Item	Content
OS	Windows 10
Software	Microsoft Excel 2007 or later

Table 1-1 System requirements

1.3 Procedures for use of CFG

The procedures for creating configuration files and operating sample code for different motors and converters are described below.

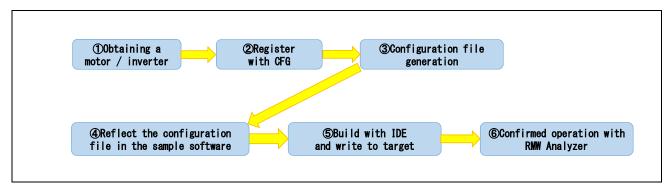


Figure 1-2 Procedures for changing motors and inverters in the sample code

1. Obtain a permanent magnetic synchronous motor and inverter.

If the inverter does not have the same pin assignments or register settings as the evaluation board supporting the sample code, it is necessary to reconfigure the register separately.

2. Register the motor inverter characteristic parameters in the CFG.

See the data sheet for the characteristic parameters of the motor or use the Renesas Motor Workbench (RMW) tuner function.

3. Create the configuration file.

Sample code corresponding to the CFG is listed in Section 1.4.

4. Have the configuration file be reflected in the sample code.

Write over the file in the sample code "config" folder.

5. Build the project in IDE and save it in the target.

Rebuild the project by using an IDE (CS+, e² studio) that corresponds to the sample code, and write it to the target MCU.

6. Check the operation using the RMW Analyzer.

The motor control sample code corresponds to the debugging tool Renesas Motor Workbench (RMW). It is possible to check the operation using the RWM Analyzer. See the relevant manual for how to operate RMW.

Detailed CFG instructions are described in Chapter 3.

1.4 CFG versions and target software

CFG are available for each sample code (control method). Use the CFG corresponding to the sample code used.

- For sensorless vector control:
 - RL78 FOC Configuration File Generator for motor control sample software ver. β

Target software:

Sensorless vector control for RL78/G1F permanent magnet synchronous motor

- 1 shunt current detection method

(R01AN3992JJ0220) RL78G1F_GB01_1S_LESS_FOC_xxx_CC_V220

1.5 Reference

- Renesas Motor Workbench 2.0 User's Manual (R21UZ0004JJ0201: Renesas-Motor-Workbench-V2-0f)
- RL78/G1F CPU Card User's Manual (R12UZ0014EJ0100)
- RL78/G1F Motor Driver Board GB01 User's Manual (R12UT0012JJ0100)
- Sensorless vector control 1 shunt current detection method for RL78/G1F permanent magnet synchronous motor (R01AN3992JJ0220)

2. CFG function descriptions

CFG is created as an Excel file using Excel macros. Here are descriptions of each of the functions on a "RL78_CFG" sheet.

2.1 Descriptions of "RL78_CFG" sheets

"RL78_CFG" sheets are used to register motor and inverter characteristic parameters, calculate control parameters and scaling parameters, and create configuration files.

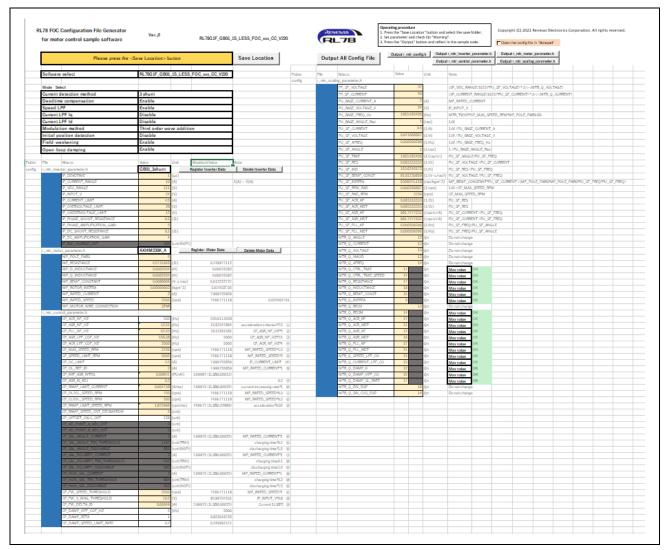


Figure 2-1 "RL78_CFG" sheets display screen

2.1.1 Setting file save location

You can set the save location of the files by clicking the "Save Location" button to open the Save Location screen.

Figure 2-2 File Save Location Screen: Before the save location is specified

After you have specified the save location, the save location address is displayed in a yellow cell.

C:¥Renesas Save Locatio	C:¥Renesas	
-------------------------	------------	--

Figure 2-3 File Save Location Screen: After the save location is specified

2.1.2 File output buttons

A button to create all configuration files at once and buttons to create each file separately are available.

- "Output All Config File": Creates all 5 configuration files
- "Output r_mtr_config.h": Creates configuration definition file
- "Output r_mtr_inverter_parameter.h": Creates inverter parameter definition file
- "Output r_mtr_motor_parameter.h": Creates motor parameter definition file
- "Output r_mtr_control_parameter.h": Creates control parameter definition file
- "Output r_mtr_scaling_parameter.h": Creates scaling parameter definition file

	Output r_mtr_config.h	Output r_mtr_inverter_parameter.h	Output r_mtr_motor_parameter.h
Output All Config File		Output r_mtr_control_parameter.h	Output r_mtr_scaling_parameter.h
1			

Figure 2-4 File output buttons

These buttons are enabled after the file save location is set. If a button is clicked before the file location is set, an error message is output.

Also, when the "Open the config file in 'Notepad'" check box is selected, the output file will open in Notepad.

Open the config file in "Notepad"		

Figure 2-5 "Open the config file in 'Notepad'" check box

2.1.3 Target software selection

The type of parameters output by the sample code differ, so select the sample code you want from "Software select."

Software select	RL78G1F_GB01	_1S_LESS	_FOC_xxx_CC_V220

Figure 2-6 "Software select" cell

2.1.4 Control mode selection

The control mode can be selected. This setting is reflected in "r_mtr_config.h". See the target software "r_mtr_config.h" for more details about control modes. Table 2-1 shows the contents of the Mode Select items.

Mode Select	
Current detection method	1 shunt
Deadtime compensation	Enable
Speed LPF	Enable
Current LPF Iq	Disable
Current LPF Id	Disable
Modulation method	Third order wave addition
Initial position detection	Disable
Field-weakening	Enable
Open-loop damping	Enable

Figure	2-7	"Mode	Select"	cell
iguic	Z -1	mouc	OCICCL	CCII

Table 2-1 List of Definitions in Mode Select

Mode nme	Description	Remarks
Current detection method	Current detection method (3-shunt /1-shunt)	Default setting: 1 shunt
Deadtime compensation	Select deadtime compensation process	Default setting: Enable
Speed LPF	Select speed LPF	Default setting: Enable
Current LPF Iq	Select q-axis current LPF	Default setting: Disable
Current LPF Id	Select d-axis current LPF	Default setting: Disable
Modulation method	Modulation method (Sine wave modulation/	Default setting:
	Third harmonic calculation)	Third harmonic calculation
Initial position detection	Select initial position detection	Default setting: Disable
Field-weakening	Select Field-Weakening Control	Default setting: Enable
Open-loop damping	Select Openloop damping Control	Default setting: Enable

2.1.5 Setting inverter characteristic parameters

Set characteristic parameters for the inverter in "r_mtr_inverter_parameter.h".

Folder	File	Macro	Value	Unit	Maximum Value	Note
config	r_mtr_ir	overter_parameter.h	GB01_3shunt	•	Register Inverter Data	Delete Inverter Data
		IP_DEADTIME	New	5]		
		IP_CURRENT_RANGE	GB01_3shunt	nted		5[A] ~ -5[A]
		IP_VDC_RANGE	111	[V]		
		IP_INPUT_V	24	[V]		
		IP_CURRENT_LIMIT	4.5	5 [A]		
		IP_OVERVOLTAGE_LIMIT	28	3 [V]		
		IP_UNDERVOLTAGE_LIMIT	12	2 [V]		
		IP_PHASE_SHUNT_RESISTANCE	0.1	[Ω]		
		IP_PHASE_AMPLIFICATION_GAIN	Ę	5		
		IP_DC_SHUNT_RESISTANCE	0.1	[Ω]		
		IP_DC_AMPLIFICATION_GAIN	1	1		
		IP BSC CHARGE CNT	100	(cnt(NOP)	01	

Figure 2-8 Inverter parameter setting cell

Click the "Register Inverter Data" button to edit the setting information. You can create a new registration by selecting "New" from the Inverter Name drop-down menu and clicking the "Register Inverter Data" button.

Register Inverter Data		X
Inverter NAME	GB01_3shunt	
IP_DEADTIME	1	μs
IP_CURRENT_RANGE	10	A(pp) Calc
IP_VDC_RANGE	111	V Calc
IP_INPUT_V	24	v
IP_CURRENT_LIMIT	4.5	A
IP_OVERVOLT AGE_LIMIT	28	v
IP_UNDERVOLTAGE_LIMIT	12	v
IP_PHASE_SHUNT_RESISTANCE	0.1	Ω
IP_PHASE_AMPLIFICATION_FACTOR	0.1	
IP_DC_SHUNT_RESISTANCE	4 🗸	Ω
	100	cnt(nop)
IP_BSC_CHARGE_PERIOD		
ОК		

Figure 2-9 "Register Inverter Data" window

See target sample code "r_mtr_inverter_parameter.h" for details on each of the parameters.

In the "Register Inverter Data" window there are macros for converting the scaling value from AD to current ("IP_CURRENT_RANGE") and to voltage ("IP_VDC_RANGE"). When the "Calc" button to the right of these input fields is clicked, an input window for automatically calculating the scaling value is displayed.

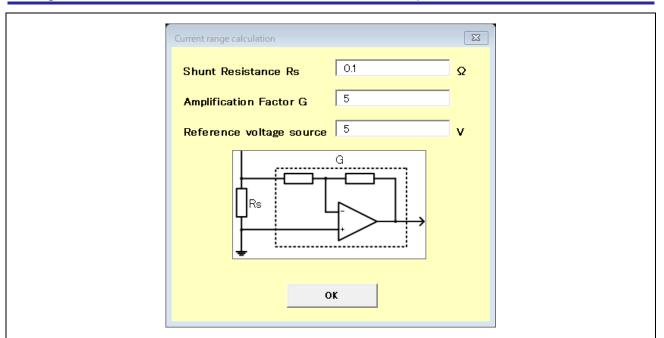


Figure 2-10 "Current range calculation" window

The "Current range calculation" window calculates the current scaling value. Input the shunt resistance value Rs, amplification gain G, and reference voltage value and perform the calculation by clicking the "OK" button.

Current scaling value [A] = reference voltage value [V]/(shunt resistance value Rs * amplification factor G)

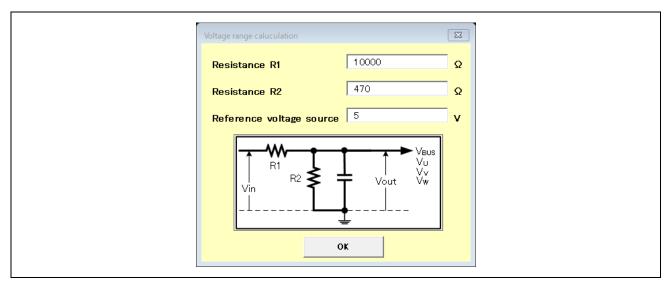


Figure 2-11 "Current range calculation" window

The "Current range calculation" window calculates the voltage scaling value. Input the divider resistances R1 and R2 and reference voltage value and perform the calculation by clicking the "OK" button.

Voltage scaling value [V] = reference voltage value [V] * (R1 + R2)/R2

If the inverter voltage and current detection circuits are different than the ones described above, set a suitable scaling value that matches the target inverter circuit.

To delete registered inverter information, click the "Delete Inverter Data" button and delete the data selected from the drop-down menu.

Folder	File	Macro	Value	Unit	Maximum Value	Note
config	r_mtr_in	verter_parameter.h	GB01_3shunt	v	Register Inverter Data	Delete Inverter Data
		IP_DEADTIME	New	s]		
		IP_CURRENT_RANGE	GB01_3shunt	n A		5[A] ~ -5[A]
		IP_VDC_RANGE	111	[V]		
		IP_INPUT_V	24	[V]		
		IP_CURRENT_LIMIT	4.5	[A]		
		IP_OVERVOLTAGE_LIMIT	28	[V]		
		IP_UNDERVOLTAGE_LIMIT	12	[V]		
		IP_PHASE_SHUNT_RESISTANCE	0.1	[Ω]		
		IP_PHASE_AMPLIFICATION_GAIN	5	i		
		IP_DC_SHUNT_RESISTANCE	0.1	[Ω]		
		IP_DC_AMPLIFICATION_GAIN	4			
		IP BSC CHARGE CNT	100	[cnt(NOP)	1	

Figure 2-12 "Delete Inverter Data" button

When the "Delete Inverter Data" button is clicked, a "Verification" window displaying "Yes (Y)" and "No (N)" opens to prompt you to confirm that you want to delete the data. If "Yes (Y)" is clicked, the selected inverter information is deleted. If "No (N)" is clicked, the deletion is canceled.

Figure 2-13 "Verification" window

Figure 2-14 Window displayed when data is deleted

Microsoft Excel	
Cancel the deletion.	
ОК	

Figure 2-15 Window displayed when data deletion is canceled

2.1.6 Setting motor characteristic parameters

Set motor characteristic parameters in "r_mtr_motor_parameter.h".

r_mtr_motor_p	arameter.h	TG 55L KA	-	Register Motor Data	Delete Motor Data
MF	_POLE_PAIRS	New			
MF	RESISTANCE	TG_55L_KA 9.120	[12]	14.28527832	
MF	_D_INDUCTANCE	0.003844	[H]	0.008579519	
MF	_Q_INDUCTANCE	0.004315	[H]	0.008579519	
MF	_BEMF_CONSTANT	0.02144	[V·s/rad]	0.028827185	
MF	_ROTOR_INERTIA	0.0000205	[kgm^2]	2.23599E-06	
MF	_RATED_CURRENT	0.42	[A]	1.67994873	
MF	_RATED_SPEED	2650	[rpm]	7949.757385	
MF	MOTOR WIRE CONNECTION	STAR			

Figure 2-16 Motor parameter setting cell

Click the "Register Motor Data" button to edit the setting information. You can create a new registration by selecting "New" from the motor name drop-down menu and clicking the "Register Motor Data" button.

Parcistan Matao Data		X
Register Motor Data		25
Motor NAME	TG_55L_KA	
Motor Maker	Tsukasa	
	2	
MP_POLE_PAIRS		
MP_RESISTANCE	9.125	Ω
MP_D_INDUCTANCE	0.003844	н
MP_Q_INDUCTANCE	0.004315	н
MP_BEMF_CONSTANT	0.02144	V•s/rad
MP_ROTOR_INERTIA	0.00000205	kgm^2
MP_NOMINAL_CURRENT_RMS	0.42	Arms
MP_RATED_SPEED	2650	rpm
Motor stator wire connection	STAR 🗸	
ок		

Figure 2-17 "Register Motor Data" window

See target sample code "r_mtr_motor_parameter.h" for more details on each of the parameters.

To delete registered inverter information, click the "Delete Motor Data" button and delete the data selected from the drop-down menu. The operation is the same as for "Delete Inverter Data".

r_mtr_m	otor_parameter.h	TG_55L_KA	v	Register Motor Data	Delete Motor Data
	MP_POLE_PAIRS	New			
	MP_RESISTANCE	TG_55L_KA 9.120	[112]	14.28527832	
	MP_D_INDUCTANCE	0.003844	(H)	0.008579519	
	MP_Q_INDUCTANCE	0.004315	(H)	0.008579519	
	MP_BEMF_CONSTANT	0.02144	[V·s/rad]	0.028827185	
	MP_ROTOR_INERTIA	0.0000205	[kgm^2]	2.23599E-06	
	MP_RATED_CURRENT	0.42	[A]	1.67994873	
	MP_RATED_SPEED	2650	[rpm]	7949.757385	
	MP_MOTOR_WIRE_CONNECTION	STAR			

Figure 2-18 "Delete Motor Data" button

Next to each parameter is the maximum value each parameter variable can have in the sample software.

2.1.7 Setting control parameters

Set control parameters in "r_mtr_control_parameter.h".

tr_control_parameter.h CP_ACR_NF_HZ	500	[Hz]	591.4601094		
	11.19				_
CP_ASR_NF_HZ			13.43542241	acceleration criterion*2.5	
CP_PLL_NF_HZ	55.95		66.24797821	CP_ASR_NF_HZ*5	
CP_ASR_LPF_COF_HZ	139.88		5000	CP_ASR_NF_HZ*2.5	
CP_ACR_LPF_COF_HZ	2000		5000	CP_ACR_NF_HZ*4	
CP_MAX_SPEED_RPM		[rpm]	7949.757385	MP_RATED_SPEED*1.5	
CP_SPEED_LIMIT_RPM		[rpm]	7949.757385	MP_RATED_SPEED*2	(
CP_OC_LIMIT	1.47	[A]	1.67994873	MP_RATED_CURRENT*3.5	(
CP_OL_REF_ID	0.42	[A]	1.67994873	MP_RATED_CURRENT*1	
CP_INIT_ASR_INTEG	0.04402	[PU(A)]	3.99987 (1LSB:0.00013)		
CP_ASR_KI_ADJ	0.2			0.2	(
CP_RAMP_LIMIT_CURRENT	0.00084	[A/ms]	1.67994 (1LSB:0.00006)	current increasing rate*1	(
CP_OL2CL_SPEED_RPM	795	[rpm]	7949.757385	MP_RATED_SPEED*0.3	(
CP_CL2OL_SPEED_RPM	530	[rpm]	7949.757385	MP_RATED_SPEED*0.2	1
CP_RAMP_LIMIT_SPEED_RPM	1.677845	[rpm/ms]	7949.75 (1LSB:0.24262)	acceleration*0.02	1
CP_RAMP_SPEED_CNT_DECIMATION	0	[cnt]			
CP_OFFSET_CALC_CNT	128	[cnt]			
CP_AD_POINT_A_ADJ_CNT	0	[cnt]			
CP_AD_POINT_B_ADJ_CNT	0	[cnt]			
CP_SAL_ANGLE_CURRENT	0.42	[A]	1.67994 (1LSB:0.00006)	MP_RATED_CURRENT*1	1
CP_SAL_ANGLE_TRX_THRESHOLD	2329	[cnt(TRX)]		charging time*0.2	1
CP_SAL_ANGLE_DISCHARGE	1046	[cnt(NOP)]		discharging time*1.5	1
CP_SAL_POLARITY_CURRENT	0.42	[A]	1.67994 (1LSB:0.00006)	MP_RATED_CURRENT*1	1
CP_SAL_POLARITY_TRX_THRESHOLD	739	[cnt(TRX)]		charging time0.1	
CP_SAL_POLARITY_DISCHARGE	811	[cnt(NOP)]		discharging time1.5	1
CP_NON_SAL_CURRENT	0.42	[A]	1.67994 (1LSB:0.00006)	MP_RATED_CURRENT*1	
CP_NON_SAL_TRX_THRESHOLD	1477	[cnt(TRX)]		charging time*0.2	1
CP_NON_SAL_DISCHARGE	811	[cnt(NOP)]		discharging time*1.5	1
CP_FW_SPEED_THRESHOLD	2650	[rpm]	7949.757385	MP_RATED_SPEED*1	
CP_FW_V_MAG_THRESHOLD	19.2	[V]	95.99707031	IP_INPUT_V*0.8	
CP_FW_DELTA_ID	0.000104	[A]	1.67994 (1LSB:0.00006)	Current 1LSB*2	
CP_DAMP_HPF_COF_HZ	5	[Hz]	5000		
CP_DAMP_ZETA	1		17.84156928		
CP_DAMP_SPEED_LIMIT_RATE	0.2		0.249992371		

Figure 2-19 Control parameter setting cell

See target sample code "r_mtr_control_parameter.h" for more details on each of the parameters.

Uncolored cells are user editable.

Next to each parameter is the maximum value that each parameter variable can have in the sample software and the formula that uses the Adjustment parameter of each automatically calculated parameter.

Each parameter described in Adjustment parameter is used in the calculation formula of each parameter in r_mtr_control_parameter.h. You can adjust the calculated value of each parameter in r_mtr_control_parameter.h by changing the corresponding parameters from 1 to 23 in the Adjustment parameter value column.

parameter ① ASR parameter magnification ② PLL parameter magnification ③ ASR LPF parameter magnification ③ ACR LPF parameter magnification ③ Maximum Speed parameter magnification ③ Speed limit parameter magnification ⑤ Maximum Speed parameter magnification for Field-weakening control ⑤ Maximum Speed parameter magnification for Field-weakening control ⑥ Speed limit parameter magnification for Field-weakening control ⑥ OC limit parameter magnification ⑦ OC limit parameter magnification ⑧ OL reference current parameter magnification ⑨ Current increasing rate magnification ⑩ OL to CL speed parameter magnification ⑩ OL to CL speed parameter magnification ⑩ CL to OL speed parameter magnification	Value 2.6 2.6 2.6 4 1 1.6 2 3.6 3.6 1 1 0.2
 PLL parameter magnification ASR LPF parameter magnification ACR LPF parameter magnification Maximum Speed parameter magnification Speed limit parameter magnification for Field-weakening control Speed limit parameter magnification for Field-weakening control Speed limit parameter magnification for Field-weakening control OC limit parameter magnification OL reference current parameter magnification ASR Ki adjustment parameter magnification Current increasing rate magnification OL to CL speed parameter magnification 	E 2.6 4 1 1.6 1.6 2 3.6 1
 ASR LPF parameter magnification ACR LPF parameter magnification ACR LPF parameter magnification Maximum Speed parameter magnification Speed limit parameter magnification for Field-weakening control Speed limit parameter magnification for Field-weakening control Speed limit parameter magnification for Field-weakening control OC limit parameter magnification OL reference current parameter magnification ASR Ki adjustment parameter magnification Current increasing rate magnification OL to CL speed parameter magnification 	2 1 1.5 2 3.6 1
 ACR LPF parameter magnification Maximum Speed parameter magnification Speed limit parameter magnification for Field-weakening control Maximum Speed parameter magnification for Field-weakening control Speed limit parameter magnification for Field-weakening control OC limit parameter magnification OL reference current parameter magnification ASR Ki adjustment parameter magnification Current increasing rate magnification OL to CL speed parameter magnification 	2 1 1.5 2 3.6 1
 Maximum Speed parameter magnification Speed limit parameter magnification Maximum Speed parameter magnification for Field-weakening control Speed limit parameter magnification for Field-weakening control OC limit parameter magnification OL reference current parameter magnification ASR Ki adjustment parameter magnification Current increasing rate magnification OL to CL speed parameter magnification 	1.5 2 3.6 1
 Speed limit parameter magnification Maximum Speed parameter magnification for Field-weakening control Speed limit parameter magnification for Field-weakening control OC limit parameter magnification OL reference current parameter magnification ASR Ki adjustment parameter magnification Current increasing rate magnification OL to CL speed parameter magnification 	1.5 2 3.6 1
 Maximum Speed parameter magnification for Field-weakening control Speed limit parameter magnification for Field-weakening control OC limit parameter magnification OL reference current parameter magnification ASR Ki adjustment parameter magnification Current increasing rate magnification OL to CL speed parameter magnification 	1.5 2 3.6 1
 Speed limit parameter magnification for Field-weakening control OC limit parameter magnification OL reference current parameter magnification ASR Ki adjustment parameter magnification Current increasing rate magnification OL to CL speed parameter magnification 	3.5
 OC limit parameter magnification OL reference current parameter magnification ASR Ki adjustment parameter magnification Current increasing rate magnification OL to CL speed parameter magnification 	1
OL reference current parameter magnification OL reference current parameter magnification OL current increasing rate magnification OL to CL speed parameter magnification	1
 ASR Ki adjustment parameter magnification Current increasing rate magnification OL to CL speed parameter magnification 	0.2
Image: Current increasing rate magnification Image: Current increasing rate magnification Image: Current increasing rate magnification	0.2
OL to CL speed parameter magnification	
	1
CL to OL speed parameter magnification	0.3
	0.2
(3) Acceleration parameter magnification	0.02
Threshold current magnification of angle detection for salient motor	1
Threshold TRX counts magnification of angle detection for salient motor	0.2
Wating discharge time magnification	1.5
Threshold current magnification of polarity detection for salient motor	1
Introduction of polarity detection for salient motor	0.1
Threshold current magnification of angle detection for non-salient motor	1
Threshold TRX counts magnification of angle detection for non-salient motor	0.2
Swiching threshold speed parameter magnification for Field-weaking control	
Threshold voltage magnitude parameter magnification for Field-weaking control Delta Id magnitude parameter magnification for Field-weaking control	0.8

Figure 2-20 "Adjustment parameter" setting cell

2.1.8 Setting scaling parameters

Set scaling parameters in "r_mtr_scaling_parameter.h".

Folder	File	Macro	Value	Unit	Note							
config	r_mtr_sca	ling_parameter.h										
		FP_SF_VOLTAGE	37		((IP_VDC_RANGE/1023)	"PU_SF_VOL	.TAGE) * (1< <m< td=""><td>TR_Q_VOLT</td><td>AGE)</td><td></td><td></td><td></td></m<>	TR_Q_VOLT	AGE)			
		FP_SF_CURRENT	190		((IP_CURRENT_RANGE)	1023)*PU_SF	CURRENT) * ()	l< <mtr_q_< td=""><td>CURRENT)</td><td></td><td></td><td></td></mtr_q_<>	CURRENT)			
		PU_BASE_CURRENT_A	0.42	[A]	MP_RATED_CURRENT							
		PU_BASE_VOLTAGE_V	24	[V]	IP_INPUT_V							
		PU_BASE_FREQ_Hz	832.5220523	[Hz]	MTR_TWOPPCP_MAX_	SPEED_RPM*	MP_POLE_PAIR	rS/60				
		PU_BASE_ANGLE_Rad	1	[rad]	1.0f							
	-	PU_SF_CURRENT	2.380952381	[1/A]	1.0f / PU_BASE_CURRE	NT A						
	-	PU_SF_VOLTAGE	0.041666667	11/VI	1.0F/PU_BASE_VOLTAG							
	-	PU_SF_AFREQ	0.001201169		1.0f / PU_BASE_FREQ_F	_						
	-	PU_SF_ANGLE		[1/rad]	1/PU_BASE_ANGLE_R							
	-		832.5220523									
	-	PU_SF_TIME		[1/(rad/s)] [1/Ω]	PU_SF_ANGLE/PU_SF_F							
	-	PU_SF_RES	0.0175 14.56913591		PU_SF_VOLTAGE / PU_S							
	-	PU_SF_IND		1	PU_SF_RES / PU_SF_FR							
	-	PU_SF_BEMF_CONST			PU_SF_VOLTAGE / PU_S		CAR / LAN CON		0015.02	- Contract of	NE EDEOR	05.00000
	-	PU_SF_INERTIA	0.000251572		MP_BEMF_CONSTANT* 1.0f / CP_MAX_SPEED		ENT / (MP_POL	E_PAIRS'MP	POLE_PA	IKS*PU_S	#_FREQ*PU_	_SF_FREQ)
	-	PU_SF_RPM_RAD PU_SF_RAD_RPM	3975		CP_MAX_SPEED_RPM	NF MI						
	-	PU_SF_RAD_RPM PU_SF_ACR_KP	0.0175		PU_SF_RES							
	-	PU_SF_ACR_KIDT	0.0175	(PU_SF_RES							
	-	PU_SE_ASR_KP	1982.195363		PU_SF_CURRENT / PU_	SE EREO						
	-	PU_SF_ASR_KIDT	1982.195363		PU_SF_CURRENT / PU_							
	-	PU_SF_PLL_KP	0.001201169		PU_SF_FREQ/PU_SF_A							
		PU_SF_PLL_KIDT	0.001201169		PU_SF_FREQ/PU_SF_A							
		MTR_Q_ANGLE	12	Qn	Do not change							
		MTR_Q_CURRENT	13	Qn	Do not change							
	-	MTR_Q_VOLTAGE	13	On	Do not change							
		MTR_Q_VMOD	12	On	Do not change							
		MTR_O_AFREQ	14	Qn	Do not change							
		MTR_Q_CTRL_TIME	18	Qn	Max value OK							
		MTR_Q_CTRL_TIME_SPEED	15	On	Max value OK							
		MTR_Q_RESISTANCE	17	Qn	Max value OK							
		MTR_Q_INDUCTANCE	18	On	Max value OK							
	-	MTR_Q_BEMF_CONST	15	On	Max value OK							
		MTR_Q_INERTIA	10	Qn	Max value OK							
		MTR_Q_RECIV	13	Qn	Do not change							
		MTR_Q_RECIM	14	Qn	Max value OK							
		MTR_Q_ACR_KP	17	On	Max value OK							
		MTR_Q_ACR_KIDT	19	On	Max value OK							
		MTR_Q_ASR_KP	12	On	Max value OK							
		MTR_Q_ASR_KIDT	19	On	Max value OK							
		MTR_O_PLL_KP	15	On	Max value OK							
		MTR_Q_PLL_KIDT	21	On	Max value OK							
	-	MTR_Q_PEE_KIDT	15	On	Max value OK							
	-	MTR_Q_CURRENT_LPF_CO	15	Qn Qn	Max value OK							
	-	MTR_Q_DAMP_K	15	Qn On	Max value OK							
	-	MTR_Q_DAMP_K MTR_Q_DAMP_HPF_CO	12	Qn Qn	Max value OK							
	-											
	-	MTR_Q_DAMP_SL_RATE	17	Qn								
	-	MTR_Q_DIV_DSP MTR_Q_SIN_COS_DSP	16	Qn	Do not change Do not change							

Figure 2-21 Scaling parameter setting cell

The scaling parameters are automatically calculated from the inverter and motor characteristic parameters and control parameters that have already been set.

Q values are automatically set to fit into 15 bits. To change a Q value, change the "Max value" drop-down to the right of that Q value to "User input".

MTR_Q_AFREQ		14	Qn	Do not change		
MTR_Q_CTRL_TIME	18	20	Qn	User input	Warning	
MTR_Q_CTRL_TIME_SPEED	15	13	Qn	User input	ок	
MTR_Q_RESISTANCE	17		Qn	Max value	ок	
MTR_Q_INDUCTANCE	18		Qn	Max value	ок	
MTR_Q_BEMF_CONST	15		Qn	Max value	ок	
MTR_Q_INERTIA	10		Qn	Max value	ок	
MTR_Q_RECIV		13	Qn	Do not change		
MTR_Q_RECIM	14		Qn	Max value	ок	
MTR_Q_ACR_KP	17		Qn	Max value	ок	
MTR_Q_ACR_KIDT	19		Qn	Max value	ок	
MTR_Q_ASR_KP	12		Qn	Max value	ок	
MTR_Q_ASR_KIDT	19		Qn	Max value	ок	
MTR_Q_PLL_KP	15		Qn	Max value	ок	
MTR_Q_PLL_KIDT	21		Qn	Max value	ок	
MTR_Q_SPEED_LPF_CO	15		Qn	Max value	ок	
MTR_Q_CURRENT_LPF_CO	15		Qn	Max value	ок	
MTR_Q_DAMP_K	12		Qn	Max value	ок	
MTR_Q_DAMP_HPF_CO	15		Qn	Max value	ок	
MTR_Q_DAMP_SL_RATE	17		Qn	Max value	ок	
MTR_Q_DIV_DSP		16	Qn	Do not change		
MTR_Q_SIN_COS_DSP		14	Qn	Do not change		

Figure 2-22 Changing scaling parameter Q values

If the cell to the right of the drop-down displays "Warning", adjust the value until the display shows "OK".

2.2 Descriptions of "Checker" sheets

"Checker" sheets are used to the Q value set in the "RL 78 _ CFG" sheet is used to actually calculate the PU unit fixed-point values of the characteristic parameters and control parameters of the motor and inverter. Checks whether the calculation result is within 15 bits. "OK" is displayed if there is no change, and "Warning" is displayed if there is no change.

Checker				
	Value	Value in PU system	Fixed-point data	Judgment
Resistance	9.125	0.1596875	20930	ОК
Inductance(d-axis)	0.003844	0.056003758	14681	ОК
Inductance(q-axis)	0.004315	0.062865821	16479	ОК
Magnetic flux	0.02144	0.7437197	24370	ОК
Inertia	0.00000205	29.33732932	30041	ок
Nominal current	0.42	1	8192	ОК
Control period	0.0001	0.083252205	21824	ок
Speed control period	0.001	0.832522052	27280	ок
1/Vdc	0.041666667	1	1	ОК
Inverse of magnetic flux	46.64179104	1.344592593	22029	ОК
Over voltage limit	28	1.166666667	9557	ОК
Over current limit	1.47	3.5	28672	ОК
Speed limit	1110.029403	1.333333333	21845	ОК
Max speed	832.5220523	1	16384	ОК
lq limit	0.727461336	1.7320508	14188	ОК
ACR(d-axis) Kp (1st order)	7.245769288	0.126800963	16620	ОК
ACR(d-axis) KiT (1st order)	1.720021976	0.030100385	31562	ОК
ACR(q-axis) Kp (1st order)	8.133583371	0.142337709	18656	ОК
ACR(q-axis) KiT (1st order)	1.720021976	0.030100385	31562	ОК
ASR Kp (1st order)	0.001680657	3.331390162	13645	ОК
ASR KiT (1st order)	2.3633E-05	0.046845238	24560	ОК
PLL Kp (1st order)	351.5442175	0.422264151	13836	ОК
PLL KiT (1st order)	2.471666738	0.00296889	6226	ОК
Speed LPF coefficient	0.080788739	0.080788739	2647	ОК
Speed LPF coefficient	0.919211261	0.919211261	30120	ОК
Current LPF coefficient	0.429868798	0.429868798	14085	ОК
Current LPF coefficient	0.570131202	0.570131202	18682	ОК
Damp k	148.5250028	4.281688465	17537	ОК
Damp HPF coefficient	0.969540972	0.969540972	31769	ОК
Damp speed limit rate	0.2	0.2	26214	ОК

Figure 2-23 "Checker" sheets display screen

3. CFG operational procedures

This section describes detailed procedures for using CFG to change motors and inverters.

3.1 Preparations

Download the corresponding sample code from our website and install Renesas Motor Workbench (RMW). Obtain the required information, such as the specs for the target inverter and motor parameter.

3.2 Changing inverters and motors

Here are the procedures for changing inverters and motors that are not targets for operation by the sample code. Keep in mind the following precautions when making changes.

- CFG cannot set for device setting information. Set pin assignments and AD connections as appropriate.
- •This tool is made for the purpose of supporting the redesign of various parameters of the sample software, but it does not completely guarantee the operation. Please use it with great care.

3.3 Operation with FOC version

This section describes how to operate the CFG for sensorless vector control, "RL78 FOC Configuration File Generator for motor control sample software Ver. β ".

3.3.1 Launch CFG

Start "RL78_FOC_Configuration_File_Generator.xlsm". Excel macros are used to implement the tool functions. Click "Enable contents" in the security warning that will be displayed toward the top of the screen.

SECURITY WARNING Macros have been disabled.	Enable Content
SECORTY WARNING Macros have been disabled.	Enable Content

Figure 3-1 Security warning

First, click the "Save Location" button and set the output address for the configuration file to be output.

Please press the <save location=""> button</save>	Save Location

Figure 3-2 File Save Location Screen: Before the save location is specified

When the save location is set, the specified address is displayed in the yellow box to the left of the button.

as	C:¥Renesas	
as	C:¥Renesas	

Figure 3-3 File Save Location Screen: After the save location is specified

This action enables the configuration file to be output to the specified address.

3.3.2 Inverter registration

Register the inverter. The Renesas evaluation board "GB01" inverters are already registered.

If you are using a Renesas evaluation board, select the target board name and move on to the next section.

Register the new inverter information. Select "New" from the inverter name drop-down menu and click the "Register Inverter Data" button.

Folder	File	Macro	Value	Unit	Maximum Value	Note	
config	r_mtr_in	verter_parameter.h	GB01_3shunt	v	Register Inverter Data	Delete Ir	nverter Data
		IP_DEADTIME	New]			
		IP_CURRENT_RANGE	10	TAJ		5[A] ~ -5[A]	
		IP_VDC_RANGE	111	[V]			
		IP_INPUT_V	24	[V]			
		IP_CURRENT_LIMIT	4.5	[A]			
		IP_OVERVOLTAGE_LIMIT	28	[V]			
		IP_UNDERVOLTAGE_LIMIT	12	[V]			
		IP_PHASE_SHUNT_RESISTANCE	0.1	[Ω]			
		IP_PHASE_AMPLIFICATION_GAIN	5				
		IP_DC_SHUNT_RESISTANCE	0.1	[Ω]			
		IP_DC_AMPLIFICATION_GAIN	4				
		IP BSC CHARGE CNT	100	[cnt(NOP))]		

Figure 3-4 Inverter parameter setting cell

The "Register Inverter Data" window will open. Input the inverter information. To calculate the detection ranges for voltage and current, click the "Calc" button, and an information input screen for calculating the values will be displayed.

Register Inverter Data		X	
Inverter NAME	GB01_3shunt]	Inverter name
IP_DEADTIME	1	μs	Dead time Current detection range
IP_CURRENT_RANGE IP_VDC_RANGE	111	A(pp) Calc	Voltage detection range Input voltage
	24 4.5	v ·	Current limit
IP_CURRENT_LIMIT IP_OVERVOLTAGE_LIMIT	28	A V	Over-voltage error value Under-voltage error value
	0.1	v Q	3-phase shunt resistance value 3-phase current detection
IP_PHASE_SHUNT_RESISTANCE IP_PHASE_AMPLIFICATION_FACTOR		Ŷ	amplification factor DC link shunt resistance value
	0.1	Ω	DC link current detection
IP_DC_AMPLIFICATION_FACTOR IP_BSC_CHARGE_PERIOD	100	cnt(nop)	Amplification factor Bootstrap capacitor charge time
ОК			(count)

Figure 3-5 "Register Inverter Data" window

Click the "OK" button to register the data. Select the inverter name, which will have been added to the drop-down menu.

3.3.3 Motor registration

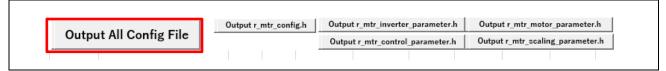
Register the motor. The motor used for the Renesas sample code is already registered. If you are using the sample code environment, move on to the next section.

r_mtr_motor_parameter.h	TG_55L_KA		Register Motor Data	Delete Motor Data
MP_POLE_PAIRS	2			
MP_RESISTANCE	9.125	[Ω]	14.28527832	
MP_D_INDUCTANCE	0.003844	[H]	0.008579519	
MP_Q_INDUCTANCE	0.004315	[H]	0.008579519	
MP_BEMF_CONSTANT	0.02144	[V·s/rad]	0.028827185	
MP_ROTOR_INERTIA	0.0000205	[kgm^2]	2.23599E-06	
MP_RATED_CURRENT	0.42	[A]	1.67994873	
MP_RATED_SPEED	2650	[rpm]	7949.757385	
MP_MOTOR_WIRE_CONNECTIO	N STAR			

Figure 3-6 Motor parameter setting cell

Register a new motor. Select "New" from the motor name drop-down menu and click the "Register Motor Data" button.

Motor NAME	TG_55L_KA		Motor name
Motor Maker	Tsukasa		Manufacturer
MP_POLE_PAIRS	2		Number of pole pairs
MP_RESISTANCE	9.125	Ω	Resistance value
MP_D_INDUCTANCE	0.003844	н	D-axis inductance
MP_Q_INDUCTANCE	0.004315	н	Q-axis inductance
MP_BEMF_CONSTANT	0.02144	V•s/rad	Back-EMF constant
MP_ROTOR_INERTIA	0.00000205	kgm^2	Rotor inertia
MP_NOMINAL_CURRENT_RMS	0.42	Arms	Rated current
MP_RATED_SPEED	2650	rpm	Rated speed
Motor stator wire connection	STAR 💽		Motor stator wire
ок			connection


Figure 3-7 "Register Motor Data" window

Click the "OK" button to register the data. Select the motor name, which will have been added to the dropdown menu.

3.3.4 Creating configuration files

The scaling parameters are automatically calculated from the selected inverter and motor information, so click the "Output All Config File" button to create the file.

Figure 3-8 File output buttons

When the "Output All Config File" button is clicked, the following 5 files are output.

- r_mtr_config.h: Configuration definition file
- r_mtr_control_parameter.h: Control parameter definition file
- r_mtr_inverter_parameter.h: Inverter parameter definition file
- r_mtr_motor_parameter.h: Motor parameter definition file
- r_mtr_scaling_parameter.h: Scaling parameter definition file

Click the buttons next to the "Output All Config File" button to output each file individually.

3.3.5 Reflection in sample code

Overwrite the created file to the "config" folder of the corresponding sample code.

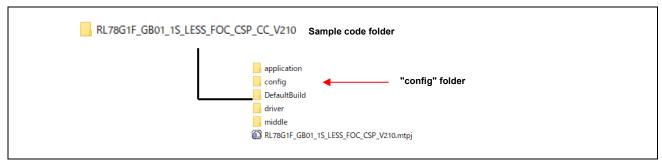


Figure 3-9 Reflection of the configuration file

After the file is reflected in the sample code, start the IDE (CS +, e² studio), write it to the MCU according to the sample code execution method, and execute the program.

3.3.6 Changing parameter settable range

When the characteristics parameters and control parameters of the motor and inverter are set, the Q values are calculated with a scaling parameter of 15 bits to maximize the resolution of the decimals. The control parameters, etc., that might change after writing the software to the MCU must be suitably adjusted so that the variable values do not overflow.

This section describes how to adjust the range of each variable.

•Changing settable range by rewriting parameters

The parameters of the r_mtr_control_parameter.h are described as an example. As shown in the figure below, when the natural frequency of ACR is 500, the upper limit value that can be set is displayed in the cell on the right. After the code is written, values higher than this upper limit value cannot be set.

				control parameter.h
	591.4601094	[Hz]	500	CP_ACR_NF_HZ
acceleration criterion*2.5	13.43542241	[Hz]	11.19	CP_ASR_NF_HZ
CP_ASR_NF_HZ*5	66.24797821	[Hz]	55.95	CP_PLL_NF_HZ
CP_ASR_NF_HZ*2.5	5000	[Hz]	139.88	CP_ASR_LPF_COF_HZ
CP_ACR_NF_HZ*4	5000	[Hz]	2000	CP_ACR_LPF_COF_HZ
MD DATED SDEED+1 6	70/0 757395	froml	3075	CD MAY SDEED DDM

Figure 3-10 Upper limit values for settings when ACR natural frequency is 500

If you wish to set a value greater than the upper limit value, The Q value is recalculated so that the range can be expanded by rewriting "CP_ACR_NF_HZ" in CFG. Setting the natural frequency to 600 will expand the parameter setting range as illustrated in the figure below.

_mtr_control_parameter.h				
CP_ACR_NF_HZ	600	[Hz]	622.8966194	
CP_ASR_NF_HZ	11.19	[Hz]	13.43542241	acceleration criterion*0.4 ①
CP_PLL_NF_HZ	55.95	[Hz]	66.24797821	CP_ASR_NF_HZ*5 ②
CP_ASR_LPF_COF_HZ	139.88	[Hz]	5000	CP_ASR_NF_HZ*2.5 ③
CP_ACR_LPF_COF_HZ	2400	[Hz]	5000	CP_ACR_NF_HZ*4 @
OD MAY SDEED DDM	2075	[rom]	70/0 757995	MD DATED ODEEDHIE (E)

Figure 3-11 Upper limit values for settings when ACR natural frequency is 600

•Changing settable range by rewriting the Q value

The Q value is calculated automatically, but it is possible to expand the settable range by readjusting. Q value of the PI gain of ACR the "MTR_Q_ACR_KP" and "MTR_Q_ACR_KIDT" and described as an example. For example, if "CP_ACR_NF_HZ" is set to 300, it will be as shown in the figure below.

MIR U RECIM	14	Qn	wax value	0K
MTR_Q_ACR_KP	17	Qn	Max value	ок
MTR_Q_ACR_KIDT	19	Qn	Max value	ок
MTP O ASP KP	12	On	May value	OK

Figure 3-12 PI Q values when ACR natural frequency is 500

To change the Q value, select "User input" from the pull-down menu on the right to edit the Q value. Here, as an example, change "MTR_Q_ACR_KP" from 17 to 16.

MIN_Q_NEGIM	14		Y!!	Max value	U.V.
MTR_Q_ACR_KP	17	16	Qn	User input	ОК
MTR_Q_ACR_KIDT	19	19	Qn	User input	ок
MTD O ASD KD	12		0.5	May value	OK

Figure 3-13 Manually inputting a PI Q value to change a value

In this case, the parameter setting range expands while "CP_ACR_NF_HZ" stays at 500.

r_mtr_cor	trol_parameter.h					
	CP_ACR_NF_HZ	500	[Hz]	622.8966194		
	CP_ASR_NF_HZ	11.19	[Hz]	13.43542241	acceleration criterion*0.4	1
	CP_PLL_NF_HZ	55.95	[Hz]	66.24797821	CP_ASR_NF_HZ*5	2
	CP_ASR_LPF_COF_HZ	139.88	[Hz]	5000	CP_ASR_NF_HZ*2.5	3
	CP_ACR_LPF_COF_HZ	2000	[Hz]	5000	CP_ACR_NF_HZ*4	۷
	CD MAY ODEED DDM	2075	[rom]	70/0 757995	MD DATED ODEED+1 E	1

Figure 3-14 Manual input of PI Q values when ACR natural frequency is 500

Revision record

		Description			
Rev.	Date	Page	Summary		
1.00	Jun. 21. 2021	-	First edition issued		
1.10	Dec. 24. 2021	-	Version upgrade due to motor sample software update		

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power is supplied until the power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
- 5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 6. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION ("Vulnerability Issues"). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
- 8. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
 Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
- Electronics products. (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/.