

AVR107: Interfacing AVR serial memories

Features
• Devices: AT25128A/256A, AT25F1024/2048/4096
• Full Serial Memory Functions Support
• Memory Array Burst Read
• Page Burst Write
• Write Protection Detection
• On Going Access Detection
• Non-blocking Write Access
• Access Status Information

1 Introduction
Serial-interface memories are used in a broad spectrum of consumer, automotive,
telecommunication, medical, industrial and PC related markets. Primarily used to
store personal preference data and configuration/setup data, Serial memories are
the most flexible type of non-volatile memory utilized today. Compared to other
NVM solutions, serial memories devices offer a lower pin count, smaller packages,
lower voltages, as well as lower power consumption.

Most of the AVR provide a SPI interface which enables a connection with a serial
memory like the AT25128A/256A and AT25F1024/2048/4096.

To ease and accelerate the integration of SPI serial memories in customer’s AVR
systems, basic drivers were developed to efficiently access them. This application
note describes the functionality and the architecture of these drivers as well as the
motivation of the selected solution. The exhaustive list and description of the
provided functions are part of the Doxygen Automated Document.

Figure 1-1. Hardware connections

AVR with SPI interface

SCK

MOSI

MISO

#SS

Serial memory
(AT25xxxx or AT25Fxxxx)

SCK

SI

SO

#CS

#HOLD

#WP
Manual
switch

Vcc

8-bit
Microcontrollers

Application Note

Rev. 2595A-AVR-03/05

2 AVR107
2595A-AVR-03/05

2 Serial memories
The following sections describe connecting the memory to an AVR processor,
memory access types, block write protection bits and busy detection. For more
information refer to the data sheets.

2.1 Serial Memory to AVR Hardware Connection
The SPI interface is configured in the master mode. The SCK and MOSI ports are
outputs and the MISO port is an input. Refer to Figure 1-1.

Note that in this application note we use the slave select signal #SS to control the
chip select pin #CS of the serial memory. This requires taking some precautions
during the initialization of the SPI interface (see Initialization of the SPI Interface).
Another port such as PB2 could be used to control the chip select line.

The #HOLD signal can be held high in its inactive state because the SPI interface
always halts the clock if the data not valid.

The user can choose the configuration of the write protect signal #WP.

Note: EEPROMs operating voltage range from 1,8V to 5,5V whereas Flashes
operates from 2,7V to 3,6V.

2.2 SPI Serial Memory Access Types
In order to understand the structure of the proposed drivers, it is worth to review the
different accesses to the serial memories.

All accesses follow this sequence:

1. The chip select line is driven low.
2. A number of serialized bytes are sent or received synchronously to the SCK clock

on the data lines.
3. The chip select line is driven high.
The number and value of the serialized byte depends on the access type.

The SPI memory devices of this application note both support the SPI mode 0(0,0)
and mode 3 (1,1). In the proposed driver the mode 0 is selected (See serial memory
datasheets for details).

2.2.1 Single Byte Write Commands: WREN, WRDI, CHIP ERASE

These accesses are one byte long. Only the instruction byte (later on called
“op_code”) instruction is sent on the MOSI data line.

 AVR107

 3

2595A-AVR-03/05

Figure 2-1. Example WREN Timing

2.2.2 Read/ Write Status Register: RDSR/WRSR

These accesses access are 2-byte long: The op_code byte is followed by the byte to
be written (WRSR) or to be read (RDSR).

Note: The Write Status Register operation must be preceded by WREN command.

Figure 2-2. WRSR Timing

4 AVR107
2595A-AVR-03/05

Figure 2-3. RDSR Timing

2.2.3 Sector Erase Command (only for AT25Fxxx Devices)

This access consists of a one-byte op_code and 3 address bytes.

Note: The Sector Erase operation must be preceded by WREN command.

Figure 2-4. Sector Erase Timing

2.2.4 Data Write and Data Read Accesses

These accesses consist of a one-byte op_code followed by an address phase (2-byte
long for the AT25xxx devices, 3-byte long for the AT25Fxxx devices) and a data
phase. The data phase length depends on the number of bytes to be written or read.

In case of a full memory array read, the number of bytes is the capacity in bytes of the
memory.

Note: The WRITE and PROGRAM operations must be preceded by WREN
command.

 AVR107

 5

2595A-AVR-03/05

Figure 2-5. WRITE command Timing (AT25xxxx)

Figure 2-6. PROGRAM command Timing (AT25Fxxxx).

2.2.5 Access Type Summary

The following table summarises the access types and their related lengths:

Table 2-1. Access Type Summary Table
Command Op_code Address Phase Length (bytes) Data Phase Length (bytes)

 AT25xxxx AT25Fxxxx MOSI line MISO line
WREN 0000 X110 0 0 0 0

WRDI 0000 X100 0 0 0 0

RDSR 0000 X101 0 0 0 1

WRSR 0000 X001 0 0 1 0

READ 0000 X011 2 3 0 1 to array size
WRITE 0000 X010 2 N/A(1) 1 to page size 0

PROGRAM 0000 X010 N/A(1) 3 1 to page size 0

SECTOR ERASE 0101 X110 N/A(1) 3 0 0

CHIP ERASE 0110 X110 N/A(1) 0 0 0

RDID 0001 X101 N/A(1) 0 0 2

Notes: 1. Command not applicable for this device.

6 AVR107
2595A-AVR-03/05

2.3 SPI Peripheral Handling
To perform the accesses to serial memory we use the SPI interface which enables,
synchronously to the SCK, to shift out on the MOSI line the byte that has been written
in the SPDR register and to shift in the byte on the MISO line into the SPDR.

The SPI operates byte-wise. After a byte was sent or received, the flag SPIF is set in
the SPSR register.

We can envision two ways of operation to handle the SPI peripheral:

1. Polling the SPSR register to detect if the SPIF was set, and then perform the next
SPI transfer.

2. Enable the SPI interrupt and manage the next SPI transfer in the SPI interrupt
handler.

2.3.1 Polling Operation Mode

The polling operation has the advantage to respond quickly to the end of a transfer
and also to lead to a compact code size.

The crucial drawback is that a polling operation is a blocking mechanism, since the
code must wait for the end of the polling loop.

We thus select the polling operation mode for short accesses:

• WREN
• WRDI
• WRSR
• RDSR
• SECTOR ERASE
• CHIP ERASE
• RDID
Since we assumed that the main routine waits for the read data to be received before
going on with its code execution, we have also selected a polling operation for:

• READ

2.3.2 Interrupt Operation Mode

For the data burst write accesses, a polling operation mode is not well suited. Indeed
the main routine does generally not need to wait for the end of the serial memory
write cycle before going forward with its execution code.

We thus select the interrupt mode of operation to handle the accesses:

• WRITE
• PROGRAM
In this mode the SPI interrupt handler manages the next SPI transfer. This enables
the main routine to execute its code between to SPI interrupts.

To afford the interrupt routines to handle the next SPI transfer we must save the
access context into global variables (see 3.3.2 The Global Variables Description).
This consumes a few byte of the memory space.

 AVR107

 7

2595A-AVR-03/05

2.3.3 Interaction between both Operation Modes

To avoid any conflict on the SPI interface between functions which uses polling
operation mode and those which uses the interrupt mode, the following precaution
must be taken:

1. Before any polling operation, it is checked (trough the global variable state) that the
SPI peripheral is ready to send. Then the SPI interrupt is disabled.

2. At the end of an access using the polling operation mode, the SPI interrupt is
enabled.

2.4 Write Protected Block Detection
The serial memory devices provide a write protection function that also had to be
considered when writing the code.

The protected sectors depend on the setting of the BPx bits of the serial memory
status register. Please refer to the serial memory datasheet for more details.

Table 2-2. AT25F4096 memory protection options

Table 2-3. AT25128A/ AT25256A memory protection options

The proposed driver includes the function SetWriteProtectedArea that enables the
user to define and active a write protected area.
Note the function SetWriteProtectedArea will detect if the serial memory is hardware
write protected (#WP line is low) by writing and reading back the status register. In
case of a hardware write protection, nor the set up either the activation of a write
protection configuration can be performed.

By a data write access (WRITE/PROGAM command) the status register of the serial
memory is read. According to the value of the BPx bits and the address location of

8 AVR107
2595A-AVR-03/05

the last byte to be written, the write function detects if the destination address is
located in a write-protected area.

If yes, the returned access status code will be set to the DATA_WR_PROTECTED
value and the access will be aborted.

For AT25F devices, the write protection detection is active when performing a
SECTOR ERASE or a CHIP ERASE operation.

2.5 Busy Detection
The serial memory indicates its current state with the bit #RDY in its status register.

If the bit is set to ‘1’ then all operations except the RDSR access are forbidden.

Therefore each function will test if the #RDY bit is set. If yes the returned access
status code will be set to the BUSY value and the access will be aborted.

Note: since during a memory write cycle operation all bits of the status register are set
to ‘1’, the memory must be ready prior to read and evaluate the status registers
information bits.

3 Code implementation
The following sections describe initialization of the SPI Interface, The Polling Mode
Functions and the Interrupt Mode Functions.

3.1 Initialization of the SPI Interface
1. The SPI interface must be configured as a master. To ensure that the SPI does not

switch to the slave mode through the slave select line, the SS port must be
configured as an output with a high level.

a. The SPI interface is first disabled to configure the PB2 port
b. The PB2 port is configured as an output
c. A high value is set on the port PB2
d. The MRST bit is set
e. The SPI is enabled

2. The SPI mode 0 must be selected to ensure among others that the clock signal is
low on a chip select rising edge. The most significant bit must be the first
transmitted bit. The choice of the data rate is user-defined.

3. The other port directions must be configured as following:
a. Outputs: PB5/SCK, PB3/MOSI
b. Inputs: PB4/MISO.

4. The SPIF flag must be cleared by reading the SPSR and SPDR register.
5. The SPI interrupt is enabled

3.2 Polling Operation Mode Functions
WREN, WRDI, WRSR, RDSR, SECTOR ERASE, CHIP ERASE, RDID and READ all
call the elementary function spi_transfer.

 AVR107

 9

2595A-AVR-03/05

3.2.1 The SPI Transfer Elementary Function

The function spi_transfer is the elementary function that handles the SPI interface in
polling mode. It sends a byte and stores the received one. Note that this function
does not control the level of the chip select line.

Prototype:

char spi_transfer(char data);

Figure 3-1. spi_transfer flowchart

Read SPSR

Write Data to SPDR

SPIF flag set?

Return SPDR value

No

Yes

3.2.2 The Get Status Register Function

This function performs a RDSR access. It returns the access status code. The value
of the status register is place into the output parameter.

It first checks that the SPI interface is not locked by a write process. (See the Data
Write Accesses section)

Prototype:

char GetStatusRegister(char *data)

10 AVR107
2595A-AVR-03/05

Figure 3-2. GetStatusRegister flowchart

State = ready_to_send?

Disable SPI interrupt

Pull down #SS wire

Spi_transfer(
RDSR op_code)

Pull up the #SS wire

Enable SPI interrupt

Return Access Status

Access status =
BUSY

Data =
Spi_transfer(0xFF)

Access status =
TRANSFER_COMPLETE

No

Yes

3.2.3 The Single Byte Write Command

The WREN and WRDI accesses are on byte long and can be performed by the
function WriteCommand. The serial memory must be ready before performing the
access.

It returns the access status code.

Prototype :

char WriteCommand(char op_code)

 AVR107

 11

2595A-AVR-03/05

Figure 3-3. WriteCommand flowchart

#RDY bit

Disable SPI interrupt

Pull down #SS wire

Pull up the #SS wire

Enable SPI interrupt

Return Access Status

Access status =
BUSY

Spi_transfer with WREN
or WRDI op_code

Access status =
TRANSFER_COMPLETED

Transfer completed?

Get Status Register

No

1

Yes

0

3.2.4 The Write Status Register Function

This function performs the RDSR access. It checks that the serial memory is ready to
be written. It returns the same access status code as the WriteCommand function.

Prototype :

char WriteStatusReg(char sr)

12 AVR107
2595A-AVR-03/05

Figure 3-4. WriteStatusReg flowchart

#RDY bit

Disable SPI interrupt

Pull down #SS wire

Pull up the #SS wire

Enable SPI interrupt

Return Access Status

Access status =
BUSY

Access status =
TRANSFER_COMPLETE

Transfer completed?

Get Status Register

Send WRSR op_code

Send the status register value

No

Yes

0

1

3.2.5 The Get Character Array Function

This function reads one or multiple bytes from the serial memory

If the serial memory or the SPI interface is busy, the function returns immediately with
the according access status code.

Prototypes:

For AT25 devices:

char GetCharArray(int address, int nb_of_byte, char* destination);

For AT25F devices :

char GetCharArray(unsigned long address, int nb_of_byte, char*
destination);

 AVR107

 13

2595A-AVR-03/05

Figure 3-5. GetCharArray flowchart

No

#RDY bit

Return Access Status

Access status =
BUSY

Access status =
TRANSFER_COMPLETE

Transfer completed?

1

Get Status Register

Spi_transfer(READ)

Adress out of range?

Spi_transfer(adress_byte)

Adress phase last byte?

*destination =
Spi_transfer(0xFF)

Last byte?

Increment byte counter
and destination

Access status =
OUT_OF_RANGE

Yes

No

No

Yes

Yes

0

Yes

No

3.2.6 The Get Character Function

To minimise the code size, the GetChar function calls the GetCharArray function with
only one byte as parameter.

Prototypes:

For AT25 devices:

char GetChar(int address, char *data);

For AT25F devices:

char GetChar(unsigned long address, char *data);

14 AVR107
2595A-AVR-03/05

3.3 Interrupt Mode Functions

3.3.1 Principle

Like a read access, a write access to the serial MEMORY is composed of a SPI
transfer sequence. But unlike to the read access, the end of a SPIF transfer will be
determined by the SPI interrupt. In order to let the write access be fully performed in
background vs. the main routine execution, the SPI interrupt handler must be able to
prepare the next SPI transfer as well as to control the chip select wire.

To enable such a mechanism, the interrupt handler must know the current context.
This context is saved onto global variables.

A state global variable contains the information about the current SPI transfer type
(INSTRUCTION, ADDRESS, DATA).

When a SPI interrupt is raised, meaning the end of a SPI transfer, the interrupt
handler will determine which type of SPI transfer, if any, must be started. The
interrupt handler acts as a finite state machine reacting on the SPI interrupt event.

3.3.2 The Global Variables Description

The state global variable describes the phase of the write access (See the finite state
machine diagram for more details):

INSTRUCTION: The op_code is being transferred

ADDRESS: The current address byte is being transferred

DATA: The current data byte is being transferred

The nb_byte global variable contains the total number of data byte to be written minus
one.

The byte_cnt global variable counts the number of address or data byte already
written.

The address global variable contains the address of the serial memory where the first
byte must be written.

The data_ptr global variable contains the address of the SRAM where the first byte is
located.

3.3.3 The Put Character Array Function

This function writes an array of bytes into the serial memory. The size of the array can
be up to the page size of the serial memory. The parameter source is the pointer to
this array.

The function checks if the address is out of range or matches a write protected area.
Additionally the function returns an access status providing a detection of a busy state
of the serial.

Note: If the read sequence crosses a page boundary, a page rollover will occur.

Please refer to the Doxygen documentation for further details.

Prototype:

For AT25 devices:

 AVR107

 15

2595A-AVR-03/05

char PutCharArray(int address, char nb_of_byte, char* source);

For AT25F devices:

char PutCharArray(unsigned long address, char nb_of_byte, char*
source);

Note:

• The parameter nb_of_byte is the number of byte decrement by one so that even if
the page is 256-byte long, the global variable byte_cnt occupies only one byte.

• For the AT25F devices, the concerned sector must have been erased prior to a
PutCharArray operation.

• The Chip and Sector Erase Function (only for AT25Fxxxx devices) have the same
structure and access status code as the GetCharArray, except that the data phase
does not exist. The function controls that the location to be erased is not write
protected.

Figure 3-6. PutCharArray flowchart

#RDY bit

Return Access Status

Access status =
BUSY

Access status =
TRANSFER_COMPLETE

Transfer completed?

Get Status Register

Adress out of range?

First byte location
write protected?

Pull down chip select line

Access status =
OUT_OF_RANGE

Perform WREN instruction

Set global variables according
to adress, number of byte,

source state=INSTRUCTION

Write WRITE/PROGRAM
op_code to SPDR

Access status =
DATA_WR_PROTECTED

Yes

No

No

Yes

1

0

Yes

No

16 AVR107
2595A-AVR-03/05

3.4 The Finite State Machine
The following diagram describes the state global variable transitions during a write
cycle. Each time the SPI interrupt handler is entered the state is evaluated and the
next SPI transfer is performed. If the last bye was transferred, the state goes into the
idle state called READY_TO_SEND:

Figure 3-7. Finite State Machine

INSTRUCTION

ADDRESS

DATA

READY TO SEND

Sequential transition

SPI interrupt occurred

PutCharArray()
call

Last byte was sent

Data byte
counter++

Adress byte
counter++

3.4.1 The Instruction State

Entering the interrupt handler with the state variable set to INSTRUCTION means that
the instruction code WRITE (or PROGRAM for AT25Fxxx Flashes) has been sent
over the SPI interface.

The next state becomes ADDRESS and the byte counter is initialized to 1.

The first byte of the address is written to the SPDR register.

3.4.2 The Address State

Entering the interrupt handler with the state variable set to ADDRESS means that one
byte of the address has been sent over the SPI interface.

 AVR107

 17

2595A-AVR-03/05

Figure 3-8. Address State flowchart

Increment byte counter

Last adress
byte sent?

Return from interrupt

Yes

Write next byte to
SPDR register

Write first data byte
to SPDR register

State = DATA

Reset byte counter

No

3.4.3 The Data State

Entering the interrupt handler with the state variable set to DATA means that a data
byte has been sent over the SPI interface.

Figure 3-9. Data State flowchart

Increment byte counter

Increment data pointer

Last byte sent?

Return from interrupt

Yes

Write pointed byte to SPRD
register

Pull chip-
select high

State =
READY_TO_SEND

No

3.4.4 The Ready-to-Send State

This state cannot be active when entering the SPI interrupt handler. It signifies that
there is no current data write access using the SPI interface.

Therefore the state global variable can be tested in order to determine the end of a
SPI write transfer.

Note: The state value can be READY_TO_SEND while the serial memory is still in a
busy state.

18 AVR107
2595A-AVR-03/05

3.5 The PutChar Function (Only for the AT25128A/256A Devices)
The serial EEPROM devices are not organized with sectors and do not require to
contain a 0xFF pattern prior a write access. Therefore there is no need to perform a
read-modify-write operation, and the PutChar function can be build upon a call to the
PutCharArray function passing one byte as parameter.

Note: For AT25F serial flashes a read-modify-write operation over a whole sector is
needed to ensure the usual functionality of the PutChar function. Since such a
operation is highly time and memory space consuming, we will not provide this
function for the serial flashes.

 AVR107

 19

2595A-AVR-03/05

4 AT25128A/256A Devices: Example of Driver Use
This example shows to benefit from the non-blocking PutCharArray function:

main()

{

 int start_address = 0x100;

 char* src = malloc(PAGE_SIZE* sizeof(char));

 char* dest = malloc(PAGE_SIZE * sizeof(char));

 char AccessStatus = BUSY;

///

 //Init SPI peripheral

 ///

 init_spi_master();

 //Disable Software write protection

 do {AccessStatus = SetWriteProtectedArea(NONE);}

 while (AccessStatus == BUSY);

 if (AccessStatus == HW_PROTECTED)

 {

 // Handle here a hardware protection detection

 }

 // Write a page

 do {AccessStatus = PutCharArray(start_address, (PAGE_SIZE-1), src);}

 while (AccessStatus == BUSY);

 // OPTIONAL : handle errors

 if (AccessStatus == OUT_OF_RANGE)

 {}

 else if (AccessStatus == DATA_WR_PROTECTED)

 {}

 //

// HERE USER CODE (Write Access is being performed in the SPI Interrupt Handler)

 //

 // OPTIONAL : Disable Write on the SPI memory (wait for the memory to be ready)

 while (WriteCommand(WRDI) != TRANSFER_COMPLETED){}

 //

 // HERE ADDITIONAL USER CODE

 //

 //Read a page

 while (GetCharArray(start_address, (PAGE_SIZE-1), dest) != TRANSFER_COMPLETED) {}

 //the page is available in the SRAM buffer pointed by dest

}

20 AVR107
2595A-AVR-03/05

5 AT25F1024/2048/4096 Devices: Example of Driver Use
This example shows to benefit from the non-blocking PutCharArray function:

main()

{

 int start_address = 0x100;

 char* src = malloc(PAGE_SIZE* sizeof(char));

 char* dest = malloc(PAGE_SIZE * sizeof(char));

 char AccessStatus = BUSY;

 ///

 //Init SPI peripheral

 ///

 init_spi_master();

 //Disable Software write protection

 do {AccessStatus = SetWriteProtectedArea(NONE);}

 while (AccessStatus == BUSY);

 if (AccessStatus == HW_PROTECTED)

 {

 // Handle here a hardware protection detection

 }

 //Erase concerned sector

 do {AccessStatus = EraseSector(start_address);}

 while (AccessStatus == BUSY);

 // OPTIONAL : handle errors

 if (AccessStatus == OUT_OF_RANGE)

 {}

 else if (AccessStatus == DATA_WR_PROTECTED)

 {}

 else

 {

 // Write a page

 while (PutCharArray(start_address, (PAGE_SIZE-1), src)== BUSY){}

 }

 //

 // HERE USER CODE (Write Access is being performed in the SPI Interrupt Handler)

 //

 // OPTIONAL : Disable Write on the SPI memory (blocking operation)

 while (WriteCommand(WRDI) != TRANSFER_COMPLETED){}

 //

 // HERE ADDITIONAL USER CODE

 //

 //Read a page

 while (GetCharArray(start_address, (PAGE_SIZE-1), dest) != TRANSFER_COMPLETED) {}

 //the page is available in the SRAM buffer pointed by dest

}

 AVR107

 21

2595A-AVR-03/05

6 Development Environment

6.1 Hardware
• STK500 board with a 8-lead soldered PDIP socket on ports B
• AVR Atmega168
• AT25256A in a PDIP package
• AT25F4096 in a PDIP package
• JTAGICE mkII - In-Circuit Emulator with debugWIRE

6.2 Software
• IAR Embedded Workbench - EWAVR 3.20C
• AVR Studio Version 4.10

7 Code Size
The following figures are computation based on the map listing file. The code
optimization option was set to high.

The main routine code size are not included.

Table 7-1. Code size.
Target device Code size [bytes]
AT25256A 752 (to be updated)
AT25F4096 1086 (to be updated)

8 References
Datasheets:

• SPI Serial EEPROMS AT25128A and AT25256A
• SPI Serial Memory AT25F4096
• AVR ATmega168V

Disclaimer
Atmel Corporation

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters
Europe

Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Atmel Operations
Memory

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

 Literature Requests

www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS
INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any
commitment to update the information contained herein. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended
to support or sustain life.

© Atmel Corporation 2005. All rights reserved. Atmel®, logo and combinations thereof, AVR®, and AVR Studio® are registered trademarks,
and Everywhere You AreSM are the trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of
others.

2595A-AVR-03/05

	Introduction
	Serial memories
	Serial Memory to AVR Hardware Connection
	SPI Serial Memory Access Types
	Single Byte Write Commands: WREN, WRDI, CHIP ERASE
	Read/ Write Status Register: RDSR/WRSR
	Sector Erase Command (only for AT25Fxxx Devices)
	Data Write and Data Read Accesses
	Access Type Summary

	SPI Peripheral Handling
	Polling Operation Mode
	Interrupt Operation Mode
	Interaction between both Operation Modes

	Write Protected Block Detection
	Busy Detection

	Code implementation
	Initialization of the SPI Interface
	Polling Operation Mode Functions
	The SPI Transfer Elementary Function
	The Get Status Register Function
	The Single Byte Write Command
	The Write Status Register Function
	The Get Character Array Function
	The Get Character Function

	Interrupt Mode Functions
	Principle
	The Global Variables Description
	The Put Character Array Function

	The Finite State Machine
	The Instruction State
	The Address State
	The Data State
	The Ready-to-Send State

	The PutChar Function (Only for the AT25128A/256A Devices)

	AT25128A/256A Devices: Example of Driver Use
	AT25F1024/2048/4096 Devices: Example of Driver Use
	Development Environment
	Hardware
	Software

	Code Size
	References

