

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

www.renesas-electoronics.com

SuperH RISC engine
C/C++ Compiler Package
Application Note

A
pplication N

ote

Rev.4.00 2007.02

Renesas Microcomputer Development
Environment System

1. This document is provided for reference purposes only so that Renesas customers may select the appropriate
 Renesas products for their use. Renesas neither makes warranties or representations with respect to the
 accuracy or completeness of the information contained in this document nor grants any license to any
 intellectual property rights or any other rights of Renesas or any third party with respect to the information in
 this document.
2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising
 out of the use of any information in this document, including, but not limited to, product data, diagrams, charts,
 programs, algorithms, and application circuit examples.
3. You should not use the products or the technology described in this document for the purpose of military
 applications such as the development of weapons of mass destruction or for the purpose of any other military
 use. When exporting the products or technology described herein, you should follow the applicable export
 control laws and regulations, and procedures required by such laws and regulations.
4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and
 application circuit examples, is current as of the date this document is issued. Such information, however, is
 subject to change without any prior notice. Before purchasing or using any Renesas products listed in this
 document, please confirm the latest product information with a Renesas sales office. Also, please pay regular
 and careful attention to additional and different information to be disclosed by Renesas such as that disclosed
 through our website. (http://www.renesas.com)
5. Renesas has used reasonable care in compiling the information included in this document, but Renesas
 assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information
 included in this document.
6. When using or otherwise relying on the information in this document, you should evaluate the information in
 light of the total system before deciding about the applicability of such information to the intended application.
 Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any
 particular application and specifically disclaims any liability arising out of the application and use of the
 information in this document or Renesas products.
7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas
 products are not designed, manufactured or tested for applications or otherwise in systems the failure or
 malfunction of which may cause a direct threat to human life or create a risk of human injury or which require
 especially high quality and reliability such as safety systems, or equipment or systems for transportation and
 traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communication
 transmission. If you are considering the use of our products for such purposes, please contact a Renesas
 sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above.
8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
 (1) artificial life support devices or systems
 (2) surgical implantations
 (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 (4) any other purposes that pose a direct threat to human life
 Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who
 elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas
 Technology Corp., its affiliated companies and their officers, directors, and employees against any and all
 damages arising out of such applications.
9. You should use the products described herein within the range specified by Renesas, especially with respect
 to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
 characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or
 damages arising out of the use of Renesas products beyond such specified ranges.
10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific
 characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use
 conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and
 injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for
 hardware and software including but not limited to redundancy, fire control and malfunction prevention,
 appropriate treatment for aging degradation or any other applicable measures. Among others, since the
 evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or
 system manufactured by you.
11. In case Renesas products listed in this document are detached from the products to which the Renesas
 products are attached or affixed, the risk of accident such as swallowing by infants and small children is very
 high. You should implement safety measures so that Renesas products may not be easily detached from your
 products. Renesas shall have no liability for damages arising out of such detachment.
12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written
 approval from Renesas.
13. Please contact a Renesas sales office if you have any questions regarding the information contained in this
 document, Renesas semiconductor products, or if you have any other inquiries.

Notes regarding these materials

Preface

The Renesas Tecnology SuperH RISC engine family of next-generation single-chip microcomputers offers high-
performance processing while incorporating a variety of peripheral devices, and are designed for embedded applications,
operating under low power consumption.

These application notes explain methods for the efficient creation of application programs which capitalize on the
functions and performance of the Renesas Tecnology SuperH RISC engine family using the SuperH RISC engine C/C++
Compiler Package V. 9.00.

For detailed specifications of the C/C++ compiler, please refer to the SuperH RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor User's Manual.

Organization of These Application Notes

These application notes consist of the following ten sections and an appendix.

Section 1 provides an overview and describes installation methods and the programming development procedure.

Section 2 illustrates the debugging process using various sample and explains program creation using the C language.

Section 3 gives warnings to be heeded when combining C language programs and assembly language programs, and when
using cross-software with object files created using the C/C++ compiler and explains extended functions of the SuperH
RISC engine C/C++ compiler, as well as procedures specific to software for embedded equipment.

Section 4 explains HEW options.

Section 5 and 6 explains methods for creating C language programs designed to capitalize on the performance of the
Renesas Tecnology SuperH RISC engine family of microcomputers.

Section 7 illustrates the utilizing method using HEW.

Section 8 illustrates efficient C++ programming technique.

Section 9 explains useful options, as well as functions that perform lateral optimization across modules during linking.

Section 10 presents answers to questions frequently asked by users.

The appendix describes changes in each version of the SuperH RISC engine C/C++ compiler.

Related Manuals

The following are related manuals.

• Renesas Tecnology SuperH RISC engine Family, Microcomputer Hardware Manuals

• SuperH RISC engine High-performance Embedded Workshop 3 User’s Manual

• SuperH RISC engine C/C++ Compiler, Assembler, Optimizing Linkage Editor User’s Manual

• SuperH RISC engine High-performance Embedded Workshop 3 Tutorial

Cross-Software Versions

In order to use the SuperH RISC engine C/C++ compiler V. 9.00 the following cross-software versions should be used.

Cross Software Name Version

SH-series cross assembler 7.00

H-series optimizing linkage editor 9.00

SH-series library generator 3.00

Symbols and Conventions used in this Application Note

[]: Indicates that the enclosed item can be omitted.

(RET): Indicates the Return (Enter) key is to be pressed.

Δ: Indicates one or more spaces or tabs.

abc: Boldfaced items are to be input by the user.

<>: Items enclosed in these brackets should be specified.

… : Indicates that the immediately preceding item is specified one or more times.

H': Integer constants preceded by H' are in hexadecimal.

0x: Integer constants preceded by 0x are in hexadecimal.

UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Open Company
limited.

MS-DOS® is a registered trademark of Microsoft Corporation in the United States and other countries.

Microsoft® WindowsNT® operating system, Microsoft®,Windows®98 and Windows 2000 operating system,
Microsoft® WindowsMe® operating system, Microsoft® WindowsXp® operating system are registered trademarks of
Microsoft Corporation in the United States and other countries.

IBM PC is a registered trademark of International Business Machines Corporation.

It is recommended that these application notes be read in the following manner.

No. Circumstances Use of these Application Notes

1 Using the SuperH RISC engine
C/C++ compiler for the first time

(1) You want to learn how to use the
compiler to create load modules, and
how to use cross-software.

(2) You want to create programs
which run on SH-1, SH-2, SH-2E,
SH-2A, SH2A-FPU, SH2-DSP, SH-3,
SH3-DSP, SH-4, SH-4A and SH4AL-
DSP.

(1) The procedure for starting the compiler is
described in section 1.4, Method of Execution. In
section 1.5, Procedure for Program Development,
operations using cross-software necessary to
complete a load module are explained.

(2) There are programs in sections 2.2 and 2.3,
Introduction of Sample Program.

These are programs provided in order to explain
the bare minimum of compiler functions necessary
for embedded equipment. Please refer to them in
creating simple programs, and using the simulator,
debugger and other tools to confirm their
operation. Other compiler functions are described
in section 3, Compiler. If you encounter problems
in creating load modules, please refer to section
3.15, Issues Related to Cross-Software.

2 A program for embedded equipment
is to be created.

(1) There is a program used with
other microcomputers which will be
ported.

(2) A new program will be created.

(1) Read sections 2.2 to 2.3, Introduction of Sample
Program, and section 3, Compiler, to discover
functions you can use, and consider whether the
assembly language code cannot be rewritten in the
C language. For information on combining assembly
language programs with C programs, please refer to
section 3.15.1, Issues Related to Assembly
Language Programs.

(2) First read sections 2.2 to 2.3, Introduction of
Sample Program, for a summary of program
creation. Next proceed to section 3, Compiler, and
learn about the extended functions of the SuperH
RISC engine C/C++ compiler. In creating a
program, refer to section 5, Efficient Programming
Techniques, to ensure that your programs are
successful from the very start.

3 Execution speed is to be improved,
or program size reduced.

Refer to section 5, Efficient Programming
Techniques to improve performance.

4 The program does not run as
expected.

Examine the warning information following each
relevant item, as well as the items in section 11.
Q&A, to determine whether there is any relevant
information.

Contents

Section 1 Overview.. 1-1
1.1 Summary..1-1
1.2 Features..1-1
1.3 Method of Installation..1-1

1.3.1 PC Version ..1-1
1.3.2 UNIX Version ...1-4

1.4 Method of Execution..1-10
1.4.1 Starting the Embedded Workshop...1-10
1.4.2 Starting the Compiler ..1-11

1.5 Procedure for Program Development...1-13

Section 2 Procedure for Creating and Debugging a Program.. 2-1
2.1 Creating a Project...2-1

2.1.1 Creating the Project for a Simulator Debugger ...2-1
2.2 Introduction of Sample Program
 (SH-1, SH-2, SH-2E, SH-2A, SH2A-FPU, SH2-DSP)..2-8

2.2.1 Creating a Vector Table ..2-9
2.2.2 Creating a Header File...2-10
2.2.3 Creating the Main Processing Program...2-13
2.2.4 Creation of the Initialization Unit..2-14
2.2.5 Creating Interrupt Functions..2-16
2.2.6 Creating a Batch File for a Load Module ..2-17
2.2.7 Creating a Linkage Editor Subcommand File ...2-17

2.3 Introduction of Sample Program (SH-3,SH3-DSP,SH-4,SH-4A, and SH4AL-DSP)........2-18
2.3.1 Creating an Interrupt Handler..2-18
2.3.2 Creating the Vector Table ...2-23
2.3.3 Creating the Header File..2-28
2.3.4 Creating the Initialization Part...2-30
2.3.5 Creating the Main Processing Part and Interrupt Processing Part2-33
2.3.6 Creating a Batch File for the Load Module ...2-34
2.3.7 Creating a Linkage Editor Subcommand File ...2-34

2.4 Debugging using Simulator Debugger...2-35
2.4.1 Setting Configuration ..2-35
2.4.2 Allocating Memory Resources ..2-36
2.4.3 Downloading a Sample Program...2-37
2.4.4 Setting Simulated I/O ..2-37
2.4.5 Setting Trace Information Acquisition Conditions..2-38
2.4.6 Status Window ..2-39
2.4.7 Registers Window ...2-39
2.4.8 Trace..2-40
2.4.9 Displaying Breakpoints ...2-41
2.4.10 Displaying Memory Contents..2-41

2.5 Standard I/O and File I/O Processing in the Simulator/Debugger2-43

Section 3 Compiler .. 3-1
3.1 Interrupt Functions...3-1

3.1.1 Definitions of Interrupt Functions (No Options) ...3-1
3.1.2 Definitions of Interrupt Functions (with Options)...3-8
3.1.3 Creating a Vector Table ..3-12

3.2 Built-in Functions ..3-14
3.2.1 Setting and Referencing to the Status Register ...3-20
3.2.2 Setting and Referencing to the Vector Base Register..3-22
3.2.3 Accessing I/O Registers(1)..3-24
3.2.4 Accessing I/O Registers(2)..3-27
3.2.5 System Control..3-29
3.2.6 Multiply-and-Accumulate Operations (1) ...3-30
3.2.7 Multiply-and-Accumulate Operations (2) ...3-33
3.2.8 64-Bit Multiplication (1) ...3-35
3.2.9 64-Bit Multiplication (2) ...3-37
3.2.10 Swapping Upper and Lower Data ...3-39
3.2.11 System Call ...3-40
3.2.12 Prefetch Instruction ...3-42
3.2.13 LDTLB Instruction..3-43
3.2.14 NOP Instruction ..3-44
3.2.15 Single-Precision Floating-Point Operations ..3-45
3.2.16 Accessing the Extension Register ...3-55
3.2.17 DSP Instruction ...3-55
3.2.18 Sine and Cosine...3-59
3.2.19 Reciprocal of the Square Root...3-61
3.2.20 Invalidation of the Instruction Cache ..3-62
3.2.21 Cache Block Operations..3-63
3.2.22 Instruction Cache Prefetch ..3-64
3.2.23 System Synchronization..3-65
3.2.24 Referencing and Setting the T Bit ...3-66
3.2.25 Cutting Out the Middle of the Contatenated Register ...3-67
3.2.26 Addition with Carry ..3-68
3.2.27 Subtraction with Borrow ...3-69
3.2.28 Sign Inversion ...3-70
3.2.29 One-Bit Division ...3-71
3.2.30 Rotation...3-73
3.2.31 Shift ...3-74
3.2.32 Saturation Operation ...3-75
3.2.33 Referencing and Setting the TBR..3-76

3.3 Inline Expansion ..3-77
3.3.1 Inline Expansion of Functions...3-77
3.3.2 Inline Expansion of Assembly Language..3-79
3.3.3 Sample Program with an Inline Assembly Function ...3-82

3.4 Register Specification ..3-106
3.4.1 Specification of GBR Base Variables ...3-107
3.4.2 Register Allocation of Global Variables ...3-109

3.5 Control of Register Save/Restore Operations ..3-111
3.6 Specification of 16/20/28/32-Bit Address Areas ...3-114
3.7 Section Name Specification...3-118

3.7.1 Section Name Specification ..3-118
3.7.2 Section Switching..3-119

3.8 Specification of Entry Functions, and SP Settings...3-120
3.9 Position-Independent Code..3-122
3.10 MAP Optimization...3-123

3.10.1 Procedure for Use..3-123
3.10.2 Example of Improved External Variable Access Code (1)3-124
3.10.3 Example of Improved External Variable Access Code (2)3-124
3.10.4 Example of Improved External Variable Access Code (3)3-125

3.10.5 Example of Improved External Variable Access Code (4)................................3-125
3.11 Options...3-126

3.11.1 Options for Code Generation...3-126
3.11.2 Options for Optimization Linkage...3-127
3.11.3 Options for Creating Standard Libraries ...3-128

3.12 SH-DSP Features ...3-129
3.13 DSP Library ...3-133

3.13.1 Summary ...3-133
3.13.2 Data Format...3-134
3.13.3 Efficiency ..3-135
3.13.4 Fast Fourier transform...3-135
3.13.5 Window Functions ..3-161
3.13.6 Filters...3-166
3.13.7 Convolution and Correlation ...3-193
3.13.8 Other..3-203

3.14 Performance of the DSP Library..3-230
3.15 Issues Related to Cross-Software...3-236

3.15.1 Issues Related to Assembly Language Programs ..3-236
3.15.2 Use With the Optimization Linkage Editor ...3-249
3.15.3 Use With the Simulator-Debugger ..3-251

3.16 Changing the Alignment Number for the Structure ...3-261
3.17 long long type ..3-264
3.18 DSP-C Specifications...3-265

3.18.1 Fixed-Point Data Type ..3-265
3.18.2 Memory Qualifier..3-268
3.18.3 Saturation Qualifier ...3-272
3.18.4 Circular Qualifier ..3-274
3.18.5 Type Conversion ...3-276
3.18.6 Arithmetic Conversion ..3-278

3.19 MAP Optimization Extended Option...3-279
3.19.1 Usage...3-279
3.19.2 Example of Improved External Variable Access Code (1)................................3-279
3.19.3 Example of Improved External Variable Access Code (2)................................3-280

3.20 TBR-Relative Function Call ..3-281
3.21 Generating a GBR-Relative Logic Operation Instruction..3-288
3.22 Enabling Register Declarations..3-290
3.23 Specifying Absolute Addresses of Variables ...3-292
3.24 Strengthened optimization ...3-294

3.24.1 Improved Literal Data (1)..3-294
3.24.2 Improved Literal Data (2)..3-294
3.24.3 Disabling EXTU (1) ..3-295
3.24.4 Disabling EXTU (2) ..3-295
3.24.5 Improved Bit Operations (1) ...3-296
3.24.6 Improved Bit Operations (2) ...3-296
3.24.7 Improved Bit Operations (3) ...3-297
3.24.8 Improved Bit Operations (4) ...3-297
3.24.9 Improved Bit Operations (5) ...3-298

3.25 Controlling the Output Order of Uninitialized Variables...3-299
3.26 Specifying the Placement of Variables ..3-301

Section 4 HEW .. 4-1
4.1 Specifying options in HEW2.0 or later ..4-1

4.1.1 C/C++ Compiler Options ..4-2

4.1.2 Assembly Options ...4-13
4.1.3 Optimizing Linkage Editor Options ..4-18
4.1.4 Standard Library Generator Options ...4-29
4.1.5 CPU Options ...4-37

4.2 Specifying the Compiler Version
 from the Renesas Integrated Development Environment...4-38

Section 5 Efficient Programming Techniques..5-1
5.1 Data Specification..5-4

5.1.1 Local Variable (Data Size) ..5-5
5.1.2 Global Variables (Signs) ...5-7
5.1.3 Data Size (Multiplication) ...5-9
5.1.4 Data Structures ..5-10
5.1.5 Data Alignment ...5-11
5.1.6 Initial Values and the Const Type ...5-12
5.1.7 Local Variables and Global Variables...5-13
5.1.8 Use of Pointer Variables ...5-15
5.1.9 Referencing Constants (1) ...5-17
5.1.10 Referencing Constants (2) ...5-18
5.1.11 Variables Which Remain Constant (1)..5-20
5.1.12 Variables Which Remain Constant (2)..5-22

5.2 Function Calls ..5-24
5.2.1 Incorporation of Functions in Modules ...5-25
5.2.2 Calling Functions Using Pointer Variables ...5-27
5.2.3 Function Interface ...5-29
5.2.4 Tail Recursion ...5-31
5.2.5 Using the FSQRT and FABS Instructions...5-33

5.3 Operations..5-35
5.3.1 Movement of Invariant Expressions within Loop ...5-36
5.3.2 Reducing the Number of Loops ..5-38
5.3.3 Use of Multiplication and Division ...5-40
5.3.4 Application of Identities..5-41
5.3.5 Use of Tables...5-43
5.3.6 Conditionals ..5-45
5.3.7 Eliminating Load/Store Instructions..5-47

5.4 Branching...5-52
5.5 Inline Expansion ..5-54

5.5.1 Inline Expansion of Functions...5-54
5.5.2 Inline Expansion with Embedded Assembly Language5-57

5.6 Use of the Global Base Register (GBR) ..5-59
5.6.1 Offset Reference Using the Global Base Register (GBR)...................................5-59
5.6.2 Selective Use of Global Base Register (GBR) Area ...5-61

5.7 Control of Register Save/Restore Operations ..5-63
5.8 Specification Using Two-Byte Addresses ...5-69
5.9 Cache Use ..5-71

5.9.1 Prefetch Instruction ...5-71
5.9.2 Tiling...5-74

5.10 Matrix Operations ..5-77
5.11 Software Pipelines ...5-80
5.12 About Cache Memory..5-82

5.12.1 Description of Terms...5-82
5.13 SuperH Family Caches ..5-84
5.14 Techniques for Cache Utilization ..5-86

Section 6 Efficient Programming Techniques (Supplement) .. 6-1
6.1 How to Specify Options...6-1

6.1.1 Options for Starting HEW (Floating Point Setting) ..6-1
6.1.2 How to Specify Optimization Options (Speed and Size)6-3
6.1.3 Options Needing Attention for Program Compatibility (Function Interface)........6-5
6.1.4 Options for Handling Variables with volatile Declaration (volatile Variable)6-7
6.1.5 Disabling Deletion of Empty Loops..6-14
6.1.6 Disabling Optimization of const Variables ...6-15
6.1.7 Options Effective for Enhancing Execution Efficiency of Floating Points6-17

6.2 Optimization of Division by Constant ...6-19
6.3 Size of Division by Integer ..6-20
6.4 Register Declaration...6-21
6.5 Offset of Member in Structure Declaration..6-23
6.6 Allocation of Bit Fields..6-24
6.7 Software Pipeline (Floating-Point Table Search)...6-25
6.8 Ensuring of Data Access Size ..6-27
6.9 Use of Floating-Point Instructions ...6-28

Section 7 Using HEW.. 7-1
7.1 Builds ...7-2

7.1.1 Regenerating and Editing Automatically Generated Files7-2
7.1.2 Makefile Output ..7-4
7.1.3 Makefile Input ...7-5
7.1.4 Creating Custom Project Types...7-7
7.1.5 Multi-CPU Feature ..7-11
7.1.6 Networking Feature...7-12
7.1.7 Converting from Old HEW Version..7-16
7.1.8 Converting a HIM Project to a HEW Project ..7-18
7.1.9 Add Supported CPUs ..7-21

7.2 Simulations ..7-22
7.2.1 Pseudo-interrupts...7-22
7.2.2 Convenient Breakpoint Functions ...7-23
7.2.3 Coverage Feature...7-27
7.2.4 File I/O ..7-30
7.2.5 Debugger Target Synchronization...7-32
7.2.6 How to Use Timers..7-35
7.2.7 Examples of Timer Usage ...7-38
7.2.8 Reconfiguration of Debugger Target...7-41

7.3 Call Walker ..7-42
7.3.1 Creating a Stack Information File ...7-42
7.3.2 Starting Call Walker..7-43
7.3.3 Call Walker Window and Opening a File ...7-44
7.3.4 Editing Stack Information ...7-47
7.3.5 Stack Area Size of Assembly Program..7-49
7.3.6 Merging Stack Information ...7-50
7.3.7 Other Features ...7-52

Section 8 Efficient C++ Programming Techniques ... 8-1
8.1 Initialization Processing/Post-processing...8-2

8.1.1 Initialization Processing and Post-Processing of Global Class Object8-2
8.2 Introduction to C++ Functions...8-4

8.2.1 How to Reference a C Object..8-4
8.2.2 How to Implement new and delete ..8-5

8.2.3 Static Member Variable ..8-7
8.3 How to Use Options...8-9

8.3.1 C++ Language for Embedded Applications ..8-9
8.3.2 Run-Time Type Information ...8-9
8.3.3 Exception Handling Function..8-12
8.3.4 Disabling Startup of Prelinker...8-12

8.4 Advantages and Disadvantages of C++ Coding...8-13
8.4.1 Constructor (1) ..8-14
8.4.2 Constructor (2) ..8-16
8.4.3 Default Parameter..8-18
8.4.4 Inline Expansion..8-19
8.4.5 Class Member Function ..8-20
8.4.6 operator Operator ..8-23
8.4.7 Overloading of Functions..8-25
8.4.8 Reference Type ...8-27
8.4.9 Static Function ..8-28
8.4.10 Static Member Variable ..8-31
8.4.11 Anonymous Union ..8-34
8.4.12 Virtual Function ..8-35

Section 9 Optimizing Linkage Editor...9-1
9.1 Input/Output Options ...9-2

9.1.1 Input Options...9-2
9.1.2 Output Options ..9-4

9.2 List Options ...9-6
9.2.1 Symbol Information List ...9-6
9.2.2 Symbol Reference Count...9-7
9.2.3 Cross-Reference Information ..9-7

9.3 Effective Options ...9-9
9.3.1 Output to Unused Area..9-9
9.3.2 End code of S-Type File..9-13
9.3.3 Debug Information Compression ..9-13
9.3.4 Link Time Reduction ..9-14
9.3.5 Notification of Unreferenced Symbol ...9-15
9.3.6 Reduce Empty Areas of Boundary Alignment ..9-16

9.4 Optimize Options...9-18
9.4.1 Optimization at Linkage..9-18
9.4.2 Unifies Constants/Strings ..9-20
9.4.3 Eliminates Unreferenced Symbols ..9-21
9.4.4 Optimizes Register Save/Restore Codes ...9-22
9.4.5 Unifies Common Codes ..9-24
9.4.6 Optimizes Branch Instructions ..9-27
9.4.7 Optimization Partially Disabled ..9-29
9.4.8 Confirm Optimization Results...9-30

Section 10 MISRA C...10-1
10.1 MISRA C...10-1

10.1.1 What Is MISRA C? ...10-1
10.1.2 Rule Examples ..10-1
10.1.3 Compliance Matrix..10-2
10.1.4 Rule Violations..10-3
10.1.5 MISRA C Compliance ..10-3

10.2 SQMlint ...10-3

10.2.1 What Is SQMlint?..10-3
10.2.2 Using SQMlint ..10-5
10.2.3 Viewing Test Results...10-5
10.2.4 Development Procedures...10-6
10.2.5 Supported Compilers...10-7
10.2.6 Rules That Can Be Checked by the SH C/C++ Compiler10-7

Section 11 Q & A... 11-1
11.1 C/C++ Compiler/Assembler ..11-1

11.1.1 const Declaration...11-1
11.1.2 Correct Evaluation of Single-Bit Data...11-1
11.1.3 Installation...11-3
11.1.4 Runtime Routine Specifications and Execution Speed..11-4
11.1.5 SH Series Object Compatibility ..11-10
11.1.6 Executing Host Machine and OS ..11-11
11.1.7 C/C++ Source-Level debugging Not Possible...11-12
11.1.8 Warning Occurs on Inline Expansion..11-13
11.1.9 A "Function not optimized" Warning Appears at Compilation.........................11-14
11.1.10 A "compiler version mismatch" Message Appears at Compilation...................11-15
11.1.11 A "memory overflow" Error Occurs at Compilation...11-15
11.1.12 Precedence of Include Specification..11-16
11.1.13 Compile Batch Files ..11-17
11.1.14 Japanese Text within Programs ...11-18
11.1.15 Data Endian Assignment ...11-19
11.1.16 Assembling Using "#pragma inline_asm"...11-20
11.1.17 Privileged Mode ..11-21
11.1.18 Regarding Object Generation ..11-21
11.1.19 About the #pragma gbr_base Feature..11-22
11.1.20 Compiling Programs Containing Japanese Codes...11-22
11.1.21 Speed of Floating Point Operations...11-23
11.1.22 Using the PIC Option ..11-29
11.1.23 Optimization Causes Large Amounts of Code to be Deleted11-32
11.1.24 Values of Local Variables Cannot be Displayed during Debugging.................11-33
11.1.25 Interrupt Inhibit/Enable Macros ..11-35
11.1.26 Interrupt Functions in SH-3 and Later Models..11-36
11.1.27 An Operated Result by the Floating Point of SH4 ..11-37
11.1.28 Regarding Optimization Options...11-37
11.1.29 An argument of function is not transferred correctly.11-38
11.1.30 How to Check Coding Which May Cause Incorrect Operation11-39
11.1.31 Comment Coding ..11-40
11.1.32 How to Build Programs When the Assembler Is Embedded.............................11-41
11.1.33 C++ Language Specifications ...11-42
11.1.34 How to View Source Programs after Pre-Processor Expansion11-43
11.1.35 The Program Runs Correctly on the ICE But

 Fails When Installed on a Real Chip ...11-43
11.1.36 How to Use C language Programs Developed for

 H8 Microcomputers...11-44
11.1.37 Optimizations That Cause Infinite Loops..11-45
11.1.38 Precautions Regarding the DSP Library..11-47
11.1.39 Maximum Sampling Data Count for a DSP Library Function11-48
11.1.40 Read/write Instructions for Bit Fields ...11-49
11.1.41 Specifying Interrupt Processing ..11-52

11.1.42 Common Invalid Instruction Exceptions That Occur
 When Programs Are Run for an Extended Period of Time11-55

11.1.43 When the Result of an Integer Calculation
 Differs from the Expected Value...11-56

11.2 Linkage Editor ...11-57
11.2.1 An "Undefined symbol" Message Appears on Linking11-57
11.2.2 A "RELOCATION SIZE OVERFLOW"

 Message Appears at Linkage...11-57
11.2.3 A "SECTION ATTRIBUTE MISMATCH"

 Message Appears at Linkage...11-58
11.2.4 Transfer to RAM and Execution of a Program..11-59
11.2.5 Fixing Symbol Addresses in Certain Memory Areas for Linking.....................11-66
11.2.6 Using Overlays..11-68
11.2.7 Specifying Error Output for Undefined Symbols..11-69
11.2.8 Unify Output Forms of S-Type File ..11-69
11.2.9 Dividing an Output File...11-69
11.2.10 Execution of optlinksh.exe on Windows 2000..11-70
11.2.11 Output File Format of Optimizing Linkage Editor..11-70
11.2.12 Method for Calculating the Program Sizes (ROM and RAM)11-71
11.2.13 When Section Alignment Mismatch Is Output..11-72

11.3 Standard Library ..11-74
11.3.1 Reentrant Function and the Standard Library..11-74
11.3.2 I would like to use reentrant library function in standard library file.11-77
11.3.3 There is no standard library file. (SHC V6, 7, 8) ..11-77
11.3.4 Warning Message on Building Standard Library ..11-78
11.3.5 Size of Memory Used as Heap ..11-79
11.3.6 Editing Library Files ...11-80

11.4 HEW ..11-83
11.4.1 Failure to Display Dialog Menu..11-83
11.4.2 Linkage Order of Object Files...11-83
11.4.3 Specifying the MAP Optimization ..11-85
11.4.4 Excluding a project file ...11-86
11.4.5 Specifying the Default Options for Project Files...11-87
11.4.6 Changing Memory Map ..11-87
11.4.7 How to Use HEW on Network..11-88
11.4.8 Limitations on File and Directory Names Created in HEW..............................11-88
11.4.9 Failure of Japanese Font Display with the HEW Editor or HDI11-89
11.4.10 How to Convert Programs from HIM to HEW ...11-90
11.4.11 Corresponding Device Not Available during HEW Project Setup....................11-91
11.4.12 I want to use an old compiler (tool chain) in the latest HEW............................11-92

Appendix A Rules for Naming Runtime Routines..A-1

Appendix B Added Features ...B-2
B.1 Features Added between Ver. 1.0 and Ver. 2.0...B-2
B.2 Features Added between Ver. 2.0 and Ver. 3.0...B-3
B.3 Features Added between Ver. 3.0 and Ver. 4.1...B-6
B.4 Features Added between Ver. 4.1 and Ver. 5.0...B-9
B.5 Features Added between Ver. 5.0 and Ver. 5.1...B-11
B.6 Features Added between Ver. 5.1 and Ver. 6.0...B-13
B.7 Features Added between Ver. 6.0 and Ver. 7.0...B-15
B.8 Features Added between Ver. 7.0 and Ver. 7.1...B-28
B.9 Features Added between Ver. 7.1 and Ver. 8.0...B-40

B.10 Features Added between Ver. 8.0 and Ver. 9.0...B-41

Appendix C Notes on Version Upgrade ..C-43
C.1 Guaranteed Program Operation ..C-43
C.2 Compatibility with Earlier Version...C-44

Appendix D ASCII Code Table.. D-45

Section 1 Overview

Rev.4.00 2007.02.02 1-1
REJ05B0463-0400

Section 1 Overview

1.1 Summary

The SuperH RISC engine C/C++ compiler enables effective creation in the C language of programs which take advantage
of the functions and performance of the Renesas Technology SuperH RISC engine family of single-chip microcomputers
for embedded applications.

This document explains procedures for creating application programs using this C/C++ compiler.

1.2 Features

The features of the SuperH RISC engine C/C++ compiler are as follows.

(1) Full complement of functions

The following functions can be used to create efficient application programs for the Renesas Technology SuperH RISC
engine family.

• C language representation of interrupt functions and special instructions for the Renesas Technology SuperH RISC
engine family

• Generation of position-independent code (excluding SH-1)

• Fast floating-point operations

• Selection of compiler settings to give priority to speed of execution or efficiency of memory use

(2) Powerful optimization features

The following types of optimization are performed in order to utilize the performance of the Renesas Technology SuperH
RISC engine family with its RISC (Reduced Instruction Set Computer) type instruction set.

• Automatic/optimized allocation of local variables to registers

• Alleviation of processing intensity

• Pipeline optimization

• Constant convolution

• String sharing

• Deletion of common expression/loop invariant

• Deletion of unnecessary text

• Optimization of tail recursion

• Optimization between modules

Hence programming is possible without the need to explicitly take into account the architecture of the Renesas
Technology SuperH RISC engine family.

1.3 Method of Installation

1.3.1 PC Version

The operating environment for the SuperH RISC engine C/C++ compiler for Windows 98/Me/2000/XP/NT, and the
procedure for installing on Windows 98/Me/2000/XP/NT, are explained below.

Section 1 Overview

Rev.4.00 2007.02.02 1-2
REJ05B0463-0400

(1) Operating environment

• Host computer: IBM PC-compatible

(CPU capable of running Windows 98/Me/2000/XP/NT)

• OS: Windows 98/Me/2000/XP/NT (Japanese or English)

• Memory size: Minimum 128 MB, 256 MB or more recommended

• Hard disk space: 120 MB or more free disk space required (for full installation)

• Display: SVGA or better

• I/O device: CD-ROM drive

• Others: Mouse or other pointing devices

(2) Method of installation

To install the integrated development environment on the PC, click the Setup button in the [Add/Remove Programs applet]
in [Control Panel], and then follow the onscreen instructions.

(3) Using the compiler from the DOS prompt

When using the compiler from the DOS command line under Windows, certain environment variables must be set.

Explanation of Environment Variables

(a) Environment variable SHC_LIB

Indicates where the main files of the SuperH RISC engine C/C++ compiler are saved.

(b) Environment variable SHC_TMP

Specifies the path for creation of temporary files used by the C/C++ compiler. This setting cannot be omitted.

(c) Environment variable SHC_INC

This environment variable is set when reading the standard header files for the C/C++ compiler from a specified path.
Several paths can be specified by separating them with commas (','). If this environment variable is not set, the standard
header file is read from SHC_LIB.

First, create a batch file with the contents shown below, which are necessary when starting with the DOS prompt. If such a
batch file already exists, the items shown below should be added. The example shown below is for installation of the
integrated environment to hard disk drive C.

To set the path, first use the SET command at the MS-DOS prompt to determine the current path setting, and then add to it
as necessary.

The following are examples of notation for batch files.

PATH C:\Hew3\Tools\Renesas\Sh\9_0_0\bin; %PATH%

SET SHC_LIB=C:\Hew3\Tools\Renesas\Sh\9_0_0\bin

SET SHC_TMP=C:\tmp

SET SHC_INC=C:\Hew3\Tools\Renesas\Sh\9_0_0\include

Section 1 Overview

Rev.4.00 2007.02.02 1-3
REJ05B0463-0400

Next, enter the path of the batch file below as the Batch file on the [Program] tag of the DOS prompt properties dialog.

Figure 1.1 MS-DOS Prompt Properties (1)

On completing the above settings, restart the MS-DOS prompt session.

Note: If, on running the batch file, the message "Insufficient space for environment variables" appears, please make the
following change.

Section 1 Overview

Rev.4.00 2007.02.02 1-4
REJ05B0463-0400

Figure 1.2 MS-DOS Prompt Properties (2)

On the [Memory] tag of the DOS prompt properties dialog, change the "Initial environment" from Automatic to 1024.

After changing this setting, the MS-DOS prompt session must be restarted.

1.3.2 UNIX Version

The procedure for installing the C/C++ compiler on a UNIX system is described below.

Note: Do not use Japanese characters or spaces in the name for the installation directory.

(1) Installation media

The compiler is distributed on a single CD-ROM.

(2) Method of installation

Please use the following procedure to install the compiler. Wherever (RET) appears in the instructions, the Enter (Return)
key is to be pressed.

(a) Compiler/simulator installation

The procedure for compiler/simulator installation is as follows.

(i) Creating a path for the compiler/simulator

Create a path for storage of the compiler files, using any arbitrary name.

% mkdirΔ<compiler and simulator pathname> (RET)

Section 1 Overview

Rev.4.00 2007.02.02 1-5
REJ05B0463-0400

(ii) Mounting the CD-ROM

Mount the CD-ROM as indicated below. If mounting is performed automatically, the following command is not required.

[For Solaris]

% mountΔrΔFΔhsfsΔdev/dsk/c0t6d0s2Δ/cdrom (RET)

[For HP-UX]

% mountΔ/dev/dsk/c201d2s0Δ/cdrom (RET)

(iii) Copying the compiler/simulator

Move to the newly created path, and then decompress the files for the SuperH RISC engine C/C++ compiler/simulator
from the CD-ROM to the path created in (i) above.

[For Solaris]

% cdΔ<compiler and simulator pathname> (RET)

% tarΔ-xvfΔ/cdrom/sh c sim pack sparc/Program.tar (RET)

[For HP-UX]

% cdΔ<compiler and simulator pathname> (RET)

% tarΔ-xvfΔ/cdrom/Program.tar (RET)

(iv) Changing environment settings

Set environment variables and pathnames as follows. (Double asterisks ** indicate an appropriate value should be
specified.) For details on environment variables, refer to the SuperH RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor User's Manual.

% setenvΔSHC_LIBΔ<compiler and simulator pathname> (RET)

% setenvΔSHC_INCΔ<compiler and simulator pathname> (RET)

% setenvΔSHC_TMPΔusr/tmp (RET)

% setenvΔSHCCPUΔSH** (RET)

% setenvΔHLNK_TMPΔ/usr/tmp (RET)

% setenvΔHLNK_LIBRARY1Δ<compiler and simulator pathname>/******.lib (RET)

% setenvΔHLNK_LIBRARY2Δ<compiler and simulator pathname>/******.lib (RET)

(v) Unmount the CD-ROM.

% umountΔ/cdrom (RET)

(b) Simulator installation

Section 1 Overview

Rev.4.00 2007.02.02 1-6
REJ05B0463-0400

The procedure for installing the UNIX simulator in versions earlier than Ver 8 is as follows.

(i) Mounting the CD-ROM

Refer to the README.TXT file for the procedure to mount the CD-ROM.

When using the method described in the README.TXT file to copy cross-software, move to the directory to which it is
copied, and then proceed to the explanation in (iii), Start the installer.

(ii) Load the installer from the tar file on the CD-ROM.

(The following example assumes that the CD-ROM drive device name is /cdrom.)

tarΔxvfΔcdrom/program.tarΔcas_install (RET)

(iii) Start the installer.

cas install (RET)

(iv) Display immediately after installer startup

The following message is displayed immediately after the installer is started.

 Installation of the cycle-accurate simulator starts. Input parameters according to the messages.

(v) CPU selection

Select the simulator CPU to be used. (In this example, "10" selects the SH4 CPU.)

If the CPU SH4 or SH2DSP is selected, proceed to the explanation (vi) Co-verification tool selection.

If a CPU other than SH4 or SH2DSP is selected, proceed to the explanation (vii) Input name of directory for installation of
definition files.

Target

CPU(1:SH1,2:SH2,3:SH3,4:SH3E,5:SHDSP,6:SH2E,7:SH4BSC,8:SH3DSP,9:SHDSPC,10:SH4,11:SH2DSP)

: 10

(vi) Co-verification tool selection

If the CPU SH4 or SH2DSP was selected in (v), select the name of the simulator co-verification tool to be used. (In this
example, "1" selects “Seamless”.)

When not using a co-verification tool, select “No”.

If the CPU SH2DSP is selected in (v), Eaglei cannot be selected.

SH-4:Please select Co-Velification Tool(1:Seamless,2:Eaglei,3:No): 1

(vii) Input name of directory for installation of definition files

Input the directory for installation of definition files. The directory enclosed in parentheses () is the default. The default is
generated according to the following rules.

<current directory> + "/df_CSDSH"

Section 1 Overview

Rev.4.00 2007.02.02 1-7
REJ05B0463-0400

If the default directory name is acceptable, simply enter (RET). A directory name can be entered either as an absolute path
or as a relative path. (In the example, (RET) is input.)

Directory name for the definition files(/export/home1/cas/cassh3sim/df_CSDSH): (RET)

(viii) Enter the name of the host machine with the CD-ROM drive

Input the name of the host machine with the CD-ROM drive. The default is the name of the startup host. When installing
from a CD-ROM drive of the startup host, press (RET).

When installing from a CD-ROM drive of another host on a network, input that host's name. However, in this case, it is
assumed that login from a remote shell is possible (the /etc/hosts.equiv and $HOME/.rhosts files are set). For details on the
environment settings for remote shells and related matters, refer to the manual for the startup machine.

When installing from the startup host’s CD-ROM drive, proceed to the explanation (x) Input tar file name.

When installing from a CD-ROM drive of another host on the network, proceed to the explanation in (ix), Input the login
name of the host machine with the CD-ROM drive. (In the example below, the name of the host with the CD-ROM drive
is sp3.)

Host name connected to a tape driver(sparc2): sp3 (RET)

(ix) Input the login name of the host machine with the CD-ROM drive

Input the login name of the host machine with the CD-ROM drive. This message is displayed when installing from a CD-
ROM drive of another host. (In this example, the login name for the host machine with the CD-ROM drive is "remote.")

Login name of host connected to a tape driver:remote (RET)

(x) Input tar file name

Input the tar file name. The default is /dev/rmt/0m for the HP9000, and /dev/rmt/0 for SPARC. (The following example
assumes that the CD-ROM drive device name is /cdrom.)

Tape driver name(/dev/rmt/0): /cdrom/simulator.tar (RET)

(xi) Input (RET) before installation of definition files

Confirm that the CD-ROM with the definition files is mounted on the CD-ROM drive, and enter (RET).

Input return, after setting the tape including the definition files to the tape driver.

(RET)

(xii) Choose whether to install main files

Choose whether or not to install the main files for the interface software.

To install the main files enter "y," otherwise enter "n."

If "n" is entered, proceed to the explanation (xv) Choose whether to install setup files.

Section 1 Overview

Rev.4.00 2007.02.02 1-8
REJ05B0463-0400

(In this example, "y" is entered.)

Do you install the main files?(y/n):y (RET)

(xiii) Input of directory name for main files

Input the directory for installation of interface software main files.

The default is generated according to the following rule.

<current directory> + "/main"

A directory name can be entered either as an absolute path or as a relative path.

(In the following directory, (RET) is input.)

Directory name for the main files(/export/home1/cas/cassh3sim/main): (RET)

(xiv) Input (RET) before main file installation

Confirm that the CD-ROM with the interface software main files is mounted on the CD-ROM drive, and enter (RET).

Input return,after setting the tape including the main files to the tape driver. (RET)

(xv) Choose whether to install setup files

Choose whether or not to copy the setup sample files. To copy the setup files enter "y," otherwise enter "n."

(In this example, "y" is entered; then the installation file name is displayed.)

Do you copy the setup files to current directory?(y/n): y (RET)

(xvi) Choose path and environment variable settings

Choose whether or not to add path and environment variable settings to the shell script.

If "y" is entered, the installer determines the login shell type from the "SHELL" environment variable, backs up an
arbitrary shell script file (see table 1.1) beneath the directory specified by the "HOME" environment variable, and then
sets the path and environment variable information.

Settings conform to the following specifications.

If the main files have not been installed (see (xii) Choose whether to install main files), path settings are not changed.

If a relative path was specified in (vii) Input name of directory for installation of definition files or in (xiii) Input of
directory name for main files, the path and environment variable information is set using the input path information, and
execution is not possible in directories other than the directory in which the installer was started.

If "n" is entered, the installer proceeds to (xviii), Installation completed message, and the installer is terminated.

Table 1.1 Filenames Used for Different Shells

No. Shell Name Script File Name Backup File Name

1 Bourne shell (sh) .profile .profile.bak

2 C shell (csh) .cshrc .cshrc.bak

3 Korn shell (ksh) .profile .profile.bak

Section 1 Overview

Rev.4.00 2007.02.02 1-9
REJ05B0463-0400

(In this example, "y" is entered; thereafter the shell script is displayed.)

Do you append the path list and the environment variables in shell script?(y/n): y (RET)

/export/home1/cas/.cshrc

(xvii) Choose whether to overwrite the backup file

When backing up the shell script, this message is displayed if there exists a file with the same name as the backup file.
Choose whether or not to overwrite the file.

(In this example, the login shell is the C shell.)

Do you overwrite the backup file(.cshrc.bak)?(y/n): y (RET)

(xviii) Installation completed message

When all steps of the installation are completed, the following message is displayed and the installer terminates.

Installation of the cycle-accurate simulator completed.

(c) Installation of the Acrobat® Reader

The manual can be viewed from within Windows. The software used to view the manual (the Acrobat® Reader) should be
installed on a computer running Windows 98/Me/2000/XP/NT.

Acrobat® Reader copyright ® 1987-2001 Adobe Systems Incorporated. All rights reserved.

Adobe and Acrobat are trademarks of Adobe Systems and are registered in specific jurisdictions.

The following procedure is used to execute installation. Before commencing the installation procedure, be sure to close all
applications:

(i) Insert the CD-ROM provided into the CD-ROM drive. (Here it is assumed that the CD-ROM drive is drive D.)

(ii) From the Windows® Start menu, click on [Run …].

(iii) Specify in the [Run …] dialog box either Acrobreader51_jpn.exe (Japanese) in the [PDF_Read\Japanese] directory on
the CD-ROM or Acrobreader51_eng.exe (English) in the [PDF_Read\English] directory
(example:D:\PDF_Read\Japanese\ Acrobreader51_jpn.exe), and then click [OK].

(iv) Follow the onscreen installation instructions.

Section 1 Overview

Rev.4.00 2007.02.02 1-10
REJ05B0463-0400

1.4 Method of Execution

1.4.1 Starting the Embedded Workshop

Upon completion of installation, the installer for the Embedded Workshop creates a folder named " Embedded Workshop
2" within the Programs folder in the Windows Start menu, and within this folder places shortcuts to the executable
program for the Embedded Workshop and to other files.

The content of the start menu may vary depending on which tools are installed.

Figure 1.3 Startup of the Embedded Workshop from the Start Menu

Upon clicking on the Embedded Workshop item in the Start menu, a startup message is displayed, followed by a
Welcome! dialog box (figure 1.4).

Figure 1.4 Welcome! Dialog Box

When using the Embedded Workshop for the first time, or when beginning work on a new project, select [Create a New
Project] and click [OK]. In order to resume work on a project that has already been created, select [Open an Existing
Project] or [Browse to another project workspace] and click [OK]. No matter which of these is selected, clicking on [Exit]
causes the Embedded Workshop to terminate. By clicking on [Administration...], system tools used with the Embedded
Workshop can be registered and deleted.

Section 1 Overview

Rev.4.00 2007.02.02 1-11
REJ05B0463-0400

1.4.2 Starting the Compiler

In this subsection, the method for executing the SuperH RISC engine C/C++ compiler is explained, along with examples.
For details on compiler options, refer to the SuperH RISC Engine C/C++ Compiler, Assembler, Optimizing Linkage
Editor User's Manual. When using the PC version, refer to the Operating Manual.

Table 1.2 Table of compiling conditions

Command Option Extension of File(s) to be
Compiled

Compiling Conditions

shcpp Any Any C++-compiled

shc -lang=c Any C-compiled

 -lang=cpp C++-compiled

 No lang option specified *.c C-compiled

 *.cpp, *.cc, *.cp, *.CC C++-compiled

The command shc C-compiles* or C++-compiles C programs and C++ programs, respectively, according to the lang
option or the extension of the program file name. The command shcpp C++-compiles all programs, regardless of whether
they are C programs or C++ programs. Compiling conditions are described in table 1.2.

Note: *C-compiling means a program is compiled based on C language syntax; C++-compiling means a program is
compiled based on C++ language syntax.

Below the basic procedures for using the compiler are explained.

(1) Program compiling

To compile the "test.c" C source program:

shcΔtest.c (RET)

To compile the "test.cpp" C++ source program:

shcΔtest.cpp(RET)

shcppΔtest.cpp(RET)

(2) Displaying command input formats and compiler options

This command displays a list of command input formats and compiler options on the standard output screen.

shc (RET)

shcpp(RET)

(3) Specifying options

Options (debug, listfile, show, etc.) are prefixed with a hyphen (-), and multiple options are separated by spaces (Δ). In the
PC version, a slash (/) can be used in place of the hyphen at the DOS prompt.

When specifying multiple suboptions, they should be separated by commas (,).

shcΔ-debugΔ-listfileΔ-show=noobject,expansionΔtest.c(RET)

In the PC version, parentheses can also be used to enclose suboptions.

Section 1 Overview

Rev.4.00 2007.02.02 1-12
REJ05B0463-0400

shcΔ/debugΔ/listfileΔ/show=(noobject,expansion)Δtest.c(RET)

(4) Compiling multiple C/C++ programs

Multiple C/C++ programs can be compiled at once. The following are examples of commands for compiling C source
programs.

Example 1: Specifying multiple programs for compiling

shcΔtest1.cΔtest2.c (RET)

Example 2: Specifying options (options are specified for all C source programs)

shcΔ-listfileΔtest1.cΔtest2.c (RET)

The listfile option is effective for both test1.c and test2.c.

Example 3: Specifying options (options are specified separately for each program)

shcΔtest1.cΔtest2.cΔ-listfile(RET)

Here the listfile option is effective only for test2.c. Specification of options for individual programs takes priority over
specification of options for all source programs.

Notes:

 (1) If, after installation, the compiler cannot be run, check the following.

 • Confirm that the PATH environment variable includes the directory containing the C/C++ compiler.

 • Confirm that the SHC_LIB environment variable is set to the directory containing the main C/C++ compiler
files.

 The SHC_LIB environment variable is used to set the directory containing the main C/C++ compiler files.
Hence if the full set of C/C++ compiler files is not placed in the same directory, the compiler will not run.

 (2) The compiler determines the syntax to be used at compile time according to whether the shc or the shcpp
command is used; but even when the shc command is used, it will perform C++-compiling depending on file
extensions and options.

Section 1 Overview

Rev.4.00 2007.02.02 1-13
REJ05B0463-0400

1.5 Procedure for Program Development

Figure 1.5 shows the procedure used to develop a C/C++ language program. The shaded area shows the software provided
as the SuperH RISC engine C/C++ compiler package.

Figure 1.5 Procedure for Program Development

Below the procedure for program development is explained for the example of a source file on_motor.c. For details of use
of cross-software, please refer to the user's manual for the cross-software package.

(1) Create a source file

Use the editor to create a source file.

Notes: Input/Output
 Initiation

 1. Additional information files include

 • Template information files

 • Parameter information files

 • Instance information files

 • Tentative defined variable information files

SuperH RISC engine
Standard library generator

User created
C/C++ source

User created
include file

SuperH RISC engine
C/C+compiler

Additional
information file

Standard
include files

User created
assembly
program

Assembly
source

program

SuperH RISC engine
assembler

Relocatable
object file

Prelinker

SYSROF
object/library

ELF
object/library

ELF/DWARF
format converter

Optimizing linkage
editor

DSP library file Standard library
file

User library

Load module Profile
information

Stack
information

Debugger Stack analysis tool

Called
 information

SYSROF
load module

ELF/DWARF1
load module

*1

External symbol
allocation

information

Section 1 Overview

Rev.4.00 2007.02.02 1-14
REJ05B0463-0400

(2) Generate a relocatable object file

Start the compiler, and compile the source file.

shcΔon_motor.c (RET)

A relocatable object file called on_motor.obj, which is optimized and without debugging information, is generated. In
order to generate a list file, specify the listfile option.

(3) Generate a load module file

On including the library file sensor.lib and starting the linkage editor, an executable load module file with the name
on_motor.abs is generated.

optlnkΔ-nooptΔ-subcommand = link.sub (RET)

The contents of lnk.sub are as follows.

Sdebug
input on_motor
library sensor.lib
Exit

Even if a relocatable object file contains debugging information, if the debug option is omitted when linking, no
debugging information is output to the load module file.

(4) S-type format file output

In order to write to an EPROM using a ROM programmer, lnk.sub should be coded as follows.

Form=stype
Sdebug
input on_motor
library sensor.lib
Exit

An S-type format load module file with the name on_motor.mot is generated.

Section 2 Procedure for Creating and Debugging a Program

Rev.4.00 2007.02.02 2-1
REJ05B0463-0400

Section 2 Procedure for Creating and Debugging a Program

2.1 Creating a Project

2.1.1 Creating the Project for a Simulator Debugger
(1) Specify the project

When you have selected the [Create a new project workspace] radio button and clicked [OK] on the [Welcome!] dialog
box, the [New Project Workspace] dialog box (figure 2.1), which is used to create a new workspace and project, will be
launched. You will specify a workspace name (when a new workspace is created, the project name is the same as the
default), a CPU family, a project type, and so on, on this dialog box.

Enter “tutorial”, for example, in the [Workspace Name] field, then the [Project Name] field will show “tutorial” and the
[Directory] field will show “c:\hew2\tutorial”. If you want to change the project name, enter a new project name manually
in the [Project Name] field. If you want to change the directory used for the new workspace, click the [Browse…] button
and specify a directory, or enter a directory path manually in the [Directory] field.

Here, specify [Demonstration] as a left-hand side Project type.

Figure 2.1 New Project Workspace Dialog Box

(2) Selecting the Target CPU

When you click [OK] on the [New Project Workspace] dialog box, the project generator will be invoked. Start by selecting
the CPU that you will be using. CPU types shown in the [CPU Type] list are classified into the CPU series shown in the
[CPU Series] list.The selected items in the [CPU Series:] list box and the [CPU Type:] list box specify the files to be
generated. Select the CPU type of the program to be developed. If the CPU type which you want to select is not displayed
in the [CPU Type:] list, select a CPU type with similar hardware specifications or select [Other].

Section 2 Procedure for Creating and Debugging a Program

Rev.4.00 2007.02.02 2-2
REJ05B0463-0400

• Clicking [Next>] moves to the next display.

• Clicking [<Back] moves to the previous display or the previous dialog box.

• Clicking [Finish] opens the [Summary] dialog box.

• Clicking [Cancel] returns the display to the [New Project Workspace] dialog box.

[<Back], [Next>], [Finish], and [Cancel] are common buttons of all the wizard dialog boxes.

In this tutorial, select [SH-1] in the [CPU Series] list (figure 2.2). Then click [Next >].

If you have selected “demonstration” , you cannot select CPU Type.

Figure 2.2 New Project Step 1 Dialog Box

Section 2 Procedure for Creating and Debugging a Program

Rev.4.00 2007.02.02 2-3
REJ05B0463-0400

(3) Option Setting

Clicking the [Next>] button on the Step-1 screen opens the dialog box shown in figure 2.3. On this screen, you can specify
options common to all project files. Settings for these options can be modified in correspondence with the CPU series
selected in step 1 screen. To change the option settings after a project has been created, select the CPU tab from the
[Options -> SuperH RISC engine Standard Toolchain] menu item of the HEW window.

Click the [Next>] button without changing the setting. The Step-3 screen will be displayed.

Figure 2.3 New Project Step 2 Dialog Box

Section 2 Procedure for Creating and Debugging a Program

Rev.4.00 2007.02.02 2-4
REJ05B0463-0400

(4) Setting the Target System for Debugging

When the [Next>] button is clicked in the Step-2 screen, the screen shown in figure 2.4 is displayed. This screen is used to
specify the target system for debugging. Select (check) the target for debugging from the list under [Target:]. Selection of
no target or of multiple targets is allowed.

In this tutorial, select [SH-1 Simulator] and then click the [Next>] button.

Figure 2.4 New Project Step 3 Dialog Box

Section 2 Procedure for Creating and Debugging a Program

Rev.4.00 2007.02.02 2-5
REJ05B0463-0400

(5) Setting the Debugger Options

When the [Next>] button is clicked in the Step-3 screen, the screen shown in figure 2.5 is displayed. This screen is used to
specify the optional settings for the selected target for debugging.

By default, the HEW creates two configurations, [Release] and [Debug]. When a target for debugging is selected, the
HEW creates another configuration (The name of the target is included).

The name of the configuration can be modified in [Configuration name:]. Options to do with the target for debugging are
displayed under [Detail options:]. To change the settings, select [Item] and then click [Modify]. When items for which
modification is not possible are selected, [Modify] remains grayed even if [Item] is selected.

In this tutorial, click the [Next>] button without changing the settings.

Figure 2.5 New Project Step 4 Dialog Box

Section 2 Procedure for Creating and Debugging a Program

Rev.4.00 2007.02.02 2-6
REJ05B0463-0400

(6) Confirming Settings (Summary Dialog Box)

Clicking on [Next >] on the Step-4 screen displays the screen shown in figure 2.6. On this screen, display the source file
information for the project to be created. After confirmation, click [Finish].

Clicking [Finish] on the Step-5 screen, the project generator shows a list of generated files on the [Summary] dialog box
(figure 2.7). Confirm the contents of the dialog box and click [OK].

When [Generate Readme.txt as a summary file in the project directory] checkbox is checked, the project information
displayed on the [Summary] dialog box will be stored in the project directory under the text file name "Readme.txt".

Figure 2.6 New Project Step 5 Dialog Box

Section 2 Procedure for Creating and Debugging a Program

Rev.4.00 2007.02.02 2-7
REJ05B0463-0400

Figure 2.7 Summary dialog box
(7) Other

If demonstration is selected from Project Type, low-level library sample that can be used at simulator debugging will be
embedded. The files to be embedded are as follows.

• lowlvl.src (Standard I/O Sample Assembler List)
• lowsrc.c (Low-level Library Source File)
• lowsrc.h (Low-level Library Header File)

Section 2 Procedure for Creating and Debugging a Program

Rev.4.00 2007.02.02 2-8
REJ05B0463-0400

2.2 Introduction of Sample Program (SH-1, SH-2, SH-2E, SH-2A, SH2A-FPU, SH2-DSP)

In this subsection, a sample program with the structure shown in figure 2.8 is used to explain the actual procedure for
creating a program. The development environment is described in table 2.1.

Figure 2.8 Sample Program Structure

Table 2.1 Sample Program Development Environment

OS UNIX

CPU SH-1

_INITSCT

Section initialization

main

init_peripheral

Register initialization

Motor

Motor revolution

a=0 SLEE

IRQ0

a=PB.DR.WORD

Port B data call

PC.DR.BYTE=padata

Port C data set

RTE

Interrupt processing Initialization

Main processing

Y

N

Section 2 Procedure for Creating and Debugging a Program

Rev.4.00 2007.02.02 2-9
REJ05B0463-0400

2.2.1 Creating a Vector Table

A vector table creation program appears in figure 2.9. For details on creating vector tables, refer to section 3.1.3, Creating
Vector Tables.

Figure 2.9 shows the same program as in figure 2.10, written in assembly language.

/**/

/* file name "vect.c" */

/**/

 extern void main(void);

 extern void inv_inst(void);

 extern void IRQ0(void);

 void (* const vec_table[])(void)={

 main,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

 inv_inst, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

 IRQ0

 };

Figure 2.9 Vector Table Creation Program (C Language Version)

The vector table for the SH-1 appears in table 2.2.

Upon power-on reset, the function main is started. At this time the stack pointer is set to 0.

The start address of the function inv_inst is set to the vector number 32, and the start address of the function IRQ0 is set to
the vector number 64. These are start vector numbers for the user vector and for external interrupts, respectively.

Table 2.2 Exception Processing Vector Table

Exception Source Vector Number Vector Table Address Offset

Power-on reset PC 0 H'00000000 to H'00000003

 SP 1 H'00000004 to H'00000007

Manual reset PC 2 H'00000008 to H'0000000B

 SP 3 H'0000000C to H'0000000F

: : :

Trap instruction (User vector) 32 H'00000080 to H'00000083

 : :

 63 H'000000FC to H'000000FF

Interrupt IRQ0 64 H'00000100 to H'00000103

 : : :

Section 2 Procedure for Creating and Debugging a Program

Rev.4.00 2007.02.02 2-10
REJ05B0463-0400

.SECTION VECT,DATA,ALIGN=4

.IMPORT _main

.IMPORT _inv_inst

.IMPORT _IRQ0

.DATA.L _main ;_main start address set to vector number 0

.DATA.L H'0000000 ;SP initial value set to vector number 1

.ORG H'0080

.DATA.L _inv_inst ;_inv_inst start address set to vector number 32

.ORG H'0100

.DATA.L _IRQ0 ;_IRQ0 start address set to vector number 64

.END

Figure 2.10 Vector Table Creation Program (Assembly Language Version)

In the assembly language program, an underscore "_" is prefixed to the external names of the C language program.

2.2.2 Creating a Header File

Figure 2.11 shows a header file used in common by all the sample programs. By defining IPRA and other I/O ports, the
I/O ports can be accessed by name as if they were variables.

/***/

/* file name "7032.h" (Extract) */

/***/

/***/

/* Definitions of I/O Registers */

/***/

struct st_intc { /* struct INTC */

 union { /* IPRA */

 unsigned short WORD;/*Word Access */

 struct { /* Bit Access */

 unsigned char UU:4; /* IRQ0 */

 unsigned char UL:4; /* IRQ1 */

 unsigned char LU:4; /* IRQ2 */

 unsigned char LL:4; /* IRQ3 */

 } BIT; /* */

 } IPRA; /* */

 union { /* IPRB */

 unsigned short WORD; /* Word Access */

 struct { /* Bit Access */

 unsigned char UU:4; /* IRQ4 */

 unsigned char UL:4; /* IRQ5 */

 unsigned char LU:4; /* IRQ6 */

 unsigned char LL:4; /* IRQ7 */

 } BIT; /* */

 } IPRB; /* */

}; /* */

Section 2 Procedure for Creating and Debugging a Program

Rev.4.00 2007.02.02 2-11
REJ05B0463-0400

#define INTC (*(volatile struct st_intc *)0x5FFFF84)

 /* INTC Address */

/***/

/* Timer registers */

/***/

struct st_itu0 { /* struct ITU0 */

 union { /* TCR */

 unsigned char BYTE; /* Byte Access */

 struct { /* Bit Access */

 unsigned char :1; /* */

 unsigned char CCLR :2; /* CCLR */

 unsigned char CKEG :2; /* CKEG */

 unsigned char TPSC :3; /* TPSC */

 } BIT; /* */

 } TCR; /* */

}; /* */

 #define ITU0 (*(volatile struct st_itu0 *)0x5FFFF04)

 /* ITU0 Address */

/***/

/* PORT registers */

/***/

struct st_pa { /* struct PA */

 union { /* PADR */

 unsigned short WORD; /* Word Access */

 struct { /* Byte Access */

 unsigned char H; /* High */

 unsigned char L; /* Low */

 } BYTE; /* */

 struct { /* Bit Access */

 unsigned char B15 :1; /* Bit 15*/

 unsigned char B14 :1; /* Bit 14*/

 unsigned char B13 :1; /* Bit 13*/

 unsigned char B12 :1; /* Bit 12*/

 unsigned char B11 :1; /* Bit 11*/

 unsigned char B10 :1; /* Bit 10*/

 unsigned char B9 :1; /* Bit 9*/

 unsigned char B8 :1; /* Bit 8*/

 unsigned char B7 :1; /* Bit 7*/

 unsigned char B6 :1; /* Bit 6*/

 unsigned char B5 :1; /* Bit 5*/

 unsigned char B4 :1; /* Bit 4*/

 unsigned char B3 :1; /* Bit 3*/

 unsigned char B2 :1; /* Bit 2*/

 unsigned char B1 :1; /* Bit 1*/

 unsigned char B0 :1; /* Bit 0*/

Section 2 Procedure for Creating and Debugging a Program

Rev.4.00 2007.02.02 2-12
REJ05B0463-0400

 } BIT; /* */

 } DR; /* */

}; /* */

#define PB (*(volatile struct st_pa *)0x5FFFFC2)

 /* PB Address */

struct st_pc { /* struct PC */

 union { /* PCDR */

 unsigned char BYTE; /* Byte Access */

 struct { /* Bit Access */

 unsigned char B7 :1; /* Bit 7 */

 unsigned char B6 :1; /* Bit 6 */

 unsigned char B5 :1; /* Bit 5 */

 unsigned char B4 :1; /* Bit 4 */

 unsigned char B3 :1; /* Bit 3 */

 unsigned char B2 :1; /* Bit 2 */

 unsigned char B1 :1; /* Bit 1 */

 unsigned char B0 :1; /* Bit 0 */

 } BIT; /* */

 } DR; /* */

}; /* */

#define PC (*(volatile struct st_pc *)0x5FFFFD1)

 /* PC Address */

/***/

/* file name "sample.h" */

/***/

/***/

/* Timer registers */

/***/

 struct tcsr { /* */

 short OVF :1; /*TCSR struct OVF bit */

 short WTIT :1; /* WTIT bit */

 short :3; /* work area */

 short CKS2 :1; /* CKS2 bit */

 short CKS1 :1; /* CKS1 bit */

 short :9; /* work area */

}; /* */

#define TCSR_FRT (*(volatile unsigned short *)0x5FFFFB8)

 /* */

#define TCSR__FRT (*(volatile struct tcsr *)0x5FFFFB8)

 /* */

 extern void motor(void); /* motor module */

 extern void _INITSCT(void);

 /* section initialize module */

 extern void init_peripheral(void);

 /* peripheral initialize module */

Figure 2.11 Header File

Section 2 Procedure for Creating and Debugging a Program

Rev.4.00 2007.02.02 2-13
REJ05B0463-0400

2.2.3 Creating the Main Processing Program

The main processing program is shown in figure 2.12. Here the function main, which is started upon power-on reset, and
the function motor, which is called continuously until an interrupt occurs, are defined.

/***/

/* file name "sample.c" */

/***/

 #include "7032.h"

 #include "sample.h"

 #include <machine.h> /*Define embedded function sleep */

const short padata=0x3; /* C section */

 short a=0; /* D section */

 int work; /* B section */

/***/

/* main module */

/***/

 void main(void)

 {

 _INITSCT(); /* Initialize each section */

 init_peripheral();

 while(!a) motor();

 sleep();

 }

/***/

/* motor module */

/***/

 void motor(void) /*Call until an interrupt occurs */

 {

 :

 :

 return;

 }

Figure 2.12 Main Processing Program

In the function main, _INITSCT and init_peripheral are called to perform section initialization and internal register
initialization. Then the program waits for a change in the value of the global variable a. During this time, the function
motor is continuously called. If the value of a changes from zero, the low-power consumption state is entered.

Section 2 Procedure for Creating and Debugging a Program

Rev.4.00 2007.02.02 2-14
REJ05B0463-0400

2.2.4 Creation of the Initialization Unit

Figure 2.13 shows an assembly language program which sets the values for external names used in section initialization;
Figure 2.14 shows a C language program which performs section initialization and register initialization.

;**

; file name "sct.src" *

;**

 .SECTION B,DATA,ALIGN=4

 .SECTION R,DATA,ALIGN=4

 .SECTION D,DATA,ALIGN=4

 ; any sections to be added are listed here

 .SECTION C,DATA,ALIGN=4

 __B_BGN: .DATA.L (STARTOF B)

 __B_END: .DATA.L (STARTOF B)+(SIZEOF B)

 __D_BGN: .DATA.L (STARTOF R)

 __D_END: .DATA.L (STARTOF R)+(SIZEOF R)

 __D_ROM: .DATA.L (STARTOF D)

 .EXPORT __B_BGN

 .EXPORT __B_END

 .EXPORT __D_BGN

 .EXPORT __D_END

 .EXPORT __D_ROM

 .END

Figure 2.13 Initialization Program (Assembly Language Part)

The start and end addresses of the B section and D section are defined.

At compile time, if section options are not used to specify section names, the C/C++ compiler automatically assigns the
following names.

Program section: P

Constants section: C

Initialization data section: D

Uninitialized data section: B

The R section shows the RAM area to which initialization data area on the ROM is copied using the ROM support
functions of the linkage editor. For more information on the ROM support functions of the linkage editor, refer to section
3.15.2 (1) , ROM Support Function.

STARTOF is an operator which determines the start address of sections, using the format "STARTOF <section name>".

SIZEOF is an operator which determines the size of a section, in byte units, using the format "SIZEOF <section name>".

Section 2 Procedure for Creating and Debugging a Program

Rev.4.00 2007.02.02 2-15
REJ05B0463-0400

/**/

/* file name "init.c" */

/**/

 #include "7032.h"

 #include "sample.h"

/**/

/* section initialize module */

/**/

 extern int *_B_BGN,*_B_END,*_D_BGN,*_D_END,*_D_ROM;

 void _INITSCT(void)

 {

 register int *p,*q;

 for (p=_B_BGN; p<_B_END; p++)

 *p=0;

 for (p=_D_BGN; q=_D_ROM, p<_D_END; p++,q++)

 *p=*q;

 }

/*** /

/* peripheral initialize module * /

/*** /

 void init_peripheral(void)

 {

 INTC.IPRA.WORD = 0x3000; /* Initialize IPRA */

 ITU0.TCR.BYTE = 0x02; /* Initialize TCR0 */

 TCSR_FRT = 0x5A01; /* Initialize TCSR */

 PB.DR.WORD = 0x80; /* Initialize PORT */

 }

Figure 2.14 Initialization Program (C Language Part)

In the section initialization module _INITSCT, B section zero-clearing and copying of ROM initialization data to RAM
are performed based on the section address specified in sct.src. The int type specifier is used, but if the size is other than
4n bytes, char should be used.

In the internal register initialization module init_peripheral, the following settings are performed.

• In the interrupt priority level register A, the IRQ0 interrupt priority level is set to 3.

• In the timer control register 0, clearing of the timer counter 0 of the 16-bit integrated timer pulse unit is forbidden,
counting is set for the rising edge, and internal clock is set to count at φ/4.

• The timer counter for the watchdog timer is set to 0x01.

• Port B is set to 0x80.

Section 2 Procedure for Creating and Debugging a Program

Rev.4.00 2007.02.02 2-16
REJ05B0463-0400

2.2.5 Creating Interrupt Functions

Figure 2.15 shows interrupt functions. The external interrupt handler function IRQ0 and trap instruction function inv_inst
are defined.

/**/

/* file name "int.c" */

/**/

 #include "7032.h"

 #include "sample.h"

 extern const short padata; /* C section */

 extern short a; /* D section */

 extern int work; /* B section */

 #pragma interrupt(IRQ0, inv_inst)

/**/

/* interrupt module IRQ0 */

/**/

 void IRQ0(void)

 {

 a = PB.DR.WORD;

 PC.DR.BYTE = padata;

 }

/**/

/* interrupt module inv_inst */

/**/

 void inv_inst(void)

 {

 return;

 }

Figure 2.15 Interrupt Functions

The function IRQ0 sets the global variable a to PB.DR.WORD (0x80) when an IRQ0 external interrupt occurs. By this
means the CPU is put into a low-power consumption state.

Section 2 Procedure for Creating and Debugging a Program

Rev.4.00 2007.02.02 2-17
REJ05B0463-0400

2.2.6 Creating a Batch File for a Load Module

Figure 2.16 shows a batch file used to create an S-type load module (sample.mot).

shcΔ-debugΔsample.cΔinit.cΔint.c

#Compile C programs

asmshΔsct.srcΔ–debug

#Assemble Assembly programs

shcΔ-debugΔ-section=c=VECTΔvect.c

#Compile vector table creation programs

optlnkΔ-nooptΔ-subcommand=rom.sub

#Link using a subcommand file

rmΔ*.obj

#Remove object module files

Figure 2.16 Batch File to Create a Load Module

Here vect.c is compiled into an independent file, and the option section=VECT is used to make it a section separate from
other initialization data units. On linking it is allocated addresses starting from 0.

2.2.7 Creating a Linkage Editor Subcommand File

Figure 2.17 shows a subcommand file (filename rom.sub) for the linkage editor used when creating load modules.

 Sdebug

 input sample,init,int,vect,sct

 ; Specify input files

 library /user/unix/SHCV5.0/shclib.lib

 ; Specify a standard library

 output sample.abs sample.abs ; Specify an output filename

 rom D=R ; Specify ROM support options

 start VECT/0,P,C,D/0400,R,B/F0000000

 ; Specify the start addresses for each section

 ; Allocate section VECT starting from address 0

 ; Allocate sections P, C, D to the area starting from
 address H'400

 ; Allocate sections R, B to the area starting from address
 H'F0000000

 form s ; Specify s-type format

 list sample.map ; Specify memory map information output

 Exit

Figure 2.17 Subcommand File for Linkage Editor

Section 2 Procedure for Creating and Debugging a Program

Rev.4.00 2007.02.02 2-18
REJ05B0463-0400

2.3 Introduction of Sample Program (SH-3,SH3-DSP,SH-4,SH-4A, and SH4AL-DSP)

In this subsection, a sample program is introduced for the case of the SH7708. The sample program introduced here
performs processing from reset until execution is passed to the main() function. This is an example of the smallest
program necessary when the CPU is started.

2.3.1 Creating an Interrupt Handler

In contrast with the SH-1, SH-2, SH-2E, SH-2A, SH2A-FPU, and SH2-DSP, in the cases of the SH-3 , SH3-DSP, SH-4,
SH-4A, and SH4 AL-DSP vector control in the event of an interrupt must in essence be specified in software.

Fixed addresses for interrupts in the SH-3 are set to the PC (program counter) for three different causes: reset, exceptions,
and interrupts. Hence routines to determine the interrupt factor, and for branching to interrupt processing for each factor,
must be written at each of these addresses as interrupt handlers.

Individual handlers are explained in detail below. Here an example is given in which the vector base register (VBR) is
fixed at H'00000000, and the memory management unit (MMU) is unused.

(1) Reset handler (address H'00000000)

At power-on or manual reset, the PC is set to H'a0000000. Because addresses H'00000000 and H'a0000000 correspond to
a common physical address, the program is placed at H'00000000. Here the following steps are performed:

• Exception judgment is performed by EXEVT

• The processing routine is called from the vector table

Processing is shown in figure 2.18.

;**

; file name "reset.src"

;**

; SH7708 Reset handler Routine

 .IMPORT _vecttbl

 .IMPORT _stacktbl

 .SECTION VECT,CODE,LOCATE=H’0

__reset:

;**

; You should initialize the stack RAM area by BSC

; before set the stack pointer "R15"

;**

; exsample) AREA1 (CS1) -> STACK RAM

; AREA1

; Bus size ->16bit

; D23-D16 ->not PORT

; wait 3 state

; BCR2>> PORTEN:A1SZ0:A1SZ0

; 0: 1 :0

; >> BCR2=0x3fff8

 MOV.L BSCR2,R0

 MOV.L #H'3fff8,R1

 MOV.W R1,@R0

; WCR2>> A1-2W1:A1-2W0

; 1: 1

; >> WCR2=0xffff

Section 2 Procedure for Creating and Debugging a Program

Rev.4.00 2007.02.02 2-19
REJ05B0463-0400

 MOV.L WCR2,R0

 MOV.L #H'ffff,R1

 MOV.W R1,@R0

;**

 MOV.L VECTadr,R1

 MOV.L STACKadr,R2

 MOV.L EXPEVT,R0

 MOV.L @R0,R0

 CMP/EQ #0,R0 ;POWER ON RESET

 BT PON_RESET

 CMP/EQ #H'20,R0

 BT MANUAL_RESET

 ; if(EXPEVT != RESET)

 ; while(1);

LOOP

 BRA LOOP

 NOP

PON_RESET

 MOV.L @(0,R1),R1 ;set function

 MOV.L @(0,R2),R15 ;set stack pointer

 JMP @R1

 NOP

MANUAL_RESET

 MOV.L @(4,R1),R1 ;set function

 MOV.L @(4,R2),R15 ;set stack pointer

 JMP @R1

 NOP

;

 .ALIGN 4

VECTadr .DATA.L _vecttbl

STACKadr .DATA.L _stacktbl

EXPEVT .DATA.L H'ffffffd4

BSCR2 .DATA.L H'ffffff62

WCR2 .DATA.L H'ffffff66

 .END

Figure 2.18 Reset Handler Program

(2) General exception-processing handler (VBR+H'100)

• The exception factor code is read from EXPEVT.

• The processing function (vector function) for this factor is read from the vector table.

• The terminate routine is set.

• Execution jumps to the vector function.

In this case, RTE instructions are used in order to jump to the vector function. Here the PR register value is changed
immediately before jumping to the vector function, such that on returning from the vector function, control is passed to the
terminate routine. As PR during vector function processing is the terminate routine, it is necessary to return the vector
function by executing RTS. For this reason, when defining the vector function, do not use ‘#pragma interrrupt’.

(3) VBR+H'400 TLB miss exception handler

Because MMU is unused, this is not included.

(4) VBR+H'600 interrupt handler

Section 2 Procedure for Creating and Debugging a Program

Rev.4.00 2007.02.02 2-20
REJ05B0463-0400

• The interrupt factor code is read from INTEVT.

• The processing function (vector function) for this factor is read from the vector table.

• The interrupt mask level for this factor is set from the interrupt mask table.

• The terminate routine is set.

• Execution jumps to the vector function.

This processing is in essence the same as for general exception handlers; on returning from the vector function, control is
passed to the terminate routine.

;***

; FILE :vhandler.src

;***

 .include "env.inc"

 .include "vect.inc"

IMASKclr: .equ H'FFFFFF0F

RBBLclr: .equ H'CFFFFFFF

MDRBBLset: .equ H'70000000

 .import _RESET_Vectors

 .import _INT_Vectors

 .import _INT_MASK

;***

;* macro definition

;***

.macro PUSH_EXP_BASE_REG

stc.l ssr,@-r15 ; save ssr

stc.l spc,@-r15 ; save spc

sts.l pr,@-r15 ; save context registers

stc.l r7_bank,@-r15

stc.l r6_bank,@-r15

stc.l r5_bank,@-r15

stc.l r4_bank,@-r15

stc.l r3_bank,@-r15

stc.l r2_bank,@-r15

stc.l r1_bank,@-r15

stc.l r0_bank,@-r15

.endm

;

.macro POP_EXP_BASE_REG

ldc.l @r15+,r0_bank ; recover registers

ldc.l @r15+,r1_bank

ldc.l @r15+,r2_bank

ldc.l @r15+,r3_bank

ldc.l @r15+,r4_bank

ldc.l @r15+,r5_bank

ldc.l @r15+,r6_bank

ldc.l @r15+,r7_bank

lds.l @r15+,pr

ldc.l @r15+,spc

ldc.l @r15+,ssr

.endm

;***

; reset

Section 2 Procedure for Creating and Debugging a Program

Rev.4.00 2007.02.02 2-21
REJ05B0463-0400

;***

 .section RSTHandler,code

_ResetHandler:

 mov.l #EXPEVT,r0

 mov.l @r0,r0

 shlr2 r0

 shlr r0

 mov.l #_RESET_Vectors,r1

 add r1,r0

 mov.l @r0,r0

 jmp @r0

 nop

;***

; exceptional interrupt

;***

 .section INTHandler,code

 .export INTHandlerPRG

INTHandlerPRG:

_ExpHandler:

 PUSH_EXP_BASE_REG

;

 mov.l #EXPEVT,r0 ; set event address

 mov.l @r0,r1 ; set exception code

 mov.l #_INT_Vectors,r0 ; set vector table address

 add #-(h'40),r1 ; exception code - h'40

 shlr2 r1

 shlr r1

 mov.l @(r0,r1),r3 ; set interrupt function addr

;

 mov.l #_INT_MASK,r0 ; interrupt mask table addr

 shlr2 r1

 mov.b @(r0,r1),r1 ; interrupt mask

 extu.b r1,r1

;

 stc sr,r0 ; save sr

 mov.l #(RBBLclr&IMASKclr),r2 ; RB,BL,mask clear data

 and r2,r0 ; clear mask data

 or r1,r0 ; set interrupt mask

 ldc r0,ssr ; set current status

;

 ldc.l r3,spc

 mov.l #__int_term,r0 ; set interrupt terminate

 lds r0,pr

;

 rte

 nop

;

 .pool

;

;***

; Interrupt terminate

;***

Section 2 Procedure for Creating and Debugging a Program

Rev.4.00 2007.02.02 2-22
REJ05B0463-0400

 .align 4

__int_term:

 mov.l #MDRBBLset,r0 ; set MD,BL,RB

 ldc.l r0,sr ;

 POP_EXP_BASE_REG

 rte ; return

 nop

;

 .pool

;

;***

; TLB miss interrupt

;***

 .org H'300

_TLBmissHandler:

 PUSH_EXP_BASE_REG

;

 mov.l #EXPEVT,r0 ; set event address

 mov.l @r0,r1 ; set exception code

 mov.l #_INT_Vectors,r0 ; set vector table address

 add #-(h'40),r1 ; exception code - h'40

 shlr2 r1

 shlr r1

 mov.l @(r0,r1),r3 ; set interrupt function addr

;

 mov.l #_INT_MASK,r0 ; interrupt mask table addr

 shlr2 r1

 mov.b @(r0,r1),r1 ; interrupt mask

 extu.b r1,r1

;

 stc sr,r0 ; save sr

 mov.l #(RBBLclr&IMASKclr),r2 ; RB,BL,mask clear data

 and r2,r0 ; clear mask data

 or r1,r0 ; set interrupt mask

 ldc r0,ssr ; set current status

;

 ldc.l r3,spc

 mov.l #__int_term,r0 ; set interrupt terminate

 lds r0,pr

;

 rte

 nop

;

 .pool

;

;***

; IRQ

;***

 .org H'500

_IRQHandler:

 PUSH_EXP_BASE_REG

;

Section 2 Procedure for Creating and Debugging a Program

Rev.4.00 2007.02.02 2-23
REJ05B0463-0400

 mov.l #INTEVT,r0 ; set event address

 mov.l @r0,r1 ; set exception code

 mov.l #_INT_Vectors,r0 ; set vector table address

 add #-(h'40),r1 ; exception code - h'40

 shlr2 r1

 shlr r1

 mov.l @(r0,r1),r3 ; set interrupt function addr

;

 mov.l #_INT_MASK,r0 ; interrupt mask table addr

 shlr2 r1

 mov.b @(r0,r1),r1 ; interrupt mask

 extu.b r1,r1

;

 stc sr,r0 ; save sr

 mov.l #(RBBLclr&IMASKclr),r2 ; RB,BL,mask clear data

 and r2,r0 ; clear mask data

 or r1,r0 ; set interrupt mask

 ldc r0,ssr ; set current status

;

 ldc.l r3,spc

 mov.l #__int_term,r0 ; set interrupt terminate

 lds r0,pr

;

 rte

 nop

;

 .pool

 .end

Figure 2.19 Interrupt Handler Program

Note: The include files “env.inc" and "vect.inc" are automatically generated by HEW when an SH3 project is created.

2.3.2 Creating the Vector Table

(1) Vector table <vect.c>

Here the vector table, the interrupt priority table, and the TRAPA function table are described. The names for each factor
are registered in this table, and actual user-created function names are given in the vect7708.h header file.

/**/

/* FILE NAME "vect.c" */

/**/

#include "vect7708.h"

/**/

/* ALLOCATE STACK AREA */

/**/

#pragma section STK /* SECTION name "BSTK" */

long stack[STACK_SIZE];

#pragma section

/**/

/* ALLOCATE DEFINITION TABLE */

/**/

Section 2 Procedure for Creating and Debugging a Program

Rev.4.00 2007.02.02 2-24
REJ05B0463-0400

const void *stacktbl[]={

 STACK_PON,

 STACK_MANUAL

};

/**/

/* ALLOCATE VECTOR TABLE (EXPEVT or INTEVT CODE H'000-H'5a0) */

/**/

void (*const vecttbl[])(void) = {

 /* EVT KIND CODE REG
 */

 RESET_PON, /* PON RESET H'000 EXPEVT */

 RESET_MANUAL, /* MANUAL RESET H'020 EXPEVT */

 TLB_MISS_READ, /* TLB MISS(R) H'040 EXPEVT */

 TLB_MISS_WRITE, /* TLB MISS(W) H'060 */

 TLB_1ST_PAGE, /* H'080 */

 TLB_PROTECT_READ, /* H'0a0 */

 TLB_PROTECT_WRITE, /* H'0c0 */

 ADR_ERROR_WRITE, /* H'0e0 */

 ADR_ERROR_WRITE, /* H'100 */

 RESERVED, /* H'120 ------ */

 RESERVED, /* H'140 ------ */

 TRAP, /* H'160 (with TRA) */

 ILLEGAL_INST, /* H'180 EXPEVT */

 ILLEGAL_SLOT, /* H'1a0 EXPEVT */

 NMI, /* H'1c0 INTEVT */

 USER_BREAK, /* H'1e0 EXPEVT */

 IRQ15, /* H'200 INTEVT */

 IRQ14, /* H'220 INTEVT */

 IRQ13, /* H'240 INTEVT */

 IRQ12, /* H'260 INTEVT */

 IRQ11, /* H'280 INTEVT */

 IRQ10, /* H'2a0 INTEVT */

 IRQ9, /* H'2c0 INTEVT */

 IRQ8, /* H'2e0 INTEVT */

 IRQ7, /* H'300 INTEVT */

 IRQ6, /* H'320 INTEVT */

 IRQ5, /* H'340 INTEVT */

 IRQ4, /* H'360 INTEVT */

 IRQ3, /* H'380 INTEVT */

 IRQ2, /* H'3a0 INTEVT */

 IRQ1, /* H'3c0 INTEVT */

 RESERVED, /* H'3e0 ------ */

 TMU0_TUNI0, /* H'400 INTEVT */

 TMU1_TUNI1, /* H'420 INTEVT */

 TMU2_TUNI2, /* H'440 INTEVT */

 TMU2_TICPI2, /* H'460 INTEVT */

 RTC_ATI, /* H'480 INTEVT */

 RTC_PRI, /* H'4a0 INTEVT */

 RTC_CUI, /* H'4c0 INTEVT */

 SCI_ERI, /* H'4e0 INTRVT */

 SCI_RXI, /* H'500 INTRVT */

 SCI_TXI, /* H'520 INTRVT */

Section 2 Procedure for Creating and Debugging a Program

Rev.4.00 2007.02.02 2-25
REJ05B0463-0400

 SCI_TEI, /* H'540 INTRVT */

 WDT_ITI, /* H'560 INTEVT */

 REF_RCMI, /* H'580 INTEVT */

 DEF_RPVI, /* H'5a0 INTEVT */

 RESERVED

};

/***/

/* ALLOCATE INTERRUPT PRIORITY TABLE INTEVT H'1c0-H'5a0 */

/***/

const char imasktbl[]={

 15<<4, /* NMI level 16(IMASK=0-15) */

 IP_RESERVED, /* ---------------
 */

 15<<4, /* IRQ15 (IRL0000) */

 14<<4, /* IRQ14 (IRL0001) */

 13<<4, /* IRQ13 (IRL0010) */

 12<<4, /* IRQ12 (IRL0011) */

 11<<4, /* IRQ11 (IRL0100) */

 10<<4, /* IRQ10 (IRL0101) */

 9<<4, /* IRQ9 (IRL0110) */

 8<<4, /* IRQ8 (IRL0111) */

 7<<4, /* IRQ7 (IRL1000) */

 6<<4, /* IRQ6 (IRL1001) */

 5<<4, /* IRQ5 (IRL1010) */

 4<<4, /* IRQ4 (IRL1011) */

 3<<4, /* IRQ3 (IRL1100) */

 2<<4, /* IRQ2 (IRL1101) */

 1<<4, /* IRQ1 (IRL1110) */

 IP_RESERVED, /* --------------- */

 IP_TMU0, /* TMU0 TUNI0 */

 IP_TMU1, /* TMU1 TUNI1 */

 IP_TMU2, /* TNU2 TUNI2 */

 IP_TMU2, /* TICPI2 */

 IP_RTC, /* RTC ATI */

 IP_RTC,

 IP_RTC,

 IP_SCI, /* SCI ERI */

 IP_SCI,

 IP_SCI,

 IP_SCI,

 IP_WDT, /* WDT ITI */

 IP_REF, /* REF RCMI */

 IP_REF, /* REF ROVI */

 IP_RESERVED

};

void (*const trap tbl[])(void)={

 TRAPA_0,

 TRAPA_1,

 TRAPA_2,

 TRAPA_3,

 TRAPA_4,

Section 2 Procedure for Creating and Debugging a Program

Rev.4.00 2007.02.02 2-26
REJ05B0463-0400

 TRAPA_5,

 TRAPA_6,

 TRAPA_7,

 TRAPA_8,

 TRAPA_9,

 TRAPA_10,

 TRAPA_11,

 TRAPA_12,

 TRAPA_13,

 TRAPA_14,

 TRAPA_15

};

Figure 2.20 Vector Table

(2) Vector function registration <vect7708.h>

The actual user-defined function names and other parameters are set. If interrupt processing functions are added, this area
is changed.

Processing here includes:

• Definition of stack size

• Definition of vector function names for each factor

• Setting of interrupt priorities (values set to IPRA and IPRB)

A function called halt is here defined for unused vectors. The user functions themselves must be defined as interrupt
functions using a #pragma interrupt declaration. Also, if a function is registered, the extern declaration for the function
must appear in this file.

/***/

/* FILE NAME "vect7708.h" */

/***/

/***/

/* STACK SIZE definition */

/***/

#define STACK_SIZE (0x4096/4) /* 4096 byte */

#define STACK_PON (&stack[STACK_SIZE])

#define STACK_MANUAL (&stack[STACK_SIZE])

extern long stack[];

/***/

/* RESET FUNCTION definition */

/***/

#define RESET_PON init /* PON RESET H'000 EXPEVT */

#define RESET_MANUAL init /* MANUAL RESET H'020 EXPEVT */

/***/

/* INTERRUPT FUNCTION definition */

/**/

#define TLB_MISS_READ halt /* TLB MISS(R) H'040 EXPEVT */

#define TLB_MISS_WRITE halt /* TLB MISS(W) H'060 EXPEVT */

#define TLB_1ST_PAGE halt /* H'080 EXPEVT */

#define TLB_PROTECT_READ halt /* H'0a0 EXPEVT */

Section 2 Procedure for Creating and Debugging a Program

Rev.4.00 2007.02.02 2-27
REJ05B0463-0400

#define TLB_PROTECT_WRITE halt /* H'0c0 EXPEVT */

#define ADR_ERROR_WRITE halt /* H'0e0 EXPEVT */

#define ADR_ERROR_WRITE halt /* H'100 EXPEVT */

/*#define RESERVED halt */ /* H'120 ------ */

/*#define RESERVED halt */ /* H'140 ------ */

#define TRAP trap /* H'160 (with TRA) */

#define ILLEGAL_INST halt /* H'180 EXPEVT */

#define ILLEGAL_SLOT halt /* H'1a0 EXPEVT */

#define NMI halt /* H'1c0 INTEVT */

#define USER_BREAK halt /* H'1e0 EXPEVT */

#define IRQ15 irq15 /* H'200 INTEVT */

#define IRQ14 halt /* H'220 INTEVT */

#define IRQ13 halt /* H'240 INTEVT */

#define IRQ12 halt /* H'260 INTEVT */

#define IRQ11 halt /* H'280 INTEVT */

#define IRQ10 halt /* H'2a0 INTEVT */

#define IRQ9 halt /* H'2c0 INTEVT */

#define IRQ8 halt /* H'2e0 INTEVT */

#define IRQ7 halt /* H'300 INTEVT */

#define IRQ6 halt /* H'320 INTEVT */

#define IRQ5 halt /* H'340 INTEVT */

#define IRQ4 halt /* H'360 INTEVT */

#define IRQ3 halt /* H'380 INTEVT */

#define IRQ2 halt /* H'3a0 INTEVT */

#define IRQ1 halt /* H'3c0 INTEVT */

/*#define RESERVED halt *//* H'3e0 ------ */

#define TMU0_TUNI0 halt /* H'400 INTEVT */

#define TMU1_TUNI1 halt /* H'420 INTEVT */

#define TMU2_TUNI2 halt /* H'440 INTEVT */

#define TMU2_TICPI2 halt /* H'460 INTEVT */

#define RTC_ATI halt /* H'480 INTEVT */

#define RTC_PRI halt /* H'4a0 INTEVT */

#define RTC_CUI halt /* H'4c0 INTEVT */

#define SCI_ERI halt /* H'4e0 INTRVT */

#define SCI_RXI halt /* H'500 INTRVT */

#define SCI_TXI halt /* H'520 INTRVT */

#define SCI_TEI halt /* H'540 INTRVT */

#define WDT_ITI halt /* H'560 INTEVT */

#define REF_RCMI halt /* H'580 INTEVT */

#define DEF_RPVI halt /* H'5a0 INTEVT */

#define RESERVED halt

extern void init(void);

extern void halt(void);

extern void _trap(void);

extern void irq15(void);

/**/

/* INTERRUPT MASK definition */

/**/

#define IP_TMU0 (0<<4)

#define IP_TMU1 (0<<4)

#define IP_TMU2 (0<<4)

Section 2 Procedure for Creating and Debugging a Program

Rev.4.00 2007.02.02 2-28
REJ05B0463-0400

#define IP_RTC (0<<4)

#define IP_SCI (0<<4)

#define IP_WDT (0<<4)

#define IP_REF (0<<4)

#define IP_RESERVED (15<<4)

/**/

/* IPRA,IPRB definition */

/**/

#define WORD_IPRA ((IP_TMU0<<12)|(IP_TMU1<<8)|(IP_TMU2<<4)|IP_RTC)

#define WORD_IPRB ((IP_WDT<<12)|(IP_REF<<8)|(IP_SCI<<4)|0)

extern void set_ip(void);

extern long stack[];

/**/

/* TRAPA system call definition
 */

/**/

#define TRAPA_0 halt

#define TRAPA_1 halt

#define TRAPA_2 halt

#define TRAPA_3 halt

#define TRAPA_4 halt

#define TRAPA_5 halt

#define TRAPA_6 halt

#define TRAPA_7 halt

#define TRAPA_8 halt

#define TRAPA_9 halt

#define TRAPA_10 halt

#define TRAPA_11 halt

#define TRAPA_12 halt

#define TRAPA_13 halt

#define TRAPA_14 halt

#define TRAPA_15 halt /*#15(#0F) should be Exception routine(Illegal use)*/

Figure 2.21 Vector Function Name Definitions

2.3.3 Creating the Header File

The header file common to the sample program is shown below.

/**/

/* file name "7700s.h" (Extract) */

/**/

struct st_intc { /* struct INTC */

 union { /* ICR */

 unsigned short WORD; /* Byte Access */

 struct { /* Bit Access */

 unsigned short NMIL:1; /* NMIL */

 unsigned short :6; /* */

 unsigned short NMIE:1; /* NMIE */

 } BIT; /* */

 } ICR; /* */

 union { /* IPRA */

Section 2 Procedure for Creating and Debugging a Program

Rev.4.00 2007.02.02 2-29
REJ05B0463-0400

 unsigned short WORD; /* Word Access */

 struct { /* Bit Access */

 unsigned short UU:4; /* IRQ0 */

 unsigned short UL:4; /* IRQ1 */

 unsigned short LU:4; /* IRQ2 */

 unsigned short LL:4; /* IRQ3 */

 } BIT; /* */

 } IPRA; /* */

 union { /* IPRB */

 unsigned short WORD; /* Word Access */

 struct { /* Bit Access*/

 unsigned short UU:4; /* IRQ4 */

 unsigned short UL:4; /* IRQ5 */

 unsigned short LU:4; /* IRQ6 */

 unsigned short LL:4; /* IRQ7 */

 } BIT; /* */

 } IPRB; /* */

 char wk1[234]; /* */

 unsigned int TRA; /* TRA */

 unsigned int EXPEVT; /* EXPEVT */

 unsigned int INTEVT; /* INTEVT */

}; /* */

union un_ccr { /* union CCR */

 unsigned int LONG; /* Long Access*/

 struct { /* Bit Access*/

 unsigned int :26; /* */

 unsigned int RA :1; /* RA */

 unsigned int :1; /* 0 */

 unsigned int CF :1; /* CF */

 unsigned int CB :1; /* CB */

 unsigned int WT :1; /* WT */

 unsigned int CE :1; /* CE */

 } BIT; /* */

}; /* */

#define SCI (*(volatile struct st_sci *)0xFFFFFE80) /* SCI Address*/

#define TMU (*(volatile struct st_tmu *)0xFFFFFE90) /* TMU Address*/

#define TMU0 (*(volatile struct st_tmu0 *)0xFFFFFE94) /* TMU0 Address*/

#define TMU1 (*(volatile struct st_tmu0 *)0xFFFFFEA0) /* TMU1 Address*/

#define TMU2 (*(volatile struct st_tmu2 *)0xFFFFFEAC) /* TMU2 Address*/

#define RTC (*(volatile struct st_rtc *)0xFFFFFEC0) /* RTC Address*/

#define INTC (*(volatile struct st_intc *)0xFFFFFEE0) /* INTC Address*/

#define BSC (*(volatile struct st_bsc *)0xFFFFFF60) /* BSC Address*/

#define CPG (*(volatile struct st_cpg *)0xFFFFFF80) /* CPG Address*/

#define UBC (*(volatile struct st_ubc *)0xFFFFFF90) /* UBC Address*/

#define MMU (*(volatile struct st_mmu *)0xFFFFFFE0) /* MMU Address*/

#define CCR (*(volatile union un_ccr *)0xFFFFFFEC) /* CCR Address*/

Figure 2.22 Header File

Section 2 Procedure for Creating and Debugging a Program

Rev.4.00 2007.02.02 2-30
REJ05B0463-0400

2.3.4 Creating the Initialization Part

After reset, the BSC and pointer are set, and control passes to the initialization function.

The initialization function sets interrupt priorities and initializes sections, and then passes control to the start of the user
function.

(1) Initialization function <init.c, cntrl.h>

• Sets interrupt priorities

• Flushes the cache

• Turns the cache on

• Initializes sections

• Sets interrupt masks

• Branches to the user function

/**/

/* file name "cntrl.h" */

/**/

#include <machine.h>

#include "7700s.h"

/**/

/* control BL ,MD bit */

/**/

#define BLoff() set_cr((get_cr()&0xefffffff))

#define BLon() set_cr((get_cr()|0x10000000))

#define USRmode() set_cr((get_cr()|0x40000000))

/**/

/* cache control */

/**/

#define CacheON() (CCR.BIT.CE=1)

#define CacheOFF() (CCR.BIT.CE=0)

#define CacheFLASH() (CCR.BIT.CF=1)

Figure 2.23 Macro Definition Program

Section 2 Procedure for Creating and Debugging a Program

Rev.4.00 2007.02.02 2-31
REJ05B0463-0400

/**/

/* file name "init.c" */

/**/

#include <machine.h>

#include "cntrl.h"

void init(void)

{

 set_ip();

 CacheOFF();

 CacheFLASH();

 CacheON();

 BLoff(); /* BLOCK BIT OFF */

 _INITSCT(); /* section initialize */

 set_imask(0); /* interrput priority 0 */

 main(); /* User main() routine */

 halt(); /* halt() */

}

Figure 2. 24 Initialization Program (1)

Section 2 Procedure for Creating and Debugging a Program

Rev.4.00 2007.02.02 2-32
REJ05B0463-0400

(a) Setting interrupt priorities <ipr.c>

IPRA and IPRB are used to set interrupt priorities for each interrupt factor defined in vect7708.h.

/***/

/* file name "ipr.c" */

/***/

#include "7700s.h"

#include "vect7708.h"

void set_ip(void)

{

 INTC.IPRA.WORD=WORD_IPRA;

 INTC.IPRB.WORD=WORD_IPRB;

}

Figure 2.25 Program to Set Interrupt Priorities

(b) Section initialization <sect.src, initsct.c>

Initialization of sections allocated to RAM is performed.

The uninitialized data section B is cleared to 0. Initialized data items are copied from section D in ROM to section R in
RAM. (initsct.c)

In addition, assembly-language code is necessary to acquire the section start address and size. (sct.src)

;***

; file name "sct.src"

;***

 .SECTION B,DATA,ALIGN=4

 .SECTION R,DATA,ALIGN=4

 .SECTION D,DATA,ALIGN=4

; If other section are existed , Insert here “.SECTION XXX”,

 .SECTION C,DATA,ALIGN=4

__B_BGN: .DATA.L (STARTOF B)

__B_END: .DATA.L (STARTOF B)+(SIZEOF B)

__D_BGN: .DATA.L (STARTOF R)

__D_END: .DATA.L (STARTOF R)+(SIZEOF R)

__D_ROM: .DATA.L (STARTOF D)

 .EXPORT __B_BGN

 .EXPORT __B_END

 .EXPORT __D_BGN

 .EXPORT __D_END

 .EXPORT __D_ROM

 .END

Figure 2.26 Section Definition Program

Section 2 Procedure for Creating and Debugging a Program

Rev.4.00 2007.02.02 2-33
REJ05B0463-0400

/**/

/* file name "initsct.c" */

/**/

extern int *_B_BGN,*_B_END,*_D_BGN,*_D_END,*_D_ROM;

void _INITSCT(void)

{

 register int *p, *q;

 for (p=_B_BGN; p<_B_END; p++){

 *p=0;

 }

 for (p=_D_BGN, q=_D_ROM; p<_D_END; p++, q++){

 *p=*q;

 }

}

Figure 2.27 Section Initialization Program

2.3.5 Creating the Main Processing Part and Interrupt Processing Part

Upon creating the functions main(), halt(), and irq15(), the above program can be linked.

void main(void)

{

/* user program description */

}

#pragma interrupt(halt, irq15)

void halt(void)

{

 while(1); /* routine for error processing */

 /* here left as an infinite loop */

}

void irq15(void)

{

 /* IRQ15 processing program */

}

Figure 2.28 Main Processing Program

Section 2 Procedure for Creating and Debugging a Program

Rev.4.00 2007.02.02 2-34
REJ05B0463-0400

2.3.6 Creating a Batch File for the Load Module

Figure 2.29 shows a batch file for creation of an S-type load module (sample.mot).

 shcΔ-debugΔ–cpu=sh3Δvect.cΔinit.cΔipr.cΔinitsct.cΔmain.c
 #Compile C programs
 asmshΔsct.srcΔ–debugΔ–cpu=sh3
 asmshΔintr.srcΔ–debugΔ–cpu=sh3
 asmshΔreset.srcΔ–debugΔ–cpu=sh3
 #Assemble Assembly programs

 optlnkΔ–nooptΔ–subcommand=lnk.sub
 #Link using a subcommand file
 rmΔ*.obj
 #Remove object module files

Figure 2.29 Batch File for Load Module Creation

2.3.7 Creating a Linkage Editor Subcommand File

Figure 2.30 shows a subcommand file (filename lnk.sub) for the linkage editor used when creating load modules.

Sdebug

input vect, init, ipr, initsct, main, intr, sct, reset

 ; Specify an input file

Library /user/unix/SHCV50/shc3npb.lib

 ; Specify a standard library

output sample.abssample.abs ; Specify output files

rom D=R ; Specify ROM support options

start P,C,D/10000,R,B,BSTK/04000000

 ; Specify the start address for each section.

 ; Do not specify an address for section VECT because
 ; the section VECT is assigned to absolute address section

 ; (assigned to address 0).

 ; Allocate sections P, C, and D to

 ; the area starting from address H’10000.

 ; Allocate sections R and B to the area

 ; starting from address H’04000000.

form s ; Specify s-type format

list sample.map; Specify memory map information output

Exit

Figure 2.30 Subcommand File for Linkage Editor

Section 2 Procedure for Creating and Debugging a Program

Rev.4.00 2007.02.02 2-35
REJ05B0463-0400

2.4 Debugging using Simulator Debugger

2.4.1 Setting Configuration
Execute the Simulator Debugger using the project that was created in section 2.1.1, Creating the Project for a Simulator
Debugger.

Select [Build Configurations…] from the [Option] menu to display the available environments. On the screen shown in
figure 2.32, select the environment you use. In this case, select [SimDebug SH-1].

Figure 2.31 Options Menu

Figure 2.32 Build Configurations Dialog Box

Section 2 Procedure for Creating and Debugging a Program

Rev.4.00 2007.02.02 2-36
REJ05B0463-0400

2.4.2 Allocating Memory Resources

The allocation of the memory resource is necessary to run the application being developed. When using the demonstration
project, the memory resource is allocated automatically, so check the setting.

• Select [Simulator->Memory Resource...] from the [Option] menu, and display the allocation of the current memory
resource.

Figure 2.33 Simulator -> Simulator System Dialog Box

The program area is allocated to the addresses H'00000000 to H'00007FFF. The stack area is allocated to the addresses
H'0FFFE000 to H'0FFFFFFF, which can be read from or written to.

• Close the dialog box by clicking [OK].

The memory resource can also be referred to or modified by using the [Simulator] tab on the [SuperH RISC engine
Standard Toolchain] dialog box. Changes made in either of the dialog boxes are reflected.

Section 2 Procedure for Creating and Debugging a Program

Rev.4.00 2007.02.02 2-37
REJ05B0463-0400

2.4.3 Downloading a Sample Program

When using the demonstration project, the sample program to be downloaded is automatically set, so check the settings.

• Open the [Debug Setting] dialog box by selecting [Debug Settings...] on the [Option] menu.

Figure 2.34 Debug Settings Dialog Box
• Files to be downloaded is set in [Download Modules].

• Close the [Debug Settings] dialog box by clicking the [OK] button.

• Download the sample program by selecting [Download Modules->All Download Modules] from the [Debug] menu

2.4.4 Setting Simulated I/O

When the demonstration project is used, the simulated I/O is automatically set, so check the setting.

• Open the [Simulator System] dialog box by selecting [Simulator->System] from the [Option] menu.

Figure 2.35 Simulator System Dialog Box

• Confirm that [Enable] in [System Call Address] is checked.

• Click the [OK] button to enable the Simulated I/O

Section 2 Procedure for Creating and Debugging a Program

Rev.4.00 2007.02.02 2-38
REJ05B0463-0400

• Select [CPU->Simulated I/O] from the [View] menu and open the [Simulated I/O] window.

The Simulated I/O will not be enabled if the [Simulated I/O] window is not open.

Figure 2.36 Simulated I/O Window

2.4.5 Setting Trace Information Acquisition Conditions

• Select [Code->Trace] from the [View] menu and open the [Trace] window. Open the pop-up menu by right clicking
the mouse on the [Trace] window, and select [Acquisition...] from the popup menu.

The [Trace Acquisition] dialog box below will be displayed.

Figure 2.37 Trace Acquisition Dialog Box

• Set [Trace start/Stop] to [Enable] in the [Trace Acquisition] dialog box, and click the [OK] button to enable the
acquisition of the trace information.

Section 2 Procedure for Creating and Debugging a Program

Rev.4.00 2007.02.02 2-39
REJ05B0463-0400

2.4.6 Status Window

The termination cause can be displayed in the [Status] window.

• Select [CPU->Status] from the [View] menu to open the [Status] window, and select the [Platform] sheet in the
[Status] window.

Figure 2.38 View->CPU->Staus Window

2.4.7 Registers Window

Register values can be checked in the [Register] window.

• Select [CPU->Registers] from the [View] menu.

Figure 2.39 View ->CPU-> Register Window

Section 2 Procedure for Creating and Debugging a Program

Rev.4.00 2007.02.02 2-40
REJ05B0463-0400

2.4.8 Trace
(1) Trace Buffer

The trace buffer can be used to clarify the history of instruction execution.

• Select [Code->Trace] from the [View] menu and open the [Trace] window. Scroll up to the very top of the window.

Figure 2.40 Trace Window (Trace Information Display)

(2) Trace Search

Click the right mouse button on the [Trace] window to launch the pop-up menu, and select [Find...] to open the [Trace
Search] dialog box.

Figure 2.41 Trace Search Dialog Box

Setting the item to be searched to [Item] and the contents to be searched to [Value] and clicking the [OK] button begins
the trace search. When the searched item is found, the first line is highlighted. To continue searching the same contents
[Value], click the right mouse button in the [Trace] window to display the pop-up menu, and select [Find Next] from the
pop-up menu. The next searched line is highlighted.

Section 2 Procedure for Creating and Debugging a Program

Rev.4.00 2007.02.02 2-41
REJ05B0463-0400

Figure 2.42 Trace Window

2.4.9 Displaying Breakpoints

A list of all the breakpoints that are set in the program can be checked in the [Eventpoint] window.

• Select [Code->Eventpoint] from the [View] menu.

Figure 2.43 Eventpoint Window
A breakpoint can be set, a new breakpoint can be defined, and a breakpoint can be deleted using the [Eventpoint] window.

• Close the [Eventpoint] window.

2.4.10 Displaying Memory Contents
The contents of memory block can be displayed on a Memory window. For example, the procedure for displaying the
memory for the main column in byte size is shown as below.

Select [CPU->Memory…] from the [View] menu to enter memory area start address in the [Begin] field and end address
in the [End] field.

Section 2 Procedure for Creating and Debugging a Program

Rev.4.00 2007.02.02 2-42
REJ05B0463-0400

Figure 2.44 Set Address Dialog Box

Click on the [OK] button to open the Memory window which shows the specified memory area.

Figure 2.45 Memory Window

Section 2 Procedure for Creating and Debugging a Program

Rev.4.00 2007.02.02 2-43
REJ05B0463-0400

2.5 Standard I/O and File I/O Processing in the Simulator/Debugger

The simulator/debugger allows the user to perform the standard I/O and file I/O from the programe to be debugged. When
the I/O processing is executed, the Simulation I/O window must be open. The supported I/O processing is as follows:

Table 2.3 I/O Functions

No. Function
Code

Function
name

Description

1 H'21 GETC Inputs one byte from the standard input device.

2 H'22 PUTC Outputs one byte to the standard output device.

3 H'23 GETS Inputs one line from the standard input device.

4 H'24 PUTS Outputs one line to the standard output device.

5 H'25 FOPEN Opens a file.

6 H'06 FCLOSE Closes a file.

7 H'27 FGETC Inputs one byte from a file.

8 H'28 FPUTC Outputs one byte to a file.

9 H'29 FGETS Inputs one line from a file.

10 H'2A FPUTS Outputs one line to a file.

11 H'0B FEOF Checks for end of file.

12 H'0C FSEEK Moves the file pointer

13 H'0D FTELL Returns the current position of the file pointer.

To perform I/O processing, first specify the location for I/O in the [System Call Address] in the Simulator System dialog
box, check the [Enable], and then execute the program to be debugged.

When detecting a subroutine call instruction (BSR, JSR, or BSRF), that is, a system call to the specialized address during
user program execution, the simulator/debugger performs I/O processing by using the R0 and R1 values as the parameters.

Therefore, before issuing a system call, set as follows in the user program:

• Set the function code (table 2.3) to the R0 register

 MSB 1 byte 1 byte LSB

H'01 Function
Code

… …

• Set the parameter block address to the R1 register
(For the parameter block, refer to each function description)

 MSB LSB

Parameter block address

• Reserve the parameter block and I/O buffer areas
In case of accessing each parameter of the parameter block, after the I/O processing in the parameter size, the
simulator/debugger resumes simulation from the instruction that follows the system call instruction.

Section 2 Procedure for Creating and Debugging a Program

Rev.4.00 2007.02.02 2-44
REJ05B0463-0400

Note: If the JSR, BSR, or BSRF instruction is executed as system call, an instruction following the JSR, BSR, or BSRF
is as an ordinary instruction, not a slot instruction. Hence, any instruction whose result will differ depending on the
slot instruction or ordinary instruction should not be used following the JSR, BSR, or BSRF.

(2) (1)

(3)

(4)

Figure 2.46 Description Format of the I/O Function

The contents of the items are as follows:

(1) Number corresponding to table 2.3

(2) Function name

(3) Function Code

(4) I/O overview

(5) I/O parameter block

(6) I/O parameters

GETC 1

H'21

Inputs one byte from the
standard input device

 Parameter Block One byte One byte

+0

+2
Input buffer start address

 Parameter • Input buffer start address (input)

 Start address of the buffer to which the input data is written to

PUTC 2

H'22

Outputs one byte to the
standard output device.

 Parameter Block One byte One byte

+0

+2
Output buffer start address

 Parameter Block (5)

 Parameters (6)

Section 2 Procedure for Creating and Debugging a Program

Rev.4.00 2007.02.02 2-45
REJ05B0463-0400

 Parameter • Output buffer start address (input)

 Start address of the buffer in which the output data is stored

GETS 3

H'23
Inputs one line from the
standard input device.

 Parameter Block One byte One byte

+0

+2
Input buffer start address

 Parameter • Input buffer start address (input)

 Start address of the buffer to which the input data is written to

PUTS 4

H'24
Outputs one line to the
standard output device.

 Parameter Block One byte One byte

+0

+2
Output buffer start address

 Parameter • Output buffer start address (input)

 Start address of the buffer in which the output data is stored

FOPEN 5

H'25
Opens a file.

The FOPEN opens a file and returns the file number. After this processing, the returned file number must be used to input,
output, or close files. A maximum of 256 files can be open at the same time.

 Parameter Block One byte One byte

+0 Return Value File number

+2 Open mode Unused

+4

+6
Start address of file name

 Parameter • Return value (output)
 0: Normal completion

 -1: Error

 • File number (output)
 The number to be used in all file accesses after opening

 Open mode (input)

 H'00 "r"
 H'01 "w"

 H'02 "a"

 H'03 "r+"
 H'04 "w+"

Section 2 Procedure for Creating and Debugging a Program

Rev.4.00 2007.02.02 2-46
REJ05B0463-0400

 H'05 "a+"

 H'10 "rb"
 H'11 "wb"

 H'12 "ab"

 H'13 "r+b"
 H'14 "w+b"

 H'15 "a+b"

 These modes are interpreted as follows:
 "r": Open for reading.

 "w": Open an empty file for writing

 "a": Open for appending (write starting at the end of the file).
 "r+": Open for reading and writing.

 "w+": Open an empty file for reading and writing.

 "a+": Open for reading and appending.
 "b": Open in binary mode.

 • Start address of file name (input)

 The start address of the area for storing the file name

FCLOSE 6

H'06
Closes a file.

 Parameter Block One byte One byte

+0 Return Value File number

 Parameter • Return value (output)

 0: Normal completion

 -1: Error

 • File number (input)

 The number returned when the file was opened

FGETC
7

H'27
Inputs one byte from a file

 Parameter Block One byte One byte

+0 Return Value File number

+2 Unused

+4

+6

Start address of input buffer

 Parameter • Return value (output)

 0: Normal completion

 -1: Error

 • File number (input)

 The number returned when the file was opened

 • Start address of input buffer (input)

 The start address of the buffer for storing input data

FPUTC 8

H'28

Outputs one byte to a file

Section 2 Procedure for Creating and Debugging a Program

Rev.4.00 2007.02.02 2-47
REJ05B0463-0400

 Parameter Block One byte One byte

+0 Return Value File number

+2 Unused

+4

+6

Start address of output buffer

 Parameter • Return value (output)

 0: Normal completion

 -1: Error

 • File number (input)

 The number returned when the file was opened

 • Start address of output buffer (input)

 The start address of the buffer used for storing the output data

FGETS 9

H'29

Reads character string data from a file

 Parameter Block One byte One byte

+0 Return Value File number

+2 Buffer size

+4

+6

Start address of input buffer

 Parameter • Return value (output)

 0: Normal completion

 -1: EOF detected

 • File number (input)

 The number returned when the file was opened

 • Buffer size (input)

 The size of the area for storing the read data

 (A maximum of 256 bytes can be stored)

 • Start address of input buffer (input)

 The start address of the buffer for storing input data

FPUTS 10

H'2A

Writes character string data to a file

 Parameter Block One byte One byte

+0 Return Value File number

+2 Unused

+4

+6

Start address of output buffer

 Parameter • Return value (output)

 0: Normal completion

Section 2 Procedure for Creating and Debugging a Program

Rev.4.00 2007.02.02 2-48
REJ05B0463-0400

 -1: Error

 • File number (input)

 The number returned when the file was opened

 • Start address of output buffer (input)

 The start address of the buffer used for storing the output data

FEOF 11

H'0B

Checks for end of file

 Parameter Block One byte One byte

+0 Return Value File number

 Parameter • Return value (output)

 0: File pointer is not at EOF

 -1: EOF detected

 • File number (input)

 The number returned when the file was opened

FSEEK 12

H'0C

Moves the file pointer to the specified
position

 Parameter Block One byte One byte

+0 Return Value File number

+2 Direction Unused

+4

+6

Offset

 Parameter • Return value (output)

 0: Normal completion

 -1: Error

 • File number (input)

 The number returned when the file was opened

 • Direction (input)

 0: The offset specifies the position as a byte count from the start of the file

 1: The offset specifies the position as a byte count from the current file pointer

 2: The offset specifies the position as a byte count from the end of the file

 • Offset (input)

 The byte count from the location specified by the direction parameter

FTELL 13

H'0D

Returns the current position of the
file pointer.

Section 2 Procedure for Creating and Debugging a Program

Rev.4.00 2007.02.02 2-49
REJ05B0463-0400

 Parameter Block One byte One byte

+0 Return Value File number

+2 Unused

+4

+6

Offset

 Parameter • Return value (output)

 0: Normal completion

 -1: Error

 • File number (input)

 The number returned when the file was opened

 • Offset (output)

 The current position of the file pointer

 (A byte count from the start of the file)

The following shows an example for inputting and outputting one character as a standard input (from a keyboard).

;--

;

; FILE :lowlvl.src

; DATE :Tue, Mar 05, 2002

; DESCRIPTION :Program of Low level

; CPU TYPE :

;

; This file is generated by Renesas Project Generator (Ver.3.0).

;

;--

;-

; lowlvl.src

;-

; SH-series simulator debugger interface routine

; -Input/output one character-

;-

 .EXPORT _charput

 .EXPORT _charget

SIM_IO: .EQU H'0000 ;Specifies TRAP_ADDRESS

 .SECTION P, CODE, ALIGN=4

;-

; _charput: One character output

; C program interface: charput(char)

;-

_charput:

Section 2 Procedure for Creating and Debugging a Program

Rev.4.00 2007.02.02 2-50
REJ05B0463-0400

 MOV.L O_PAR,R0 ; Sets output buffer address to R0

 MOV.B R4,@R0 ; Sets output charcter to buffer

 MOV.L #O_PAR,R1 ; Sets parameter block address to R1

 MOV.L #H'01220000,R0 ; Specifies function code (PUTC)

 MOV.W #SIM_IO,R2 ; Sets system call address to R2

 JSR @R2

 NOP

 RTS

 NOP

 .ALIGN 4

O_PAR: ; Parameter block

 .DATA.L OUT_BUF

;-

; _charget: One character input

; C program interface: char charget(void)

;-

 .ALIGN 4

_charget:

 MOV.L #I_PAR,R1 ; Sets parameter block address to R1

 MOV.L #H'01210000,R0 ; Specifies function code (GETC)

 MOV.W #SIM_IO,R2 ; Sets system call address to R2

 JSR @R2

 NOP

 MOV.L I_PAR,R0 ; Sets input buffer address to R0

 MOV.B @R0,R0 ; Returns input data

 RTS

 NOP

 .ALIGN 4

I_PAR: ; Parameter block

 .DATA.L IN_BUF

;-

; I/O buffer definition

;-

 .SECTION B,DATA,ALIGN=4

OUT_BUF:

 .RES.L 1 ; Output buffer

IN_BUF:

 .RES.L 1 ; Input buffer

 .END

Section 3 Compiler

Rev.4.00 2007.02.02 3-1
REJ05B0463-0400

Section 3 Compiler

3.1 Interrupt Functions

3.1.1 Definitions of Interrupt Functions (No Options)

Description:

Preprocessor directive (#pragma) can be used to create interrupt functions in the C language. A function declared using
"#pragma interrupt" saves/restores all registers (except for the global base register GBR and vector base register VBR) to
be used within the function before and after function processing. For this reason, interrupted functions do not need to make
provisions to deal with interrupts.

• Format:

#pragma interrupt (<function name>,[<function name>...])

Example of use:

The interrupt function handler1 is declared. This function takes over the stack from the interrupted function and uses it,
and after the completion of processing, returns with an RTE instruction.

<Case where GBR, VBR are not saved/restored>

C language code

#pragma interrupt(handler1) /* Declares interrupt function */

void handler1(void)

 {

 : /* Interrupt function processing*/

 :

 }

Expanded into assembly language code

 .EXPORT _handler1

 .SECTION P,CODE,ALIGN=4

_handler1: ; function: handler1

 : ; Saves work registers

 : ; Interrupt function processing

 : ; Restores work registers

 RTE

 NOP

 .END

<When storing or restoring the GBR and VBR>

Section 3 Compiler

Rev.4.00 2007.02.02 3-2
REJ05B0463-0400

C language code

#pragma interrupt(handler1)

void handler1(void)

{

 void** save_vbr; /* Defines the VBR storage area */

 void* save_gbr; /* Defines the GBR storage area */

 save_vbr = get_vbr(); /* Saves VBR */

 save_gbr = get_gbr(); /* Saves GBR */

 : /* Interrupt function processing */

 :

 set_vbr(save_vbr); /* Restores VBR */

 set_gbr(save_gbr); /* Restores GBR */

}

Expanded into assembly language code

 .EXPORT handler1

 .SECTION P,CODE,ALIGN=4

handler1: ; function: handler1

 ; frame size=8

 MOV.L R5,@-R15

 STC GBR,R5 ; Saves GBR

 MOV.L R4,@-R15

 STC VBR,R4 ; Saves VBR

 : ; Saves work registers

 : ; Interrupt function processing

 : ; Restores work registers

 LDC R4,VBR ; Restores VBR

 LDC R5,GBR ; Restores GBR

 MOV.L @R15+,R4

 MOV.L @R15+,R4

 RTE

 NOP

 .END

Important Information:

(1) Only the void data type can be returned by an interrupt function.

 Examples:

 #pragma interrupt(f1, f2) /* Declares interrupt function */

 void f1(void){…} /* Defines interrupt function f1 */

 int f2(void){…} /* Defines interrupt function f2 */

 The definition of the interrupt function f1 is correct, but the definition of the interrupt function f2 results in an error.

Section 3 Compiler

Rev.4.00 2007.02.02 3-3
REJ05B0463-0400

(2) The only memory class specifier that can be specified in the definition of an interrupt function is extern. Even if static
is specified, it is treated as extern.

(3) function declared as an interrupt function cannot be called as an ordinary function. If a function declared as an
interrupt function is called as an ordinary function, runtime operation is not guaranteed.

 Examples:

 • test1.c file contents

 #pragma interrupt(f1) /* Declares interrupt function */

 void f1(void){…} /* Declares interrupt function f1 */

 int f2(){f1();}

 • test2.c file contents

 f3(){ f1(); }

 In the file test1.c, an error occurs at function f2. In the file test2.c, an error does not occur at the function f3, but the
function f1 is interpreted as extern int f1(), and runtime operation becomes unstable.

(4) In the event of an interrupt, the operation of SH-3, SH3-DSP, SH-4A and SH4AL-DSP differs from that of SH-1, SH-2
SH-2E, SH-2A, SH2A-FPU and SH2-DSP, and an interrupt handler is necessary. An example of an interrupt handler is
shown below.

Example of an Interrupt Handler for SH-3

;***

; FILE :vhandler.src

;***

 .include "env.inc"

 .include "vect.inc"

IMASKclr: .equ H'FFFFFF0F

RBBLclr: .equ H'CFFFFFFF

MDRBBLset: .equ H'70000000

 .import _RESET_Vectors

 .import _INT_Vectors

 .import _INT_MASK

;***

;* macro definition

;***

 .macro PUSH_EXP_BASE_REG

 stc.l ssr,@-r15 ; save ssr

 stc.l spc,@-r15 ; save spc

 sts.l pr,@-r15 ; save context registers

 stc.l r7_bank,@-r15

 stc.l r6_bank,@-r15

 stc.l r5_bank,@-r15

Section 3 Compiler

Rev.4.00 2007.02.02 3-4
REJ05B0463-0400

 stc.l r4_bank,@-r15

 stc.l r3_bank,@-r15

 stc.l r2_bank,@-r15

 stc.l r1_bank,@-r15

 stc.l r0_bank,@-r15

 .endm

;

 .macro POP_EXP_BASE_REG

 ldc.l @r15+,r0_bank ; recover registers

 ldc.l @r15+,r1_bank

 ldc.l @r15+,r2_bank

 ldc.l @r15+,r3_bank

 ldc.l @r15+,r4_bank

 ldc.l @r15+,r5_bank

 ldc.l @r15+,r6_bank

 ldc.l @r15+,r7_bank

 lds.l @r15+,pr

 ldc.l @r15+,spc

 ldc.l @r15+,ssr

 .endm

;***

; reset

;***

 .section RSTHandler,code

_ResetHandler:

 mov.l #EXPEVT,r0

 mov.l @r0,r0

 shlr2 r0

 shlr r0

 mov.l #_RESET_Vectors,r1

 add r1,r0

 mov.l @r0,r0

 jmp @r0

 nop

;***

; exceptional interrupt

;***

 .section INTHandler,code

 .export INTHandlerPRG

Section 3 Compiler

Rev.4.00 2007.02.02 3-5
REJ05B0463-0400

INTHandlerPRG:

_ExpHandler:

 PUSH_EXP_BASE_REG

;

 mov.l #EXPEVT,r0 ; set event address

 mov.l @r0,r1 ; set exception code

 mov.l #_INT_Vectors,r0 ; set vector table address

 add #-(h'40),r1 ; exception code - h'40

 shlr2 r1

 shlr r1

 mov.l @(r0,r1),r3 ; set interrupt function addr

;

 mov.l #_INT_MASK,r0 ; interrupt mask table addr

 shlr2 r1

 mov.b @(r0,r1),r1 ; interrupt mask

 extu.b r1,r1

;

 stc sr,r0 ; save sr

 mov.l #(RBBLclr&IMASKclr),r2 ; RB,BL,mask clear data

 and r2,r0 ; clear mask data

 or r1,r0 ; set interrupt mask

 ldc r0,ssr ; set current status

;

 ldc.l r3,spc

 mov.l #__int_term,r0 ; set interrupt terminate

 lds r0,pr

;

 rte

 nop

;

 .pool

;

;***

; Interrupt terminate

;***

 .align 4

__int_term:

 mov.l #MDRBBLset,r0 ; set MD,BL,RB

 ldc.l r0,sr ;

 POP_EXP_BASE_REG

 rte ; return

 nop

;

 .pool

;

Section 3 Compiler

Rev.4.00 2007.02.02 3-6
REJ05B0463-0400

;***

; TLB miss interrupt

;***

 .org H'300

_TLBmissHandler:

 PUSH_EXP_BASE_REG

;

 mov.l #EXPEVT,r0 ; set event address

 mov.l @r0,r1 ; set exception code

 mov.l #_INT_Vectors,r0 ; set vector table address

 add #-(h'40),r1 ; exception code - h'40

 shlr2 r1

 shlr r1

 mov.l @(r0,r1),r3 ; set interrupt function addr

;

 mov.l #_INT_MASK,r0 ; interrupt mask table addr

 shlr2 r1

 mov.b @(r0,r1),r1 ; interrupt mask

 extu.b r1,r1

;

 stc sr,r0 ; save sr

 mov.l #(RBBLclr&IMASKclr),r2 ; RB,BL,mask clear data

 and r2,r0 ; clear mask data

 or r1,r0 ; set interrupt mask

 ldc r0,ssr ; set current status

;

 ldc.l r3,spc

 mov.l #__int_term,r0 ; set interrupt terminate

 lds r0,pr

;

 rte

 nop

;

 .pool

;

;***

; IRQ

;***

 .org H'500

_IRQHandler:

 PUSH_EXP_BASE_REG

;

 mov.l #INTEVT,r0 ; set event address

 mov.l @r0,r1 ; set exception code

Section 3 Compiler

Rev.4.00 2007.02.02 3-7
REJ05B0463-0400

 mov.l #_INT_Vectors,r0 ; set vector table address

 add #-(h'40),r1 ; exception code - h'40

 shlr2 r1

 shlr r1

 mov.l @(r0,r1),r3 ; set interrupt function addr

;

 mov.l #_INT_MASK,r0 ; interrupt mask table addr

 shlr2 r1

 mov.b @(r0,r1),r1 ; interrupt mask

 extu.b r1,r1

;

 stc sr,r0 ; save sr

 mov.l #(RBBLclr&IMASKclr),r2 ; RB,BL,mask clear data

 and r2,r0 ; clear mask data

 or r1,r0 ; set interrupt mask

 ldc r0,ssr ; set current status

;

 ldc.l r3,spc

 mov.l #__int_term,r0 ; set interrupt terminate

 lds r0,pr

;

 rte

 nop

;

 .pool

 .end

Note: In the table part of the SH-3 interrupt handler example, places for which there are no corresponding addresses
should be left blank.
In this case, RTE instructions are used in order to jump to the vector function. In addition, on returning from the
vector function, control is passed to the terminate routine, therefore it is necessary to return the vector function by
executing RTS.
For this reason, when defining the vector function, do not use ‘#pragma interrupt’
The include files “env.inc" and "vect.inc" are automatically generated by HEW when the SH3 project is created.
In the PUSH_EXP_BASE_REG and POP_EXP_BASE_REG macros described in the list above, only the R0-R7
bank registers are saved by the “stc.l rn_bank, @-R15” instructions, and restored by the “ldc.l @+R15, rn_bank”
instructions.
General registers which can be accessed by the “MOV” instructions aren’t saved nor restored.
In case of using SH-3,SH3-DSP,SH-4,SH-4A or SH4AL-DSP, when an interrupt is accepted, the RB bit in the SR
register is set to 1. So if you use these macros right before or after the interrupt handler, only the R0_BANK0 to
R7_BANK0 registers are saved and the R0_BANK1 to R7_BANK1 registers are not saved.
So even if you use these macros at the head of the interrupt handler, as long as the program runs with RB remains
set to 1, R0_BANK1 to R7_BANK1 registers were not saved and the value of these registers are destroyed.
In case of using these macros, you must run the program before interruption with RB=0, or modify these macros to
save/restore R0_BANK1 to R7_BANK1 registers.

Section 3 Compiler

Rev.4.00 2007.02.02 3-8
REJ05B0463-0400

3.1.2 Definitions of Interrupt Functions (with Options)

Description:

Options available in definitions of interrupt functions are "specify stack switching" and "specify trap instruction return",
and "specify register bank".
By using "specify stack switching," when an external interrupt occurs the stack pointer is switched to the specified address,
and the stack is used to execute the interrupt function. On return, the stack pointer is returned to its position at the time of
the interrupt (figure 3.1). In using this option, a sufficient margin must be secured for the stack of the interrupted function
to be used by the interrupt function.
By using the "specify trap instruction return" option, the TRAPA instruction is used for returns. If this option is not
specified, the RTE instruction is used for returns.
SH-2A and SH2A-FPU have build-in register banks for quickly saving and restoring registers during interrupt processing.
By using the "specify register bank" option, the compiler generates the code for saving and restoring registers, assuming
that the register bank is available.
In particular, the bank target registers (R0 to R14, GBR, MACH, MACL, and PR) are automatically saved when an
interrupt exception occurs. This suppresses the generation of the save code in the interrupt function.
The RESBANK instruction is used for restoring the bank target registers.

• Format:

#pragma interrupt (<function name>[(<Interrupt specification>)][,<function name> [(<Interrupt specification>)]...])

Table 3.1 Interrupt Specifications

No. Item Format Option Specifications

1 Stack

Switching
specification

sp= { <variable> |
&<variable> |
<constant> |
<variable>+<
constant> |
&<variable>+
<constant>
}

Specifies an address of a new stack
using variable or constant

<variable>: Variable (pointer type)

&<variable>: Variable address (object
type)

<constant>: Constant

2 TRAP instruction

Return
specification

tn= <constant> Specifies the end with the TRAPA
instruction.

<constant>: Constant value (TRAP
vector number)

3 Register bank
specification

resbank None Suppresses the output of the register
save code for the following registers:

R0 to R14, GBR, MACH, MACL, PR

If "tn" is not specified, the RESBANK
instruction is generated before the RTE
instruction.

Example of use:

Example 1

The interrupt function handler2 is declared. This function uses the array STK as a stack (figure 3.1), and on completion of
processing returns control via the TRAPA#63 instruction.

Section 3 Compiler

Rev.4.00 2007.02.02 3-9
REJ05B0463-0400

C language code

extern int STK[100];

int *ptr = STK + 100;

#pragma interrupt(handler2(sp=ptr, tn=63))

 /* Declares interrupt function */

void handler2(void)

{

 : /* Describes interrupt function processing */

 :

}

Expanded into assembly language code

 .IMPORT _STK

 .EXPORT _ptr

 .EXPORT _handler2

 .SECTION P,CODE,ALIGN=4

handler2: ; function: handler2

 ; frame size=4

 MOV.L R0,@-R15

 MOV.L L217,R0 ; _ptr

 MOV.L @R0, R0

 MOV.L R15,@-R0

 MOV R0,R15

 : ; Saves the work registers

 : ; Interrupt function processing

 : ; Restores the work registers

 MOV.L @R15+,R15

 MOV.L @R15+,R0

 TRAPA #63

L217 :

 .DATA.L _ptr

 .SECTION D,DATA,ALIGN=4

_ptr: ; static: ptr

 .DATA.L H'00000190+ STK

 .END

Section 3 Compiler

Rev.4.00 2007.02.02 3-10
REJ05B0463-0400

Figure 3.1 Example of Stack Use by an Interrupt Function

Example 2

C language code

#pragma interrupt(handler(resbank))

double flag1;

int flag2;

void handler()

{

 flag1 = 1;

 flag2 = 1;

}

Higher address↓

Within the interrupt processing

STK[0]

:

:

R15 before interrupt

End of interrupt processing
(Immediately before executing

the TRAPA#63 instruction)

Immediately after interrupt

STK[0]

:

:

STK[99]

Higher address↓

Lower address↑

SP→

SP→ SP→

Stack area
for interrupt
function

Stack area

for interrupted

PC before interrupt

SR before interrupt

Lower address↑

RO before interrupt

PC before interrupt

SR before interrupt

PC before interrupt

SR before interrupt

Section 3 Compiler

Rev.4.00 2007.02.02 3-11
REJ05B0463-0400

Expanded into assembly language code ("-cpu=sh2afpu" specified)

_handler:

 ; Does not output the save code for the bank target

 ; work registers.

 FMOV.S FR8,@-R15 ; Saves the work registers other than the bank target

 FMOV.S FR9,@-R15 ; registers.

 MOVA L11,R0

 MOV #1,R4

 FMOV.S @R0+,FR8

 MOV.L L11+8,R1

 FMOV.S @R0,FR9

 MOV.L L11+12,R6

 FMOV.S FR9,@-R1

 FMOV.S FR8,@-R1

 MOV.L R4,@R6

 FMOV.S @R15+,FR9 ; Restores the work registers other than the

 FMOV.S @R15+,FR8 ; bank target registers.

 RESBANK ; Restores the bank target registers.

 RTE

 NOP

Important Information:

(1) The "resbank" specification is valid when "cpu=sh2a|sh2afpu" is specified.

(2) The register bank must be enabled before an interrupt occurs in the function with "resbank" specified.

(3) If you specify "resbank" and "tn", neither the register save code nor the RESBANK instruction will be generated. In
this case, specify that the RESBANK instruction is generated in the trap routine.

(4) When the registers are restored from the function with "resbank" specified, the variable values specified in "#pragma
global_register" return to the values before the interrupt even if they were changed during interrupt processing.

Section 3 Compiler

Rev.4.00 2007.02.02 3-12
REJ05B0463-0400

3.1.3 Creating a Vector Table

Description:

A vector table can be created in the C language by making the following settings.

(1) An array for use with the vector table is prepared, and an exception processing function pointer is specified for each
element in the array.

(2) After compiling the file, the start address of the vector table is specified to link the file.

Example of use:

C language code: vect_table.c

extern void reset(void); /* Power-on reset processing function */

extern void warm reset(void); /* Manual reset processing function */

extern void irq0(void); /* IRQ0 interrupt processing function */

extern void irq1(void); /* IRQ1 interrupt processing function */

 :

 :

void(* const vect_table[])(void) = {

 reset, /* Start address of power-on reset */

 0, /* Stack pointer of power-on reset */

 warm reset, /* Start address of manual reset */

 0, /* Stack pointer of manual reset */

 :

 :

 irq0, /* Vector number 64 */

 irq1, /* Vector number 65 */

 :

 :

};

Batch file
shcΔ-section=c=VECTΔvect_table

shcΔresetΔwarm_resetΔirq0Δirq1 …

optlnkΔ-nooptΔ-subcommand=link.sub

Section 3 Compiler

Rev.4.00 2007.02.02 3-13
REJ05B0463-0400

The contents of link.sub are as follows.

 sdebug

 input vect_table

 input reset

 input warm_reset

 input irq0,irq1

 …

 output sample.abs

 start VECT/0,P,C,D/0400,B/0F000000

 exit

By compiling vect_table.c, a relocatable object file vect table.obj is generated for the initialization data section (VECT)
only.
The section VECT is set to the start address H'0 and linked together with other files, to obtain the load module file
sample.abs.

Expanded into assembly language code: vect_table.src

 .IMPORT _reset

 .IMPORT _warm_reset

 .IMPORT _irq0

 .IMPORT _irq1

 .EXPORT _vect_table

 .SECTION VECT,DATA,ALIGN=4

_vect_table: ; static: vect_table

 .DATA.L _reset

 .DATA.L H'00000000

 .DATA.L _warm_reset

 .DATA.L H'00000000

 :

 :

 .DATA.L _irq0, _irq1

 :

 :

 .END

Important Information:

(1) In the event of an interrupt, the operation of SH-3, SH3-DSP, SH-4, SH-4A and SH4AL-DSP differs from that of SH-1,
SH-2, SH-2E,SH-2A, SH2A-FPU, and SH2-DSP, and an interrupt handler is necessary.

(2) The vector table must be assigned to a defined absolute address, and so here it is created as an independent file; but by
using section-switching functions, it can be included in a file with other modules. For details, refer to section 3.7,
Section Name Specification.

Section 3 Compiler

Rev.4.00 2007.02.02 3-14
REJ05B0463-0400

3.2 Built-in Functions

The built-in functions shown in table 3.2 are provided to enable representation in C of instructions inherent to the SH-1,
SH-2, SH-2E, SH-2A, SH2A-FPU, SH2-DSP, SH-3, SH3-DSP, SH-4, SH-4A, and SH4AL-DSP. When using these
built-in functions, the standard header file "machine.h", "smachine.h" or "umachine.h" must be included.
The contents of <machine.h> are divided as follows according to the execution mode of SH-3, SH3-DSP, SH-4, SH-4A,
and SH4AL-DSP:

(1) <machine.h>: All built-in functions

(2) <smachine.h>: Built-in functions that can be used only in the privileged mode

(3) <umachine.h>: Built-in functions other than those in (2)

Table 3.2 List of Built-in Functions (1)

No. Item Function Available CPU Available
Execution Mode

See
Section:

1 Sets the SR.

2 Refers to the SR.

3 Sets the interrupt mask.

4

Status register
(SR)

Refers to the interrupt
mask.

All CPUs

Privileged mode
only

3.2.1

5 Sets the VBR.

6

Vector base
register (VBR) Refers to the VBR.

All CPUs Privileged mode
only

3.2.2

7 Sets the GBR.

8 Refers to the GBR.

9 Refers to byte data at
the address specified
by the GBR and offset.

10 Refers to word data at
the address specified
by the GBR and offset.

11 Refers to long word
data at the address
specified by the GBR
and offset.

12

Global base
register (GBR)

Sets byte data at the
address specified by
the GBR and offset.

All CPUs All execution modes 3.2.3

3.2.4

13 Sets word data at the
address specified by
the GBR and offset.

Section 3 Compiler

Rev.4.00 2007.02.02 3-15
REJ05B0463-0400

Table 3.2 List of Built-in Functions (2)

No. Item Function Available CPU Available
Execution Mode

See
Section:

14 Sets long word data at
the address specified
by the GBR and offset.

15 ANDs byte data at the
address specified by
GBR.

16 ORs byte data at the
address specified by
GBR.

17 XORs byte data at the
address specified by
GBR.

18

Global base
register (GBR)

Tests byte data at the
address specified by
GBR.

All CPUs All execution modes 3.2.3

3.2.4

19 SLEEP instruction Privileged mode
only

20 TAS instruction

21

System control

TRAPA instruction

All CPUs

All execution modes

3.2.5

22 Multiplication and
accumulation in word
units

All CPUs

23 Multiplication and
accumulation in long
word units

Excluding cpu=sh1

All execution modes 3.2.6

24 Ring-buffer compatible
multiplication and
accumulation in word
units

All CPUs

25

Multiply-and-accu
mulate operations

Ring-buffer compatible
multiplication and
accumulation in long
word

Excluding cpu=sh1

All execution modes 3.2.7

26 Upper 32 bits of
multiplication of signed
64-bit data

27 Lower 32 bits of
multiplication of signed
64-bit data

Excluding cpu=sh1 All execution modes 3.2.8

28

64-bit multiplication

Upper 32 bits of
multiplication of
unsigned 64-bit data

Excluding cpu=sh1 All execution modes 3.2.9

29 Lower 32 bits of
multiplication of
unsigned 64-bit data

Section 3 Compiler

Rev.4.00 2007.02.02 3-16
REJ05B0463-0400

Table 3.2 List of Built-in Functions (3)

No. Item Function Available CPU Available
Execution Mode

See
Section:

30 SWAP.B instruction

31 SWAP.W instruction

32

Swapping upper
and lower data bits

Swaps upper and lower
bits of 4-byte data.

All CPUs All execution modes 3.2.10

33 System call Performs system call. All CPUs All execution modes 3.2.11

34 Prefetch instruction Prefetch instruction Only when cpu=sh2a,
sh2afpu, sh3,
sh3dsp, sh4, sh4a,
sh4aldsp is specified

All execution modes 3.2.12

35 LDTLB instruction Expands the LDTLB. Only when cpu=sh3,
sh3dsp, sh4, sh4a,
sh4aldsp is specified

Privileged mode
only

3.2.13

36 NOP instruction Expands the NOP. All CPUs All execution modes 3.2.14

37 Sets the FPSCR.

38

Floating-point

unit Refers to the FPSCR.

Only when cpu=sh2e,
sh2afpu, sh4, sh4a is
specified

All execution modes

39 Single-precision
floating point

FIPR instruction

40 FTRV instruction

41 Performs 4-dimensional
vector to 4 x 4 matrix
translation and
4-dimensional vector
addition.

42 Performs 4-dimensional
vector to 4 x 4 matrix
translation and
4-dimensional vector
subtraction.

Only when cpu=sh4,
sh4a is specified

43 Performs 4-dimensional
vector addition.

44 Performs 4-dimensional
vector subtraction.

Only when
cpu=sh2afpu, sh4,
sh4a is specified

45 Performs 4x4 matrix
multiplication.

46 Performs 4x4 matrix
multiplication and
addition.

47

vector operation

Performs 4x4 matrix
multiplication and
subtraction.

Only when cpu=sh4,
sh4a is specified

All execution modes

3.2.15

48 Extension register
access

Loads data to extension
registers.

Only when cpu=sh4,
sh4a is specified

All execution modes 3.2.16

49 Restores data from
extension registers.

Section 3 Compiler

Rev.4.00 2007.02.02 3-17
REJ05B0463-0400

Table 3.2 List of Built-in Functions (4)

No. Function Description Available CPU Available
Execution Mode

See
Section:

50 Absolute value

51 MSB detection

52 Arithmetic shift

53 Rounding-off operation

54 Bit pattern copy

All execution modes

55 Modulo addressing
setup

56 Modulo addressing
cancellation

Privileged mode
only

57

DSP instruction

CS bit setting (DSR
register)

When sh2dsp,
sh3dsp, sh4aldsp,
and dspc are
specified

All execution modes

3.2.17

58 Sine and cosine Sine and cosine
calculation

Only when cpu=sh4a
is specified

All execution modes 3.2.18

59 Reciprocal of the
square root

Reciprocal of the
square root

Only when cpu=sh4a
is specified

All execution modes 3.2.19

60 Instruction cache
invalidation

Instruction cache block
invalidation

Only when cpu=sh4a,
sh4aldsp is specified

All execution modes 3.2.20

61 Cache block
invalidation

62 Cache block purge

63

Cache block
operations

Cache block write-back

Only when cpu=sh4a,
sh4aldsp is specified

All execution modes 3.2.21

64 Instruction cache
prefetch

Prefetch of the
instruction cache block

Only when cpu=sh4a,
sh4aldsp is specified

All execution modes 3.2.22

65 System
synchronization

Synchronizes data
operations.

Only when cpu=sh4a,
sh4aldsp is specified

All execution modes 3.2.23

Section 3 Compiler

Rev.4.00 2007.02.02 3-18
REJ05B0463-0400

Table 3.2 List of Built-in Functions (5)

No. Function Description Available CPU Available
Execution Mode

See
Section:

66 References the T bit.

67 Clears the T bit.

68

Referencing and
setting the T bit

Sets the T bit.

All CPUs All execution modes 3.2.24

69 Cutting out the
middle of the
concatenated
register

Cuts out the middle 32
bits from the
concatenated 64-bit
data.

All CPUs All execution modes 3.2.25

70 Adds two data items
and the T bit, and
applies the carry to the
T bit.

71 Adds two data items
and the T bit, and
references the carry.

72 Adds two data items,
and applies the carry to
the T bit.

73

Addition with carry

Adds two data items,
and references the
carry.

All CPUs All execution modes 3.2.26

74 Subtracts data2 and the
T bit from data1, and
applies the borrow to
the T bit.

75 Subtracts data2 and the
T bit from data1, and
references the borrow.

76 Subtracts data2 from
data1, and applies the
borrow to the T bit.

77

Subtraction with
borrow

Subtracts data2 from
data1, and references
the borrow.

All CPUs All execution modes 3.2.27

78 Sign inversion Subtracts the data and
the T bit from 0, and
applies the borrow to
the T bit.

All CPUs All execution modes 3.2.28

79 Performs a one-step
division of data1 by
data2, and applies the
result to the T bit.

80

One-bit division

Performs the
initialization for the
signed division of data1
by data2, and
references the T bit.

All CPUs All execution modes 3.2.29

81 Performs the
initialization for the
unsigned division.

Section 3 Compiler

Rev.4.00 2007.02.02 3-19
REJ05B0463-0400

Table 3.2 List of Built-in Functions (6)

No. Function Description Available CPU Available
Execution Mode

See
Section:

82 Rotates the data left by
one bit, and then
applies the bits that
moved outside the
operand to the T bit.

83 Rotates the data right
by one bit, and then
applies the bits that
moved outside the
operand to the T bit.

84 Rotates the data left by
one bit including the T
bit, and then applies the
bits that moved outside
the operand to the T bit.

85

Rotation

Rotates the data right
by one bit including the
T bit, and then applies
the bits that moved
outside the operand to
the T bit.

All CPUs All execution modes 3.2.30

86 Shifts the data to the
left by one bit, and then
applies the bits that
moved outside the
operand to the T bit.

87 Logically shifts the data
to the right by one bit,
and then applies the
bits that moved outside
the operand to the T bit.

88

Shift

Arithmetically shifts the
data to the right by one
bit, and then applies the
bits that moved outside
the operand to the T bit.

All CPUs All execution modes 3.2.31

89 Saturation operation on
signed one-byte data

90 Saturation operation on
signed two-byte data

91 Saturation operation on
unsigned one-byte data

92

Saturation
operation

Saturation operation on
unsigned two-byte data

Only when cpu=sh2a,
sh2afpu is specified

All execution modes 3.2.32

93 Referencing and
setting the TBR

Sets the data in the
TBR.

Only when cpu=sh2a,
sh2afpu is specified

All execution modes 3.2.33

94 References the value of
the TBR.

Section 3 Compiler

Rev.4.00 2007.02.02 3-20
REJ05B0463-0400

3.2.1 Setting and Referencing to the Status Register

Description:

The functions shown in table 3.3 are provided for use in setting and referencing to the status register.

Table 3.3 List of Built-in Functions for the Status Register

No. Function Format Description

1 Status register setting void set_cr(int cr) Sets cr (32 bits) in the
status register.

2 Status register reference int get_cr(void) Refers to the status
register.

3 Sets the interrupt mask void set_imask(int
mask)

Sets mask (4 bits) in the
interrupt mask (4 bits).

4 Refers to the interrupt
mask

int get_imask(void) Refers to the interrupt
musk status (4 bits)

Example of use:

By setting the interrupt mask to the highest value (15), the function func1 disables external interrupts during processing.
After the completion of processing, the original interrupt mask level is restored.

C language code

#include <machine.h>

void func1(void)

{

 int mask; /* Defines the storage area for interrupt mask level */

 mask = get imask(); /* Saves interrupt mask level */

 set imask(15); /* Sets the interrupt mask level to 15 */

 : /* Performs processing with interrupt disabled */

 :

 set imask(mask); /* Restores interrupt mask level */

}

Section 3 Compiler

Rev.4.00 2007.02.02 3-21
REJ05B0463-0400

Expanded into assembly language code

 .EXPORT _func1

 .SECTION P,CODE,ALIGN=4

_func1: ; function: func1

 ; frame size=0

 MOV.W L216,R3 ; H'FF0F

 STC SR,R0

 SHLR2 R0

 SHLR2 R0

 AND #15,R0

 MOV R0,R4

 STC SR,R0

 AND R3,R0

 OR #240,R0

 LDC R0,SR

 :

 :

 MOV R4,R0

 AND #15,R0

 SHLL2 R0

 SHLL2 R0

 STC SR,R2

 MOV R3,R1

 AND R1,R2

 OR R2,R0

 LDC R0,SR

 RTS

 NOP

L216:

 .DATA.W H'FF0F

 .END

Section 3 Compiler

Rev.4.00 2007.02.02 3-22
REJ05B0463-0400

3.2.2 Setting and Referencing to the Vector Base Register

Description:

Table 3.4 shows the functions provided for setting and reading the vector base register.

Table 3.4 List of Built-in Functions for the Vector Base Register

No. Function Format Description

1 Vector base register setting void set_vbr(void **base) Sets **base (32 bits) in
the vector base
register.

2 Vector base register
reference

void **get_vbr(void) Refers to the vector
base register.

Example of use:

Upon reset, the vector base register (VBR) is initialized to 0. If the vector table is begun at an address other than 0, the
following function should be set at the start address (H'00000008) on manual reset, so that if manual reset is performed
when the system is started, exception processing can be performed using the vector table.

C language code

#include <machine.h>

#define VBR 0x0000FC00 /* Defines the start address of vector table */

void warm reset(void)

{

 set_vbr((void **)VBR);

 /* Sets the vector base register to the start */

 /* address of vector table */

}

Section 3 Compiler

Rev.4.00 2007.02.02 3-23
REJ05B0463-0400

Expanded into assembly language code

 .EXPORT _warm_reset

 .SECTION P,CODE,ALIGN=4

_warm reset: ; function: warm reset

 ; frame size=0

 MOV.L L215,R3 ; H'0000FC00

 LDC R3,VBR

 RTS

 NOP

L215:

 .DATA.L H'0000FC00

 .END

Important Information:

The vector base register should be changed only after setting the vector table. If the order is reversed, and an external
interrupt occurs while setting the vector table, a system crash will occur.

Section 3 Compiler

Rev.4.00 2007.02.02 3-24
REJ05B0463-0400

3.2.3 Accessing I/O Registers(1)

Description:

The functions shown in table 3.5 are provided for use in manipulating the global base register (GBR) to access I/O
registers.

Table 3.5 List of Built-in Functions for Use with the Global Base Register

No. Function Format Description

1 Global base register setting void set_gbr(void
**base)

Sets *base (32 bits) in the global
base register

2 Global base register
reference

int *get_gbr(void) Refers to the global base register

3 Reference of byte data at
the address specified by
GBR and offset

unsigned char
gbr_read_byte(int
offset)

Refers to the byte data (8 bits) at the
address specified by adding the GBR
and the offset

4 Reference of word data at
the address specified by
GBR and offset

unsigned short
gbr_read_word(int
offset)

Refers to the word data (16 bits) at
the address specified by adding the
GBR and the offset

5 Reference of long-word
data at the address
specified by GBR and offset

unsigned long
gbr_read_long(int
offset)

Refers to the long- word data (32
bits) at the address specified by
adding the GBR and the offset

6 Setting of byte data at the
address specified by GBR
and offset

void gbr_write_byte(int
offset,unsigned char
data)

Specifies the word data (8 bits) at the
address specified by adding the GBR
and the offset

7 Setting of word data at the
address specified by GBR
and offset

void gbr_write_word(int
offset,unsigned short
data)

Specifies the word data (16 bits) at
the address specified by adding the
GBR and the offset

8 Setting of long-word data at
the address specified by
GBR and offset

void gbr_write_long(int
offset,unsigned long
data)

Specifies the word data (32 bits) at
the address specified by adding the
GBR and the offset

9 AND operation of byte data
at the address specified by
GBR and offset

void gbr_and_byte(int
offset,unsigned char
mask)

ANDs mask and the byte data at the
address specified by the GBR and
the offset, and sets the result in offset

10 OR operation of byte data
at the address specified by
GBR and offset

void gbr_or_byte(int
offset,unsigned char
mask)

ORs mask and the byte data at the
address specified by the GBR and
the offset, and sets the result in offset

11 XOR operation of byte data
at the address specified by
GBR and offset

void gbr_xor_byte(int
offset,unsigned char
mask)

XORs mask and the byte data at the
address specified by the GBR and
the offset, and sets the result in offset

12 Test of byte data at the
address specified by GBR
and offset

void gbr_tst_byte(int
offset,unsigned char
mask)

ANDs mask and the byte data at the
address specified by the GBR and
the offset, compares the result with 0,
and set or clear the T bit depending
on the comparison result

Section 3 Compiler

Rev.4.00 2007.02.02 3-25
REJ05B0463-0400

Notes: (1) When the access size is a word, base should be set to a multiple of 2; when the access size is a
long word, it should be set to a multiple of 4.

 (2) For numbers 3 through 8 in table 3.5, the offset must be a constant. An offset of up to +255 bytes
may be specified when the access size is a byte, and an offset of up to +510 bytes can be
specified when the access size is a word. In addition, an offset of up to +1020 bytes can be
specified when the access size is a long word.

 (3) The mask must be a constant. The mask can be specified within the range 0 to +255.
 (4) The global base register is a control register, and so the C/C++ compiler does not save and restore

values on function entry and exit. When changing the global base register value, the user must
save and restore the register value on function entry and exit.

 (5) This function is invalid when gbr=auto is specified. (Ver.7 or later)

Example of use:

The following is an example of a timer driver using the SH-1internal 16-bit integrated timer pulse unit.

C language code

#include <machine.h>

#define IOBASE 0x05fffec0 /* Defines I/O base address */

#define TSR (0x05ffff07 - IOBASE)

 /* Clears the compare match flag of the */

 /* register */

#define TSRCLR (unsigned char)0xf8

 /* Clears the compare match flag of the */

 /* timer status flag register */

void tmrhdr(void)

{

 void *gbrsave; /* Defines the stack area for the global */

 /* base register */

 gbrsave = get gbr(); /* Saves the global base register */

 set gbr((void *)IOBASE);

 /* Specifies I/O base register in the global */

 /* register */

 gbr read byte(TSR); /* Reads the timer status flag register to */

 /* clear it */

 gbr and byte(TSR, TSRCLR);

 /* Clears the compare match flag of the */

 /* timer status flag register */

 set gbr(gbrsave); /* Restores the global base register */

}

Section 3 Compiler

Rev.4.00 2007.02.02 3-26
REJ05B0463-0400

Expanded into assembly language code

 .EXPORT _tmrhdr

 .SECTION P,CODE,ALIGN=4

_tmrhdr: ; function: tmrhdr

 ; frame size=4

 ADD #-4,R15

 STC GBR,R1

 MOV.L L11,R5 ; H'05FFFEC0

 MOV.L R1,@R15

 LDC R5,GBR

 MOV.B @(71,GBR),R0

 MOV #71,R0 ; H'00000047

 AND.B #248,@(R0,GBR)

 MOV.L @R15,R2

 LDC R2,GBR

 RTS

 ADD #4,R15

L11:

 .DATA.L H'05FFFEC0

Section 3 Compiler

Rev.4.00 2007.02.02 3-27
REJ05B0463-0400

3.2.4 Accessing I/O Registers(2)

Example of use:

By using the standard library offsetof, the need to calculate the global base register relative offset in advance is
eliminated.

C language code

#include <stddef.h>

#include <machine.h>

struct IOTBL{

 char cdata1; /* offset 0 */

 char cdata2; /* offset 1 */

 char cdata3; /* offset 2 */

 short sdata1; /* offset 4 */

 int idata1; /* offset 8 */

 int idata2; /* offset 12 */

} table;

void f (void)

{

 void *gbrsave; /* Defines the stack area for the global */

 /* base register */

 gbrsave = get gbr(); /* Saves the global base register */

 set gbr(&table); /* Sets the table start address in the */

 /* global base register */

 :

 :

 gbr and byte(offsetof(struct IOTBL, cdata2), 0x10);

 /* ANDs table.cdata2 and 0x10, and */

 /* saves the result in table.cdata2 */

 :

 :

 set gbr(gbrsave); /* Restores the global base register */

}

Section 3 Compiler

Rev.4.00 2007.02.02 3-28
REJ05B0463-0400

Expanded into assembly language code

 .EXPORT _table

 .EXPORT _f

 .SECTION P,CODE,ALIGN=4

_f: ; function: f

 ; frame size=0

 MOV.L L217+2,R3 ; table

 MOV #1,R0

 STC GBR,R4

 LDC R3,GBR

 :

 :

 AND.B #16,@(R0,GBR)

 :

 :

 RTS

 LDC R4,GBR

L217 :

 .RES.W 1

 .DATA.L _table

 .SECTION B,DATA,ALIGN=4

_table: ; static: table

 .RES.L 4

 .END

Section 3 Compiler

Rev.4.00 2007.02.02 3-29
REJ05B0463-0400

3.2.5 System Control

Description:

Table 3.6 shows the functions provided as special instructions for the Renesas Technology SuperH RISC engine family.

Table 3.6 List of Built-in Functions for Special Instructions

No. Function Format Description

1 SLEEP instruction void sleep(void) Expands into the SLEEP
instruction

2 TAS instruction int tas(char *addr) Expands into TAS.B @addr

3 TRAPA instruction int trapa(int trap_no) Expands into TRAPA #trap_no

4 OS system call - Refer to section 3.2.11

5 PREF instruction - Refer to section 3.2.12

Notes: (1) In the table, trap_no must be a constant.

 (2) The built-in function trapa starts an interrupt function from the C language program. Create the
called function as an interrupt function.

Example of use:

A SLEEP instruction is issued to put the CPU into a low-power consumption mode. In the low-power consumption mode,
the internal state of the CPU is saved, execution of the instruction immediately following is halted, and the system waits
for an interrupt request. When an interrupt occurs, the CPU leaves the low-power consumption mode.

C language code

#include <machine.h>

void func(void)

{

 :

 :

 sleep(); /* Issues the SLEEP instruction */

 :

 :

}

Expanded into assembly language code

 .EXPORT _func

 .SECTION P,CODE,ALIGN=4

_func: ; function: func

 ; frame size=0

 SLEEP

 RTS

 NOP

 .END

Section 3 Compiler

Rev.4.00 2007.02.02 3-30
REJ05B0463-0400

3.2.6 Multiply-and-Accumulate Operations (1)

Description:

Table 3.7 shows the functions provided for multiply-and-accumulate operations.

Table 3.7 List of Built-in Functions for Multiply-and-Accumulate Operations

No. Function Format Description

1 Multiplication and
accumulation in word
units

int macw(short *ptr1,

short *ptr2,unsigned int

 count)

Performs multiplication and
accumulation between word data
*ptr1 (16 bits) and word data *ptr2
(16 bits) for the number of times
specified by count

2 Multiplication and
accumulation in long
word units

int macl(int *ptr1,

 int *ptr2,unsigned int

 count)

Performs multiplication and
accumulation between long-word data
*ptr1 (32 bits) and long-word data
*ptr2 (32 bits) for the number of
times specified by count

The word multiply-and-accumulate function macw is supported in all the CPUs SH-1, SH-2, SH-2E, SH-2A, SH2A-FPU,
SH2-DSP, SH-3, SH3-DSP, SH-4, SH-4A, and SH4L-DSP. The long-word multiply-and-accumulate function macl is
supported in the CPUs other than SH-1.
The built-in multiple-and-accumulate functions do not perform parameter checks. Tables for data for
multiply-and-accumulate operations should be aligned by two bytes for word operations, and by four bytes for long word
operations.

Example of use:

A multiply-and-accumulate operation is performed. If the number of executions is 32 or less, they are performed by
repetition of the MAC instruction; if 33 or more executions are performed, or if the number of executions is a variable, the
MAC instruction is looped.

C language code

#include <machine.h>

short a[SIZE];

short b[SIZE];

Void func(void) a[0] * b[0] +

{ a[1] * b[1] +

 int x; a[2] * b[2] +

 : : : +

 : a[SIZE-2] * b[SIZE-2] +

 x = macw(a,b,SIZE); a[SIZE-1] * b[SIZE-1]

 :

 :

}

Section 3 Compiler

Rev.4.00 2007.02.02 3-31
REJ05B0463-0400

Expanded into assembly language code

• case of size ≤ 32 : Achieved by executing the MAC instruction repeatedly

 .EXPORT _func

 .SECTION P,CODE,ALIGN=4

_func: ; function: func

 ; frame size=8

 STS.L MACH,@-R15

 STS.L MACL,@-R15

 MOV.L L217+2,R3 ; _b

 CLRMAC

 MOV.L L218+6,R2 ; _a

 MAC.W @R2+,@R3+

 : ; Repeats for SIZE

 :

 STS MACL,R0

 LDS.L @R15+,MACL

 RTS

 LDS.L @R15+,MACH

L218 :

 .RES.W 1

 .DATA.L _b

 .DATA.L _a

Section 3 Compiler

Rev.4.00 2007.02.02 3-32
REJ05B0463-0400

• case of size > 32 or variable:Achieved by the loop function of the MAC instruction

 .EXPORT _func

 .SECTION P,CODE,ALIGN=4

_func: ; function: func

 ; frame size=8

 STS.L MACH,@-R15

 MOV #33,R3

 STS.L MACL,@-R15

 TST R3,R3

 CLRMAC

 BT L218

 MOV.L L220+2,R2 ; _b

 SHLL R3

 MOV.L L220+6,R1 ; _a

 ADD R1,R3

L219 :

 MAC.W @R1+,@R2+

 CMP/HI R1,R3

 BT L219

L218 :

 STS MACL,R0

 LDS.L @R15+,MACL

 RTS

 LDS.L @R15+,MACH

L220 :

 .RES.W 1

 .DATA.L _b

 .DATA.L _a

Section 3 Compiler

Rev.4.00 2007.02.02 3-33
REJ05B0463-0400

3.2.7 Multiply-and-Accumulate Operations (2)

Description:

Table 3.8 shows functions provided for ring buffer-compatible multiply-and-accumulate operations.

Table 3.8 List of Built-in Functions for Ring Buffer-Compatible Multiply-and-Accumulate Operations

No. Function Format Description

1 Ring-buffer
compatible
multiplication and
accumulation in word
units

int macwl(short *ptr1,

short *ptr2,unsigned int count,

 unsigned int mask)

Performs multiplication and
accumulation between word data
*ptr1 (16 bits) and word data *ptr2
(16 bits) for the number of times
specified by count

2 Ring-buffer
compatible
multiplication and
accumulation in long-
word units

int macll(int *ptr1,

 int *ptr2,unsigned int count,

 unsigned int mask)

Performs multiplication and
accumulation between long-word
data *ptr1 (32 bits) and long-word
data *ptr2 (32 bits) for the number
of times specified by count

The ring-buffer compatible word multiply-and-accumulate function macwl is supported in all the CPUs SH-1, SH-2,
SH-2E, SH-2A, SH2A-FPU, SH2-DSP, SH-3, SH3-DSP, SH-4, SH-4A, and SH4AL-DSP, in SH-2, SH-2E, SH-3, and
SH-4. The ring-buffer compatible long word multiply-and-accumulate function macll is supported in the CPUs other than
SH-1.
The built-in ring buffer-compatible multiple-and-accumulate functions do not perform parameter checks. The first
parameter should be aligned by two bytes in the case of a word multiply-and-accumulate operation, and by four bytes for
long word operations; the second parameter should be aligned for twice the size of the ring buffer mask.

Example of use:

A ring buffer-compatible multiply-and-accumulate operation is performed. The second parameter must be aligned to twice
the size of the ring buffer, and so a separate file is used.

C language code:macwl.c

#include <machine.h>

 a[0]

*

b[0]

+

short a[SIZE]; a[1] * b[1] +

extern short b[]; : : +

 a[7] * b[7] +

void func(void) a[8] * b[0] +

{ a[9] * b[1] +

 int x; : : +

 : a[15] * b[7] +

 : : : +

 x = macwl(a,b,SIZE,~0x10); a[SIZE-8] * b[0] +

 a[SIZE-7] * b[1] +

 : : : +

 : a[SIZE-1] * b[7]

}

Section 3 Compiler

Rev.4.00 2007.02.02 3-34
REJ05B0463-0400

Expanded into assembly language code:macwl.src

 .IMPORT _b

 .EXPORT _a

 .EXPORT _func

 .SECTION P,CODE,ALIGN=4

_func: ; function: func

 ; frame size=8

 STS.L MACH,@-R15

 MOV #33,R3

 STS.L MACL,@-R15

 TST R3,R3

 CLRMAC

 BT L218

 MOV.L L220+6,R1 ; _b

 SHLL R3

 MOV.L L220+6,R4 ; _a

 MOV #-17,R2

 ADD R4,R3

L219 :

 MAC.W @R4+,@R1+

 AND R2,R1

 CMP/HI R4,R3

 BT L219

L218 :

 STS MACL,R0

 LDS.L @R15+,MACL

 RTS

 LDS.L @R15+,MACH

L220 :

 .RES.W 1

 .DATA.L _b

 .DATA.L _a

 .SECTION B,DATA,ALIGN=4

_a : ; static: a

 .RES.W 33

 .END

Section 3 Compiler

Rev.4.00 2007.02.02 3-35
REJ05B0463-0400

3.2.8 64-Bit Multiplication (1)

Table 3.9 shows functions provided for signed 64-bit multiplication .

Table 3.9 List of Built-in Functions for Signed 64-Bit Multiplication

No. Function Format Description

1 Upper 32-bits of
multiplication of signed
64-bit data

long dmuls_h(long data1,
 long data2)

Signed 32-bit × signed 32-bit
performs multiplication of
signed 64-bit data, and
returns a result of the upper
32-bits

2 Lower 32-bits of
multiplication of signed
64-bit data

long dmuls_l(long data1,
 long data2)

Signed 32-bit × signed 32-bit
performs multiplication of
signed 64-bit data, and
returns a result of the lower
32-bits

Multiplication of signed 64-bit data is supported by all except SH-1.

Example of use:

C language code

#include <machine.h>

extern long data1,data2;

extern long result;

void main(void)

{

 result = dmuls_h(data1,data2);

 /* Performs multiplication of signed 64-bit data */

}

Expanded into assembly language code

 .IMPORT _result

 .IMPORT _data1

 .IMPORT _data2

 .EXPORT _main

 .SECTION P,CODE,ALIGN=4

_main: ; function: main

 ; frame size=8

 STS.L MACL,@-R15

 STS.L MACH,@-R15

 MOV.L L11+2,R2 ; _data1

 MOV.L L11+6,R5 ; _data2

 MOV.L @R2,R6

 MOV.L @R5,R2

 DMULS.L R6,R2

Section 3 Compiler

Rev.4.00 2007.02.02 3-36
REJ05B0463-0400

 MOV.L L11+10,R6 ; _result

 STS MACH,R2

 MOV.L R2,@R6

 LDS.L @R15+,MACH

 RTS

 LDS.L @R15+,MACL

L11:

 .RES.W 1

 .DATA.L _data1

 .DATA.L _data2

 .DATA.L _result

 .END

Section 3 Compiler

Rev.4.00 2007.02.02 3-37
REJ05B0463-0400

3.2.9 64-Bit Multiplication (2)

Table 3.10 shows functions provided for unsigned 64-bit multiplication .

Table 3.10 List of Built-in Functions for Unsigned 64-Bit Multiplication

No. Function Format Description

1 Upper 32-bits of
multiplication of
unsigned 64-bit data

long dmulu_h(long data1,

long data2)

Unsigned 32-bit × unsigned
32-bit performs multiplication
of unsigned 64-bit data, and
returns a result of the upper
32-bits

2 Lower 32-bits of
multiplication of
unsigned 64-bit data

long dmulu_l(long data1,

long data2)

Unsigned 32-bit × unsigned
32-bit performs multiplication
of unsigned 64-bit data, and
returns a result of the lower
32-bits

Multiplication of unsigned 64-bit data is supported by all except SH-1.

Example of use:

C language code

#include <machine.h>

extern long data1,data2;

extern long result;

void main(void)

{

 result = dmulu_h(data1,data2);

 /* Performs multiplication of signed 64-bit data */

}

Expanded into assembly language code

 .IMPORT _result

 .IMPORT _data1

 .IMPORT _data2

 .EXPORT _main

 .SECTION P,CODE,ALIGN=4

_main: ; function: main

 ; frame size=8

 STS.L MACL,@-R15

 STS.L MACH,@-R15

 MOV.L L11+2,R2 ; _data1

 MOV.L L11+6,R5 ; _data2

 MOV.L @R2,R6

 MOV.L @R5,R2

 DMULU.L R6,R2

 MOV.L L11+10,R6 ; _result

 STS MACH,R2

Section 3 Compiler

Rev.4.00 2007.02.02 3-38
REJ05B0463-0400

 MOV.L R2,@R6

 LDS.L @R15+,MACH

 RTS

 LDS.L @R15+,MACL

L11:

 .RES.W 1

 .DATA.L _data1

 .DATA.L _data2

 .DATA.L _result

 .END

Section 3 Compiler

Rev.4.00 2007.02.02 3-39
REJ05B0463-0400

3.2.10 Swapping Upper and Lower Data

Table 3.11 shows functions provided for swapping upper and lower data.

Table 3.11 List of Built-in Functions for Ring Buffer-Compatible Multiply-and-Accumulate Operations

No. Function Format Description

1 SWAP.B instruction unsigned short swapb(unsigned
short data)

Swaps the upper and lower 1
byte of 2-byte data

2 SWAP.W instruction unsigned long swapw(unsigned
long data)

Swaps the upper and lower 2
bytes of 4-byte data

3 Swap upper and lower
bits of 4-byte data

unsigned long
end_cnvl(unsigned long data)

Arranges 4-byte data by
single bytes with upper and
lower in reverse order

Example of use:

C language code

#include <machine.h>

extern unsigned short data;

extern unsigned short result;

void main(void)

{

 result = swapb(data);

 /* If data = 0x1234, result = 0x3412.*/

}

Expanded into assembly language code

 .IMPORT _result

 .IMPORT _data

 .EXPORT _main

 .SECTION P,CODE,ALIGN=4

_main: ; function: main

 ; frame size=0

 MOV.L L11,R6 ; _data

 MOV.W @R6,R2

 SWAP.B R2,R6

 MOV.L L11+4,R2 ; _result

 RTS

 MOV.W R6,@R2

L11:

 .DATA.L _data

 .DATA.L result

 .END

Section 3 Compiler

Rev.4.00 2007.02.02 3-40
REJ05B0463-0400

3.2.11 System Call

Description:

The format for built-in functions capable of issuing system calls from a C language program is indicated below. The
number of Parameters for a system call is variable between 0 and 4.
However, TRAPA cannot directly call a C function with an RTE return.
In actual practice, trapa_svc (a C built-in function) should be used to register a handler function (which should be written
in assembly language), and the R0 function code tested to call each routine.
Returns from this routine written in assembly language should be by RTE.

• Format:

ret=trapa_svc(int trap_no, int code,

 [type1 p1[, type2 p2[, type3 p3[, type4 p4]]]])

 trap_no :trap number (specified by a constant)

 code :function code, assigned to R0

 p1 :first parameter, assigned to R4

 p2 :second parameter, assigned to R5

 p3 :third parameter, assigned to R6

 p4 :fourth parameter, assigned to R7

 type1 to type4 :parameter types are integer types([unsigned]char,

 [unsigned]short,[unsigned]int,

 [unsigned]long), or the pointer type

Example of use:

Using this function, an OS system call is issued which can be specified using trap number #63.

C language code

#include <machine.h>

#define SIG SEM 0xffc8

void main(void)

{

 :

 :

 trapa svc(63, SIG SEM, 0x05);

 :

 :

}

Expanded into assembly language code

 .EXPORT _main

 .SECTION P,CODE,ALIGN=4

_main: : ; function: main

 : ; frame size=0

 MOV.L L215+2,R0 ; H'0000FFC8

Section 3 Compiler

Rev.4.00 2007.02.02 3-41
REJ05B0463-0400

 MOV #5,R4

 TRAPA #63

 :

 :

 RTS

 NOP

L215:

 .RES.W 1

 .DATA.L H'0000FFC8

 .END

Vector table definition

void(*const vect[])(void)={

 :

 :

 HDR,....... /* Defines HDR in trap 63 vector */

 :

} ;

Handler (written in assembly language)

 .IMPORT _func

HDR:

 ; Saves the PR and R1 to R7 registers

 ; Selects the function to be called according to the R0 function code

; :

 MOV.L label+2,R0

 JSR @R0

 ; ->If the contents of the R4 to R7 registers are

 ; not destroyed, a correct parameter is passed.

 NOP

; :

 ; Restores the PR and R1 to R7 registers

 RTE ; ->Returns from the exception processing

 ; The return value R0 of func is used as

 ; the return value of trapa_svc

 NOP

label:

 .RES.W 1

 .DATA.L _func

 .END

Section 3 Compiler

Rev.4.00 2007.02.02 3-42
REJ05B0463-0400

3.2.12 Prefetch Instruction

Description:

The format for the built-in function to perform cache prefetching in the SH-2A, SH2A-FPU, SH-3, SH3-DSP, SH-4,
SH-4A, and SH4AL-DSP is shown below. This built-in function is valid only when "-cpu=sh2a", "-cpu=sh2afpu",
"-cpu=sh3" , "-cpu=sh3dsp", "-cpu=sh4" , "-cpu=sh4a" or "-cpu=sh4aldsp" is specified.

• Format:

void prefetch(void *p1)

p1 : prefetch address

Example of use:

C language code

 #include <umachine.h>

 int a[1200];

 f()

 {

 int *pa = a;

 :

 :

 prefetch(pa+8);

 :

 :

 }

Expanded into assembly language code

_f: ; function: f

 :

 :

 ADD #32,R6

 PREF @R6

 :

 :

Section 3 Compiler

Rev.4.00 2007.02.02 3-43
REJ05B0463-0400

3.2.13 LDTLB Instruction

Description:

The format for the built-in function to perform LDTLB expansion in the SH-3, SH3-DSP, SH-4, SH-4A, and SH4AL-DSP
is shown below. This built-in function is valid only when "-cpu=sh3" , "-cpu=sh3dsp", "-cpu=sh4" , "-cpu=sh4a" or
"-cpu=sh4aldsp" is specified.

• Format:

void ldtlb (void)

Example of use:

C language code

#include <machine.h>

void main(void)

{

 ldtlb();

}

Expanded into assembly language code

 .EXPORT _main

 .SECTION P,CODE,ALIGN=4

_main: ; function: main

 ; frame size=0

 LDTLB

 NOP

 NOP

 RTS

 NOP

 .END

Section 3 Compiler

Rev.4.00 2007.02.02 3-44
REJ05B0463-0400

3.2.14 NOP Instruction

Description:

The format for the built-in function to expand into the NOP instruction is shown below.

• Format:

void nop (void)

Example of use:

C language code

#include <machine.h>

void main(void)

{

int a;

 if (a){

 nop();

 }

}

Expanded into assembly language code

 .EXPORT _main

 .SECTION P,CODE,ALIGN=4

_main: ; function: main

 ; frame size=0

 TST R2,R2

 BT L12

 NOP

 RTS

 NOP

L12:

 RTS

 NOP

 .END

Section 3 Compiler

Rev.4.00 2007.02.02 3-45
REJ05B0463-0400

3.2.15 Single-Precision Floating-Point Operations

Description:

Built-in functions for single-precision floating-point operations were added beginning with the SH-4. Table 3.12 lists the
operations available. The built-in functions for the floating-point operation unit are valid when -cpu=sh2e, -cpu=sh2afpu,
-cpu=sh4, or -cpu=sh4a is specified. The built-in functions for the single-precision floating-point vector operation are
valid when -cpu=sh4 or -cpu=sh4a is specified. However, add4() and sub4() are effective also at the time of cpu=sh2afpu
specification.

Table 3.12 List of Single-Precision Floating-Point Operations (1)

No. Function Format Description

1

Floating-point

operation unit

void set_fpscr(

 int cr

)

Sets cr (32 bits) in the FPSCR.

2 int get_fpscr() Refers to the FPSCR.

3 Single-precision
floating-point
vector operation

float fipr(

 float vect1[4],

 float vect2[4]

)

Obtains inner product of two
vectors.

4 float ftrv(

 float vec1[4],

 float vec2[4]

)

Transforms vec1(vector) by tbl (4×4
matrix) loaded using ld_ext(), and
saves the result in vec2 (vector).

5 void ftrvadd(

 float vec1[4],

 float vec2[4],

 float vec3[4]

)

Transforms vec1(vector) by tbl (4×4
matrix) loaded using the ld_ext()
function, adds the result to vec2
(vector), and saves the addition
result in vec3 (vector).

6 void ftrvsub(

 float vec1[4],

 float vec2[4],

 float vec3[4]

)

Transforms vec1(vector) by tbl (4×4
matrix) loaded using the ld_ext()
function, subtracts vec2 (vector)
from the result, and saves the
subtraction result in vec3 (vector).

7 void add4(

 float vec1[4],

 float vec2[4],

 float vec3[4]

)

Adds vec1 (vector) and vec2
(vector), and saves the result in
vec3 (vector).

Section 3 Compiler

Rev.4.00 2007.02.02 3-46
REJ05B0463-0400

Table 3.12 List of Single-Precision Floating-Point Operations (2)

No. Function Format Description

8 Single-precision
floating-point
vector operation

void sub4(

 float vec1[4],

 float vec2[4],

 float vec3[4]

)

Subtracts vec2 (vector) from
vec1(vector), and saves the result
in vec3 (vector).

9 void mtrx4mul(

 float mat1[4][4],

 float mat2[4][4]

)

Transforms mat1 (4×4 matrix) by tbl
(4×4 matrix) loaded using the
ld_ext() function, and saves the
result in mat2.

10 void mtrx4muladd(

 float mat1[4][4],

 float mat2[4][4],

 float mat3[4][4]

)

Transforms mat1 (4×4 matrix) by tbl
(4×4 matrix) loaded using
theld_ext() function, adds the result
and mat2 (4×4 matrix), and saves
the addition results in mat3 (4×4
matrix).

11 void mtrx4mulsub(

 float mat1[4][4],

 float mat2[4][4],

 float mat3[4][4]

)

Transforms mat1 (4×4 matrix) by tbl
(4×4 matrix) loaded using the
ld_ext() function, subtracts mat2
(4×4 matrix) from the result, and
saves the subtraction results in
mat3 (4×4 matrix).

Example of use:

Perform multiplication of 4x4 matrices.
One of the matrices must be loaded in advance using the ld_ext function.

C language code

#include<machine.h>

float table[4][4] ={{1.0,0.0,0.0,0.0},{0.0,1.0,0.0,0.0},

 {0.0,0.0,1.0,0.0},{0.0,0.0,0.0,1.0}} ;

float data1[4][4] ={{11.0,12.0,13.0,14.0},{15.0,16.0,17.0,18.0},

 {11.0,12.0,13.0,14.0},{15.0,16.0,17.0,18.0}} ;

float data2[4][4] ={{0.0,0.0,0.0,0.0},{0.0,0.0,0.0,0.0},

 {0.0,0.0,0.0,0.0},{0.0,0.0,0.0,0.0}} ;

void main()

{

 ld_ext(table) ;

 mtrx4mul(data1,data2) ;

}

Expanded into assembly language code

 .EXPORT _table

 .EXPORT _data1

Section 3 Compiler

Rev.4.00 2007.02.02 3-47
REJ05B0463-0400

 .EXPORT _data2

 .EXPORT _main

 .SECTION P,CODE,ALIGN=4

_main: ; function: main

 ; frame size=0

 MOV.L L11+2,R2 ; _table

 MOV.L L11+6,R6 ; _data2

 FRCHG

 FMOV.S @R2+,FR0

 FMOV.S @R2+,FR1

 FMOV.S @R2+,FR2

 FMOV.S @R2+,FR3

 FMOV.S @R2+,FR4

 FMOV.S @R2+,FR5

 FMOV.S @R2+,FR6

 FMOV.S @R2+,FR7

 FMOV.S @R2+,FR8

 FMOV.S @R2+,FR9

 FMOV.S @R2+,FR10

 FMOV.S @R2+,FR11

 FMOV.S @R2+,FR12

 FMOV.S @R2+,FR13

 FMOV.S @R2+,FR14

 FMOV.S @R2+,FR15

 FRCHG

 ADD #-64,R2

 MOV.L L11+10,R2 ; _data1

 ADD #16,R6

 FMOV.S @R2+,FR0

 FMOV.S @R2+,FR1

 FMOV.S @R2+,FR2

 FMOV.S @R2+,FR3

 FTRV XMTRX,FV0

 FMOV.S FR3,@-R6

 FMOV.S FR2,@-R6

 FMOV.S FR1,@-R6

 FMOV.S FR0,@-R6

 FMOV.S @R2+,FR0

 ADD #32,R6

 FMOV.S @R2+,FR1

 FMOV.S @R2+,FR2

 FMOV.S @R2+,FR3

 FTRV XMTRX,FV0

 FMOV.S FR3,@-R6

 FMOV.S FR2,@-R6

 FMOV.S FR1,@-R6

Section 3 Compiler

Rev.4.00 2007.02.02 3-48
REJ05B0463-0400

 FMOV.S FR0,@-R6

 FMOV.S @R2+,FR0

 ADD #32,R6

 FMOV.S @R2+,FR1

 FMOV.S @R2+,FR2

 FMOV.S @R2+,FR3

 FTRV XMTRX,FV0

 FMOV.S FR3,@-R6

 FMOV.S FR2,@-R6

 FMOV.S FR1,@-R6

 FMOV.S FR0,@-R6

 FMOV.S @R2+,FR0

 ADD #32,R6

 FMOV.S @R2+,FR1

 FMOV.S @R2+,FR2

 FMOV.S @R2+,FR3

 FTRV XMTRX,FV0

 FMOV.S FR3,@-R6

 FMOV.S FR2,@-R6

 FMOV.S FR1,@-R6

 RTS

 FMOV.S FR0,@-R6

L11:

 .RES.W 1

 .DATA.L _table

 .DATA.L _data2

 .DATA.L _data1

 .SECTION D,DATA,ALIGN=4

_table: ; static: table

 .DATA.L H'3F800000

 .DATA.L H'00000000

 .DATA.L H'00000000

 .DATA.L H'00000000

 .DATA.L H'00000000

 .DATA.L H'3F800000

 .DATA.L H'00000000

 .DATA.L H'00000000

 .DATA.L H'00000000

 .DATA.L H'00000000

 .DATA.L H'3F800000

 .DATA.L H'00000000

 .DATA.L H'00000000

 .DATA.L H'00000000

 .DATA.L H'00000000

 .DATA.L H'3F800000

Section 3 Compiler

Rev.4.00 2007.02.02 3-49
REJ05B0463-0400

_data1: ; static: data1

 .DATA.L H'41300000

 .DATA.L H'41400000

 .DATA.L H'41500000

 .DATA.L H'41600000

 .DATA.L H'41700000

 .DATA.L H'41800000

 .DATA.L H'41880000

 .DATA.L H'41900000

 .DATA.L H'41300000

 .DATA.L H'41400000

 .DATA.L H'41500000

 .DATA.L H'41600000

 .DATA.L H'41700000

 .DATA.L H'41800000

 .DATA.L H'41880000

 .DATA.L H'41900000

_data2: ; static: data2

 .DATA.L H'00000000

 .DATA.L H'00000000

 .DATA.L H'00000000

 .DATA.L H'00000000

 .DATA.L H'00000000

 .DATA.L H'00000000

 .DATA.L H'00000000

 .DATA.L H'00000000

 .DATA.L H'00000000

 .DATA.L H'00000000

 .DATA.L H'00000000

 .DATA.L H'00000000

 .DATA.L H'00000000

 .DATA.L H'00000000

 .DATA.L H'00000000

 .DATA.L H'00000000

 .END

Example of use:

Perform multiplication of a vector and a matrix. The matrix must be loaded in advance using the ld_ext function.

C language code

Section 3 Compiler

Rev.4.00 2007.02.02 3-50
REJ05B0463-0400

#include<machine.h>

float table[4][4]={{1.0,2.0,3.0,4.0},{5.0,6.0,7.0,8.0},

 {8.0,7.0,6.0,5.0},{4.0,3.0,2.0,1.0}} ;

float data1[4] = {11.0,12.0,13.0,14.0} ;

float data2[4] = {0.0,0.0,0.0,0.0} ;

void main()

{

 ld_ext(table) ;

 ftrv(data1,data2) ;

}

Expanded into assembly language code

 .EXPORT _table

 .EXPORT _data1

 .EXPORT _data2

 .EXPORT _main

 .SECTION P,CODE,ALIGN=4

_main: ; function: main

 ; frame size=0

 MOV.L L11+2,R2 ; _table

 FRCHG

 FMOV.S @R2+,FR0

 FMOV.S @R2+,FR1

 FMOV.S @R2+,FR2

 FMOV.S @R2+,FR3

 FMOV.S @R2+,FR4

 FMOV.S @R2+,FR5

 FMOV.S @R2+,FR6

 FMOV.S @R2+,FR7

 FMOV.S @R2+,FR8

 FMOV.S @R2+,FR9

 FMOV.S @R2+,FR10

 FMOV.S @R2+,FR11

 FMOV.S @R2+,FR12

 FMOV.S @R2+,FR13

 FMOV.S @R2+,FR14

 FMOV.S @R2+,FR15

 FRCHG

 ADD #-64,R2

 MOV.L L11+6,R2 ; _data1

 FMOV.S @R2+,FR0

 FMOV.S @R2+,FR1

 FMOV.S @R2+,FR2

 FMOV.S @R2+,FR3

 MOV.L L11+10,R2 ; _data2

Section 3 Compiler

Rev.4.00 2007.02.02 3-51
REJ05B0463-0400

 FTRV XMTRX,FV0

 ADD #16,R2

 FMOV.S FR3,@-R2

 FMOV.S FR2,@-R2

 FMOV.S FR1,@-R2

 RTS

 FMOV.S FR0,@-R2

L11:

 .RES.W 1

 .DATA.L _table

 .DATA.L _data1

 .DATA.L _data2

 .SECTION D,DATA,ALIGN=4

_table: ; static: table

 .DATA.L H'3F800000

 .DATA.L H'40000000

 .DATA.L H'40400000

 .DATA.L H'40800000

 .DATA.L H'40A00000

 .DATA.L H'40C00000

 .DATA.L H'40E00000

 .DATA.L H'41000000

 .DATA.L H'41000000

 .DATA.L H'40E00000

 .DATA.L H'40C00000

 .DATA.L H'40A00000

 .DATA.L H'40800000

 .DATA.L H'40400000

 .DATA.L H'40000000

 .DATA.L H'3F800000

_data1: ; static: data1

 .DATA.L H'41300000

 .DATA.L H'41400000

 .DATA.L H'41500000

 .DATA.L H'41600000

_data2: ; static: data2

 .DATA.L H'00000000

 .DATA.L H'00000000

 .DATA.L H'00000000

 .DATA.L H'00000000

 .END

Section 3 Compiler

Rev.4.00 2007.02.02 3-52
REJ05B0463-0400

• Obtains inner products of two vectors.

C language code

#include<machine.h>

float ret = 0;

float data1[]={1.0,2.0,3.0,4.0} ;

float data2[]={11.0,12.0,13.0,14.0} ;

void main()

{

 ret = fipr (data1,data2) ;

}

Expanded into assembly language code

 .EXPORT _ret

 .EXPORT _data1

 .EXPORT _data2

 .EXPORT _main

 .SECTION P,CODE,ALIGN=4

_main: ; function: main

 ; frame size=0

 MOV.L L11,R2 ; _data1

 FMOV.S @R2+,FR0

 FMOV.S @R2+,FR1

 FMOV.S @R2+,FR2

 FMOV.S @R2+,FR3

 MOV.L L11+4,R2 ; _data2

 FMOV.S @R2+,FR4

 FMOV.S @R2+,FR5

 FMOV.S @R2+,FR6

 FMOV.S @R2+,FR7

 MOV.L L11+8,R2 ; _ret

 FIPR FV4,FV0

 RTS

 FMOV.S FR3,@R2

L11:

 .DATA.L _data1

 .DATA.L _data2

 .DATA.L _ret

 .SECTION D,DATA,ALIGN=4

_ret: ; static: ret

 .DATA.L H'00000000

Section 3 Compiler

Rev.4.00 2007.02.02 3-53
REJ05B0463-0400

_data1: ; static: data1

 .DATA.L H'3F800000

 .DATA.L H'40000000

 .DATA.L H'40400000

 .DATA.L H'40800000

_data2: ; static: data2

 .DATA.L H'41300000

 .DATA.L H'41400000

 .DATA.L H'41500000

 .DATA.L H'41600000

 .END

Important Information:

(1) Built-in functions for single-precision floating-point vector operations are valid only in the SH-4 and SH-4A. (add4()
and sub4() are effective also at SH2A-FPU)

(2) When built-in functions for vector operations are used in interrupt functions, the following should be noted. The
built-in functions ld_ext(float[4][4]) and st_ext(float[4][4]) modify the floating-point register bank bit (FR) of the
floating-point status control register (FPSCR) to access the extension register; hence if either of the built-in functions
ld_ext(float[4][4]) or st_ext(float[4][4]) is used within an interrupt function, the interrupt mask should be changed
before and after use of the built-in vector operation function. An example is given below.

Example:

#pragma interrupt (intfunc)

void intfunc(){

 ...

 ld ext();

 ...

}

void normfunc(){

 ...

 int maskdata=get imask(); /*Saves the interrupt mask */

 set imask(15); /*Specifies the interrupt mask */

 ld ext(mat1);

 ftrv(vec1,vec2);

 set imask(maskdata); /*Restores the interrupt mask */

 ...

}

Section 3 Compiler

Rev.4.00 2007.02.02 3-54
REJ05B0463-0400

(3) The built-in functions mtrx4mul, mtrx4muladd, mtrx4mulsub are operations on 4×4 matrices, so that the result for
matrix A × matrix B may not coincide with the result for matrix B × matrix A.

Example:

extern float matA[][];

extern float matB[][];

int judge(){

 float data1[4][4], data2[4][4];

 set imask(15);

 ld ext(matA);

 mtrx4mul(matB,data1); /* data1 = matBxmatA */

 ld ext(matB);

 mtrx4mul(matA,data2); /* data2 = matAxmatB */

 /*In this case, data1[][] may not match data2[][] */

}

Section 3 Compiler

Rev.4.00 2007.02.02 3-55
REJ05B0463-0400

3.2.16 Accessing the Extension Register

Description:

Table 3.13 shows the functions provided to access the extension register.

Table 3.13 List of Built-in Functions to Access the Extension Register

No. Function Format Description

1 Extension register
access

void ld_ext(

 float mat[4][4]

)

Loads tbl (4×4 matrix) to extension register

Example:

extern float tbl[4][4];

In this case

In this case, ld_ext(tbl) loads tbl to
extension register.

2 void st_ext(

 float mat[4][4]

)

Saves the contents of extension register to
tbl (4×4 matrix).

Example:

extern float tbl[4][4];

In this case

In this case, st_ext(tbl) saves the contents
of extension register to tbl.

Notes: (1) Built-in functions to access the extension register are valid only in the SH-4 and SH-4A.
 (2) When these functions are used within an interrupt function, the interrupt mask must be changed.

For details, refer to (2) of Important Information in section 3.2.15, Single-Precision Floating-Point
Operations.

3.2.17 DSP Instruction

Description:

Table 3.14 shows the functions provided for the DSP instruction.

Table 3.14 List of Built-in Functions for the DSP Instruction

No. Function Format Description

1 Absolute value long __fixed pabs_lf

 (long __fixed data)

long __accum
pabs_la

 (long __accum data)

Obtains the absolute value.

Correct operation is not guaranteed if the
obtained absolute value cannot be
represented in the same type as the return
value (that is, long __fixed type for pabs_lf()
or long __accum type for pabs_la() is).

2 MSB detection __fixed pdmsb_lf

(long __fixed data)

__fixed pdmsb_la

(long __accum data)

Detects an MSB (obtains the amount of
shift required for normalizing data).

Section 3 Compiler

Rev.4.00 2007.02.02 3-56
REJ05B0463-0400

No. Function Format Description

3 Arithmetic shift long __fixed psha_lf

(long __fixed data,

 int count)

long __accum
psha_la

 (long __accum data,

 int count)

Performs an arithmetic shift.

The specifiable value for count is from -32
to +32.

Specifying a positive value shifts data to the
left.

Specifying a negative value shifts data to
the right, for its absolute value.

Correct operation is not guaranteed if a
value outside the valid range is specified.

4 Rounding-off error __accum rndtoa

 (long __accum data)

__fixed rndtof

 (long __fixed data)

Deals with the rounding-off error.

5 Bit pattern copy long __fixed

long_as_lfixed

 (long data)

long lfixed_as_long

 (long __fixed data)

Copies a bit pattern from the general
register to the DSP register, or vice versa.

6 Modulo addressing
setup

void set_circ_x

 (__X__circ __fixed
array[], size_t size)

void set_circ_y

 (__Y__circ __fixed
array[], size_t size)

Sets the modulo addressing.

7 Modulo addressing
cancellation

void clr_circ(void) Cancels the modulo addressing (that is,
clears the 10th and 11th bits from the right
of the SR to zero).

8 CS bit setting (DSR
register)

void set_cs

(unsigned int mode)

Sets the CS bit.

mode=0: Carry or borrow mode

mode=1: Negative-value mode

mode=2: Zero-value mode

mode=3: Overflow mode

mode=4: Signed “larger than” mode

mode=5: Signed “equal to or larger than”
mode

Section 3 Compiler

Rev.4.00 2007.02.02 3-57
REJ05B0463-0400

Example of use:

C language code

#include <machine.h>

circ __X __fixed input[4] = {0.0r, 0.25r, 0.5r, 0.25r};

_Y __fixed output[8];

void main(void)

{

 int i;

 set_circ_x(input, sizeof(input)); /* Set the modulo addressing */

 for(i=0; i < 8; ii++){

 output[i] = input[i];

 }

 clr_circ(); /* Cancel the modulo addressing*/

}

Expanded into assembly language code

 .EXPORT _output

 .EXPORT _input

 .EXPORT _main

 .SECTION P,CODE,ALIGN=4

_main: ; function: main

 ; frame size=0

 MOV.L L13+4,R5 ; _input

 EXTU.W R5,R2

 MOV R5,R6

 ADD #6,R6

 SHLL16 R6

 ADD R6,R2

 LDC R2,MOD

 STC SR,R2

 MOV.W L13,R4 ; H'F3FF

 AND R4,R2

 MOV R2,R6

 MOV #4,R2 ; H'00000004

 SHLL8 R2

 OR R2,R6

 LDC R6,SR

 MOV #8,R2 ; H'00000008

 MOV.L L13+8,R6 ; _output

L11:

 MOVX.W @R5+,X1

 DT R2

 PCOPY X1,A0

Section 3 Compiler

Rev.4.00 2007.02.02 3-58
REJ05B0463-0400

 BF/S L11

 MOVY.W A0,@R6+

 STC SR,R2

 AND R4,R2

 LDC R2,SR

 RTS

 NOP

L13:

 .DATA.W H'F3FF

 .RES.W 1

 .DATA.L _input

 .DATA.L _output

 .SECTION $XD,DATA,ALIGN=4

_input: ; static: input

 .DATA.W H'0000,H'2000,H'4000,H'2000

 .SECTION $YB,DATA,ALIGN=4

_output: ; static: output

 .RES.W 8

 .END

Section 3 Compiler

Rev.4.00 2007.02.02 3-59
REJ05B0463-0400

3.2.18 Sine and Cosine

Description:

The function obtains the approximate sine and cosine from the angles specified for angle, and then sets the results to the
area indicated by sinv and cosv.

• Format:

void fsca(long angle, float * sinv, float * cosv)

Example of use:

C language code

#include <machine.h>

long angle = (45<<16)/360; /* 45 degrees */

float * sinv;

float * cosv;

void main(void)

{

 fsca(angle, sinv, cosv);

}

Expanded into assembly language code

 .EXPORT _sinv

 .EXPORT _cosv

 .EXPORT _angle

 .EXPORT _main

 .SECTION P,CODE,ALIGN=4

_main: ; function: main

 ; frame size=0

 MOV.L L11+2,R6 ; _angle

 MOV.L @R6,R2

 MOV.L L11+6,R6 ; _sinv

 LDS R2,FPUL

 FSCA FPUL,DR0

 MOV.L @R6,R2

 MOV.L L11+10,R6 ; _cosv

 FMOV.S FR0,@R2

 MOV.L @R6,R2

 RTS

 FMOV.S FR1,@R2

L11:

 .RES.W 1

 .DATA.L _angle

 .DATA.L _sinv

Section 3 Compiler

Rev.4.00 2007.02.02 3-60
REJ05B0463-0400

 .DATA.L _cosv

 .SECTION D,DATA,ALIGN=4

_angle: ; static: angle

 .DATA.L H'00002000

 .SECTION B,DATA,ALIGN=4

_sinv: ; static: sinv

 .RES.L 1

_cosv: ; static: cosv

 .RES.L 1

 .END

Section 3 Compiler

Rev.4.00 2007.02.02 3-61
REJ05B0463-0400

3.2.19 Reciprocal of the Square Root

Description:

This function obtains the approximate reciprocal of the square root.

• Format:

float fsrra(float data)

Example of use:

C language code

#include <machine.h>

float data;

float result;

void main(void)

{

 result=fsrra(data);

}

Expanded into assembly language code

 .EXPORT _data

 .EXPORT _result

 .EXPORT _main

 .SECTION P,CODE,ALIGN=4

_main: ; function: main

 ; frame size=0

 MOV.L L11,R2 ; _data

 FMOV.S @R2,FR9

 MOV.L L11+4,R2 ; _result

 FSRRA FR9

 RTS

 FMOV.S FR9,@R2

L11:

 .DATA.L _data

 .DATA.L _result

 .SECTION B,DATA,ALIGN=4

_data: ; static: data

 .RES.L 1

_result: ; static: result

 .RES.L 1

 .END

Section 3 Compiler

Rev.4.00 2007.02.02 3-62
REJ05B0463-0400

3.2.20 Invalidation of the Instruction Cache

Description:

The function invalidates the instruction cache.

• Format:

void icbi(void *p)

Example of use:

C language code

#include <machine.h>

extern int *p;

void main(void)

{

 icbi(p);

}

Expanded into assembly language code

 .IMPORT _p

 .EXPORT _main

 .SECTION P,CODE,ALIGN=4

_main: ; function: main

 ; frame size=0

 MOV.L L11+2,R6 ; _p

 MOV.L @R6,R2

 ICBI @R2

 RTS

 NOP

L11:

 .RES.W 1

 .DATA.L _p

 .END

Section 3 Compiler

Rev.4.00 2007.02.02 3-63
REJ05B0463-0400

3.2.21 Cache Block Operations

Description:

The functions perform operations on a cache block.

• Format:

void ocbi(void *p) Cache block invalidation

void ocbp(void *p) Cache block purge

void ocbwb(void *p) Cache block write-back

Example of use:

C language code

#include <machine.h>

extern int *p;

void main(void)

{

 ocbi(p);

}

Expanded into assembly language code

 .IMPORT _p

 .EXPORT _main

 .SECTION P,CODE,ALIGN=4

_main: ; function: main

 ; frame size=0

 MOV.L L11+2,R6 ; _p

 MOV.L @R6,R2

 OCBI @R2

 RTS

 NOP

L11:

 .RES.W 1

 .DATA.L _p

 .END

Section 3 Compiler

Rev.4.00 2007.02.02 3-64
REJ05B0463-0400

3.2.22 Instruction Cache Prefetch

Description:

The function reads a 32-byte instruction block that begins from the 32-byte boundary into the instruction cache.

• Format:

void prefi(void *p)

Example of use:

C language code

#include <machine.h>

void *pa;

void main(void)

{

 prefi(pa);

}

Expanded into assembly language code

 .EXPORT _pa

 .EXPORT _main

 .SECTION P,CODE,ALIGN=4

_main: ; function: main

 ; frame size=0

 MOV.L L11+2,R6 ; _pa

 MOV.L @R6,R2

 PREFI @R2

 RTS

 NOP

L11:

 .RES.W 1

 .DATA.L _pa

 .SECTION B,DATA,ALIGN=4

_pa: ; static: pa

 .RES.L 1

 .END

Section 3 Compiler

Rev.4.00 2007.02.02 3-65
REJ05B0463-0400

3.2.23 System Synchronization

Description:

This function expands an instruction to the SYNCO instruction.

The SYNCO instruction synchronizes data operations. Executing the SYNCO instruction allows the instructions after the
SYNCO instruction to be started when the data operation that came before the SYNCO instruction has completed.

• Format:

void synco(void)

Example of use:

C language code

#include <machine.h>

void main(void)

{

 synco();

}

Expanded into assembly language code

 .EXPORT _main

 .SECTION P,CODE,ALIGN=4

_main: ; function: main

 ; frame size=0

 SYNCO

 RTS

 NOP

 .END

Section 3 Compiler

Rev.4.00 2007.02.02 3-66
REJ05B0463-0400

3.2.24 Referencing and Setting the T Bit

Description:

Table 3.15 shows the functions provided for setting and referencing the T bit.

Table 3.15 List of Built-in Functions for the T Bit

No. Function Format Description

1 T bit reference int movt(void) References the value of the T bit
in the SR register.

2 T bit clear void clrt(void) Clears the T bit in the SR
register.

3 T bit setting void sett(void) Sets the T bit in the SR register.

Example of use:

The function allows you to reference the value of the T bit in the SR register. The referenced value will be 0 or 1.

C language code

#include <machine.h>

int sr_t;

void func(void)

{

 sr_t = movt();

}

Expanded into assembly language code

_func:

 MOVT R2

 MOV.L L11,R6 ; _sr_t

 RTS

 MOV.L R2,@R6

Section 3 Compiler

Rev.4.00 2007.02.02 3-67
REJ05B0463-0400

3.2.25 Cutting Out the Middle of the Contatenated Register

Description:

The function cuts out the middle 32 bits from two concatenated 32-bit data items.

• Format:

unsigned long xtrct(unsigned long data1, unsigned long data2)

Example of use:

In this example, data1 and data2 are concatenated, and then the middle 32 bits are cut out.

C language code

#include <machine.h>

unsigned long result, data1, data2;

void main(void)

{

 result = xtrct(data1,data2);

}

Expanded into assembly language code

_main:

 MOV.L L11,R1 ; _data2

 MOV.L L11+4,R4 ; _data1

 MOV.L @R1,R2

 MOV.L @R4,R5

 MOV.L L11+8,R6 ; _result

 XTRCT R5,R2

 RTS

 MOV.L R2,@R6

data1 data2

result

Section 3 Compiler

Rev.4.00 2007.02.02 3-68
REJ05B0463-0400

3.2.26 Addition with Carry

Description:

Table 3.16 shows the functions provided for addition with carry.

Table 3.16 List of Built-in Functions for Addition with Carry

No. Function Format Description

1 long addc(long data1,
 long data2)

Adds two data items and the T bit,
and applies the carry to the T bit.

2 int ovf_addc(long data1,
 long data2)

Adds two data items and the T bit,
and references the carry.

3

Addition with carry

long addv(long data1,
 long data2)

Adds two data items, and applies
the carry to the T bit.

4 int ovf_addv(long data1,
 long data2)

Adds two data items, and
references the carry.

Example of use:

In this example, data1, data2, and T bit are added, and then the carry is applied to the T bit.

C language code

#include <machine.h>

long result, data1, data2;

void main(void)

{

 result = addc(data1,data2); /* result = data1 + data2 + T bit */

}

Expanded into assembly language code

_main:

 MOV.L L11,R1 ; _data1

 MOV.L L11+4,R2 ; _data2

 MOV.L @R1,R4

 MOV.L @R2,R2

 MOV.L L11+8,R5 ; _result

 ADDC R4,R2

 RTS

 MOV.L R2,@R5

Important Information:

The addc and ovf_addc functions reference the contents of the T bit. If you specify a comparison or shift immediately
before these functions, the calculation results applied to the T bit may cause incorrect operation of the functions.

Section 3 Compiler

Rev.4.00 2007.02.02 3-69
REJ05B0463-0400

3.2.27 Subtraction with Borrow

Description:

Table 3.17 shows the functions provided for subtraction with borrow.

Table 3.17 List of Built-in Functions for Subtraction with Borrow

No. Function Format Description

1 long subc(long data1,
 long data2)

Subtracts data2 and the T bit from
data1, and applies the borrow to
the T bit.

2 int unf_subc(long data1,
 long data2)

Subtracts data2 and the T bit from
data1, and references the borrow.

3

Subtraction with
borrow

long subv(long data1,
 long data2)

Subtracts data2 from data1, and
applies the borrow to the T bit.

4 int unf_subv(long data1,
 long data2)

Subtracts data2 from data1, and
references the borrow.

Example of use:

In this example, data2 and the T bit are subtracted from data1, and then the borrow is applied to the T bit.

C language code

#include<machine.h>

long result, data1, data2;

void main(void)

{

 result = subc(data1,data2); /* result = data1 - data2 - T bit */

}

Expanded into assembly language code

_main:

 MOV.L L11,R1 ; _data1

 MOV.L L11+4,R4 ; _data2

 MOV.L @R1,R6

 MOV.L @R4,R5

 MOV.L L11+8,R1 ; _result

 SUBC R5,R6

 RTS

 MOV.L R6,@R1

Important Information:

The subc and unf_subc functions reference the contents of the T bit. If you specify a comparison or shift immediately
before these functions, the calculation results applied to the T bit may cause incorrect operation of the functions.

Section 3 Compiler

Rev.4.00 2007.02.02 3-70
REJ05B0463-0400

3.2.28 Sign Inversion

Description:

The function subtracts the data and the T bit from 0, and applies the borrow to the T bit.

• Format:

long negc(long data)

Example of use:

In this example, "data" and the T bit is subtracted from 0, and the borrow is applied to the T bit.

C language code

#include <machine.h>

long result, data;

void main(void)

{

 result = negc(data); /* result = 0 - data - T bit */

}

Expanded into assembly language code

_main:

 MOV.L L11,R1 ; _data

 MOV.L L11+4,R5 ; _result

 MOV.L @R1,R4

 NEGC R4,R2

 RTS

 MOV.L R2,@R5

Section 3 Compiler

Rev.4.00 2007.02.02 3-71
REJ05B0463-0400

3.2.29 One-Bit Division

Description:

Table 3.18 shows the functions provided for one-bit division.

Table 3.18 List of Built-in Functions for One-Bit Division

No. Function Format Description

1 unsigned long div1(
 unsigned long data1,
 unsigned long data2)

Performs a one-step division of
data1 by data2, and applies the
result to the T bit.

2

One-bit division

int div0s(long data1,
 long data2)

Performs the initialization for the
signed division of data1 by data2,
and references the T bit.

3 void div0u(void) Performs the initialization for the
unsigned division.

Example of use:

By repeatedly executing one-bit division, you can obtain a quotient. The following shows an example of unsigned division
of d1 (32 bits) by d2 (16 bits), where the result is "ret" (16 bits).

C language code

#include <machine.h>

unsigned long data1,data2;

unsigned long result;

void main(void)

{

 unsigned long d1,d2;

 d1 = data1;

 d2 = data2;

 d2 <<= 16; /* Uses the upper 16 bits as the divisor, and sets the lower 16 bits to 0 */

 div0u(); /* Sets the initial values for the unsigned division */

 d1 = div1(d1, d2); /* Repeats the one-step division 16 times */

 d1 = div1(d1, d2);

 d1 = div1(d1, d2);

 d1 = div1(d1, d2);

 d1 = div1(d1, d2);

 d1 = div1(d1, d2);

 d1 = div1(d1, d2);

 d1 = div1(d1, d2);

 d1 = div1(d1, d2);

 d1 = div1(d1, d2);

 d1 = div1(d1, d2);

 d1 = div1(d1, d2);

 d1 = div1(d1, d2);

 d1 = div1(d1, d2);

Section 3 Compiler

Rev.4.00 2007.02.02 3-72
REJ05B0463-0400

 d1 = div1(d1, d2);

 d1 = div1(d1, d2);

 result = rotcl(d1); /* rotcl is a built-in function for generating the ROTCL instruction */

 /* Applies the T bit as the result of the last step division to the quotient */

}

Expanded into assembly language code

_main:

 MOV.L L11,R1 ; _data2

 MOV.L @R1,R5

 SHLL16 R5

 DIV0U

 MOV.L L11+4,R2 ; _data1

 MOV.L @R2,R2

 DIV1 R5,R2

 DIV1 R5,R2

 DIV1 R5,R2

 DIV1 R5,R2

 MOV R2,R6

 DIV1 R5,R6

 MOV R6,R2

 DIV1 R5,R2

 DIV1 R5,R2

 DIV1 R5,R2

 DIV1 R5,R2

 DIV1 R5,R2

 DIV1 R5,R2

 MOV R2,R6

 DIV1 R5,R6

 MOV R6,R2

 DIV1 R5,R2

 DIV1 R5,R2

 DIV1 R5,R2

 DIV1 R5,R2

 ROTCL R2

 MOV.L L11+8,R4 ; _result

 RTS

 MOV.L R2,@R4

Important Information:

(1) Although you can perform division by repeatedly using the div1 function, do not update the M, Q, and T bits during
repetition. (A comparison and shift also update the T bit).

(2) You must use div0s() or div0u() immediately before the function to initialize the M, Q, and T bits.

Section 3 Compiler

Rev.4.00 2007.02.02 3-73
REJ05B0463-0400

3.2.30 Rotation

Description:

Table 3.19 shows the functions provided for rotation.

Table 3.19 List of Built-in Functions for Rotation

No. Function Format Description

1 unsigned long rotl(
 unsigned long data)

Rotates the data left by one bit, and
then applies the bits that moved
outside the operand to the T bit.

2 unsigned long rotr(
 unsigned long data)

Rotates the data right by one bit,
and then applies the bits that
moved outside the operand to the T
bit.

3

Rotation

unsigned long rotcl(
 unsigned long data)

Rotates the data left by one bit
including the T bit, and then applies
the bits that moved outside the
operand to the T bit.

4 unsigned long rotcr(
 unsigned long data)

Rotates the data right by one bit
including the T bit, and then applies
the bits that moved outside the
operand to the T bit.

Example of use:

In this example, "data" is rotated left by one bit, and then the bits that moved outside the operand are applied to the T bit.

C language code

#include <machine.h>

unsigned long result, data;

void main(void)

{

 result = rotl(data);

}

Expanded into assembly language code

_main:

 MOV.L L11,R2 ; _data

 MOV.L L11+4,R6 ; _result

 MOV.L @R2,R2

 ROTL R2 ; Generates the ROTL instruction

 RTS

 MOV.L R2,@R6

Important Information:

The rotcl and rotcr functions reference the contents of the T bit. If you specify a comparison or shift immediately before
these functions, the calculation results applied to the T bit may cause incorrect operation of the functions.

Section 3 Compiler

Rev.4.00 2007.02.02 3-74
REJ05B0463-0400

3.2.31 Shift

Description:

Table 3.20 shows the functions provided for a shift.

Table 3.20 List of Built-in Functions for Shift

No. Function Format Description

1 unsigned long shll(
 unsigned long data)

Shifts the data to the left by one bit,
and then applies the bits that moved
outside the operand to the T bit.

2

Shift

unsigned long shlr(
 unsigned long data)

Logically shifts the data to the right
by one bit, and then applies the bits
that moved outside the operand to
the T bit.

3 long shar(long data) Arithmetically shifts the data to the
right by one bit, and then applies the
bits that moved outside the operand
to the T bit.

Example of use:

In this example, "data" is shifted to the left by one bit, and then the bits that moved outside the operand are applied to the
T bit.

C language code

#include <machine.h>

unsigned long result, data;

void main(void)

{

 result = shll(data);

}

Expanded into assembly language code

_main:

 MOV.L L11,R2 ; _data

 MOV.L L11+4,R6 ; _result

 MOV.L @R2,R2

 SHLL R2 ; Generates the SHLL instruction

 RTS

 MOV.L R2,@R6

Section 3 Compiler

Rev.4.00 2007.02.02 3-75
REJ05B0463-0400

3.2.32 Saturation Operation

Description:

Table 3.21 shows the functions provided for saturation operations.

Table 3.21 List of Built-in Functions for Saturation Operations

No. Function Format Description

1 Saturation operation
on signed one-byte
data

long clipsb(long data) Sets the value of the data if it falls
in the range from -128 to 127. If the
data exceeds this range, the
function sets the upper or lower
limit.

2 Saturation operation
on signed two-byte
data

long clipsw(long data) Sets the value of the data if it falls
in the range from -32768 to 32767.
If the data exceeds this range, the
function sets the upper or lower
limit.

3 Saturation operation
on unsigned one-byte
data

unsigned long clipub(
 unsigned long data)

Sets the value of the data if it falls
in the range from 0 to 255. If the
data exceeds this range, the
function sets the upper limit.

4 Saturation operation
on unsigned two-byte
data

unsigned long clipuw(
 unsigned long data)

Sets the value of the data if it falls
in the range from 0 to 65535. If the
data exceeds this range, the
function sets the upper limit.

This built-in function is valid only when "-cpu=sh2a" or "-cpu=sh2afpu" is specified.

Example of use:

In this example, the value of the data is set if it falls in the range from -128 to 127. If the data exceeds this range, the upper
or lower limit is set.

C language code

#include <machine.h>

long result, data;

void main(void)

{

 result = clipsb(data); /* The value of "result" is in the range from -128 to 127 */

}

Expanded into assembly language code

_main:

 MOV.L L11,R2 ; _data

 MOV.L @R2,R2

 MOV.L L11+4,R6 ; _result

 CLIPS.B R2

 RTS

 MOV.L R2,@R6

Section 3 Compiler

Rev.4.00 2007.02.02 3-76
REJ05B0463-0400

3.2.33 Referencing and Setting the TBR

Description:

Table 3.22 shows the functions provided for setting and referencing the jump table base register (TBR).

Table 3.22 List of Built-in Functions for the TBR

No. Function Format Description

1 TBR setting void set_tbr(void *data) Sets the data in the TBR.

2 TBR reference void *get_tbr(void) References the value of the TBR.

This built-in function is valid only when "-cpu=sh2a" or "-cpu=sh2afpu" is specified.

Example of use:

In this example, data is set in the TBR.
This function is used for setting, in the TBR, the jump table that is generated for a TBR relative function call.

C language code

#include <machine.h>

void main(void){

 set_tbr(__sectop("$TBR")); /* Sets the beginning of the $TBR section to the TBR */

}

Expanded into assembly language code

_main:

 MOV.L L11,R2 ; STARTOF $TBR

 RTS

 LDC R2,TBR

L11:

 .DATA.L STARTOF $TBR

Section 3 Compiler

Rev.4.00 2007.02.02 3-77
REJ05B0463-0400

3.3 Inline Expansion

3.3.1 Inline Expansion of Functions

Description:

Inline expansion of functions is used in order to enhance the execution speed of a program. Normally a function is called
by branching to a section of code consisting of a series of operations; but this feature expands the processing of the
function at the point at which it is called, eliminating the instruction at the branch point and speeding execution.
Expansion of functions called within loops can be expected to have an especially great effect in speeding execution.
There are two kinds of inline expansion of programs, as follows.

(1) Automatic inline expansion

By specifying the "-speed" option at compilation, the automatic function inline expansion feature is implemented, and
small functions are automatically expanded. In order to exert more detailed control over the automatic function inline
expansion feature, the "-inline" option can be used to specify the sizes of functions for expansion. Before Ver.6, the
sizes of functions are specified in terms of the number of nodes (the number of variables, operators and other elements
excluding declarations). (The default value for the “-inline” option is 20.) After Ver.7, the user is able to specify the
allowed increase in the program’s size doe to the use of inline expansion.

Format:

shc -speed [-inline=<numelic value>]…

(2) Inline expansion based on directive

Functions for inline expansion are specified using "#pragma inline" directives.

Format:

#pragma inline (< function name > [,< function name >…])

Example of use:

A function called within a loop is expanded inline.

(1) Automatic inline expansion

When the following program is compiled using the "-speed" option, f is expanded inline.

C language code

extern int *z;

int f (int p1, int p2) /* Function to be expanded */

{

 if (p1 > p2)

 return p1;

 else if (p1 < p2)

 return p2;

 else

 return 0;

}

void g (int *x, int *y, int count)

Section 3 Compiler

Rev.4.00 2007.02.02 3-78
REJ05B0463-0400

{

 for (; count>0; count--, z++, x++, y++)

 *z = f(*x, *y);

}

(2) Inline expansion

The functions f1 and f2, specified using a "#pragma inline" directive, are expanded.

C language code

int v,w,x,y;

#pragma inline(f1,f2) /* Specifies the function to be expanded inline */

int f1(int a, int b) /* Function to be expanded */

{

 return (a+b)/2;

}

int f2(int c, int d) /* Function to be expanded */

{

 return (c-d)/2;

}

void g ()

{

 int i;

 for(i=0;i<100;i++){

 if(f1(x,y) == f2(v,w))

 sleep();

 }

}

Important Information:

(1) The "#pragma inline" directive should be placed before the function itself.

(2) An external definition is generated for a function specified by a "#pragma inline" directive. Hence when writing a
function for inline expansion in a file to be included by multiple files, the function must be declared static.

(3) The following functions cannot be inline expanded.

⎯ Functions with variable parameters

⎯ Functions which refer to the addresses of parameters within the functions

⎯ Functions for which the number and type of real and dummy parameters do not agree

⎯ Functions which are called via addresses

(4) If a cache is installed in other than SH-1, inline expansion may result in a cache miss, so that speed is not improved.

(5) When using this feature, because code is expanded at the point at which the function is called, there is a tendency for
the program size to increase. This feature should be used with due consideration paid to the balance between program
size and speed of execution.

Section 3 Compiler

Rev.4.00 2007.02.02 3-79
REJ05B0463-0400

3.3.2 Inline Expansion of Assembly Language

Description:

There are times when a CPU instruction is not supported in the C language, or when assembly language code will provide
enhanced performance over the equivalent code in C. At such times, the code in question can be written in assembly
language and combined with the C language program. The SuperH RISC engine C/C++ compiler offers a feature for
expansion of inline assembly language code to enable inclusion of inline assembly language code with the C source
program.
By writing assembly language code in the same area as a C language function, placing a "#pragma inline_asm " directive
before the function, the compiler expands the assembly-language code inline at the point at which it is called.
Interfaces between functions should conform to C/C++ compiler generation rules. The C/C++ compiler generates code
which saves parameter values in registers R4 to R7, and places return values in R0. For the SH-2E, SH2A-FPU, SH-4, and
SH-4A, set FR0 for the return values of the single-precision floating point operations. For the SH2A-FPU, SH-4, and
SH-4A, set DR0 for the return values of the double-precision floating point operations.

• Format:

 #pragma inline_asm (< function name > [,< function name >…])

Example of use:

When there is frequent exchange of upper and lower bytes, comprising a performance bottleneck, a byte-swapping
function can be written in assembly language and expanded inline.

C language code

#pragma inline_asm (swap) /* Specifies the assembler function to be expanded*/

short swap(short p1) /* Describes the function to be improved in assembly language */

{

 EXTU.W R4,R0 ; clear upper word

 SWAP.B R0,R2 ; swap with R0 lower word

 CMP/GT R2,R0 ; if (R2 < R0)

 BT ?0001 ; then goto ?0001

 NOP ;

 MOV R2,R0 ; return R2

?0001: ; local label Local label is used as a label.

 ;

}

void f (short *x, short *y, int i)

{

 for (; i > 0; i--, x++, y++)

 *y = swap(*x); /* Described in the same format as function call C */

}

Expanded into assembly language code (Extracted)

_f:

 MOV.L R14,@-R15

 MOV R6,R14

 MOV.L R13,@-R15

 CMP/PL R14

Section 3 Compiler

Rev.4.00 2007.02.02 3-80
REJ05B0463-0400

 MOV.L R12,@-R15

 MOV R5,R13

 MOV R4,R12

 BT L224

 MOV.L L225,R3 ; L221

 JMP @R3

 NOP

L224:

L222:

 MOV.W @R12,R4

 BRA L223

 NOP

L225:

 .DATA.L L221

L223:

 EXTU.W R4,R0

 SWAP.B R0,R2

 CMP/GT R2,R0

 BT ?0001

 NOP

 MOV R2,R0

?0001:

 .ALIGN 4

 MOV.W R0,@R13

 ADD #-1,R14

 ADD #2,R12

 ADD #2,R13

 CMP/PL R14

 BF L226

 MOV.L L227+2,R3 ; L222

 JMP @R3

 NOP

L226:

L221:

 MOV.L @R15+,R12

 MOV.L @R15+,R13

 RTS

 MOV.L @R15+,R14

L227:

 .RES.W 1

 .DATA.L L222

Important Information:

(1) "#pragma inline_asm " should be specified before the definition of the function itself.

Section 3 Compiler

Rev.4.00 2007.02.02 3-81
REJ05B0463-0400

(2) An external definition is generated for a function specified by a "#pragma inline_asm " directive. Hence when writing
a function for inline expansion in a file to be included by multiple files, the function must be declared static.

(3) Any labels used in assembly language should be local labels.

(4) When using the registers R8 to R15 (but also including FR12 to FR15 in the cases of SH-2E, and FR12 to FR15, and
DR12 to DR14 in the case of SH2A-FPU, SH-4, and SH-4A) in functions written in assembly language, these registers
must be saved and restored at the start and at the end of the assembly language codes. For details, refer to section
3.15.1 (2) (c), Rule relating to register.

(5) RTS must not be included at the end of a function in assembly language.

(6) When using this feature, the option specifying the object format "-code=asmcode" should be used at compilation.

(7) Use of this feature imposes limitations on debugging at the C source level.

(8) For details on calling functions between C language programs and assembly language programs, refer to section 3.15.1
(2), Function Calling Interface.

(9) For more information on combining C programs and assembly language programs, refer to section 3.15.1, Issues
Related to Assembly Language Programs.

Section 3 Compiler

Rev.4.00 2007.02.02 3-82
REJ05B0463-0400

3.3.3 Sample Program with an Inline Assembly Function

Programs which if written in C would be inefficient, and programs which cannot be written in the C language, are
normally written in assembly language; but by using inline assembly function, such programs can be written mainly in C
but with inline assembly language code.

Advantages to Inline Assembly Functions

Inline assembly functions can be defined as if they were C language functions.
Assembly language instructions can be incorporated directly, without any of the overhead of subroutine calls or returns
generally resulting when calling functions written in assembly language.

Disadvantages to Inline Assembly Functions

At compilation, the assembly source program must be output.
Consequently C local variables cannot be referenced during debugging.
(At compilation, if the "-code=asmcode" option is specified, the assembler must then be started. At both C compile time
and assembly, by specifying the debug option, step execution at the C source level becomes possible.)

Making Effective Use of Inline Assembly Function

It is recommended that inline assembly functions be used as header files in the following manner.

• Functions are declared as static.

• Only local labels are used.

• No instructions are written causing the assembler to automatically generate a literal pool.

• A RTS (return) instruction is not written at the end of a definition.

Format:

 /* Inline function definition */

 /* FILE: inlasm.h */

#pragma inline_asm (rev4b)

static unsigned long rev4b(unsigned long p)

 /* function declared as static */

{

 ; comments in definitions denoted by semicolons (;) in assembler

 SWAP.W R4,R0

 SWAP.B R0,R0

 ; the RTS instruction is not included at the end

}

#pragma inline_asm(ovf)

static unsigned long ovf()

{

?LABEL001 ; within inline assembly functions, local labels are used

 ; local labels: within 16 characters, beginning with '?'

 MOV R4,R0

 :

 CMP/EQ #1,R0

 BT ?LBABEL001

}

Section 3 Compiler

Rev.4.00 2007.02.02 3-83
REJ05B0463-0400

#pragma inline_asm (ovfadd)

#ifdef NG INLINEASM

 /* an incorrect inline assembly function definition */

static unsigned long ovfadd()

{

 :

 MOV.L #H’f0000000,R0

 ; this causes the assembler to automatically generate a literal pool

 ; in this case instructions may not be correctly expanded

 ; if a literal pool is generated outside the scope of this function, alignment is disrupted

}

#else

 /* correct inline assembly function definition */

static unsigned long ovfadd()

{

 :

 MOV.L #H’f0000000,R0

 ; a .POOL control instruction must be included within this inline

 ; assembly function

 ; definition in this case the instruction is correctly expanded

 .POOL

 ; this .POOL directive causes a literal pool to be expanded here

 ; the actual code expansion image for this program is as follows

 ; :

 ; MOV.L Lxxx,R0

 ; BRA Lyyy

 ; NOP

 ; Lxxx .DATA.L H’f0000000

 ; Lyyy

}

#end

The operation of inline assembly functions introduced here are as follows. To perform 64-bit operations in Ver. 8 or a later
version, you can use the long long type and unsigned long long type supported in Ver.8.

• 64-bit addition

• 64-bit subtraction

• 64-bit multiplication

• Bit rotation

• Endian conversions

• Multiply-and-accumulate operations

• Overflow checking

To perform 64-bit operations, the following header file is used.

 “longlong.h”

 typedef struct{

Section 3 Compiler

Rev.4.00 2007.02.02 3-84
REJ05B0463-0400

 unsigned long H;

 unsigned long L;

 }longlong;

(1) 64-bit addition

Because the integer data types in the C language are not 64-bit data, processing in C would be redundant. Hence inline
assembly statements to efficiently perform 64-bit operations are presented below.

(i) Addition of 64-bit data

Format: longlong addll(longlong a,longlong b)

Parameters: a: 64-bit data

 b: 64-bit data

Returned value: longlong: 64-bit data

Description: Adds a and b, returns the result

#include <stdio.h>

#include "longlong.h"

#pragma inline asm (addll)

static longlong addll(longlong a,longlong b)

{

 MOV @(0,R15),R0 ;Sets the start address of return value structure c

 MOV @(4,R15),R1 ;Sets the first parameter (a.H)

 MOV @(8,R15),R2 ; (a.L)

 MOV @(12,R15),R3 ;Sets the second parameter (b.H)

 MOV @(16,R15),R4 ; (b.L)

 CLRT ;Clear T bit

 ADDC R4,R2 ;Adds the lower 32 bits of R4 and R2 , and sets the T bit

 ;according to the carry.

 ADDC R3,R1 ;Adds the higher 32 bits of R3 and R1 with carry

 MOV R1,@(0,R0) ;Sets the return value (c.H)

 MOV R2,@(4,R0) ; (c.L)

}

void main(void)

{

 longlong a,b,c;

 a.H=0xefffffff;

 a.L=0xffffffff;

 b.H=0x10000000;

 b.L=0x00000000;

 c=addll(a,b);

 printf("addll = %8X %08X \n",c.H,c.L);

}

Section 3 Compiler

Rev.4.00 2007.02.02 3-85
REJ05B0463-0400

(ii) Addition of 64-bit data (address specification)

Format: void addllp(longlong *pa,longlong *pb,longlong *pc)
Parameters: pa: Address of 64-bit data
 pb: Address of 64-bit data
 pc: Address of variable for storing result
Returned value: None
Description: Adds pa and pb, returns the result in pc

#include <stdio.h>

#include "longlong.h"

#pragma inline asm(addllp)

static void addllp(longlong *pa,longlong *pb,longlong *pc)

{

 MOV @(0,R5),R0 ;Sets (pa->H) to R0

 MOV @(4,R5),R1 ;Sets (pa->L) to R1

 MOV @(0,R6),R2 ;Sets (pb->H) to R2

 MOV @(4,R6),R3 ;Sets (pb->L) to R3

 CLRT ;Clear T bit

 ADDC R3,R1 ;Adds the lower 32 bits of R3 and R1 , and sets

 ;the T bit according to the carry.

 ADDC R2,R0 ;Adds the higher 32 bits of R2 and R0 with carry

 MOV R0,@(0,R4) ;Sets R0 to (pc->H)

 MOV R1,@(4,R4) ;Sets R1 to (pc->L)

}

void main(void)

{

 longlong a,b,c;

 longlong *pa,*pb,*pc;

 b.H=0x10000000;

 b.L=0x00000000;

 c.H=0xefffffff;

 c.L=0xffffffff;

 pa=&a;

 pb=&b;

 pc=&c;

 addllp(pa,pb,pc);

 printf("addllp = %8x %08x \n",pa->H,pa->L);

}

(iii) Addition of 64-bit data (with address specifications)
Format: void addtoll(longlong *pa,longlong b)
Parameters: *pa: address of 64-bit data
 b: 64-bit data
Returned value: None
Description: Adds b and the data specified by pa, and returns the result to pa

Section 3 Compiler

Rev.4.00 2007.02.02 3-86
REJ05B0463-0400

#include <stdio.h>

#include "longlong.h"

#pragma inline_asm (addtoll)

static void addtoll(longlong *pa,longlong b)

{

 MOV @(0,R4),R0 ;Sets (pa->H) to R0

 MOV @(4,R4),R1 ;Sets (pa->L) to R1

 MOV @(0,R15),R2 ;Sets (b.H) to R2

 MOV @(4,R15),R3 ;Sets (b.L) to R3

 CLRT ;Clear T bit

 ADDC R3,R1 ; Adds R3 (b.L) and R1 (pa->L) , and sets

 ;the T bit according to the carry.

 ADDC R2,R0 ; Adds R2 (b.H) and R0 (pa->H) with carry

 MOV R0,@(0,R4) ;Sets R0 to (pa->H)

 MOV R1,@(4,R4) ;Sets R1 to (pa->L)

}

void main(void)

{

 longlong *pa,b,c;

 b.H=0x10000000;

 b.L=0x00000000;

 c.H=0xefffffff;

 c.L=0xffffffff;

 pa=&c;

 addtoll(pa,b);

 printf("addtoll = %8x %08x \n",pa->H,pa->L);

}

(iv) Addition of 64-bit data and 32-bit data
Format: void addtoll32(longlong *pa,long b)
Parameters: *pa: address of 64-bit data
 b: 32-bit data
Returned value: None
Description: Adds b and the data specified by pa, and returns the result to the address specified by pa

#include <stdio.h>

#include "longlong.h"

#pragma inline_asm(addtoll32)

static void addtoll32(longlong *pa,long b)

{

 MOV @(0,R4),R0 ;Sets (pa->H) to R0

 MOV @(4,R4),R1 ;Sets (pa->L) to R1

 CLRT ;Clear T bit

 ADDC R5,R1 ;Adds R1(pa->L) and R5 (b), and sets

 ;the T bit according to the carry

Section 3 Compiler

Rev.4.00 2007.02.02 3-87
REJ05B0463-0400

 MOVT R3 ;Sets a carry in R3

 ADD R3,R0 ;Adds R0 (pa->H) and R3 (carry)

 MOV R0,@(0,R4) ;Sets R0 to (pa->H)

 MOV R1,@(4,R4) ;Sets R1 to (pa->L)

}

void main(void)

{

 longlong *pa,c;

 long b;

 b=0x00000001;

 c.H=0xefffffff;

 c.L=0xffffffff;

 pa=&c;

 addtoll32(pa,b);

 printf("addlltoll32 = %8x %08x \n",pa->H,pa->L);

}

(2) 64-bit subtraction

(i) Subtraction of 64-bit data

Format: longlong subll(longlong a,longlong b)
Parameters: a: 64-bit data
 b: 64-bit data
Returned value: longlong: 64-bit data
Description: Subtract b from a, and returns the result

#include <stdio.h>

#include "longlong.h"

#pragma inline_asm(subll)

static longlong subll(longlong a,longlong b)

{

 MOV @(0,R15),R0 ; Sets the return value address to R0

 MOV @(4,R15),R1 ;Sets (a.H) to R1

 MOV @(8,R15),R2 ;Sets (a.L) to R2

 MOV @(12,R15),R3 ;Sets (b.H) to R3

 MOV @(16,R15),R4 ;Sets (b.L) to R4

 CLRT ;Clear T bit

 SUBC R4,R2 ;Subtract R4 (b.L) from R2 (a.L) ,

 ;and sets the T bit according to the borrow

 SUBC R3,R1 ;Subtract R3 (b.H) from R1 (a.H) with borrow

 MOV R1,@(0,R0) ;Sets R1 to (c.H)

 MOV R2,@(4,R0) ;Sets R2 to (c.L)

}

void main(void)

{

 longlong a,b,c;

Section 3 Compiler

Rev.4.00 2007.02.02 3-88
REJ05B0463-0400

 a.H=0xffffffff;

 a.L=0xffffffff;

 b.H=0xffffffff;

 b.L=0xffffffff;

 c=subll(a,b);

 printf("subll = %x %08x \n",c.H,c.L);

}

(ii) Subtraction of 64-bit data (with address specification)

Format: void subtoll(longlong *pa,longlong b)
Parameters: *pa:address of 64-bit data
 b : 64-bit data
Returned value: None
Description: Subtracts b from the data specified by pa, and returns the result to pa

#include <stdio.h>

#include "longlong.h”

#pragma inline asm(subtoll)

static void subtoll(longlong *pa,longlong b)

{

 MOV @(0,R4),R0 ;Sets (pa->H) to R0

 MOV @(4,R4),R1 ;Sets (pa->L) to R1

 MOV @(0,R15),R2 ;Sets (b.H) to R2

 MOV @(4,R15),R3 ;Sets (b.L) to R3

 CLRT ;Clear T bit

 SUBC R3,R1 ; Subtract R3 (b.L) from R1 (pa.L),

 ;and sets the T bit according to the borrow

 SUBC R2,R0 ; Subtract R2 (b.H) from R0 (pa.H) with borrow

 MOV R0,@(0,R4) ;Sets R0 to (pa->H)

 MOV R1,@(4,R4) ;Sets R1 to (pa->L)

}

void main(void)

{

 longlong *pa,b,c;

 b.H=0xffffffff;

 b.L=0xffffffff;

 c.H=0xffffffff;

 c.L=0xffffffff;

 pa=&c;

 subtoll(pa,b);

 printf("addtoll = %8x %08x \n",pa->H,pa->L);

}

(iii) Subtraction of 32-bit data from 64-bit data

Section 3 Compiler

Rev.4.00 2007.02.02 3-89
REJ05B0463-0400

Format: void subtoll32(longlong *pa,long b)
Parameters: *pa: Address of 64-bit data
 b: 32-bit data
Returned value: None
Description: Subtracts b from the data specified by pa, and returns the result to pa

#include <stdio.h>

#include "longlong.h"

#pragma inline_asm(subtoll32)

static void subtoll32(longlong *pa,long b)

{

 MOV @(0,R4),R0 ;Sets (pa->H) to R0

 MOV @(4,R4),R1 ;Sets (pa->L) to R1

 CLRT ;Clear T bit

 SUBC R5,R1 ; Subtracts R5 (b) from R1 (pa->L),

 ;and sets the T bit according to the borrow

 MOVT R3 ;Sets a borrow to R3

 SUB R3,R0 ;Subtracts R3 (borrow) from R0 (pa->H)

 MOV R0,@(0,R4) ;Sets R0 to (pa->H)

 MOV R1,@(4,R4) ;Sets R1 to (pa->L)

}

void main(void)

{

 longlong *pa,c;

 unsigned long b;

 pa=&c;

 c.H=0xf0000000;

 c.L=0x00000000;

 b=0x00000001;

 subtoll32(pa,b);

 printf("subll = %8x %08x \n",pa->H,pa->L);

}

(3) 64-bit multiplication

(i) Multiplication of 64-bit data

Format: longlong mulll(longlong a,longlong b)
Parameters: a: 64-bit data
 b: 64-bit data
Returned value: longlong: 64-bit data
Description: Multiplies a and b, and returns the result

#include <stdio.h>

#include "longlong.h”

Section 3 Compiler

Rev.4.00 2007.02.02 3-90
REJ05B0463-0400

#pragma inline_asm(mulll)

static longlong mulll(longlong a,longlong b)

{

 MOV @(4,R15),R0 ;Sets (a.H) to R0

 MOV @(8,R15),R1 ;Sets (a.L) to R1

 MOV @(12,R15),R2 ;Sets (b.H) to R2

 MOV @(16,R15),R3 ;Sets (b.L) to R3

 MUL.L R0,R3 ;Multiplies R0 (a.H) with R3 (b.L)

 STS MACL,R0 ;Substitutes the result (lower 32 bits)

 MUL.L R2,R1 ;Multiplies R1 (a.L) with R2 (b.H)

 STS MACL,R2 ;Substitutes the result (lower 32 bits)

 ADD R2,R0 ;

 DMULU R1,R3 ;Multiplies R1 (a.L) with R3 (b.L)

 STS MACH,R1 ;Substitutes the result (higher 32 bits)

 STS MACL,R3 ;Substitutes the result (lower 32 bits)

 ADD R1,R0 ;

 MOV @(0,R15),R4 ;

 MOV R0,@(0,R4) ;Sets R0 to (c.H)

 MOV R3,@(4,R4) ;Sets R3 to (c.L)

}

void main(void)

{

 longlong a,b,c;

 a.H=0x7fffffff;

 a.L=0xffffffff;

 b.H=0x00000000;

 b.L=0x00000002;

 c=mulll(a,b);

 printf("mulll = %8x %08x \n",c.H,c.L);

}

(ii) Multiplication of 64-bit data (address specified)

Format: void multoll(longlong *pa,longlong b)
Parameters: pa: :address of 64-bit data
 b: 64-bit data
Returned value: None
Description: Multiplies b and the data specified by pa, and returns the result to the address specified by pa

#include <stdio.h>

#include "longlong.h"

#pragma inline_asm(multoll)

static void multoll(longlong *pa,longlong b)

{

 MOV @(0,R4),R0 ;Sets (pa->H) to R0

 MOV @(4,R4),R5 ;Sets (pa->L) to R5

Section 3 Compiler

Rev.4.00 2007.02.02 3-91
REJ05B0463-0400

 MOV @(4,R15),R1 ;Sets (b.L) to R1

 MUL R0,R1 ;Multiplies R0 (pa->H) with R1 (b.L)

 STS MACL,R3 ;

 DMULU R5,R1 ;Multiplies R5 (pa->L) with R1 (b.L)

 STS MACH,R0 ;Substitutes the result (higher 32 bits)

 STS MACL,R1 ;Substitutes the result (lower 32 bits)

 ADD R3,R0 ;

 MOV R0,@(0,R4) ;Sets R0 to (pa->H)

 MOV R1,@(4,R4) ;Sets R1 to (pa->L)

}

void main(void)

{

 longlong *pa,b,c;

 c.H=0x0000ffff;

 c.L=0xffff0000;

 b.H=0x00000000;

 b.L=0x00010000;

 pa=&c;

 multoll(pa,b);

 printf("multoll = %8x %08x \n",pa->H,pa->L);

}

(iii) Multiplication of 64-bit data and unsigned 32-bit data

Format: void multoll32(longlong *pa,unsigned long b)
Parameters: *pa: :address of 64-bit data
 b:unsigned 32-bit data
Returned value: None
Description: Multiplies b and the data specified by pa, and returns the result to the address specified by pa

#include <stdio.h>

#include "longlong.h"

#pragma inline_asm (multoll32)

static void multoll32(longlong *pa,unsigned long b)

{

 MOV @(0,R4),R0 ;Sets (pa->H) to R0

 MOV @(4,R4),R1 ;Sets (pa->L) to R1

 ADDC R5,R1 ;Adds R1(pa->L) and R5 (b),

 :and sets the T bit according to the carry

 MOVT R3 ;Sets a carry in R3

 ADD R3,R0 ; Adds R0 (pa->H) and R3 (carry)

 MOV R0,@(0,R4) ;Sets R0 to (pa->H)

 MOV R1,@(4,R4) ;Sets R1 to (pa->L)

void main(void)

{

Section 3 Compiler

Rev.4.00 2007.02.02 3-92
REJ05B0463-0400

 longlong *pa,c;

 unsigned long b;

 b=0xffffff00;

 c.H=0x00000000;

 c.L=0x00000100;

 pa=&c;

 multoll32(pa,b);

 printf("mulltoll32 = %8x %08x \n",pa->H,pa->L);

}

(iv) Multiplication of unsigned 32-bit data

Format: longlong mul64(unsigned long a,unsigned long b)
Parameters: a: unsigned 32-bit data
 b: unsigned 32-bit data
Returned value: longlong: 64-bit data
Description: Multiplies a and b, and returns the result

#include <stdio.h>

#include "longlong.h"

#pragma inline_asm(mul64)

static longlong mul64(unsigned long a,unsigned long b)

{

 MOV @(0,R15),R0 ;Sets address of c to R0

 DMULU R4,R5 ;Multiply R4 (a) with R5 (b)

 STS MACH,R1 ;Substitutes the result (higher 32 bits)

 MOV R1,@(0,R0) ;Sets R1 to (c.H)

 STS MACL,R2 ;Substitutes the result (lower 32 bits)

 MOV R2,@(4,R0) ;Sets R2 to (c.L)

}

void main(void)

{

 longlong c;

 unsigned long a,b;

a=0xffffffff;

 b=0x10000000;

 c=mul64(a,b);

 printf("mul64 = %8x %08x \n",c.H,c.L);

}

(v) Multiplication of signed 32-bit data

Format: longlong mul64s(signed long a,signed long b)
Parameters: a: 32-bit data
 b: 32-bit data

Section 3 Compiler

Rev.4.00 2007.02.02 3-93
REJ05B0463-0400

Returned value: longlong: 64-bit data
Description: Multiplies a and b, and returns the result

#include <stdio.h>

#include "longlong.h"

#pragma inline_asm(mul64s)

static longlong mul64s(signed long a,signed long b)

{

 MOV @(0,R15),R0 ;Sets address of c to R0

 DMULS R4,R5 ;Multiply R4 (a) with R5 (b) with sign

 STS MACH,R1 ;Substitutes the result (higher 32 bits)

 MOV R1,@(0,R0) ;Sets R1 to (c.H)

 STS MACL,R2 ;Substitutes the result (lower 32 bits)

 MOV R2,@(4,R0) ;Sets R2 to (c.L)

}

void main(void)

{

 longlong c;

 signed long a,b;

 a = -1;

 b=1;

 c=mul64s(a,b);

 printf("mul64s = %8x %08x \n",c.H,c.L);

}

(4) Bit rotation

(i) Rotate 8 bits of data one bit to the left

Format: short rot8l(unsigned long a)
Parameters: a: unsigned 8-bit data
Returned value: short: 8-bit data
Description: Rotate a one bit to the left, and return the result

#include <stdio.h>

#pragma inline_asm(rot8l)

unsigned char rot8l(unsigned char a)

{

 ROTL R4 ;Shifts left by 1 bit

 MOV R4,R0 ;

 SHLR8 R0 ;Shifts right by 8 bit

 OR R4,R0 ;

}

void main(void)

{

 unsigned char a;

 a=0x12;

Section 3 Compiler

Rev.4.00 2007.02.02 3-94
REJ05B0463-0400

 a=rot8l(a);

 printf(" rot8l %x \n",a);

}

(ii) Rotate 8 bits of data n bits to the left

Format: short rot8ln(unsigned char a,int n)
Parameters: a: unsigned 8-bit data
 n: number of shifts
Returned value: short: 8-bit data
Description: Rotate a n bits to the left, and return the result

#include <stdio.h>

#pragma inline_asm(rot8ln)

unsigned char rot8ln(unsigned char a,int n)

{

 MOV #0,R1 ;Sets the counter register

?LOOP:

 ROTL R4 ;Shifts left by 1 bit

 MOV R4,R2 ;

 SHLR8 R2 ;Shifts right by 8 bit

 ADD #1,R1 ;Increments the counter register by 1

 CMP/EQ R1,R5 ;If R1==R5, sets T to 1

 BF ?LOOP ;If T!=1, branches to LOOP

 OR R2,R4 ;Executed before branch

 MOV R4,R0 ;Sets the return value

}

void main(void)

{

 unsigned char a,b;

 int n;

 a=0x12;

 n=4;

 b=rot8ln(a,n);

 printf("b: %x \n",b);

}

(iii) Rotate 8 bits of data one bit to the right

Format: short rot8r(unsigned char a)
Parameters: a: unsigned 8-bit data
Returned value: short: 8-bit data
Description: Rotate a one bit to the right, and return the result

#pragma inline_asm(rot8r)

unsigned char rot8r(unsigned char a)

Section 3 Compiler

Rev.4.00 2007.02.02 3-95
REJ05B0463-0400

{

 ROTR R4 ;Shifts right by 1 bit

 MOV R4,R0 ;

 SHLR16 R4 ;Shifts right by 16 bit

 SHLR8 R4 ;Shifts right by 8 bit

 OR R4,R0 ;

}

void main(void)

{

 unsigned char a;

 a=0x12;

 a=rot8r(a);

 printf(" rot8r %x \n",a);

}

(iv) Rotate 8 bits of data n bits to the right

Format: short rot8rn(unsigned char a,int n)
Parameters: a: unsigned 8-bit data
 n: number of shifts
Returned value: short: 8-bit data
Description: Rotate a n bits to the right, and return the result

#include <stdio.h>

#pragma inline_asm(rot8rn)

unsigned char rot8rn(unsigned char a,int n)

{

 MOV #0,R1 Sets the counter register

?LOOP:

 ROTR R4 ;Shifts right by 1 bit

 MOV R4,R2 ;

 SHLR16 R2 ;Shifts right by 16 bit

 SHLR8 R2 ;Shifts right by 8 bit

 ADD #1,R1 ;Increments the counter register by 1

 CMP/EQ R1,R5 ;If R1==R5, sets T to 1

 BF ?LOOP ;If T!=1, branches to LOOP

 OR R2,R4 ;Executed before branch

 MOV R4,R0 ;Sets the return value

}

void main(void)

{

 unsigned char a,b;

 int n;

 a=0x12;

Section 3 Compiler

Rev.4.00 2007.02.02 3-96
REJ05B0463-0400

 n=4;

 b=rot8rn(a,n);

 printf(" rot8rn %x \n",b);

}

(v) Rotate 16 bits of data one bit to the left

Format: short rot16l(unsigned short a)
Parameters: a: unsigned 16-bit data address
Returned value: short: 16-bit data
Description: Rotate a one bit to the left, and return the result

#pragma inline_asm(rot16l)

unsigned short rot16l(unsigned short a)

{

 ROTL R4 ;Shifts left by 1 bit

 MOV R4,R0 ;

 SHLR16 R0 ;Shifts right by 16 bit

 OR R4,R0 ;

}

void main(void)

{

 unsigned short a,b;

 a=0x1234;

 b=rot16l(a);

 printf(" rot16l = %x \n",b);

}

(vi) Rotate 16 bits of data n bits to the left

Format: short rot16ln(unsigned short a,int n)
Parameters: a: unsigned 16-bit data address
 n: number of shifts
Returned value: short: 16-bit data
Description: Rotate a n bits to the left, and return the result

#include <stdio.h>

#pragma inline_asm(rot16ln)

unsigned short rot16ln(unsigned short a,int n)

{

 MOV #0,R1 ;Sets the counter register

?LOOP:

 ROTL R4 ;Shifts left by 1 bit

 MOV R4,R2 ;

 SHLR16 R2 ;Shifts right by 16 bit

 ADD #1,R1 ;Increments the counter register by 1

 CMP/EQ R1,R5 ;If R1==R5, sets T to 1

 BF ?LOOP ;If T!=1, branches to LOOP

Section 3 Compiler

Rev.4.00 2007.02.02 3-97
REJ05B0463-0400

 OR R2,R4 ;

 MOV R4,R0 ;Sets the return value

}

void main(void)

{

 unsigned short a,b;

 int n;

 a=0x1234;

 n=8;

 b=rot16ln(a,n);

 printf("rot16ln = %x \n",b);

}

(vii) Rotate 16 bits of data one bit to the right

Format: short rot16r(unsigned short a)
Parameters: a: unsigned 16-bit data address
Returned value: short: 16-bit data
Description: Rotate a one bit to the right, and return the result

#include <stdio.h>

#pragma inline_asm(rot16r)

unsigned short rot16r(unsigned short a)

{

 ROTR R4 ;Shifts right by 1 bit

 MOV R4,R0 ;

 SHLR16 R0 ;Shifts right by 16 bit

 OR R4,R0 ;

}

void main(void)

{

 unsigned short a,b;

 a=0x1234;

 b=rot16r(a);

 printf("rot16r = %x \n",b);

}

(viii) Rotate 16 bits of data n bits to the right

Format: short rot16rn(unsigned short a,int n)
Parameters: a: unsigned 16-bit data address
 n: number of shifts
Returned value: short: 16-bit data
Description: Rotate a n bits to the right, and return the result

#include <stdio.h>

#pragma inline_asm(rot16rn)

Section 3 Compiler

Rev.4.00 2007.02.02 3-98
REJ05B0463-0400

unsigned short rot16rn(unsigned short a,int n)

{

 MOV #0,R1 ;Sets the counter register

?LOOP:

 ROTR R4 ;Shifts right by 1 bit

 MOV R4,R2 ;

 SHLR16 R2 ;Shifts right by 16 bit

 ADD #1,R1 ;Increments the counter register by 1

 CMP/EQ R1,R5 ;If R1==R5, sets T to 1

 BF ?LOOP ;If T!=1, branches to LOOP

 OR R2,R4 ;

 MOV R4,R0 ;Sets the return value

}

void main(void)

{

 unsigned short a,b;

 int n;

 a=0x1234;

 n=8;

 b=rot16rn(a,n);

 printf("rot16rn %x \n",b);

}

(ix) Rotate 32 bits of data one bit to the left

Format: short rot32l(unsigned long a)
Parameters: a: unsigned 32-bit data address
Returned value: short: 32-bit data
Description: Rotate a one bit to the left, and return the result

#include <stdio.h>

#pragma inline_asm(rot32l)

unsigned long rot32l(unsigned long a)

{

 ROTL R4 ;Shifts left by 1 bit

 MOV R4,R0 ;Sets the return value

}

void main(void)

{

 unsigned long a;

 a=0x12345678;

 a=rot32l(a);

 printf(" rot32l %8x \n",a);

}

(x) Rotate 32 bits of data n bits to the left

Section 3 Compiler

Rev.4.00 2007.02.02 3-99
REJ05B0463-0400

Format: short rot32ln(unsigned long a,int b)
Parameters: a: unsigned 32-bit data address
 b: number of shifts
Returned value: short: 32-bit data
Description: Rotate a n bits to the left, and return the result

#include <stdio.h>

#pragma inline_asm(rot32ln)

unsigned long rot32ln(unsigned long a,int b)

{

 MOV #0,R1 ;Sets the counter register

?LOOP:

 ROTL R4 ;Shifts right by 1 bit

 ADD #1,R1 ;Increments the counter register by 1

 CMP/EQ R1,R5 ;If R1==R5, sets T to 1

 BF ?LOOP ;If T!=1, branches to LOOP

 MOV R4,R0 ;Sets the return value

}

void main(void)

{

 unsigned long a;

 int b;

 a=0x12345678;

 b=16;

 a=rot32ln(a,b);

 printf(" rot32ln %8x \n",a);

}

(xi) Rotate 32 bits of data one bit to the right

Format: short rot32r(unsigned long a)
Parameters: a: unsigned 32-bit data address
Returned value: short: 32-bit data
Description: Rotate a one bit to the right, and return the result

#include <stdio.h>

#pragma inline_asm(rot32r)

unsigned long rot32r(unsigned long a)

{

 ROTR R4 ;Shifts right by 1 bit

 MOV R4,R0 ;Sets the return value

}

void main(void)

{

 unsigned long a,b;

 a=0x12345678;

 b=rot32r(a);

 printf(" rot32r %8x \n",b);

}

Section 3 Compiler

Rev.4.00 2007.02.02 3-100
REJ05B0463-0400

(xii) Rotate 32 bits of data n bits to the right

Format: short rot32rn(unsigned long a,int b)
Parameters: a: unsigned 32-bit data address
 b: number of shifts
Returned value: short: 32-bit data
Description: Rotate a n bits to the right, and return the result

#include <stdio.h>

#pragma inline_asm(rot32rn)

unsigned long rot32rn(unsigned long a,int b)

{

 MOV #0,R1 ;Sets the counter register

?LOOP:

 ROTR R4 ;Shifts right by 1 bit

 ADD #1,R1 ;Increments the counter register by 1

 CMP/EQ R1,R5 ;If R1==R5, sets T to 1

 BF ?LOOP ;If T!=1, branches to LOOP

 MOV R4,R0 ;Sets the return value

}

void main(void)

{

 unsigned long a;

 int b;

 a=0x12345678;

 b=16;

 a=rot32rn(a,b);

 printf("rot32rn %8x \n",b);

}

(5) Endian conversions

(i) Swap the upper 16 bits and lower 16 bits

Format: unsigned long swap(unsigned long a)
Parameters: a: unsigned 32-bit data
Returned value: unsigned long: unsigned 32-bit data
Description: Swap the upper and lower 16 bits of a

#include <stdio.h>

#pragma inline_asm (swap)

static unsigned long swap(unsigned long a)

{

 SWAP.W R4,R0 ;Swaps the upper 16 bits of R4 and lower 16 bits of R0

}

void main(void)

{

 unsigned long a,b;

 a=0xaaaabbbb;

Section 3 Compiler

Rev.4.00 2007.02.02 3-101
REJ05B0463-0400

 b=swap(a);

 printf("b: %8x \n",b);

}

(ii) Symmetric swap of the upper 16 bits and lower 16 bits

Format: unsigned long swapbit(unsigned long a)
Parameters: a: unsigned 32-bit data
Returned value: unsigned long: unsigned 32-bit data
Description: Individually swap the upper and lower 16 bits of a

 32bit → 1bit , 1bit → 32bit

 31bit → 2bit , 2bit → 31bit

 :

 :

 18bit → 15bit , 15bit → 18bit

 17bit → 16bit , 16bit → 17bit

#include <stdio.h>

#pragma inline_asm (swapbit)

static unsigned long swapbit(unsigned long a)

{

 MOV #0,R0 ;Sets the counter register

?LOOP:

 ROTCL R4 ;Rotates left

 ROTCR R1 ;Rotates right

 ADD #1,R0 ;Increments the counter register by 1

 CMP/EQ #32,R0 ;If 32==R0, sets T to 1

 BF ?LOOP ;If T!=1, branches to LOOP

 NOP ;

 MOV R1,R0 ;Sets the return value

}

void main(void)

{

 unsigned long a,b;

 a=0x1234;

 b=swapbit(a);

 printf("b: %8x \n",b);

}

Section 3 Compiler

Rev.4.00 2007.02.02 3-102
REJ05B0463-0400

(iii) Endian conversion

Format: unsigned long swapbyte(unsigned long a)
Parameters: a: unsigned 32-bit data
Returned value: unsigned long: unsigned 32-bit data
Description: Endian-convert a and return the result

#include <stdio.h>

#pragma inline_asm (swapbyte)

static unsigned long swapbyte(unsigned long a)

{

 SWAP.B R4,R4 ;Swaps data in bits 0 to 7 of R4 and data in bits 8 to 15 of R4

 SWAP.W R4,R4 ;Swaps upper 16 bits of R4 and lower 16 bits of R4

 SWAP.B R4,R0 ;Swaps data in bits 0 to 7 of R4 and data in bits 8 to 15 of R0

}

void main(void)

{

 unsigned long a,b;

 a=0xaabbccdd;

 b=swapbyte(a);

 printf("b: %8x \n",b);

}

(6) Multiply-and-accumulate operations

(i) Multiply-and-accumulate operation on arrays of 32-bit data

Format: long macl32h(long *pa,long *pb,int size)
Parameters: *pa: Start address of 32-bit data array
 *pb: Start address of 32-bit data array
 size: array size
Returned value: long: 32-bit data
Description: Perform multiply-and-accumulate on the data arrays *pa and *pb; return the upper 32 bits of the 64-bit
data result

#include <stdio.h>

#pragma inline_asm (macl32h)

static long macl32h(long *pa,long *pb,int size)

{

 MOV #0,R1 ;Sets the counter register

 CLRMAC ;Initializes the MAC

?LOOP:

 MAC.L @R4+,@R5+ ;Multiplies and accumulates

 ADD #1,R1 ;Increments the counter register by 1

 CMP/EQ R1,R6 ;If R1==R6, sets T to 1

 BF ?LOOP ;If T!=1, branches to LOOP

 NOP ;

Section 3 Compiler

Rev.4.00 2007.02.02 3-103
REJ05B0463-0400

 STS MACH,R0 ;Substitutes the result

}

void main(void)

{

 int size=3;

 long c;

 long pa[3]={0x0000f000,0x000f0000,0x00f00000};

 long pb[3]={0x00000100,0x00001000,0x00010000};

 c=macl32h(pa,pb,size);

 printf("macl32h = %8x \n",c);

}

(ii) Multiply-and-accumulate operation on arrays of unsigned data

Format: longlong macl64(long *pa,long *pb,int size)
Parameters: *pa: Start address of 32-bit data array
 *pb: Start address of 32-bit data array
 size: array size
Returned value: longlong: 64-bit data
Description: Perform multiply-and-accumulate on the 32-bit data arrays *pa and *pb and saves the result.

#include <stdio.h>

#include "longlong.h"

#pragma inline_asm (macl64)

static longlong macl64(long *pa,long *pb,int size)

{

 MOV #0,R0 ;Sets the counter register

 MOV @(0,R15),R1 ;Sets the address of first parameter

 CLRMAC ;Initializes the MAC register

?LOOP:

 MAC.L @R4+,@R5+ ;Performs multiplication and accumulation operation, and modifies address

 ADD #1,R0 ;Increments the counter register by 1

 CMP/EQ R0,R6 ;If R0==R6, sets T to 1

 BF ?LOOP ;If T!=1, branches to LOOP

 NOP ;

 STS MACH,R2 ;Sets the upper 32 bits of the result

 MOV R2,@(0,R1) ;

 STS MACL,R3 ;Sets the lower 32 bits of the result

 MOV R3,@(4,R1) ;

}

void main(void)

{

 longlong c;

 int size=3;

 long *pa,*pb;

Section 3 Compiler

Rev.4.00 2007.02.02 3-104
REJ05B0463-0400

 long pa[3]={0x0000f000,0x000f0000,0x00f00000};

 long pb[3]={0x00000100,0x00001000,0x00010000};

 c=macl64(pa,pb,size);

 printf("macl64 = %8X %08X \n",c.H,c.L);

}

(7) Overflow check

(i) Overflow check of 32-bit data addition

Format: long addovf(long a,long b)
Parameters: a: 32-bit data for addition
 b: 32-bit data for addition
Returned value: long: 32-bit data
Description: Add a and b, return the result.

 If an overflow results, return the maximum value (7FFFFFFF).

 If an underflow results, return the minimum value (80000000).

 Judgment is based on a change in the sign bit.

#include <stdio.h>

#pragma inline_asm (addovf)

static long addovf(long a,long b)

{

 ADDV R4,R5 ;Performs addition with sign,

 ;and sets the T bit according to the change of the sign bit

 BF ?RETURN ;If T==0, branches to OVER

 MOV #0,R1 ;

 CMP/GT R4,R1 ;If R1>R4, sets the T bit

 BF ?OVER ;If T==0, branches to OVER

 NOP ;

 MOV.L ?DATA+4,R5 ;Sets R5 to (H'7FFFFFFF)

 BRA ?RETURN ;Branches to RETURN

 NOP ;

?OVER:

 MOV.L ?DATA,R5 ;Sets R5 to (H'80000000)

?RETURN:

 MOV R5,R0 ;Sets R5 to R0

 BRA ?OWARI ;Branches to OWARI

 NOP ;

?DATA:

 .ALIGN 4

 .RES.L 1

 .DATA.L H'7FFFFFFF

 .DATA.L H'80000000

?OWARI:

}

void main(void)

Section 3 Compiler

Rev.4.00 2007.02.02 3-105
REJ05B0463-0400

{

 long a,b,c;

 a=0x3000000;

 b=0x2000000;

 c=addovf(a,b);

 printf("c: %x \n",c);

}

Section 3 Compiler

Rev.4.00 2007.02.02 3-106
REJ05B0463-0400

3.4 Register Specification

In some cases there is a need to improve the speed of execution of a module which frequently accesses external variables.
In such cases, the feature for specifying global base variables (GBR) is used, in which the global base register (GBR) is
employed in relative addressing mode to reference the frequently accessed data. GBR-referenced variables are allocated to
the sections $G0, $G1 and referenced using the offset from the start address of the $G0 section saved in GBR. This results
in code that is faster and more compact than code which loads addresses for referencing, thereby increasing both speed of
execution and efficiency of ROM use.

Figure 3.2 GBR Base Variable Referencing

GBR

0 bytes

127 bytes

255 bytes

510 bytes

1020 bytes

Start address of $G0 Section

Size of data to be allocated

1 byte

2 bytes

4 bytes or more

Memory

Section $G1

Section $G0

Section 3 Compiler

Rev.4.00 2007.02.02 3-107
REJ05B0463-0400

3.4.1 Specification of GBR Base Variables

Description:

Preprocessor directives are used in order to implement GBR base referencing of external variables.
The "#pragma gbr_base"directive specifies that a variable is at an offset of 0 to 127 bytes from the address indicated by
GBR. The variable specified here is allocated to the section $G1.
The "#pragma gbr_base1"directive specifies that the offset from the address indicated by GBR of a variable is, for the char
type and unsigned char type, at most 255 bytes; for the short and unsigned short types, at most 510 bytes; and for the int,
unsigned int, long, unsigned long, float, and double types, at most 1020 bytes. The variable specified here is allocated to
the section $G1.

Format:

 #pragma gbr_base (variable name > [,< variable name >…])

 #pragma gbr_base1 (variable name > [,< variable name >…])

Example of use:

C language code

 #pragma gbr_base(a1,b1,c1)

 #pragma gbr_base1(a2,b2,c2)

 char a1,a2;

 short b1,b2;

 long c1,c2;

 void f()

 {

 a1 = a2;

 b1 = b2;

 c1 = c2;

 }

Expanded into assembly language code

_f:

 MOV.B @(_a2-(STARTOF $G0),GBR),R0

 MOV.B R0,@(_a1-(STARTOF $G0),GBR)

 MOV.W @(_b2-(STARTOF $G0),GBR),R0

 MOV.W R0,@(_b1-(STARTOF $G0),GBR)

 MOV.L @(_c2-(STARTOF $G0),GBR),R0

 RTS

 MOV.L R0,@(_c1-(STARTOF $G0),GBR)

In order to use GBR base variables, it is necessary to set the start address of $G0 section as a GBR register beforehand. An
example of this is shown below.

Section 3 Compiler

Rev.4.00 2007.02.02 3-108
REJ05B0463-0400

Initialization program (assembly language part)

 :

 .SECTION $G0,DATA,ALIGN=4

 :

__G_BGN: .DATA.L (STARTOF $G0) ;Start address of $G0 section

 : ;Specifies the address

 .EXPORT __G_BGN

 :

 .END

Initialization program (C language part)

 #include <machine.h>

 extern int *_G_BGN;

 void INITSCT() /* Function executed before the main function */

 {

 :

 set gbr(G BGN); /* Specifies the start address of $G0 section in the GBR register */

 :

 }

Important Information:

In using this feature, the following rules should be followed.

(1) At the start of program execution, GBR should be set to the start address of the $G0 section.

(2) The $G1 section should always be placed immediately after the $G0 section at linkage. Even when using only
"#pragma gbr_base1", the $G0 section must always be created.

(3) If the total size after linking of the $G0 section exceeds 128 bytes, or if there are variables with offsets which exceed
the offsets specified for the different data types in the explanation of "#pragma gbr_base1", correct operation is not
guaranteed.

(4) If 2 and 3 above are not satisfied, correct operation is not guaranteed; the map list output at linkage should be checked
to confirm that they are satisfied.

(5) Data which is accessed especially frequently, and data on which bit operations will be performed, should be allocated
to section $G0 whenever possible. An object file is created which is more efficient in terms of both execution speed
and size when data is allocated to section $G0 rather than to section $G1.

(6) Variables for which "#pragma gbr_base" or "#pragma gbr_base1" is specified are allocated to sections in the order in
which the variables are declared. It should be remembered that if variables of different sizes are declared in alternation,
the data size is increased.

(7) When gbr=auto is specified,the specification of #pragma gbr_base or #pragma gbr_base1 will be invalid(Ver.7 or
later).

Section 3 Compiler

Rev.4.00 2007.02.02 3-109
REJ05B0463-0400

3.4.2 Register Allocation of Global Variables

Description:

The global variable specified by <variable name> is allocated to the register specified by <register name>.

Format:

 #pragma global_register(< variable name >=< register name >,...)

Example of use:

C language code

#pragma global_register(x=R13,y=R14)

 int x;

 char *y;

func1()

{

 x++;

}

func2()

{

 *y=0;

}

func(int a)

{

 x = a;

 func1();

 func2();

}

Expanded into assembly language code

 .EXPORT _func1

 .EXPORT _func2

 .EXPORT _func

 .SECTION P,CODE,ALIGN=4

_func1: ; function: func1

 ; frame size=0

 RTS

 ADD #1,R13

_func2: ; function: func2

 ; frame size=0

 MOV #0,R3

 RTS

 MOV.B R3,@R14

_func: ; function: func

 ; frame size=4

Section 3 Compiler

Rev.4.00 2007.02.02 3-110
REJ05B0463-0400

 STS.L PR,@-R15

 BSR _func1

 MOV R4,R13

 BRA _func2

 LDS.L @R15+,PR

 .SECTION B,DATA,ALIGN=4

 .END

Important Information:

(1) Simple types and pointer types of variables can be used as global variables. Unless the "-double=float" option is
specified, double type variables cannot be specified (except for the SH2A-FPU, SH-4, and SH-4A).

(2) Registers which can be specified are R8 to R14, FR12 to FR15 (for the SH-2E,SH2A-FPU, SH-4, and SH-4A), and
DR12 to DR14 (for the SH2A-FPU, SH-4, and SH-4A).

(3) Initial values cannot be set. Also, addresses cannot be referenced.

(4) References of specified variables from linked files are not guaranteed.

(5) Static data members can be specified, but nonstatic data members cannot be specified.

 Variable types which can be set in FR12 to FR15

(i) For SH-2E

float type

double type (when the double=float option is specified)

(ii) For SH2A-FPU, SH-4, and SH-4A

float type (without the fpu=double option)

double type (with the fpu=single option)

 Variable types which can be set in DR12 to DR15

(i) For SH2A-FPU, SH-4, and SH-4A

float type (with the fpu=double option)

double type (without the fpu=single option)

Section 3 Compiler

Rev.4.00 2007.02.02 3-111
REJ05B0463-0400

3.5 Control of Register Save/Restore Operations

Description:

In functions called by functions which perform no other processing, there are cases when it is desirable not to save and
restore registers in order to further speed program execution. In such cases, the preprocessor directives "#pragma
noregsave", "#pragma noregalloc", and "#pragma regsave" are used for more complete control over register save/restore
operations.

(1) The "#pragma noregsave" directive specifies that general-purpose registers are not saved and restored at the entry and
exit points of functions.

(2) The "#pragma noregalloc" directive is used to create an object that does not save/restore general-purpose registers at
function entry/exit points, and does not allocate registers for register variables (R8 to R14) across function calls.

(3) The "#pragma regsave" directive is used to create an object which saves and restores R8 through R14 among the
general-purpose registers at function entry/exit points, and does not allocate registers for register variables (R8 to
R14).

(4) "#pragma regsave" and "#pragma noregalloc" can be specified simultaneously for the same function. Such overlapping
specifications causes an object to be created in which all registers for register variables (R8 to R14) are saved and
restored at the function entry/exit points, and no register variable registers are allocated across function calls.

• Format:

 #pragma noregsave(< function name > [,< function name >…])

 #pragma noregalloc(< function name > [,< function name >…])

 #pragma regsave(< function name > [,< function name >…])

Example of use:

Examples of situations in which it is desirable to eliminate register storing/restoring, or to create conditions in which it can
be eliminated, are shown below.

Example 1
When registers R8 to R14 are used in a function that is run at power-on, there is no need to save and restore registers, and
so by specifying "#pragma noregsave" the object size is reduced, and the speed of execution improved.

Example 2
In cases where registers R8 to R14 are used in functions which put the system into low-power mode without returning
control to the calling function, and in similar cases, there is no need for register save/restore operations. Hence by
specifying "#pragma noregsave", the object size can be reduced and execution speed improved.

Section 3 Compiler

Rev.4.00 2007.02.02 3-112
REJ05B0463-0400

Example 3
When registers R8 to R14 are not allocated by function A, but are allocated by functions B, C, D and E, an object which
performs save/restore operations for R8 to R14 is generated. Function A does not use R8 to R14, and so there are no
adverse effects if a function called by function A does not save/restore the registers; but there are cases in which a function
which calls function A uses the registers. In such cases directives can be added so that save/restore is performed at
function A entry and exit points, but is not performed for each of the functions called by function A.

Example 4
When, using the same calling relation as in example 3 above, both functions C and C1 use the registers R8 to R14, the
function C1 must not use the registers R8 to R14 across the calling function C. In such cases, if the "#pragma noregalloc"
directive is used with function C1, specifying that allocation of R8 to R14 not exceed function calls, then function C can
be specified using the "pragma noregsave" directive.

A

C1 D E

C Both functions C and C1 uses

the R8 to R14, care must be

taken that function C

processing does not affect

function C1 processing

A

C1 D E

C

B

R8 to R14 need not be saved or restored,

because the function C1 does not use the

registers R8 to R14 across the calling

function C.

#pragma regsave (A)

#pragma noregsave (B,C,D,E)

#pragma noregalloc (C1)

Addition

R8 to R14 must be saved or restored because

they are used by each function

A

B C D E

A

B C D E

R8 to R14 need not be saved or restored in

each function

At function A entry and exit points, the contents of R8 to R14 are

saved and restored, and so assumed to be unchanged.

#pragma regsave(A)

#pragma noregsave(B,C,D,E)

Addition

Saves and

restores R8 to

R14

R8 to R14 are not used

B

Section 3 Compiler

Rev.4.00 2007.02.02 3-113
REJ05B0463-0400

Example 5
When, in a calling relation similar to that of example 3, registers R8 to R14 are used within function A, the function A
must be written so as not to use the registers R8 to R14 across the functions B, C, D, E. In such cases, both the
specifications "#pragma regsave" and "#pragma noregalloc" are used for the function A. By specifying both "#pragma
regsave" and "#pragma noregalloc", the registers R8 to R14 are saved and restored at function entry/exit points, and code
is output which does not allocate R8 to R14 across function calls, so that "#pragma noregsave" can be specified for the
functions B, C, D, E.

Important Information:

The results of calling a function specified using "#pragma noregsave" by a method other than those listed below are not
guaranteed.

(1) When used as the first function started, not called by any other function

(2) When called from a function specified using "#pragma regsave"

(3) When called from a function specified using "#pragma regsave", via a function specified using "#pragma noregalloc"

A

B C D E

A

B C D E

#pragma regsave (A)

#pragma noregalloc (A)

#pragma noregsave (B,C,D,E)

Addition

Because R8 to R14 are used within function A, the

function A must be written so as not to use the

registers R8 to R14 across the functions B, C, D, E.

Function A is written so as not to use the registers R8 to

R14 across the functions, and saves or restores R8 to

R14 at the entry and exit points of functions B, C, D, E.

Section 3 Compiler

Rev.4.00 2007.02.02 3-114
REJ05B0463-0400

3.6 Specification of 16/20/28/32-Bit Address Areas

Description:

Preprocessor directives can be used to specify to the compiler that externally referenced variable and function addresses
are 16, 20, 28, or 32 bits.
The compiler assumes that identifiers declared using "#pragma abs16" can be represented as 16-bit addresses, and
allocates only a 16-bit address storage space where normally 32 bits would be allocated. In this way, the object size can be
reduced, for greater efficiency of ROM use.
In addition, if memory is allocated at design time such that variables and functions referenced by multiple functions are
preferentially placed in addresses represented by 16 bits, this feature can be used effectively.
A 16-bit address conversion option was added beginning with the SuperH RISC engine C/C++ compiler Ver. 4.1. This
option can also be used for multiple specifications. For details, see appendix B, Added Features.
In Ver. 9.0 or a later version, a 20/28-bit address area can be specified in SH-2A and SH2A-FPU. This option can also be
used for multiple specifications.

• Format:

 <Preprocessor directive>

 #pragma abs16 (<identifier> [,<identifier>...])

 #pragma abs20 (<identifier> [,<identifier>...])

 #pragma abs28 (<identifier> [,<identifier>...])

 #pragma abs32 (<identifier> [,<identifier>...])

 identifier: variable name | function name

 <Options>

 abs16 = { program | const | data | bss | run | all }[,...]

 abs20 = { program | const | data | bss | run | all }[,...]

 abs28 = { program | const | data | bss | run | all }[,...]

 abs32 = { program | const | data | bss | run | all }[,...]

 The default is abs32=all.

Example of use:

Example 1

Externally accessed variable and function are specified as having 16-bit addresses.

C language code

#pragma abs16 (x,y,z)

extern int x();

int y;

long z;

f ()

{

 z = x() + y;

}

Section 3 Compiler

Rev.4.00 2007.02.02 3-115
REJ05B0463-0400

Expanded into assembly language code

_f:

 STS.L PR,@-R15

 MOV.W L218,R3 ;Loads x address

 JSR @R3

 NOP

 MOV.W L218+2,R3 ;Loads y address

 MOV.L @R3, R2

 MOV.W L218+4,R1 ;Loads z address

 ADD R2,R0

 LDS.L @R15+,PR

 RTS

 MOV.L R0,@R1

L218 :

 .DATA.W _x

 .DATA.W _y

 .DATA.W _z

Example 2

Externally accessed variable and function are specified as having 20-bit addresses.

C language code

 #pragma abs20 (x,y,z)

 extern int x();

 int y;

 long z;

 f()

 {

 z = x() + y;

 }

Expanded into assembly language code

_f:

 STS.L PR,@-R15

 MOVI20 #_x,R2 ; Loads x address

 JSR/N @R2

 MOVI20 #_y,R5 ; Loads y address

 MOV.L @R5,R1

 MOVI20 #_z,R4 ; Loads z address

 ADD R1,R0

 LDS.L @R15+,PR

 RTS

 MOV.L R0,@R4

_y:

 .RES.L 1

Section 3 Compiler

Rev.4.00 2007.02.02 3-116
REJ05B0463-0400

_z:

 .RES.L 1

Example 3

Externally accessed variable and function are specified as having 28-bit addresses.

C language code

 #pragma abs28 (x,y,z)

 extern int x();

 int y;

 long z;

 f()

 {

 z = x() + y;

 }

Expanded into assembly language code

_f:

 STS.L PR,@-R15

 MOVI20S #_x+H'80,R2 ; Loads x address

 ADD #Low _x,R2

 JSR/N @R2

 MOVI20S #_y+H'80,R5 ; Loads y address

 ADD #Low _y,R5

 MOV.L @R5,R1

 MOVI20S #_z+H'80,R4 ; Loads z address

 ADD #Low _z,R4

 ADD R1,R0

 LDS.L @R15+,PR

 RTS

 MOV.L R0,@R4

_y:

 .RES.L 1

_z:

 .RES.L 1

Section 3 Compiler

Rev.4.00 2007.02.02 3-117
REJ05B0463-0400

Important Information:

(1) Variables and functions with the "abs16/20/28/32" option specified should be placed in different sections using section
switching, with sections arranged such that addresses can be represented by the specified bits at linkage. If addresses
which can be represented by the specified bits are not assigned, an error occurs at linkage.

The following table lists the access range available for each specification.

Table 3.23 Address Range

Address range
#pragma/option

Lower Upper

0x00000000 0x00007FFF
abs16

0xFFFF8000 0xFFFFFFFF

0x00000000 0x0007FFFF
abs20

0xFFF80000 0xFFFFFFFF

0x00000000 0x07FFFF7F*1
abs28

0xF8000000 0xFFFFFFFF

abs32 0x00000000 0xFFFFFFFF

Note:1. Note that the address is 0x07FFFF7F.

(2) If position-independent code generation is specified at compilation, function addresses having the specified number of
bits are not generated.

00000000

Area accessed in 16 bits

~

00007FFF

FFFF8000 ~

FFFFFFFF

Section 3 Compiler

Rev.4.00 2007.02.02 3-118
REJ05B0463-0400

3.7 Section Name Specification

When there is a need to allocate different sections of a system with the same attributes to different addresses (for example,
a need to allocate a certain module to external RAM, and another module to internal RAM), names are assigned to the
different sections, and addresses are assigned to the sections at linkage. The SuperH RISC engine C/C++ compiler
provides two different methods for specifying section names. Below a methods is indicated for specifying separate section
names for multiple modules. In the example of this explanation, it is assumed that modules f, g, h and data a, b are divided
with f, h, a together, and g, b together.

3.7.1 Section Name Specification

The SuperH RISC engine C/C++ compiler can specify object section names at compilation through the "-section" option.
Using this feature, modules and data to be separated can be incorporated into different files, different section names
specified at compilation, and start addresses for each specified at linkage.

Figure 3.3 Method for Specifying Section Names

Source file 1(file1.c)

Object file 2 Object file 1

f ()
h ()

Section name Section division

P

B

shc file1.c

Source file 2(file2.c)

int b;
g ()
{
 b=2;
}

g ()

Section name Section division

 PX

 BX Start address can be

specified for each

section

(at linkage)

shc –section=p=PX,b=BX file2.c

a b

int a;
f ()
{
 a = 1 ;
}
h ()
{
 a = b ;
}

Section 3 Compiler

Rev.4.00 2007.02.02 3-119
REJ05B0463-0400

3.7.2 Section Switching

Using the "-section" option, section names can be specified only in file units; but by using the "#pragma section" directive,
section names with the same attributes can be switched within a single file, for finer control of memory allocation. By
means of this feature, the section divisions of explained in section 3.7.1, Section Name Specification, can be described in a
single file. An example of the use of this feature appears in figure 3.4.

Figure 3.4 Section Switching Method

In this figure, by including the "#pragma section X" directive, the name of the program section from this line until the
"#pragma section" directive becomes "PX", and the name of the uninitialized data section becomes "BX".
With the "#pragma section" directive, the default section name is reinstated.

 int a;
f ()
{
 a=1;
}
#pragma section X

int b;
g ()
{
 b=2;
}

#pragma section

h ()
{
 a=b;
}

Source file

a

g ()

b

f ()

B

P

BX

PX

Section name Section division

Object file

Start address can

be specified for

each section

(at linkage)

Section 3 Compiler

Rev.4.00 2007.02.02 3-120
REJ05B0463-0400

3.8 Specification of Entry Functions, and SP Settings

Description:

Functions specified with “function name” are handled as entry functions. Save and restore code for registers cannot be
created by entry functions in any circumstances. If the CPU is SH-3,SH3-DSP,SH-4,SH-4A, or SH4AL-DSP, and if there
is a sp=<constant> specification or a #pragma stacksize declaration, stack pointer initialization code is output at the start
of the function.

Format:

 #pragma entry (< function name >=<(sp=<constant>))

Example of use:

C language code

Example 1:

#pragma entry INIT(sp=0x10000)

void INIT() {

:

}

Example 2:

#pragma stacksize 100

#pragma entry INIT

void INIT() {

:

}

Expanded into assembly language code

Example 1:

.SECTION P, CODE

_INIT:

MOV.L L1, R15

:

L1: .DATA.L H’00010000

:

Example 2:

.SECTION S, STACK

.RES.B 100

.SECTION P, CODE

_INIT:

MOV.L L1, R15

:

Section 3 Compiler

Rev.4.00 2007.02.02 3-121
REJ05B0463-0400

L1: .DATA.L STARTOF S + SIZEOF S

:

Important Information:

Specify #pragma entry before the function declaration. Entry functions can only specify up to two load modules in total.
For <constant>, be sure to specify a multiple of 4.
If cpu=sh1|sh2|sh2e|sh2dsp is specified, the sp=<constant> specification is invalid.

Section 3 Compiler

Rev.4.00 2007.02.02 3-122
REJ05B0463-0400

3.9 Position-Independent Code

In order to improve execution speed, code in ROM is sometimes copied to RAM on startup and run from RAM. In order
to do so, it is necessary that the program be able to load the ROM code into an arbitrary address. Such code is called
position-independent code.
By specifying as a command-line option "pic=1" when compiling using the SuperH RISC engine C/C++ compiler,
position-independent code is generated.

Figure 3.5 Position-Independent Code

Notes: 1. This feature cannot be used for the SH-1.
 2. This feature cannot be applied to data sections.
 3. In execution as position-independent code, function addresses cannot be specified as initial values.

Examples:
 extern int f();

 int (*fp)() = f;

 The address of the function f is indeterminate until it is loaded into RAM, and so in this case operation is not
guaranteed.

 4. When using this feature, please use a standard library compatible with position-independent code. For details on
creating a library, refer to the SuperH RISC engine C/C++ Compiler, Assembler, and Optimizing Linkage
Editor User's Manual.

Executable load module

Executed on the target system

Programs can be loaded to any addresses

and executed.

When preparing the executable load

module, execution addresses on the target

system need not be determined.

Load addresses for data are fixed.

RAM

ROM

Program

Program

Data

Section 3 Compiler

Rev.4.00 2007.02.02 3-123
REJ05B0463-0400

3.10 MAP Optimization

With supercomputers in mind the latest optimization processing has been applied, and with alias analysis of pointer and
external variables, and data-flow analysis including of control statements, further improved optimization has been
achieved.

3.10.1 Procedure for Use

Recompile using symbol allocated addresses assigned by compiling and linking.
By this means, optimization reliant on allocated addresses can be achieved by the compiler.

Procedure for use:

First compilation and linkage:

Compilation with normal options

Linkage with -map=<file>.bls option -> outputs <file>.bls

Second compilation and linkage:

Compilation with -map=<file>.bls option

Linkage with normal options

Source Program

int a,b,c[10];
f(){
int *p=&a;
int i;
 *p=1;
 b=*p;

for(i=0;i<10;i++)
 c[i]=*p;
}

MOV.L L241+2,R5 ; _a
MOV #1,R3
MOV.L L241+6,R1 ; _b
MOV R3,R2
MOV.L L241+10,R7 ; _c
MOV.L R3,@R5
MOV.L R3,@R1
MOV R7,R4
MOV R7,R6
ADD #40,R6
L240:
MOV.L @R5,R3
MOV.L R3,@R4
ADD #4,R4
CMP/HS R6,R4
BF L240
RTS
NOP

 MOV.L L13+2,R2 ; _a
 MOV #1,R5 ; H'00000001
 MOV.L _L13+6,R6 ; _c
 MOV.L _R5,@R2
 MOV.L _L13+10,R2 ; _b
 MOV.L _R5,@R2
 MOV ;#10,R2
L11:
 DT R2
 MOV.L R5,@R6
 BF/S L11
 ADD #4,R6
 RTS
 NOP

(1): V5,V6 range of data-flow analysis

(2): V7 range of data-flow analysis

V5,V6 V7

(1) (2)

Section 3 Compiler

Rev.4.00 2007.02.02 3-124
REJ05B0463-0400

3.10.2 Example of Improved External Variable Access Code (1)

Taking into account the order of variable allocation, consecutively access allocated variables in the same register
relatively.

3.10.3 Example of Improved External Variable Access Code (2)

Variables allocated to 0 to7FFF, and FFFF8000 to FFFFFFFF are accessed by 16-bit literal.

MOV.W L237,R3 ;_a
 MOV #0,R4
 MOV.L R4,@R3
 RTS
L237:
 .DATA.W a //f000

Source Program

int a;
f(){
 a=0;
}

 MOV.L L237,R3 ;_a
 MOV #0,R4
 MOV.L R4,@R3
 RTS
L237:
 .DATA.L a //ffff0000

V5,V6 V7 (MAP is specified)

Referenced by

16-bit

 MOV.L L237,R3 ;_a
 MOV #0,R4
 delete
 MOV.L R4,@R3
 RTS
 MOV.L R4,@(1,R3)
L237:
 .DATA.L a
 delete

Source Program

int a,b;
f(){
 a=0;
 b=0;
}

 MOV.L L237,R3 ;_a
 MOV #0,R4
 MOV.L L237+4,R2;_b
 MOV.L R4,@R3
 RTS
 MOV.L R4,@R2
L237:
 .DATA.L a
 .DATA.L b

V5,V6 V7 (MAP is specified)

Relative access of "a".

Section 3 Compiler

Rev.4.00 2007.02.02 3-125
REJ05B0463-0400

3.10.4 Example of Improved External Variable Access Code (3)

Taking into account the branch destination address, branch using BSR/BRA.

3.10.5 Example of Improved External Variable Access Code (4)

When the option is gbr=auto (default), GBR is used as the base for external variable access.

Source Program

BRA _g
NOP

exterm g();
f(){
 g();
}

 MOV.L L237,R2 ;_g
 JMP @R2
 NOP
L237:
 .RES.W 1
 .DATA.L _g ;within ±4096

V5,V6 V7 (MAP is specified)

Branch using BRA

_f:
 STC GBR,@-R15
 MOV.L L13+2,R0 ; _a
 LDC R0,GBR
 MOV #100,R6 ;
 STC GBR,R2
 MOV #0,R5
L11:
 ADD #-1,R6
 MOV.L R5,@R2
 TST R6,R6
 ADD #4,R2
 BF L11
 MOV.L @(404,GBR),R0
 MOV.L R0,@(200,GBR)
 RTS
 LDC @R15+,GBR
L13:
 .RES.W 1
 .DATA.L _a

GBR referenced relatively

Source Program

int a[101];
int b;

void f()
{
 int i;

 for(i=0;
 i<100;
 i++)
 a[i]=0;

 a[50]=b;
}

_f:
 MOV.L L239+4,R7 ; _a
 MOV #0,R5
 MOV.W L239,R6 ; H'0190
 MOV R7,R4
 ADD R7,R6
L238:
 MOV.L R5,@R4
 ADD #4,R4
 CMP/HS R6,R4
 BF L238
 MOV.L L239+8,R2 ;
H'0C8+_a
 MOV.L L239+12,R1 ; _b
 MOV.L @R2,R3
 RTS
 MOV.L R3,@R2
L239:
 .DATA.W H'0190
 .DATA.W 0
 .DATA.L _a
 .DATA.L H'000000C8+_a
 .DATA.L _b

V5,V6 V7 (MAP is specified)

Section 3 Compiler

Rev.4.00 2007.02.02 3-126
REJ05B0463-0400

3.11 Options

3.11.1 Options for Code Generation

In order to enable the user to choose procedures for code generation, the SuperH RISC engine C/C++ compiler offers the
following options.

Table 3.24 Options for Code Generation

Option Description

-SPeed Generates code with emphasis on execution speed

-SIze Generates code with emphasis on reducing program size

-Goptimize Outputs inter-module optimization add-on information.

-MAP Sets the base address based on the external symbol allocation information
generated by the Optimizing Linkage Editor, and generates code for
performing external access relatively with a base address.

If gbr=auto is specified, sets the GBR register as the base address depending
on the conditions, and generates code for performing external access
relatively with GBR.

-GBr If gbr=auto is specified, depending on the conditions the compiler automatically
generates GBR relative logic operation code. If gbr=auto and MAP=<filename>
are set, sets the GBR as the base address depending on the conditions, and
generates code for performing external variable access relatively with GBR.

-CAse Specifies the code expansion method for the switch statement If case=ifthen is
specified, the switch statement is expanded using the if_then method.
Therefore, in this method, the object code size is increased according to the
number of case labels included in the switch statement.

If case=table is specified, the switch statement is expanded using the table
method. In this case, the size of the jump table allocated in the constant area is
increased in proportion to the number of case labels contained in switch
statements, however, the execution speed is always constant. When this option
is omitted, the compiler automatically judges which expansion method to use.

-SHIft If shift=inline is specified, all shift operations are expanded with instructions.

If shift=runtime is specified, a runtime routine call is made in cases where
there are many expansion instructions.

-BLOckcopy If blockcopy=inline is specified, all transfer code between memory is expanded
with instructions.

If blockcopy=runtime is specified, a runtime routine call is made in cases
where the size of the transfer is large.

-INLine Specifies whether to perform automatic inline expansion of functions.

If the inline option is specified, automatic inline expansion is performed. It is
possible to specify size.

-DIvision Selects the method of integer-type division, and remainder calculation in the
program.

If division=cpu=inline is specified, constant division is converted to
multiplication and inline expansion is performed, and variable division selects
a runtime routine using the DIV1 instruction.

-Macsave Specifies whether to guarantee the MACH and MACL registers before and
after function calls.

When 0 is specified, the MACH and MACL registers are not guaranteed before
and after function calls.

Section 3 Compiler

Rev.4.00 2007.02.02 3-127
REJ05B0463-0400

3.11.2 Options for Optimization Linkage

In order to enable the user to choose procedures for optimization linkage, the SuperH RISC engine C/C++ Optimizing
Linkage Editor offers the following options.

Table 3.25 Options for Linkage

Option Sub-option Description

- Specifies whether to execute inter-module optimization.

-SPeed Executes optimization except that which might possibly cause
reduced object speed. Same as optimize=string_unify,
symbol_delete, variable_access, register,branch

-SAFe Executes optimization except that which might possibly be
limited by the attributes of the variable or function. Same as
optimize=string_unify, register,branch

-Branch Based on the program allocation information, the branch
instruction size is optimized. If other optimization items are
executed, this is executed whether specified or not.

-Register The relationships between function calls are analyzed, and
register reallocations and redundant register save/restore
codes are deleted with this specification.

-STring_unify Unifies same value constants of constants with the const
attribute.

Constants with the const attribute include the following items.

Variables declared const in C/C++ programs

Initial values of string data

Literal constants

-SYmbol_delete Variables/functions which are not referenced are deleted with
this specification.

-Variable_access Allocates frequently accessed variables to areas accessible in
8/16-bit absolute addressing mode.

-SAMe_code Makes multiple similar instruction strings into subroutines.

-OPtimize

-Function_call Allocates addresses of frequently accessed functions if the
memory range from 0 to 0xFF has space.

-SMAESize - Specifies the minimum code size of code to be optimized using
common code unification optimization.

-PROfile - Specifies the profile information file. Using inter-module
optimization, optimization can be executed based on dynamic
information.

-CAchesize - Specifies the cache size and cache line size. If the profile option
is specified, it is used with branch instruction optimization.

-SYmbol_forbid - Disables optimization by deletion of unreferenced symbols.

-SAMECode_forbid - Disables optimization by unification of common code.

-Variable_forbid - Disables optimization by use of short-absolute addressing
mode.

-FUnction_forbid - Disables optimization by use of indirect addressing mode.

-Absolute_forbid - Disables optimization of address + size range.

Section 3 Compiler

Rev.4.00 2007.02.02 3-128
REJ05B0463-0400

3.11.3 Options for Creating Standard Libraries

In order to enable the user to choose procedures for optimization when creating standard libraries, the SuperH RISC
engine C/C++ Standard Library Creation Tool offers the following options.

Table 3.26 Options for Creating Standard Libraries

Option Description

-SPeed Generates code with emphasis on execution speed

-SIze Generates code with emphasis on reducing program size

-Goptimize Outputs inter-module optimization add-on information.

-MAP Sets the base address based on the external symbol allocation information
generated by the Optimizing Linkage Editor, and generates code for
performing external access relatively with a base address.

If gbr=auto is set, sets the GBR registers as the base address depending on
the conditions, and generates code for performing external access relatively
with GBR.

-GBr If gbr=auto is specified, depending on the conditions the compiler
automatically generates GBR relative logic operation code. If gbr=auto and
MAP=<filename> are set, sets the GBR as the base address depending on
the conditions, and generates code for performing external variable access
relatively with GBR.

-CAse Specifies the code expansion method for the switch statement If case=ifthen is
specified, the switch statement is expanded using the if_then method.
Therefore, in this method, the object code size is increased according to the
number of case labels included in the switch statement.

If case=table is specified, the switch statement is expanded using the table
method. In this case, the size of the jump table allocated in the constant area
is increased in proportion to the number of case labels contained in switch
statements, however, the execution speed is always constant. When this
option is omitted, the compiler automatically judges which expansion method
to use.

-SHIft If shift=inline is specified, all shift operations are expanded with instructions.

If shift=runtime is specified, a runtime routine call is made in cases where
there are many expansion instructions.

-BLOckcopy If blockcopy=inline is specified, all transfer code between memory is expanded
with instructions.

If blockcopy=runtime is specified, a runtime routine call is made in cases
where the size of the transfer is large.

-INLine Specifies whether to perform automatic inline expansion of functions.

If the inline option is specified, automatic inline expansion is performed. It is
possible to specify size.

Section 3 Compiler

Rev.4.00 2007.02.02 3-129
REJ05B0463-0400

3.12 SH-DSP Features

The SH-DSP core is provided with a DSP unit which performs 16-bit fixed-point operations and is ideal for:

• Multiply-and-accumulate operations

• Repeated processing

It is thus capable of performing at high speed the JPEG processing, audio processing, and filter processing required for
multimedia operations.

In previous SH cores (the SH-1 core example in figure 3.6), the performance of multiply-and-accumulate operations were
determined by the three cycles constituting the multiplier operation time in pipeline operation. Even if the multiplier
operation time were improved to a single cycle, however, stalling of the pipeline would occur due to instruction data
transfer, so that the long-term average time would be 2.5 cycles.

In the SH-DSP core, the DSP unit operation time is a single cycle, and an X bus/Y bus is provided as the data bus, so that
multiply-and-accumulate operations take just one cycle (figure 3.7). Here the long-term average time is also one cycle.

Example of pipeline operation

Figure 3.6 Multiple-and-Accumulate Instruction Executed in SH Core

WB

if ID MA EX

ID

EX

EX MA MA ID

 MA

 mul

IF EX MA MA

 mul mul

 mul mul

 mulmulmul

 mulmulmul

if

 if ID

 ID

 if

 ID

 ID

 mul

 MA

 MA

 MA

 MA

EX

 EX

EX

 IF

 IF

clrmac
mac.w @r4+,@r5+
mac.w @r4+,@r5+
mac.w @r4+,@r5+
mac.w @r4+,@r5+
rts
sts macl,r0

 EX

 WB :Write-back

:Execution/
address calculation

MA :Memory access IF
:Instruction fetch
(32 bits)

ID :Decode

 if
:Instruction fetch
(with no bus cycles)

mul :Multiplier operation

Code example

Section 3 Compiler

Rev.4.00 2007.02.02 3-130
REJ05B0463-0400

ALU operation + Multiplication +
X memory data

transfer
+

Y memory data

transfer

Code example

Instruction 1 MOVX.W@R4+,X0 MOVY.W@R6+,Y0

Instruction 2 PMULSX0,Y0,M0 MOVX.W@R4+,X1 MOVY.W@R6+,Y1

Instruction 3 PADD A0,M0,A0 PMULSX1,Y1,M1 MOVX.W@R4+,X0 MOVYW@R6+,Y0

Instruction 4 PADD A0,M1,A0 PMULS X0,Y0,M0 MOVX.W@R4+,X1 MOVYW@R6+,Y1

Example of pipeline operation

Instruction 1 IF ID EX MA DSP

Instruction 2 IF ID EX MA DSP

Instruction 3 IF ID EX MA DSP

Instruction 4 IF ID EX MA DSP

Figure 3.7 Multiply-and-Accumulate Instruction Executed in SH-DSP Core

One instruction

:DSP unit operation

:Memory access

:Execution address calculation

:Decode

:Instruction fetch IF

EX

ID DSP

MA

MOVX
MOVY PMULS PADD

Section 3 Compiler

Rev.4.00 2007.02.02 3-131
REJ05B0463-0400

Further, the SH-DSP core is equipped with hardware mechanisms to reduce disruption of the pipeline due to repeated
processing.

In previous SH cores, conditional branching was used for loop processing. Conditional branching acts to disrupt pipelines,
adding to processing overhead.

In the SH-DSP core there is a zero-overhead mechanism which reduces to zero the pipeline disruption due to this loop
processing. Simply by setting the loop start and finish addresses and number of loops, loop processing is completed
without performing conditional branching. Many critical software operations depend on loop processing; this is a
hardware mechanism which is effective in speeding software execution.

Figure 3.8 Repetition Processing

MOV #30,R1;
instr0;
instr1;
instr2;
instr3;
instr4;
instr5;

SH core

Repeated in

30 times

LOOP

Overhead

DT R1;
BF LOOP;

SH-DSP core

LDRS RptStart ;Sets RptStart address

LDRE RptEnd ;Sets RptEnd address

SETRC #30 ;Sets the number

of repetitions

Repeated in 30 times

 instr0;
RptStart :instr1;

 instr2;
 instr3;
 instr4;

RptEnd :instr5;

Section 3 Compiler

Rev.4.00 2007.02.02 3-132
REJ05B0463-0400

The SH-DSP core is able to execute in parallel five instructions, as shown in figure 3.9: condition evaluation, ALU
operations, signed multiplication, X memory access, and Y memory access. By combining these instructions, various
multiply-and-accumulate operations can be performed at high speed.

Execution condition ALU operation Signed multiplication X memory access Y memory access

Figure 3.9 DSP Instructions (Parallel Instructions)

----: Unconditional

DCT:DC=1

DCF:DC=0

PADD

PADD PCLR

PNEG PLDS

PCOPY PSTS

PINC PSUB

PDEC

PSHA

PSHL

PAND

POR

PXOR

PDMSB

PADDC PMULS

PSUBC PSHA#

PCMP PSHL#

PRND

PABS

 PMULS MOVX.W

 NOPX

 MOVY.W

 NOPY

Section 3 Compiler

Rev.4.00 2007.02.02 3-133
REJ05B0463-0400

3.13 DSP Library

3.13.1 Summary

This section explains the digital signal processing (DSP) library that can be used with SH2-DSP and SH3-DSP
(henceforward jointly referred to simply as SH-DSP) This library includes standard DSP functions, and by using them
singly or consecutively, DSP operations can be performed.

This library includes the following functions.

• Fast Fourier transforms

• Window functions

• Filters

• Convolution and correlation

• Other

The functions in this library are, with the exception of fast Fourier transforms and filters, reentrant.

When using this library, include the files shown in table 3.27. In addition, as shown in table 3.28, link to the library
corresponding to the CPU and compile options.

When this library is called on, if the function finishes normally, EDSP_OK is returned as the value, and if an error occurs,
EDSP_BAD_ARG or EDSP_NO_HEAP is returned as the value. For the details of return values, refer to the explanation
of each function.

Table 3.27 Include Files for Use with the DSP Library

Type of library Description Include file

<ensigdsp.h> DSP Library The library performs DSP operations

<filt_ws.h>*1

Note: 1. When using filter functions, include them only once in the user program.

Table 3.28 DSP Library List

CPU Option Library Name

-pic=0 shdsplib.lib SH2-DSP

-pic=1 shdsppic.lib

-pic=0 -endian=big sh3dspnb.lib

-pic=1 -endian=big sh3dsppb.lib

SH3-DSP

SH4AL-DSP

-pic=0 -endian=little sh3dspnl.lib

 -pic=1 -endian=little sh3dsppl.lib

Section 3 Compiler

Rev.4.00 2007.02.02 3-134
REJ05B0463-0400

3.13.2 Data Format

This library handles data as signed 16-bit fixed point numbers. Signed 16-bit fixed point numbers, as shown in (a) in
figure 3.10, are of the data format where the point is fixed to the right side of the most significant bit (MSB), and values
from
-1 to 1-2-15 can be expressed.

In this library, transfer of data uses the short type of data format. Therefore, when using this library from C/C++ programs,
it is necessary to express data in signed 16-bit fixed point numbers.

Example: +0.5 expressed as a signed 16-bit fixed point number is H’4000. Therefore, the short type actual parameter
passed to the library function is H’4000.

Internal operations within this library use signed 32-bit fixed point numbers and signed 40-bit fixed point numbers. Signed
32-bit fixed point numbers, are of the data format as shown in (b) in figure 3.10, and values from -1 to 1-2-31 can be
expressed. Signed 40-bit fixed point numbers, are of the data format with an additional 8-bit guard bit as shown in (c) in
figure 3.10, and values from -28 to 28-2-31 can be expressed.

The multiplication results of signed 16-bit fixed point numbers are saved as signed 32-bit fixed point numbers. With fixed
point multiplication using DSP instructions, only in the case of H’8000 x H’8000 is it necessary to be careful in case
overflow occurs. In addition, the least significant bit (LSB) of multiplication results is normally 0. When the multiplication
results are used in the next operation, the upper 16 bits are removed, and the result is converted to a signed 16-bit fixed
point number. In this case, there is a possibility that underflow or reduced accuracy may occur.

In multiply-and-accumulate operations of this library, addition results are saved as signed 40-bit fixed point numbers. Be
careful that overflow does not occur when performing addition.

If an overflow occurs when performing an operation, a correct result will not be obtained. In order to prevent overflows, it
is necessary to perform scaling of coefficients or of input data. Scaling functions are built into this library. For the details
of scaling, refer to the explanation of each function.

Figure 3.10 Data Format

S :Sign bit

 :Point

(a) Signed 16-bit fixed point numbers (-1 to 1-2-15)

0

 S

15 14

(b) Signed 32-bit fixed point numbers (-1 to 1-2-31)

0 30 31

S

(c) Signed 40-bit fixed point numbers (-28 to 28-2-31)

0 30 31 32

39

Guard bit

S

Section 3 Compiler

Rev.4.00 2007.02.02 3-135
REJ05B0463-0400

3.13.3 Efficiency

The functions in this library are optimized to execute at high speed on SH-DSP.
In order to use the library efficiently, when deciding the memory map of the system in development, observe the following
two recommendations as far as possible.

• Allocate memory that supports 32-bit read for 1 cycle for program code segments.

• Allocate memory that supports 16-bit (or 32-bit) read and write for 1 cycle for data segments.

If the microcomputer to be used has 32-bit memory built in of sufficient capacity to allocate the library code and data, it is
best to allocate it to the 32-bit memory. If it is necessary to use other memory, follow the above recommendation as far as
possible.

3.13.4 Fast Fourier transform

(1) List of functions

Table 3.29 List of DSP Library Functions (Fast Fourier Transform)

No. Type Function
Name

Description

1 not-in-place complex
number FFT

FftComplex Performs not-in-place complex number
FFT

2 not-in-place real-number
FFT

FftReal Performs not-in-place real-number FFT

3 not-in-place inverse
complex number FFT

IfftComplex Performs not-in-place inverse complex
number FFT

4 not-in-place inverse
real-number FFT

IfftReal Performs not-in-place inverse
real-number FFT

5 in-place complex number
FFT

FftInComplex Performs in-place complex number FFT

6 in-place real number FFT FftlnReal Performs in-place real-number FFT

7 in-place inverse complex
number FFT

IfftInComplex Performs in-place inverse complex
number FFT

8 in-place inverse
real-number FFT

IfftInReal Performs in-place inverse real-number
FFT

9 logarithmic absolute value LogMagnitude Converts complex number data into
logarithmic absolute values

10 FFT rotation factor
generation

InitFft Generates FFT rotation factors

11 FFT rotation factor
release

FreeFft Releases the memory used to store FFT
rotation factors

Note: For details on not-in-place and in-place, refer to “(5) FFT structure”.

The factors use the scaling defined by the user to execute forward direction high speed Fourier transforms and reverse
direction high speed Fourier transforms.
Forward direction Fourier transforms are defined using the following equations.

n

N

0n

Nnj2s
n xe2y ⋅= ∑

=

π−−

Section 3 Compiler

Rev.4.00 2007.02.02 3-136
REJ05B0463-0400

Here, s represents the number of stages for performing scaling, and N represents the number of data elements.
Reverse direction Fourier transforms are defined using the following equations.

n

N

0n

Nnj2s
n xe2y ⋅= ∑

=

π−

For details on scaling, refer to “(4) Scaling”.

(2) Complex number data array format

FFT and IFFT complex number data arrays are allocated to X memory for real numbers and to Y memory for
imaginary numbers. However, the allocation of real number FFT output data and real number IFFT input data differs.
If the arrays in which real numbers and imaginary numbers are stored are defined as x and y respectively, the real
number component of the DC component goes into x[0], and rather than the imaginary number component of the DC
component, the real number component of the Fs/2 component goes into y[0] (the DC component and Fs/2 component
are both real numbers, and the imaginary number component is 0).

(3) Real number data array format

There are 3 kinds of FFT and IFFT real number data array formats as follows.

− Stored in a single array, and allocated to an arbitrary memory block.

− Stored in a single array, and allocated to X memory.

− Divided into 2 arrays for storage. The size of each array is N/2, and the first half of the array is allocated to
X memory, and the second half is allocated to Y memory.

Only the first specification method is available for FftReal. The user can select the second or third methods for IfftReal,
FftInReal, and IfftInReal.

(4) Scaling

The signal strength of base 2 FFT doubles at each stage, and peak signal amplitude also doubles. For this reason, when
converting to a high intensity signal there is a possibility that overflows may occur. However, by halving the signal at
each stage (this is called ‘scaling’), overflows can be prevented. However, if excessive scaling is implemented, there is
a possibility that unnecessary quantization noise may occur.

The optimal balance of scaling between overflows and quantization noise depends greatly on the characteristics of the
input signals. In order to prevent overflows with spectra with large peaks in the signals, maximum scaling is necessary,
but with impulse signals, scaling is hardly required at all.

Performing scaling at every stage is the safest method. If the intensity of the input data is less than 230, overflows can
be prevented using this method. With this library, scaling can be specified for each stage. Therefore, by specifying
scaling precisely, the impact of overflows and quantization noise can be suppressed to the minimum.

In order to specify the method of scaling, each FFT function parameter includes ‘scale’. ‘scale’ corresponds to each
stage from the least significant bit to each individual bit. If the corresponding scale bit is set to 1, at every stage,
division by 2 is executed.

In order to increase execution speed, base 4 FFT is used in this library. ‘scale’ corresponds to each stage from the least
significant bit to each two bits. If either one bit is set to 1, division by 2 is executed. If both bits are set to 1, division by
4 is executed. In other words, this is the same as if two base 2 FFT stages are replaced with one base 4 FFT stage.
However, with base 4 FFT, there is a greater possibility that quantization noise will occur than with base 2 FFT.

An example of ‘scale’ is shown below.

− When scale = H’FFFFFFFF (or size-1), scaling is performed for all base 2 FFT stages. If the intensity of all
the input data is less than 230, overflow will not occur.

− When scale = H’55555555, scaling is performed for every other base 2 FFT stage.

− When scale = 0, scaling is not performed.

Section 3 Compiler

Rev.4.00 2007.02.02 3-137
REJ05B0463-0400

These scale values are defined as ensigdsp.h, EFFTALLSCALE(H’FFFFFFFF), EFFTMIDSCALE(H’55555555), and
EFFTNOSCALE(0)

(5) FFT structure

The FFT structures of this library are of 2 kinds, not-in-place FFT, and in-place FFT

With not-in-place FFT, the input data is removed from RAM, FFT is executed, and the output result is stored in
another place in RAM specified by the user.

On the other hand, with in-place FFT, the input data is removed from RAM, FFT is executed, and the output result is
stored in the same place in RAM. If this method is used, execution time for the FFT is increased, but the memory space
used can be decreased.

When using other FFT functions with input data, use not-in-place FFT. In addition, when seeking to conserve memory
space, use in-place FFT.

(6) Explanation of each function

(a) not-in-place complex number FFT

Description:

• Format:
int FftComplex (short op_x[], short op_y[],
 const short ip_x[], const short ip_y[], long size,
long scale)

• Parameters:

op_x[] Real number component of output data
op_y[] Imaginary number component of output data
ip_x[] Real number component of input data
ip_y[] Imaginary number component of input data
size FFT size
scale Scaling specification

• Returned value:

EDSP_OK Successful
EDSP_BAD_ARG In any of the following cases
 •size < 4
 •size is not a power of 2
 •size > max_fft_size

• Explanation of this function:

Executes a complex number fast Fourier transform.

• Remarks:

As this function performs not-in-place, provide input arrays and output arrays separately. For details on allocation of
complex number data arrays, refer to “(2) Complex number data array format”. Before calling on this function, call on
InitFft, and initialize the rotation factor and max_fft_size. For details on scaling, refer to “(4) Scaling”. ‘scale’ uses the
lower log2 (size) bit. This function is not reentrant.

Example of use:

#include <stdio.h>

#include <math.h>

#include <ensigdsp.h>

 Include header

Section 3 Compiler

Rev.4.00 2007.02.02 3-138
REJ05B0463-0400

#define MAX_FFT_SAMP 64

#define MIN_CFFT_SIZE 4

long ip_scale=0xffffffff;

long size = MIN_CFFT_SIZE;

#pragma section X

short ip_x[MAX_FFT_SAMP];

short op_x[MAX_FFT_SAMP];

#pragma section Y

short ip_y[MAX_FFT_SAMP];

short op_y[MAX_FFT_SAMP];

#pragma section

/* Data for cycle counting */

#define TWOPI 6.283185307 /* data */

void main()

{

 int i,j;

 long n_samp;

 n_samp=MAX_FFT_SAMP; /* data */

 for (j = 0; j < n_samp; j++){

 ip_x[j] = cos(j * TWOPI/n_samp) * 8188;

 ip_y[j] = sin(j * TWOPI/n_samp) * 8188;

 }

 if(InitFft(n_samp) != EDSP_OK){

 printf("Initfft != err end");

 }

 if(FftComplex(op_x,op_y,ip_x,ip_y,n_samp,EFFTALLSCALE) != EDSP_OK){

 printf("FftComplex error\n");

 }

 FreeFft();

 for(i=0;i<n_samp;i++){

 printf("[%d] op_x=%d op_y=%d \n",i,op_x[i],op_y[i]);

 }

}

Variables placed in X or Y
memory are defined by a
pragma section within the
section.

FFT initialization function;
Initialization is performed for the number of
data elements. This is required. The
number of data elements is equal to the
FFT data size, and must be a power of 2.

Data creation for FFT

This frees the table used in FFT calculations. If this is
not done, memory resources are wasted. If FFT is to
be performed again using the same number of data
elements, the FFT function is used again without
executing FreeFft.

Variables placed in X or Y memory
are defined by a pragma section
within the section.

Section 3 Compiler

Rev.4.00 2007.02.02 3-139
REJ05B0463-0400

(b) not-in-place real number FFT

Description:

• Format:
int FftReal (short op_x[], short op_y[], const short ip[],

long size, long scale)

• Parameters:

op_x[] Real number component of positive output data
op_y[] Imaginary number component of positive output data
ip[] Real number input data
size FFT size
scale Scaling specification

• Returned value:

EDSP_OK Successful
EDSP_BAD_ARG In any of the following cases
 •size < 8
 •size is not a power of 2
 •size > max_fft_size

• Explanation of this function:

Executes a real number fast Fourier transform.

• Remarks:

size/2 positive output data is stored in op_x and op_y. Negative output data is the conjugate complex number of positive
output data. In addition, as the values of output data of 0 and FS/2 are real numbers, the real number output with FS/2 is
stored in op_y[0].
As this function performs not-in-place, provide input arrays and output arrays separately.
For details on allocation of complex number and real number data arrays, refer to “(2) Complex number data array format”
and “(3) Real number data array format”.
Before calling on this function, call on InitFft, and initialize the rotation factor and max_fft_size.
For details on scaling, refer to “(4) Scaling”.
‘scale’ uses the lower log2 (size) bit.
This function is not reentrant.

Section 3 Compiler

Rev.4.00 2007.02.02 3-140
REJ05B0463-0400

Example of use:

#include <stdio.h>

#include <math.h>

#include <ensigdsp.h>

#define VLEN 64

#define TWOPI 6.28318530717959

/* global data declarations */

#pragma section X

short output_x[VLEN];

#pragma section Y

short output_y[VLEN];

#pragma section

void main()

{

 short i;

 int k;

 short input[VLEN];

 short output[VLEN];

/* generate two sinusoids */

 k = VLEN / 8;

 for (i = 0; i < VLEN; i++)

 input[i] = floor(16383 * cos(TWOPI * k * i / VLEN) + 0.5);

 k = VLEN * 3 / 8;

 for (i = 0; i < VLEN; i++)

 input[i] += floor(16383 * cos(TWOPI * k * i / VLEN) + 0.5);

/* do FFT */

 if (InitFft(VLEN) != EDSP_OK)

 printf("InitFft problem\n");

 if (FftReal(output_x, output_y, input, VLEN, EFFTALLSCALE) != EDSP_OK)

 printf("FftReal problem\n");

 FreeFft();

}

Variables placed in X or Y
memory are defined by a
pragma section within the
section.

FFT initialization function;

Initialization is performed for the number of
data elements. This is required. The number
of data elements is equal to the FFT data
size, and must be a power of 2.

Creation of data for FFT

This frees the table used in FFT
calculations. If this is not done, memory
resources are wasted. If FFT is to be
performed again using the same number
of data elements, the FFT function is used
again without executing FreeFft.

Include header

Section 3 Compiler

Rev.4.00 2007.02.02 3-141
REJ05B0463-0400

(c) not-in-place inverse complex number FFT

Description:

• Format:

int IfftComplex (short op_x[], short op_y[],
const short ip_x[], const short ip_y[],
long size, long scale)

• Parameters:

op_x[] Real number component of output data
op_y[] Imaginary number component of output data
ip_x[] Real number component of input data
ip_y[] Imaginary number component of input data
size Inverse FFT size
scale Scaling specification

• Returned value:

EDSP_OK Successful
EDSP_BAD_ARG In any of the following cases
 •size < 4
 •size is not a power of 2
 •size > max_fft_size

• Explanation of this function:

Executes a complex number inverse fast Fourier transform.

• Remarks:

As this function performs not-in-place, provide input arrays and output arrays separately.
For details on allocation of complex number data arrays, refer to “(2) Complex number data array format”.
Before calling on this function, call on InitFft, and initialize the rotation factor and max_fft_size.
For details on scaling, refer to “(4) Scaling”.
‘scale’ uses the lower log2 (size) bit.
This function is not reentrant.

Section 3 Compiler

Rev.4.00 2007.02.02 3-142
REJ05B0463-0400

Example of use:

#include <stdio.h>

#include <math.h>

#include <ensigdsp.h>

#define MAX_IFFT_SIZE 16

#define TWOPI 6.283185307 /* data */

long ip_scale=8188;

#pragma section X

short ipi_x[MAX_IFFT_SIZE]; /* input array */

short opi_x[MAX_IFFT_SIZE]; /* normal output array */

#pragma section Y

short ipi_y[MAX_IFFT_SIZE];

short opi_y[MAX_IFFT_SIZE];

#pragma section

void main()

{

 int i,j;

 long scale;

 long max_size;

 max_size=MAX_IFFT_SIZE;/* data */

 for (j = 0; j < max_size; j++){

 ipi_x[j] = cos(j * TWOPI/max_size) * ip_scale;

 ipi_y[j] = sin(j * TWOPI/max_size) * ip_scale;

 }

 if(InitFft(max_size) != EDSP_OK){

 printf("InitFft error end \n");

 }

 else {

 if(FftInComplex(ipi_x, ipi_y, max_size,EFFTALLSCALE) != EDSP_OK){

 printf("FftInComplex err end \n");

 }

 for (j = 0; j < max_size; j++){

 opi_x[j]=0;

 opi_y[j]=0;

 }

Variables placed in X or Y memory are defined by
a pragma section within the section.

Creation of data for FFT (data
used to execute FftComplex)

FFT initialization function;

Initialization is performed
for the number of data
elements. This is required.
The number of data
elements is equal to the
FFT data size, and must
be a power of 2.

This processing performs FFT
calculations and uses the results as input
values for an inverse FFT function;
normally it is not necessary.

Include header

Section 3 Compiler

Rev.4.00 2007.02.02 3-143
REJ05B0463-0400

 if(IfftComplex(opi_x, opi_y, ipi_x, ipi_y, max_size,

 EFFTALLSCALE)!= EDSP_OK){

 printf("IfftComplex err end \n");

 }

 for (j = 0; j < max_size; j++){

 printf("[%d] opi_x=%d op_y=%d \n",j, opi_x[j],opi_y[j]);

 }

 FreeFft();

 }

}

This frees the table used in FFT calculations. If this is
not done, memory resources are wasted. If FFT is to be
performed again using the same number of data
elements, the FFT function is used again without
executing FreeFft.

Section 3 Compiler

Rev.4.00 2007.02.02 3-144
REJ05B0463-0400

(d) not-in-place real number inverse FFT

Description:

• Format:

int IfftReal (short op_x[], short scratch_y[],
const short ip_x[], const short ip_y[], long size, long
scale, int op_all_x)

• Parameters:

op_x[] Real number output data
scratch_y[] Scratch memory or real number output data
ip_x[] Real number component of positive input data
ip_y[] Imaginary number component of positive input data
size Inverse FFT size
scale Scaling specification
op_all_x Allocation specification of output data

• Returned value:

EDSP_OK Successful
EDSP_BAD_ARG In any of the following cases
 •size < 8
 •size is not a power of 2
 •size > max_fft_size
 •op_all_x ≠ 0 or 1

• Explanation of this function:

Executes a real number inverse fast Fourier transform.

• Remarks:

Store size/2 positive input data in ip_x and ip_y. Negative input data is the conjugate complex number of positive input
data. In addition, as the values of input data of 0 and FS/2 are real numbers, store the real number input with FS/2 in
ip_y[0].|
The format of output data is specified with op_all_x. If op_all_x=1, all output data is stored in op_x. If op_all_x=0, the
first size/2 output data is stored in op_x, and the remainder of the size/2 output data is stored in scratch_y.
As this function performs not-in-place, provide input arrays and output arrays separately.
For details on allocation of complex number and real number data arrays, refer to “(2) Complex number data array format”
and “(3) Real number data array format”.
Store size/2 data in ip_x and ip_y respectively. size or size/2 data is stored in op_x depending on the value of op_all_x.
Before calling on this function, call on InitFft, and initialize the rotation factor and max_fft_size.
For details on scaling, refer to “(4) Scaling”.
‘scale’ uses the lower log2 (size) bit.
This function is not reentrant.

Section 3 Compiler

Rev.4.00 2007.02.02 3-145
REJ05B0463-0400

Example of use:

#include <stdio.h>

#include <math.h>

#include <ensigdsp.h>

#define MAX_IFFT_SIZE 16

#define TWOPI 6.283185307 /* data */

long ip_scale=8188;

#pragma section X

short ipi_x[MAX_IFFT_SIZE]; /* input array */

short opi_x[MAX_IFFT_SIZE]; /* normal output array */

#pragma section Y

short ipi_y[MAX_IFFT_SIZE];

short opi_y[MAX_IFFT_SIZE];

#pragma section

void main()

{

 int i,j;

 long scale;

 long max_size;

 max_size=MAX_IFFT_SIZE;/* data */

 for (j = 0; j < max_size; j++){

 ipi_x[j] = cos(j * TWOPI/max_size) * ip_scale;

 }

 if (InitFft(max_size) != EDSP_OK){

 printf("InitFft error end \n");

 }

 else {

 if(FftInReal(ipi_x, ipi_y, max_size,EFFTALLSCALE,1) != EDSP_OK){

 printf("FftInReal err end \n");

 }

if(IfftReal(opi_x, opi_y, ipi_x, ipi_y, max_size, EFFTALLSCALE,1)!=

 EDSP_OK){

 printf("IfftReal err end \n");

 }

 for (j = 0; j < max_size; j++){

 printf("[%d] opi_x=%d op_y=%d \n",j, opi_x[j],opi_y[j]);

Variables placed in X or Y memory are defined by
a pragma section within the section.

Creation of data for FFT (data used to
execute FftReal)

FFT initialization function;

Initialization is performed for the
number of data elements. This is
required. The number of data
elements is equal to the FFT data
size, and must be a power of 2.
Also required for inverse FFT.

This processing performs FFT
calculations and uses the results
as input values for an inverse FFT
function; normally it is not
necessary.

Include header

Section 3 Compiler

Rev.4.00 2007.02.02 3-146
REJ05B0463-0400

 }

 FreeFft();

 }

}

This frees the table used in FFT calculations. If this is
not done, memory resources are wasted. If FFT is to be
performed again using the same number of data
elements, the FFT function is used again without
executing FreeFft.

Section 3 Compiler

Rev.4.00 2007.02.02 3-147
REJ05B0463-0400

(e) in-place complex number FFT

Description:

• Format:

int FftInComplex (short data_x[], short data_y[],
long size, long scale)

• Parameters:

data_x[] Real number component of input data
data_y[] Imaginary number component of input and output data
size FFT size
scale Scaling specification

• Returned value:

EDSP_OK Successful
EDSP_BAD_ARG In any of the following cases
 •size < 4
 •size is not a power of 2
 •size > max_fft_size

• Explanation of this function:

Executes an in-place complex number fast Fourier transform.

• Remarks:

For details on allocation of complex number data arrays, refer to “(2) Complex number data array format”.
Before calling on this function, call on InitFft, and initialize the rotation factor and max_fft_size.
For details on scaling, refer to “(4) Scaling”.
‘scale’ uses the lower log2 (size) bit.
This function is not reentrant.

Section 3 Compiler

Rev.4.00 2007.02.02 3-148
REJ05B0463-0400

Example of use:

#include <stdio.h>

#include <math.h>

#include <ensigdsp.h>

#define MAX_FFT_SAMP 64

#define TWOPI 6.283185307 /* data */

long ip_scale=0xffffffff;

#pragma section X

short ip_x[MAX_FFT_SAMP];

#pragma section Y

short ip_y[MAX_FFT_SAMP];

#pragma section

void main()

{

 int i,j;

 long max_size;

 long n_samp;

 n_samp=MAX_FFT_SAMP;

 max_size=n_samp;/* data */

 for (j = 0; j < n_samp; j++){

 ip_x[j] = cos(j * TWOPI/n_samp) * ip_scale;

 ip_y[j] = sin(j * TWOPI/n_samp) * ip_scale;

 }

 if(InitFft(max_size) != EDSP_OK){

 printf("InitFft error\n");

 }

 if(FftInComplex(ip_x, ip_y, n_samp,EFFTALLSCALE) != EDSP_OK){

 printf("FftInComplex error\n");

 }

 FreeFft();

 for(i=0;i<max_size;i++){

 printf("[%d] ip_x=%d ip_y=%d \n",i,ip_x[i],ip_y[i]);

 }

}

Variables placed in X or Y memory are defined by a
pragma section within the section.

Data creation for FFT

FFT initialization function;

Initialization is performed for the number of
data elements. This is required. The
number of data elements is equal to the
FFT data size, and must be a power of 2.

This frees the table used in FFT calculations. If
this is not done, memory resources are wasted.
If FFT is to be performed again using the same
number of data elements, the FFT function is
used again without executing FreeFft.

Include header

Section 3 Compiler

Rev.4.00 2007.02.02 3-149
REJ05B0463-0400

(f) in-place real number FFT

Description:

• Format:

int FftInReal (short data_x[], short data_y[], long size,
long scale, int ip_all_x)

• Parameters:

data_x[] Real number data when input, and real number component of the positive output data when output
data_y[] Real number data or unused for input, and imaginary number component of the positive output data when

output
size FFT size
scale Scaling specification
ip_all_x Allocation specification of input data

• Returned value:

EDSP_OK Successful
EDSP_BAD_ARG In any of the following cases
 •size < 8
 •size is not a power of 2
 •size > max_fft_size
 •ip_all_x ≠ 0 or 1

• Explanation of this function:

Executes an in-place real number fast Fourier transform.

• Remarks:

The format of input data is specified with ip_all_x. If ip_all_x=1, all input data is removed from data_x. If ip_all_x=0, the
first half of size/2 input data is removed from data_x, and the second half of size/2 input data is removed from data_y.
After execution of this function, size/2 positive output data is stored in data_x and data_y. Negative output data is the
conjugate complex number of positive output data. In addition, as the values of output data of 0 and FS/2 are real numbers,
the real number output with FS/2 is stored in data_y[0].
For details on allocation of complex number and real number data arrays, refer to “(2) Complex number data array format”
and “(3) Real number data array format”.
Store size/2 data in data_y. size or size/2 data is stored in data_x depending on the value of ip_all_x.
Before calling on this function, call on InitFft, and initialize the rotation factor and max_fft_size.
For details on scaling, refer to “(4) Scaling”.
‘scale’ uses the lower log2 (size) bit.
This function is not reentrant.

Section 3 Compiler

Rev.4.00 2007.02.02 3-150
REJ05B0463-0400

Example of use:

#include <stdio.h>

#include <math.h>

#include <ensigdsp.h>

#define MAX_FFT_SAMP 64

#define TWOPI 6.283185307 /* data */

long ip_scale=8188;

/*long ip_scale=0xffffffff;*/

#pragma section X

short ip_x[MAX_FFT_SAMP];

#pragma section Y

short ip_y[MAX_FFT_SAMP];

#pragma section

void main()

{

 int i,j;

 long max_size;

 long n_samp;

 int ip_all_x;

 n_samp=MAX_FFT_SAMP;

 max_size=n_samp;/* data */

 for (j = 0; j < n_samp; j++){

 ip_x[j] = cos(j * TWOPI/n_samp) * ip_scale;

 ip_y[j] = 0;

 }

 if(InitFft(max_size) != EDSP_OK){

 printf("InitFft error\n");

 }

 ip_all_x = 1;

 if(FftInReal(ip_x, ip_y, n_samp,EFFTALLSCALE ,ip_all_x) != EDSP_OK){

 printf("FftInReal error\n");

 }

Variables placed in X or Y
memory are defined by a
pragma section within the
section.

FFT initialization function;

Initialization is performed for the number of data
elements. This is required. The number of data
elements is equal to the FFT data size, and
must be a power of 2.

Data creation for FFT

Include header

Section 3 Compiler

Rev.4.00 2007.02.02 3-151
REJ05B0463-0400

 FreeFft();

 for(i=0;i<max_size;i++){

 printf("[%d] ip_x=%d ip_y=%d \n",i,ip_x[i],ip_y[i]);

 }

}

This frees the table used in FFT calculations. If this is not done,
memory resources are wasted. If FFT is to be performed again
using the same number of data elements, the FFT function is used
again without executing FreeFft.

Section 3 Compiler

Rev.4.00 2007.02.02 3-152
REJ05B0463-0400

(g) in-place complex number inverse FFT

Description:

• Format:

int IfftInComplex (short data_x[], short data_y[],
long size, long scale)

• Parameters:

data_x[] Real number component of input data
data_y[] Imaginary number component of input and output data
size Inverse FFT size
scale Scaling specification

• Returned value:

EDSP_OK Successful
EDSP_BAD_ARG In any of the following cases
 •size < 4
 •size is not a power of 2
 •size > max_fft_size

• Explanation of this function:

Executes an in-place complex number inverse fast Fourier transform.

• Remarks:

For details on allocation of complex number data arrays, refer to “(2) Complex number data array format”.
Before calling on this function, call on InitFft, and initialize the rotation factor and max_fft_size.
For details on scaling, refer to “(4) Scaling”.
‘scale’ uses the lower log2 (size) bit.
This function is not reentrant.

Section 3 Compiler

Rev.4.00 2007.02.02 3-153
REJ05B0463-0400

Example of use:

#include <stdio.h>

#include <math.h>

#include <ensigdsp.h>

#define MAX_IFFT_SIZE 16

#define TWOPI 6.283185307 /* data */

long ip_scale=8188;

#pragma section X

short ipi_x[MAX_IFFT_SIZE]; /* input array */

#pragma section Y

short ipi_y[MAX_IFFT_SIZE];

#pragma section

void main()

{

 int i,j;

 long scale;

 long max_size;

 max_size=MAX_IFFT_SIZE;/* data */

 for (j = 0; j < max_size; j++){

 ipi_x[j] = cos(j * TWOPI/max_size) * ip_scale;

 ipi_y[j] = sin(j * TWOPI/max_size) * ip_scale;

 }

 if(InitFft(max_size) != EDSP_OK){

 printf("InitFft error end \n");

 }

 else {

 if(FftInComplex(ipi_x, ipi_y, max_size,EFFTALLSCALE) != EDSP_OK){

 printf("FftInComplex err end \n");

 }

 if(IfftInComplex(ipi_x, ipi_y, max_size,EFFTALLSCALE) != EDSP_OK){

 printf("IfftInComplex err end \n");

 }

 for (j = 0; j < max_size; j++){

Variables placed in X or Y memory are defined by
a pragma section within the section.

Data creation for FFT (data
used as input for
FftInComplex)

FFT initialization function;
Initialization is performed for the number
of data elements. This is required. The
number of data elements is equal to the
FFT data size, and must be a power of 2.
Also required for inverse FFT.

This processing performs FFT
calculations and uses the results as
input values for an inverse FFT
function; normally it is not necessary.

Include header

Section 3 Compiler

Rev.4.00 2007.02.02 3-154
REJ05B0463-0400

 printf("[%d] ipi_x=%d ip_y=%d \n",j, ipi_x[j],ipi_y[j]);

 }

 FreeFft();

 }

}

This frees the table used in FFT calculations. If this is
not done, memory resources are wasted. If FFT is to
be performed again using the same number of data
elements, the FFT function is used again without
executing FreeFft.

Section 3 Compiler

Rev.4.00 2007.02.02 3-155
REJ05B0463-0400

(h) in-place real number inverse FFT

Description:

• Format:

int IfftInReal (short data_x[], short data_y[], long size,
long scale, int op_all_x)

• Parameters:

data_x[] Real number component of positive input data when input, and real number data when output
data_y[] Imaginary number component of positive input data when input, and real number data when output or

unused
size Inverse FFT size
scale Scaling specification
op_all_x Allocation specification of output data

• Returned value:

EDSP_OK Successful
EDSP_BAD_ARG In any of the following cases
 •size < 8
 •size is not a power of 2
 •size > max_fft_size
 •op_all_x ≠ 0 or 1

• Explanation of this function:

Executes an in-place real number inverse fast Fourier transform.

• Remarks:

Store size/2 positive input data in data_x and data_y. Negative input data is the conjugate complex number of positive
input data. In addition, as the values of input data of 0 and FS/2 are real numbers, store the real number input with FS/2 in
data_y[0].
The format of output data is specified with op_all_x. If op_all_x=1, all output data is stored in data_x. If op_all_x=0, the
first half of the size/2 output data is stored in data_x, and the second half of the size/2 output data is stored in data_y.
For details on allocation of complex number and real number data arrays, refer to “(2) Complex number data array format”
and “(3) Real number data array format”.
Store size/2 data in data_y. size or size/2 data is stored in data_x depending on the value of op_all_x.
Before calling on this function, call on InitFft, and initialize the rotation factor and max_fft_size.
For details on scaling, refer to “(4) Scaling”.
‘scale’ uses the lower log2 (size) bit.
This function is not reentrant.

Section 3 Compiler

Rev.4.00 2007.02.02 3-156
REJ05B0463-0400

Example of use:

#include <stdio.h>

#include <math.h>

#include <ensigdsp.h>

#define MAX_IFFT_SIZE 16

#define TWOPI 6.283185307 /* data */

long ip_scale=8188;

#pragma section X

short ipi_x[MAX_IFFT_SIZE]; /* input array */

#pragma section Y

short ipi_y[MAX_IFFT_SIZE];

#pragma section

void main()

{

 int i,j;

 long scale;

 long max_size;

 max_size=MAX_IFFT_SIZE;/* data */

 for (j = 0; j < max_size; j++){

 ipi_x[j] = cos(j * TWOPI/max_size) * ip_scale;

 }

 if(InitFft(max_size) != EDSP_OK){

 printf("InitFft error end \n");

 }

 else {

 if(FftInReal(ipi_x, ipi_y, max_size,EFFTALLSCALE,1) != EDSP_OK){

 printf("FftInReal err end \n");

 }

 if(IfftInReal(ipi_x, ipi_y, max_size, EFFTALLSCALE,1) != EDSP_OK){

 printf("IfftInReal err end \n");

 }

 for (j = 0; j < max_size; j++){

 printf("[%d] ipi_x=%d ip_y=%d \n",j, ipi_x[j],ipi_y[j]);

 }

 FreeFft();

 }

}

Variables placed in X or Y memory
are defined by a pragma section
within the section.

Data creation for FFT (data
used as input for FftInReal)

FFT initialization function;

Initialization is performed for the
number of data elements. This is
required. The number of data
elements is equal to the FFT data
size, and must be a power of 2.
Also required for inverse FFT.

This frees the table used in FFT calculations. If this is not
done, memory resources are wasted. If FFT is to be
performed again using the same number of data elements,
the FFT function is used again without executing FreeFft.

Include header

Section 3 Compiler

Rev.4.00 2007.02.02 3-157
REJ05B0463-0400

(i) Logarithmic absolute value

Description:

• Format:

int LogMagnitude (short output[], const short ip_x[],
const short ip_y[], long no_elements,
float fscale)

• Parameters:

output[] Real number output z
ip_x[] Input real number component x
ip_y[] Input imaginary number component y
no_elements Number of output data elements N
fscale Output scaling coefficient

• Returned value:

EDSP_OK Successful
EDSP_BAD_ARG In any of the following cases
 •no_elements < 1
 •no_elements > 32767
 •|fscale| > 215/(10log102

31)

• Explanation of this function:

Calculates the logarithmic absolute value of complex number input data in decibel units, and writes the scaling results in
the output array.

• Remarks:

z(n)=10fscale ⋅ log10(x(n)2+y(n)2) 0 ≤ n < N
For details on allocation of complex number data arrays, refer to “(2) Complex number data array format”.

Section 3 Compiler

Rev.4.00 2007.02.02 3-158
REJ05B0463-0400

Example of use:

#include <stdio.h>

#include <math.h>

#include <ensigdsp.h>

#define MAX_IFFT_SIZE 16

#define TWOPI 6.283185307 /* data */

long ip_scale=8188;

#pragma section X

short ipi_x[MAX_IFFT_SIZE]; /* input array */

#pragma section Y

short ipi_y[MAX_IFFT_SIZE];

#pragma section

void main()

{

 int i,j;

 long scale;

 long max_size;

 short output[MAX_IFFT_SIZE];

 max_size=MAX_IFFT_SIZE;/* data */

 for (j = 0; j < max_size; j++){

 ipi_x[j] = cos(j * TWOPI/max_size) * ip_scale;

 }

 if(InitFft(max_size) != EDSP_OK){

 printf("InitFft error end \n");

 }

 else {

 if(FftInReal(ipi_x, ipi_y, max_size,EFFTALLSCALE,1) != EDSP_OK){

 printf("FftInReal err end \n");

 }

 if(LogMagnitude(output, ipi_x,ipi_y, max_size/2, 2) != EDSP_OK){

 printf("LogMagnitude err end \n");

 }

 for (j = 0; j < max_size/2; j++){

 printf("[%d] output=%d \n",j, output[j]);

 }

 FreeFft();

 }

}

Variables placed in X or Y memory
are defined by a pragma section
within the section.

This frees the table used in FFT calculations.

If this is not done, memory resources are wasted. If FFT is to
be performed again using the same number of data
elements, the FFT function is used again without executing
FreeFft. This is not directly related to LogMagnitude.

Data creation for FFT

FFT function;
Creates data used by the
LogMagnitude function.

Include header

Section 3 Compiler

Rev.4.00 2007.02.02 3-159
REJ05B0463-0400

(j) Rotation factor generation

Description:

• Format:
int InitFft (long max_size)

• Parameters:

max_size Maximum size of the required FFT

• Returned value:

EDSP_OK Successful
EDSP_NO_HEAP The memory space that can be obtained with malloc is insufficient
EDSP_BAD_ARG In any of the following cases
 •max_size < 2
 •max_size is not a power of 2
 •max_size > 32,768

• Explanation of this function:

Generates the rotation factor (1/4 size) to be used by the FFT function.

• Remarks:

The rotation factor is stored in the memory obtained by malloc.
When the rotation factor is generated, the max_fft_size global variable is updated. max_fft_size shows the maximum
capacity size of the FFT.
Be sure to call on this function once before calling on the first FFT function.
Make max_size 8 or more.
The rotation factor is generated by the conversion size specified by max_size. Use the same rotation factor when executing
a FFT function with a smaller size than max_size.
The address of the rotation factor is stored inside the internal variable. Do not access this with the user program.
This function is not reentrant.

Section 3 Compiler

Rev.4.00 2007.02.02 3-160
REJ05B0463-0400

(k) Rotation factor release

Description:

• Format:
void FreeFft (void)

• Parameters:

None

• Returned value:

None

• Explanation of this function:

Releases the memory used to store the rotation factors.

• Remarks:

Make the max_fft_size global variable 0. When executing the FFT function again after executing FreeFft, be sure to
execute InitFft first.
This function is not reentrant.

Section 3 Compiler

Rev.4.00 2007.02.02 3-161
REJ05B0463-0400

3.13.5 Window Functions

(1) List of functions

Table 3.30 DSP Library Function List (Window Functions)

No. Type Function
Name

Description

1 Blackman window GenBlackman Generates a Blackman window.

2 Hamming window GenHamming Generates a Hamming window.

3 Hanning window GenHanning Generates a Hanning window.

4 Triangular window GenTriangle Generates a triangular window.

(2) Explanation of each function

(a) Blackman window

Description:

• Format:
int GenBlackman (short output[], long win_size)

• Parameters:

output[] Output data W(n)
win_size Window size N

• Returned value:

EDSP_OK Successful
EDSP_BAD_ARG win_size ≤ 1

• Explanation of this function:

Generates a Blackman window, and outputs to output.

• Remarks:

Use VectorMult when applying this window to actual data.
The function to be used is shown below.

 0 ≤ n < N

Example of use:

#include <stdio.h>

#include <ensigdsp.h>

#define MAXN 10

void main()

{

 int i;

 long len;

 Include header

() ⎥
⎦

⎤
⎢
⎣

⎡
⎠
⎞⎜

⎝
⎛ π+

⎠
⎞⎜

⎝
⎛ π−−= N

n4cos08.0N
n2cos5.042.012)n(W 15

Section 3 Compiler

Rev.4.00 2007.02.02 3-162
REJ05B0463-0400

 short output[MAXN];

 len=MAXN ;

 if(GenBlackman(output, len) != EDSP_OK){

 printf("EDSP_OK not returned\n");

 }

 for(i=0;i<len;i++){

 printf("output=%d \n",output[i]);

 }

}

(b) Hamming window

Description:

• Format:
int GenHamming (short output[], long win_size)

• Parameters:

output[] Output data W(n)
win_size Window size N

• Returned value:

EDSP_OK Successful
EDSP_BAD_ARG win_size ≤ 1

• Explanation of this function:

Generates a Hamming window, and outputs to output.

• Remarks:

Use VectorMult when applying this window to actual data.
The function to be used is shown below.

Example of use:

#include <stdio.h>

#include <ensigdsp.h>

#define MAXN 10

void main()

{

 int i;

 long len;

 short output[MAXN];

 Include header

() ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞⎜

⎝
⎛ π−−= N

n2cos46.054.0 12)n(W 15 0 ≤ n < N

Section 3 Compiler

Rev.4.00 2007.02.02 3-163
REJ05B0463-0400

 len=MAXN ;

 if(GenHamming(output, len) != EDSP_OK){

 printf("EDSP_OK not returned\n");

 }

 for(i=0;i<len;i++){

 printf("output=%d \n",output[i]);

 }

}

(c) Hanning window

Description:

• Format:
int GenHanning (short output[], long win_size)

• Parameters:

output[] Output data W(n)

win_size Window size N

• Returned value:

EDSP_OK Successful

EDSP_BAD_ARG win_size ≤ 1

• Explanation of this function:

Generates a Hanning window, and outputs to output.

• Remarks:

Use VectorMult when applying this window to actual data.

The function to be used is shown below.

Example of use:

#include <stdio.h>

#include <ensigdsp.h>

#define MAXN 10

void main()

{

 int i;

 long len;

 short output[MAXN];

() ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞⎜

⎝
⎛ π−⎟⎟⎠

⎞
⎜⎜⎝

⎛ −= N
n2cos1 2

12nW
15

0 ≤ n < N

 Include header

Section 3 Compiler

Rev.4.00 2007.02.02 3-164
REJ05B0463-0400

 len=MAXN ;

 if(GenHanning(output, len) != EDSP_OK){

 printf("EDSP_OK not returned\n");

 }

 for(i=0;i<len;i++){

 printf("output=%d \n",output[i]);

 }

}

(d) Triangular window

Description:

• Format:
int GenTriangle (short output[], long win_size)

• Parameters:

output[] Output data W(n)
win_size Window size N

• Returned value:

EDSP_OK Successful
EDSP_BAD_ARG win_size ≤ 1

• Explanation of this function:

Generates a triangular window, and outputs to output.

• Remarks:

Use VectorMult when applying this window to actual data.
The function to be used is shown below.

Example of use:

#include <stdio.h>

#include <ensigdsp.h>

#define MAXN 10

void main()

{

 int i;

 long len;

 short output[MAXN];

 len=MAXN ;

() () ⎥
⎦

⎤
⎢
⎣

⎡
+

+−−−= 1N
1Nn21 12nW 15

0 ≤ n < N

 Include header

Section 3 Compiler

Rev.4.00 2007.02.02 3-165
REJ05B0463-0400

 if(GenTriangle(output, len) != EDSP_OK){

 printf("EDSP_OK not returned\n");

 }

 for(i=0;i<len;i++){

 printf("output=%d \n",output[i]);

 }

}

Section 3 Compiler

Rev.4.00 2007.02.02 3-166
REJ05B0463-0400

3.13.6 Filters

(1) List of functions

Table 3.31 DSP Library Function List (Filters)

No. Type Function
Name

Description

1 FIR Fir Performs finite impulse-response filter
processing

2 FIR for single data
elements

Fir1 Performs finite impulse-response filter
processing for a single data element

3 IIR Iir Performs infinite impulse-response filter
processing

4 IIR for single data
elements

Iir1 Performs infinite impulse-response filter
processing for a single data element

5 Double precision IIR Diir Performs double-precision infinite
impulse-response filter processing

6 Double precision IIR for
single data elements

Diir1 Performs double-precision infinite
impulse-response filter processing for a single
data element

7 Adaptive FIR Lms Performs adaptive FIR filter processing

8 Adaptive FIR for single
data elements

Lms1 Performs adaptive FIR filter processing for a
single data element

9 FIR work space allocation InitFir Allocates a work space for use by the FIR filter

10 IIR work space allocation InitIir Allocates a work space for use by the IIR filter

11 Double precision IIR work
space allocation

InitDIir Allocates a work space for use by the DIIR
filter

12 Adaptive FIR work space
allocation

InitLms Allocates a work space for use by the LMS
filter

13 FIR work space release FreeFir Releases the work space allocated by InitFir

14 IIR work space release FreeIir Releases the work space allocated by InitIir

15 Double precision IIR work
space release

FreeDIir Releases the work space allocated by InitDIir

16 Adaptive FIR work space
release

FreeLms Releases the work space allocated by InitLms

Note: When using any of these functions, include filt_ws.h only once in the user program.

Section 3 Compiler

Rev.4.00 2007.02.02 3-167
REJ05B0463-0400

(2) Coefficient scaling

When executing filter processing, there is a possibility that saturation or quantization noise may occur. These can be
suppressed to the minimum by performing scaling of these filter coefficients. However, it is necessary to perform scaling
giving careful consideration to the impact of saturation and quantization noise. If the coefficient is too large there is a
possibility that saturation may occur. If it is too small, quantization noise may occur.

With the FIR (finite impulse response) filter, saturation will not occur if the filter coefficient is set so that the following
equation is applied.

coeff[i] ≠ H’8000 (for all instances of i)

Σ|coeff| < 224

res_shift = 24

coeff is the filter coefficient, and res_shift is the number of bits shifted to the right at output.

However, when there are many input signals, even if a smaller res_shift value is used (or a bigger coeff value), the
possibility of saturation is slight, and quantization noise can be reduced by a wide margin. In addition, if there is a
possibility that the input value includes H’8000, set all coeff values to be in the range of H’8001 to H’7FFF.

The IIR (infinite impulse response) filter has a recursive structure. For this reason, the scaling method explained above is
not suitable.

The LMS (least mean square) adaptive filter is the same as the FIR filter. However, when adapting the coefficient, there
may be cases where saturation occurs. In this case, make the settings so that H’8000 is not included in the coefficient.

(3) Work space

With digital filters, there is information that must be saved between one process and the next. This information is stored in
memory that can be accessed with the minimum of overhead. With this library, the Y-RAM area is used as the work space.
Before executing filter processing, call on the Init function and initialize the work space.

The work space memory is accessed by the library function. Do not access the work space directly from the user program.

(4) Using memory

In order to use SH-DSP efficiently, allocate filter coefficients to X memory. Input and output data can be allocated to
arbitrary memory segments.

Allocate filter coefficients to X memory using the #pragma section instruction.

Each filter is allocated to the work space from the global buffer using the Init function. The global buffer is allocated to Y
memory.

Section 3 Compiler

Rev.4.00 2007.02.02 3-168
REJ05B0463-0400

(5) Explanation of each function

(a) FIR

Description:

• Format:

int Fir (short output[], const short input[], long no_samples,
const short coeff[], long no_coeffs, int res_shift,
short *workspace)

• Parameters:

output[] Output data y
input[] Input data x
no_samples Number of input data elements N
coeff[] Filter coefficient h
no_coeffs Number of coefficients (filter length) K
res_shift Right shift applied to each output.
workspace Pointer to the work space

• Returned value:

EDSP_OK Successful
EDSP_BAD_ARG In any of the following cases
 •no_samples < 1
 •no_coeffs ≤ 2
 •res_shift < 0
 •res_shift > 25

• Explanation of this function:

Performs finite impulse-response (FIR) filter processing

• Remarks:

The latest input data is saved in the work space. The results of filter processing of input are written to output.

() () () shift_res1K

0k
2knx khny −

−

=
⋅⎥⎦

⎤
⎢⎣
⎡ −= ∑

The results of multiply-and-accumulate operations are saved as 39 bits. Output y(n) is the lower 16 bits fetched from the
res_shift bit right shifted results. When an overflow occurs, this is the positive or negative maximum value.
For details on coefficient scaling, refer to “(2) Coefficient scaling”.
Before calling on this function, call on InitFir, and initialize the work space of the filter.
If the same array is specified for output as for input, input will be overwritten.
This function is not reentrant.

Section 3 Compiler

Rev.4.00 2007.02.02 3-169
REJ05B0463-0400

Example of use:

#include <stdio.h>

#include <ensigdsp.h>

#include <filt_ws.h>

#define NFN 8 /* number of functions */

#define FIL_COUNT 32 /* number of data objects */

#define N 32

#pragma section X

static short coeff_x[FIL_COUNT];

#pragma section

short data[FIL_COUNT] = {

 0x0000, 0x07ff, 0x0c00, 0x0800, 0x0200, 0xf800, 0xf300, 0x0400,

 0x0000, 0x07ff, 0x0c00, 0x0800, 0x0200, 0xf800, 0xf300, 0x0400,

 0x0000, 0x07ff, 0x0c00, 0x0800, 0x0200, 0xf800, 0xf300, 0x0400,

 0x0000, 0x07ff, 0x0c00, 0x0800, 0x0200, 0xf800, 0xf300, 0x0400,};

short coeff[8] = {

 0x0c60, 0x0c40, 0x0c20, 0x0c00, 0xf600, 0xf400, 0xf200, 0xf000,};

void main()

{

 short *work, i;

 short output[N];

 int nsamp, ncoeff, rshift;

 /* copy coeffs into X RAM */

 for(i=0;i<NFN;i++) {

 coeff_x[i] = coeff[i];/* Sets coefficient */

 }

 for (i = 0; i < N; output[i++] = 0) ;

 ncoeff = NFN;/* Sets the number of coefficients */

 nsamp = FIL_COUNT;/* set number of samples */

 rshift = 12;

 if (InitFir(&work, ncoeff) != EDSP_OK){

 printf("Init Problem\n");

 }

 if(Fir(output, data, nsamp, coeff_x, ncoeff, rshift, work) != EDSP_OK){

Set the filter coefficients in X memory. Since Y
memory is used by the library as the work area to
calculate filter coefficients, Y memory should not
be used.

Set filter coefficients in X
memory as variables.

Filter initialization:
(1) Work area address
(2) Number of coefficients
This is necessary before Fir
function execution. The work area
in Y memory uses (number of
coefficients)*2+8 bytes.

Include header

Section 3 Compiler

Rev.4.00 2007.02.02 3-170
REJ05B0463-0400

 printf("Fir Problem\n");

 }

 if (FreeFir(&work, ncoeff) != EDSP_OK){

 printf("Free Problem\n");

 }

 for(i=0;i<nsamp;i++){

 printf("#%2d output:%6d \n",i,output[i]);

 }

}

(b) FIR for single data elements

Description:

• Format:

int Fir1 (short *output, short input, const short coeff[],
long no_coeffs, int res_shift, short *workspace)

• Parameters:

output Pointer to output data y(n)
input Input data x(n)
coeff[] Filter coefficient h
no_coeffs Number of coefficients (filter length) K
res_shift Right shift applied to each output.
workspace Pointer to the work space

• Returned value:

EDSP_OK Successful
EDSP_BAD_ARG In any of the following cases
 •no_coeffs ≤ 2
 •res_shift < 0
 •res_shift > 25

• Explanation of this function:

Performs finite impulse-response (FIR) filter processing for single data elements.

• Remarks:

The latest input data is saved in the work space. The results of filter processing of input are written to *output.

() () () shift_res1K

0k
2knx khny −

−

=
⋅⎥⎦

⎤
⎢⎣
⎡ −= ∑

The results of multiply-and-accumulate operations are saved as 39 bits. Output y(n) is the lower 16 bits fetched from the
res_shift bit right shifted results. When an overflow occurs, this is the positive or negative maximum value.
For details on coefficient scaling, refer to “(2) Coefficient scaling”.
Before calling on this function, call on InitFir, and initialize the work space of the filter.
This function is not reentrant.

The FreeFir function frees the work
area used for Fir calculations; The
FreeFir function must always be
performed after Fir execution. If this
function is not executed, memory
resources are wasted.

Section 3 Compiler

Rev.4.00 2007.02.02 3-171
REJ05B0463-0400

Example of use:

#include <stdio.h>

#include <ensigdsp.h>

#include <filt_ws.h>

#define NFN 8 /* number of functions */

#define MAXSH 25

#define N 32

#pragma section X

static short coeff_x[NFN];

#pragma section

short data[32] = {

 0x0000, 0x07ff, 0x0c00, 0x0800, 0x0200, 0xf800, 0xf300, 0x0400,

 0x0000, 0x07ff, 0x0c00, 0x0800, 0x0200, 0xf800, 0xf300, 0x0400,

 0x0000, 0x07ff, 0x0c00, 0x0800, 0x0200, 0xf800, 0xf300, 0x0400,

 0x0000, 0x07ff, 0x0c00, 0x0800, 0x0200, 0xf800, 0xf300, 0x0400};

short coeff[8] = {

 0x0c60, 0x0c40, 0x0c20, 0x0c00, 0xf600, 0xf400, 0xf200, 0xf000};

void main()

{

 short *work, i;

 short output[N];

 int ncoeff, rshift;

 /* copy coeffs into X RAM */

 for(i=0;i<NFN;i++) {

 coeff_x[i] = coeff[i];/* Sets coefficient */

 }

 for (i = 0; i < N; output[i++] = 0) ;

 rshift = 12;

 ncoeff = NFN;/* Sets the number of coefficients */

 if (InitFir(&work, NFN) != EDSP_OK){

 printf("Init Problem\n");

 }

 for(i=0;i<N;i++) {

 if(Fir1(&output[i], data[i], coeff_x, ncoeff, rshift, work) !=

 EDSP_OK){

Set the filter coefficients in X memory.
Since Y memory is used by the library as
the work area to calculate filter
coefficients, Y memory should not be
used.

Set filter coefficients in X memory
as variables.

Filter initialization:
(1) Work area address
(2) Number of coefficients
This is necessary before Fir1
function execution. The work
area in Y memory uses (number
of coefficients)*2+8 bytes.

Include header

Fir1 means that the number of data
elements that are set to the Fir function is 1.
When executing Fir1 multiple times, the Init
Fir and FreeFir functions must be executed
before and after the for statement
respectively.

Section 3 Compiler

Rev.4.00 2007.02.02 3-172
REJ05B0463-0400

 printf("Fir1 Problem\n");

 }

 printf(" output[%d]=%d \n",i,output[i]);

 }

 if (FreeFir(&work, NFN) != EDSP_OK){

 printf("Free Problem\n");

 }

}

(c) IIR

Description:

• Format:

int Iir (short output[], const short input[], long no_samples,
const short coeff[], long no_sections, short *workspace)

• Parameters:

output[] Output data yK-1
input[] Input data x0
no_samples Number of input data elements N
coeff[] Filter coefficient
no_sections Number of secondary filter sections K
workspace Pointer to the work space

• Returned value:

EDSP_OK Successful
EDSP_BAD_ARG In any of the following cases
 •no_samples < 1
 •no_sections < 1
 •a0k < 0
 •a0k > 16

• Explanation of this function:

Performs infinite impulse-response (IIR) filter processing.

• Remarks:

This filter is configured whereby a secondary filter, or biquad, is linked to the K number tandem. Additional scaling is
performed with the output of each biquad. The filter coefficient is specified with a signed 16-bit fixed point number
The output of each biquad is subject to the following equation.
dk(n)=[a1kdk(n-1)+a2kdk(n-2)+215x(n)] ⋅ 2-15
yk(n)=[b0kdk(n)+b1kdk(n-1)+b2kdk(n-2)] ⋅ 2-a0k
The input xk (n) for k is the output yk-1 (n) of the previous section. The input of the first section (k=0) is read from input.
The output of the last section (k=K-1) is written to output.
Set coeff in the following order of coefficients.
a00, a10, a20, b00, b10, b20, a01, a11, a21, b01 ... b2K-1
The a0k item is the number of bits for right shift to be performed on the output of the biquad for k.
Each biquad performs a 32-bit multiply-and-accumulate operation. The output of each biquad is the lower 16 bits fetched

Fir1 means that the number of data
elements that are set to the Fir function is 1.
When executing Fir1 multiple times, the Init
Fir and FreeFir functions must be executed
before and after the for statement
respectively.

Section 3 Compiler

Rev.4.00 2007.02.02 3-173
REJ05B0463-0400

from the 15-bit or a0k right shifted results. When an overflow occurs, this is the positive or negative maximum value.
Before calling on this function, call on InitIir, and initialize the work space of the filter.
If the same array is specified for output as for input, input will be overwritten.
This function is not reentrant.

Example of use:

#include <stdio.h>

#include <ensigdsp.h>

#include <filt_ws.h>

#define K 4

#define NUMCOEF (6*K)

#define N 50

#pragma section X

static short coeff_x[NUMCOEF];

#pragma section

static short coeff[24] = {15, 19144, -7581, 5301, 10602, 5301,

 15, -1724,-23247, 13627, 27254, 13627,

 15, 19144, -7581, 5301, 10602, 5301,

 15, -1724,-23247, 13627, 27254, 13627};

static short input[50] = {32000, 32000, 32000, 32000, 32000,

 32000, 32000, 32000, 32000, 32000,

 32000, 32000, 32000, 32000, 32000,

 32000, 32000, 32000, 32000, 32000,

 32000, 32000, 32000, 32000, 32000,

 32000, 32000, 32000, 32000, 32000,

 32000, 32000, 32000, 32000, 32000,

 32000, 32000, 32000, 32000, 32000,

 32000, 32000, 32000, 32000, 32000,

 32000, 32000, 32000, 32000, 32000 };

void main()

{

 short *work, i;

 short output[N];

 for(i=0;i<NUMCOEF;i++) {

Set the filter coefficients in X memory.
Since Y memory is used by the library as
the work area to calculate filter coefficients,
Y memory should not be used.

Six filter coefficients should be
set in one section. The leading
element in a section is the
number of right-shifts, and is not
a filter coefficient.

Include header

Set filter coefficients in X
memory as variables.

Section 3 Compiler

Rev.4.00 2007.02.02 3-174
REJ05B0463-0400

 coeff_x[i] = coeff[i];

 }

 if (InitIir(&work, K) != EDSP_OK){

 printf("Init Problem\n");

 }

 if (Iir(output, input, N, coeff_x, K, work) != EDSP_OK){

 printf("EDSP_OK not returned\n");

 }

 if (FreeIir(&work, K) != EDSP_OK){

 printf("Free Problem\n");

 }

 for(i=0;i<N;i++){

 printf("#%2d output:%6d \n",i,output[i]);

 }

}

(d) IIR for single data elements

Description:

• Format:

int Iir1 (short *output, short input, const short coeff[],
long no_sections, short *workspace)

• Parameters:

output Pointer to output data yK-1(n)
input Input data x0 (n)
coeff[] Filter coefficient
no_sections Number of secondary filter sections K
workspace Pointer to the work space

• Returned value:

EDSP_OK Successful
EDSP_BAD_ARG In any of the following cases
 •no_sections < 1
 •aok < 0
 •aok > 16

• Explanation of this function:

Performs infinite impulse-response (IIR) filter processing for single data elements.

• Remarks:

This filter is configured whereby a secondary filter, or biquad, is linked to the K number tandem. Additional scaling is
performed with the output of each biquad. The filter coefficient is specified with a signed 16-bit fixed point number.
The output of each biquad is subject to the following equation.

Filter initialization:
(1) Work area address
(2) Number of filter sections
This is necessary before Iir function
execution. The work area in Y memory
uses ((number of filter sections)*2*2)
bytes.

The FreeIir function frees the work area used for Iir
calculations; The FreeIir function must always be performed
after Iir execution. If this function is not executed, memory
resources are wasted.

Section 3 Compiler

Rev.4.00 2007.02.02 3-175
REJ05B0463-0400

dk(n)=[a1kdk(n-1)+a2kdk(n-2)+215x(n)] ⋅ 2-15
yk(n)=[b0kdk(n)+b1kdk(n-1)+b2kdk(n-2)] ⋅ 2-a0k
The input xk (n) for k is the output yk-1 (n) of the previous section. The input of the first section (k=0) is read from input.
The output of the last section (k=K-1) is written to output.
Set coeff in the following order of coefficients.
a00, a10, a20, b00, b10, b20, a01, a11, a21, b01 ... b2K-1
The a0k item is the number of bits for right shift to be performed on the output of the biquad for k.
Each biquad performs a 32-bit saturation operation. The output of each biquad is the lower 16 bits fetched from the 15-bit
or a0k right shifted results. When an overflow occurs, this is the positive or negative maximum value.
Before calling on this function, call on InitIir, and initialize the work space of the filter.
This function is not reentrant.

Example of use:

#include <stdio.h>

#include <ensigdsp.h>

#include <filt_ws.h>

#define K 4

#define NUMCOEF (6*K)

#define N 50

#pragma section X

static short coeff_x[NUMCOEF];

#pragma section

static short coeff[24] = {15, 19144, -7581, 5301, 10602, 5301,

 15, -1724,-23247, 13627, 27254, 13627,

 15, 19144, -7581, 5301, 10602, 5301,

 15, -1724,-23247, 13627, 27254, 13627};

static short input[50] = {32000, 32000, 32000, 32000, 32000,

 32000, 32000, 32000, 32000, 32000,

 32000, 32000, 32000, 32000, 32000,

 32000, 32000, 32000, 32000, 32000,

 32000, 32000, 32000, 32000, 32000,

 32000, 32000, 32000, 32000, 32000,

 32000, 32000, 32000, 32000, 32000,

 32000, 32000, 32000, 32000, 32000,

 32000, 32000, 32000, 32000, 32000,

 32000, 32000, 32000, 32000, 32000 };

short keisu[5]={ 1,2,20,4,5 };

Set the filter coefficients in X memory. Since Y
memory is used by the library as the work area
to calculate filter coefficients, Y memory should
not be used.

Six filter coefficients should be set
in one section. The leading
element in a section is the number
of right-shifts, and is not a filter
coefficient.

Include header

Section 3 Compiler

Rev.4.00 2007.02.02 3-176
REJ05B0463-0400

void main()

{

 short *work, i;

 short output[N];

 for(i=0;i<NUMCOEF;i++) {

 coeff_x[i] = coeff[i];

 }

 if (InitIir(&work, K) != EDSP_OK){

 printf("Init Problem\n");

 }

 for(i=0;i<N;i++){

 if (Iir1(&output[i], input[i], coeff_x, K, work) != EDSP_OK){

 printf("EDSP_OK not returned\n");

 }

 printf("output[%d]:%d \n" ,i,output[i]);

 }

 if (FreeIir(&work, K) != EDSP_OK){

 printf("Free Problem\n");

 }

}

Set filter coefficients in X
memory as variables.

Filter initialization:
(1) Work area address
(2) Number of filter sections
This is necessary before Iir1 function execution. The
work area in Y memory uses (number of filter
sections)*2*2 bytes.

Iir1 means that the number of data
elements that are set to the Iir
function is 1. When executing Iir1
multiple times, the Init Iir and FreeIir
functions must be executed before
and after the for statement.

Section 3 Compiler

Rev.4.00 2007.02.02 3-177
REJ05B0463-0400

(e) Double precision IIR

Description:

• Format:

int DIir (short output[], const short input[], long no_samples,
const long coeff[], long no_sections, long *workspace)

• Parameters:

output[] Output data yK-1
input[] Input data x
no_samples Number of input data elements N
coeff[] Filter coefficient
no_sections Number of secondary filter sections K
workspace Pointer to the work space

• Returned value:

EDSP_OK Successful
EDSP_BAD_ARG In any of the following cases
 •no_samples < 1
 •no_sections < 1
 •a0k < 3
 •k < K-1 and a0k > 32
 •k = K-1 and a0k > 48

• Explanation of this function:

Performs double-precision infinite impulse-response filter processing

• Remarks:

This filter is configured whereby a secondary filter, or biquad, is linked to the K number tandem. Additional scaling is
performed with the output of each biquad. The filter coefficient is specified with a signed 32-bit fixed point number.
The output of each biquad is subject to the following equation.
dk(n)=[a1kdk(n-1)+a2kdk(n-2)+229x(n)] ⋅ 2-31
yk(n)=[b0kdk(n)+b1kdk(n-1)+b2kdk(n-2)] ⋅ 2-a0k ⋅ 22
The input xk (n) for k is the output yk-1 (n) of the previous section. The input of the first section (k=0) is read from the
16-bit left shifted value of input. The output of the last section (k=K-1) is written to output.
Set coeff in the following order of coefficients.
a00, a10, a20, b00, b10, b20, a01, a11, a21, b01 ... b2K-1
The a0k item is number of bits for right shift to be performed on the output of the biquad for k.
DIir differs from Iir in that the filter coefficient is specified with a 32-bit value rather than a 16-bit value. The results of
multiply-and-accumulate operations are saved as 64 bits. The output of intermediate stages is the lower 32 bits fetched
from the a0k bit right shifted results. When an overflow occurs, this is the positive or negative maximum value. At the last
stage, the lower 16 bits are fetched from the a0k-1 bit right shifted results. When an overflow occurs, this is the positive or
negative maximum value.
Before calling on this function, call on InitDIir, and initialize the work space of the filter.
The delayed node dk (n) is rounded off to 30 bits, and when an overflow occurs, this is the positive or negative maximum
value.
When using DIir, specify the coefficient with a signed 32-bit fixed point number. In this case, when a0k is k < K-1 set it as
31, and when k=K-1 set it as 47.
As the speed of execution of Iir is faster than that of DIir, if double precision calculation is required, use Iir.
If the same array is specified for output as for input, input will be overwritten.
This function is not reentrant.

Section 3 Compiler

Rev.4.00 2007.02.02 3-178
REJ05B0463-0400

Example of use:

#include <stdio.h>

#include <filt_ws.h>

#include <ensigdsp.h>

#define K 5

#define NUMCOEF (6*K)

#define N 50

#pragma section X

static long coeff_x[NUMCOEF];

#pragma section

static long coeff[60] =

 {31,1254686956, -496866304, 347415747, 694831502, 347415746,

 31,-113001278,-1523568505, 893094203,1786188388, 893094206,

 31,1254686956, -496866304, 347415747, 694831502, 347415746,

 31,-113001278,-1523568505, 893094203,1786188388, 893094206,

 47,1254686956, -496866304, 347415747, 694831502, 347415746};

static short input[100] = {

 32000, 32000, 32000, 32000, 32000,

 32000, 32000, 32000, 32000, 32000,

 32000, 32000, 32000, 32000, 32000,

 32000, 32000, 32000, 32000, 32000,

 32000, 32000, 32000, 32000, 32000,

 32000, 32000, 32000, 32000, 32000,

 32000, 32000, 32000, 32000, 32000,

 32000, 32000, 32000, 32000, 32000,

 32000, 32000, 32000, 32000, 32000,

 32000, 32000, 32000, 32000, 32000 };

void main()

{

 short i;

 short output[N];

 long *work;

 long nsamp;

 for(i=0;i<NUMCOEF;i++)

Set the filter coefficients in X memory.

Since Y memory is used by the library
as the work area to calculate filter
coefficients, Y memory should not be
used.

Six filter coefficients
should be set in one
section. The leading
element in a section is the
number of right-shifts, and
is not a filter coefficient.

The number of right-shifts is 31
except for the last section; the
last section is 47.

Include header

Set filter coefficients in X
memory as variables.

Section 3 Compiler

Rev.4.00 2007.02.02 3-179
REJ05B0463-0400

 coeff_x[i] = coeff[i];

 if(InitDIir(&work,K) != EDSP_OK){

 printf("InitDIir Problem\n");

 }

 if(DIir(output, input, N, coeff_x, K, work) != EDSP_OK){

 printf("DIir Problem\n");

 }

 if(FreeDIir(&work, K) != EDSP_OK){

 printf("FreeDIir Problem\n");

 }

 for(i=0;i<N;i++){

 printf("output[%d]=%d\n",i,output[i]);

 }

}

The FreeDIir function frees the work
area used for DIir calculations; The
FreeDIir function must always be
performed after DIir execution. If this
function is not executed, memory
resources are wasted.

Filter initialization:
(1) Work area address
(2) Number of filter sections
This is necessary before DIir function
execution. The work area in Y memory uses
(number of filter sections)*4*2 bytes.

Section 3 Compiler

Rev.4.00 2007.02.02 3-180
REJ05B0463-0400

(f) Double precision IIR for single data elements

Description:

• Format:

int DIir1 (short output[], const short input[], long no_samples,
const long coeff[], long no_sections,
long *workspace)

• Parameters:

output Pointer to output data yK-1(n)
input Input data x0 (n)
coeff[] Filter coefficient
no_sections Number of secondary filter sections K
workspace Pointer to the work space

• Returned value:

EDSP_OK Successful
EDSP_BAD_ARG In any of the following cases
 •no_sections < 1
 •a0k < 3
 •k < K-1 and a0k > 32
 •k = K-1 and a0k > 48

• Explanation of this function:

Performs double precision infinite impulse-response filter processing for single data elements.

• Remarks:

This filter is configured whereby a secondary filter, or biquad, is linked to the K number tandem. Additional scaling is
performed with the output of each biquad. The filter coefficient is specified with a signed 32-bit fixed point number.
The output of each biquad is subject to the following equation.
dk(n)=[a1kdk(n-1)+a2kdk(n-2)+229x(n)] ⋅ 2-31
yk(n)=[b0kdk(n)+b1kdk(n-1)+b2kdk(n-2)] ⋅ 2-a0k ⋅ 22
The input xk (n) for k is the output yk-1 (n) of the previous section. The input of the first section (k=0) is read from the
16-bit left shifted value of input. The output of the last section (k=K-1) is written to output.
Set coeff in the following order of coefficients.
a00, a10, a20, b00, b10, b20, a01, a11, a21, b01 ... b2K-1
The a0k item is number of bits for right shift to be performed on the output of the biquad for k.
DIir1 differs from Iir1 in that the filter coefficient is specified with a 32-bit value rather than a 16-bit value. The results of
multiply-and-accumulate operations are saved as 64 bits. The output of intermediate stages is the lower 32 bits fetched
from the a0k bit right shifted results. When an overflow occurs, this is the positive or negative maximum value. At the last
stage, the lower 16 bits are fetched from the a0k-1 bit right shifted results. When an overflow occurs, this is the positive or
negative maximum value.
Before calling on this function, call on InitDIir, and initialize the work space of the filter.
The delayed node dk (n) is rounded off to 30 bits, and when an overflow occurs, this is the positive or negative maximum
value.
When using DIir1, specify the coefficient with a signed 32-bit fixed point number. In this case, when a0k is k < K-1 set it as
31, and when k=K-1 set it as 47.
As the speed of execution of Iir1 is faster than that of DIir1, if double precision calculation is required, use Iir1.
This function is not reentrant.

Section 3 Compiler

Rev.4.00 2007.02.02 3-181
REJ05B0463-0400

Example of use:

#include <stdio.h>

#include <ensigdsp.h>

#include <filt_ws.h>

#define K 5

#define NUMCOEF (6*K)

#define N 50

#pragma section X

static long coeff_x[NUMCOEF];

#pragma section

static long coeff[60] =

 {31,1254686956, -496866304, 347415747, 694831502, 347415746,

 31,-113001278,-1523568505, 893094203,1786188388, 893094206,

 31,1254686956, -496866304, 347415747, 694831502, 347415746,

 31,-113001278,-1523568505, 893094203,1786188388, 893094206,

 47,1254686956, -496866304, 347415747, 694831502, 347415746};

static short input[N] = {32000, 32000, 32000, 32000, 32000,

 32000, 32000, 32000, 32000, 32000,

 32000, 32000, 32000, 32000, 32000,

 32000, 32000, 32000, 32000, 32000,

 32000, 32000, 32000, 32000, 32000,

 32000, 32000, 32000, 32000, 32000,

 32000, 32000, 32000, 32000, 32000,

 32000, 32000, 32000, 32000, 32000,

 32000, 32000, 32000, 32000, 32000,

 32000, 32000, 32000, 32000, 32000 };

void main()

{

 short i;

 short output[N];

 long *work;

 for(i=0;i<NUMCOEF;i++)

 coeff_x[i] = coeff[i];

 if(InitDIir(&work, K) != EDSP_OK){

 printf("Init Problem\n");

Set the filter coefficients in X memory.
Since Y memory is used by the library as
the work area to calculate filter
coefficients, Y memory should not be
used.

Six filter coefficients should be set in one
section. The leading element in a section is
the number of right-shifts, and is not a filter
coefficient.

The number of right-shifts is 31
except for the last section; the
last section is 47.

Set filter coefficients in X memory
as variables.

Filter initialization:
(1) Work area address
(2) Number of filter sections
This is necessary before DIir1 function
execution. The work area in Y memory
uses (number of filter sections)*4*2
bytes.

Include header

DIir1 means that the number of data
elements that are set to the DIir function is
1. When executing DIir1 multiple times, the
InitDIir and FreeDIir functions must be
executed before and after the for
statement respectively.

Section 3 Compiler

Rev.4.00 2007.02.02 3-182
REJ05B0463-0400

 }

 for(i=0;i<N;i++){

 if(DIir1(&output[i], input[i], coeff_x, K, work) !=EDSP_OK){

 printf("DIir1 error\n");

 }

 printf("output[%d]:%d \n" ,i,output[i]);

 }

 if(FreeDIir(&work, K) != EDSP_OK){

 printf("Free DIir error\n");

 }

}

DIir1 means that the number of data
elements that are set to the DIir function is
1. When executing DIir1 multiple times, the
InitDIir and FreeDIir functions must be
executed before and after the for
statement respectively.

Section 3 Compiler

Rev.4.00 2007.02.02 3-183
REJ05B0463-0400

(g) Adaptive FIR

Description:

• Format:

int Lms (short output[], const short input[],
const short ref_output[], long no_samples,
short coeff[], long no_coeffs, int res_shift,
short conv_fact, short *workspace)

• Parameters:

output[] Output data y
input[] Input data x
ref_output[] Desired output value d
no_samples Number of input data elements N
coeff[] Adaptive filter coefficient h
no_coeffs Number of coefficients K
res_shift Right shift applied to each output
conv_fact Convergence coefficient 2μ
workspace Pointer to the work space

• Returned value:

EDSP_OK Successful
EDSP_BAD_ARG In any of the following cases
 •no_samples < 1
 •no_coeffs ≤ 2
 •res_shift < 0
 •res_shift > 25

• Explanation of this function:

Using a least mean square (LMS) algorithm, executes real number adaptive FIR filter processing.

• Remarks:

FIR filters are defined using the following equations.

() () () shift_res1K

0k
n 2knx khny −

−

=
⋅⎥⎦

⎤
⎢⎣
⎡ −= ∑

The results of multiply-and-accumulate operations are saved as 39 bits. Output y(n) is the lower 16 bits fetched from the
res_shift bit right shifted results. When an overflow occurs, this is the positive or negative maximum value.
Update of filter coefficients is performed using the Widrow-Hoff algorithm.
hn+1(k)=hn(k)+2μe(n)x(n-k)
Here, e(n) is the margin of error between the desired signal and the actual output.
e(n)=d(n)-y(n)
With the 2μe(n)x(n-k) calculation, multiplication of 16 bits x 16 bits is performed 2 times. The upper 16 bits of both
multiplication results are saved, and when an overflow occurs, this is the positive or negative maximum value. If the value
of the updated coefficient is H’8000, there is a possibility that overflow may occur with the multiply-and-accumulate
operation. Set the value of the coefficient to be in the range of H'8001 to H'7FFF.
For details on coefficient scaling, refer to “(2) Coefficient scaling”. As the coefficient is adapted using an LMS filter, the
safest scaling method is to set less than 256 coefficients and to set res_shift to 24.
conv_fact should normally be set to positive. Do not set it to H’8000.
Before calling on this function, call on InitLms, and initialize the filter.

Section 3 Compiler

Rev.4.00 2007.02.02 3-184
REJ05B0463-0400

If the same array is specified for output as for input or for ref_output, input or ref_output will be overwritten.
This function is not reentrant.

Example of use:

#include <stdio.h>

#include <ensigdsp.h>

#include <filt_ws.h>

#define K 8

#define N 40

#define TWOMU 32767

#define RSHIFT 15

#define MAXSH 25

#pragma section X

static short coeff_x[K];

#pragma section

short data[N] = {

 0x0000, 0x07ff, 0x0c00, 0x0800, 0x0200, 0xf800, 0xf300, 0x0400,

 0x0000, 0x07ff, 0x0c00, 0x0800, 0x0200, 0xf800, 0xf300, 0x0400,

 0x0000, 0x07ff, 0x0c00, 0x0800, 0x0200, 0xf800, 0xf300, 0x0400,

 0x0000, 0x07ff, 0x0c00, 0x0800, 0x0200, 0xf800, 0xf300, 0x0400,

 0x0000, 0x07ff, 0x0c00, 0x0800, 0x0200, 0xf800, 0xf300, 0x0400};

short coeff[K] = {

 0x0c60, 0x0c40, 0x0c20, 0x0c00, 0xf600, 0xf400, 0xf200, 0xf000};

static short ref[N] = { -107, -143, 998, 1112, -5956,

 -10781, 239, 13655, 11202, 2180,

 -687, -2883, -7315, -6527, 196,

 4278, 3712, 3367, 4101, 2703,

 591, 695, -1061, -5626, -4200,

 3585, 9285, 11796, 13416, 12994,

 10231, 5803, -449, -6782, -11131,

 -10376, -2968, 2588, -1241, -6133};

void main()

{

 short *work, i, errc;

 short output[N];

Set the filter coefficients in X memory. Since Y
memory is used by the library as the work area to
calculate filter coefficients, Y memory should not be
used.

Include header

Section 3 Compiler

Rev.4.00 2007.02.02 3-185
REJ05B0463-0400

 short twomu;

 int nsamp, ncoeff, rshift;

 /* copy coeffs into X RAM */

 for (i = 0; i < K; i++){

 coeff_x[i] = coeff[i];

 }

 nsamp = 10;

 ncoeff = K;

 rshift = RSHIFT;

 twomu = TWOMU;

 for (i = 0; i < N; output[i++] = 0) ;

 ncoeff = K;/* Sets the number of coefficients */

 nsamp = N;/* Sets the number of samples */

for (i = 0; i < K; i++){

 coeff_x[i] = coeff[i];

 }

 if (InitLms(&work, K) != EDSP_OK){

 printf("Init Problem\n");

 }

 if(Lms(output, data, ref, nsamp, coeff_x, ncoeff, RSHIFT,TWOMU, work) !=

 EDSP_OK){

 printf("Lms Problem\n");

 }

 if (FreeLms(&work, K) != EDSP_OK){

 printf("Free Problem\n");

 }

 for (i = 0; i < N; i++){

 printf("#%2d output:%6d \n",i,output[i]);

 }

}

Filter initialization:
(1) Work area address
(2) Number of coefficients
This is necessary before LMS
function execution. The work
area in Y memory uses (number
of coefficients)*2+8 bytes.

The FreeLms function frees the work area
used for Lms calculations; the FreeLms
function must always be executed after Lms
execution. If this function is not executed,
memory resources are wasted.

Set filter coefficients in X memory as
variables.

Section 3 Compiler

Rev.4.00 2007.02.02 3-186
REJ05B0463-0400

(h) Adaptive FIR for single data elements

Description:

• Format:

int Lms1 (short *output, short input, short ref_output,
short coeff[], long no_coeffs, int res_shift,
short conv_fact, short *workspace)

• Parameters:

output Pointer to output data y(n)
input Input data x (n)
ref_output Desired output value d(n)
coeff[] Adaptive filter coefficient h
no_coeffs Number of coefficients K
res_shift Right shift applied to each output.
conv_fact Convergence coefficient 2μ
workspace Pointer to the work space

• Returned value:

EDSP_OK Successful
EDSP_BAD_ARG In any of the following cases
 •no_coeffs ≤ 2
 •res_shift < 0
 •res_shift > 25

• Explanation of this function:

Using a least mean square (LMS) algorithm, executes real number adaptive FIR filter processing for single data elements.

• Remarks:

FIR filters are defined using the following equation.

() () () shift_res1K

0k
n 2knxkhny −

−

=
⋅⎥⎦

⎤
⎢⎣
⎡ −= ∑

The results of multiply-and-accumulate operations are saved as 39 bits. Output y(n) is the lower 16 bits fetched from the
res_shift bit right shifted results. When an overflow occurs, this is the positive or negative maximum value.
Update of filter coefficients is performed using the Widrow-Hoff algorithm.
hn+1(k)=hn(k)+2μe(n)x(n-k)
Here, e(n) is the margin of error between the desired signal and the actual output.
e(n)=d(n)-y(n)
With the 2μe(n)x(n-k) calculation, multiplication of 16 bits x 16 bits is performed 2 times. The upper 16 bits of both
multiplication results are saved, and when an overflow occurs, this is the positive or negative maximum value. If the value
of the updated coefficient is H’8000, there is a possibility that overflow may occur with the multiply-and-accumulate
operation. Set the value of the coefficient to be in the range of H'8001 to H'7FFF.
For details on coefficient scaling, refer to “(2) Coefficient scaling”. As the coefficient is adapted using an LMS filter, the
safest scaling method is to set less than 256 coefficients and to set res_shift to 24.
conv_fact should normally be set to positive. Do not set it to H’8000.
Before calling on this function, call on InitLms, and initialize the filter.
This function is not reentrant.

Section 3 Compiler

Rev.4.00 2007.02.02 3-187
REJ05B0463-0400

Example of use:

#include <stdio.h>

#include <ensigdsp.h>

#include <filt_ws.h>

#define K 8

#define N 40

#define TWOMU 32767

#define RSHIFT 15

#define MAXSH 25

#pragma section X

static short coeff_x[K];

#pragma section

short data[N] = {

 0x0000, 0x07ff, 0x0c00, 0x0800, 0x0200, 0xf800, 0xf300, 0x0400,

 0x0000, 0x07ff, 0x0c00, 0x0800, 0x0200, 0xf800, 0xf300, 0x0400,

 0x0000, 0x07ff, 0x0c00, 0x0800, 0x0200, 0xf800, 0xf300, 0x0400,

 0x0000, 0x07ff, 0x0c00, 0x0800, 0x0200, 0xf800, 0xf300, 0x0400,

 0x0000, 0x07ff, 0x0c00, 0x0800, 0x0200, 0xf800, 0xf300, 0x0400};

short coeff[K] = {

 0x0c60, 0x0c40, 0x0c20, 0x0c00, 0xf600, 0xf400, 0xf200, 0xf000};

static short ref[N] = { -107, -143, 998, 1112, -5956,

 -10781, 239, 13655, 11202, 2180,

 -687, -2883, -7315, -6527, 196,

 4278, 3712, 3367, 4101, 2703,

 591, 695, -1061, -5626, -4200,

 3585, 9285, 11796, 13416, 12994,

 10231, 5803, -449, -6782, -11131,

 -10376, -2968, 2588, -1241, -6133};

void main()

{

 short *work, i, errc;

 short output[N];

 short twomu;

 int nsamp, ncoeff, rshift;

 /* copy coeffs into X RAM */

Variables placed in X or Y memory are
defined by a pragma section within the
section.

Include header

Section 3 Compiler

Rev.4.00 2007.02.02 3-188
REJ05B0463-0400

 for (i = 0; i < K; i++){

 coeff_x[i] = coeff[i];

 }

 nsamp = 10;

 ncoeff = K;

 rshift = RSHIFT;

 twomu = TWOMU;

 for (i = 0; i < N; output[i++] = 0) ;

 ncoeff = K;/* Sets the number of coefficients */

 nsamp = N;/* Sets the number of samples */

 for (i = 0; i < K; i++){

 coeff_x[i] = coeff[i];

 }

 if (InitLms(&work, K) != EDSP_OK){

 printf("Init Problem\n");

 }

 for(i=0;i<nsamp;i++){

 if(Lms1(&output[i], data[i], ref[i], coeff_x, ncoeff, RSHIFT, TWOMU,

 work) !=
EDSP_OK){

 printf("Lms1 Problem\n");

 }

 }

 if (FreeLms(&work, K) != EDSP_OK){

 printf("Free Problem\n");

 }

 for (i = 0; i < N; i++){

 printf("#%2d output:%6d
\n",i,output[i]);

 }

}

Filter initialization:
(1) Work area address
(2) Number of coefficients
This is necessary before LMS1 function
execution. The work area in Y memory uses
(number of coefficients)*2+8 bytes.

The FreeLms function frees the
work area used for Lms
calculations; The FreeLms
function must always be
performed after Lms execution. If
this function is not executed,
memory resources are wasted.

Set filter coefficients in X memory
as variables.

Section 3 Compiler

Rev.4.00 2007.02.02 3-189
REJ05B0463-0400

(i) FIR work space allocation

Description:

• Format:
int InitFir (short **workspace, long no_coeffs)

• Parameters:

workspace Pointer to the work space
no_coeffs Number of coefficients K

• Returned value:

EDSP_OK Successful
EDSP_NO_HEAP The memory space that can be used by the work space is insufficient
EDSP_BAD_ARG no_coeffs ≤ 2

• Explanation of this function:

Allocates the work space to be used by Fir and Fir1.

• Remarks:

Initializes all previously input data to 0.
Only Fir, Fir1, Lms or Lms 1 can operate the work space allocated with InitFir. Do not access the work space directly
from the user program.
This function is not reentrant.

(j) IIR work space allocation

Description:

int InitIir (short **workspace, long no_sections)

• Parameters:

workspace Pointer to the work space
no_sections Number of secondary filter sections K

• Returned value:

EDSP_OK Successful
EDSP_NO_HEAP The memory space that can be used by the work space is insufficient
EDSP_BAD_ARG no_sections < 1

• Explanation of this function:

Allocates the work space to be used by Iir and Iir1.

• Remarks:

Initializes all previously input data to 0.
Only Iir and Iir1 can operate the work space allocated with InitIir. Do not access the work space directly from the user
program.
This function is not reentrant.

Section 3 Compiler

Rev.4.00 2007.02.02 3-190
REJ05B0463-0400

(k) Double precision IIR work space allocation

Description:

• Format:
int InitDIir (long **workspace, long no_sections)

• Parameters:

workspace Pointer to the work space
no_sections Number of secondary filter sections K

• Returned value:

EDSP_OK Successful
EDSP_NO_HEAP The memory space that can be used by the work space is insufficient
EDSP_BAD_ARG no_sections < 1

• Explanation of this function:

Allocates the work space to be used by DIir and DIir1.

• Remarks:

Initializes all previously input data to 0.
Only DIir and DIir1 can operate the work space allocated with InitDIir.
This function is not reentrant.

(l) Adaptive FIR work space allocation

Description:

• Format:
int InitLms (short **workspace, long no_coeffs)

• Parameters:

workspace Pointer to the work space
no_coeffs Number of coefficients K

• Returned value:

EDSP_OK Successful
EDSP_NO_HEAP The memory space that can be used by the work space is insufficient
EDSP_BAD_ARG no_coeffs ≤ 2

• Explanation of this function:

Allocates the work space to be used by Lms and Lms1.

• Remarks:

Initializes all previously input data to 0.
Only Fir, Fir1, Lms or Lms 1 can operate the work space allocated with InitLms. Do not access the work space directly
from the user program.
This function is not reentrant.

Section 3 Compiler

Rev.4.00 2007.02.02 3-191
REJ05B0463-0400

(m) FIR work space release

Description:

• Format:
int FreeFir (short **workspace, long no_coeffs)

• Parameters:

workspace Pointer to the work space
no_coeffs Number of coefficients K

• Returned value:

EDSP_OK Successful
EDSP_BAD_ARG no_coeffs ≤ 2

• Explanation of this function:

Releases the work space allocated by InitFir

• Remarks:

This function is not reentrant.

(n) IIR work space release

Description:

• Format:
int FreeIir (short **workspace, long no_sections)

• Parameters:

workspace Pointer to the work space
no_sections Number of secondary filter sections K

• Returned value:

EDSP_OK Successful
EDSP_BAD_ARG no_sections < 1

• Explanation of this function:

Releases the work space allocated by InitIir

• Remarks:

This function is not reentrant.

Section 3 Compiler

Rev.4.00 2007.02.02 3-192
REJ05B0463-0400

(o) Double precision IIR work space release

Description:

• Format:
int FreeDIir (long **workspace, long no_sections)

• Parameters:

workspace Pointer to the work space
no_sections Number of secondary filter sections K

• Returned value:

EDSP_OK Successful
EDSP_BAD_ARG no_section ≤ 2

• Explanation of this function:

Releases the work space memory allocated by InitDIir.

• Remarks:

This function is not reentrant.

(p) Adaptive FIR work space release

Description:

• Format:
int FreeLms (short **workspace, long no_coeffs)

• Parameters:

workspace Pointer to the work space
no_coeffs Number of coefficients K

• Returned value:

EDSP_OK Successful
EDSP_BAD_ARG no_coeffs < 1

• Explanation of this function:

Releases the work space memory allocated by InitLms

• Remarks:

This function is not reentrant.

Section 3 Compiler

Rev.4.00 2007.02.02 3-193
REJ05B0463-0400

3.13.7 Convolution and Correlation

(1) List of functions

Table 3.32 List of DSP Library Functions (Convolution)

No. Type Function
Name

Description

1 Complete convolution ConvComplete Calculates complete convolution for two arrays

2 Periodic convolution ConvCyclic Calculates periodic convolution for two arrays

3 Partial convolution ConvPartial Calculates partial convolution for two arrays

4 Correlation Correlate Calculates correlation for two arrays

5 Periodic correlation CorrCyclic Calculates periodic correlation for two arrays

When using these functions, allocate one of the two input arrays to X memory, and the other to Y memory. The output
array can be allocated to either memory.

(2) Explanation of each function

(a) Complete convolution

Description:

• Format:

int ConvComplete (short output[], const short ip_x[], const short ip_y[], long
x_size,
long y_size, int res_shift)

• Parameters:

output[] Output z
ip_x[] Input x
ip_y[] Input y
x_size Size X of ip_x
y_size Size Y of ip_y
res_shift Right shift applied to each output.

• Returned value:

EDSP_OK Successful
EDSP_BAD_ARG In any of the following cases
 •x_size < 1
 •y_size < 1
 •res_shift < 0
 •res_shift > 25

• Explanation of this function:

Complete convolves the two input arrays x and y, and writes the results to the output array z.

• Remarks:

 0 ≤ m < X+Y-1

Data external to the input array is read as 0.
ip_x is allocated to X memory, ip_y is allocated to Y memory, and output is allocated to arbitrary memory.
In addition, it is necessary to ensure that the array output size is more than (xsize+ysize-1).

() () () shift_res1X

0i
2imy ixmz −

−

=
⋅⎥⎦

⎤
⎢⎣
⎡ −= ∑

Section 3 Compiler

Rev.4.00 2007.02.02 3-194
REJ05B0463-0400

Example of use:

#include <stdio.h>

#include <ensigdsp.h>

#define NX 8

#define NY 8

#define NOUT NX+NY-1

#pragma section X

static short datx[NX];

#pragma section Y

static short daty[NY];

#pragma section

short w1[5] = {-1, -32768, 32767, 2, -3, };

short x1[5] = {1, 32767, -32767, -32767, -2, };

void main()

{

 short i;

 short output[NOUT];

 int xsize, ysize, rshift;

 /* copy data into X and Y RAM */

 for(i=0;i<NX;i++){

 datx[i] = w1[i%5];

 }

 for(i=0;i<NY;i++){

 daty[i] = x1[i%5];

 }

 xsize = NX;

 ysize = NY;

 rshift = 15;

 if(ConvComplete(output, datx, daty, xsize, ysize, rshift) != EDSP_OK){

 printf("EDSP_OK not returned\n");

 }

 for(i=0;i<NX;i++){

 printf("#%3d dat_x:%6d dat_y:%6d \n",i,datx[i],daty[i]);

 }

 for(i=0;i<NOUT;i++){

 printf("#%3d output:%d \n",i,output[i]);

 }

}

Variables placed in X or Y memory
are defined by a pragma section
within the section.

Sets data for use in convolution
calculations.

 Include header

Section 3 Compiler

Rev.4.00 2007.02.02 3-195
REJ05B0463-0400

(b) Periodic convolution

Description:

• Format:

int ConvCyclic (short output[], const short ip_x[],
const short ip_y[], long size,
int res_shift)

• Parameters:

output[] Output z
ip_x[] Input x
ip_y[] Input y
size Size N of the array
res_shift Right shift applied to each output.

• Returned value:

EDSP_OK Successful
EDSP_BAD_ARG In any of the following cases
 •size < 1
 •res_shift < 0
 •res_shift > 25

• Explanation of this function:

Periodically convolves the two input arrays x and y, and writes the results to the output array z.

• Remarks:

 0 ≤ m < N

Here, |i|N means the remainder (i % N).
ip_x is allocated to X memory, ip_y is allocated to Y memory, and output is allocated to arbitrary memory.
In addition, it is necessary to ensure that the array output size is more than ‘size’.

() () () shift_res1N

0i N 2Nim y ixmz −
−

=
⋅⎥⎦

⎤
⎢⎣
⎡ +−= ∑

Section 3 Compiler

Rev.4.00 2007.02.02 3-196
REJ05B0463-0400

Example of use:

#include <stdio.h>

#include <ensigdsp.h>

#define N 5

short x2[5] = {1, 32767, -32767, -32767, -2, };

short w2[5] = {-1, -32768, 32767, 2, -3, };

#pragma section X

static short datx[N];

#pragma section Y

static short daty[N];

#pragma section

void main()

{

 short i;

 short output[N];

 int size, rshift;

 /* copy data into X and Y RAM */

 for(i=0;i<N;i++){

 datx[i] = w2[i];

 daty[i] = x2[i];

 }

 size = N ;

 rshift = 15;

 if(ConvCyclic(output, datx, daty, size, rshift) != EDSP_OK){

 printf("EDSP_OK not returned\n");

 }

 for(i=0;i<N;i++){

 printf("#%2d ip_x:%6d ip_y:%6d output:%6d \n",i,datx[i],daty[i],

output[i]);

 }

}

Variables placed in X or Y memory are defined
by a pragma section within the section.

Sets data for use in convolution
calculations.

Section 3 Compiler

Rev.4.00 2007.02.02 3-197
REJ05B0463-0400

(c) Partial convolution

Description:

• Format:
int ConvPartial (short output[], const short ip_x[],

const short ip_y[], long x_size,
long y_size, int res_shift)

• Parameters:

output[] Output z
ip_x[] Input x
ip_y[] Input y
x_size Size x of ip_x
y_size Size y of ip_y
res_shift Right shift applied to each output.

• Returned value:

EDSP_OK Successful
EDSP_BAD_ARG In any of the following cases
 •x_size < 1
 •y_size < 1
 •res_shift < 0
 •res_shift > 25

• Explanation of this function:

This function convolves the two input arrays x and y, and writes the results to the output array z.

• Remarks:

Output fetched from data external to the input array is not included.

However, the number of arrays is a < b, and A is a size and B is b size.
Data external to the input array is read as 0.
ip_x is allocated to X memory, ip_y is allocated to Y memory, and output is allocated to arbitrary memory.
In addition, it is necessary to ensure that the array output size is more than (|xsize-ysize|+1).

Example of use:

#include <stdio.h>

#include <ensigdsp.h>

#define NX 5

#define NY 5

short x3[5] = {1, 32767, -32767, -32767, -2, };

short w3[5] = {-1, -32768, 32767, 2, -3, };

 Include header

() () () shift_res1A

0i
2i1Amb iamz −

−

=
⋅⎥⎦

⎤
⎢⎣
⎡ −−+= ∑ 0 ≤ m ≤ |A-B|

Section 3 Compiler

Rev.4.00 2007.02.02 3-198
REJ05B0463-0400

#pragma section X

static short datx[NX];

#pragma section Y

static short daty[NY];

#pragma section

void main()

{

 short i;

 short output[NY+NX];

 int ysize, xsize, rshift;

 /* copy data into X and Y RAM */

 for(i=0;i<NX;i++){

 datx[i] = w3[i];

 }

 for(i=0;i<NY;i++){

 daty[i] = x3[i];

 }

 xsize = NX;

 ysize = NY;

 rshift = 15;

 if(ConvPartial(output, datx, daty, xsize, ysize, rshift) != EDSP_OK){

 printf("EDSP_OK not returned\n");

 }

 for(i=0;i<NX;i++){

 printf("ip_x=%d \n",datx[i]);

 }

 for(i=0;i<NY;i++){

 printf("ip_y=%d \n",daty[i]);

 }

 for(i=0;i<(NY+NX);i++){

 printf("output=%d \n",output[i]);

 }

}

Variables placed in X or Y memory are
defined by a pragma section within the
section.

Sets data for use in convolution
calculations.

Section 3 Compiler

Rev.4.00 2007.02.02 3-199
REJ05B0463-0400

(d) Correlation

Description:

• Format:

int Correlate (short output[], const short ip_x[],
const short ip_y[], long x_size, long y_size,
long no_corr, int x_is_larger,
int res_shift)

• Parameters:

output[] Output z
ip_x[] Input x
ip_y[] Input y
x_size Size x of ip_x
y_size Size y of ip_y
no_corr Number of correlations M for calculation
x_is_larger Array specification when x=y
res_shift Right shift applied to each output.

• Returned value:

EDSP_OK Successful
EDSP_BAD_ARG In any of the following cases
 •x_size < 1
 •y_size < 1
 •no_corr < 1
 •res_shift < 0
 •res_shift > 25
 •x_is_larger ≠ 0 or 1

• Explanation of this function:

Finds the correlation of the two input arrays x and y, and writes the results to the output array z.

• Remarks:

In the following equation, the number of arrays is a < b, and A is a size. If x_is_larger=0 make x to be a, and if
x_is_larger=1 make x to be b.
Operation is not guaranteed when the b array is smaller than the a array.
Set the sizes of the input arrays x and y, as well as x_is_larger, so that no conflict exists.

() () () shift_res1A

0i
2mib iamz −

−

=
⋅⎥⎦

⎤
⎢⎣
⎡ += ∑

There is no obstacle to having A < X + M. In this case, use 0 for data external to the array.
res_shift=0 corresponds to normal integer calculation, and res_shift=15 corresponds to decimal calculation.
ip_x is allocated to X memory, ip_y is allocated to Y memory, and output is allocated to arbitrary memory.
In addition, it is necessary to ensure that the array output size is more than no_corr.

Example of use:

#include <stdio.h>

#include <ensigdsp.h>

#define NY 5

#define NX 5

 Include header

0 ≤ m < M

Section 3 Compiler

Rev.4.00 2007.02.02 3-200
REJ05B0463-0400

#define M 4

#define MAXM NX+NY

short x4[5] = {1, 32767, -32767, -32767, -2, };

short w4[5] = {-1, -32768, 32767, 2, -3, };

#pragma section X

static short datx[NX];

#pragma section Y

static short daty[NY];

#pragma section

void main()

{

 short i;

 int ysize, xsize, ncorr, rshift;

 short output[MAXM];

 int x_is_larger;

 /* copy data into X and Y RAM */

 for(i=0;i<NX;i++){

 datx[i] = w4[i%5];

 }

 for(i=0;i<NY;i++){

 daty[i] = x4[i%5];

 }

 /* test working of stack */

 ysize = NY;

 xsize = NX;

 ncorr = M;

 rshift = 15;

 x_is_larger=0;

 for (i = 0; i < MAXM; output[i++] = 0);

 if (Correlate(output, datx, daty, xsize, ysize, ncorr,x_is_larger,rshift)

 !=
EDSP_OK){

 printf("EDSP_OK not returned\n");

 }

 for(i=0;i<MAXM;i++){

 printf("[%d]:output=%d\n",i,output[i]);

 }

}

Variables placed in X or Y memory are defined
by a pragma section within the section.

Sets data for use in calculations.

Section 3 Compiler

Rev.4.00 2007.02.02 3-201
REJ05B0463-0400

(e) Periodic correlation

Description:

• Format:

int CorrCyclic (short output[], const short ip_x[],
const short ip_y[], long size, int reverse,
int res_shift)

• Parameters:

output[] Output z
ip_x[] Input x
ip_y[] Input y
size Size N of the array
reverse Reverse flag
res_shift Right shift applied to each output.

• Returned value:

EDSP_OK Successful
EDSP_BAD_ARG In any of the following cases
 •size < 1
 •res_shift < 0
 •res_shift > 25
 •reverse ≠ 0 or 1

• Explanation of this function:

Finds the correlation of the two input arrays x and y periodically, and writes the results to the output array z.

• Remarks:

() () () shift_res1N

0i N 2mi y ixmz −
−

=
⋅⎥⎦

⎤
⎢⎣
⎡ += ∑

Here, |i|N means the remainder (i % N). If reverse=1, the output data is reversed, and the actual calculation is as follows.

() () () shift_res1N

0i N 2mi x iymz −
−

=
⋅⎥⎦

⎤
⎢⎣
⎡ += ∑

ip_x is allocated to X memory, ip_y is allocated to Y memory, and output is allocated to arbitrary memory.
In addition, it is necessary to ensure that the array output size is more than ‘size’.

0 ≤ m < N

0 ≤ m < N

Section 3 Compiler

Rev.4.00 2007.02.02 3-202
REJ05B0463-0400

Example of use:

#include <stdio.h>

#include <ensigdsp.h>

#define N 5

short x5[5] = {1, 32767, -32767, -32767, -2, };

short w5[5] = {-1, -32768, 32767, 2, -3, };

#pragma section X

static short datx[N];

#pragma section Y

static short daty[N];

#pragma section

void main()

{

 short i;

 short output[N];

 int size, rshift;

 int reverse;

 int result;

 /* TEST CYCLIC CORRELATION OF X WITH Y */

 reverse=0;

 /* copy data into X and Y RAM */

 for(i=0;i<N;i++){

 datx[i] = w5[i];

 daty[i] = x5[i];

 }

 /* test working of stack */

 size = N;

 rshift = 15;

 if (CorrCyclic(output, datx, daty, size, reverse, rshift) != EDSP_OK){

 printf("EDSP_OK not returned - this one\n");

 }

 for(i=0;i<N;i++){

 printf("output[%d]=%d\n",i,output[i]);

 }

}

Variables placed in X or Y memory are
defined by a pragma section within the
section.

Sets data for use in calculations.

Include header

Section 3 Compiler

Rev.4.00 2007.02.02 3-203
REJ05B0463-0400

3.13.8 Other

(1) List of functions

Table 3.33 DSP Library Function List (Miscellaneous)

No. Type Function
Name

Description

1 H’8000 → H’8001
replacement

Limit Replaces H'8000 data with H'8001

2 X memory → Y memory
copy

CopyXtoY Copies an array from X memory to Y
memory.

3 Y memory → X memory
copy

CopyYtoX Copies an array from Y memory to X
memory.

4 Copy to X memory CopyToX Copies an array from a specified location to X
memory.

5 Copy to Y memory CopyToY Copies an array from a specified location to Y
memory.

6 Copy from X memory CopyFromX Copies an array from X memory to a
specified location.

7 Copy from Y memory CopyFromY Copies an array from Y memory to a
specified location.

8 Gaussian white noise GenGWnoise Generates Gaussian white noise.

9 Matrix multiplication MatrixMult Multiplies two matrices.

10 Multiplication VectorMult Multiplies two data elements.

11 RMS value MsPower Determines RMS power.

12 Mean Mean Determines mean.

13 Mean and variance Variance Determines mean and variance.

14 Maximum value MaxI Determines maximum value of integer array.

15 Minimum value MinI Determines minimum value of integer array.

16 Maximum absolute value PeakI Determines maximum absolute value of
integer array.

Section 3 Compiler

Rev.4.00 2007.02.02 3-204
REJ05B0463-0400

(2) Explanation of each function

(a) H’8000 → H’8001 replacement

Description:

• Format:
int Limit (short data[], long no_elements, int data_is_x)

• Parameters:

data[] Data array
no_elements Number of data elements
data_is_x Data location specification

• Returned value:

EDSP_OK Successful
EDSP_BAD_ARG In any of the following cases
 •no_elements < 1
 •data_is_x ≠ 0 or 1

• Explanation of this function:

Replaces input data with a value of H'8000 with H'8001. In this way, when fixed point multiplication is performed with
the DSP instruction, overflow will not occur.

• Remarks:

Even when the process is performed there is a possibility that overflow may occur with addition in the
multiply-and-accumulate operation.
When data_is_x=1 allocate data to X memory, and when data_is_x=0 allocate data to Y memory.

Example of use:

#include <stdio.h>

#include <ensigdsp.h>

#define N 4

static short dat[N] = { -32768, 32767, -32768, 0};

#pragma section X

static short datx[N];

#pragma section Y

static short daty[N];

#pragma section

void main()

{

 short i;

 int size;

 int src_x;

Variables placed in X or Y memory are
defined by a pragma section within the
section.

 Include header

Section 3 Compiler

Rev.4.00 2007.02.02 3-205
REJ05B0463-0400

 /* copy data into X and Y RAM */

 for(i=0;i<N;i++) {

 datx[i] = dat[i%4];

 daty[i] = dat[i%4];

 printf("BEFORE NO %d datx daty :%d:%d \n",i,datx[i], daty[i]);

 }

 size = N;

 src_x = 1;

 if (Limit(datx, size, src_x) != EDSP_OK){

 printf("EDSP_OK not returned\n");

 }

 src_x = 0;

 if (Limit(daty, size, src_x) != EDSP_OK){

 printf("EDSP_OK not returned\n");

 }

 for(i=0;i<N;i++) {

 printf("After NO %d datx daty :%d:%d\n",i,datx[i], daty[i]);

 }

}

(b) X memory → Y memory copy

Description:

• Format:
int CopyXtoY (short op_y[], const short ip_x[], long n)

• Parameters:

op_y[] Output array
ip_x[] Input array
n Number of data elements

• Returned value:

EDSP_OK Successful
EDSP_BAD_ARG n < 1

• Explanation of this function:

The array is copied from ip_x to op_y.

• Remarks:

Allocate ip_x to X memory, and allocate op_y to Y memory.

Sets data.

If using X memory

If using Y memory

Section 3 Compiler

Rev.4.00 2007.02.02 3-206
REJ05B0463-0400

Example of use:

#include <stdio.h>

#include <ensigdsp.h>

#define N 4

static short dat[N] = { -32768, 32767, -32768, 0};

#pragma section X

static short datx[N];

#pragma section Y

static short daty[N];

#pragma section

void main()

{

 int i;

 for(i=0;i<N;i++){

 daty[i]=0;

 datx[i]=dat[i%4];

 }

 if(CopyXtoY(daty, datx, N) != EDSP_OK){

 printf("CopyXtoY Problem\n");

 }

 printf("no_elements:%d \n",N);

 for(i=0;i<N;i++){

 printf("#%2d op_x:%6d ip_y:%6d \n",i,datx[i],daty[i]);

 }

}

(c) Y memory → X memory copy

Description:

• Format:
int CopyYtoX (short op_x[], const short ip_y[], long n)

• Parameters:

op_x[] Output array
ip_y[] Input array
n Number of data elements

• Returned value:

Variables placed in X or Y memory are defined
by a pragma section within the section.

Sets data.

 Include header

Section 3 Compiler

Rev.4.00 2007.02.02 3-207
REJ05B0463-0400

EDSP_OK Successful
EDSP_BAD_ARG n < 1

• Explanation of this function:

The array is copied from ip_y to op_x.

• Remarks:

Allocate ip_y to Y memory, and allocate op_x to X memory.

Example of use:

#include <stdio.h>

#include <ensigdsp.h>

#define N 5

static short dat[N] = { -32768, 32767, -32768, 0,3};

#pragma section X

static short datx[N];

#pragma section Y

static short daty[N];

#pragma section

void main()

{

 int i;

 for(i=0;i<N;i++){

 daty[i]=dat[i];

 }

 if(CopyYtoX(datx, daty, N)!= EDSP_OK){

 printf("CopyYtoX error!\n");

 }

 printf("no_elements %d \n",N);

 for(i=0;i<N;i++){

 printf("#%2d po_x:%6d ip_y:%6d \n",i,datx[i],daty[i]);

 }

}

Variables placed in X or Y memory are
defined by a pragma section within the
section.

Sets data.

 Include header

Section 3 Compiler

Rev.4.00 2007.02.02 3-208
REJ05B0463-0400

(d) Copy to X memory

Description:

• Format:
int CopyToX (short op_x[], const short input[], long n)

• Parameters:

op_x[] Output array
input[] Input array
n Number of data elements

• Returned value:

EDSP_OK Successful
EDSP_BAD_ARG n < 1

• Explanation of this function:

The array input is copied to op_x.

• Remarks:

Allocate op_x to X memory, and allocate input to arbitrary memory.

Example of use:

#include <stdio.h>

#include <ensigdsp.h>

#define N 4

static short dat[N] = { -32768, 32767, -32768, 0};

#pragma section X

static short datx[N];

#pragma section

void main()

{

 int i;

 short data[N];

 for(i=0;i<N;i++){

 data[i]=dat[i];

 }

 if(CopyToX(datx, data, N) !=EDSP_OK){

 printf("CopyToX Problem\n");

 }

 printf("no_elements %d\n",N);

 for(i=0;i<N;i++){

 printf("#%2d op_x:%6d input:%6d \n",i,datx[i],data[i]);

Variables placed in X memory are
defined by a pragma section within the
section.

Sets data.

 Include header

Section 3 Compiler

Rev.4.00 2007.02.02 3-209
REJ05B0463-0400

 }

}

(e) Copy to Y memory

Description:

• Format:
int CopyToY (short op_y[], const short input[], long n)

• Parameters:

op_y[] Output array
input[] Input array
n Number of data elements

• Returned value:

EDSP_OK Successful
EDSP_BAD_ARG n < 1

• Explanation of this function:

The array input is copied to op_y.

• Remarks:

Allocate op_y to Y memory, and allocate input to arbitrary memory.

Example of use:

#include <stdio.h>

#include <ensigdsp.h>

#define N 4

static short dat[N] = { -32768, 32767, -32768, 0};

#pragma section Y

static short daty[N];

#pragma section

void main()

{

 int i;

 short data[N] ;

 for(i = 0; i < N; i++){

 data[i] = dat[i%4] ;

 }

 if(CopyToY(daty, data, N) != EDSP_OK){

 printf("CopyToY Problem\n");

 }

Variables placed in Y memory are defined by a
pragma section within the section.

Sets data.

 Include header

Section 3 Compiler

Rev.4.00 2007.02.02 3-210
REJ05B0463-0400

 printf("no_elements %ld \n",N);

 for(i = 0; i < N; i++){

 printf("#%2d op_y:%6d input:%6d \n",i,daty[i],data[i]);

 }

}

(f) Copy from X memory

Description:

• Format:
int CopyFromX (short output[], const short ip_x[], long n)

• Parameters:

output[] Output array
ip_x[] Input array
n Number of data elements

• Returned value:

EDSP_OK Successful
EDSP_BAD_ARG n < 1

• Explanation of this function:

The array ip_x is copied to output.

• Remarks:

Allocate ip_x to X memory, and allocate output to arbitrary memory.

Example of use:

#include <stdio.h>

#include <ensigdsp.h>

#define N 4

static short dat[N] = { -32768, 32767, -32768, 0};

static short out_dat[N] ;

#pragma section X

static short datx[N];

#pragma section

void main()

Variables placed in X memory are
defined by a pragma section within the
section.

 Include header

Section 3 Compiler

Rev.4.00 2007.02.02 3-211
REJ05B0463-0400

{

 int i;

 for(i=0;i<N;i++){

 datx[i]=dat[i];

 }

 if(CopyFromX(out_dat,datx, N) != EDSP_OK){

 printf("CopyFromX Problem\n");

 }

 for(i=0;i<N;i++){

 printf("#%3d output:%6d ip_x:%6d \n",i,out_dat[i],datx[i]);

 }

 printf("no_elements:%ld\n",N);

}

(g) Copy from Y memory

Description:

• Format:
int CopyFromY (short output[], const short ip_y[], long n)

• Parameters:

output[] Output array
ip_y[] Input array
n Number of data elements

• Returned value:

EDSP_OK Successful
EDSP_BAD_ARG n < 1

• Explanation of this function:

The array ip_y is copied to output.

• Remarks:

Allocate ip_y to Y memory, and allocate output to arbitrary memory.

Sets data.

Section 3 Compiler

Rev.4.00 2007.02.02 3-212
REJ05B0463-0400

Example of use:

#include <stdio.h>

#include <ensigdsp.h>

#define N 4

static short dat[N] = { -32768, 32767, -32768, 0};

static short out_dat[N] ;

#pragma section Y

static short daty[N];

#pragma section

void main()

{

 int i;

 for(i=0;i<N;i++){

 daty[i]=dat[i];

 }

 if(CopyFromY(out_dat,daty, N)!= EDSP_OK){

 printf("CopyFormY Problem\n");

 }

 printf("no_elements:%d \n",N);

 for(i=0;i<N;i++){

 printf("#%2d output:%6d ip_y:%6d \n",i,out_dat[i],daty[i]);

 }

}

(h) Gaussian white noise

Description:

• Format:
int GenGWnoise (short output[], long no_samples, float variance)

• Parameters:

output[] Outputs white noise data
no_samples Number of output data elements
Variance Variance of noise distribution σ2

• Returned value:

EDSP_OK Successful
EDSP_BAD_ARG In any of the following cases

Variables placed in Y memory are
defined by a pragma section within the
section.

Sets data.

 Include header

Section 3 Compiler

Rev.4.00 2007.02.02 3-213
REJ05B0463-0400

 •no_samples < 1
 •variance ≤ 0.0

• Explanation of this function:

With a mean of 0, Gaussian white noise is generated with the variance specified by the user.

• Remarks:

One set of two output data elements are generated. In order to generate 1 set of output data, use a rand function, and until a
set of less than 1 is found by the sum of the square of x, 1 set of random numbers, γ1 and γ2, between –1 and 1 is generated.
Then 1 set of output data, ο1 and ο2, is calculated using the following equations.

() xxln211 −σγ=ο

() xxln222 −σγ=ο

If the number of data elements is set to an odd number, the second data element of the last set is nullified.
As the rand function of the standard library called on by this function is not reentrant, the order of the random numbers
γ1 and γ2 generated will not necessarily always be the same. However, there will be no impact on the characteristics of
the white noise ο1 and ο2 generated.
This function uses a floating point operation. As the processing speed of floating point operations is slow, it is
recommended that this function is used for evaluation.

Example of use:

#include <stdio.h>

#include <ensigdsp.h>

#define MAXG 4.5 /* approx. saturating level for N(0,1) random variable */

#define N_SAMP 10 /* number of samples generated in a frame */

void main()

{

 short out[N_SAMP];

 float var;

 int i;

 var = 32768 / MAXG * 32768 / MAXG;

 if(GenGWnoise(out, N_SAMP, var) !=EDSP_OK){

 printf("GenGWnoise Problem\n");

 }

 for(i=0;i<N_SAMP;i++){

 printf("#%2d out:%6d \n",i,out[i]);

 }

}

 Include header

Section 3 Compiler

Rev.4.00 2007.02.02 3-214
REJ05B0463-0400

(i) Matrix multiplication

Description:

• Format:

int MatrixMult (void *op_matrix, const void *ip_x,
const void *ip_y, long m, long n, long p,
int x_first, int res_shift)

• Parameters:

op_matrix Pointer to the first data element of output
ip_x Pointer to the first data element of input x
ip_y Pointer to the first data element of input y
m Number of rows in matrix 1
n Number of columns in matrix 1, number of rows in matrix 2
p Number of rows in matrix 2
x_first Order specification for matrix multiplication
res_shift Right shift applied to each output.

• Returned value:

EDSP_OK Successful
EDSP_BAD_ARG In any of the following cases
 •m, n, or p < 1
 •res_shift < 0
 •res_shift > 25
 •x_first ≠ 0 or 1

• Explanation of this function:

Performs multiplication of the two matrices x and y, and allocates the result to op_matrix.

• Remarks:

When x_first=1, calculates x ⋅ y In this case, ip_x is m x n, ip_y is n x p, and op_matrix is m x p.
When x_first=0, calculates y ⋅ x. In this case, ip_y is m x n, ip_x is n x p, and op_maxtrix is m x p.
The results of multiply-and-accumulate operations are saved as 39 bits. Output y(n) is the lower 16 bits fetched from the
res_shift bit right shifted results. When an overflow occurs, this is the positive or negative maximum value.
Each matrix is allocated to a normal C format (row major order).
 a0 a1 a2 a3
 a4 a5 a6 a7
 a8 a9 a10 a11
In order to be able to specify an arbitrary array size, specify void* for the array parameters. Make these parameters point
to short variables.
Provide input arrays ip_x and ip_y, and output array op_matrix separately.
Allocate ip_x to X memory, allocate ip_y to Y memory, and allocate op_matrix to arbitrary memory.

Example of use:

#include <stdio.h>

#include <ensigdsp.h>

#define N 4

#define NN N*N

 Include header

Section 3 Compiler

Rev.4.00 2007.02.02 3-215
REJ05B0463-0400

short m1[16] = { 1, 32767, -32767, 32767,

 1, 32767, -32767, 32767,

 1, 32767, -32767, 32767,

 1, 32767, -32767, 32767, };

short m2[16] = { -1, 32767, -32767, -32767,

 -1, 32767, -32767, -32767,

 -1, 32767, -32767, -32767,

 -1, 32767, -32767, -32767, };

#pragma section X

static short datx[NN];

#pragma section Y

static short daty[NN];

#pragma section

void main()

{

 short i, j;

 short output[NN];

 int m, n, p, rshift, x_first;

 long sum;

 for (i = 0; i < NN; output[i++] = 0) ;

 /* copy data into X and Y RAM */

 for(i=0;i<NN;i++) {

 datx[i] = m1[i%16];

 daty[i] = m2[i%16];

 }

 m = n = p = N;

 rshift = 15;

 x_first = 1;

 if (MatrixMult(output, datx, daty, m, n, p, x_first, rshift) != EDSP_OK){

 printf("EDSP_OK not returned\n");

 }

 for(i=0;i<NN;i++) {

 printf("output[%d]=%d\n",i,output[i]);

 }

}

Variables placed in X or Y memory are
defined by a pragma section within the
section.

Sets data.

Section 3 Compiler

Rev.4.00 2007.02.02 3-216
REJ05B0463-0400

(j) Multiplication

Description:

• Format:

int VectorMult (short output[], const short ip_x[],
const short ip_y[],long no_elements,
int res_shift)

• Parameters:

output[] Output
ip_x[] Input 1
ip_y[] Input 2
no_elements Number of data elements
res_shift Right shift applied to each output.

• Returned value:

EDSP_OK Successful
EDSP_BAD_ARG In any of the following cases
 •no_elements < 1
 •res_shift < 0
 •res_shift > 16

• Explanation of this function:

Data is fetched one element at a time from ip_x and ip_y and multiplication is performed, with the results being allocated
to output.

• Remarks:

Output is the lower 16 bits fetched from the res_shift bit right shifted results.
When an overflow occurs, this is the positive or negative maximum value.
This function performs multiplication of the data. To calculate the inner product, use the MatrixMult function, setting 1 for
m (the number of rows of matrix 1) and for p (the number of columns of matrix 2).
ip_x is allocated to X memory, ip_y is allocated to Y memory, and output is allocated to arbitrary memory.

Example of use:

#include <stdio.h>

#include <ensigdsp.h>

#define N 4

#define RSHIFT 15

short y[4] = {1, 32767, -32767, 32767, };

short x[4] = {-1, 32767, -32767, -32767, };

#pragma section X

static short datx[N];

#pragma section Y

static short daty[N];

#pragma section

Variables placed in X or Y memory
are defined by a pragma section
within the section.

 Include header

Section 3 Compiler

Rev.4.00 2007.02.02 3-217
REJ05B0463-0400

void main()

{

 short i, n ;

 short output[N];

 int size, rshift;

 /* copy data into X and Y RAM */

 for(i=0;i<N;i++) {

 datx[i] = x[i];

 daty[i] = y[i];

 }

 size = N;

 rshift = RSHIFT;

 for (i = 0; i < N; output[i++] = 0) ;

 if (VectorMult(output, datx, daty, size, rshift) != EDSP_OK) {

 printf("EDSP_OK not returned\n");

 }

 for(i=0;i<N;i++){

 printf("#%2d output:%6d ip_x:%6d ip_y:%6d \n",i,output[i],datx[i],

daty[i]);

 }

}

Sets data.

Section 3 Compiler

Rev.4.00 2007.02.02 3-218
REJ05B0463-0400

(k) RMS value

Description:

• Format:
int MsPower (long *output, const short input[],long no_elements, int src_is_x)

• Parameters:

output Pointer to output
input[] Input x
no_elements Number of data elements N
src_is_x Data location specification

• Returned value:

EDSP_OK Successful
EDSP_BAD_ARG In any of the following cases
 •no_elements < 1
 •src_is_x ≠ 0 or 1

• Explanation of this function:

Determines the RMS value of input data.

• Remarks:

x(i)2
N

RMS
1

 =
N-1

i=0
Σ

Rounds off the division result to the nearest integer.
The result of the operation is saved as 63 bits.
If no_elements is 232, overflow may occur.
When src_is_x=1 allocate input to X memory, and when src_is_x=0 allocate data to Y memory.
Allocate output to arbitrary memory.

Section 3 Compiler

Rev.4.00 2007.02.02 3-219
REJ05B0463-0400

Example of use:

#include <stdio.h>

#include <ensigdsp.h>

#define N 5

static short dat[5] = {-16384, -32767, 32767, 14877, 8005};

#pragma section X

static short datx[N];

#pragma section Y

static short daty[N];

#pragma section

void main()

{

 int i;

 long output[1];

 int src_x;

 /* copy data into X and Y RAM */

 for (i = 0; i < N; i++) {

 datx[i] = dat[i];

 daty[i] = dat[i];

 }

 src_x = 1;

 if (MsPower(output, datx, N, src_x) != EDSP_OK){

 printf("EDSP_OK not returned\n");

 }

 printf("MsPower:x=%d\n",output[0]);

 src_x = 0;

 if (MsPower(output, daty, N, src_x) != EDSP_OK){

 printf("EDSP_OK not returned\n");

 }

 printf("MsPower:y=%d\n",output[0]);

}

Variables placed in X or Y memory
are defined by a pragma section
within the section.

Sets data.

When X memory is used,
src_x=1.

When Y memory is used,
src_x=0.

 Include header

Section 3 Compiler

Rev.4.00 2007.02.02 3-220
REJ05B0463-0400

(l) Mean

Description:

• Format:

int Mean (short *mean, const short input[], long no_elements,
int src_is_x)

• Parameters:

mean Pointer to mean value of input
input[] Input x
no_elements Number of data elements N
src_is_x Data location specification

• Returned value:

EDSP_OK Successful
EDSP_BAD_ARG In any of the following cases
 •no_elements < 1
 •src_is_x ≠ 0 or 1

• Explanation of this function:

Determines the mean of input data.

• Remarks:

()∑
−

=
=

1N

0i
ixN

1x

Rounds off the division result to the nearest integer.
The operation result is saved as 32 bits. If no_elements is greater than 216-1, overflow may occur.
When src_is_x=1 allocate input to X memory, and when src_is_x=0 allocate data to Y memory.

Section 3 Compiler

Rev.4.00 2007.02.02 3-221
REJ05B0463-0400

Example of use:

#include <stdio.h>

#include <ensigdsp.h>

#define N 5

static short dat[5] = {-16384, -32767, 32767, 14877, 8005};

#pragma section X

static short datx[N];

#pragma section Y

static short daty[N];

#pragma section

void main()

{

 short i,output[1];

 int size;

 int src_x;

 int flag = 1;

 /* copy data into X and Y RAM */

 for (i = 0; i < N; i++) {

 datx[i] = dat[i];

 daty[i] = dat[i];

 }

 /* test working of stack */

 src_x = 1;

 if (Mean(output, datx, N, src_x) != EDSP_OK){

 printf("EDSP_OK not returned\n");

 }

 printf("Mean:x=%d\n",output[0]);

 src_x = 0;

 if (Mean(output, daty, N, src_x) != EDSP_OK){

 printf("EDSP_OK not returned\n");

 }

 printf("Mean:y=%d\n",output[0]);

}

Variables placed in X or Y memory are defined
by a pragma section within the section.

When X memory is used,
src_x=1.

When Y memory is used,
src_x=0.

 Include header

Section 3 Compiler

Rev.4.00 2007.02.02 3-222
REJ05B0463-0400

(m) Mean and variance and

Description:

• Format:

int Variance (long *variance, short *mean, const short input[],
long no_elements, int src_is_x)

• Parameters:

Variance Pointer to the variance σ2 of input
mean Pointer to data mean x
input[] Input x
no_elements Number of data elements N
src_is_x Data location specification

• Returned value:

EDSP_OK Successful
EDSP_BAD_ARG In any of the following cases
 •no_elements < 1
 •src_is_x ≠ 0 or 1

• Explanation of this function:

Determines mean and variance of input.

• Remarks:

()∑
−

=
=

1N

0i
ixN

1x

() 21N

0i
22 xixN

1 −=σ ∑
−

=

Rounds off the division result to the nearest integer.
x is saved as 32 bits. There is no check for overflow.
If no_elements is greater than 216-1, overflow may occur.
σ2 is saved as 63 bits. There is no check for overflow.
When src_is_x=1 allocate input to X memory, and when src_is_x=0 allocate data to Y memory.

Section 3 Compiler

Rev.4.00 2007.02.02 3-223
REJ05B0463-0400

Example of use:

#include <stdio.h>

#include <ensigdsp.h>

#define N 5

static short dat[5] = {-16384, -32767, 32767, 14877, 8005};

#pragma section X

static short datx[N];

#pragma section Y

static short daty[N];

#pragma section

void main()

{

 long size,var[1];

 short mean[1];

 int i ;

 int src_x;

 /* copy data into X and Y RAM */

 for (i = 0; i < N; i++) {

 datx[i] = dat[i];

 daty[i] = dat[i];

 }

 /* test working of stack */

 size = N;

 src_x = 1;

 if (Variance(var, mean, datx, size, src_x) != EDSP_OK){

 printf("EDSP_OK not returned\n");

 }

 printf("Variance:%d mean:%d \n ",var[0],mean[0]);

 src_x = 0;

 if (Variance(var, mean, daty, size, src_x) != EDSP_OK){

 printf("EDSP_OK not returned\n");

 }

 printf("Variance:%d mean:%d \n ",var[0],mean[0]);

}

Variables placed in X or Y memory are
defined by a pragma section within the
section.

Sets data.

When X memory is used,
src_x=1.

When Y memory is used,
src_x=0.

Section 3 Compiler

Rev.4.00 2007.02.02 3-224
REJ05B0463-0400

(n) Maximum value

Description:

• Format:

int MaxI (short **max_ptr, short input[], long no_elements,
int src_is_x)

• Parameters:

max_ptr Pointer to the maximum data
input[] Input
no_elements Number of data elements
src_is_x Data location specification

• Returned value:

EDSP_OK Successful
EDSP_BAD_ARG In any of the following cases
 •no_elements < 1
 •src_is_x ≠ 0 or 1

• Explanation of this function:

Searches for the maximum value in the array input, and returns its address to max_ptr.

• Remarks:

If several data elements have the same maximum value, the address of the data with the start closest to input is returned.
When src_is_x=1 allocate input to X memory, and when src_is_x=0 allocate data to Y memory.

Section 3 Compiler

Rev.4.00 2007.02.02 3-225
REJ05B0463-0400

Example of use:

#include <stdio.h>

#include <ensigdsp.h>

#define N 5

static short dat[131] = {-16384, -32767, 32767, 14877, 8005};

#pragma section X

static short datx[N];

#pragma section Y

static short daty[N];

#pragma section

void main()

{

 short *outp,**outpp;

 int size,i;

 int src_x;

 /* copy data into X and Y RAM */

 for (i = 0; i < N; i++) {

 datx[i] = dat[i];

 daty[i] = dat[i];

 }

 /* MAXI */

 size = N;

 outpp = &outp;

 src_x = 1;

 if (MaxI(outpp, datx, size, src_x) != EDSP_OK){

 printf("EDSP_OK not returned\n");

 }

 printf("Max:x = %d\n",**outpp);

 src_x = 0;

 if (MaxI(outpp, daty, size, src_x) != EDSP_OK){

 printf("EDSP_OK not returned\n");

 }

 printf("Max:y = %d\n",**outpp);

}

Sets data.

Variables placed in X or Y memory
are defined by a pragma section
within the section.

When X memory is used,
src_x=1.

When Y memory is used,
src_x=0.

 Include header

Section 3 Compiler

Rev.4.00 2007.02.02 3-226
REJ05B0463-0400

(o) Minimum value

Description:

• Format:

int MinI (short **min_ptr, short input[], long no_elements, int src_is_x)

• Parameters:

min_ptr Pointer to the minimum data
input[] Input
no_elements Number of data elements
src_is_x Data location specification

• Returned value:

EDSP_OK Successful
EDSP_BAD_ARG In any of the following cases
 •no_elements < 1
 •src_is_x ≠ 0 or 1

• Explanation of this function:

Searches for the minimum value in the array input, and returns its address to min_ptr.

• Remarks:

If several data elements have the same minimum value, the address of the data with the start closest to input is returned.
When src_is_x=1 allocate input to X memory, and when src_is_x=0 allocate data to Y memory.

Section 3 Compiler

Rev.4.00 2007.02.02 3-227
REJ05B0463-0400

Example of use:

#include <stdio.h>

#include <ensigdsp.h>

#define N 10

static short dat[5] = {-16384, -32767, 32767, 14877, 8005};

#pragma section X

static short datx[N];

#pragma section Y

static short daty[N];

#pragma section

void main()

{

 short *outp,**outpp;

 int size,i;

 int src_x;

 /* copy data into X and Y RAM */

 for (i = 0; i < N; i++) {

 datx[i] = dat[i];

 daty[i] = dat[i];

 }

 /* MINI */

 /* test working of stack */

 size = N;

 outpp = &outp;

 src_x = 1;

 if (MinI(outpp, datx, size, src_x) != EDSP_OK){

 printf("EDSP_OK not returned\n");

 }

 printf("Min:x=%d\n",**outpp);

 src_x = 0;

 if (MinI(outpp, daty, size, src_x) != EDSP_OK){

 printf("EDSP_OK not returned\n");

 }

 printf("Min:y=%d\n",**outpp);

}

When X memory is used,
src_x=1.

When Y memory is used,
src_x=0.

Sets data.

Variables placed in X or Y memory are
defined by a pragma section within the
section.

 Include header

Section 3 Compiler

Rev.4.00 2007.02.02 3-228
REJ05B0463-0400

(p) Maximum absolute value

Description:

• Format:
int PeakI (short **peak_ptr, short input[], long no_elements, int src_is_x)

• Parameters:

peak_ptr Pointer to the maximum absolute value data
input[] Input
no_elements Number of data elements
src_is_x Data location specification

• Returned value:

EDSP_OK Successful
EDSP_BAD_ARG In any of the following cases
 •no_elements < 1
 •src_is_x ≠ 0 or 1

• Explanation of this function:

Searches for the maximum absolute value in the array input, and returns its address to peak_ptr.

• Remarks:

If several data elements have the same maximum absolute value, the address of the data with the start closest to input is
returned.
When src_is_x=1 allocate input to X memory, and when src_is_x=0 allocate data to Y memory.

Section 3 Compiler

Rev.4.00 2007.02.02 3-229
REJ05B0463-0400

Example of use:

#include <stdio.h>

#include <ensigdsp.h>

#define N 5

static short dat[5] = {-16384, -32767, 32767, 14877, 8005};

#pragma section X

static short datx[N];

#pragma section Y

static short daty[N];

#pragma section

void main()

{

 short *outp,**outpp;

 int size,i;

 int src_x;

 /* copy data into X and Y RAM */

 for (i = 0; i < N; i++) {

 datx[i] = dat[i];

 daty[i] = dat[i];

 }

 size = N;

 outpp = &outp;

 src_x = 1;

 if (PeakI(outpp, datx, size, src_x) != EDSP_OK)

 {

 printf("EDSP_OK not returned\n");

 }

 printf("Peak:x=%d\n",**outpp);

 src_x = 0;

 if (PeakI(outpp, daty, size, src_x) != EDSP_OK)

 {

 printf("EDSP_OK not returned\n");

 }

 printf("Peak:y=%d\n",**outpp);

}

Variables placed in X or Y memory are
defined by a pragma section within the
section.

Sets data.

When X memory is used,
src_x=1.

When Y memory is used,
src_x=0.

 Include header

Section 3 Compiler

Rev.4.00 2007.02.02 3-230
REJ05B0463-0400

3.14 Performance of the DSP Library

(1) Number of execution cycles of the DSP library

The number of execution cycles required by functions in the DSP library are indicated below.
Measurements were performed using an emulator (SH-DSP, 60 MHz), with the program section allocated to X-ROM
or to Y-ROM.

Table 3.34 List of Execution Cycles for DSP Library Functions (1)

Category DSP Library
Function Name

Number of Execution
Cycles (Cycle)

Notes

FftComplex 29,330

FftReal 25,490

IfftComplex 30,380

IfftReal 29,240

FftInComplex 26,540

FftInreal 25,260

IfftInComplex 27,590

IfftInReal 27,470

LogMagnitude 1,778,290

InitFft 3,116,640

Fast

Fourier

transforms

FreeFft 780

Size: 256

Scaling: 0xFFFFFFFF

Fir 23,010

Fir1 280

Lms 97,710

Lms1 790

InitFir 1,400

InitLms 1,400

FreeFir 90

FreeLms 90

Number of coefficients: 64

Number of data items: 200

Convergence coefficient 2μ =
32767

Iir 23,530

Iir1 360

DIir 309,010

DIir1 1,860

InitIir 280

InitDIir 280

Filter

functions

FreeIir 90

Number of data items: 200

Number of filter sections: 5

 FreeDIir 270

Section 3 Compiler

Rev.4.00 2007.02.02 3-231
REJ05B0463-0400

Table 3.34 List of Execution Cycles for DSP Library Functions (2)

Category DSP Library
Function Name

Number of Execution
Cycles (Cycle)

Notes

Window GenBlackman 789,950

GenHamming 418,330

GenHanning 447,250

functions

GenTriangle 744,220

 Number of data items: 100

ConvComplete 21,890

ConvCyclic 14,790

ConvPartial 370

Correlate 11,930

Convolution

functions

CorrCylic 15,790

 Number of data items: 100

Limit 480

CopyXtoY 130

CopyYtoX 130

CopyToX 1,270

CopyToY 1,270

CopyFromX 1,320

CopyFromY 1,320

GenGWnoise 2,878,410

MatrixMult 2,337,460

VectorMult 1,500

MsPower 370

Mean 270

Variance 820

MaxI 540

Other

functions

MinI 520

 Number of data items: 100

 PeakI 740

Section 3 Compiler

Rev.4.00 2007.02.02 3-232
REJ05B0463-0400

(2) Comparison of C language and DSP library source code

Here source code is presented in C language and from the DSP library, for some of the FFT-related functions (those
performing butterfly calculations).

In the DSP library source code, the DSP-specific instructions such as movx, movy, and padd are used to improve the
performance of the DSP library.

C source code

void R4add(short *arp, short *brp, short *aip, short *bip, int grpinc, int numgrp)

{

short tr,ti;

int grpind;

 for(grpind=0;grpind<numgrp;grpind++) {

 tr = *brp;

 ti = *bip;

 *brp = sub(*arp,ti);

 *bip = add(*aip,tr);

 *arp = add(*arp,ti);

 *aip = sub(*aip,tr);

 arp += grpinc;

 aip += grpinc;

 brp += grpinc;

 bip += grpinc;

 }

}

DSP library source code _

_R4add:

 MOV.L Ix,@-R15

 MOV.L Iy,@-R15

 MOV.L @(2*4,R15),Ix

 SHLL Ix

 MOV Ix,Iy

 MOV.L @(3*4,R15),R1

 REPEAT r4alps,r4alpe

 ADD #-1,R1

 SETRC R1

 movx.w @ar,X0 movy.w @bi,Y0

 padd X0,Y0,A0

 psub X0,Y0,A1 movx.w @br,X0 movy.w @ai,Y0

 padd X0,Y0,A0 movx.w A0,@ar+Ix

 pneg X0,X0 movx.w A1,@br+Ix

 padd X0,Y0,A1 movy.w A0,@bi+Iy

Section 3 Compiler

Rev.4.00 2007.02.02 3-233
REJ05B0463-0400

 movx.w @ar,X0 movy.w @bi,Y0

 .ALIGN 4

r4alps padd X0,Y0,A0 movy.w A1,@ai+Iy

 psub X0,Y0,A1 movx.w @br,X0 movy.w @ai,Y0

 padd X0,Y0,A0 movx.w A0,@ar+Ix

 pneg X0,X0 movx.w A1,@br+Ix

 padd X0,Y0,A1 movy.w A0,@bi+Iy

r4alpe movx.w @ar,X0 movy.w @bi,Y0

 movy.w A1,@ai+Iy

 MOV.L @R15+,Iy

 RTS

 MOV.L @R15+,Ix

(3) Performance of individual FFT functions

Fourier transform functions are classified as follows.

Table 3.35 Fast Fourier Transform Functions

 Not-in-place function In-place function

Complex Fourier transform FftComplex FftInComplex

Real Fourier transform FftReal FftReal

Table 3.36 Inverse Fast Fourier Transform Functions

 Not-in-place function In-place function

Complex Fourier transform IfftComplex IfftInComplex

Real Fourier transform IfftReal IfftInReal

Differences between In-Place and Not-In-Place Functions

In-place functions use the array of input data as the array for output data. Hence the input data is overwritten by the output
data, and is not saved.

When using not-in-place functions, the input and output data must be prepared separately before calling on a function. The
input data and output data are separate, and so the input data is saved even after the function is called on.

There is almost no difference in the performance of in-place and not-in-place functions, and so the type of function to be
used should be determined based on the amount of memory available.

Compared with not-in-place functions, in-place functions require half the amount of memory.

• About scaling

In each stage of FFT calculations, calculations are executed in multiply-and-accumulate form, so overflows tend to
occur. If an overflow occurs, all values become maxima or minima, so that calculation results cannot be evaluated
correctly.

In order to prevent overflow, scaling is performed at each stage of FFT calculations; the scaling is 2 by which values
are divided (right-shifted).

Section 3 Compiler

Rev.4.00 2007.02.02 3-234
REJ05B0463-0400

Table 3.37 Scaling Values and Features

Scaling Value Features

FFTNOSCALE No shifting whatsoever; overflow tends to occur

EFFTMIDSCALE Shifting at every other stage

EFFTALLSCALE Shifting at all stages; overflow does not occur readily

Scaling does not have a large effect on performance. Hence when deciding on a scaling, the features of the data, rather
than performance, should be considered.

(4) Filter functions

Using Fir and Lms

The relation between the number of coefficients and cycles for the Fir and Lms filters are shown in figure 3.11.

Because the Lms filter uses an adaptive algorithm, speed of calculation is slower than for the Fir filter. In a system with
stable data waveforms, Lms should be used to determine filter coefficients, after which it should be replaced by the Fir
filter.

 The number of right-shifts can be specified for data scaling. Because multiply-and-accumulate operations are used
internally in SH-DSP library functions, depending on the input data, overflows may occur. In such cases the number of
right-shifts should be modified appropriately, and should be selected referring to output values.

Figure 3.11 Relation between Number of Coefficients and Number of Cycles

300,000

250,000

200,000

150,000

100,000

50,000

0

0 20 40 60 80 100 120

Fir
Fir1
Lms

Number of coefficients

N
um

be
r

of
 c

yc
le

s

Section 3 Compiler

Rev.4.00 2007.02.02 3-235
REJ05B0463-0400

• Iir and DIir

When performance is given priority, Iir should be used instead of DIir. Because multiply-and-accumulate operations
are used internally in SH-DSP library functions, depending on the input data, overflows may occur. In such cases the
number of right-shifts should be modified appropriately, and should be selected referring to output values.

The number of right-shifts can be specified for data scaling. However, the number of right-shifts is specified as part of
the array of filter coefficients. For details, refer to section 3.13.6, (5)(c) IIR and (e) Double precision IIR.

Figure 3.12 Relation between Number of Filter Sections and Number of Cycles

• Selective Use of Filter Functions

The Fir filter has a linear phase response and is always stable, making it suitable for use in audio, video and other
applications where phase distortion cannot be tolerated. On the other hand, the Iir filter includes feedback, and can
obtain results using fewer coefficients than Fir, for faster execution; it is suitable for applications where time
constraints are imposed. However, the Iir filter may be unstable in some situations, and proper care should be taken in
its use.

Number of filter sections

Iir

DIir

1,500,000

1,000,000

500,000

0 5 10 15 20
0

N
um

be
r

of
 c

yc
le

s

Section 3 Compiler

Rev.4.00 2007.02.02 3-236
REJ05B0463-0400

3.15 Issues Related to Cross-Software

3.15.1 Issues Related to Assembly Language Programs

Because the SuperH RISC engine C/C++ compiler supports special instructions of Renesas Technology SuperH RISC
engine family as well as standard instructions, almost any kind of program can be written in C language. However, when
there is a need to extend performance, often critical sections of code are written in assembly language and combined with
C language programs.
This section reviews a number of issues that should be born in mind when combining C language programs with assembly
language code, among them:

• Mutual referencing of external names
• function calling Interface
For further details, refer to the SuperH RISC engine C/C++ Compiler, Assembler, Optimizing Linkage Editor User's
Manual.

(1) Mutual Referencing of External Names

(a) Referencing an externally defined name in an assembly language program from a C language program
The following procedure is used to reference an externally defined name in an assembly language program from a C
language program.

• In the assembly language program, a symbol name (within 32 characters) which begins with the underscore ("_") is
declared as an external definition using the ".EXPORT" or ".GLOBAL" assembler directive.

• In the C language program, the "extern" storage class specifier is used to declare the symbol name, without the leading
"_", for external reference.

Assembly language program C language program

(defining variables) (referencing variables)

Figure 3.13 Example of Use of a C Language Program to Reference Variables Defined
Externally in an Assembly Language Program

 .EXPORT _a , _b

 .SECTION D, DATA, ALIGN=4

_a : .DATA.L 1

_b : .DATA.L 1

 .END

 extern int a , b;

f ()

{

 a+=b;

}

Section 3 Compiler

Rev.4.00 2007.02.02 3-237
REJ05B0463-0400

(b) Referencing an externally defined name in a C language program from an Assembly language program

In the C language program, externally defined names include the following.

• Global variables which are not static storage class variables
• Variable names declared using extern storage class
• Function names for which static storage class is not specified

The externally defined name of a C language program is referenced from an Assembly language program as follows.

• The symbol name (without a leading "_") is externally defined (as a global variable) in the C language program.
• In the assembly language program, the ".IMPORT" or ".GLOBAL" assembler directive is used to declare an external

reference of the symbol name, with a leading "_".

C language program Assembly language program

(defining variable) (referencing variable)

Figure 3.14 Example of Use of an Assembly Language Program to Reference Variables Defined
Externally in a C Language Program

Note: Function names and external names created from static data members are translated by the C++ compiler using
fixed rules. When there is a need to know the external name generated by the compiler, compiler option code=asm
or listfile should be used to view the external names generated by the compiler. If C++ functions are defined by
adding extern C, external names are generated using rules similar to those for C functions. However, overloading
of such functions is not possible.

(2) Function Calling Interface

When either a C language program or an assembly language program calls functions in the other language, the following
four rules should be observed by the assembly language program.

(i) Rule relating to the stack pointer

(ii) Rule for allocating and deallocating the stack frame

(iii) Rule relating to registers

(iv) Rule relating to setting and referencing parameters and return values

int a;
 .IMPORT _a

 .SECTION P,CODE, ALIGN=2

 MOV.L A_a, R1

 MOV.L @R1, R0

 ADD #1,R0

 RTS

 MOV.L R0,@R1

A_a: .DATA.L _a

 .END

Section 3 Compiler

Rev.4.00 2007.02.02 3-238
REJ05B0463-0400

Here rules (i) to (iii) are explained. For information on (iv), refer to section 3.15.1 (3), Setting and Referencing Parameters
and Return Values.

(a) Rule relating to the stack pointer

Valid data should not be saved in the stack area lower than (in the direction of address 0) the address of the stack pointer.
Any data saved at addresses lower than the stack pointer may be corrupted as a result of interrupt processing.

(b) Rule for allocating and freeing the stack frame

When a function is called (immediately after execution of a JSR or BSR instruction), the stack pointer points to the lowest
address in the stack being used by the calling function. Allocating and setting data at addresses above this (in the direction
of address H'FFFFFFFF) is the role of the calling function.

Normally, the RTS instruction is used to return control to the calling function after the area used by the called function is
freed. The area at higher addresses than this (the return value address and parameter area) are freed by the calling function.

Figure 3.15 Allocating and Freeing the Stack Frame

0

Immediately after calling a function, or immediately after

return from the called function

Return value

address

Parameter area

Stack area used by the

function to be called

Stack area used by

the calling function

Lower address ↑

Higher address ↓

SP →

Section 3 Compiler

Rev.4.00 2007.02.02 3-239
REJ05B0463-0400

(c) Rule relating to registers
There are registers for which the C/C++ compiler does and does not guarantee that values will be preserved after a
function call. Rules for preservation of register contents are indicated in table 3.38.

Table 3.38 Rules for Preservation of Register Contents After Function Calls by a C Language Program
No. Type Registers Notes Regarding Assembly

Language Code

1

Registers for which
contents are not
guaranteed

R0 to R7, FR0 to
FR11*1,DR0 to
DR10*2, FPUL*1*2,
FPSCR*1*2, A0*3,
A0G*3, A1*3, A1G*3,
M0*3, M1*3, X0*3,
X1*3, Y0*3, Y1*3,
DSR*3, MOD*3,RS*3,
and RE*3

If registers used in a function contain valid
data when a program calls the function,
the caller must save the data onto the
stack or into the register before calling the
function. The callee function can use the
registers without saving the contained
data. However, when fpscr=safe is
specified, the contents of FPSCR are
guaranteed.

2

Registers for which
contents are
guaranteed

R8 to R15, MACH,
MACL, PR, FR12 to
FR15*1, and DR12 to
DR14*2

The data in registers used in functions is
saved onto the stack at function entry, and
restored from the stack at function exit.
Note that data in the MACH and MACL
registers are not guaranteed if macsave=0
is specified. When gbr=auto is specified,
the contents of GBR are guaranteed.

Notes: 1. Single-precision floating point registers for SH-2E, SH2A-FPU, SH-4, and SH-4A.

 2. Double-precision floating point registers for SH2A-FPU, SH-4, and SH-4A.
 3. DSP registers for SH2-DSP, SH3-DSP, and SH4AL-DSP.

Calling between C language programs and assembly language programs should be as follows.

(i) Calling an assembly language function from a C program

• When an assembly language function is called from a different module, the contents of the PR register should be saved
on the stack at the entry point of the assembly language function, and restored from the stack at the exit point.

• When using registers R8 to R15, MACH and MACL within an assembly language function, the register contents
should be saved on the stack before use, and restored from the stack after use.

• For details on the parameters passed to an assembly language function, refer to section 3.15.1 (3), Setting and
Referencing Parameters and Return Values.

(ii) Calling a C language function from an assembly program

• If there are valid values in the registers R0 to R7, they should be saved on empty registers or the stack before calling
the C function.

• For details on the return value passed to an assembly language function, refer to section 3.15.1 (3), Setting and
Referencing Parameters and Return Values.

Figure 3.16 shows an example in which an assembly language function g is called from a C language function f, and the
assembly language function g in turn calls a C language function h.

Section 3 Compiler

Rev.4.00 2007.02.02 3-240
REJ05B0463-0400

C language function f

Assembly language function g

C language function h

Figure 3.16 Example of Mutual Function Calling between a C Language Program and an
Assembly Language Program

h()

{

 :

 :

}

 .EXPORT _g
 .IMPORT _h
 .SECTION P, CODE, ALIGN=2
_g : STS.L PR ,@-R15
MOV.L R14,@-R15
MOV.L R13,@-R15
:
 MOV.L R2,@R15
 MOV.L R1,@R15
MOV.L L_h,R0
JSR @R0
NOP
:
MOV.L @R15+,R13
MOV.L @R15+,R14
RTS
LDS.L @R15+,PR

L_h : .DATA.L _h
 .END

Declaration of externally defined function g
Declaration of externally referenced function h

Saves the PR register value
Saves the registers used by the function g

Saves the registers used by the function h

Calls the function h

Restores the registers used by the function g

Restores the PR register value

extern void g();

f()

{

 g();

}

Section 3 Compiler

Rev.4.00 2007.02.02 3-241
REJ05B0463-0400

(3) Setting and Referencing Parameters and Return Values

The rule imposed by the C/C++ compiler for setting and referencing parameters and return values differs depending on
whether the types of the parameters or return value are explicitly declared in the function declaration. In C language, a
function declaration in which the types of the parameters and the return value are made explicit is called a prototype
function declaration.
In the following, after first discussing the general rules for parameters and return values in C language, the area for
parameter allocation and method of allocation, as well as setting of the return value location will be explained.

(a) General rules for parameters and return values in C language programs

(i) Passing parameters

A function must be called only after parameter values have been copied to areas allocated for parameters in registers or on
the stack. After control is returned to the calling function, the calling function never references the areas allocated to
parameters, and so the called function can modify the values of parameters without any direct effect on processing by the
calling function.

(ii) Rules for type conversion

When passing parameters, or when returning a value, automatic type conversions are performed.
The rules for type conversions are shown in table 3.39.

Table 3.39 Rules for type conversions

Type Conversion Conversion Method

Type conversion of a parameter
whose type has been declared

If the parameter type is declared by a prototype declaration,
the parameter is converted to the declared type.

Type conversion of a parameter
whose type has not been
declared

If the parameter type has not been declared by a prototype
declaration, the parameter is converted according to the
following rules.

• Parameters of type char, unsigned char, short, and

unsigned short are converted to the int type.

• Parameters of type float are converted to the double

type.

• Types other than the above are not converted.
Type conversion of return values Return values are converted to the type returned by the

function.

Example 1: Type is declared by a prototype declaration

 long f();

 long f()

 {

 float x;

 :

 :

 return x;

 }

The return value x is converted to the long type according to the prototype declaration.

Section 3 Compiler

Rev.4.00 2007.02.02 3-242
REJ05B0463-0400

Example 2: Similar to Example 1, but type is not declared by a prototype declaration

 void p(int,...);

 long f()

 {

 char c;

 :

 p(1.0, c);

 :

 }

Because the type of the corresponding parameter is int, the first parameter is converted to the type int.
There is no type for the parameter corresponding to the second parameter, so it is converted to the type int.

Example 3: Similar to Example 2; types are not declared by a prototype declaration

When parameter types are not declared by a prototype declaration, the same types should be specified on the called and
calling sides, to ensure that parameters are passed correctly. If types are not in agreement, correct operation is not
guaranteed.

 void f(x)

 float x;

 {

 :

 :

 }

 void main()

 {

 float x;

 f(x);

 }

In this example, there is no prototype declaration for the parameters of function f, and so when function f is called by
the function main, the parameter x is converted to the type double. On the other hand, the parameter is declared as the
float type by the function f, and so correct passing of the parameter is not possible. Either parameter types should be
declared by a prototype declaration, or else the parameter declaration by function f should be changed to the double
type.
Parameter types can be correctly declared using a prototype declaration as follows.

 void f(float x)

 {

 :

 :

 }

Section 3 Compiler

Rev.4.00 2007.02.02 3-243
REJ05B0463-0400

 void main()

 {

 float x;

 f(x);

 }

(b) Allocating area for parameters in a C language program

Registers may be allocated to parameters, or, if this is not possible, stack area may be used for parameters. Areas for
allocation to parameters are shown in figure 3.17; general rules for allocating memory for parameters appear in table 3.40.

Stack

Return value address

Parameter area

Figure 3.17 Areas for Allocation to Parameters in C Language Programs

↑Lower address

 SP→

R4

R5

R6

R7

FR4(DR4)

FR5

FR6(DR6)

FR7

FR8(DR8)

FR9

FR10(DR10)

FR11

Parameter storage area

↓Higher address

Area for parameter allocation

(CPU is SH-2E, SH2A-FPU, SH-4, or SH-4A)

Section 3 Compiler

Rev.4.00 2007.02.02 3-244
REJ05B0463-0400

Table 3.40 General Rules for Allocating Memory to Parameters in C Language Programs
Allocating Rules

Parameters Passed through Registers

Registers Used for
Parameter Storage Available Parameter Type Parameter Passed through Stack

R4 to R7 char, unsigned char, bool, short,
unsigned short, int, unsigned int,
long, unsigned long, float (when
CPU is other than SH-2E,
SH2A-FPU, SH-4, or SH-4A),
pointer, pointer to a data member,
and reference

FR4 to FR11*1 For SH-2E

• Parameter is float type.

• Parameter is double type and

double=float is specified.

For SH2A-FPU, SH-4, or SH-4A

• Parameter type is float type

and fpu=double is not

specified.

• Parameter type is double type

and fpu=single is specified.

(1) Parameters whose types are
other than target types for register
passing

(2) Parameters of a function which
has been declared by a prototype
declaration to have variable-number
parameters*3

(3) When other parameters are
already allocated to R4 to R7.

(4) When other parameters are
already allocated to FR4 (DR4) to
FR11(DR10).

(5) long long type and unsigned long
long type parameters

(6) _ _fixed type, long _ _fixed type,
_ _accum type, and long _ _accum
type parameters

DR4 to DR10*2 For SH2A-FPU, SH-4, or SH-4A

• Parameter type is double type

and fpu=single is not specified.

• Parameter type is float type

and fpu=double is specified.

Notes: 1. Single-precision floating-point registers for SH-2E, SH2A-FPU, SH-4, and SH-4A.
 2. Double-precision floating-point registers for SH2A-FPU, SH-4, and SH-4A.

 3. If a function has been declared to have variable parameters by a prototype declaration, parameters
which do not have a corresponding type in the declaration and the immediately preceding parameter
are allocated to a stack.

Examples:

 int f2(int, int, int, int,...);

 f2(a, b, c, x, y, z)

 {

 :

 }

Up until the fourth parameter, normally register space is allocated; but here stack area is allocated for x, y, and z as well.

(i) Allocating registers for parameter storage

Registers are allocated for parameter storage in the order of declarations in the source program, starting from the register
with the smallest number. An example of allocation of registers for parameter storage is shown in example 1.

(ii) Allocation of stack area for parameters

Stack area is allocated for parameter storage in the order of declarations in the source program, starting with the lowest
address. Examples of allocation of stack area for parameter storage are shown in examples 2 through 8.

Section 3 Compiler

Rev.4.00 2007.02.02 3-245
REJ05B0463-0400

[Important information regarding parameters with structure and shared types]
When preparing parameters with structure and shared types, these types are always aligned with four-byte boundaries, and
memory areas in multiples of four bytes are always used for them. This is because the stack pointer in SuperH
microcomputers changes in four-byte units.

Example 1: The registers R4 through R7 are allocated, in the order of declaration, to parameters with the types of the
registers.

int f(char,short,int,float);

 :

f(1,2,3,4.0);

 :

Example 2: Stack area is allocated for parameters for which register allocation is not possible. When allocating stack
area for parameters of type (unsigned) char or (unsigned) short, these are expanded to four bytes for
allocation.

int f(int,short,long,float,char);

 :

f(1,2,3,4.0,5);

 :

Example 3: Stack area is allocated for parameters of types that cannot be assigned to registers.

struct s{int x,y;}a;

int f(int,struct s,int);

 :

f(1,a,3);

 :

a.x

a.y

Parameter area

(stack)

↑Lower address

↓Higher address

1

3

R4

R5

Not guaranteed 5

Parameter area

(stack)

↑Lower address

↓Higher address

1

Not guaranteed 2

3

4.0

R4

R5

R6

R7

R4
R5
R6
R7

Not guaranteed 1
Not guaranteed 2

3
4.0

Section 3 Compiler

Rev.4.00 2007.02.02 3-246
REJ05B0463-0400

Example 4: When a prototype declaration is used to declare a function having a variable number of parameters,
parameters with no declared type, and the immediately preceding parameters, are allocated on the stack in
the order of declaration.

int f(double, int, int...)

 :

f(1.0, 2, 3, 4)

 :

Example 5: Case where there is no prototype declaration

→ char types are expanded to int types, and float types to double types for allocation.

Example 6: When the type returned by a function exceeds four bytes or is a class, a return value address is set
immediately before the parameter area. Also, when the class size is not a multiple of four bytes, an empty
area occurs.

struct s{char x,y,z;}a;

double f(struct s);

 :

f(a);

2

3

4

Parameter area

(stack)

↑Lower address

↓Higher address

R4

1.0

int f ()

char a ;

float b;

f (a ,b)

R4

a

Parameter area

(stack)

↑Lower address

↓Higher address

b

Return value address
a.x a.y a.z Not used

↓ Higher address

Return value specification area

Parameter area
(stack)

↑ Lower address

Section 3 Compiler

Rev.4.00 2007.02.02 3-247
REJ05B0463-0400

Example 7: When the CPU is SH-2E, float type parameters are assigned to the FPU registers.

int f(char,float,short,float,double);

 :

f(1,2.0,3,4.0,5.0);

 :

Example 8: When the CPU is the SH2A-FPU, SH-4,SH-4A and there is no -fpu option specified, float/double type
parameters are assigned to FPU registers.

int f(char,float,double,float,short);

 :

f(1,2.0, 4.0,5.0,3);

 :

(c) Location for setting return values in C language programs
Depending on the type of a function's return value, the return value is placed in a register or on the stack. The relation
between the return value type and the returned location is described in table 3.41.

5.0 Parameter area

(stack)

↑Lower address

↓Higher address

R4

R5

R6

R7

Not guaranteed 1

Not guaranteed 3

FR4

FR5

FR6

FR7

FR8

FR9

FR10

FR11

2.0

4.0

Not guaranteed 1

Not guaranteed 3

Parameter area

(stack)

↑Lower address

↓Higher address

R4

R5

R6

R7

FR4 (DR4)

FR5

FR6 (DR6)

FR7

FR8 (DR8)

FR9

FR10 (DR10)

FR11

2.0

5.0

4.0

Section 3 Compiler

Rev.4.00 2007.02.02 3-248
REJ05B0463-0400

When the return value of a function is placed on the stack, the return value is set in the area pointed to by the return value
address. On the calling side, in addition to securing area for parameters, an area for the return value is also secured, and
after setting the address as the return value address, the function is called (cf. figure 3.18). When the function return value
is of type void, no return value is set.
Table 3.41 Types and Locations of Return Values in C Language Programs

No Return Value Type Return Value Storage Area
1 (signed) char, unsigned char,

(signed) short, unsigned short,
(signed) int, unsigned int,
long, unsigned long,
float, pointer, bool,
reference, pointer to data
member

R0: 32 bits

The contents of the upper three bytes of (signed) char, or
unsigned char and the contents of the upper two bytes of
(signed) short or unsigned short are not guaranteed.

However, when the rtnext option is specified, sign extension is
performed for (signed) char or (signed) short type, and zero
extension is performed for unsigned char or unsigned short
type.

FR0: 32 bits

(1) For SH-2E

• Return value is float type.

• Return value is double type and double=float is specified.

(2) For SH2A-FPU, SH-4, or SH-4A

• Return value is float type and fpu=double is not specified.

• Return value is floating-point type and fpu=single is specified

2 double, long double s
tructure, union, class,
pointer to function member

Return value setting area (memory)

DR0: 64 bits

For SH2A-FPU, SH-4, or SH-4A

• Return value is double type and fpu=single is not specified.

• Return value is floating-point type and fpu=double is
specified.

3 (signed) long long and

unsigned long long

Return value setting area (memory)

4 _ _fixed, long _ _fixed,
_ _accum, and long _ _accum

Return value setting area (memory)

Return value

address

Figure 3.18 Area for Return Values When Using the Stack in a C Program

SP→

 Return value specification

area

Stack
 ↑Lower address

↓Higher address Parameter area

(Guaranteed

by the calling side)

Section 3 Compiler

Rev.4.00 2007.02.02 3-249
REJ05B0463-0400

3.15.2 Use With the Optimization Linkage Editor

(1) ROM Support Function
When writing a load module to ROM, the initialization data area is also written to ROM. However, actual data operations
must be performed in RAM, and so on startup the initialization data area must be copied from ROM to RAM. By using the
ROM support function of the linkage editor, this processing is simplified.
 In order to use the ROM support function, at linkage the option "ROM=D=R" (where D is the section name of the
initialization data area in ROM, and R is the section name of the initialization data area in RAM) must be specified.
The ROM support function performs the following operations.

(a) An area in RAM of the same size as the initialization data area in ROM must be secured. Figure 3.19 illustrates the
procedure to copy the initialization data area from ROM to RAM.

Figure 3.19 Memory Allocation Using the ROM Support Function

(b) Address resolution is performed automatically so that symbols declared in the initialization data area are referenced
using addresses in RAM.

The user must include, in the startup routine, processing to copy data in ROM to RAM. For an example of this, refer to
section 2.2.4, Creation of the Initialization Unit.
For further information on the ROM support function, refer to the SuperH RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor User's Manual.
This function is supported in ver.4.0 or later of the H series linkage editor.

(2) Important Information on Linking

Table 3.42 describes procedures for dealing with error messages output when linking the relocatable object files generated
by the C/C++ compiler.

Object Linkage editor allocation

Notes: ROM=D=R

 D: Section name of the initialization data area on ROM.

 R: Section name of the initialization data area on RAM.

Initialization data area (D)

Initialization data area (R)

 Initial value (D)

ROM

RAM

Section 3 Compiler

Rev.4.00 2007.02.02 3-250
REJ05B0463-0400

Table 3.42 Responses to Error Messages at Linkage
No. Error message Areas to check Countermeasures
1 At linkage, error no.

L1100(314)*, cannot
find section, is output.

Have the compiler output section names
been specified, in capital letters, in the
start option of the linkage editor.

Be sure to specify the
correct section
names.

When there is mutual referencing of
variables between a C/C++ program and
an assembly language program, check
whether names are preceded by an
underscore in the assembly language
program.

The correct variable
names must be used
in referencing.

Check whether C library functions are not
used in the C/C++ program.

At linkage, the
standard library
should be specified
as an input library.

Check whether undefined symbol names
do not begin with an underscore.
(used by runtime routines in the standard
library)

2 At linkage, error no.
L1160(105)*, undefined
external symbol, is
output.

Check whether the standard I/O library is
used for C library functions.

Create low-level
interface routines for
linking.

Check whether the debug option has
been specified at compile and linkage.

Be sure to specify the
debug option when
compiling and linking.

When specifying the
sdebug option during
linking, be sure to
also load the
debugging
information file into
the debugger.

3 C/C++ source-level
debugging is not
possible.

Check whether version 5.3 or later of the
linkage editor is being used.

Version 5.3 or later of
the linkage editor
should be used.

4 At linkage, error no.
L2330(108)*, relocation
size overflow, is output.

Check whether, in GBR base variable
specification, the offset of the specified
variable is within limits.

For variables which
exceed limits, delete
any #pragma
gbr_base/gbr_base1
declarations.

5 At linkage, error no.
L2300(104)*, duplicate
symbol, is output.

Check whether there are external
definitions of variables or functions with
the same name in multiple files.

Change the name, or
use the static
specification.

 Check for external definitions of variables
or functions within a header file included
by multiple files.
(Similarly for functions specified using
#pragma inline/inline_asm)

Use the static
specification.

Note: * The error numbers before the parentheses belong to Linker ver. 7 and later, while those enclosed in
the parentheses belong to ver. 6 and earlier.

Section 3 Compiler

Rev.4.00 2007.02.02 3-251
REJ05B0463-0400

3.15.3 Use With the Simulator-Debugger
When the simulator-debugger is used to execute a load module, a "MEMORY ACCESS ERROR" may be generated. For
security, one of the following methods should be used to avoid this error.

(a) Use the same memory mapping as in the actual CPU even when using the simulator-debugger (the total number of
bytes in one section should always be a multiple of four).

(b) At linkage, link the dummy section, created by using the following assembly language program, after all sections
except for the P section.

Assembly language program:

 .SECTION DM,DUMMY,ALIGN=1

 .RES.B 3

 .END

Examples of linking

• When using command options:
 -START=P,C,DM/0400,B,DM,D,DM/01000000

• When using a subcommand file:
 START P,C,DM/0400,B,DM,D,DM/01000000

The following is important information related to source-level debugging using the simulator-debugger.

(a) Ver. 6.0 or later of the linkage editor should be used.
(b) When compiling, the -debug option should be used, and when linking, the sdebug option should be specified.
(c) In some cases, local symbols of a function cannot be referenced within that function.
(d) When multiple statements are included in a single line of source code, only a single statement can be displayed.
(e) Source code lines which have been eliminated through optimization cannot be debugged.

(f) When swapping of lines and other changes are made as a result of debugging, the order of program execution and
disassembled display may differ from the order in the source list.

Example:
C language program

 12 for (i=0; i<6; i++)

 13 {

 14 j = i+1;

 15 j++;

 16 }

 17 j++;

Disassembled display by the simulator/debugger

 14 j = i+1;

 12 for (i=0; i<6; i++)

 17 j++;

(g) In for or while statement, disassembled display may be displayed twice; at loop statement entry and exit points.

Section 3 Compiler

Rev.4.00 2007.02.02 3-252
REJ05B0463-0400

(1) Profile function

(a) Using the Profile function

(i) Stack information files

The profile function allows the HEW to read the stack information files (extension: ".SNI") which are output by the
Optimizing Linker (ver. 7.0 or later). Each of these files contains information related to the calling of static functions in
the corresponding source file. Reading the stack information file makes it possible for the HEW to display this information
to do with the calling of functions without executing the user application (i.e. before measuring the profile data). (However,
this feature is not available when [Show Only Executed Function] is checked.)
When the HEW does not read any stack information files, the data about the functions executed during measurement will
be displayed by the profile function.
Whether to read or not the stack information file can be specified by turning on or off the [Load Stack Information file
(SNI file)] checkbox in the Load Program dialog box.
To make the linker create a stack information file, select “Other” from the “Category:” list box and check the “Stack
information output” box in the “Link/Library" pane of the Standard Toolchain dialog box specified by HEW linker option.
Then build the information file.

Figure 3.20 The Category:[Other] Dialog Box

(ii) Profile information files
To create a profile information file, select the “Output Profile Information Files…” menu option from the pop-up menu of
the Profile window and specify the file name, after measuring a profile data of the application program.
This file contains information on the number of times functions are called and global variables are accessed. The
Optimizing Linker (ver. 7.0 or later) is capable of reading the profile information file and optimizing the allocation of
functions and variables in correspondence with the status of the actual operation of the program.
To input the profiler information file to the linker, select “Optimize” from the “Category:” list box and check the “Include
Profile:” box in the “Link/Library” pane of the Standard Toolchain dialog box, and specify the name of the profile
information file.

Section 3 Compiler

Rev.4.00 2007.02.02 3-253
REJ05B0463-0400

Figure 3.21 Category:[optimize] Dialog Box
(iii) Profile window

Select [View-> Performance->Profile] to open the Profile window. This menu item is displayed when a load module is
loaded.

Figure 3.22 Profile Window

Section 3 Compiler

Rev.4.00 2007.02.02 3-254
REJ05B0463-0400

(iv) Profile window menu

Select “Enable” from the pop-up menu of the Profile window. (The item on the menu will be checked.)

Figure 3.23 Profile Window Menu (Enable Profiler)

(v) Set a breakpoint with a condition that the Profile measument be stopped. (The Profile measument can be manually
stopped without setting the condition.)

(vi) If the stop condition set in (v) above is satisfied, or the execution is stopped manually or for some other reason, the
measument results are displayed in the Profile window.

(vii) To create a profile information file, select the “Save Profile Information Files…” menu option from the pop-up menu.

Figure 3.24 Profile Window Menu (Save Profile Information Files…)

Section 3 Compiler

Rev.4.00 2007.02.02 3-255
REJ05B0463-0400

(b) Notes:
(i) The number of executed cycles for an application program as measured by the profile function includes a margin of

error. The profile function only allows the measurement of the proportions of execution time that the functions occupy
in the overall execution of the application program. Use the Performance Analysis function to precisely measure the
numbers of executed cycles.

(ii) The names of the corresponding functions may not be displayed when the profile information on a load module with
no debug information is measured.

(iii) The stack information file (extension: “.SNI”) must be in the same directory as the load module file (extension:
“.ABS”).

(iv) It is not possible to store the results of measurement.

(v) It is not possible to edit the results of measurement.

(c) Overview of the Profile function

The Profile function measures the execution performance of an application program in terms of the execution count of
functions in it. The Profile function allows you to identify the parts of the program causing performance degradation and
the causes of the degradation.

(i) Profile window

The Profile window has two tabs; a “List” tab and a “Tree” tab.

• List Tab
This tab lists functions and global variables and displays the profile data for each function and variable.

Figure 3.25 List Tab

• Tree Tab

This tab displays the relation of function calls as a tree diagram along with the profile data that are values when the
function is called.

Section 3 Compiler

Rev.4.00 2007.02.02 3-256
REJ05B0463-0400

Figure 3.26 Profile-Tree Window

• Profile-Chart Window
The Profile-Chart window displays the relation of calls for a specific function. This window displays the specified
function in the middle, with the callers of the function on the left and the callees of the function on the right. The
numbers of times the function calls the called functions or is called by the calling functions are also displayed in this
window.

Figure 3.27 Profile-Chart Window

(ii) Types and Purposes of Displayed Data
• Address

Function: Displays the addresses of functions (global variables).
Use: You can see the locations in memory to which the functions are allocated. Sorting the list of functions and global
variables in order of their addresses allows the user to view the way the items are allocated in the memory space.

Note: The sorted display is only available on the “List” tab.

• Size

Function: Displays the sizes of functions (global variables).
Use: Sorting in order of size makes it easy to find small functions that are frequently called. Setting such functions as
inline may reduce the overhead of function calls.
If you are using a microcomputer, which incorporates a cache memory, more of the cache memory will need to be
updated when you execute larger functions. This information allows you to check if those functions that may cause
cache misses are frequently called.

Note: The sorted display is only available on the “List” tab.

Section 3 Compiler

Rev.4.00 2007.02.02 3-257
REJ05B0463-0400

• Stack Size

Function: Displays the sizes of the stack used by functions.
Use: When there is deep nesting of function calls, pursue the route of the function calls and obtain the total stack size
for all of the functions on that route to estimate the amount of stack being used.

Note: This is displayed with the “Tree” tab.
The sizes of the stacks used by functions are set in the stack information file. If the stack information file is not
read, all the stack sizes are displayed as 0. If you include the output profile information file
(extension:”.PRO”) in the stack analysis tool (H series Call Walker) in such a case, correct values will not be
displayed.

• Times

Function: Displays the number of calls to each function or the number of accesses made to variables.
Use: Sorting by the number of calls or accesses makes it easy to identify the frequently called functions and frequently
accessed global variables.

Note: The sorted display is only available on the “List” tab.

• Others

Measurement of a variety of target-specific data is also available. For details, refer to the simulator or emulator manual
for the target platform that you are using.

(iii) Display setting
If you select the “Setting…” from the pop-up menu, the Setting list appears. Any part with a problem can be easily
detected by customizing the display with this list.

Figure 3.28 Profile Window Pop-up Menu

Section 3 Compiler

Rev.4.00 2007.02.02 3-258
REJ05B0463-0400

• Show Functions/Variables

Function: Displays the information on functions and variables in the window.

Figure 3.29 Profile Window (Show Functions/Variables)

• Show Functions

Function: Displays the information on functions in the window.

Figure 3.30 Profile Window (Show Functions)

• Show Variables

Function: Displays the information on varialbles in the window.

Figure 3.31 Profile Window (Show Variables)

Section 3 Compiler

Rev.4.00 2007.02.02 3-259
REJ05B0463-0400

• Only executed function(s) checkbox

Function: Specifies whether to display only the functions executed (or the variables accessed) during a Profile data
measurement or to display the unexecuted functions (or unaccessed) as well.
Use: To make the display simple by displaying only the functions executed during a data measurement and not
displaying the other functions.
If all the functions are displayed, It is possible to determine the rate of the functions executed during a data
measurement in all the functions, and it is also possible to determine how satisfactorily the application program was
executed during a data measument.

Note: If the stack information file is not read, only the executed functions (or accessed variables) are displayed
regardless of this specification.

Figure 3.32 Display Example When the Only Executed Function(s) Checkbox Is On

Figure 3.33 Display Example When the Only Executed Function(s) Checkbox Is Off

• Include data of child function(s) checkbox
Function: Specifies whether to include the data on the child functions in the measurement data to be displayed.
Use: For example, when you are measuring the Cycle with the SH1 Simulator, checking this checkbox will display the
number of cycles from the call to that function to return from it (the number of cycles of the child function called by
that function is also added). This is useful when you determine the rate of execution time for each module.
Note: The value displayed in each column of the Address, Size, Stack Size, and Times does not change.

Section 3 Compiler

Rev.4.00 2007.02.02 3-260
REJ05B0463-0400

Figure 3.34 Display Example When the Include Data Of Child Function(s) Checkbox Is On

Figure 3.35 Display Example When the Include Data Of Child Function(s) Checkbox Is Off

(iv) Column setting
Right-click on the displayed column in the Profile window to display the pop-up menu.
Function: Selects the information to be displayed in the window.
Use: To display only the required information for simpler window display.

Figure 3.36 Profile Window Pop-up Window

Section 3 Compiler

Rev.4.00 2007.02.02 3-261
REJ05B0463-0400

3.16 Changing the Alignment Number for the Structure

Description:

Use the pack option (-pack={1 | 4}) or the #pragma pack extension (pack 1 | pack 4 | unpack) to change the alignment
number for the structure.
If you specify both the option and the extension, the specification of the extension has priority.
The alignment number for the structure, unit, and class will be the same as the maximum alignment number for the
members.
The default is pack=4.
The following shows the specifications and the alignment number.

Table 3.43 Alignment number for the structure, union, and class when the pack option is specified

Specification pack=1 pack=4 No specification

[unsigned]char 1 1 1

[unsigned]short, _ _fixed 1 2 2

[unsigned]int, [unsigned]long,

[unsigned]long long, long_ _fixed,

_ _accum, long_ _accum,
floating-point, pointer

1 4 4

Structure, union, and class for
which the alignment number is 1

1 1 1

Structure, union, and class for
which the alignment number is 2

1 2 2

Structure, union, and class for
which the alignment number is 4

1 4 4

Allocating structure data

(1) When you allocate structure members, a blank area may be inserted between members because each member is aligned
by the alignment number for the data type of that member.

Example:

struct {

char a;

int b;

} obj;

(2) If the alignment number of a structure is 4 bytes and the last member ends at the first, second, or third byte, the next
bytes are also handled as a structure-type area.

Example:

struct {

int a;

char b;

} obj;

obj.a

obj.b

 Alignment area

obj.b

obj.a

 Alignment area

Section 3 Compiler

Rev.4.00 2007.02.02 3-262
REJ05B0463-0400

Allocating unit data

(1) If the alignment number of a unit is 4 bytes and the maximum size of the member is not a multiple of 4 (bytes), the
area including the remaining bytes up to a multiple of 4 are handled as the unit-type area, until the size reaches a
multiple of 4.

Example:

union {

int a;

char b[7];

} o;

Alignment area

Changing the alignment number

When #pragma pack 1 is specified, blanks for alignment may not be inserted because data other than one-byte data can
also be allocated to an odd address. This may reduce the data size.

C/C++ program,

Data image

o.b[0]

obj.a

o.b[1] o.b[2] o.b[3]

o.b[4] o.b[5] o.b[6]

struct S1{
 char a;
 short b;
 char c;
}

#pragma pack 1
struct S1{
 char a;
 short b;
 char c;
}

 a
b

c

Blank

Blank

2 bytes

a

b c

2 bytes

b

Data size: 6 bytes Data size: 4 bytes

Section 3 Compiler

Rev.4.00 2007.02.02 3-263
REJ05B0463-0400

Note: If the alignment number is 1, each member is accessed in byte units. The members cannot be accessed by using a
pointer.
This specification reduces the data size, which is efficient for data block transfer. However, if you change the
alignment number to 1, members of a word or long word structure will be accessed byte by byte. This increases
the code size.

C/C++ program

struct S {
 char x;
 int y;
} s;
int *p=&s.y;
void test()
{
 s.y=1;

 *p =7;
}

Can be accessed

Cannot be accessed

s.y may be an odd address.

Section 3 Compiler

Rev.4.00 2007.02.02 3-264
REJ05B0463-0400

3.17 long long type

Description:

The long long and unsigned long long data types are supported.
A signed integer is described as long long, and an unsigned integer is described as unsigned long long.
To create an integer constant of the long long type, add the suffix LL to the integer.To create an integer constant of the
unsigned long long type, add the suffix ULL to the integer.

Table 3.44 Integer types and the range of values

Type Range of values Data size

char -128 to 127 1 byte

signed char -128 to 127 1 byte

unsigned char 0 to 255 1 byte

short -32768 to 32767 2 bytes

unsigned short 0 to 65535 2 bytes

int -2147483648 to 2147483647 4 bytes

unsigned int 0 to 4294967295 4 bytes

long -2147483648 to 2147483647 4 bytes

unsigned long 0 to 4294967295 4 bytes

long long -9223372036854775808 to
9223372036754775807

8 bytes

unsigned long long 0 to 18446744073709551615 8 bytes

Section 3 Compiler

Rev.4.00 2007.02.02 3-265
REJ05B0463-0400

3.18 DSP-C Specifications

Description:

The DSP-C language is supported.
This specification is valid when the compiler option “dspc” is specified for the SuperH RISC engine C/C++ compiler.

3.18.1 Fixed-Point Data Type

Previously, the integer type has been used to represent a fractional value. You can now use the fixed-point data type to
code a fractional value without modification.
The SuperH RISC engine C/C++ compiler generates DSP instructions appropriate to the fixed-point data type being used.
Table 3.45 shows the internal representation of the fixed-point data type.

Table 3.45 Internal Representation of the Fixed-point Data Type

Range of data Type Size

(Size on
memory)

Align-

ment
number
(bytes)

Min.
value

Max. value

Constant
index

_ _fixed 16 bits
(16 bits)

2 -1.0 1.0-2
 -15

 (0.999969482421875) r

long

_ _fixed

32 bits
(32 bits)

4 -1.0 1.0-2
 -31

(0.9999999995343387126922607421875)

R

_ _accum 24 bits
(32 bits)

4 -256.0 256.0-2
 -15

 (255.999969482421875) a

long

_ _accum

40 bits
(64 bits)

4 -256.0 256.0-2
 -31

(255.9999999995343387126922607421875)

A

Important Information:

(1) The _ _accum and long _ _accum data stored in memory is right justified, with sign extension added at the beginning
part.

Example: (_ _accum)128.5a is stored as “00 40 40 00”.
Example: (long _ _accum)(-256.0A) is stored as “FF FF FF 80 00 00 00 00”.

Section 3 Compiler

Rev.4.00 2007.02.02 3-266
REJ05B0463-0400

(2) Comparing DSP-C and the previous method

 C function [Previous method] [DSP-C]

// -cpu=sh3

#include <stdio.h>

#define NUM 8

short input[NUM] = {0x1000, 0x2000, 0x4000,
 0x6000,

 0xf000, 0xe000, 0xc000,
 0xa000};

short result[NUM];

void func(void)

{

 int i;

 for (i = 0; i < NUM; i++) {

 result[i] = input[i] + 0x1000;

 }

}

void main(void)

{

 int i;

 func();

 for (i = 0; i < NUM; i++) {

 printf("%f\n", result[i]/32768.0);

 }

}

// -cpu=sh3dsp -dspc

#include <stdio.h>

#define NUM 8

__fixed input[8] = { 0.125r, 0.25r, 0.5r, 0.75r,

 -0.125r, -0.25r, -0.5r, -0.75r};

__fixed result[NUM];

void func()

{

 int i;

 for (i = 0; i < NUM; i++) {

 result[i] = input[i] + 0.125r;

 }

}

void main(void)

{

 int i;

 func();

 for (i = 0; i < NUM; i++) {

 printf("%r\n", result[i]);

 }

}

Section 3 Compiler

Rev.4.00 2007.02.02 3-267
REJ05B0463-0400

(3) Example of multiply-and-accumulation operations
If the integer type is used as a substitute for a fractional value, the products must be aligned to the fixed number of
digits. This alignment is unnecessary for the fixed-point data type.

 C function [Previous method] [DSP-C]

// -cpu=sh3

#include <stdio.h>

#define NUM 8

short x_input[NUM] = {0x1000, 0x2000, 0x4000,
0x6000, 0xf000, 0xe000, 0xc000, 0xa000};

short y_input[NUM] = {0x1000, 0x2000, 0x4000,
0x6000, 0xf000, 0xe000, 0xc000, 0xa000};

int result;

int func(short *x_input, short *y_input)

{

 int i;

 int temp = 0;

 for (i = 0; i< NUM ;i++) {

 temp += (x_input[i] * y_input[i]) >> 15;

 }

 return (temp);

}

void main()

{

 result = func(x_input, y_input);

 printf("%f\n", result/32768.0);

}

// -cpu=sh3dsp -dspc -fixed_noround

#include <stdio.h>

#define NUM 8

__X __fixed x_input[NUM] = { 0.125r, 0.25r,
0.5r, 0.75r, -0.125r, -0.25r, -0.5r, -0.75r};

__Y __fixed y_input[NUM] = { 0.125r, 0.25r,
0.5r, 0.75r, -0.125r, -0.25r, -0.5r, -0.75r};

__accum result;

void func(__accum *result_p,

 __X __fixed *x_input,

 __Y __fixed *y_input)

{

 int i;

 __accum temp = 0.0a;

 for (i = 0; i< NUM ;i++) {

 temp += x_input[i] * y_input[i];

 }

 *result_p = temp;

}

void main()

{

 func(&result, x_input, y_input);

 printf("%a\n", result);

}

Section 3 Compiler

Rev.4.00 2007.02.02 3-268
REJ05B0463-0400

3.18.2 Memory Qualifier

Adding the X/Y memory qualifier to variables promotes generation of X/Y memory-dedicated access instructions which
are more efficient than ordinary memory access instructions.
Use the following qualifier to explicitly specify the X or Y memory for storing data.

 _ _X: Store data in the X memory.

 _ _Y: Store data in the Y memory.

The SuperH RISC engine C/C++ compiler outputs objects that have the _ _X or _ _Y memory qualifier to the sections
shown in table 3.46. You must allocate these sections to the X or Y memory during linking.

Table 3.46 Memory Qualifier Specifications

Name Section Description

$XC const data (Stored in the X memory) Constant area

$YC const data (Stored in the X memory)

$XD Data with an initial value (Stored in the X memory) Initialized data area

$YD Data with an initial value (Stored in the Y memory)

Uninitialized data area $XB Data without an initial value (Stored in the X memory)

 $YB Data without an initial value (Stored in the Y memory)

However, X or Y memory may exist only on RAM. You must be careful when creating ROM from such memory.

Examples of use:

(1) Storing data in memory by using the _ _X or _ _Y memory qualifier

_ _X int a; //Store in the X memory.

 int _ _X b; //Store in the X memory.

_ _Y int * c; //Pointer to the int data in the Y memory (Memory is undefined.)

 int _ _Y * d; //Pointer to the int data in the Y memory (Memory is undefined.)

 int *_ _Y e; //Pointer to the int data (Stored in the Y memory)

_ _X int *_ _Y f; //Pointer to the int data in the X memory (Stored in the Y memory)

(2) Copying the constant area and initialized data area from ROM to X/Y RAM

In this example, the data that was stored in ROM during linking is copied to X/Y RAM when the program starts. You need
to use the VOW option of the optimizing linkage editor to allocate the same space twice in ROM and in X/Y RAM.

Example of the subcommand during linking:

rom=$XC=XC,$XD=XD,$YC=YC,$YD=YD start

P,C,D,$XC,$XD,$YC,$YD/400,$XB,XC,XD/05007000,$YB,YC,YD/05017000

Section 3 Compiler

Rev.4.00 2007.02.02 3-269
REJ05B0463-0400

The standard library function INITSCT() allows you to easily copy data from ROM to X/Y RAM.

Example of use: _INITSCT()

#include <_h_c_lib.h>

void PowerON_Reset(void)

{

 _INITSCT();

 main();

 sleep();

}

#pragma section $DSEC

static const struct {

void *rom_s;

void *rom_e;

void *ram_s;

} DTBL[] = { {__sectop("$XC"), __secend("$XC"), __sectop("XC")},

 {__sectop("$XD"), __secend("$XD"), __sectop("XD")},

 {__sectop("$YC"), __secend("$YC"), __sectop("YC")},

 {__sectop("$YD"), __secend("$YD"), __sectop("YD")}};

#pragma section

Section 3 Compiler

Rev.4.00 2007.02.02 3-270
REJ05B0463-0400

(3) Not using the constant area or initialized area

By specifying that neither a const specification nor initialized data is to be added to an object with the X/Y memory
qualifier, you do not have to allocate the same space twice in ROM and in X/Y RAM.

For example, you can eliminate initialized data by specifying dynamic initialization as shown in the following
example.

Example of use

#define NUM 8

__X __fixed x_input[NUM];

__Y __fixed y_input[NUM];

__fixed x_input[NUM] = { 0.125r, 0.25r, 0.5r, 0.75r, -0.125r, -0.25r, -0.5r, -0.75r};

__fixed y_input[NUM] = { 0.125r, 0.25r, 0.5r, 0.75r, -0.125r, -0.25r, -0.5r, -0.75r};

void xy_init()

{

 int i;

 for (i = 0; i< NUM; i++) {

 x_input[i] = x_init[i];

 y_input[i] = y_init[i];

 }

}

void main()

{

 xy_init();

 :

 :

}

Section 3 Compiler

Rev.4.00 2007.02.02 3-271
REJ05B0463-0400

(4) Comparing DSP-C and the previous method

 C function [Previous method] [DSP-C]

// -cpu=sh3

#include <stdio.h>

#define NUM 8

short x_input[NUM] = {0x1000, 0x2000, 0x4000,
0x6000,

 0xf000, 0xe000, 0xc000, 0xa000};

short y_input[NUM] = {0x2000, 0x4000, 0xe000,
0xf000,

 0x6000, 0x2000, 0xe000, 0xf000};

short result[NUM];

void func(void)

{

 int i;

 for (i = 0; i < NUM; i++) {

 result[i] = x_input[i] - y_input[i];

 }

}

void main(void)

{

 int i;

 func();

 for (i = 0; i < NUM; i++) {

 printf("%f\n", result[i]/32768.0);

 }

}

// -cpu=sh3dsp -dspc

#include <stdio.h>

#define NUM 8

__X __fixed x_input[NUM] = { 0.125r, 0.25r,
0.5r, 0.75r,

 -0.125r, -0.25r, -0.5r, -0.75r};

__Y __fixed y_input[NUM] = {0.25r, 0.5r, -0.25r,
-0.125r,

 0.75r, 0.25r, -0.25r, -0.125r};

__fixed result[NUM];

void func(void)

{

 int i;

 for (i = 0; i < NUM; i++) {

 result[i] = x_input[i] - y_input[i];

 }

}

void main(void)

{

 int i;

 func();

 for (i = 0; i < NUM; i++) {

 printf("%r\n", result[i]);

 }

}

Section 3 Compiler

Rev.4.00 2007.02.02 3-272
REJ05B0463-0400

3.18.3 Saturation Qualifier

If the operation results in an overflow, saturation operation replaces the result with the largest or smallest representable
value. For DSP-C, simply adding a saturation qualifier enables the saturation operation.
Use the following qualifier to specify the saturation operation:

 _ _sat

You can specify the saturation qualifier only for _ _fixed or long _ _fixed data. Specifying the saturation qualifier for any
other data type causes an error.
Saturation operation will be performed if an expression contains data piece for which at least one saturation qualifier (_
_sat) is specified.

Examples of use:

(1) Example of sat specification

_ _fixed a;
_ _sat _ _fixed b;
_ _fixed c;

a = -0.75r ;
b = -0.75r ;
c = a + b ; // c = -1.0r will result.

Section 3 Compiler

Rev.4.00 2007.02.02 3-273
REJ05B0463-0400

(2) Comparing DSP-C and the previous method

 C function [Previous method] [DSP-C]

// -cpu=sh3

#include <stdio.h>

#define NUM 8

short x_input[NUM] = {0x1000, 0x2000, 0x4000,

 0x6000, 0xf000, 0xe000, 0xc000, 0xa000};

short y_input[NUM] = {0x1000, 0x2000, 0x4000,

0x6000, 0xf000, 0xe000, 0xc000, 0xa000};

short result[NUM];

void func(void)

{

 int i;

 int temp;

 for (i = 0; i < NUM; i++) {

 temp = x_input[i] + y_input[i];

 if (temp > 32767) {

 temp = 32767;

 }

 else if (temp < -32768) {

 temp = -32768;

 }

 result[i] = temp;

 }

}

void main(void)

{

 int i;

 func();

 :

// -cpu=sh3dsp -dspc

#include <stdio.h>

#define NUM 8

__sat __X __fixed x_input[NUM] = { 0.125r,
0.25r, 0.5r, 0.75r,

 -0.125r, -0.25r, -0.5r, -0.75r};

__sat __Y __fixed y_input[NUM] = { 0.125r,
0.25r, 0.5r, 0.75r, -0.125r,
-0.25r, -0.5r, -0.75r};

__fixed result[NUM];

void func(void)

{

 int i;

 for (i = 0; i < NUM; i++) {

 result[i] = x_input[i] + y_input[i];

 }

}

void main(void)

{

 int i;

 func();

 for (i = 0; i < NUM; i++) {

 printf("%r\n", result[i]);

 }

}

Section 3 Compiler

Rev.4.00 2007.02.02 3-274
REJ05B0463-0400

3.18.4 Circular Qualifier

Use the following qualifier to specify the modulo addressing:

 _ _circ

You can specify the modulo addressing for _ _fixed type one-dimensional arrays and pointers for which the memory
qualifier (_ _X/_ _Y) is specified. Specifying the modulo addressing for any other conditionscauses an error.

Examples of use:

(1) Comparing DSP-C and the previous method

 C function [Previous method] [DSP-C]

// -cpu=sh3

#include <stdio.h>

#define NUM 8

#define BUFFER_SIZE 4

short x_input[NUM] = {0x1000, 0x2000, 0x4000,
0x6000,, 0xf000, 0xe000, 0xc000, 0xa000};

short y_input[BUFFER_SIZE] = {0x2000, 0x4000,
0x2000, 0x1000};

short result[NUM];

void func()

{

 int i;

 for (i = 0; i < NUM; i++) {

result[i] = x_input[i] +
y_input[i%(BUFFER_SIZE)];

 }

}

void main()

{

 int i;

 func();

 for (i = 0; i < NUM; i++) {

 printf("%f\n", result[i]/32768.0);

 }

}

// -cpu=sh3dsp -dspc

#include <stdio.h>

#include <machine.h>

#define NUM 8

#define BUFFER_SIZE 4

__X __fixed x_input[NUM] = { 0.125r, 0.25r,
0.5r, 0.75r, -0.125r, -0.25r, -0.5r,
-0.75r};

__circ __Y __fixed y_input[BUFFER_SIZE] =
{0.25r, 0.5r, 0.25r, 0.125r};

__fixed result[NUM];

void func()

{

 int i;

 set_circ_y(y_input, sizeof(y_input));

 for (i = 0; i < NUM; i++) {

 result[i] = x_input[i] + y_input[i];

 }

 clr_circ();

}

void main()

{

 int i;

 func();

 for (i = 0; i < NUM; i++) {

 printf("%r\n", result[i]);

 }

}

Section 3 Compiler

Rev.4.00 2007.02.02 3-275
REJ05B0463-0400

Important Information:

(1) The modulo addressing is applicable to one-dimensional arrays and pointers that exist between the built-in functions
clr_circ() and set_circ_x() or set_circ_y().

(2) Correct operation is not guaranteed if you specify the modulo addressing for multiple arrays concurrently or if you
reference an array or pointer with _ _circ specified in other than between the built-in functions shown above.

(3) Correct operation is not guaranteed if you specify the modulo addressing in a negative direction.

(4) Data subject to modulo addressing must be aligned so that the higher 16 bits will be the same during liking. You
cannot directly reference the contents of an array.

(5) Correct operation is not guaranteed if one of the following occurs (a warning may be output):

• optimize=0 is specified.

• The _ _circ pointer is specified for other than a local variable.

• volatile is specified for the _ _circ pointer.

• The _ _circ pointer is updated but is not referenced.

• There is a function all between the built-in functions clr_circ and set_circ_x or set_circ_y.

Section 3 Compiler

Rev.4.00 2007.02.02 3-276
REJ05B0463-0400

3.18.5 Type Conversion

Table 3.47 shows the rules for type conversion.

Table 3.47 Rules for Type Conversion

Conversion Specifications

_ _fixed -> long _ _fixed

_ _accum -> long _ _accum

Lower 16 bits are cleared to zero.

The value remains unchanged.

long _ _fixed -> _ _fixed

long _ _accum -> _ _accum

Lower 16 bits are truncated.

Precision of the fractional part is degraded.

_ _fixed -> _ _accum

long _ _fixed -> long _ _accum

Sign expansion is performed for higher 8 bits.

The value remains unchanged.

_ _fixed -> long _ _accum Sign expansion is performed for higher 8 bits. Lower 16
bits are cleared to zero.

The value remains unchanged.

long _ _fixed -> _ _accum Sign expansion is performed for higher 8 bits. Lower 16
bits are truncated.

Precision of the fractional part is degraded.

_ _accum -> _ _fixed

long _ _accum -> long _ _fixed

_ _accum -> long _ _fixed

Higher 8 bits are truncated. The 9th bit must be the sign
bit.

The value remains unchanged if the integer part is zero.

long _ _accum -> _ _fixed Higher 8 bits and lower 16 bits are truncated.

The 9th bit must be the sign bit. The value remains
unchanged if the integer part is zero.

Precision of the fractional part is degraded.

_ _fixed -> signed integer type

long _ _fixed -> signed integer type

The value is -1 for -1.0r and -1.0R, or 0 for other cases.

_ _accum -> signed integer type

long _ _accum -> signed integer
type

The fractional part is truncated.

The value after conversion is an integer from -256 to 255.

_ _fixed -> unsigned integer type

long _ _fixed -> unsigned integer
type

For -1.0r and -1.0R, the maximum value for the type after
conversion is assumed. For other cases, 0 is assumed.

_ _accum -> unsigned integer type

long _ _accum -> unsigned integer
type

The fractional part is truncated.

For a positive value, the value after conversion is an
integer from 0 to 255.

For a negative value, (the value before conversion + 1 +
the maximum value for the type after conversion) is
assumed.

signed integer type -> _ _fixed

signed integer type ->long _ _fixed

The highest bit before conversion must be the highest bit
after conversion.

All the other bits will be zero.

signed integer type -> _ _accum

signed integer type ->long _ _accum

Lower 9 bits of the value must be the integer part.

The fractional part must be zero.

unsigned integer type -> _ _fixed All the bits after conversion must be zero.

unsigned integer type ->long _ _fixed

Section 3 Compiler

Rev.4.00 2007.02.02 3-277
REJ05B0463-0400

Conversion Specifications

unsigned integer type -> _ _accum

unsigned integer type ->long _
_accum

Lower 9 bits of the value must be the integer part.

The fractional part must be zero.

Fixed-point -> floating-point A value representable in the type after conversion will be
the same as the original value.

The value that cannot be represented is rounded to a
nearest value.

Floating-point -> fixed point The handling of the fractional part is the same as for the
conversion from fixed-point to floating point.

The handling of the integer part is the same as for the
conversion from floating-point to integer.

If the integer part is the representable range for the
fixed-point, the value remains unchanged.

If the integer part exceeds the range, the lowest bit of the
overflow must be a sign bit. The saturation processing is
not performed even if it is specified for the type after
conversion.

Important Information:

(1) Conversion from (long)_ _fixed to the integer type, and vice versa
Integers that can be represented in the (long)_ _fixed type are 0 and -1.
This means that the above conversion causes missing information.

(2) Conversion from (long)_ _accum to the integer type, and vice versa
Integers in the range from -256 to 255 can be represented in the (long)_ _accum type. Integers within this range retain
information after they are converted.
However, note that converting a negative value to the unsigned integer type causes an overflow.
For a series of operations that only require the integer type, conversion to the integer type may improve performance.

(3) Bit pattern copy
If you use a substitute operator to copy a bit pattern, a type conversion occurs and the expected results cannot be
acquired. In this case, use the built-in functions such as long_as_lfixed and lfixed_as_long.

Section 3 Compiler

Rev.4.00 2007.02.02 3-278
REJ05B0463-0400

3.18.6 Arithmetic Conversion

If an operation contains two different types of operands, the type shown in the upper column in figure 3.37 will be used.
An error occurs if you specify an operation between types which are not related in figure 3.37 (for example, between the
integer and floating-point, or between _ _accum and long_ _fixed). In this case, you must use a cast to perform explicit
type conversion. However, as long as the result values are guaranteed, some operation may not follow the above
conversion rules for sake of efficiency.

Figure 3.37 Rules for Arithmetic Conversion

double
(long double)

float

unsigned int
unsigned long

long_ _fixed

long_ _accum

_ _fixed

long_ _accum
(signed) int

(signed) long

Section 3 Compiler

Rev.4.00 2007.02.02 3-279
REJ05B0463-0400

int a,b;

extern int c;

f(){

 a = 0;

 b = 0;

 c = 0;

}

 MOV #0,R2

 MOV.L L11,R6 ; _a

 MOV.L R2,@R6

 MOV.L L11+4,R6 ; _b

 MOV.L R2,@R6

 MOV.L L11+8,R6 ; _c

 RTS

 MOV.L R2,@R6

L11:

 .DATA.L _a

 .DATA.L _b

 .DATA.L _c

 MOV #0,R2

 MOV.L L11+2,R6 ; _a

 MOV.L R2,@R6

 <<< delete >>>

 MOV.L R2,@(4,R6)

 MOV.L L11+6,R6 ; _c

 RTS

 MOV.L R2,@R6

L11:

 .DATA.L _a

 <<< delete >>>

 .DATA.L _c

Access using a

relative address

from "a"

The extern

variable is

ignored.

3.19 MAP Optimization Extended Option

Description:

This option performs MAP optimization, without using information about symbol allocated addresses that were assigned
by linking. As such, recompiling is unnecessary.
However, since optimization is only applicable to static variables defined within files, extern variables cannot be
optimized.

3.19.1 Usage

Specify the "-smap" option at compile-time.

3.19.2 Example of Improved External Variable Access Code (1)

Taking into account the order of variable allocation within the same section, access the consecutively allocated variables
relatively, for the same register.

aiueo

Section 3 Compiler

Rev.4.00 2007.02.02 3-280
REJ05B0463-0400

3.19.3 Example of Improved External Variable Access Code (2)

When the "gbr=auto" option (default) is specified, GBR is used as the base for external variable access.

int a[100];

f(){

 a[0]=0;

 a[50]=0;

 a[51]=0;

 a[52]=0;

}

Source Program

 MOV.L L11+2,R5 ; _a

 MOV #-56,R0

 MOV #0,R4

 EXTU.B R0,R0

 MOV.L R4,@R5

 MOV.L R4,@(R0,R5)

 ADD #4,R0

 MOV.L R4,@(R0,R5)

 ADD #4,R0

 RTS

 MOV.L R4,@(R0,R5)

L11:

 .RES.W 1

 .DATA.L _a

 STC GBR,@-R15

 MOV.L L11,R0 ; _a

 LDC R0,GBR

 MOV #0,R0

 MOV.L R0,@(0,GBR)

 MOV.L R0,@(200,GBR)

 MOV.L R0,@(204,GBR)

 MOV.L R0,@(208,GBR)

 RTS

 LDC @R15+,GBR

L11:

 .DATA.L _a

"smap" not specified "smap" specified

Reference

relatively

with GBR

Section 3 Compiler

Rev.4.00 2007.02.02 3-281
REJ05B0463-0400

3.20 TBR-Relative Function Call

Description:

For SH-2A and SH2A-FPU, the jump table base register (TBR) is used for calling functions through the use of
table-reference subroutine call instructions.
A relative value from the TBR is an offset in the jump table whose base address is contained by the TBR. This value
equals to the distance between the beginning of the $TBR section and the address data label of the function to be called.
You can use the "-tbr" option to specify that TBR-relative calling is to be used for all functions. You can also use the
preprocessor directive "#pragma tbr" to specify TBR-relative calling for an individual function.
To perform a TBR-relative function call, you must set the start address of the $TBR section to the TBR.
To use a TBR-relative call to call standard library functions, perform the following:

(1) In the "tbr.h" system include file, add "#pragma tbr", followed by the library for which TBR-relative calling is to be
used.

(2) Use the standard library creation tool "lbgsh" to create a library.

(3) In the source program that calls the library for which you want to perform TBR-relative calls, use an #include directive
to include "tbr.h".

• Format:
<Options>

-tbr[=<section name>]

<Preprocessor directive>

#pragma tbr (<function name>[(sn=<section name>|ov=<offset value>)][,...])

<offset value> must be a multiple of 4, from 0 to 1020.

Example of use:

Example 1

If the TBR-relative function call is specified, the compiler uses TBR-relative calling for all functions, and generates a
jump table for the functions defined in the file. This jump table consists of the function address data and their labels.
The label name of a function address in the jump table is the function name, preceded by "$_". For a static function, the
label name is the function name, preceded by "$__$".

C language code

/* -cpu=sh2a -size -tbr */
#include <machine.h>
void f1(){}
void f2(){}
static void f3(){}

main()

{

 set_tbr(__sectop("$TBR")); /* Sets the beginning of the $TBR section to the TBR */

 f1();

 f2();

Section 3 Compiler

Rev.4.00 2007.02.02 3-282
REJ05B0463-0400

 f3();

}

Expanded into assembly language code

_main:

 STS.L PR,@-R15

 MOV.L L14+2,R2 ; STARTOF $TBR

 LDC R2,TBR

 JSR/N @@($_f1-(STARTOF $TBR),TBR) ; TBR-relative function call

 JSR/N @@($_f2-(STARTOF $TBR),TBR) ; TBR-relative function call

 JSR/N @@($__$f3-(STARTOF $TBR),TBR) ; TBR-relative function call

 LDS.L @R15+,PR

 RTS/N

L14:

 .RES.W 1

 .DATA.L STARTOF $TBR

 .SECTION $TBR,DATA,ALIGN=4 ; TBR-relative jump table

$_f1:

 .DATA.L _f1 ; Function address data

$_f2:

 .DATA.L _f2 ; Function address data

$_main:

 .DATA.L _main ; Function address data

$__$f3:

 .DATA.L __$f3 ; Static function address data

Example 2

In addition to the "-tbr" option, which specifies that TBR-relative calling is to be used for all functions, you can use the
"#pragma tbr" to specify TBR-relative calling for an individual function.
The functions specified in <function name> will be called using TBR-relative calls.
If you specify "sn=<section name>", function address data is generated in the section indicated by the section name
preceded by "$TBR".
If you specify "ov=<offset value>", the TBR-relative value will be the indicated offset value.

C language code

/* -cpu=sh2a –size */

#pragma tbr (f1(sn=X))

#pragma tbr (f2(ov=0))

f1(){}

Section 3 Compiler

Rev.4.00 2007.02.02 3-283
REJ05B0463-0400

f2(){}

main(){

f1();

f2();

}

Expanded into assembly language code

 _main:

 STS.L PR,@-R15

 JSR/N @@($_f1-(STARTOF $TBRX),TBR)

 JSR/N @@(0,TBR) ; The TBR-relative value is 0

 LDS.L @R15+,PR

 RTS/N

 .SECTION $TBRX,DATA,ALIGN=4 ; Section name "$TBRX"

$_f1:

 .DATA.L _f1

 ; The function address data is not generated

 ; for function (f2) for which "ov=<offset value>"

 ; is specified (see Example 3).

Example 3

For the functions for which "ov=<offset value>" is specified, you must create the function address data in the
TBR-relative jump table.
If the function definition is not found in the same file, you must set the same specification in the file for the function
definitions, or create the function address data in the TBR-relative jump table.

C language code

/* -cpu=sh2a */

#pragma tbr (func1(ov=0)) /* Specifies offset 0 in the jump table */

#pragma tbr (func2(ov=4)) /* Specifies offset 4 in the jump table */

#pragma tbr (func3(ov=8)) /* Specifies offset 8 in the jump table */

extern void func1();

extern void func2();

extern void func3();

#pragma tbr (func4(sn=NEW)) /* Specifies "$TBRNEW" for the section in the jump table */

#pragma tbr (func5(sn=NEW))

#pragma tbr (func6(sn=NEW))

Section 3 Compiler

Rev.4.00 2007.02.02 3-284
REJ05B0463-0400

extern void func4();

extern void func5();

extern void func6();

#include<machine.h>

void main()

{

 set_tbr(__sectop("$TBR")); /* Sets the beginning of the $TBR section to the TBR */

 func1();

 func2();

 func3();

 set_tbr(__sectop("$TBRNEW")); /* Switches the table to "$TBRNEW" */

 func4();

 func5();

 func6();

}

Expanded into assembly language code

_main:

 STS.L PR,@-R15

 MOV.L L11+2,R1 ; STARTOF $TBR

 LDC R1,TBR

 JSR/N @@(0,TBR)

 JSR/N @@(4,TBR)

 JSR/N @@(8,TBR)

 MOV.L L11+6,R4 ; STARTOF $TBRNEW

 LDC R4,TBR

 JSR/N @@($_func4-(STARTOF $TBRNEW),TBR)

 JSR/N @@($_func5-(STARTOF $TBRNEW),TBR)

 JSR/N @@($_func6-(STARTOF $TBRNEW),TBR)

 LDS.L @R15+,PR

 RTS/N

L11:

 .RES.W 1

 .DATA.L STARTOF $TBR

 .DATA.L STARTOF $TBRNEW

Section 3 Compiler

Rev.4.00 2007.02.02 3-285
REJ05B0463-0400

To specify a TBR-relative function call, you must set the TBR. Since the compiler, when calling functions, references the
data on the jump table to find the function address, this can reduce the size of the data.
The following shows the code for calling functions, without using the TBR.

_main:

 STS.L PR,@-R15

 MOV.L L11,R1 ; _func1

 JSR/N @R1

 MOV.L L11+4,R4 ; _func2

 JSR/N @R4

 MOV.L L11+8,R5 ; _func3

 JSR/N @R5

 MOV.L L11+12,R6 ; _func4

 JSR/N @R6

 MOV.L L11+16,R7 ; _func5

 JSR/N @R7

 MOV.L L11+20,R2 ; _func6

 JMP @R2

 LDS.L @R15+,PR

L11:

 .DATA.L _func1

 .DATA.L _func2

 .DATA.L _func3

 .DATA.L _func4

 .DATA.L _func5

 .DATA.L _func6

Assembly language code (jump table 1)

Create a jump table for function address data in the "$TBR" section according to the "ov=<offset value>" specification in
"pragma tbr".

 .SECTION $TBR,DATA,ALIGN=4 ;

 .DATA.L _func1 ; The offset in the jump table should be 0.

 .DATA.L _func2 ; The offset should be 4

 .DATA.L _func3 ; The offset should be 8

Section 3 Compiler

Rev.4.00 2007.02.02 3-286
REJ05B0463-0400

Assembly language code (jump table 2)

If the function definition is not found in the same file, use the same specification in the file for the function definitions, or
create the following jump table:

 .EXPORT $_func4

 .EXPORT $_func5

 .EXPORT $_func6

 .SECTION $TBRNEW,DATA,ALIGN=4

$_func4: ; The label name should be "$_"+<function name>

 .DATA.L _func4 ; Function address data

$_func5:

 .DATA.L _func5

$_func6:

 .DATA.L _func6

Example 4

For SH-2A, the CPU calls printf functions relatively with the TBR:

(1) Specify "#pragma tbr printf" in "tbr.h".
 :

 #if (defined(_SH2A) || defined(_SH2AFPU)) && !defined(_PIC)

 :

 #pragma tbr printf // Added

 :

 #endif /* #if (defined(_SH2A) || defined(_SH2AFPU)) && !defined(_PIC) */

 :

(2) Create a standard library containing a TBR-relative table.
 lbgsh -cpu=sh2a

(3) Specify "tbr.h" to be included in the program that is using printf.

 #include <tbr.h> // Added

 #include <stdio.h>

 main()

 {

 printf("tbr\n");

 }

Section 3 Compiler

Rev.4.00 2007.02.02 3-287
REJ05B0463-0400

Important Information:

(1) The compiler does not use the TBR-relative calling if the BSR instruction can be used to call functions. However, the
compiler does use TBR-relative calling if the "-size" option is specified.

(2) If you specify any option other than "-cpu=sh2a" or "-cpu=sh2afpu", TBR-relative function calling is disabled.

(3) If you specify the "-pic=1" option, the TBR-relative function calling is disabled, because the absolute addresses of
functions cannot be determined.

(4) If "$TBR" is used to indicate a section name for the jump table that is specified for the section name in the "-section"
option, malfunction may occur during execution of objects.

(5) You can specify up to 255 functions for each section in the entire program.

(6) You cannot specify "sn=<section name>" and "ov=<offset value> at the same time for the same function.

(7) An error occurs if you specify the following #pragma extensions at the same time, for the same function:

#pragma interrupt

#pargma inline

#pragma inline_asm

#pragma entry

Section 3 Compiler

Rev.4.00 2007.02.02 3-288
REJ05B0463-0400

3.21 Generating a GBR-Relative Logic Operation Instruction

Description:

When the "-gbr=user" option is specified with the "-logic_gbr" option, logical operation instructions relative to the GBR
are used for external variables other than the GBR base variables specified in "#pragma gbr_base".

• Format:
-logic_gbr

Example of use:

C language code

char a,b,c;

main(){

 a &= 0x0f;

 b |= 0x01;

 c ^= 0x01;

}

Expanded into assembly language code ("-gbr_user" specified, "-logic_gbr" not specified)

 MOV.L L11+2,R6 ; _a

 MOV.B @R6,R0

 AND #15,R0

 MOV.B R0,@R6

 MOV.L L11+6,R6 ; _b

 MOV.B @R6,R0

 OR #1,R0

 MOV.B R0,@R6

 MOV.L L11+10,R6 ; _c

 MOV.B @R6,R0

 XOR #1,R0

 RTS

 MOV.B R0,@R6

L11:

 .RES.W 1

 .DATA.L _a

 .DATA.L _b

 .DATA.L _c

Section 3 Compiler

Rev.4.00 2007.02.02 3-289
REJ05B0463-0400

Expanded into assembly language code ("-gbr_user" specified, "-logic_gbr" specified)

 MOV.L L11+2,R0 ; _a-(STARTOF $G0)

 AND.B #15,@(R0,GBR) ; GBR-relative operation instruction

 MOV.L L11+6,R0 ; _b-(STARTOF $G0)

 OR.B #1,@(R0,GBR) ; GBR-relative operation instruction

 MOV.L L11+10,R0 ; _c-(STARTOF $G0)

 RTS

 XOR.B #1,@(R0,GBR) ; GBR-relative operation instruction

L11:

 .RES.W 1

 .DATA.L _a-(STARTOF $G0)

 .DATA.L _b-(STARTOF $G0)

 .DATA.L _c-(STARTOF $G0)

To use the GBR as the base address, you must specify the GBR for the start address of the $G0 section beforehand, just as
you would for "#pragma gbr_base".

Important Information:

(1) When you specify the "-logic_gbr" option, you must map the $G0 section.

(2) If you do not specify the "-gbr=user" option, the "-logic_gbr" option is disregarded.

Section 3 Compiler

Rev.4.00 2007.02.02 3-290
REJ05B0463-0400

3.22 Enabling Register Declarations

Description:

The compiler allocates registers to variables in order, based on the analysis results in the compiler, regardless of whether
or not the registers are declared.
When the "-enable_register" option is specified, the registers are allocated first to the variables with the register
declaration.

• Format:

-enable_register

Example of use:

C language code

int sum[10],input1[10],input2[10];

int b;

void func()

{

 register int a = 0;

 int i;

 while(b) {

 a++;

 for (i = 0; i < 10; i++) {

 sum[i] = input1[i] + input2[i];

 }

 b--;

 }

 printf("%d\n",a); // Since the value of 'a' is passed to printf via R5,

 // allocating R5 to 'a' improves efficiency.

}

Expanded into assembly language code ("-enable_register" not specified)

_func:

 MOV.L R12,@-R15

 MOV.L R13,@-R15

 MOV.L R14,@-R15

Section 3 Compiler

Rev.4.00 2007.02.02 3-291
REJ05B0463-0400

 MOV.L L16+2,R12

 MOV #0,R13 ; Since R5 was allocated to another variable with higher priority,

 ; R13 is allocated to variable a.

 : :

 MOV.L L16+22,R2 ; _printf

 MOV.L R14,@R12

 MOV R13,R5 ; Copies the value of variable a (R13) to R5

 MOV.L @R15+,R14

 MOV.L @R15+,R13

 JMP @R2 ; Calls printf()

 MOV.L @R15+,R12

Expanded into assembly language code ("-enable_register" specified)

_func:

 MOV.L R12,@-R15

 MOV.L R13,@-R15

 MOV.L R14,@-R15

 MOV.L L16,R12 ; _b

 MOV #0,R5 ; Since variable a gives higher priority, R5 is allocated.

 : :

 MOV.L L16+20,R2 ; _printf

 MOV.L R13,@R12

 MOV.L @R15+,R14

 MOV.L @R15+,R13

 JMP @R2 ; Calls printf()

 MOV.L @R15+,R12

Important Information:

If a register is not allocated, the following information message appears:
C0102 (I) Register is not allocated to "variable name" in "function name"
However, this message does not appear if an argument is not allocated to any register.

Section 3 Compiler

Rev.4.00 2007.02.02 3-292
REJ05B0463-0400

3.23 Specifying Absolute Addresses of Variables

Description:

You can specify the absolute addresses of variables that are referenced externally, using a preprocessor directive. The
compiler allocates the variables declared in the #pramga address directive to the corresponding absolute addresses. This
feature enables easier access via variables to I/O allocated to a specific address.

• Format:

#pragma address (<variable name> = <address value>[,<variable name> = <address value> ...])

Example of use:

Variable”io” is allocated to the absolute address 0x100.

C language code

#pragma address (io=0x100)

int io;

f()

{

 io = 10;

}

Expanded into assembly language code

_func:

 MOV #1,R2

 SHLL8 R2

 MOV #10,R6

 RTS

 MOV.L R6,@R2

 .SECTION $ADDRESS$B100,DATA,LOCATE=H'100

_io:

 .RES.L 1

Important Information:

(1) You must specify "#pragma address" before the variable declaration.

(2) An error will occur if you specify a compound type member or other than a variable.

(3) An error will occur if you specify an odd address for a variable or structure whose alignment number is 2. An error will also
occur if you specify an address other than a multiple of four for a variable or structure whose alignment number is 4.

(4) An error will occur if you specify "#pragma address" more than once for the same variable.

(5) An error will occur if you specify the same address for different variables or if you specify the same variable address
more than once.

(6) An error will occur if you specify the following #pragma extensions at the same time, for the same variable:
#pragma section

Section 3 Compiler

Rev.4.00 2007.02.02 3-293
REJ05B0463-0400

#pragma abs16/abs20/abs28/abs32

#pragma gbr_base/gbr_base1

#pragma global_register

Section 3 Compiler

Rev.4.00 2007.02.02 3-294
REJ05B0463-0400

3.24 Strengthened optimization

3.24.1 Improved Literal Data (1)

Constant data optimization has been strengthened.

3.24.2 Improved Literal Data (2)

Constant values of 2-bytes or more are reused.

 MOV #-56,R6 ; H'FFFFFFC8

 MOV.L L11,R5 ; _a

 EXTU.B R6,R6

 MOV.L L11+4,R2 ; _b

 MOV.L R6,@R5

 ADD #100,R6

 RTS

 MOV.L R6,@R2

Setting using 200 + 100

Source Program

unsigned

short a,b;

f(){

 a=200;

 b=300;

}

 MOV.W L237,R3 ; H'00C8

 MOV.L L237+6,R2 ; _a

 MOV.W L237+2,R1 ; H'012C

 MOV.L R3,@R2

 MOV.L L237+10,R0 ; _b

 RTS

 MOV.L R1,@R0

L237:

 .DATA.W H'00C8 ; 200

 .DATA.W H'012C ; 300

V5,V6 V7

Source Program

MOV.L L11,R5 ; _a

 MOV #1,R2 ; H'00000001

 SHLL8 R2

 MOV.W @R5,R6

 OR R2,R6

 MOV.W R6,@R5

 MOV #-1,R2 ; H'FFFFFFFF

 MOV.L L11+4,R6 ; _b

 RTS
 MOV.W R2,@R6

L11:

 .DATA.L _a
 .DATA.L _b

unsigned

short a,b;

f(){

 a|=0x100;

 b=0xffff;

}

MOV.L L237+2,R4 ; _a

MOV.W L237,R3 ; H'0100

MOV.W @R4,R2

OR R3,R2

MOV.W R2,@R4

MOV.L L237+6,R1 ; H'0000FFFF

MOV.L L237+10,R0 ; _b

RTS

MOV.W R1,@R0

L237:
.DATA.W H'0100

.DATA.L _a

.DATA.L H'0000FFFF

.DATA.L _b

V5,V6 V7

Setting

using #imm

Use "1<<8" to create the

constant 256(0x100)

Section 3 Compiler

Rev.4.00 2007.02.02 3-295
REJ05B0463-0400

3.24.3 Disabling EXTU (1)

Disables EXTU with regard to AND results in conditional expressions.

3.24.4 Disabling EXTU (2)

Disables EXTU when making comparisons with constants.

Source Program

MOV.L L237+2,R4 ; _a

MOV.B @R4,R0

TST #120,R0

BT L236

unsigned

char a;

f(){

 if(a&120);

 :

}

MOV.L L237+2,R4 ; _a

MOV.B @R4,R0

EXTU.B R0,R0

TST #120,R0

BT L236

V5,V6 V7

Disabling EXTU

Source Program

MOV.L L237+2,R4 ; _a

MOV.B @R4,R0

CMP/EQ #10,R0

BT L236

unsigned

char a;

f(){

 if(a==10);

 :

}

MOV.L L237+2,R4 ; _a

MOV.B @R4,R0

EXTU.B R0,R0

CMP/EQ #10,R0

BT L236

V5,V6 V7

Disabling EXTU

Section 3 Compiler

Rev.4.00 2007.02.02 3-296
REJ05B0463-0400

3.24.5 Improved Bit Operations (1)

Improve comparison code for 1-bit data

3.24.6 Improved Bit Operations (2)

Improve substitution code for 1-bit data

Source Program

MOV.L L239+2,R6 ; _data

MOV.B @R6,R0

TST #1,R0

BT L238

struct S{

unsigned char p0:1;

unsigned char p1:1;

unsigned char p2:1;

unsigned char p3:1;

unsigned char p4:1;

unsigned char p5:1;

unsigned char p6:1;

unsigned char p7:1;

}data;

 :

if(data.p7)

MOV.L L239+2,R0 ; _data

MOV.B @R0,R0

AND #1,R0

EXTU.B R0,R0

TST R0,R0

BT L238

V5,V6 V7

TST with #1

Source Program V5,V6 V7

MOV.L L14+2,R6 ; _data2

MOV.B @R6,R0

MOV.L L14+6,R6 ; _data1

TST #2,R0

MOV.B @R6,R0

BF L12

BRA L13

AND #254,R0

L12:

OR #1,R0

L13:

RTS

 MOV.B R0,@R6

struct S{

unsigned char p0:1;

unsigned char p1:1;

unsigned char p2:1;

unsigned char p3:1;

unsigned char p4:1;

unsigned char p5:1;

unsigned char p6:1;

unsigned char p7:1;

}data1,data2;

 :

data1.p7=data2.p6;

 STS.L PR,@-R15

 MOV.L L239+4,R0 ; _data2

 MOV.L L239+8,R2 ; _data1

 MOV.B @R0,R0

 MOV.W L239,R1 ; H'0701

 TST #2,R0

 MOV.L L239+12,R3 ; __bfsbu

 MOVT R0

 ADD #-1,R0

 JSR @R3

 NEG R0,R0

 LDS.L @R15+,PR

 RTS

 NOP

L239:

 .DATA.W H'0701

 .DATA.L __bfsbu0
Inline expansion without using

a runtime routine

Section 3 Compiler

Rev.4.00 2007.02.02 3-297
REJ05B0463-0400

3.24.7 Improved Bit Operations (3)

Improve logic operation code for bit fields

3.24.8 Improved Bit Operations (4)

Improve consecutive decision processing of the same bit field

V5,V6 V7 Source Program

MOV.L L11,R5 ; _data1

MOV.B @R5,R2

MOV R2,R0

AND #15,R0

OR #1,R0

AND #15,R0

MOV R0,R6

MOV R2,R0

AND #240,R0

OR R6,R0

RTS

MOV.B R0,@R5

L11:

 .DATA.L _data1

struct S{

unsigned char p0:4;

unsigned char p1:4;

}data1;

 :

data1.p1|=1;

STS.L PR,@-R15

MOV.L L236+4,R0 ; _data1

MOV.L L236+4,R2 ; _data1

MOV.B @R0,R0

MOV.W L236,R1 ; H'0404

AND #15,R0

MOV.L L236+8,R3 ; __bfsbu

JSR @R3

OR #1,R0

LDS.L @R15+,PR

RTS

NOP

L236:

.DATA.W H'0404

.DATA.W 0

.DATA.L _data1

.DATA.L __bfsbu Inline expansion without using

a runtime routine

MOV.L L14+2,R6 ; _data

MOV.B @R6,R0

AND #3,R0

CMP/EQ #3,R0

BF L12

Source Program

struct S{

unsigned char p0:1;

unsigned char p1:1;

unsigned char p2:1;

unsigned char p3:1;

unsigned char p4:1;

unsigned char p5:1;

unsigned char p6:1;

unsigned char p7:1;

}data;

 :

if(data.p7==1 &&

 data.p6==1)

MOV.L L239+2,R4 ; _data

MOV R4,R0

MOV.B @R0,R0

AND #1,R0

CMP/EQ #1,R0

BF L238

MOV R4,R0

MOV.B @R0,R0

TST #2,R0

MOVT R0

ADD #-1,R0

NEG R0,R0

CMP/EQ #1,R0

BF L238

V5,V6 V7

Evaluate 2 bits

simultaneously

Section 3 Compiler

Rev.4.00 2007.02.02 3-298
REJ05B0463-0400

3.24.9 Improved Bit Operations (5)

Improve consecutive substitution of the same bit field

MOV.L L11,R2 ; _data1

MOV #0,R3 ; H'00000000

RTS

MOV.B R3,@R2

Source Program

struct S{

unsigned char p0:1;

unsigned char p1:1;

unsigned char p2:1;

unsigned char p3:1;

unsigned char p4:1;

unsigned char p5:1;

unsigned char p6:1;

unsigned char p7:1;

}data;

 :

data.p0=0;

data.p1=0;

:

data.p7=0;

 MOV.L L240,R4 ; _data1

 MOV.B @R4,R0

 AND #127,R0

 MOV.B R0,@R4

 MOV.B @R4,R0

 AND #191,R0

 MOV.B R0,@R4

 :

 MOV.B @R4,R0

 AND #254,R0

 RTS

 MOV.B R0,@R4

V5,V6 V7

Set all bits simultaneously

Section 3 Compiler

Rev.4.00 2007.02.02 3-299
REJ05B0463-0400

3.25 Controlling the Output Order of Uninitialized Variables

Description

The "-bss_order" option can be used to allocate uninitialized variables by declaration order or definition order.

Specify -bss_order=declaration to allocate uninitialized variables by declaration order, or -bss_order=definition to allocate
uninitialized variables by definition order. If this option is omitted, -bss_order=declaration is used.

Format

-bss_order={ declaration | definition }

Example of use

C language code

extern int a1;

extern int a2;

int a3;

extern int a4;

int a5;

int a2;

int a1;

int a4;

Expanded into assembly language code

When <-bss_order=declaration is specified:>

 .SECTION B,DATA,ALIGN=4

_a1:

 .RES.L 1

_a2:

 .RES.L 1

_a3:

 .RES.L 1

_a4:

 .RES.L 1

_a5:

 .RES.L 1

Section 3 Compiler

Rev.4.00 2007.02.02 3-300
REJ05B0463-0400

When <-bss_order=definition is specified:>

 .SECTION B,DATA,ALIGN=4

_a3:

 .RES.L 1

_a5:

 .RES.L 1

_a2:

 .RES.L 1

_a1:

 .RES.L 1

_a4:

 .RES.L 1

Remarks

When the "stuff" option is specified, bss_order=definition always takes effect.

Section 3 Compiler

Rev.4.00 2007.02.02 3-301
REJ05B0463-0400

3.26 Specifying the Placement of Variables

Description:

The "-stuff" option can be used to place variables in different sections, by boundary alignment adjustment number. This
reduces padding, to conserve memory.

A section type can be specified in the "-stuff" option. The variables belonging to the specified section type are placed in
the sections for boundary alignment adjustment number 4, 2, and 1, based on the size of the data. If the section type is
omitted, the option targets all variables.

Data within each section is output in order of definition. bss_order=declaration is disregarded if specified.

If "-nostuff" is specified, all variables are placed in the section with boundary alignment adjustment number 4.

Data within each section follows the definition order for the C and D sections, and bss_order for the B section.

If this option is omitted, "nostuff" is used.

Table 3.48 Relationship between Variable Size and Section Name

Variable Size Size of Variable(in Bytes) Section Type

4n 4n+2 2n+1

Const-type variables const C$4 C$2 C$1

Initialized vVariables
with initial values

data D$4 D$2 D$1

Uninitialized Variables
variables without initial
values

bss B$4 B$2 B$1

• Format:
-stuff [=section-type[,...]]

-nostuff

section-type:{ Bss | Data | Const }

Example of use:

C language code

int a;

char b=0;

const short c=0;

struct {

char x;

char y;

} ST;

Section 3 Compiler

Rev.4.00 2007.02.02 3-302
REJ05B0463-0400

Expanded into assembly language code

 .SECTION C$2,DATA,ALIGN=2

_c:

 .DATA.W H’0000

 .SECTION D$1,DATA,ALIGN=1

_b:

 .DATA.B H’00

 .SECTION B$4,DATA,ALIGN=4

_a:

 .RES.L 1

 .SECTION B$2,DATA,ALIGN=2

_sr:

 .RES.B 2

• Remarks:

Variables for which #pragma gbr_base|gbr_base1 or #pragma global_register is specified are not affected by this option.

Section 4 HEW

Rev.4.00 2007.02.02 4-1
REJ05B0463-0400

Section 4 HEW

4.1 Specifying options in HEW2.0 or later
You can specify options from the Build menu. Here is how to specify options from Renesas Integrated Development
Environment. Select "SuperH RISC engine Standard Toolchain" from the build menu.

Figure 4.1 HEW Build Menu

Section 4 HEW

Rev.4.00 2007.02.02 4-2
REJ05B0463-0400

4.1.1 C/C++ Compiler Options
Select the C/C++ tab from the SuperH RISC engine Standard Toolchain dialog box.

(1) Category:[Source]

Table 4.1 Correspondence between Items on the Category:[Source] and Compiler Options
Dialog Box Option
Show entries for :
 Include files directories

 Preinclude files
 Defines

 Messages

Message leve

File inline path

Include = <path name>[,…]

PREInclude = <file name>[,…]

DEFine = <sub>[,…]

 <sub> : <macro name> [= <string>]

MEssage

CHAnge_message = <sub>[,…]

 <sub> : <level>[=<n>[-m],…]

 <level> : {Information | Warning | Error}

FILE_INLINE_PATH = <path name>[,…]

Display information level messages NOMEssage [= <error number>

 [- <error number>[,…]]

Figure 4.2 Category:[Source] Dialog Box

Section 4 HEW

Rev.4.00 2007.02.02 4-3
REJ05B0463-0400

(2) Category:[Object]

Table 4.2 Correspondence between Items on the Category:[Object] and Compiler Options
Dialog Box Option
Output file type :

 Machine code (*.obj)

 Assembly source code (*.src)

 Preprocessed source file (*.p/*.pp)

 Suppress #line in preprocessed

source file

Code = Machinecode

Code = Asmcode

PREProcessor [= <file name>]

NOLINe

Generate debug information DEBug / NODEBug

Output directory : OBjectfile = <file name>

Figure 4.3 Category:[Object] Dialog Box

Section 4 HEW

Rev.4.00 2007.02.02 4-4
REJ05B0463-0400

Clicking on [Details…] opens the "Optimize details" dialog box.

(a) Code generation tab

Table 4.3 Correspondence between Items on the Optimize details Dialog Box and Compiler Options
Dialog Box Option
Section :

 Program section (P)

 Const section (C)

 Data section (D)

 Uninitialized data section (B)

SEction = <sub>[,…]

 <sub> : Program = <section name>

 <sub> : Const = <section name>

 <sub> : Data = <section name>

 <sub> : Bss = <section name>

Default: (p=P, c=C, d=D, b=B)

Template :

Template =

 { None | Static | Used |

 ALl | AUto }

Store string data in : STring = { Const | Data }

Division sub-options : DIvision = Cpu [= { Inline | Runtime }]

Use no FPU instructions IFUnc

Align labels after unconditional branches

16/32 byte boundaries :

ALIGN16

ALIGN32

NOALign

Figure 4.4 Code Generation Tab Dialog Box

Section 4 HEW

Rev.4.00 2007.02.02 4-5
REJ05B0463-0400

(b) Code generation2 tab

Table 4.4 Correspondence between Items on the Optimize details Dialog Box and Compiler Options
Dialog Box Option
Address declaration :

<ABS> = <sub>[,…]

<ABS> :

{ ABs16 | ABS20 | ABS28 | ABS32 }

<sub> :

{ Program | Const | Data | Bss | Run

| All }

TBR specification : TBR [= <section name>]

Disposition of variable : STUff=<sub>[,...]

<sub>:

{Bss|Data|Const}

Order of uninitialized variables : BSs_order=<sub>

<sub>:

{DEClaration|DEFinition}

Figure 4.5 Code Generation2 Tab Dialog Box

Section 4 HEW

Rev.4.00 2007.02.02 4-6
REJ05B0463-0400

(3) Category:[List]

Table 4.5 Correspondence between Items on the Category:[List] and Compiler Options
Dialog Box Option
Generate list file Listfile [= <file name>] / NOListfile

Tab size : SHow = <sub>[,…]

<sub> : Tab = { 4 | 8 }

Contents :

 Object list

 Statistics

 Source code listing

 After include expansion

 After macro expansion

SHow = <sub>[,…]

 <sub> : Object / NOObject

 <sub> : STatistics / NOSTatistics

 <sub> : SOurce / NOSOurce

 <sub> : Include / NOInclude

 <sub> : Expansion / NOExpansion

Figure 4.6 Category:[List] Dialog Box
When both the -nolist and -show options are specified, the -nolist option takes precedence.

Section 4 HEW

Rev.4.00 2007.02.02 4-7
REJ05B0463-0400

(4) Category:[Optimize]

Table 4. 6 Correspondence between Items on the Category:[Optimize] and Compiler Options
Dialog Box Option
Optimization OPtimize = 1 / OPtimize = 0

Speed or size :

 Optimize for speed

 Optimize for size

 Optimize for both speed and size

SPeed

SIze
NOSPeed

Generate file for inter-module optimization Goptimize
Optimization for access to external

valriables :

MAP = <file name>

GBR relative operation : GBr = { Auto | User }

Unaligned move : Unaligned = { Inline | Runtime }
Switch statement : CAse = { Ifthen | Table }

Shift operation : SHIft = { Inline | Runtime }

Transfer code development : BLOckcopy = { Inline | Runtime }

Figure 4.7 Category:[Optimize] Dialog Box

Section 4 HEW

Rev.4.00 2007.02.02 4-8
REJ05B0463-0400

• For the Speed or Size option, select the "Optimize for both speed and size".

Clicking on [Details…] opens the "Optimize details" dialog box.

The options that have been added in the V.7.0.06 should be specified in this dialog box.

(a) Inline tab

Table 4.7 Correspondence between Items on the Optimize details Dialog Box and Compiler Options
Dialog Box Option
Inline

 Inline file path :

 Automatic inline expansion :

-

File_inline = <file name>[,…]

INLine [= <numeric value>] / NOINLine

Figure 4.8 Inline Tab Dialog Box

Section 4 HEW

Rev.4.00 2007.02.02 4-9
REJ05B0463-0400

(b) Global variables tab

Table 4.8 Correspondence between Items on the Optimize details Dialog Box and Compiler Options
Dialog Box Option
Level : -

Contents :

Treat Global variables as voaltile qualified

Delete assignment to global variables before

 an infinite loop

Specify optimizing range :

Allocate registers to global variables :

 Disable

 Enable

 Default
Propagate variables which are const qualified :

 Disable

 Enable

 Default
Schedule instructions :

 Disable

 Enable

 Default

GLOBAL_Volatile = 1 / GLOBAL_Volatile = 0

INFinite_loop = 1 / INFinite_loop = 0

OPT_Range = { All | NOLoop | NOBlock }

GLOBAL_Alloc = 0

GLOBAL_Alloc = 1

-

CONST_Var_propagate = 0

CONST_Var_propagate = 1

-

SChedule = 0

SChedule = 1

-

Figure 4.9 Global Variables Tab Dialog Box

Section 4 HEW

Rev.4.00 2007.02.02 4-10
REJ05B0463-0400

By setting Level, the optimizations for external variables can be controlled collectively.

Level1
 Disable the optimization of external variables.
 gloal_volatile = 1
 opt_range = noblock
 infinite_loop = 0
 global_alloc = 0
 const_var_propagate = 0
 schedule = 0
Level2
 Optimize external variables without volatile specification within the range of a branch (including a loop).
 gloal_volatile = 0
 opt_range = noblock
 infinite_loop = 0
 global_alloc = 0
 const_var_propagate = 0
 schedule = 1
Level3
 Optimize all the external variables without volatile specification.
 gloal_volatile = 0
 opt_range = all
 infinite_loop = 0
 global_alloc = 1
 const_var_propagate = 1
 schedule = 1
Custom
 The user specifies the optimization of external variables according to the program.

Section 4 HEW

Rev.4.00 2007.02.02 4-11
REJ05B0463-0400

(c) Miscellaneous tab

Table 4.9 Correspondence between Items on the Miscellaneous Tab Dialog Box and Compiler Options
Dialog Box Option
Delete vacant loop
Specify maximum unroll factor :

Load constant value as :

 Inline

 Literal

 Default

Allocate registers to struct/union members :

Software pipelining :

DEL_vacant_loop = 1 / DEL_vacant_loop = 0

MAX_unroll = <numeric value> : 1 to 32

CONST_Load = Inline

CONST_Load = Literal

-

STRUCT_Alloc = 1 / STRUCT_Alloc = 0

SOftpipe

Figure 4.10 Miscellaneous Tab Dialog Box

Section 4 HEW

Rev.4.00 2007.02.02 4-12
REJ05B0463-0400

(5) Category:[Other]

Table 4.10 Correspondence between Items on the Category:[Other] and Compiler Options
Dialog Box Option
Miscellaneous options :

 Check against EC++ language specification

 Check against DSP-C language specification

 Allow comment nest

 Callee saves/restores MACH

 and MACL registers if used

 Saves/restores SSR and SPC registers

 Expand return value to 4 byte

 Loop unrolling

 Approximate a floating-point constant division

 Avoid illegal SH7055 instructions

 Change FPSCR register if double data used

 Treats loop condition as volatile qualified

 enum size is made the smallest

 Floating-point contant is handled as a

 fixed-point constant

 Treats 1.0 as maximum number of fixed type

 Delete type conversion after fixed multiple

 DSP repeat loop is used

 Enable register declaration

 Obey ansi specifications more strictly

 Change integer division into floating-point

ECpp

DSpc

COMment = Nest / COMment = NONest

Macsave = 1 / Macsave = 0

SAve_cont_reg = 0 / SAve_cont_reg = 1

RTnext / NORTnext

LOop / NOLOop

APproxdiv

PAtch = 7055

FPScr = Safe / FPScr = Aggressive

Volatile_loop

AUto_enum

FIXED_Const

FIXED_Max

FIXED_Noround

REPeat

ENAble_register declaration

STRIct_ansi

FDIv

Figure 4.11 Category:[Other] Dialog Box

Section 4 HEW

Rev.4.00 2007.02.02 4-13
REJ05B0463-0400

4.1.2 Assembly Options
Select the Assemby tab from the SuperH RISC engine Standard Toolchain dialog box.

Figure 4.12 Assembly Tab Dialog Box

Section 4 HEW

Rev.4.00 2007.02.02 4-14
REJ05B0463-0400

(1) Category:[Source]

Table 4.11 Correspondence between Items on the Category:[Source] and Assembler Options
Dialog Box Option
Show entries for :

 Include file directories

 Defines

 Preprocessor variables

Include = <path name>[,…]

DEFine = <sub>[, …]

 <sub> :

 <replacement symbol> = "<string literal>"

ASsignA = <sub>[, …]

 <sub> :

 <variable name> = <Integer constant>

ASsignC = <sub>[, …]

 <sub> :

 <variable name> = "<string literal>"

Figure 4.13 Category:[Source] Dialog Box

Section 4 HEW

Rev.4.00 2007.02.02 4-15
REJ05B0463-0400

(2) Category:[Object]

Table 4.12 Correspondence between Items on the Category:[Object] and Assembler Options
Dialog Box Option
Debug information :

 Default

 With debug information

 Without debug information

-

Debug

NODebug

Geberate assembly source file after preprocess EXPand [= <output file name>]

Generate literal pool after :

 .POOL directive

 BRA, BRAF

 JMP

 RTS, RTE

LITERAL = <point>[,…]

 <point> : Pool

 <point> : Branch

 <point> : Jump

 <point> : Return

Selects displacement size : DIspsize = { 4 | 12 }

Output file directory: : Object [= <output file name>] / NOObject

Figure 4.14 Category:[Object] Dialog Box

Section 4 HEW

Rev.4.00 2007.02.02 4-16
REJ05B0463-0400

(3) Category:[List]

Table 4.13 Correspondence between Items on the Category:[List] and Assembler Options
Dialog Box Option
Generate list file LISt [= <output file name>] / NOLISt

Source program :

 Default

 Shown

 Not shown

-

SOurce

NOSOurce

Cross reference :

 Default

 Shown

 Not shown

-

CRoss_reference

NOCRoss_reference
Section :

 Default

 Shown

 Not shown

-

SEction

NOSEction

Source program list Contents :

 Contents

 Default / Shown / Not shown

 Status

 Conditions

 Definitions

 Calls

 Expansions

 Code

 Tab Size

- / SHow [= <item>[,…]] / NOSHow [= <item>[,…]]

 <item> : CONditionals

 <item> : Definitions

 <item> : CAlls

 <item> : Expansions

 <item> : CODe

 <item> : TAB = { 4 / 8 }

Figure 4.15 Category:[List] Dialog Box

Section 4 HEW

Rev.4.00 2007.02.02 4-17
REJ05B0463-0400

(4) Category:[Other]

Table 4.14 Correspondence between Items on the Category:[Other] and Assembler Options

Dialog Box Option
Miscellaneous options :

 Automatically generate literal pool for immediate value

 Remove unrefernced external symbols

 check privileged instructions

 check LDTLB instruction

 check cache instructions

 check DSP instructions

 check FPU instructions

 check 8-byte alignment of FDATA

AUTO_literal

Exclude / NOExclude

CHKMd

CHKTlb

CHKCache

CHKDsp

CHKFpu

CHKAlign8

Figure 4.16 Category:[Other] Dialog Box

Section 4 HEW

Rev.4.00 2007.02.02 4-18
REJ05B0463-0400

4.1.3 Optimizing Linkage Editor Options

Select the Link/Library tab from the SuperH RISC engine Standard Toolchain dialog box.

Figure 4.17 Link/Library Tab Dialog Box

Section 4 HEW

Rev.4.00 2007.02.02 4-19
REJ05B0463-0400

(1) Category:[Input]

Table 4.15 Correspondence between Items on the Category:[Input] and Linkage Editor Options

Dialog Box Option
Show entries for :

 Library files
 Relocatable files and object files*1

 Binary files

 Defines

LIBrary = <file name>[,…]

Input = <sub> [{,|Δ}...]

 <sub> :

 <file name>[(<module name>[,...])]

Binary = <sub>[,...]

 <sub> :

 <file name>(<section name>

 [:<boundary alignment>]

 [,<symbol name>])

DEFine = <sub>[,...]

 <sub> :

 <symbol name> = { <symbol name>

| <numerical value> }

Use entry point : ENTry = { <symbol name> | <address> }

Prelinker control :

 Auto
 Skip prelinker

 Run prelinker

NOPRElink

NOPRElink

-

*1 Files which are included in the project need not be added explicitly; this is specified when

linking objects which are not compiled/assembled.

Figure 4.18 Category:[Input] Dialog Box

Section 4 HEW

Rev.4.00 2007.02.02 4-20
REJ05B0463-0400

(2) Category:[Output]

Table 4.16 Correspondence between Items on the Category:[Output] and Optimizing Linkage Editor Options

Dialog Box Option
Type of output file :

 Absolute(ELF/DWARF)

 Absolute(SYSROF)

 Relocatable

 System library

 User library

 Hex via absoulte

 S type bia absoulte

 Binary via absoulte

FOrm = Absolute

FOrm = Absolute

FOrm = Relocate

FOrm = Library = S

FOrm = Library = U

FOrm = Hexadecimal

FOrm = Stype

FOrm = Binary

Data record header :

REcord = { H16 | H20 | H32 | S1 | S2 | S3 }

Debug information :

 None

 In output load module

 In separate debug file (*.dbg)

NODEBug

DEBug

SDebug

Show entries for :

 Output file path/message

 ROM to RAM mapped sections

 Divided output files

 Output padding data

 Repressed information level messages

ROm = <sub>[,…]

 <sub> : <ROM section name>=<RAM section name>

OUtput = <sub>[,…]

 <sub> : <file name>[=<output range>]

 <output range> :

 { <start address> - <end address> |

 <section name>[: ...] }

SPace = [<numerical value>]

NOMessage [= <sub>[,…]] / Message

<sub> : <error code> [- <error code>]

Generate map file MAp [= <file name>]

Section 4 HEW

Rev.4.00 2007.02.02 4-21
REJ05B0463-0400

Figure 4.19 Category:[Output] Dialog Box

(3) Category:[List]

Table 4.17 Correspondence between Items on the Category:[List] and Optimizing Linkage Editor Options

Dialog Box Option
Generate list file LISt [= <file name>] / -

Contents :

 Show symbol

 Show reference

 Show section

 Show cross reference

SHow [= <sub>[,...]]

 <sub> : SYmbol

 <sub> : Reference

 <sub> : SEction

 <sub> : Xreference

Figure 4.20 Category:[List] Dialog Box

Section 4 HEW

Rev.4.00 2007.02.02 4-22
REJ05B0463-0400

(4) Category:[Optimize]

Table 4.18 Correspondence between Items on the Category:[Optimize] and Optimizing Linkage Editor Options

Dialog Box Option
Show entries for :

 Optimize items

 Optimize :

 All

 Speed

 Safe

 Custom

 Unify strings

 Eliminate dead code

 Reallocate registers

 Eliminate same code

 Optimize branches

 None

 Eliminated size :

 Include profile :

 Cache size :

OPtimize [= <sub>[,...]]

 <sub> : STring_unify,SYmbol_delete,

 Variable_access,Register,

 SAMe_code,SHort_format,

 Function_call,Branch

 <sub> : SPeed

 <sub> : SAFe

 Optionally specify the folloing:

 <sub> : STring_unify

 <sub> : SYmbol_delete

 <sub> : Register

 <sub> : SAMe_code

 <sub> : Branch

NOOPtimize

SAMESize = <size>

(default:sames=1e)

PROfile = <file name>

CAchesize = Size = <size>,

 Align = <line size>

(default:ca=s=8,a=20)

Show entries for :

 Forbid item

 Elimination of dead code

 Elimination of same code

 Memory allocation in

SYmbol_forbid = <symbol name>[,...]

SAMECode_forbid = <function name>[,...]

Absolute_forbid = <address> [+ <size>] [,...]

Section 4 HEW

Rev.4.00 2007.02.02 4-23
REJ05B0463-0400

Figure 4.21 Category:[Optimize] Dialog Box

Section 4 HEW

Rev.4.00 2007.02.02 4-24
REJ05B0463-0400

(5) Category:[Section]

Table 4.19 Correspondence between Items on the Category:[Section] and Optimizing Linkage Editor Options

Dialog Box Option
Show entries for :

 Section

 Symbol file

STAR t= <sub>[,...]

 <sub> : <section name>

 [{: | ,} <section name>[,...]]

 [/<address>]

FSymbol = <section name>[,...]

Figure 4.22 Category:[Section] Dialog Box

An additional section can be specified with [Edit] button.
Specified section names and addresses can be added with [Add] button.
Already specified section names and addresses can be edited with [Modify] button.
Multiple sections can be allocated to the same address with [New Overlay] button.
Already specified sections can be removed with [Remove] button.
The order of sections can be altered with [UP] and/or [DOWN] button.

Section 4 HEW

Rev.4.00 2007.02.02 4-25
REJ05B0463-0400

If the contents of the dialog box on the previous page are written to the subcommand file of the Linkage Editor:

RAM_sct1 and RAM_sct2 are allocated to the same section.

Note: For details about creating the subcommand file for the Linkage Editor, refer to the SuperH RISC engine C/C++
Compiler, Assembler, Optimizing Linkage Editor User's Manual.

 START DVECTTBL, DINTTBL, PIntPRG

 START PRestPRG/1000

 START P,C,C$BSEC, C$DSEC,D/1000

 START RAM_sct1:RAM_sct2/F00000

 START B,R/7F000000

 START Stack/7FFFFBF0

These are

shown in the

figure 4.22.

Section 4 HEW

Rev.4.00 2007.02.02 4-26
REJ05B0463-0400

(6) Category:[Verify]

Table 4.20 Correspondence between Items on the Category:[Verify] and Optimizing Linkage Editor Options

Dialog Box Option
CPU information check :

 No check

 Check

 Use CPU information file

-

CPu = {<cpu information file name> |

{<memory type>} = <address range>[,…]}

<memory type> : {ROm | Ram | XROm

 | XRAm | YROm | YRAm }

 <address range> :

 <start address> - <end address>

CPu = <cpu information file name>

Figure 4.23 Category:[Verify] Dialog Box

Section 4 HEW

Rev.4.00 2007.02.02 4-27
REJ05B0463-0400

(7) Category: [Other]

Table 4.21 Correspondence between Items on the Category:[Other] and Optimizing Linkage Editor Options

Dialog Box Option
Miscellaneous options :

 Always output S9 record at the end

 Stack information output

 Compress debug information

 Low memory use during linkage

S9

STACk

COmpress / NOCOmpress

MEMory = [High | Low]

User defined options :

 Absolute/Relocatable/Library

 Hex/SType/Binary

Figure 4.24 Category:[Other] Dialog Box

Section 4 HEW

Rev.4.00 2007.02.02 4-28
REJ05B0463-0400

(8) Category:[Subcommand file]

Table 4.22 Correspondence between Items on the Category:[Subcommnad file] and Optimizing Linkage Editor
Options

Dialog Box Option
Use external subcommand file SUbcommand = <file name>

Figure 4.25 Category:[Subcommand file] Dialog Box

Section 4 HEW

Rev.4.00 2007.02.02 4-29
REJ05B0463-0400

4.1.4 Standard Library Generator Options
Select the Standard Library tab from the SuperH RISC engine Standard Toolchain dialog box.

Figure 4.26 Standard Library Tab Dialog Box

Section 4 HEW

Rev.4.00 2007.02.02 4-30
REJ05B0463-0400

(1) Category:[Mode]

Table 4.23 Correspondence between Items on the Category:[Mode] and Functions

Dialog Box Function
Mode :

 Build a library file(anytime)

 Build a library file(option changed)

 Use an existing library file

 Do not add a library file

Creates a current standard library

Creates a current standard library when
options have been changed.

Links an existing standard library.

Does not link a standard library

Figure 4.27 Category:[Mode] Dialog Box

Section 4 HEW

Rev.4.00 2007.02.02 4-31
REJ05B0463-0400

(2) Category:[Standard Library]

Table 4.24 Correspondence between Items on the Category:[Standard Library] and Standard Library Generator
Options

Dialog Box Option
Category :

 runtime

 new

 ctype.h

 math.h

 mathf.h

 stdarg.h

 stdio.h

 stdlib.h

 string.h

 ios(EC++)

 complex(EC++)

 string(EC++)

Head = <sub>[,….]

 <sub> : RUNTIME

 <sub> : NEW

 <sub> : CTYPE

 <sub> : MATH

 <sub> : MATHF

 <sub> : STDARG

 <sub> : STDIO

 <sub> : STDLIB

 <sub> : STRING

 <sub> : IOS

 <sub> : COMPREX

 <sub> : CPPSTRING

Figure 4.28 Category:[Standard Library] Dialog Box

Section 4 HEW

Rev.4.00 2007.02.02 4-32
REJ05B0463-0400

(3) Category:[object]

Table 4.25 Correspondence between Items on the Category:[Object] and Options

Dialog Box Option
Simple I/O function NOFLoat

Generate reentrant Library REent

Figure 4.29 Category:[Object] Dialog Box

Section 4 HEW

Rev.4.00 2007.02.02 4-33
REJ05B0463-0400

Clicking on [Details…] opens the "Optimize details" dialog box.

(a) Code generation tab

Table 4.26 Correspondence between Items on the Optimize details Dialog Box and Compiler Options

Dialog Box Option
Section

 Program section(P)

 Const section(C)

 Data section(D)

 Uninitialized data section(B)

SEction = <sub>[,…]

 <sub> : Program = <section name>

 <sub> : Const = <section name>

 <sub> : Data = <section name>

 <sub> : Bss = <section name>

Default: (p=P, c=C, d=D, b=B)

Store string data in : STring = { Const | Data }

Division sub-options : DIvision = Cpu [= { Inline | Runtime }]

Use no FPU instructions : IFUnc

Align labels after unconditional branches

 16/32 byte boundaries :

ALIGN16

ALIGN32

NOALign

NOFLoat, REent : Standard Library Generator options
Others: Compiler options

Figure 4.30 Category:[Object] Dialog Box

Section 4 HEW

Rev.4.00 2007.02.02 4-34
REJ05B0463-0400

(b) Code generation2 tab

Table 4.27 Correspondence between Items on the Optimize details Dialog Box and Compiler Options

Dialog Box Option
Address declaration : <ABS> = <sub>[,…]

<ABS> :

{ ABs16 | ABS20 | ABS28 | ABS32 }

<sub> :

{ Program | Const | Data | Bss | Run | All }

TBR specification : TBR [= <section name>]

Figure 4.31 Category:[Object] Dialog Box

Section 4 HEW

Rev.4.00 2007.02.02 4-35
REJ05B0463-0400

(4) Category:[Optimize]

Table 4.28 Correspondence between Items on the Category [Optimize] and Compiler Options

Dialog Box Option
Optimization OPtimize = 1 / OPtimize = 0

Speed or size :

 Optimize for speed

 Optimize for size

 Optimize for both speed and size

SPeed

SIze

NOSPeed

Generate file for inter-module optimization Goptimize

Gbr relative operation : GBr = { Auto | User }

Unaligned move : Unaligned = { Inline | Runtime }

Automatic inline expansion INLine [= <data>] / NOINLine

Switch statement : CAse = { Ifthen | Table }

Shift operation : SHIft = { Inline | Runtime }

Transfer code development : BLOckcopy = { Inline | Runtime }

Figure 4.32 Category:[Optimize] Dialog Box

Section 4 HEW

Rev.4.00 2007.02.02 4-36
REJ05B0463-0400

(5) Category:[Other]

Table 4.29 Correspondence between Items on the Category:[Other] and Compiler Options

Dialog Box Option
Miscellaneous options :

 Check against EC++ language specification

 Check against DSP-C language specification
 Saves/restores SSR and SPC registers

 Expand return value to 4 bytes

 Loop unrolling

 Approximate a floating-point constant division

 Avoid illegal SH7055 instructions

 Change FPSCR register if double data used

 Treats loop condition as volatile qualified

 Enum size is made the smallest

 Floating-point cnstant is handled as a

fixed-point constant

 Treats 1.0 as maximum number of fixed type

 Delete type conversion sfter fixed multiple

 DSP repeat loop is used

 Enable register declaration

 Obey ANSI specifications more strictly

 Change integer division into floating-point

ECpp

DSpc

SAve_cont_reg = { 0 | 1 }

RTnext/NORTnext

LOop/NOLOop

APproxdiv

PAtch = 7055

FPScr = Safe/FPScr = Aggressive

Volatile_loop

AUto_enum

FIXED_Const

FIXED_Max

FIXED_Noround

REPeat

ENAble_register

STRIct_ansi

FDIv

Figure 4.33 Category:[Other] Dialog Box

Section 4 HEW

Rev.4.00 2007.02.02 4-37
REJ05B0463-0400

4.1.5 CPU Options
Select the CPU tab from the SuperH RISC engine Standard Toolchain dialog box.

Table 4.30 Correspondence between Items on the [CPU] Tab and Compiler Options

Dialog Box Option
CPU : CPu = { SH1 | SH2 | SH2E | SH2A |

SH2AFPU | SH2DSP |SH3 |

SH3DSP | SH4 | SH4A |

SH4ALDSP }

Division :

DIvision = { Cpu = [= { Inline | Runtion}] |

 Peripheral | Nomask }

Endian : ENdian = { Big | Little }
FPU : Fpu = { Single | Double }
Round to : Round = { Zero | Nearest }
Denormalized number allower as a result DENormalize = ON / DENormalize = OFF
Position independent code (PIC) Pic = 1 / Pic = 0

Treat double as float DOuble = Float
Bit field’s members are allocated from the

lower bit

Bit_order = { Left | Right }

Pack struct, union and class PACK = 1 / PACK = 4

Use try,throw and catch of C++ EXception / NOEXception

Enable/disable runtime type information RTTI = ON / RTTI = OFF

Figure 4.34 [CPU] Tab Dialog Box

Section 4 HEW

Rev.4.00 2007.02.02 4-38
REJ05B0463-0400

4.2 Specifying the Compiler Version from the Renesas Integrated Development Environment
Here, the method for specifying the compiler version within the Renesas Integrated
Development Environment is explained. Compiler versions can be specified by upgrading the Renesas Integrated
Development Environment.
If the workspace created in an old version (such as HEW1.1 or SH5.1B) is opened in a new version (such as HEW3.01 or
SH9.0), the following dialog box appears.

(1) Checking the project to be upgraded.

Check the name of the project to be upgraded.

Figure 4.35 High-performance Embedded Workshop

Section 4 HEW

Rev.4.00 2007.02.02 4-39
REJ05B0463-0400

(2) Specifying the Compiler Version

Select the Compiler version which can be upgraded.

Figure 4.36 Change Toolchain Version Dialog Box

(3) Confirmation message

The C/C++ Compiler Ver7.1 and later versions support only the file format ELF/DWARF for the object to be output.

The file format is changed to ELF/DWARF format at upgrading. If the current debugging environment does not support
the ELF/DWARF format, convert the ELF/DWARF format to the format supported by the debugging environment after
upgrading.

Figure 4.37 Confirmation Message Dialog Log

Section 4 HEW

Rev.4.00 2007.02.02 4-40
REJ05B0463-0400

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-1
REJ05B0463-0400

Section 5 Efficient Programming Techniques

The SuperH RISC engine C/C++ compiler has provided various optimizations, but through innovations in programming
even better performance can be obtained.

This section describes recommended techniques for efficient program for the user to try.

Criteria for evaluating programs include speed of program execution and program size.

The SuperH RISC engine C/C++ compiler can be instructed to perform optimizations which emphasize speed of execution,
by specifiying the "-speed" compile option.

The following are rules for efficient program creation.

(1) Rules for improving execution speed

Execution speed is determined by statements which are frequently executed and by complex statements. These should be
found, and special efforts should be made to improve them.

(2) Rules for reducing program size

In order to shrink program size, similar processing should be performed using common code, and complex functions
should be revised.

Because of compiler optimization, sometimes the actual execution speed differs from the theoretical speed. Various
techniques should be utilized, checking performance by actually running the program with the compiler, in order to
enhance performance.

The assembly language expansion code appearing in this section is obtained using the command line

shcΔ (C language file) Δ-code=asmcodeΔ-cpu=sh2

However, the "-cpu" option may differ the assembly language expansion code among the SH-1, SH-2, SH-2E, SH-3, and
SH-4. Future improvements in the compiler and other changes may result in changes to assembly language expansion
code.

The code size and execution speed values shown in this section were measured with the SH-1, SH-2, SH-2A, SH2A-FPU,
SH-2E, SH2-DSP (SH7065), SH-3, SH3-DSP, SH-4, SH4A, and SH4AL-DSP. Table 5.1 shows the CPU options during
compilation.

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-2
REJ05B0463-0400

Table 5.1 List of CPU Options

No. CPU Type CPU Option

1 SH-1 -cpu=sh1

2 SH-2 -cpu=sh2

3 SH-2A -cpu=sh2a

4 SH2A-FPU -cpu=sh2afpu

5 SH-2E -cpu=sh2e

6 SH-DSP(SH7065): -cpu=sh2

7 SH-3 -cpu=sh3

8 SH3-DSP -cpu=sh3

9 SH-4 -cpu=sh4Δ-fpu=single

10 SH-4A -cpu=sh4Δ-fpu=single

11 SH4AL-DSP -cpu=sh4aldsp

For the measuments with SH-2A, SH2A-FPU, SH3, SH3-DSP, SH-4, SH-4A, and SH4AL-DSP, cache misss are not
considered except for some measurements. The number of external memory access cycle is assumed to be 1.

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-3
REJ05B0463-0400

Table 5.2 lists Efficient Programming Techniques.

Table 5.2 List of Efficient Programming Techniques

No. Function ROM
Efficiency

RAM
Efficiency

Execution
speed

Referenced
Section

1 Local variables (data size) - 5.1.1

2 Global variables(sign) - 5.1.2

3 Data size (multiplication) - 5.1.3

4 Data structures - 5.1.4

5 Data alignment - - 5.1.5

6 Initial values and the const type - - 5.1.6

7 Local variables and global variables - 5.1.7

8 Use of pointer variables - 5.1.8

9 Referencing constants (1) - - 5.1.9

10 Referencing constants (2) - - 5.1.10

11 Variables which remain constant (1) - - - 5.1.11

12 Variables which remains constant (2) - - - 5.1.12

13 Incorporation of functions in modules - 5.2.1

14 Calling functions using pointer varialbles - 5.2.2

15 Function interface - 5.2.3

16 Tail recursion - 5.2.4

17 Using the FSQRT and FABS Instructions - 5.2.5

18 Movement of invariant expressions within loops - - 5.3.1

19 Reducing the number of loops x - 5.3.2

20 Use of multiplication and division - - - 5.3.3

21 Application of identities - - 5.3.4

22 Use of tables - 5.3.5

23 Conditionals - 5.3.6

24 Eliminating load/store instruction - 5.3.7

25 Branching - 5.4

26 Inline expansion of functions x - 5.5.1

27 Inline expansion with embeded assembly-language code - - 5.5.2

28 Offset Reference Using the Global Base Register (GBR) - 5.6.1

29 Selective Use of Global Base Register (GBR) Area - 5.6.2

30 Control of registe save/restore opetation - 5.7

31 Specification using two-byte addresses - - 5.8

32 Prefetch instruction - - 5.9.1

33 Tiling x - 5.9.2

34 Matrix operations - 5.10

35 Software pipelines - - 5.11

Note: In the table, circles () and X's have the following meanings.

 : Effective in enhancing performance

 X: May detract from performance

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-4
REJ05B0463-0400

5.1 Data Specification

Table 5.3 lists data-related matters that should be considered.

Table 5.3 Suggestions for Data Specification

Area Suggestion Referenced
Sections

Data type
specifiers,type
modifiers

If an attempt is made to reduce data sizes, the program size may
increase as a result. Data types should be declared according to
their use.

Program size may change depending on whether signed or
unsigned types are used; care should be taken in selecting data
types.

In the case of initialization data the values of which do not
change within the program, using the const operator will reduce
memory requirements.

5.1.1 to
5.1.3,
5.1.6

Data adjustment Data should be allocated such that unused areas do not appear
in memory.

5.1.5

Definition and
referencing of
structures

In some cases, data which is frequently referenced or modified
can be incorporated into structures and pointer variables used to
reduce program size.

Bit fields can be used to reduce data size.

5.1.4

Local variables
and global
variables

Local variables are more efficient; all variables which can be
used as local variables should be declared as local variables,
rather than as global variables.

5.1.7

Use of pointer
types

Programs which use array types should be modified to use
pointer types.

5.1.8

Use of internal
ROM/RAM

Since Internal memory is accessed more rapidly than external
memory common variables should be stored in internal memory.

-

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-5
REJ05B0463-0400

5.1.1 Local Variable (Data Size)

Important Points:

When local variables of size four bytes are used, ROM efficiency and speed of execution can be improved in some cases.

Description:

The general-purpose registers in the Renesas Tecnology SuperH RISC engine family are four bytes, and so the basic unit
of processing is four bytes.

Hence when there are operations employing one-byte or two-byte local variables, code is added to convert these to four
bytes. In some cases, taking four bytes for variables, even when only one or two bytes would suffice, can result in smaller
program size and faster execution.

Example of Use:

To calculate the sum of the integers from 1 to 10:

Code before optimization

int f (void)

{

 char a = 10;

 int c = 0;

 for (; a > 0; a--)

 c += a;

 return(c);

}

Expanded into assembly language code

(before optimization)

_f:

 MOV #10,R4

 MOV #0,R5

L217:

 EXTS.B R4,R3

 ADD R3,R5

 ADD #-1,R4

 EXTS.B R4,R2

 CMP/PL R2

 BT L217

 RTS

 MOV R5,R0

Code after optimization

int f(void)

{

 long a = 10;

 int c = 0;

 for (; a > 0; a--)

 c += a;

 return(c);

}

Expanded into assembly language code

(after optimization)

_f:

 MOV #10,R4

 MOV #0,R5

L217:

 ADD R4,R5

 ADD #-1,R4

 CMP/PL R4

 BT L217

 RTS

 MOV R5,R0

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-6
REJ05B0463-0400

Code Size and Execution Speed before and after Optimization:

Code Size [byte] Execution Speed [cycle] CPU Type

Before
Optimization

After
Optimization

Before
Optimization

After
Optimization

SH-1 18 16 73 63

SH-2 18 16 73 63

SH-2A 16 14 62 52

SH2AL-FPU 16 14 62 52

SH-2E 18 16 73 63

SH2-DSP(SH7065) 18 16 73 63

SH-3 18 16 73 63

SH3-DSP 18 16 73 63

SH-4 18 16 64 54

SH-4A 18 16 54 44

SH4AL-DSP 18 16 54 44

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-7
REJ05B0463-0400

5.1.2 Global Variables (Signs)

Important Points:

When a statement includes a type conversion for a global variable, if it makes no difference whether an integer variable is
signed or unsigned, declaring it as signed can improve ROM efficiency and execution speed.

Description:

When the Renesas Tecnology SuperH RISC engine family transfers one or two-byte data from memory using a MOV
instruction, an EXTU instruction is added for unsigned data. Hence efficiency is poorer for variables declared as unsigned
types than for signed types.

Example of Use:

To substitute at the sum of variable a and variable b for variable c:

Code before optimization

unsigned short a;

unsigned short b;

int c;

void f(void)

{

 c = b + a;

}

Expanded into assembly language code

(before optimization)

_f:

 MOV.L L11,R1

 MOV.L L11+4,R2

 MOV.W @R1,R5

 EXTU.W R5,R4

 MOV.L L11+8,R5

 MOV.W @R5,R7

 EXTU.W R7,R7

 ADD R7,R4

 RTS

 MOV.L R4,@R2

L11:

 .DATA.L _b

 .DATA.L _c

 .DATA.L _a

Code after optimization

short a;

short b;

int c;

void f(void)

{

 c = b + a;

}

Expanded into assembly language code

(after optimization)

_f:

 MOV.L L11,R1

 MOV.L L11+4,R4

 MOV.W @R1,R5

 MOV.W @R4,R7

 MOV.L L11+8,R2

 ADD R7,R5

 RTS

 MOV.L R5,@R2

L11:

 .DATA.L _b

 .DATA.L _a

 .DATA.L _c

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-8
REJ05B0463-0400

Code Size and Execution Speed before and after Optimization:

Code Size [byte] Execution Speed [cycle] CPU Type

Before
Optimization

After
Optimization

Before
Optimization

After
Optimization

SH-1 32 28 15 11

SH-2 32 28 15 11

SH-2A 32 28 8 8

SH2A-FPU 32 28 15 11

SH-2E 32 28 15 11

SH2-DSP(SH7065) 32 28 15 11

SH-3 32 28 15 11

SH3-DSP 32 28 15 13

SH-4 32 28 13 9

SH-4A 32 28 10 8

SH4AL-DSP 32 28 10 8

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-9
REJ05B0463-0400

5.1.3 Data Size (Multiplication)

Important Points:

In multiplication, when the multiplier or multiplicand is declared as an [unsigned] char or an [unsigned] short, execution
speed is improved.

Description:

In the SH-2, SH-2E, SH2-DSP,SH-3, SH-3DSP, SH-4, SH2A, SH2AL-DSP, and SH4AL-DSP when the multiplier and
multiplicand in multiplication are one or two bytes, the operation is expanded into MULS.W or MULU.W instructions;
but when either is four bytes, a MUL.L instruction is used.

In the case of the SH-1, when multiplier and multiplicand are one or two bytes, a MULS or MULU instruction is used; but
if they are four bytes, the run-time library is called.

Example of Use:

To take the product of the variables a and b, and return the result:

Note: In this example, the compile option is –cpu=sh1.

Code before optimization

int f(long a, long b)

{

 return(a * b);

}

Expanded into assembly language code

(before optimization)

_f:

 MOV.L L11,R2

 MOV R5,R1

 JMP @R2

 MOV R4,R0

L11:

 .DATA.L _muli

Code after optimization

int f(short a, short b)

{

 return(a * b);

}

Expanded into assembly language code

(after optimization)

_f:

 STS.L MACL,@-R15

 MULS R5,R4

 STS MACL,R0

 RTS

 LDS.L @R15+,MACL

Code Size and Execution Speed before and after Optimization:

Code Size [byte] Execution Speed [cycle] CPU Type

Before
Optimization

After
Optimization

Before
Optimization

After
Optimization

SH-1 12 10 23 8

 Note: a=1, b=2

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-10
REJ05B0463-0400

5.1.4 Data Structures

Important Points:

When related data is declared as a structure, in some cases execution speed is improved.

Description:

When data is referenced any number of times within the same function, by allocating the base address to a register and
creating a data structure, efficiency is improved. Efficiency is also improved when the data is passed as an parameter.
Frequently accessed data should be gathered at the beginning of the structure for best results.

When data is structured, it becomes easier to perform tuning such as modification of the data representation.

Example of Use:

To substitute numerical values into the variables a, b, and c:

Code before optimization

int a, b, c;

void f(void)

{

 a = 1;

 b = 2;

 c = 3;

}

Expanded into assembly language code

(before optimization)

_f:

 MOV.L L11,R7

 MOV #1,R1

 MOV.L R1,@R7

 MOV.L L11+4,R1

 MOV.L L11+8,R2

 MOV #2,R4

 MOV #3,R5

 MOV.L R4,@R1

 RTS

 MOV.L R5,@R2

L11:

 .DATA.L _a

 .DATA.L _b

 .DATA.L _c

Code after optimization

struct s{

 int a;

 int b;

 int c;

} s1;

void f(void)

{

 register struct s *p=&s1;

 p->a = 1;

 p->b = 2;

 p->c = 3;

}

Expanded into assembly language code

(after optimization)

_f:

 MOV.L L11,R2

 MOV #1,R1

 MOV #2,R4

 MOV #3,R5

 MOV.L R1,@R2

 MOV.L R4,@(4,R2)

 RTS

 MOV.L R5,@(8,R2)

L11:

 .DATA.L _s1

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-11
REJ05B0463-0400

Code Size and Execution Speed before and after Optimization:

Code Size [byte] Execution Speed [cycle] CPU Type

Before
Optimization

After
Optimization

Before
Optimization

After
Optimization

SH-1 32 20 12 9

SH-2 32 20 12 9

SH-2A 32 20 9 6

SH2A-FPU 32 20 9 6

SH-2E 32 20 12 9

SH2-DSP(SH7065) 32 20 12 9

SH-3 32 20 14 10

SH3-DSP 32 20 15 11

SH-4 32 20 8 7

SH-4A 32 20 10 8

SH4AL-DSP 32 20 10 8

5.1.5 Data Alignment

Important Points:

In some cases, the amount of RAM required can be reduced by changing the order of data declarations.

Description:

When declaring variables in types of different sizes, variables with the same size type should be declared consecutively.
By aligning data in this way, empty areas in the data space are minimized.

Example of Use:

To declare data totaling eight bytes:

Code before optimization

 char a;

 int b;

 short c;

 char d;

Data arrangement before optimization

Code after optimization

 char a;

 char d;

 short c;

 int b;

Data arrangement after optimization

a c d
b

a
b

c d

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-12
REJ05B0463-0400

5.1.6 Initial Values and the Const Type

Important Points:

Initial values which do not change during program execution should be declared using const.

Description:

Initialization data is normally transferred from ROM to RAM on startup, and the RAM area is used for processing. Hence,
if the values of initialization data are not changed within the program, the prepared RAM area is wasted. By using the
const operator when declaring initialization data, transfer to RAM on startup is prevented, and the amount of memory used
is reduced.

In addition, by creating programs which as a rule do not change initial values, it is easy to prepare the program for storage
in ROM.

Example of Use:

To specify five pieces of initialization data:

Code before optimization

char a[] =

 {1, 2, 3, 4, 5};

Initial value is transferred from ROM to RAM before processing.

Code after optimization

const char a[] =

 {1, 2, 3, 4, 5};

Initial value stored in ROM is used for processing.

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-13
REJ05B0463-0400

5.1.7 Local Variables and Global Variables

Important Points:

If locally-used variables such as temporary variables or loop counters are declared as local variables, execution speed can
be improved.

Description:

Variables which can be used as local variables should always be declared as local variables, never as global variables. The
value of a global variable may change as the result of a function call or a pointer operation, and so global variables are not
subject to global optimization.

Use of local variables has the following advantages.

a. Low access cost

b. The possibility of register allocation

c. Optimization

Example of Use:

To perform ten loop repetitions:

Code before optimization

int i;

void f(void)

{

 for (i = 0; i < 10; i++);

}

Expanded into assembly language code

(before optimization)

_f:

 MOV.L L218+2,R4

 MOV #0,R3

 MOV #10,R5

 BRA L216

 MOV.L R3,@R4

L217:

 MOV.L @R4,R1

 ADD #1,R1

 MOV.L R1,@R4

L216:

 MOV.L @R4,R3

 CMP/GE R5,R3

 BF L217

 RTS

 NOP

L218:

 .DATA.W 0

 .DATA.L _i

Code after optimization

void f(void)

{

 int i;

 for (i = 0; i < 10; i++);

}

Expanded into assembly language code

(after optimization)

_f:

 MOV #10,R4

L216:

 DT R4

 BF L216

 RTS

 NOP

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-14
REJ05B0463-0400

Code Size and Execution Speed before and after Optimization:

Code Size [byte] Execution Speed [cycle] CPU Type

Before
Optimization

After
Optimization

Before
Optimization

After
Optimization

SH-1 20 12 54 52

SH-2 20 10 45 42

SH-2A 20 8 42 42

SH2A-FPU 20 8 42 42

SH-2E 20 10 45 42

SH2-DSP(SH7065) 20 10 54 51

SH-3 20 10 45 42

SH3-DSP 20 10 53 51

SH-4 20 10 34 33

SH-4A 20 10 25 23

SH4AL-DSP 20 10 50 46

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-15
REJ05B0463-0400

5.1.8 Use of Pointer Variables

Important Points:

In some cases, rewriting a program which uses arrays into that uses pointer types can improve execution speed. (Ver.6)

Description:

In referencing an array element a[i], code is generated which adds the address of the ith element to the address of a[0]. By
using pointer variables, the number of variables and operations can sometimes be reduced.

Example of Use:

To calculate the total for an array:

Code before optimization

int f1(int data[], int count)

{

 int ret = 0, i;

 for (i = 0; i < count; i++)

 ret += data[i]*i;

 return ret;

}

Expanded into assembly language code

(before optimization)

_f1:

 STS.L MACL,@-R15

 MOV #0,R7

 CMP/PL R5

 BF/S L219

 MOV R7,R6

L220:

 MOV R6,R0

 SHLL2 R0

 MOV.L @(R0,R4),R3

 MUL.L R6,R3

 ADD #1,R6

 STS MACL,R3

 CMP/GE R5,R6

 BF/S L220

 ADD R3,R7

L219:

 MOV R7,R0

 RTS

 LDS.L @R15+,MACL

Code after optimization

int f2(int *data, int count)

{

 int ret = 0, i;

 for (i = 0; i < count; i++)

 ret += *data++ *i;

 return ret;

}

Expanded into assembly language code

(after optimization)

_f2:

 STS.L MACL,@-R15

 MOV #0,R7

 CMP/PL R5

 BF/S L221

 MOV R7,R6

L222:

 MOV.L @R4+,R3

 MUL.L R6,R3

 ADD #1,R6

 STS MACL,R3

 CMP/GE R5,R6

 BF/S L222

 ADD R3,R7

L221:

 MOV R7,R0

 RTS

 LDS.L @R15+,MACL

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-16
REJ05B0463-0400

Code Size and Execution Speed before and after Optimization:

Code Size [byte] Execution Speed [cycle] CPU Type

Before
Optimization

After
Optimization

Before
Optimization

After
Optimization

SH-1 40 36 318 318

SH-2 34 30 179 159

SH-2E 34 30 178 158

SH2-DSP(SH7065) 34 30 207 187

SH-3 34 30 149 129

SH3-DSP 34 30 168 148

SH-4 34 30 117 97

 Note: The number of cycles is for count=10.

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-17
REJ05B0463-0400

5.1.9 Referencing Constants (1)

Important Points:

Code size can be reduced by using a single byte to represent immediate values wherever possible.

Description:

When a single-byte immediate value is used, it is embedded in the code. On the other hand, two-byte and four-byte
immediate values are placed in memory and then accessed.

Example of Use:

To substitute an immediate value into the variable:

Source code (1)

int i;

void f(void)

{

 i = 0x10000;

}

Expanded into assembly language code (1)

_f:

 MOV #1,R2

 MOV.L L12+2,R6

 SHLL16 R2

 RTS

 MOV.L R2,@R6

L12:

 .RES.W 1

 .DATA.L _i

Source code (2)

int i;

void f(void)

{

 i = 0x01;

}

Expanded into assembly language code (2)

_f:

 MOV.L L12+2,R6

 MOV #1,R2

 RTS

 MOV.L R2,@R6

L12:

 .RES.W 1

 .DATA.L _i

Code Size and Execution Speed before and after Optimization:

Code Size [byte] Execution Speed [cycle] CPU Type

Source code (1) Source code (2) Source code (1) Source code (2)

SH-1 16 12 7 5

SH-2 16 12 7 5

SH-2A 16 12 4 4

SH2AL-FPU 16 12 4 4

SH-2E 16 12 7 5

SH2-DSP(SH7065) 16 12 7 6

SH-3 16 12 7 5

SH3-DSP 16 12 6 6

SH-4 16 12 5 4

SH-4A 16 12 5 4

SH4AL-DSP 16 12 5 4

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-18
REJ05B0463-0400

5.1.10 Referencing Constants (2)

Important Points:

Expressions using constants may be combined without an increase in the size of the code generated.

Description:

The constant convolution feature is available. Even if a constant is represented as an expression, it is calculated at
compilation and is not reflected in the code generated.

Example of Use:

To substitute a constant for the variable a:

Code before optimization

#define MASK1 0x1000

#define MASK2 0x10

int a = 0xffffffff;

void f(void)

{

 int x;

 x = MASK1;

 x |= MASK2;

 a &= x;

}

Expanded into assembly language code

(before optimization)

_f:

 MOV.W L217,R4

 MOV.L L217+4,R5

 MOV.L @R5,R3

 AND R4,R3

 RTS

 MOV.L R3,@R5

L217:

 .DATA.W H'1010

 .DATA.W 0

 .DATA.L _a

Code after optimization

#define MASK1 0x1000

#define MASK2 0x10

int a = 0xffffffff;

void f(void)

{

 a &= MASK1 | MASK2;

}

Expanded into assembly language code

(after optimization)

_f:

 MOV.L L216+4,R4

 MOV.W L216,R3

 MOV.L @R4,R2

 AND R3,R2

 RTS

 MOV.L R2,@R4

L216:

 .DATA.W H'1010

 .DATA.W 0

 .DATA.L _a

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-19
REJ05B0463-0400

Code Size and Execution Speed before and after Optimization:

Code Size [byte] Execution Speed [cycle] CPU Type

Before
Optimization

After
Optimization

Before
Optimization

After
Optimization

SH-1 20 20 9 9

SH-2 20 20 9 9

SH-2A 20 20 7 7

SH2A-FPU 20 20 7 7

SH-2E 20 20 9 9

SH2-DSP(SH7065) 20 20 9 9

SH-3 20 20 9 9

SH3-DSP 20 20 9 9

SH-4 20 20 8 8

SH-4A 20 20 6 6

SH4AL-DSP 20 20 6 6

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-20
REJ05B0463-0400

5.1.11 Variables Which Remain Constant (1)

Important Points:

When the value of a variable remains constant, it is treated as a constant; there is no effect on memory efficiency or
execution speed even if the variable is not calculated in advance.

Description:

The constant convolution feature applies to variables which behave as constants also, tracing the value of the variable and
performing constant calculations. Hence there is no increase in generated code size even if the source code is written so as
to be easily readable.

Example of Use:

To change a return value according to the result for the variable rc:

Calculate the variable value in

advance

Source code (1)

#define ERR -1

#define NORMAL 0

int f(void)

{

 int rc, code;

 rc = 0;

 code = NORMAL;

 return(code);

}

Expanded into assembly language code (1)

_f:

 RTS

 MOV #0,R0

Have the C compiler calculate the

value

Source code (2)

#define ERR -1

#define NORMAL 0

int f(void)

{

 int rc, code;

 rc = 0;

 if (rc) code = ERR;

 else code = NORMAL;

 return(code);

}

Expanded into assembly language code (2)

_f:

 RTS

 MOV #0,R0

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-21
REJ05B0463-0400

Code Size and Execution Speed before and after Optimization:

Code Size [byte] Execution Speed [cycle] CPU Type

Source code
(1)

Source code
(2)

Source code
(1)

Source code
(2)

SH-1 4 4 3 3

SH-2 4 4 3 3

SH-2A 4 4 4 4

SH2A-FPU 4 4 4 4

SH-2E 4 4 3 3

SH2-DSP(SH7065) 4 4 3 3

SH-3 4 4 3 3

SH3-DSP 4 4 3 3

SH-4 4 4 3 3

SH-4A 4 4 2 2

SH4AL-DSP 4 4 2 2

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-22
REJ05B0463-0400

5.1.12 Variables Which Remain Constant (2)

Important Points:

When the value of a variable remains constant, it is treated as a constant; there is no effect on memory efficiency or
execution speed even if the variable is not calculated in advance.

Description:

The constant convolution feature applies to variables which behave as constants also, tracing the value of the variable and
performing constant calculations. Hence there is no increase in generated code size even if the source code is written so as
to be easily readable.

Example of Use:

To calculate the product of the variables a and c, and substitute the result into the variable b.

Calculate the variable value in

advance

Source code (1)

int f(void)

{

 int a, b;

 a = 3;

 b = 15;

 return b;

}

Expanded into assembly language code (1)

_f:

 RTS

 MOV #15,R0

Have the C compiler calculate the value

Source code (2)

int f(void)

{

 int a, b, c;

 a = 3;

 c = 5;

 b = c * a;

 return b;

}

Expanded into assembly language code (2)

_f:

 RTS

 MOV #15,R0

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-23
REJ05B0463-0400

Code Size and Execution Speed before and after Optimization:

Code Size [byte] Execution Speed [cycle] CPU Type

Source code
(1)

Source code
(2)

Source code
(1)

Source code
(2)

SH-1 4 4 3 3

SH-2 4 4 3 3

SH-2A 4 4 4 4

SH2A-FPU 4 4 4 4

SH-2E 4 4 3 3

SH2-DSP(SH7065) 4 4 3 3

SH-3 4 4 3 3

SH3-DSP 4 4 3 3

SH-4 4 4 3 3

SH-4A 4 4 2 2

SH4AL-DSP 4 4 2 2

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-24
REJ05B0463-0400

5.2 Function Calls

Matters that should be considered when calling functions are listed in table 5.4.

Table 5.4 Suggestions Related to Function Calls

Area Suggestion Referenced Sections

Function position Closely-related functions should be combined in a single file. 5.2.1

Interface The number of parameters should be strictly limited (up to
four) such that they are all allocated to registers.

When there are a large number of parameters, they should be
incorporated in a structure, and passed using pointers.

5.2.3

Function division In some cases, various types of optimization are not
performed effectively for extremely large functions. Using a
feature called tail recursion, functions should be divided until
they are sufficiently small that optimization can be performed
effectively.

5.2.4

Replacement by
macros

When a function is called frequently, it can be replaced by a
macro to speed execution. However, the use of a macro
increases program size, and so macros should be used
according to the circumstances.

-

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-25
REJ05B0463-0400

5.2.1 Incorporation of Functions in Modules

Important Points:

Closely-related functions can be combined in a single file to improve program execution speed.

Description:

When functions in different files are called, a JSR instruction is used to expand them; but if functions in the same file are
called and the calling range is narrow, a BSR instruction is used, resulting in faster execution and more compact object
generation.

By incorporating functions into modules, modifications for tune-up purposes are easier.

Example of Use:

To call the function g from the function f:

Code before optimization

extern g(void);

int f(void)

{

 g();

}

Expanded into assembly language code

(before optimization)

_f:

 MOV.L L216+2,R3

 JMP @R3

 NOP

L216:

 .DATA.W 0

 .DATA.L _g

Code after optimization

int g(void)

{

}

int f(void)

{

 g();

}

Expanded into assembly language code

(after optimization)

_g:

 RTS

 NOP

_f:

 BRA _g

 NOP

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-26
REJ05B0463-0400

Code Size and Execution Speed before and after Optimization:

Code Size [byte] Execution Speed [cycle] CPU Type

Before
Optimization

After
Optimization

Before
Optimization

After
Optimization

SH-1 12 4 8 6

SH-2 12 4 8 6

SH-2A 12 4 8 6

SH2A-FPU 12 4 8 6

SH-2E 12 4 8 6

SH2-DSP(SH7065) 12 4 9 6

SH-3 12 4 8 6

SH3-DSP 12 4 9 6

SH-4 12 4 8 5

SH-4A 12 4 5 4

SH4AL-DSP 12 4 5 4

Comments:

The BSR instruction can call functions within a range of ±4096 bytes (±2048 instructions).

If the file size is too large, the BSR instruction cannot be used effectively.

In such cases, it is recommended that functions which call each other frequently be positioned sufficiently closely so that
the BSR instruction can be used.

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-27
REJ05B0463-0400

5.2.2 Calling Functions Using Pointer Variables

Important Points:

Instead of using a switch statement for branching, tables can be used to improve execution speed.

Description:

When processing by each case of a switch statement is essentially the same, the use of a table should be studied.

Example of Use:

To change the called function according to the value of the variable a:

Code before optimization

extern void nop(void);

extern void stop(void);

extern void play(void);

void f(int a)

{

 switch (a)

 {

 case 0:

 nop(); break;

 case 1:

 stop(); break;

 case 2:

 play(); break;

 }

}

Expanded into assembly language code

(before optimization)

_f:

 MOV R4,R0

 CMP/EQ #0,R0

 BT L220

 CMP/EQ #1,R0

 BT L221

 CMP/EQ #2,R0

 BT L222

 BRA L223

 NOP

L220:

 MOV.L L224,R3

 JMP @R3

 NOP

L221:

 MOV.L L224+4,R3

 JMP @R3

 NOP

Code after optimization

extern void nop(void);

extern void stop(void);

extern void play(void);

static int (*key[3])() =

 {nop, stop, play};

void f(int a)

{

 (*key[a])();

}

Expanded into assembly language code

(after optimization)

_f:

 MOV.L R4,@-R15

 MOV R4,R3

 MOV.L L241+2,R0

 SHLL2 R3

 MOV.L @(R0,R3),R3

 JMP @R3

 ADD #4,R15

L241:

 .DATA.W 0

 .DATA.L _$key

 .SECTION D,DATA,ALIGN=4

_$key:

 .DATA.L _nop,_stop,_play

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-28
REJ05B0463-0400

L222:

 MOV.L L224+8,R3

 JMP @R3

 NOP

L223:

 RTS

 NOP

L224:

 .DATA.L _nop

 .DATA.L _stop

 .DATA.L _play

Code Size and Execution Speed before and after Optimization:

Code Size [byte] Execution Speed [cycle] CPU Type

Before
Optimization

After
Optimization

Before
Optimization

After
Optimization

SH-1 52 16 15 11

SH-2 52 16 15 11

SH-2A 52 16 14 10

SH2A-FPU 52 16 14 10

SH-2E 52 16 15 11

SH2-DSP(SH7065) 52 16 16 12

SH-3 52 16 15 11

SH3-DSP 52 16 16 13

SH-4 52 16 13 10

SH-4A 52 16 10 8

SH4AL-DSP 52 16 10 8

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-29
REJ05B0463-0400

5.2.3 Function Interface

Important Points:

By taking care in declaring the parameters of a function, the amount of RAM required can be reduced, and execution
speed improved.

For details, refer to section, 3.15.1 (2), Function calling interface.

Description:

Function parameters should be selected carefully such that all parameters are allocated to registers (up to four parameters).
If numerous parameters must be used, they should be incorporated in a structure and passed using pointers. If all
parameters fit into registers, function calls and processing at function entry and exit points are simplified. Stack use is also
reduced.

The registers R0 to R3 are work registers, R4 to R7 are for parameters, and R8 to R14 are for local variables.

In the SH-2E, SH-4, and SH-4A the floating point registers are used to handle floating point data. Registers FR0 to FR3
are work registers, FR4 to FR11 are for parameters, and FR12 to FR14 are for local variables.

Example of Use:

The number of parameters for function f is five, more than the number of parameter registers.

Code before optimization

int f(int, int, int, int, int);

void g(void)

{

 f(1, 2, 3, 4, 5);

}

Expanded into assembly language code

(before optimization)

_g:

 STS.L PR,@-R15

 MOV #5,R3

 MOV.L L216+2,R2

 MOV #4,R7

 MOV.L R3,@-R15

 MOV #3,R6

 MOV #2,R5

 JSR @R2

 MOV #1,R4

 ADD #4,R15

 LDS.L @R15+,PR

 RTS

Code after optimization

struct b{

 int a, b, c, d, e;

} b1 = {1, 2, 3, 4, 5};

int f(struct b *p);

void g(void)

{

 f(&b1);

}

Expanded into assembly language code

(after optimization)

_g:

 MOV.L L217,R4

 MOV.L L217+4,R3

 JMP @R3

 NOP

L217:

 .DATA.L _b1

 .DATA.L _f

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-30
REJ05B0463-0400

 NOP

L216:

 .DATA.W 0

 .DATA.L _f

Code Size and Execution Speed before and after Optimization:

Code Size [byte] Execution Speed [cycle] CPU Type

Before
Optimization

After
Optimization

Before
Optimization

After
Optimization

SH-1 32 16 17 7

SH-2 32 16 20 10

SH-2A 28 16 17 9

SH2A-FPU 28 16 17 9

SH-2E 32 16 20 10

SH2-DSP(SH7065) 32 16 28 14

SH-3 32 16 22 10

SH3-DSP 32 16 25 15

SH-4 32 16 18 10

SH-4A 32 16 15 6

SH4AL-DSP 32 16 15 6

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-31
REJ05B0463-0400

5.2.4 Tail Recursion

Important Points:

Execution speed does not suffer even if large functions are broken up into a series of smaller functions, with the next
function being called at the end of the previous function.

Description:

When the function funk3() is called within the function funk2(), which is itself called by function funk1(), control is
passed to function funk3() by a BRA or JMP instruction. Normally, after the completion of processing by function funk3(),
an RTS instruction returns control to function funk2(), and when processing by function funk2() is completed, another
RTS instruction returns control to function funk1(). (See to left side of figure 5.1.)

Here, when funk3() is called at the end of function funk2(), control is transferred to funk3() by a BSR or JSR instruction,
and on completion of processing by funk3(), control can be returned directly to the function funk1() by an RTS instruction.
(See right side of figure 5.1.) This feature is called tail recursion.

In some cases, various types of optimization are not performed effectively for extremely large modules. By making use of
tail recursion, larger modules can be broken up into modules small enough that optimization is effective, for enhanced
performance.

Figure 5.1 Tail Recursion

Example of Use:

To call the functions g and h from the function f: When returning from g and h, control is passed directly to the function
which called f, bypassing f itself.

Source code before application (Ver.2.0)

void f(int x)

{

 if (x==1)

 g();

 else

 h();

}

Expanded into assembly language code

(before application)

_f:

Source code after application (Ver.3.0 or later)

void f(int x)

{

 if (x==1)

 g();

 else

 h();

}

Expanded into assembly language code (after application)

_f:

BSR BSR

RTS RTS

funk1() funk2() funk3()

BSR BRA

RTS

funk1() funk2() funk3()

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-32
REJ05B0463-0400

 STS.L PR,@-R15

 MOV R4,R0

 CMP/EQ #1,R0

 BF L207

 BSR _g

 NOP

 BRA L208

 NOP

L207:

 BSR _h

 NOP

L208:

 LDS.L @R15+,PR

 RTS

 NOP

 MOV R4,R0

 CMP/EQ #1,R0

 BF L12

 BRA _g

 NOP

L12:

 BRA _h

 NOP

Code Size and Execution Speed before and after Optimization:

Code Size [byte] Execution Speed [cycle] CPU Type

Before
Application

After
Application

Before
Application

After
Application

SH-2 24 14 14 8

 Note: x = 2

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-33
REJ05B0463-0400

5.2.5 Using the FSQRT and FABS Instructions

Important Points:

Instead of calling the mathematical functions sqrt and fabs from the library,

if targeting the SH-4, use the FSQRT and FABS instructions in the instruction sets for those processors.

Description:

The fabs (floating point absolute value) function is part of the mathematical function library; but the library is not
necessary in programs without function addresses, and so a direct FABS instruction is used instead.

However, use of this instruction requires inclusion of <math.h> or of <mathf.h>.

If these are not included, the compiler calls fabs as an ordinary function, and the resulting library call detracts from
performance.

There is no need for the user to define a macro.

<Macro example>

#define fabs(a) ((a)>=0?0:(-(a))) /* Not expanded into a FABS instruction */

Example of Use:

Below is shown the difference when <math.h> is not included (a library call results) and when it is included (a FABS
instruction is used).

Note: In this example, the following compile option is used.

 -cpu=sh4Δ-fpu=single

When using fabsf(), <mathf.h> must be included.

Code before optimization

float a,b;

f()

{

 :

 :

b=fabs(a);

 :

}

Expanded into assembly language code

(before optimization)

_f:

 STS.L PR,@-R15

 MOV.L L12,R6

 MOV.L L12+4,R1

 JSR @R1

 FMOV.S @R6,FR4

 MOV R0,R4

 LDS R4,FPUL

Code after optimization

#include <math.h>

float a,b;

f()

{

 :

 :

b=fabs(a);

 :

}

Expanded into assembly language code

(after optimization)

_f:

 MOV.L L12,R1

 MOV.L L12+8,R4

 FMOV.S @R1,FR9

 FABS FR9

 RTS

 FMOV.S FR9,@R4

_L12:

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-34
REJ05B0463-0400

 FLOAT FPUL,FR8

 MOV.L L12+8,R5

 LDS.L @R15+,PR

 RTS

 FMOV.S FR8,@R5

L12:

 .DATA.L _a

 .DATA.L _fabs

 .DATA.L _bW

 .DATA.L _a

 .DATA.L _fabs

 .DATA.L _bW

Code Size and Execution Speed before and after Optimization:

Code Size [byte] Execution Speed [cycle] CPU Type

Before
Optimization

After
Optimization

Before
Optimization

After
Optimization

SH2A-FPU 68 40 49 21

SH-2E 36 20 33 9

SH-4 36 20 29 8

SH-4A 36 20 22 6

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-35
REJ05B0463-0400

5.3 Operations

Table 5.5 lists areas relating to operations that should be given consideration.

Table 5.5 Suggestions Related to Operations

Area Suggestion Referen
ced

Section

Unification, movement of
invariant or common
expressions

The possibility of substituting into the temporary
variables of partial equations common to a function
should be studied.

Any invariant expressions within a for statement should
be moved outside the for statement.

5.3.1

Reduction of number of
loop iterations

The possibility of merging loop statements with
conditions that are identical or similar should be studied.

Try expanding loop statements.

5.3.2

Optimization of operations Combine identical operations to reduce the number of
operation iterations.

5.3.3

Use of identities The possibility of using mathematical identities to reduce
the number of operations should be studied.

5.3.4

Use of fast algorithms The use of efficient algorithms requiring little processing
time, such as quick sorts of an array, should be studied.

-

Utilization of tables When processing for each case of a switch statement is
nearly the same, the use of tables should be studied.

Execution speed can sometimes be improved by
performing operations in advance, storing the results in a
table, and referring to values in the table when the
operation results are needed. However, this method
requires increased amounts of ROM, and so should be
used with due attention paid to the balance between
required execution speed and available ROM.

5.3.5

Conditionals When making comparisons with a constant, if the value
of the constant is 0, more efficient code is generated.

5.3.6

Load/store elimination By eliminating memory access (load, store) instructions,
the number of execution cycles can be reduced.

5.3.7

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-36
REJ05B0463-0400

5.3.1 Movement of Invariant Expressions within Loop

Important Points:

When, in a loop, there is an expression the value of which does not change, execution speed can be improved by
calculating the expression before the loop starts. (Ver.6)

Description:

By calculating the value of an expression which does not change within a loop prior to the start of the loop, calculations
during each iteration can be omitted, and the number of execution instructions can be reduced.

Example of Use:

To substitute the array element b[5] into the array a[]:

Code before optimization

extern int a[100], b[100];

void f(void)

{

 int i,j;

 j = 5;

 for (i=0; i < 100; i++)

 a[i] = b[j];

}

Expanded into assembly language code

(before optimization)

_f:

 MOV.L L240+4,R5

 MOV R5,R4

 MOV.W L240,R6

 ADD R5,R6

 MOV.L L240+8,R5

L239:

 MOV.L @R5,R3

 MOV.L R3,@R4

 ADD #4,R4

 CMP/HS R6,R4

 BF L239

 RTS

 NOP

L240:

 .DATA.W H'0190

 .DATA.W 0

 .DATA.L _a

 .DATA.L H'00000014+_b

Code after optimization

extern int a[100], b[100];

void f(void)

{

 int i,j,t;

 j = 5;

 for (i=0, t=b[j];i < 100; i++)

 a[i] = t;

}

Expanded into assembly language code

(after optimization)

_f:

 MOV.L L241+4,R5

 MOV.L @R5,R5

 MOV.L L241+8,R7

 MOV R7,R4

 MOV.W L241,R6

 ADD R7,R6

L240:

 MOV.L R5,@R4

 ADD #4,R4

 CMP/HS R6,R4

 BF L240

 RTS

 NOP

L241:

 .DATA.W H'0190

 .DATA.W 0

 .DATA.L H'00000014+_b

 .DATA.L _a

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-37
REJ05B0463-0400

Code Size and Execution Speed before and after Optimization:

Code Size [byte] Execution Speed [cycle] CPU Type

Before
Optimization

After
Optimization

Before
Optimization

After
Optimization

SH-1 36 36 809 611

SH-2 36 36 809 611

SH-2E 36 36 809 611

SH2-DSP(SH7065) 36 36 908 611

SH-3 36 36 909 711

SH3-DSP 36 36 1008 711

SH-4 36 36 608 407

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-38
REJ05B0463-0400

5.3.2 Reducing the Number of Loops

Important Points:

When a loop is expanded, execution speed can be improved.

Description:

Loop expansion is especially effective for inner loops. Loop expansion results in an increase in program size, and so this
technique should be used only when there is a need to improve execution speed at the expense of larger program size.

Example of Use:

To initialize the array a[]:

Code before optimization

extern int a[100];

void f(void)

{

 int i;

 for (i = 0; i < 100; i++)

 a[i] = 0;

}

Expanded into assembly language code

(before optimization)

_f:

 MOV.L L238+2,R7

 MOV #0,R5

 MOV.W L238,R6

 MOV R7,R4

 ADD R7,R6

L237:

 MOV.L R5,@R4

 ADD #4,R4

 CMP/HS R6,R4

 BF L237

 RTS

 NOP

L238:

 .DATA.W H'0190

 .DATA.L _a

Code after optimization

extern int a[100];

void f(void)

{

 int i;

 for (i = 0; i < 100; i+=2)

 {

 a[i] = 0;

 a[i+1] = 0;

 }

}

Expanded into assembly language code

(after optimization)

_f:

 MOV.L L239+2,R7

 MOV #0,R5

 MOV.W L239,R0

 MOV R7,R6

 ADD #4,R6

 MOV R7,R4

 ADD R7,R0

L238:

 MOV.L R5,@R4

 MOV.L R5,@R6

 ADD #8,R4

 CMP/HS R0,R4

 BF/S L238

 ADD #8,R6

 RTS

 NOP

L239:

 .DATA.W H'0190

 .DATA.L _a

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-39
REJ05B0463-0400

Code Size and Execution Speed before and after Optimization:

Code Size [byte] Execution Speed [cycle] CPU Type

Before
Optimization

After
Optimization

Before
Optimization

After
Optimization

SH-1 24 28 805 455

SH-2 24 24 506 356

SH-2A 20 24 403 253

SH2A-FPU 20 24 403 253

SH-2E 24 24 506 356

SH2-DSP(SH7065) 24 24 605 605

SH-3 24 24 606 407

SH3-DSP 24 24 705 503

SH-4 24 24 305 204

SH-4A 24 24 405 255

SH4AL-DSP 24 24 405 255

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-40
REJ05B0463-0400

5.3.3 Use of Multiplication and Division

Important Points:

When unsure whether to use multiplication/division or shift operations, try using multiplication and division.

Description:

Programs should always be written to make them easy to read. In multiplication and division operations, when the
multiplier/divisor and the multiplicand/dividend are unsigned, these operations are replaced by a combination of shift
operations as a result of compiler optimization.

Example of Use:

To execute multiplication and division operations:

Source code(multiplication)

unsigned int a;

int f(void)

{

 return(a*4);

}

Expanded into assembly language code

(after optimization)

_f:

 MOV.L L217,R3

 MOV.L @R3,R0

 RTS

 SHLL2 R0

L217:

 .DATA.L _a

Source code (division)

unsigned int b;

int f(void)

{

 return(b/2);

}

Expanded into assembly language code

(after optimization)

_f:

 MOV.L L217,R3

 MOV.L @R3,R0

 RTS

 SHLR R0

L217:

 .DATA.L _b

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-41
REJ05B0463-0400

5.3.4 Application of Identities

Important Points:

By applying mathematical identities, the number of operations can sometimes be reduced, improving execution speed.

Description:

Caution should be exercised, since numerical identities, while analytically simple, can result in an increased number of
operations in actual numerical application.

Example of Use:

To calculate the sum of integers from 1 to n:

Code before optimization

int f(long n)

{

 int i, s;

 for (s = 0, i = 1;

 i <= n; i++)

 s += i;

 return(s);

}

Expanded into assembly language code

(before optimization)

_f:

 MOV #1,R5

 CMP/GT R4,R5

 BT/S L218

 MOV #0,R6

L219:

 ADD R5,R6

 ADD #1,R5

 CMP/GT R4,R5

 BF L219

L218:

 RTS

 MOV R6,R0

Code after optimization

int f(long n)

{

 return(n*(n+1) >> 1);

}

Expanded into assembly language code

(after optimization)

_f:

 STS.L MACL,@-R15

 MOV R4,R0

 ADD #1,R0

 MUL.L R4,R0

 STS MACL,R0

 SHAR R0

 RTS

 LDS.L @R15+,MACL

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-42
REJ05B0463-0400

Code Size and Execution Speed before and after Optimization:

Code Size [byte] Execution Speed [cycle] CPU Type

Before
Optimization

After
Optimization

Before
Optimization

After
Optimization

SH-1 18 24 609 31

SH-2 18 16 609 21

SH-2A 16 12 608 10

SH2A-FPU 16 12 608 10

SH-2E 18 16 609 14

SH2-DSP(SH7065) 18 16 710 15

SH-3 18 16 609 18

SH3-DSP 18 16 710 18

SH-4 18 16 507 14

SH-4A 18 16 407 8

SH4AL-DSP 18 16 407 8

 Note: Number of cycles n = 100

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-43
REJ05B0463-0400

5.3.5 Use of Tables

Important Points:

Instead of using a switch statement for branching, tables can be used to improve execution speed.

Description:

When processing by each case of a switch statement is essentially the same, the use of a table should be studied.

Example of Use:

To change the character constant to be substituted into the variable ch according to the value of the variable i:

Code before optimization

char f (int i)

{

 char ch;

 switch (i)

 {

 case 0:

 ch = ‘a’; break;

 case 1:

 ch = ‘x’; break;

 case 2:

 ch = ‘b’; break;

 }

 return (ch);

}

Expanded into assembly language code

(before optimization)

_f:

 MOV R4,R0

 CMP/EQ #0,R0

 BT L218

 CMP/EQ #1,R0

 BT L219

 CMP/EQ #2,R0

 BT L220

 BRA L221

 NOP

L218:

 BRA L221

 MOV #97,R4

L219:

 BRA L221

 MOV #120,R4

L220:

 MOV #98,R4

Code after optimization

char chbuf[] = { ‘a’, ‘x’, ‘b’ };

char f(int i)

{

 return (chbuf[i]);

}

Expanded into assembly language code

(after optimization)

_f:

 MOV.L L218+2,R0

 RTS

 MOV.B @(R0,R4),R0

L218:

 .DATA.W 0

 .DATA.L _chbuf

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-44
REJ05B0463-0400

L221:

 RTS

 MOV R4,R0

Code Size and Execution Speed before and after Optimization:

Code Size [byte] Execution Speed [cycle] CPU Type

Before
Optimization

After
Optimization

Before
Optimization

After
Optimization

SH-1 32 12 13 5

SH-2 32 12 13 5

SH-2A 30 12 11 7

SH2A-FPU 30 12 11 7

SH-2E 32 12 13 5

SH2-DSP(SH7065) 32 12 14 5

SH-3 32 12 13 5

SH3-DSP 32 12 14 6

SH-4 32 12 10 4

SH-4A 32 12 10 4

SH4AL-DSP 32 12 10 4

 Note: i = 2

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-45
REJ05B0463-0400

5.3.6 Conditionals

Important Points:

When making comparisons with a constant, if the value of the constant is 0, more efficient code is generated.

Description:

When making comparisons with zero, an instruction to load the constant value is not generated, and so the length of the
code is shorter than in comparisons with constants of value other than 0. Condionals for loops and if statements should be
designed such that comparisons are with 0.

Example of Use:

To change the return value according to whether the value of an parameter is 1 or greater:

Code before optimization

int f (int x)

{

 if (x >= 1)

 return 1;

 else

 return 0;

}

Expanded into assembly language code

(before optimization)

_f:

 MOV #1,R3

 CMP/GE R3,R4

 MOVT R0

 RTS

 NOP

Code after optimization

int f (int x)

{

 if (x > 0)

 return 1;

 else

 return 0;

}

Expanded into assembly language code

(after optimization)

_f:

 CMP/PL R4

 MOVT R0

 RTS

 NOP

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-46
REJ05B0463-0400

Code Size and Execution Speed before and after Optimization:

Code Size [byte] Execution Speed [cycle] CPU Type

Before
Optimization

After
Optimization

Before
Optimization

After
Optimization

SH-1 8 6 5 4

SH-2 8 6 5 4

SH-2A 8 6 6 5

SH2A-FPU 8 6 6 5

SH-2E 8 6 5 4

SH2-DSP(SH7065) 8 6 5 4

SH-3 8 6 5 4

SH3-DSP 8 6 5 4

SH-4 8 6 5 4

SH-4A 8 6 4 3

SH4AL-DSP 8 6 4 3

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-47
REJ05B0463-0400

5.3.7 Eliminating Load/Store Instructions

Important Points:

By eliminating memory access (load, store) instructions, the number of execution cycles can be reduced.

Description:

In coordinate calculations, loading/storing x, y, and z values from/into memory for each iteration is a major factor
detracting from performance. Whenever possible, coordinate calculations should be performed in the FPU register, not in
structures, thereby reducing the number of memory load and store instructions and improving execution speed.

Example of Use:

To calculate each of the vertex distances (squares) between a fixed point P and a plane formed by the points P0, P1, and
P2, and make a decision based on the distances:

Note: In this example, the compile option is -cpu=sh4Δfpu=single.

Code before optimization

#define SCAL2(v) ((v)->x*(v)->x \

 +(v)->y*(v)->y\

 +(v)->z*(v)->z)

#define SubVect(a,b)

 ((a)->x-=(b)->x,\

 (a)->y -= (b)->y,\

 (a)->z -= (b)->z)

typedef struct {

 float x,y,z;

} POINT3;

typedef struct {

 POINT3* v;

} POLI;

int f(POINT3 *p, POLI *poli,

 float rad)

{

 float dst2;

 POINT3 dv;

 dv=poli->v[0];

 SubVect(&dv,p);

 dst2=SCAL2(&dv);

 if (dst2>rad) return 0;

 dv=poli->v[1];

 SubVect(&dv,p);

 dst2=SCAL2(&dv);

 if (dst2>rad) return 0;

Code after optimization

typedef struct {

 float x,y,z;

} POINT3;

typedef struct {

 POINT3* v;

} POLI;

float scal2(POINT3 *p1, POINT3 *q1)

{

 float a,b,c;

 float d,e,f;

 float *p=(float *)p1,*q=(float *)q1;

 a=*p++; d=*q++;

 b=*p++; e=*q++; a-=d;

 c=*p++; f=*q++; b-=e;

 c-=f;

 return a*a+b*b+c*c;

}

int f(POINT3 *p,POLI *poli, float rad)

{

 float d;
 POINT3 *q;

 q=poli->v;

 d2=scal2(q++,p);

 if (d2>rad) return 0;

 d2=scal2(q++,p);

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-48
REJ05B0463-0400

 dv=poli->v[2];

 SubVect(&dv,p);

 dst2=SCAL2(&dv);

 if (dst2>rad) return 0;

 return 1;

}

Expanded into assembly language code

(before optimization)

_f:

 ADD #-16,R15

 MOV.L @R5,R1

 MOV #4,R0

 FMOV.S FR4,FR5

 MOV.L @R1,R6

 MOV.L @(4,R1),R5

 MOV.L @(8,R1),R7

 MOV.L R6,@R15

 MOV.L R5,@(4,R15)

 MOV.L R7,@(8,R15)

 FMOV.S @R4,FR4

 FMOV.S @R15,FR8

 FMOV.S @(R0,R4),FR7

 FSUB FR4,FR8

 MOV.L R1,@(12,R15)

 FMOV.S FR8,@R15

 FMOV.S @(R0,R15),FR8

 FSUB FR7,FR8

 FMOV.S FR8,@(R0,R15)

 MOV #8,

 FMOV.S @(R0,R4),FR6

 FMOV.S @(R0,R15),FR8

 FMOV.S @R15,FR0

 FSUB FR6,FR8

 FMOV.S FR8,@(R0,R15)

 MOV #4,R0

 FMOV.S @(R0,R15),FR9

 FMOV.S @(R0,R15),FR8

 MOV #8,R0

 FMUL FR8,FR9

 FMOV.S @(R0,R15),FR8

 FMAC FR0,FR0,FR9

 FMOV.S @(R0,R15),FR0

 FMAC FR0,FR8,FR9

 FCMP/GT FR5,FR9

 BT L12

 MOV.L @(12,R1),R6

 if (d2>rad) return 0;

 d2=scal2(q++,p);

 if (d2>rad) return 0;

 return 1;

}

Expanded into assembly language code

(after optimization)

_scal2:

 FMOV.S @R4,FR0

 FMOV.S @R5,FR8

 ADD #4,R4

 ADD #4,R5

 FSUB FR8,FR0

 FMOV.S @R4,FR9

 FMOV.S @R5,FR8

 MOV #4,R0

 FMOV.S @(R0,R4),FR6

 FSUB FR8,FR9

 FMOV.S @(R0,R5),FR8

 FSUB FR8,FR6

 FMOV.S FR9,FR8

 FMUL FR9,FR8

 FMAC FR0,FR0,FR8

 FMOV.S FR6,FR0

 FMAC FR0,FR6,FR8

 RTS

 FMOV.S FR8,FR0

_f:

 MOV.L R13,@-R15

 MOV.L R14,@-R15

 STS.L PR,@-R15

 FMOV.S FR14,@-R15

 MOV.L @R5,R14

 MOV R4,R13

 FMOV.S FR4,FR14

 MOV R4,R5

 MOV R14,R4

 BSR _scal2

 ADD #12,R14

 FCMP/GT FR14,FR0

 BT L18

 MOV R13,R5

 BSR _ _scal2

 MOV R14,R4

 FCMP/GT FR14,FR0

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-49
REJ05B0463-0400

 MOV #4,R0

 MOV.L @(16,R1),R4

 MOV.L @(20,R1),R5

 MOV.L R6,@R15

 MOV.L R4,@(4,R15)

 MOV.L R5,@(8,R15)

 FMOV.S @R15,FR8

 FSUB FR4,FR8

 FMOV.S FR8,@R15

 FMOV.S @(R0,R15),FR8

 FSUB FR7,FR8

 FMOV.S FR8,@(R0,R15)

 MOV #8,R0

 FMOV.S @(R0,R15),FR8

 FSUB FR6,FR8

 FMOV.S FR8,@(R0,R15)

 MOV #4,R0

 FMOV.S @(R0,R15),FR9

 FMOV.S @(R0,R15),FR8

 MOV #8,R0

 FMOV.S @R15,FR0

 FMUL FR8,FR9

 FMOV.S @(R0,R15),FR8

 FMAC FR0,FR0,FR9

 FMOV.S @(R0,R15),FR0

 FMAC FR0,FR8,FR9

 FCMP/GT FR5,FR9

 BT L12

 MOV.L @(24,R1),R6

 MOV #4,R0

 MOV.L @(28,R1),R7

 MOV.L @(32,R1),R4

 MOV.L R6,@R15

 MOV.L R7,@(4,R15)

 MOV.L R4,@(8,R15)

 FMOV.S @R15,FR8

 FSUB FR4,FR8

 FMOV.S FR8,@R15

 FMOV.S @(R0,R15),FR8

 FSUB FR7,FR8

 FMOV.S FR8,@(R0,R15)

 MOV #8,R0

 FMOV.S @(R0,R15),FR8

 FSUB FR6,FR8

 FMOV.S FR8,@(R0,R15)

 MOV #4,R0

 FMOV.S @(R0,R15),FR9

 FMOV.S @(R0,R15),FR8

 MOV #8,R0

 FMOV.S @R15,FR0

 FMUL FR8,FR9

 FMOV.S @(R0,R15),FR8

 BT/S L18

 ADD #12,R14

 MOV R13,R5

 BSR _scal2

 MOV R14,R4

 FCMP/GT FR14,FR0

 BF/S L20

 MOV #1,R0

L18:

 MOV #0,R0

L20:

 FMOV.S @R15+,FR14

 LDS.L @R15+,PR

 MOV.L @R15+,R14

 RTS

 MOV.L @R15+,R13

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-50
REJ05B0463-0400

 FMAC FR0,FR0,FR9

 FMOV.S @(R0,R15),FR0

 FMAC FR0,FR8,FR9

 FCMP/GT FR5,FR9

 BF/S L14

 MOV #1,R0

L12:

 MOV #0,R0

L14:

 RTS

 ADD #16,R15

Code Size and Execution Speed before and after Optimization:

Code Size [byte] Execution Speed [cycle] CPU Type

Before
Optimization

After
Optimization

Before
Optimization

After
Optimization

SH2A-FPU 196 90 115 106

SH-2E 196 62 141 128

SH-4 196 62 123 87

SH-4A 196 62 97 93

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-51
REJ05B0463-0400

Analysis of the Program before and after Optimization:

The number of load and store instructions for both cases are compared below.

For a single iteration in x, y, z:

Before optimization, we have

 dv=poli->v[0]; One LOAD instruction

 SubVect(&dv,p); Two LOAD and one STORE instruction

 dst2=SCAL2(&dv); Two LOAD instructions

 if (dst2>rad) rerun 0;

 This is repeated three times, for a total of 18 load/store instructions.

After optimization, we have

 a=*p++; d=*q++;

 b=*p++; e=*q++; a-=d;

 c=*p++; f=*q++; b-=e;

 c-=f;

 return a*a+b*b+c*c;

Here p and q are loaded, for two instructions, times three iterations for a total of six load/store instructions.

In this way, memory access instructions can be reduced to 1/3. Because the instruction set for the SuperH microcomputers
includes essentially no instructions that can directly calculate memory data, the number of instructions is increased
compared with operations in the FPU register.

In addition, storing to memory can disrupt pipelines. Thus reduction of the number of memory access operations can also
result in smoother pipeline operations.

Addendum:

In the optimized program, the fixed point P is loaded three times.

If this is improved so that only one load operation is needed, an even greater performance improvement is obtained.

Considering that, for fixed points in general, loop processing is performed for multiple planes, the fixed point should be
loaded into an FPU register variable instead of a structure to perform operations.

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-52
REJ05B0463-0400

5.4 Branching

Matters pertaining to branching that should be considered are as follows.

• The same decisions should be combined.

• When switch statements and "else if" statements are long, cases which should be decided quickly and to which
branching is frequent should be placed at the beginning.

• When switch and "else if" statements are long, dividing them into stages can speed program execution.

Important Points:

Switch statements with up to five or six cases can be changed to if statements to improve execution speed.

Description:

Switch statements with few cases should be replaced by if statements.

In a switch statement, the range of the variable value is checked before referring to the table of case values, for additional
overhead.

On the other hand, if statements involve numerous comparisons, for decreased efficiency as the number of cases involved
increases.

Example of Use:

To change the return value according to the value of the variable a:

Code before optimization

int x(int a)

{

 switch (a)

 {

 case 1:

 a = 2; break;

 case 10:

 a = 4; break;

 default:

 a = 0; break;

 }

 return (a);

}

Expanded into assembly language code

(before optimization)

_x:

 MOV R4,R0

 CMP/EQ #1,R0

 BT L16

 CMP/EQ #10,R0

 BT L17

Code after optimization

int x (int a)

{

 if (a==1)

 a = 2;

 else if (a==10)

 a = 4;

 else

 a = 0;

 return (a);

}

Expanded into assembly language code

(after optimization)

_x:

 MOV R4,R0

 CMP/EQ #1,R0

 BF L22

 BRA L23

 MOV #2,R4

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-53
REJ05B0463-0400

 BRA L18

 NOP

L16:

 BRA L19

 MOV #2,R2

L17:

 BRA L19

 MOV #4,R2

L18:

 MOV #0,R2

L19:

 RTS

 MOV R2,R0

L22:

 CMP/EQ #10,R0

 BF/S L23

 MOV #0,R4

 MOV #4,R4

L23:

 RTS

 MOV R4,R0

Code Size and Execution Speed before and after Optimization:

Code Size [byte] Execution Speed [cycle] CPU Type

Before
Optimization

After
Optimization

Before
Optimization

After
Optimization

SH-1 28 22 11 9

SH-2 28 22 11 9

SH-2A 22 20 8 5

SH2A-FPU 22 20 8 5

SH-2E 28 22 11 9

SH2-DSP(SH7065) 28 22 12 10

SH-3 28 22 11 9

SH3-DSP 28 22 12 10

SH-4 28 22 8 7

SH-4A 28 22 7 7

SH4AL-DSP 28 22 7 7

 Note: a=1

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-54
REJ05B0463-0400

5.5 Inline Expansion

Matters related to inline expansion that should be considered are listed in table 5.6.

Table 5.6 Suggestions Relating to Inline Expansion

Area Suggestion Sections

Inline expansion of
functions

Advantages may be gained by inline expansion of
functions that are called frequently.

However, function expansion results in larger
program sizes. This feature should be selected in
consideration of the balance between speed of
execution and available ROM.

5.5.1

Inline expansion with
embedded assembly
language

Code written in assembly language can be called
using the same interface as for C language
functions.

5.5.2

5.5.1 Inline Expansion of Functions

Important Points:

Functions that are called frequently can be inline-expanded to improve execution speed.

Description:

Through inline expansion of functions that are called frequently, speed of execution can be improved. Expansion of
functions called within a loop can have a particularly great effect. This option should be used only when there is a need to
improve speed of execution even at the expense of increasing the program size.

Example of Use:

To exchange the elements of the array a and the array b:

Code before optimization

 int x[10], y[10];

 static void g(int *a, int *b, int i)

{

 int temp;

 temp = a[i];

 a[i] = b[i];

 b[i] = temp;

}

void f (void)

{

 int i;

 for (i=0;i<10;i++)

 g(x, y, i);

}

Code after optimization

int x[10], y[10];

#pragma inline (g)

static void g(int *a, int *b, int i)

{

 int temp;

 temp = a[i];

 a[i] = b[i];

 b[i] = temp;

}

void f (void)

{

 int i;

 for (i=0;i<10;i++)

 g(x, y, i);

}

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-55
REJ05B0463-0400

Expanded into assembly language code

(before optimization)

_$g:
 SHLL2 R6

 MOV R6,R0

 MOV.L @(R0,R4),R1

 MOV.L @(R0,R5),R2

 MOV.L R2,@(R0,R4)

 RTS

 MOV.L R1,@(R0,R5)

_f:

 MOV.L R11,@-R15

 MOV.L R12,@-R15

 MOV.L R13,@-R15

 MOV.L R14,@-R15

 STS.L PR,@-R15

 MOV #0,R14

 MOV.L L14+2,R12

 MOV.L L14+6,R13

 MOV #10,R11

L12:

 MOV R14,R6

 MOV R12,R4

 MOV R13,R5

 BSR _$g
 ADD #1,R14

 CMP/GE R11,R14

 BF L12

 LDS.L @R15+,PR

 MOV.L @R15+,R14

 MOV.L @R15+,R13

 MOV.L @R15+,R12

 RTS

 MOV.L @R15+,R11

L14:

 .RES.W 1

 .DATA.L _x

 .DATA.L _y

Expanded into assembly language code

(after optimization)

_f:

 MOV #10,R1

 MOV.L L13+2,R4

 MOV.L L13+6,R5

L11:

 MOV.L @R5,R6

 MOV.L @R4,R2

 DT R1

 MOV.L R2,@R5

 MOV.L R6,@R4

 ADD #4,R5

 BF/S L11

 ADD #4,R4

 RTS

 NOP

L13:

 .RES.W 1

 .DATA.L _y

 .DATA.L _x

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-56
REJ05B0463-0400

Code Size and Execution Speed before and after Optimization:

Code Size [byte] Execution Speed [cycle] CPU Type

Before
Optimization

After
Optimization

Before
Optimization

After
Optimization

SH-1 54 36 210 137

SH-2 54 36 210 118

SH-2A 38 32 164 74

SH2A-FPU 50 32 187 74

SH-2E 54 36 210 118

SH2-DSP(SH7065) 52 36 305 138

SH-3 54 36 234 147

SH3-DSP 52 36 294 156

SH-4 54 36 203 97

SH-4A 54 36 155 85

SH4AL-DSP 52 36 185 85

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-57
REJ05B0463-0400

5.5.2 Inline Expansion with Embedded Assembly Language

Important Points:

Assembly language code can be included within a C program to speed execution.

Description:

Sometimes it is desirable to write code in assembly language for enhanced performance, and in particular for improving
speed of execution. In such cases, it is possible to write only critical code in assembly language, and call it in the same
way one would call a C language function. This feature must be used with the -code=asmcode option.

Example of Use:

To swap the upper and lower bytes of elements in the array big, and store the result in the array little.

Code before optimization

#define A_MAX 10

typedef unsigned char UChar;

short big[A_MAX],little[A_MAX];

short swap(short p1)

{

 short ret;

 *((UChar *)(&ret)+1) =

 *((UChar *)(&p1));

 *((UChar *)(&ret)) =

 *((UChar *)(&p1)+1);

 return ret;

}

void f (void)

{

 int i;

 short *x, *y;

 x = little;

 y = big;

 for(i=0; i<A_MAX; i++,

 x++, y++){

 *x = swap(*y);

 }

}

Expanded into assembly language code

(before optimization)

_swap:

 ADD #-8,R15

 MOV R4,R0

 MOV.L R4,@R15

 MOV.W R0,@(2,R15)

Code after optimization

#define A_MAX 10

#pragma inline_asm (swap)

typedef unsigned char UChar;

short big[A_MAX],little[A_MAX];

short swap(short p1)

{

 SWAP.B R4,R0

}

void f (void)

{

 int i;

 short *x, *y;

 x = little;

 y = big;

 for(i=0; i<A_MAX; i++, x++, y++){

 *x = swap(*y);

 }

}

Expanded into assembly language code

(after optimization)

_swap:

 SWAP.B R4,R0

 .ALIGN 4

 RTS

 NOP

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-58
REJ05B0463-0400

 MOV.B @(2,R15),R0

 MOV.B R0,@(5,R15)

 MOV.B @(3,R15),R0

 MOV.B R0,@(4,R15)

 MOV.W @(4,R15),R0

 RTS

 ADD #8,R15

_f:

 MOV.L R12,@-R15

 MOV.L R13,@-R15

 MOV.L R14,@-R15

 STS.L PR,@-R15

 MOV.L L14+2,R13

 MOV.L L14+6,R14

 MOV #10,R12

L12:

 BSR _swap

 MOV.W @R14+,R4

 DT R12

 MOV.W R0,@R13

 BF/S L12

 ADD #2,R13

 LDS.L @R15+,PR

 MOV.L @R15+,R14

 MOV.L @R15+,R13

 RTS

 MOV.L @R15+,R12

L14:

 .RES.W 1

 .DATA.L _little

 .DATA.L _big

_f:

 MOV.L R12,@-R15

 MOV.L R13,@-R15

 MOV.L R14,@-R15

 MOV.L L15,R13

 MOV.L L15+4,R14

 MOV #10,R12

L12:

 BRA L14

 MOV.W @R14+,R4

L15:

 .DATA.L _little

 .DATA.L _big

L14:

 SWAP.B R4,R0

 .ALIGN 4

 DT R12

 MOV.W R0,@R13

 BT/S L17

 ADD #2,R13

 MOV.L L16+2,R3

 JMP @R3

 NOP

L17:

 MOV.L @R15+,R14

 MOV.L @R15+,R13

 RTS

 MOV.L @R15+,R12

L16:

 .RES.W 1

 .DATA.L L12

Code Size and Execution Speed before and after Optimization:

Code Size [byte] Execution Speed [cycle] CPU Type

Before
Optimization

After
Optimization

Before
Optimization

After
Optimization

SH-1 46 68 285 172

SH-2 46 64 286 171

SH-2A 30 60 202 126

SH2A-FPU 42 76 215 148

SH-2E 46 64 286 171

SH2-DSP(SH7065) 46 64 318 193

SH-3 46 64 113 185

SH3-DSP 46 64 112 177

SH-4 46 64 62 108

SH-4A 46 64 182 117

SH4AL-DSP 46 64 182 117

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-59
REJ05B0463-0400

5.6 Use of the Global Base Register (GBR)

5.6.1 Offset Reference Using the Global Base Register (GBR)

Important Points:

By using the GBR to reference external variables using offsets, performance can be improved.

Description:

By using offsets to reference frequently accessed external variables with the GBR as a base register, more compact object
code can be generated. In addition, the number of instructions is reduced, for improved speed of execution.

Example of Use:

To substitute the contents of a structure y into a structure x:

Note: In this example, the compile option is –cpu=sh2 –gbr=user.

Code before optimization

struct {

 char c1;

 char c2;

 short s1;

 short s2;

 long l1;

 long l2;

} x, y;

void f (void)

{

 x.c1 = y.c1;

 x.c2 = y.c2;

 x.s1 = y.s1;

 x.s2 = y.s2;

 x.l1 = y.l1;

 x.l2 = y.l2;

}

Expanded into assembly language code

(before optimization)

_f:

 MOV.L L12,R5

 MOV.L L12+4,R6

 MOV.B @(1,R5),R0

 MOV.B @R5,R1

 MOV.B R0,@(1,R6)

 MOV.W @(2,R5),R0

 MOV.L @(8,R5),R4

 MOV.W R0,@(2,R6)

Code after optimization

#pragma gbr_base(x,y)

struct {

 char c1;

 char c2;

 short s1;

 short s2;

 long l1;

 long l2;

} x, y;

void f (void)

{

 x.c1 = y.c1;

 x.c2 = y.c2;

 x.s1 = y.s1;

 x.s2 = y.s2;

 x.l1 = y.l1;

 x.l2 = y.l2;

}

Expanded into assembly language code

(after optimization)

_f:

 MOV.B @(_y2-(STARTOF $G0),GBR),R0

 MOV.B R0,@(_x2-(STARTOF $G0),GBR)

 MOV.B @(_y2-(STARTOF $G0)+1,GBR),R0

 MOV.B R0,@(_x2-(STARTOF $G0)+1,GBR)

 MOV.W @(_y2-(STARTOF $G0)+2,GBR),R0

 MOV.W R0,@(_x2-(STARTOF $G0)+2,GBR)

 MOV.W @(_y2-(STARTOF $G0)+4,GBR),R0

 MOV.W R0,@(_x2-(STARTOF $G0)+4,GBR)

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-60
REJ05B0463-0400

 MOV.W @(4,R5),R0

 MOV.L @(12,R5),R7

 MOV.B R1,@R6

 MOV.W R0,@(4,R6)

 MOV.L R4,@(8,R6)

 RTS

 MOV.L R7,@(12,R6)

L12:

 .DATA.L _y

 .DATA.L _x

 MOV.L @(_y2-(STARTOF $G0)+8,GBR),R0

 MOV.L R0,@(_x2-(STARTOF $G0)+8,GBR)

 MOV.L @(_y2-(STARTOF $G0)+12,GBR),R0

 RTS

 MOV.L R0,@(_x2-(STARTOF $G0)+12,GBR)

Code Size and Execution Speed before and after Optimization:

Code Size [byte] Execution Speed [cycle] CPU Type

Before
Optimization

After
Optimization

Before
Optimization

After
Optimization

SH-1 40 26 22 25

SH-2 40 26 22 25

SH-2A 40 26 17 18

SH2A-FPU 40 26 17 18

SH-2E 40 26 22 25

SH2-DSP(SH7065) 40 26 22 25

SH-3 40 26 26 27

SH3-DSP 40 26 36 31

SH-4 40 26 18 21

SH-4A 40 26 15 13

SH4AL-DSP 40 26 15 13

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-61
REJ05B0463-0400

5.6.2 Selective Use of Global Base Register (GBR) Area

Important Points:

Selective use of the GBR0 and GBR1 areas will improve performance.

Description:

• #pragma gbr_base areas

• The characteristics and applications of GBR base addressing:

Section (area) Characteristic Application

$G0

(bgr_base)

The bit processing, setting, and
referencing of byte data are
efficiently made.

Flag data of byte

$G1

(bgr_base1)

Setting and referencing of data are
efficiently made.

General variables

GBR

127

255

510

1020

$G0 area

$G1 area

Byte MOV

Instruction

available
Word MOV

Instruction

available
Long Word

MOV
Instruction

available

MOV.B@(disp,GBR),R0

MOV.W@(disp,GBR),R0

MOV.L@(disp,GBR),R0

 MOV.B@(disp,GBR),R0

 AND.B #mask,@(R0,GBR)

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-62
REJ05B0463-0400

• The procedure for using the GBR base:

Example of Use:

To access the bit field:

Note: In this example, the compile option is –cpu=sh2 –gbr=user.

C source

#pragma gbr_base (bitf)

struct BitField {

 unsigned char a : 1 ;

 unsigned char b : 1 ;

 unsigned char c : 1 ;

 unsigned char d : 1 ;

 unsigned char e : 1 ;

 unsigned char f : 1 ;

 unsigned char g : 1 ;

 unsigned char h : 1 ;

} bitf ;

main()

{

 bitf.a = 1 ; // bit set

 bitf.b = 0 ; // bit

clear

 if (bitf.c)

 bitf.d = 1 ;

 else

 bitf.e = 1 ;

}

#pragma not specified

.EXPORT _bitf

.EXPORT _main

.SECTION P,CODE,ALIGN=4

_main: ; function: main

 ; frame size=0

MOV.L L241,R4 ; _bitf

MOV.B @R4,R0

OR #128,R0

MOV.B R0,@R4

MOV.B @R4,R0

AND #191,R0

MOV.B R0,@R4

MOV R4,R0

MOV.B @R0,R0

TST #32,R0

BT L238

MOV.B @R4,R0

BRA L240

OR #16,R0

L238:

MOV.B @R4,R0

OR #8,R0

L240:

RTS

MOV.B R0,@R4

L241:

.DATA.L _bitf

.SECTION B,DATA,ALIGN=4

_bitf: ; static: bitf

 .RES.B 1

 .END

#pragma specified

.EXPORT _bitf

.EXPORT _main

.SECTION ,CODE,ALIGN=4

_main: ;function:main

 ; frame size=0

 MOV #_bitf-(STARTOF$G0),R0

 OR.B #128,@(R0,GBR)

 AND.B #191,@(R0,GBR)

 TST.B #32,@(R0,GBR)

 BT L238

 BRA L239

 OR.B #16,@(R0,GBR)

L238:

 OR.B #8,@(R0,GBR)

L239:

 RTS

 NOP

.SECTION G0,DATA,ALIGN=4

_bitf: ; static: bitf

.DATAB.B 1,0

.END

Compile link

Select important flag and variable, and nominate them for a

candidate of #pragma gbr_base.

Check the size of each section for $G0 and $G1, and make sure

that the section size of $G1 falls within the area size of byte, word,

and long word respectively.

MOV #STARTOF $G0,R0

LDC R0,GBR

Initial settings are required

before initial access to
gbr_base.

At linkage, the $G1 section should be allocated immediately after the $G0

section.

Estimation of size

Code creation for GBR initial settings

Creation of #pragma file

Selection of important flag and variable

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-63
REJ05B0463-0400

5.7 Control of Register Save/Restore Operations

Important Points:

Through innovations to register save/restore operations, execution speed can be improved. (Ver.8)

Description:

By eliminating save and restore operations for variable registers at the entry and exit points of end functions, execution
speed and efficiency of ROM use can be improved. However, one of the following types of processing must be performed,
possibly resulting in decreased, rather than increased, performance. Hence the code to which this method is applied should
be carefully studied.

(1) The registers for register variables must be saved/restored at the function calling the function for which register
save/restore operations are omitted.

(2) The object must not allocate registers for register variables spanning function calls.

Example of Use:

To combine stack save/restores using a function table:

Code before optimization

#define LISTMAX 2

typedef

 int ARRAY[LISTMAX][LISTMAX][LISTMAX];

ARRAY ary1, ary2, ary3;

void init(int, ARRAY);

void copy(ARRAY, ARRAY);

void sum(ARRAY, ARRAY, ARRAY);

void table (void)

{

 init(74755, ary1);

 copy(ary1, ary2);

 sum(ary1, ary2, ary3);

}

void init (int seed, ARRAY p)

{

 int i, j, k;

 for (i = 0; i < LISTMAX; i++)

 for (j = 0; j < LISTMAX; j++)

 for (k = 0; k < LISTMAX; k++){

 seed = (seed * 1309) & 16383;

 p[i][j][k] = seed;

 }

}

void copy (ARRAY p, ARRAY q)

{

 int i, j, k;

Code after optimization

#pragma regsave (table)

#pragma noregalloc (table)

#pragma noregsave (init, copy, sum)

#define LISTMAX 2

typedef

 int ARRAY[LISTMAX][LISTMAX][LISTMAX];

ARRAY ary1, ary2, ary3;

void init(int, ARRAY);

void copy(ARRAY, ARRAY);

void sum(ARRAY, ARRAY, ARRAY);

void table (void)

{

 init(74755, ary1);

 copy(ary1, ary2);

 sum(ary1, ary2, ary3);

}

void init (int seed, ARRAY p)

{

 int i, j, k;

 for (i = 0; i < LISTMAX; i++)

 for (j = 0; j < LISTMAX; j++)

 for (k = 0; k < LISTMAX; k++){

 seed = (seed * 1309) & 16383;

 p[i][j][k] = seed;

 }

}

void copy (ARRAY p, ARRAY q)

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-64
REJ05B0463-0400

 for (i = 0; i < LISTMAX; i++)

 for (j = 0; j < LISTMAX; j++)

 for (k = 0; k < LISTMAX; k++)

 q[k][i][j] = p[i][j][k];

}

void sum (ARRAY p, ARRAY q, ARRAY r)

{

 int i, j, k;

 for (i = 0; i < LISTMAX; i++)

 for (j = 0; j < LISTMAX; j++)

 for (k = 0; k < LISTMAX; k++)

 r[i][j][k] = p[i][j][k] +

 q[i][j][j];

}

Expanded into assembly language code

(before optimization)

_table:

 MOV.L R14,@-R15

 STS.L PR,@-R15

 MOV.L L270+6,R14

 MOV.L L270+10,R4

 BSR _init

 MOV R14,R5

 MOV.L L270+14,R5

 BSR _copy

 MOV R14,R4

 MOV R14,R4

 LDS.L @R15+,PR

 MOV.L L270+18,R6

 MOV.L L270+14,R5

 BRA _sum

 MOV.L @R15+,R14

_init:

 MOV #2,R6

 MOV.L R13,@-R15

 MOV #0,R13

 MOV.L R12,@-R15

 MOV R5,R12

 MOV.L R10,@-R15

 MOV.L R9,@-R15

 MOV.L R8,@-R15

 MOV R5,R8

 STS.L MACL,@-R15

 ADD #32,R8

 MOV.W L270,R9

 MOV.W L270+2,R10

{

 int i, j, k;

 for (i = 0; i < LISTMAX; i++)

 for (j = 0; j < LISTMAX; j++)

 for (k = 0; k < LISTMAX; k++)

 q[k][i][j] = p[i][j][k];

}

void sum (ARRAY p, ARRAY q, ARRAY r)

{

 int i, j, k;

 for (i = 0; i < LISTMAX; i++)

 for (j = 0; j < LISTMAX; j++)

 for (k = 0; k < LISTMAX; k++)

 r[i][j][k] = p[i][j][k] +

 q[i][j][j];

}

Expanded into assembly language code

(after optimization)

_table:

 MOV.L R14,@-R15

 MOV.L R13,@-R15

 MOV.L R12,@-R15

 MOV.L R11,@-R15

 MOV.L R10,@-R15

 MOV.L R9,@-R15

 MOV.L R8,@-R15

 FMOV.S FR15,@-R15

 FMOV.S FR14,@-R15

 FMOV.S FR13,@-R15

 FMOV.S FR12,@-R15

 STS.L PR,@-R15

 MOV.L L270+10,R4

 MOV.L L270+6,R5

 STS.L MACH,@-R15

 STS.L MACL,@-R15

 BSR _init

 NOP

 MOV.L L270+6,R4

 MOV.L L270+14,R5test3

 BSR _copy

 NOP

 MOV.L L270+6,R4

 MOV.L L270+14,R5test3

 MOV.L L270+18,R6

 BSR _sum

 NOP

 LDS.L @R15+,MACL

 LDS.L @R15+,MACH

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-65
REJ05B0463-0400

L261:

 MOV R13,R1

 MOV R12,R0

L262:

 MOV R13,R7

 MOV R0,R5

L263:

 MUL.L R10,R4

 ADD #1,R7

 STS MACL,R3

 MOV R3,R4

 AND R9,R4

 CMP/GE R6,R7

 MOV.L R4,@R5

 BF/S L263

 ADD #4,R5

 ADD #1,R1

 CMP/GE R6,R1

 BF/S L262

 ADD #8,R0

 ADD #16,R12

 CMP/HS R8,R12

 BF L261

 LDS.L @R15+,MACL

 MOV.L @R15+,R8

 MOV.L @R15+,R9

 MOV.L @R15+,R10

 MOV.L @R15+,R12

 RTS

 MOV.L @R15+,R13

_copy:

 MOV.L R14,@-R15

 MOV.L R13,@-R15

 MOV #2,R13

 MOV.L R11,@-R15

 MOV.L R10,@-R15

 MOV.L R9,@-R15

 MOV #0,R9

 MOV.L R8,@-R15

 MOV R9,R14

 ADD #-4,R15

 MOV R5,R8

 ADD #32,R8

L264:

 MOV R9,R7

 MOV R14,R10

 SHLL2 R10

 SHLL R10

 MOV R14,R3

 SHLL2 R3

 SHLL2 R3

 ADD R4,R3

 LDS.L @R15+,PR

 FMOV.S @R15+,FR12

 FMOV.S @R15+,FR13

 FMOV.S @R15+,FR14

 FMOV.S @R15+,FR15

 MOV.L @R15+,R8

 MOV.L @R15+,R9

 MOV.L @R15+,R10

 MOV.L @R15+,R11

 MOV.L @R15+,R12

 MOV.L @R15+,R13

 RTS

 MOV.L @R15+,R14

_init:

 MOV.W L270+2,R10

 MOV R5,R8

 MOV.W L270,R9

 ADD #32,R8

 MOV #2,R6

 MOV R5,R12

 MOV #0,R13

L261:

 MOV R12,R0

 MOV R13,R1

L262:

 MOV R0,R5

 MOV R13,R7

L263:

 MUL.L R10,R4

 ADD #1,R7

 CMP/GE R6,R7

 STS MACL,R3

 MOV R3,R4

 AND R9,R4

 MOV.L R4,@R5

 BF/S L263

 ADD #4,R5

 ADD #1,R1

 CMP/GE R6,R1

 BF/S L262

 ADD #8,R0

 ADD #16,R12

 CMP/HS R8,R12

 BF L261

 RTS

 NOP

_copy:

 ADD #-4,R15

 MOV R5,R8

 MOV #0,R9

 ADD #32,R8

 MOV R9,R14

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-66
REJ05B0463-0400

 MOV.L R3,@R15

L265:

 MOV.L @R15,R3

 MOV R5,R6

 MOV R7,R11

 SHLL2 R11

 SHLL R11

 ADD R3,R11

 MOV R7,R1

 SHLL2 R1

L266:

 MOV.L @R11+,R3

 MOV R6,R0

 ADD R10,R0

 ADD #16,R6

 CMP/HS R8,R6

 BF/S L266

 MOV.L R3,@(R0,R1)

 ADD #1,R7

 CMP/GE R13,R7

 BF L265

 ADD #1,R14

 CMP/GE R13,R14

 BF L264

 ADD #4,R15

 MOV.L @R15+,R8

 MOV.L @R15+,R9

 MOV.L @R15+,R10

 MOV.L @R15+,R11

 MOV.L @R15+,R13

 RTS

 MOV.L @R15+,R14

L270:

 .DATA.W H'3FFF

 .DATA.W H'051D

 .DATA.W 0

 .DATA.L _ary1

 .DATA.L H'00012403

 .DATA.L _ary2

 .DATA.L _ary3

_sum:

 MOV.L R14,@-R15

 MOV.L R13,@-R15

 MOV.L R12,@-R15

 MOV #0,R12

 MOV.L R11,@-R15

 MOV #2,R11

 MOV.L R10,@-R15

 MOV.L R9,@-R15

 MOV.L R8,@-R15

 ADD #-4,R15

 MOV R12,R8

 MOV #2,R13

L264:

 MOV R14,R3

 SHLL2 R3

 SHLL2 R3

 MOV R14,R10

 ADD R4,R3

 MOV R9,R7

 SHLL2 R10

 MOV.L R3,@R15

 SHLL R10

L265:

 MOV R7,R11

 MOV.L @R15,R3

 SHLL2 R11

 MOV R7,R1

 SHLL R11

 MOV R5,R6

 SHLL2 R1

 ADD R3,R11

L266:

 MOV R6,R0

 ADD #16,R6

 MOV.L @R11+,R3

 CMP/HS R8,R6

 ADD R10,R0

 BF/S L266

 MOV.L R3,@(R0,R1)

 ADD #1,R7

 CMP/GE R13,R7

 BF L265

 ADD #1,R14

 CMP/GE R13,R14

 BF L264

 RTS

 ADD #4,R15

_sum:

 ADD #-4,R15

 MOV #0,R12

 MOV R12,R8

 MOV #2,R11

L267:

 MOV R8,R13

 SHLL2 R13

 SHLL2 R13

 MOV R12,R10

L268:

 MOV R10,R14

 MOV R10,R3

 SHLL2 R3

 MOV R12,R9

 SHLL2 R14

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-67
REJ05B0463-0400

L267:

 MOV R12,R10

 MOV R8,R13

 SHLL2 R13

 SHLL2 R13

L268:

 MOV R12,R9

 MOV R12,R7

 MOV R10,R14

 SHLL2 R14

 SHLL R14

 MOV R10,R3

 SHLL2 R3

 MOV.L R3,@R15

L269:

 MOV R13,R0

 ADD R6,R0

 ADD R14,R0

 ADD R7,R0

 MOV R13,R3

 MOV.L R0,@-R15

 MOV R13,R2

 MOV.L @(4,R15),R0

 ADD #1,R9

 ADD R5,R3

 ADD R14,R3

 MOV.L @(R0,R3),R3

 ADD R4,R2

 ADD R14,R2

 ADD R7,R2

 MOV.L @R2,R1

 CMP/GE R11,R9

 MOV.L @R15+,R2

 ADD R1,R3

 MOV.L R3,@R2

 BF/S L269

 ADD #4,R7

 ADD #1,R10

 CMP/GE R11,R10

 BF L268

 ADD #1,R8

 CMP/GE R11,R8

 BF L267

 ADD #4,R15

 MOV.L @R15+,R8

 MOV.L @R15+,R9

 MOV.L @R15+,R10

 MOV.L @R15+,R11

 MOV.L @R15+,R12

 MOV.L @R15+,R13

 RTS

 MOV.L @R15+,R14

 MOV.L R3,@R15

 SHLL R14

 MOV R12,R7

L269:

 MOV R13,R0

 ADD R6,R0

 ADD R14,R0

 MOV R13,R2

 ADD R7,R0

 MOV R13,R3

 ADD R4,R2

 MOV.L R0,@-R15

 ADD R14,R2

 MOV.L @(4,R15),R0

 ADD R5,R3

 ADD R7,R2

 ADD R14,R3

 MOV.L @R2,R1

 MOV.L @(R0,R3),R3

 ADD #1,R9

 MOV.L @R15+,R2

 CMP/GE R11,R9

 ADD R1,R3

 MOV.L R3,@R2

 BF/S L269

 ADD #4,R7

 ADD #1,R10

 CMP/GE R11,R10

 BF L268

 ADD #1,R8

 CMP/GE R11,R8

 BF L267

 RTS

 ADD #4,R15

L270:

 .DATA.W H'3FFF

 .DATA.W H'051D

 .DATA.W 0

 .DATA.L _ary1

 .DATA.L H'00012403

 .DATA.L _ary2

 .DATA.L _ary3

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-68
REJ05B0463-0400

Code Size and Execution Speed before and after Optimization:

Code Size [byte] Execution Speed [cycle] CPU Type

Before
Optimization

After
Optimization

Before
Optimization

After
Optimization

SH-1 292 288 684 669

SH-2 238 242 446 426

SH-2E 238 258 446 438

SH2-DSP(SH7065) 236 252 490 470

SH-3 238 242 476 458

SH3-DSP 236 252 489 487

SH-4 238 258 301 313

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-69
REJ05B0463-0400

5.8 Specification Using Two-Byte Addresses

Important Points:

By using two bytes to represent the addresses of variables and functions, efficiency of ROM use is improved.

Description:

When variables and functions are located at addresses which can be represented by two bytes and addresses of the code on
the referring side are specified with two bytes, the code size can be shrunk.

Example of Use:

To call the external function g when the value of the variable x is 1:

Code before optimization

extern int x;

extern void g(void);

void f (void)

{

 if (x == 1)

 g();

}

Expanded into assembly language code

(before optimization)

_f:

 MOV.L L218+2,R3

 MOV.L @R3,R0

 CMP/EQ #1,R0

 BF L219

 MOV.L L218+6,R2

 JMP @R2

 NOP

L219:

 RTS

 NOP

L218:

 .DATA.W 0

 .DATA.L _x

 .DATA.L _g

Code after optimization

#pragma abs16(x,g)

extern int x;

extern void g(void);

void f (void)

{

 if (x == 1)

 g();

}

Expanded into assembly language code

(after optimization)

_f:

 MOV.W L238+2,R3

 MOV.L @R3,R0

 CMP/EQ #1,R0

 BF L239

 MOV.W L238,R2

 JMP @R2

 NOP

L239:

 RTS

 NOP

L238:

 .DATA.W _g

 .DATA.W _x

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-70
REJ05B0463-0400

Code Size and Execution Speed before and after Optimization:

Code Size [byte] Execution Speed [cycle] CPU Type

Before
Optimization

After
Optimization

Before
Optimization

After
Optimization

SH-1 28 28 15 11

SH-2 28 28 15 11

SH-2A 24 24 13 11

SH2A-DSP 24 24 13 11

SH-2E 28 28 15 11

SH2-DSP(SH7065) 28 28 16 12

SH-3 28 28 15 11

SH3-DSP 28 28 17 12

SH-4 28 28 13 10

SH-4A 28 28 9 6

SH4AL-DSP 28 28 9 6

 Note: x =1, function g is void g(){ }

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-71
REJ05B0463-0400

5.9 Cache Use

Performance can be improved through effective cache use.

5.9.1 Prefetch Instruction

Important Points:

When accessing array variables, by executing a prefetch instruction prior to use, the execution speed can be improved.
(SH-2A, SH2A-FPU, SH-3, SH3-DSP, SH-4, SH-4A, and SH4AL-DSP only)

Description:

When successively accessing an array in a loop, by performing a prefetch prior to referencing an array member, execution
speed is improved. And, by expanding the loop even more effective prefetch operations are possible.

However, continuous execution of prefetch instructions do not result in improved speed. Subsequent prefetch instructions
should be executed only after the previous prefetch instruction has completed.

Example of Use:

To store the result of an operation performed using the elements a, b, and c of the array “data” in the element d (SH-4).

Note: In this example, the compile option is –cpu=sh4 –fpu=single.

Code before optimization

typedef struct {

 float a, b, c, d;

} data_t;

data_t data[2048];

int f(void)

{

 data_t *p1, *p2;

 data_t *end = &data[2048];

 float a1, b1, c1, t11, t12;

 float a2, b2, c2, t21, t22;

 for(p1=data, p2=data+1; p1<end;

 p1+=2, p2+=2){

 a1 = p1->a;

 b1 = p1->b;

 t11 = a1 * a1;

 t12 = b1 * b1;

 t11 += t12;

 c1 = 1/t11;

 p1->c = c1;

 a1 += b1;

 a1 += c1;

 p1->d = a1;

 a2 = p2->a;

Code after optimization

#include <machine.h>

typedef struct {

 float a, b, c, d;

} data_t;

data_t data[2048];

int f(void)

{

 data_t *p1, *p2;

 data_t *end = &data[2048];

 float a1, b1, c1, t11, t12;

 float a2, b2, c2, t21, t22;

 data_t *next = data+4;

 for(p1=data, p2=data+1; p1<end;

 p1+=2, p2+=2){

 prefetch(next);

 next += 2;

 a1 = p1->a;

 b1 = p1->b;

 t11 = a1 * a1;

 t12 = b1 * b1;

 t11 += t12;

 c1 = 1/t11;

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-72
REJ05B0463-0400

 b2 = p2->b;

 t21 = a2 * a2;

 t22 = b2 * b2;

 t21 += t22;

 c2 = 1/t21;

 p2->c = c2;

 a2 += b2;

 a2 += c2;

 p2->d = a2;

 }

}

Expanded into assembly language code

(before optimization)

_f:

 MOV.L L252+6,R6

 MOV.L L252+2,R7

 MOV R7,R5

 MOV R7,R4

 ADD R7,R6

 CMP/HS R6,R4

 ADD #16,R5

 BT/S L250

 FLDI1 FR5

L251:

 MOV #4,R0

 FMOV.S @R4,FR4

 FMOV.S @(R0,R4),FR6

 MOV #8,R0

 FMOV.S FR4,FR7

 FMUL FR4,FR7

 FMOV.S FR6,FR8

 FMUL FR6,FR8

 FADD FR6,FR4

 FADD FR8,FR7

 FMOV.S FR7,FR3

 FMOV.S FR5,FR7

 FDIV FR3,FR7

 FADD FR7,FR4

 FMOV.S FR7,@(R0,R4)

 MOV #12,R0

 FMOV.S FR4,@(R0,R4)

 MOV #4,R0

 FMOV.S @(R0,R5),FR6

 MOV #8,R0

 p1->c = c1;

 a1 += b1;

 a1 += c1;

 p1->d = a1;

 a2 = p2->a;

 b2 = p2->b;

 t21 = a2 * a2;

 t22 = b2 * b2;

 t21 += t22;

 c2 = 1/t21;

 p2->c = c2;

 a2 += b2;

 a2 += c2;

 p2->d = a2;

 }

}

Expanded into assembly language code

(after optimization)

_f:

 MOV.L L253+6,R7

 MOV.L L253+2,R0

 MOV R0,R4

 MOV R0,R5

 ADD R0,R7

 MOV R0,R6

 CMP/HS R7,R4

 ADD #16,R5

 ADD #64,R6

 BT/S L251

 FLDI1 FR5

L252:

 PREF @R6

 MOV #4,R0

 FMOV.S @R4,FR4

 FMOV.S @(R0,R4),FR6

 MOV #8,R0

 FMOV.S FR4,FR7

 FMUL FR4,FR7

 FMOV.S FR6,FR8

 FMUL FR6,FR8

 FADD FR6,FR4

 ADD #32,R6

 FADD FR8,FR7

 FMOV.S FR7,FR3

 FMOV.S FR5,FR7

 FDIV FR3,FR7

 FADD FR7,FR4

 FMOV.S FR7,@(R0,R4)

 MOV #12,R0

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-73
REJ05B0463-0400

 FMOV.S @R5,FR4

 FMOV.S FR6,FR8

 FMUL FR6,FR8

 FMOV.S FR4,FR7

 FMUL FR4,FR7

 FADD FR6,FR4

 FADD FR8,FR7

 FMOV.S FR7,FR3

 FMOV.S FR5,FR7

 FDIV FR3,FR7

 FADD FR7,FR4

 FMOV.S FR7,@(R0,R5)

 ADD #32,R4

 MOV #12,R0

 CMP/HS R6,R4

 FMOV.S FR4,@(R0,R5)

 BF/S L251

 ADD #32,R5

L250:

 RTS

 NOP

L252:

 .DATA.W 0

 .DATA.L _data

 .DATA.L H'00008000

 FMOV.S FR4,@(R0,R4)

 MOV #4,R0

 FMOV.S @(R0,R5),FR6

 MOV #8,R0

 FMOV.S @R5,FR4

 FMOV.S FR6,FR8

 FMUL FR6,FR8

 FMOV.S FR4,FR7

 FMUL FR4,FR7

 FADD FR6,FR4

 FADD FR8,FR7

 FMOV.S FR7,FR3

 FMOV.S FR5,FR7

 FDIV FR3,FR7

 FMOV.S FR7,@(R0,R5)

 FADD FR7,FR4

 ADD #32,R4

 MOV #12,R0

 CMP/HS R7,R4

 FMOV.S FR4,@(R0,R5)

 BF/S L252

 ADD #32,R5

L251:

 RTS

 NOP

L253:

 .DATA.W 0

 .DATA.L _data

 .DATA.L H'00008000

Code Size and Execution Speed before and after Optimization:

Code Size [byte] Execution Speed [cycle] CPU Type

Before
Optimization

After
Optimization

Before
Optimization

After
Optimization

SH-3 18 24 609 31

SH3-DSP 18 16 609 21

SH-4 16 12 608 10

 Notes: 1. For SH-3, SH3-DSP, and SH-4, load the program into the external memory.
 2. For SH-3 and SH3-DSP, perform the measurement with the number of external memory
 access cycle set to 16.
 3. For SH-4, perform the measurement with the number of memory access wait cycle set to 15.
 4. Cache miss should be considered

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-74
REJ05B0463-0400

5.9.2 Tiling

Important Points:

In this method, a program is created with concentration of data access such that data cache misses are reduced.

In other words, in this technique, calculations which can be performed while the cache is hit are performed first.

Description:

A simple example, consider the creation of an array which takes the sum of the differences of two arrays A and B.

By creating the program with the order of access varied, data cache misses can be reduced.

Example of Use:

For array members a, b, c, and d, a structure performs the calculation

di=Σj bj-aj

Code before optimization

typedef struct {

 float a,b,c,d;

} data_t;

f(data_t data[], int n)

{

 data_t *p,*q;

 data_t *p_end = &data[n];

 data_t *q_end = p_end;

 float a,d;

 for (p = data; p < p_end; p++){

 a = p->a;

 d = 0.0f;

 for (q = data; q < q_end; q++){

 d += q->b -a;

 }

 p->d=d;

 }

}

Expanded into assembly language code

(before optimization)

Code after optimization

#define STRIDE 512

typedef struct {

 float a,b,c,d;

} data_t;

f(data_t data[], int n)

{

 data_t *p,*q, *end=&data[n];

 data_t *pp, *qq;

 data_t *pp_end, *qq_end;

 float a,d;

 for (p = data; p < end; p = pp_end){

 pp_end = p + STRIDE;

 for (q = data; q < end; q = qq_end){

 qq_end = q + STRIDE;

 for (pp = p; pp < pp_end && pp

 a = pp->a;

 d = pp->d;

 for (qq = q; qq < qq_end

 && qq < end; qq++){

 d += qq->b -a;

 }

 p->d = d;

 }

 }

 }

}

Expanded into assembly language code

(after optimization)

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-75
REJ05B0463-0400

_f:

 MOV R5,R1

 SHLL2 R1

 SHLL2 R1

 FLDI0 FR6

 ADD R4,R1

 BRA L244

 MOV R4,R6

L245:

 MOV R4,R5

 FMOV.S @R6,FR5

 CMP/HS R1,R5

 BT/S L246

 FMOV.S FR6,FR4

L247:

 STS FPSCR,R3

 MOV.L L248,R2

 MOV #4,R0

 FMOV.S @(R0,R5),FR3

 ADD #16,R5

 AND R2,R3

 CMP/HS R1,R5

 LDS R3,FPSCR

 FSUB FR5,FR3

 BF/S L247

 FADD FR3,FR4

L246:

 MOV #12,R0

 FMOV.S FR4,@(R0,R6)

 ADD #16,R6

L244:

 CMP/HS R1,R6

 BF L245

 RTS

 NOP

L248:

 .DATA.L H'FFE7FFFF

 .END

_f:

 MOV.L R14,@-R15

 MOV R5,R7

 MOV.L R13,@-R15

 SHLL2 R7

 MOV.L R11,@-R15

 SHLL2 R7

 MOV.L R10,@-R15

 ADD R4,R7

 MOV.W L259,R11

 BRA L249

 MOV R4,R13

L250:

 MOV R13,R10

 ADD R11,R10

 BRA L251

 MOV R4,R14

L252:

 MOV R14,R1

 ADD R11,R1

 BRA L253

 MOV R13,R6

L254:

 MOV #12,R0

 FMOV.S @R6,FR5

 FMOV.S @(R0,R6),FR4

 BRA L255

 MOV R14,R5

L256:

 STS FPSCR,R3

 MOV.L L259+2,R2

 MOV #4,R0

 FMOV.S @(R0,R5),FR3

 ADD #16,R5

 AND R2,R3

 LDS R3,FPSCR

 FSUB FR5,FR3

 FADD FR3,FR4

L255:

 CMP/HS R1,R5

 BT L257

 CMP/HS R7,R5

 BF L256

L257:

 MOV #12,R0

 ADD #16,R6

 FMOV.S FR4,@(R0,R13)

L253:

 CMP/HS R10,R6

 BT L258

 CMP/HS R7,R6

 BF L254

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-76
REJ05B0463-0400

L258:

 MOV R1,R14

L251:

 CMP/HS R7,R14

 BF L252

 MOV R10,R13

L249:

 CMP/HS R7,R13

 BF L250

 MOV.L @R15+,R10

 MOV.L @R15+,R11

 MOV.L @R15+,R13

 RTS

 MOV.L @R15+,R14

L259:

 .DATA.W H'2000

 .DATA.L H'FFE7FFFF

 .END

 .END

Code Size and Execution Speed before and after Optimization:

Code Size [byte] Execution Speed [cycle] CPU Type

Before
Optimization

After
Optimization

Before
Optimization

After
Optimization

SH-3 76 132 931×103 725×103

SH3-DSP 76 132 940×103 697×103

SH-4 52 104 315×103 43×103

 Notes: 1. n = 4096, STRIDE = 512
 2. Cache miss should be considered.

Analysis of the Program before and after Optimization:

After optimization, there is a fourfold nesting of loops, and processing is complex, with increased code size. However, by
means of this processing the overhead associated with cache misses can be reduced. This technique is not effective when
there is little data to be processed, but is more effective for larger data sizes.

Prior to optimization, the values of data[0] through data[n-1] are referenced in succession in order to calculate data[0]->d.

Then, in order to calculate data[1]->d, the values of data[0] through data[n-1] are again referenced; but when the size of
the array data is large compared with the size of the cache, the value of data[0] will no longer be in the cache, resulting in
a cache miss.

Because the data in a large area is referenced in succession, by the time the same data is next referenced, it is no longer
present in the cache.

In the optimized program, data is divided into smaller areas for accessing, and so during this data accessing there are fewer
cache misses. The order of calculations is changed so that, during cache hits, other calculations using the same data are
also performed.

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-77
REJ05B0463-0400

5.10 Matrix Operations

Important Points:

If intrinsic functions are used in matrix operations, execution speed can be improved.

Here an array acting as a multiplier must be stored in the floating point extended register in advance.

Description:

The product of an array of four rows and four columns is normally calculated by successive operations using loops,
resulting in processing complexity, with little expectation of fast execution. However, the SH-4 supports intrinsic
functions for matrix operations; by using these functions, a significant improvement in execution speed is possible.

Example of Use:

To store the product of the array data and the array tbl in the array ret:

Note: In this example, the compile option is –cpu=sh4 –fpu=single.

Code before optimization

void mtrx4mul1 (float data[4][4],

 float tbl[4][4], float ret[4][4])

{

int i,j,k;

for(i=0;i<4;i++){

 for(j=0;j<4;j++){

 for(k=0;k<4;k++){

 ret[i][j]+=

 data[i][k]*tbl[k][j];

 }

 }

 }

}

Expanded into assembly language code

(before optimization)

_mtrx4mull:

 MOV.L R14,@-R15

 MOV.L R13,@-R15

 MOV.L R11,@-R15

 MOV.L R10,@-R15

 MOV.L R9,@-R15

 MOV.L R8,@-R15

 ADD #-4,R15

 MOV #0,R8

 MOV.L R8,@R15

 MOV #4,R14

L244:

 MOV.L @R15,R11

 MOV R8,R9

Code after optimization

#include <machine.h>

void _mtrx4mul (float data[4][4],

 float tbl[4][4],float ret[4][4])

{

 ld_ext(tbl);

 mtrx4mul(data,ret);

}

Expanded into assembly language code

(after optimization)

_mtrx4mul:

 ADD #-12,R15

 MOV.L R4,@(8,R15)

 MOV.L R5,@(4,R15)

 MOV.L R6,@R15

 MOV.L @(8,R15),R2

 FRCHG

 FMOV.S @R2+,FR0

 FMOV.S @R2+,FR1

 FMOV.S @R2+,FR2

 FMOV.S @R2+,FR3

 FMOV.S @R2+,FR4

 FMOV.S @R2+,FR5

 FMOV.S @R2+,FR6

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-78
REJ05B0463-0400

 SHLL2 R11

 SHLL2 R11

L245:

 MOV R9,R1

 MOV #0,R7

 SHLL2 R1

 MOV R8,R10

 MOV #0,R13

 ADD R5,R7

L246:

 MOV R11,R0

 ADD R6,R0

 ADD R1,R0

 MOV R11,R3

 MOV.L R0,@-R15

 ADD R4,R3

 MOV.L @R15+,R2

 MOV R1,R0

 ADD R13,R3

 FMOV.S @(R0,R7),FR0

 FMOV.S @R2,FR2

 ADD #1,R10

 FMOV.S @R3,FR3

 CMP/GE R14,R10

 ADD #16,R7

 FMAC FR0,FR3,FR2

 FMOV.S FR2,@R2

 BF/S L246

 ADD #4,R13

 ADD #1,R9

 CMP/GE R14,R9

 BF L245

 MOV.L @R15,R3

 ADD #1,R3

 CMP/GE R14,R3

 BF/S L244

 MOV.L R3,@R15

 ADD #4,R15

 MOV.L @R15+,R8

 MOV.L @R15+,R9

 MOV.L @R15+,R10

 MOV.L @R15+,R11

 MOV.L @R15+,R13

 RTS

 MOV.L @R15+,R14

 FMOV.S @R2+,FR7

 FMOV.S @R2+,FR8

 FMOV.S @R2+,FR9

 FMOV.S @R2+,FR10

 FMOV.S @R2+,FR11

 FMOV.S @R2+,FR12

 FMOV.S @R2+,FR13

 FMOV.S @R2+,FR14

 FMOV.S @R2+,FR15

 FRCHG

 MOV.L @(4,R15),R3

 MOV.L @R15,R1

 FMOV.S @R3+,FR0

 FMOV.S @R3+,FR1

 FMOV.S @R3+,FR2

 FMOV.S @R3+,FR3

 FTRV XMTRX,FV0

 ADD #16,R1

 FMOV.S FR3,@-R1

 FMOV.S FR2,@-R1

 FMOV.S FR1,@-R1

 FMOV.S FR0,@-R1

 FMOV.S @R3+,FR0

 FMOV.S @R3+,FR1

 FMOV.S @R3+,FR2

 FMOV.S @R3+,FR3

 FTRV XMTRX,FV0

 ADD #32,R1

 FMOV.S FR3,@-R1

 FMOV.S FR2,@-R1

 FMOV.S FR1,@-R1

 FMOV.S FR0,@-R1

 FMOV.S @R3+,FR0

 FMOV.S @R3+,FR1

 FMOV.S @R3+,FR2

 FMOV.S @R3+,FR3

 FTRV XMTRX,FV0

 ADD #32,R1

 FMOV.S FR3,@-R1

 FMOV.S FR2,@-R1

 FMOV.S FR1,@-R1

 FMOV.S FR0,@-R1

 FMOV.S @R3+,FR0

 FMOV.S @R3+,FR1

 FMOV.S @R3+,FR2

 FMOV.S @R3+,FR3

 FTRV XMTRX,FV0

 ADD #32,R1

 FMOV.S FR3,@-R1

 FMOV.S FR2,@-R1

 FMOV.S FR1,@-R1

 FMOV.S FR0,@-R1

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-79
REJ05B0463-0400

 ADD #12,R15

 RTS

 NOP

Code Size and Execution Speed before and after Optimization:

Code Size [byte] Execution Speed [cycle] CPU Type

Before
Optimization

After
Optimization

Before
Optimization

After
Optimization

SH-4 110 118 603 113

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-80
REJ05B0463-0400

5.11 Software Pipelines

Important Points:

By designing a program so as to eliminate waits for the results of operations, smooth pipeline flow is achieved.

Description:

Software pipelining involves the elimination of waits for instructions accompanying data flow (definition and use of
values). For example, in code to take a sum of values, when addition by an ADD instruction immediately follows the
definition of a load instruction, a wait occurs. If the load instruction is issued earlier, however, this wait can be eliminated.
If the processing is within a loop, loading of data for the next iteration is performed during the current iteration.

Typical examples of this method are division and square-root calculations. The SH-4 are provided with FDIV and FSQRT
instructions; but because of a large latency (the cycle from issue of an instruction until generation of the result; 12 cycles
in the case of the SH-4), in programs which use the result immediately, wait cycles until execution of the next instruction
occur.

Example of Use:

Example of a loop which takes the sum of square roots

Note: In this example, the compile option is –cpu=sh4 –fpu=single.

Code before optimization

#include <mathf.h>

float func1(float *p, int cnt){

 float ret=0.0f;

 do {

 ret+=sqrtf(*p++);

 x();

 } while(cnt--);

 return ret;

 }

Expanded into assembly language code

(before optimization)

_func1:

 MOV.L R14,@-R15

 FMOV.S FR15,@-R15

 STS.L PR,@-R15

 ADD #-8,R15

 MOV.L L262,R14

 FLDI0 FR15

 MOV.L R4,@(4,R15)

 MOV.L R5,@R15

L260:

 MOV.L @(4,R15),R3

 ADD #4,R3

 MOV.L R3,@(4,R15)

Code after optimization

#include <mathf.h>

float func21(float *p, int cnt){

 float ret=0.0f;

 float sq=0.0f;

 do {

 ret+=sq;

 sq=sqrtf(*p++);

 x();

 } while (cnt--);

 return ret;

 }

Expanded into assembly language code

(after optimization)

_func21:

 MOV.L R14,@-R15

 FMOV.S FR15,@-R15

 FMOV.S FR14,@-R15

 STS.L PR,@-R15

 ADD #-8,R15

 FLDI0 FR4

 MOV.L L263,R14

 FMOV.S FR4,FR15

 MOV.L R4,@(4,R15)

 MOV.L R5,@R15

 FMOV.S FR4,FR14

L261:

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-81
REJ05B0463-0400

 ADD #-4,R3

 FMOV.S @R3,FR3

 FSQRT FR3

 JSR @R14

 FADD FR3,FR15

 MOV.L @R15,R3

 ADD #-1,R3

 MOV.L R3,@R15

 ADD #1,R3

 TST R3,R3

 BF L260

 FMOV.S FR15,FR0

 ADD #8,R15

 LDS.L @R15+,PR

 FMOV.S @R15+,FR15

 RTS

 MOV.L @R15+,R14

L262:

 .DATA.L _x

 MOV.L @(4,R15),R3

 FADD FR15,FR14

 ADD #4,R3

 MOV.L R3,@(4,R15)

 ADD #-4,R3

 FMOV.S @R3,FR15

 JSR @R14

 FSQRT FR15

 MOV.L @R15,R3

 ADD #-1,R3

 MOV.L R3,@R15

 ADD #1,R3

 TST R3,R3

 BF L261

 FMOV.S FR14,FR0

 ADD #8,R15

 LDS.L @R15+,PR

 FMOV.S @R15+,FR14

 FMOV.S @R15+,FR15

 RTS

 MOV.L @R15+,R14

L263:

 .DATA.L _x

Analysis of the Program before and after Optimization:

Before optimization, the FADD instruction is executed immediately after FSQRT, and so wait cycles occur until FSQRT
is completed and FADD can be executed.

In the optimized program, after execution of FSQRT, an FADD instruction is issued in the next loop, and so waiting until
FADD is eliminated.

Code Size and Execution Speed before and after Optimization:

Code Size [byte]

(one loop)

Execution Speed [cycle]

(Number of wait cycles in
FSQRT)

CPU Type

Before
Optimization

After
Optimization

Before
Optimization

After
Optimization

SH-4 28 28 9 0

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-82
REJ05B0463-0400

5.12 About Cache Memory

The SuperH series includes the products with on-chip cache memory.

Caching is a mechanism which reduces the frequency of accesses of program and data in memory and speeds program
operation.

By using cache memory, the speed of program execution is improved. However, there are various types of caches, and a
thorough understanding of their structure and functioning will enable more effective programming.

Here a number of cache structures present in the SuperH series are explained, and suggestions for programming which
makes full use of cache memory are presented.

5.12.1 Description of Terms

Cache hit

When the CPU attempts to access external memory, it checks to see if the data to be retrieved already exists in cache
memory or not. Cases in which the data is present in cache memory are called cache hits.

In essence, when a cache hit occurs, high-speed cache memory is accessed, eliminating the need to access slower external
memory.

Cache miss

When the CPU attempts to access external memory, it checks to see if the data to be retrieved already exists in cache
memory or not. Cases in which the data is not present in cache memory are called cache misses.

Cache fill

When a cache miss occurs, the CPU stores the contents of the memory accessed in the cache. This is called cache filling.

Cache line leng

When the CPU performs a cache fill, it does not store only the contents of the memory accessed in the cache; rather, in
cache filling it stores the contents of a continuous area of memory including the areas preceding and following the
accessed data. The size of this region is called the cache line length. The line length is a fixed length (size) for a given
CPU. This line length is the unit when storing data in the cache.

Cache size, number of entries number of lines

The capacity of data stored in the cache is called the cache size.

The number of entries (or number of lines) is determined by the cache line length and the cache size as follows.

(cache size) = (number of entries) × (cache line length)

Write-backand write-through

When, in the cache hit state, an attempt is made to overwrite the memory contents, there are two choices for performing
the overwrite.

(1) The contents of cache memory and the contents of external memory are overwritten simultaneously.

(2) Only the cache memory is overwritten.

In the case of (1), the contents of the cache memory and the contents of external memory always coincide. This
method is called write-through.

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-83
REJ05B0463-0400

In the case of (2), the most recent data remains in cache memory only; external memory is not overwritten, but retains old
data. When this method is used, before the contents of the cache entry are discarded, the data in the entry is written back to
the external memory. This method is called write-back. (Ordinarily a flag indicates whether there has been writing one or
more times to an entry in the cache, and write-back to external memory is performed only when the flag indicates that
cache writing has occurred.)

Cache coherency

This refers to the coincidence of the contents of external memory and the contents of cache memory.

In other words, when the cache is used with the write-back method, there is the possibility that the contents of cache
memory do not agree with the contents of external memory, and if a device other than the CPU accesses external memory,
because this data has not been updated, erroneous software operation occurs. When some other device accesses the same
memory (when common memory is used), either the write-through method should be used, or else write-back of the
applicable cache entries for the memory area should be performed prior to accessing by the other device.

Direct mapping

This is another caching method.

In essence, the address of cache memory for storage of data is determined uniquely based on the address in external
memory. The offset of the external memory is used to store the data in the address with the same offset in cache memory.

When checking the data location with a given address in cache, the stored location is determined unambiguously by the
memory address; hence this method alleviates the burden on the hardware. However, when the offset addresses of
frequently used memory locations coincide, the same entry is replaced frequently, and on the other hand there are entries
which are used hardly at all.

Hence in some circumstances this method results in inefficient use of cache memory, and so the program design should be
considered carefully when opting for this method.

Full-associative method

This is another caching method.

In contrast with direct mapping, all addresses and data for external memory are stored in entries. Entries are replaced
starting with those which have not been accessed for the longest time (LRU method), and so the cache can be used with
maximum efficiency. However, in order to determine in which cache entry an address of external memory is stored, all
cache entries must be checked, and the hardware mechanism becomes complex.

Set-associative method

This method lies midway between direct mapping and the full-associative method; here a number of direct-mapping
caches are used (the number used is called the number of ways). As in direct mapping, the cache entry to be used is
determined from the offset value of the address in external memory; but of the number of caches present, the way which
has not been accessed for the longest time is used.

When searching for the area of the cache in which the address is stored, instead of searching all cache entries, only
searches equal to the number of ways are necessary, so that the hardware operations involved are not so complex.

The SH7604, SH7708, SH7707, SH7709, and SH7718 use 4-way set-associative caching.

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-84
REJ05B0463-0400

5.13 SuperH Family Caches

Each of the caches used in the SuperH Series is explained below.

1. SH7032, SH7034, SH7020, and SH7021 Groups (SH-1)

This series is not provided with cache memory. These products are based on CPUs with internal ROM/RAM. If execution
is limited to internal ROM/RAM, performance equal to or surpassing that using cache memory is possible.

2. SH704x Group (SH-2)

This series is based on CPUs with internal ROM/RAM. They have CPUs with performance superior to the SH7034, and
provide a function enabling part of internal RAM to be used as an instruction cache.

Caching method: Instruction cache (direct mapping)

Cache size: 1 kbyte (in use, 2 kbytes of internal RAM)
Cache line length: 4 bytes (two instructions)
Number of entries: 256

The cache is for instructions only. Because of the low overhead of cache filling, this cache is highly effective for loop
processing within 1 kbyte. The effective range of the cache is external memory; it is not effective for internal ROM/RAM.
(Internal ROM/RAM can be accessed rapidly, and so a cache need not be used.)

However, 2 kbytes of the 4 kbytes of internal RAM is used, as 1 kbyte of cache memory; and so when using the cache, the
internal RAM size is 2 kbytes.

Because this is not a data cache, in some cases overall performance is improved by using all 4 kbytes of RAM for data
without using a cache, and using internal ROM preferentially for frequently used code.

3. SH7604 Group (SH-2)

This series is based on a ROM-less processor-type CPU with cache.

Caching method: 4-way set-associative cache (mixed instructions and data)

Cache size: 4 kbytes
Cache line length: 16 bytes
Number of entries: 256 (64×4)
Other: Write-through method

4. SH7707, SH7708, and SH7709 Groups (SH-3)

This series is based on a ROM-less processor-type CPU with cache.

Caching method: 4-way set-associative cache (mixed instructions and data)
Cache size: 8 kbytes
Cache line length: 16 bytes
Number of entries: 512 (128×4)
Other: Selectable among write-through or write-back method

5. SH7750 Group (SH-4)

Caching method: Direct mapping (mixed instructions and data)

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-85
REJ05B0463-0400

Instruction cache

Cache size: 8 kbytes
Cache line length: 32 bytes
Number of entries: 256
Other: 4 kbytes × 2 index modes possible

Data cache (Operand cache)

Cache size: 16 kbytes
Cache line length: 32 bytes
Number of entries: 512
Other: 8 kbytes can be used as internal RAM

Storage queue

Two storage queues for 32 bytes are provided for high-speed transfer to external memory.

The storage queues are buffers for high-speed transfer to external memory.

By using it, high-speed transfer to external memory is possible.

The data cache cannot perform cache blocking, and so there is the possibility of cache replacement.

The storage queue is a reliable mechanism for high-speed transfer which does not cause drops in performance due to cache
replacement or other issues.

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-86
REJ05B0463-0400

5.14 Techniques for Cache Utilization

The following describes the techniques for efficient use of the cache.

(1) Reasons for poor performance

Table 5.7 lists the most possible reasons that prevent better performance.

The generally-believed methods and measures required for the best use of the cache are as follows:

[1] Use a debugger or profile tool to check the dependency of functions and execution frequency.

[2] Place the caches in locations having close dependency to reduce cache misses.

[3] Perform size-oriented optimization to make the frequently-executed part into a function.

Table 5.7 Primary Reasons for Poor Performance

Item Possible reasons Action

Shifts in
addresses on
the cache

Shifts in addresses on the cache or in entries may
change the contention relationship of the cache.

Change the alignment.

Increase in the
program size

The cache hit rate may be degraded due to
increase in the dummy area for alignment and
increase in the program size.

Perform size-oriented
optimization

The following describes details of the actions you must take. However, note that these actions do not always work.

(2) Corrective action for shifts in addresses on the cache

The effective method is to change the alignment of the program to the length of a cache line. By default, the alignment of
programs output by the SuperH RISC engine C/C++ compiler is four bytes. Use the “align16” compiler option for the
SuperH RISC engine C/C++ compiler to change the alignment to 16 bytes that is equal to the length of one line on the
cache. This ensures that the addresses are placed from the beginning of the cache line.

However, note that this method is valid when the length of a cache line is 16 bytes. The program size will increase.

[1] Most efficient method of specifying the “align16” option

• Specify the “align16” option for compact function groups (that use only few lines on the cache).

• Specify the “align16” option for a small function group, if any, within a general common routine groups in the
program.

(Defining the small function group adjacent to the same module reduces cache entry contention.)

(3) Increase in the program size

Increase in the dummy area for alignment and in the program size degrades the cache hit ratio rate.

[1] How to cope with the increase in the program size

You can suppress an increase in the program size as follows:

• Perform optimization by specifying “Size-Oriented” for optimization option for the SuperH RISC engine C/C++
compiler.

• Re-create the program by using functions of smaller size.

• Create a special general-purpose routine.

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-87
REJ05B0463-0400

(4) How to use cache entries

You must check whether the entries in the cache are used uniformly and whether the number of replacements is not
concentrated on particular entries. This check is especially important for direct-mapping caching.

Checking these items requires some means for tracing the cache contents.

However, actual tracing is impossible in many cases.

Hence, the means for improving overall performance include the following:

[1] Select functions which are frequently executed.

[2] Determine the start and end addresses of each function from the map file of the linkage editor.

[3] Check the entries of the cache used by the function.

[4] Compile statistics for the entries used by each function.

[5] Check whether particular entries are not concentrated on a cache.

In this stage, if multiple functions are using the same cache line, change the function addresses to eliminate concentration.

You can change addresses by changing the section names at compilation or by changing the input order during linking.

The method in [3] for checking the used entries varies depending on the CPU and caching method. Generally, if
direct-mapping caching is used, the entry number is determined by the offset value of the absolute address. (The offset
range depends on the cache size.)

If you find it difficult to check for contention by using the procedures [3] through [5], use the following method:

Change the section names of the functions selected in [1] and recompile.

This allocates the functions selected in [1] to continuous addresses. In other words, cache contention does not occur
between these functions. This means that the total size of the functions to change the section names must be equal to or
smaller than the cache size.

(5) Programming techniques

There are effective programming techniques for efficiently using the cache. See the following for programming:

• Tilig programs

 See section 5.9.2, Tiling.

• Prefetching

 See section 5.9.1, Prefetch Instruction.

Section 5 Efficient Programming Techniques

Rev.4.00 2007.02.02 5-88
REJ05B0463-0400

Section 6 Efficient Programming Techniques (Supplement)

Rev.4.00 2007.02.02 6-1
REJ05B0463-0400

Section 6 Efficient Programming Techniques (Supplement)

6.1 How to Specify Options

To create an efficient program, it is effective to specify an optimization option. You can achieve increased effectiveness
depending on the selection of an optimization option or the use of an option in combination with others.

6.1.1 Options for Starting HEW (Floating Point Setting)

Options that can be specified for starting HEW set the environment related to the use of a CPU in general including the
handling of endian and floating points.

When a program uses floating points, the floating point setting greatly influences the performance.Concerning both the
size and speed, the single-precision floating point mode (32-bit) is more efficient than the double-precision floating point
mode.Use the single-precision floating point mode if it is sufficient for your application field.The single precision gives
about seven decimal digits of precision while the double precision gives about 17 decimal digits of precision.

Note: The floating point mode specified as described in this section will influence an entire project. Therefore, you
cannot specify different modes for each file.

(1) For SH-1, SH-2, SH-2E, SH-2A, SH2-DSP, SH3, SH3-DSP, and SH4AL-DSP

Click the "Treat double as float" check box shown in figure 6.1. This will cause all the floating points (including those
declared as double) to be handled in single-precision mode.

Figure 6.1 How to Specify Single-Precision Mode

(SH-1, SH-2, SH-2E, SH-2A, SH2-DSP, SH3, SH3-DSP, and SH4AL-DSP)

Section 6 Efficient Programming Techniques (Supplement)

Rev.4.00 2007.02.02 6-2
REJ05B0463-0400

(2) For SH2A-FPU, SH-4, and SH-4A

 Specify "Single" in the FPU menu shown in figure 6.2.

Figure 6.2 How to Specify Single-Precision Mode (SH2A-FPU, SH-4, and SH-4A)

Specify "Double" on this screen to perform all the operations in double-precision mode. Specify "Mix" to calculate float in
single-precision mode and double in double-precision mode as described in a program. (This is the same operation as
when "Treat double as float" is not checked for SH-1, SH-2, SH-2E, SH-2A, SH2-DSP, SH3, SH3-DSP, or SH4AL-DSP.
However, a program may have poorer performance than when double is specified because it is executed while switching
between the single- and double-precision modes of the FPU).

Section 6 Efficient Programming Techniques (Supplement)

Rev.4.00 2007.02.02 6-3
REJ05B0463-0400

6.1.2 How to Specify Optimization Options (Speed and Size)

There are the following major optimization options (figure 6.3).

(a) Optimize for size and speed (default)

(b) Optimize for size

(c) Optimize for speed

Figure 6.3 Optimization Options

"Optimize for size and speed" (default) performs only optimizations that improve both the size and speed. "Optimize for
size" performs optimizations that reduce the size at the expense of the speed in addition to those performed for "Optimize
for size and speed". "Optimize for speed" performs optimizations that improve the speed at the expense of the size
reduction in addition to those performed for "Optimize for size and speed".

To give priority to either the size or speed, specify either "Optimize for size" or "Optimize for speed" respectively.

In many of the systems, the speed is important only in a limited part of a program. If this is the case, it is effective to
optimize the files that require speed using "Optimize for speed" and the others using "Optimize for size". Different
optimization options can be specified for each file because they do not change the interface between files.

To specify different options for each file, select a target source file in the directory tree shown on the left and then specify
an option (figure 6.4).

Section 6 Efficient Programming Techniques (Supplement)

Rev.4.00 2007.02.02 6-4
REJ05B0463-0400

Figure 6.4 How to Specify Different Options for Each File

Section 6 Efficient Programming Techniques (Supplement)

Rev.4.00 2007.02.02 6-5
REJ05B0463-0400

6.1.3 Options Needing Attention for Program Compatibility (Function Interface)

Some of the options that change the interface of a function can improve the execution efficiency of a program. These
options, by default supporting the earlier versions of the Compiler for the sake of compatibility, can improve the efficiency
without a compatibility problem if you change an entire project. These options are located in the Others menu of the
Compiler options.

Note: If a project includes an assembler-written program, you must check which of the conventions is used to create it.

(1) Callee saves/restores MACH and MACL registers if used

Specify this option to have a function that uses the MACH and MACL registers save and restore these registers at the
function entry and exit points.These registers, being saved and restored by default, are mostly used as work registers.
Thus, you can improve both the size and speed by selecting not to save and restore them (unchecking the check box)
(figure 6.5).

Figure 6.5 MACH and MACL Register Save and Restore Option

(2) Expand return value to 4 byte

If the function return type is either char, unsigned char, short, or unsigned short, the sign extension (or zero extension) is
performed by default not by the called function but by the calling function (this is a specification compatible with the
earlier versions of the Compiler).

If a function is called more than once, it is advantageous in terms of size reduction to have the called function sign-extend
a return value (check the check box) instead of having the calling function do so because the extension code needs to be
included only once.

Section 6 Efficient Programming Techniques (Supplement)

Rev.4.00 2007.02.02 6-6
REJ05B0463-0400

Figure 6.6 Return Value Extended Option

Note: The SH register size is 4 bytes. You can create an efficient program by declaring the return values of a function as
well as data to be put in the register such as function parameters and local variables as either of the four-byte
types, int, unsigned, long, and unsigned long because no sign extension processing is required.
(For details, please refer to 5.1.1, Local Variable.)

Section 6 Efficient Programming Techniques (Supplement)

Rev.4.00 2007.02.02 6-7
REJ05B0463-0400

6.1.4 Options for Handling Variables with volatile Declaration (volatile Variable)

Specify a volatile declaration to disable the optimization of access to a variable.Declare volatile for an external variable to
be used in a program, mainly for the following two purposes:

(a) Disabling the optimization of access to a peripheral input-output register

(b) Disabling the optimization of access to a variable to be shared in different tasks or interrupt processing.

V6.0 and earlier versions of the SH C/C++ Compiler performed hardly any optimization of access to an external variable.
However, V7.0 and later versions perform drastically enhanced optimizations.If a program with no volatile declaration for
a variable that meets either of the above conditions (1) and (2) was developed using the Compiler V6.0 or earlier, it is
recommended to add a volatile declaration to the program when it is ported to the Compiler V7.0 or later.

If you do not modify the program, click the "Details..." button in the Optimize menu of the Compiler option to set up the
Details option.

Use these options, which will disable optimizations, to disable a minimum range of optimizations without impairing the
functionality of a program developed in V6.0 or earlier.

(1) If volatile is not declared for a peripheral input-output register

A peripheral input-output register may have a different operation, depending on the register specifications, if you optimize
two consecutive accesses for writing or reading to one access.

To disable such optimizations, specify Level 1 in the "Global variables" tab of the Optimize Details option (figure 6.7).

Figure 6.7 Optimize Details Option Level 1

However, Level 1 disables other optimizations as well. Retain the effects of a volatile declaration and perform a maximum
range of other optimizations as shown below (figure 6.8).

(a) Set Level to "Level 1."

(b) Then, set Level to "Custom" (the Level 1 settings will remain).

(c) Set "Specify optimizing range" to "All."

(d) Set "Allocate registers to global variables" to "Enable."

(e) Set "Propagate variables which are const qualified" to "Enable."

(f) Set "Schedule instructions" to "Enable."

Section 6 Efficient Programming Techniques (Supplement)

Rev.4.00 2007.02.02 6-8
REJ05B0463-0400

Example:

extern int x;

void f (void)

{

 x=1;

 x=2;

}

Assembler expansion code

_f:

 MOV.L L11,R6

 MOV #2,R2

 RTS

 MOV.L R2,@R6

Source code

Assembler expansion code (with the option
specified)

_f:

 MOV.L L11,R6

 MOV #1,R2

 MOV.L R2,@R6

 MOV #2,R2

 RTS

 MOV.L R2,@R6

In this example, not specifying the option results in combining two accesses to an input-output register into one. Thus,
you may have a different effect on the peripheral input-output register.

Section 6 Efficient Programming Techniques (Supplement)

Rev.4.00 2007.02.02 6-9
REJ05B0463-0400

Figure 6.8 Specifying Volatile for a Peripheral Input-Output Register

Notes: 1. In a header file created by HEW for each model, volatile is declared for a peripheral input-output register. If
external variables without a volatile declaration are only those shared in tasks and interrupts, specify an option
described in (2).

 2. If two references are made to an external variable in one expression, the order of them is not ensured. The
result is the same if volatile is declared for an external variable. If more than one reference must be made to a
peripheral input-output register, make the references in different expressions.

(2) If volatile is not declared for an external variable to be shared in tasks and interrupts, such an external variable is a
variable on the memory.

Combining consecutive accesses does not change the effect of a program. If, however, an external variable to be
referenced in a loop is allocated to the register, changing the variable in other tasks and interrupt processing may not
influence the loop processing and may consequently change the operation.

To disable such optimizations, specify Level 2 in the "Global variables" tab of the Optimize Details option (figure 6.9).

Figure 6.9 Optimize Details Option Level 2

However, Level 2 disables other optimizations as well. Retain the effects of a volatile declaration and perform a maximum
range of other optimizations as shown below (figure 6.10).

Section 6 Efficient Programming Techniques (Supplement)

Rev.4.00 2007.02.02 6-10
REJ05B0463-0400

(a) Set Level to "Level 2."

(b) Then, set Level to "Custom" (the Level 2 settings will remain).

(c) Set "Specify optimizing range" to "No loop" (i.e., disable the optimization of external variables in a loop.If the default
setting "No block" is retained, optimizations are disabled on those in all the structures including a loop).

(d) Set "Allocate registers to global variables" to "Enable."

(e) Set "Propagate variables which are const qualified" to "Enable."

Example:

Source code

extern int x; /* This may be

 changed due to

 an interrupt. */

void f (void)

{

 x=1;

 while (1){

 if (x!=1) break;

 }

}

Assembler expansion code

_f

L10:

 BRA L10

 NOP
 RTS
 NOP

Assembler expansion code (with the option specified)

_f

 MOV.L L13,

 MOV #1,R2

 MOV.L R2,@R1

 MOV.L @R1,R0

 CMP/EQ #1,R0

 BT L11

 RTS

 NOP

 The source code assumes that, if the option is not specified, the loop will be broken when an interrupt changes external
variable x. However, optimizations may make it an infinite loop because volatile is not declared for x.

Section 6 Efficient Programming Techniques (Supplement)

Rev.4.00 2007.02.02 6-11
REJ05B0463-0400

Figure 6.10 Volatile Specification for a Variable to be Shared in Tasks and Interrupts

If a reference to a variable to be shared in tasks and interrupts is limited to a loop conditional expression, keep the
Optimize Details option as default (Level 3) and specify "Treat loop condition as volatile qualified" in the Other option to
achieve an equivalent effect to the above and minimize the range of optimizations to be disabled (figure 6.11).

Figure 6.11 Declaring Volatile for Loop Conditions

Section 6 Efficient Programming Techniques (Supplement)

Rev.4.00 2007.02.02 6-12
REJ05B0463-0400

Example:

Source code

extern int x; /* This may be

 changed due to

 an interrupt. */

void f (void)

{

 x=1;

 while (x){ /* A shared variable

 is accessed in a

 conditional expression. */

 }

}

Assembler expansion code

_f:

L10:

 BRA L10

 NOP

 RTS

 NOP

Assembler expansion code (with the option specified)

_f:

 MOV.L L13,R1

 MOV #1,R2

 MOV.L R2,@R1

L11:

 MOV.L @R1,R2

 TST R2,R2

 BF L11

 RTS

 NOP

In this example, a variable to be shared in a task is evaluated in a loop conditional expression. Thus, define the loop
condition as volatile to avoid an infinite loop.

Note: The method described in item (2) of this section ensures that a variable to be shared in tasks and interrupts is
referenced every time a loop is entered. This will cause a variable to be referenced in each loop iteration and
consequently the value of a variable changed in other tasks or interrupts to be correctly reflected.
However, two references to a variable in a section not including a loop may be optimized at this setting. If you
have such references and need to correctly reflect the value of a variable changed in other tasks or interrupts,
specify an option described in item (1), "If volatile is not declared for a peripheral input-output register."

Section 6 Efficient Programming Techniques (Supplement)

Rev.4.00 2007.02.02 6-13
REJ05B0463-0400

Example:

extern int x;

void f(void){

 int a;

 a=x;

 /* Long processing without a loop */

 a=x;

}

If you need to detect, in such a program, that a task or interrupt has changed x between the two references to it, specify an
option described in item (1), "If volatile is not declared for a peripheral input-output register."

Section 6 Efficient Programming Techniques (Supplement)

Rev.4.00 2007.02.02 6-14
REJ05B0463-0400

6.1.5 Disabling Deletion of Empty Loops

Empty loops that you wrote in a program to provide timing may be deleted in V7.0 or later due to optimizations. To
disable deletion, click the "Details..." button in the Optimize menu of the Compiler option. In the Details option dialog
box, select the "Miscellaneous" tab and make sure that "Delete vacant loop" checkbox is OFF. (It is OFF by default.)
(Figure 6.12)

Figure 6.12 Disabling Deletion of Empty Loops

Example:

Source code

void f (void)

{

 int x;

 for (x=0; x<100; x++){

 /* Timing loop */

 }

}

Assembler expansion code

_f:

 RTS
 NOP

Assembler expansion code (with the option
specified)

_f:

 MOV #100,R2

L11:

 DT R2

 BF L11

 RTS

 NOP

Since, in this example, there is no processing inside the timing loop, the code may be deleted unless you disable deletion
of empty loops.

Note: To avoid deletion of a loop, you can either access in the loop a variable with a volatile declaration or call in the
loop built-in function nop().In these cases, check this option to enhance loop optimization.

Section 6 Efficient Programming Techniques (Supplement)

Rev.4.00 2007.02.02 6-15
REJ05B0463-0400

6.1.6 Disabling Optimization of const Variables

The optimization processing may optimize variables for which const is declared by replacing it with a constant. This will
not change the program operations. However, changing the value of a variable with a const declaration during debugging,
for example, will not influence the program.
Since the optimization processing replaces const-declared variable a with its initial value, changing the value of a during
debugging will not change the program operations.

To disable such optimizations, click the "Details..." button in the Optimize menu of the Compiler option. In the Details
option dialog box, select the "Global variables" tab and specify as shown below (figure 6.13).

(a) Set Level to "Level 3" (default).

(b) Then, set Level to "Custom" (the Level 3 settings will remain).

(c) Set "Propagate variables which are const qualified" to "Disable."

Example:

Source code

extern int x;

const int a=1;

void f (void)

{

 x=a;

}

Assembler expansion code

_f:

 MOV.L L11,R6

 MOV #1,R2

 RTS

 MOV.L R2,@R6

Assembler expansion code (with the option
specified)

_f:

 MOV.L L11+2,R6

 MOV.L @R6,R2

 MOV.L L11+6,R6

 RTS

 MOV.L R2,@R6

Section 6 Efficient Programming Techniques (Supplement)

Rev.4.00 2007.02.02 6-16
REJ05B0463-0400

Figure 6.13 Disabling Optimization of Const Variables

Section 6 Efficient Programming Techniques (Supplement)

Rev.4.00 2007.02.02 6-17
REJ05B0463-0400

6.1.7 Options Effective for Enhancing Execution Efficiency of Floating Points

(1) Optimization that replaces divisions by floating-point constants with multiplications

This optimization replaces divisions by floating-point constants with multiplications by reciprocals of the constants.

This optimization is provided not in the Optimize menu but in the Other menu of the C/C++ Compiler because the
resultant value may be different (although it is within the range of error). In this menu, select "Approximate floating-point
constant division" (figure 6.14).

Example:

Source code

float x;

void f (float y)

{

 x=y/3.0;

}

Assembler expansion code

_f:

 MOVA L11,R0

 MOV.L L11+4,R2
 FMOV.S @R0,FR8
 FDIV FR8,FR4

 RTS

 FMOV.S FR4,@R2

Assembler expansion code (with the option
specified)

_f:

 MOVA L11,R0

 MOV.L L11+4,R2

 FMOV.S @R0,FR8

 FMUL FR8,FR4

 RTS

 FMOV.S FR4,@R2

An operation of division by 3.0 is replaced with a faster multiplication operation. (The result may be different although it
is within the range of error.)

Section 6 Efficient Programming Techniques (Supplement)

Rev.4.00 2007.02.02 6-18
REJ05B0463-0400

Figure 6.14 Optimization of Divisions by Floating-Point CSonstants

(2) Precaution for when Mix is selected in the floating-point setting of SH2A-FPU, SH-4, and SH-4A

If you specify Mix in the floating-point setting of SH2A-FPU, SH-4, and SH-4A, the same calling interfaces as the earlier
versions of the Compiler will be used for the sake of compatibility. Since, on this interface, the floating-point setting will
become undefined upon the return from a function so that FPSCR must be reset every time this happens.

Specify "Change FPSCR register if double data is used" in the Other option of the C/C++ Compiler to limit the switching
of FPSCR to before and after double-precision operations and thus improve the size and speed of a program.

Figure 6.15 Recommended Option for when Mix Is Selected in the Floating-Point Setting of SH-4

Note: Since this option changes the interface of a function, the change must be made on all the files at the same time.

Section 6 Efficient Programming Techniques (Supplement)

Rev.4.00 2007.02.02 6-19
REJ05B0463-0400

6.2 Optimization of Division by Constant

• Important Points:

The optimization processing turns a division by a constant into an operation other than a division. Therefore, use a
division by a constant wherever possible.

• Description:

The optimization processing turns a division by a constant into an operation of multiplying by an approximate value
of the constant's reciprocal and then fine-tuning the result. This will drastically improve the execution speed for
subroutine calls in a division.

• Example of Use:

In the following example of improvement, the use of a constant as the divisor will result in an instruction string that
obtains a quotient of 3 directly without calling a division routine. A similar code will be generated also for divisions by
other constants.

Source code before optimization
int x;
int z=3;

void f (int y){

 x=y/z;

}

Assembly code before optimization

_f:

 STS.L PR,@-R15

 MOV.L L11,R5

 MOV R4,R1

 MOV.L L11+4,R2

 JSR @R2

 MOV.L @R5,R0

 MOV.L L11+8,R6

 LDS.L @R15+,PR

 RTS

 MOV.L R0,@R6

L11:

 .DATA.L _z

 .DATA.L __divls

 .DATA.L _x

Source code after optimization

int x;

void f (int y){

 x=y/3;

}

Assembly code after optimization

_f:

 MOV.L L11,R2

 DMULS.L R4,R2

 STS MACH,R6

 MOV R6,R0

 ROTL R0

 AND #1,R0

 ADD R6,R0

 MOV.L L11+4,R6

 RTS

 MOV.L R0,@R6

L11:

 .DATA.L H'55555556

 .DATA.L _x

Note: This optimization, which can drastically improve the speed, is not applied for optimizations for size because the
expanded code may become too large.

Section 6 Efficient Programming Techniques (Supplement)

Rev.4.00 2007.02.02 6-20
REJ05B0463-0400

6.3 Size of Division by Integer

• Important Points:

A division by an integer can be executed faster as a data type (char or short) than as an int type (32-bit) because the
former is shorter.

• Description:

For a division, a different runtime routine is available for each of the 32-bit, 16-bit, and 8-bit sizes.A division can be
executed faster as a smaller-sized type if the range of values is limited.

• Example of Use:

If, as shown in the following example of improvement, the divisor, dividend, and result are in a 16-bit range,
declaring the division operand and result as short types will call a 16-bit division routine (divws), not a 32-bit division
routine (divls).

Source code before optimization
int x;
int y;

int z;

void f(){

 x=y/z;

}

Assembly code before optimization

_f:

 STS.L PR,@-R15

 MOV.L L11+2,R6

 MOV.L L11+6,R4

 MOV.L L11+10,R2

 MOV.L @R6,R0

 JSR @R2

 MOV.L @R4,R1

 MOV.L L11+14,R6

 LDS.L @R15+,PR

 RTS

 MOV.L R0,@R6

L11:

 .RES.W 1

 .DATA.L _z

 .DATA.L _y

 .DATA.L __divls

 .DATA.L _x

Source code after optimization

short x;

short y;

short z;

void f(){

 x=y/z;

}

Assembly code after optimization

_f

 STS.L PR,@-R15

 MOV.L L11+2,R6

 MOV.L L11+6,R4

 MOV.L L11+10,R2

 MOV.W @R6,R0

 JSR @R2

 MOV.W @R4,R1

 MOV.L L11+14,R6

 LDS.L @R15+,PR

 RTS

 MOV.W R0,@R6

L11:

 .RES.W 1

 .DATA.L _z

 .DATA.L _y

 .DATA.L __divws

 .DATA.L _x

Section 6 Efficient Programming Techniques (Supplement)

Rev.4.00 2007.02.02 6-21
REJ05B0463-0400

6.4 Register Declaration

• Important Points:

The SH C/C++ Compiler Ver.7 or later allocates variables in the same way whether or not there are register
declarations.

• Description:

The Compiler weighs the frequencies in use of local variables (by giving a higher priority to ones that appear in a
loop, etc.) and accordingly allocates registers. Register declarations for variables are ignored.

• Example of Use:

The following shows an example of compiling programs without and with register declarations. Both the programs
generate a code with the same register allocation.

Source code without a register declaration

int a[10];

int f(){

 int i;

 int s=0;

 for (i=0; i<10; i++)

 s+=a[i];

 return s;

}

Assembly code

_f:

 MOV #0,R2

 MOV.L L13,R5

 MOV #5,R4

L11:

 MOV.L @R5,R6

 DT R4

 ADD R6,R2

 MOV.L @(4,R5),R6

 ADD #8,R5

 BF/S L11

 ADD R6,R2

 RTS

 MOV R2,R0

L13:

 .DATA.L _a

Source code with a register declaration

int a[10];

int f(){

 register int i;

 register int s=0;

 for (i=0; i<10; i++)

 s+=a[i];

 return s;

}

Assembly code

_f

 MOV #0,R2

 MOV.L L13,R5

 MOV #5,R4

L11:

 MOV.L @R5,R6

 DT R4

 ADD R6,R2

 MOV.L @(4,R5),R6

 ADD #8,R5

 BF/S L11

 ADD R6,R2

 RTS

 MOV R2,R0

L13:

 .DATA.L _a

Notes: 1. When the Compiler automatically allocates variables to registers, effective register allocation will be difficult if
too many local variables are used in a function. It is recommended to split up functions appropriately until
about eight or fewer local variables are used in a loop.

Section 6 Efficient Programming Techniques (Supplement)

Rev.4.00 2007.02.02 6-22
REJ05B0463-0400

 2. In the Ver.9 compiler or later, by selecting the enable_register option, variables with the register storage class
specification can be allocated preferentially to the registers. (The enable_register option isn't selected in default
in Ver.9 compiler or later.)

Figure 6.16 enable_register Option Specification

Section 6 Efficient Programming Techniques (Supplement)

Rev.4.00 2007.02.02 6-23
REJ05B0463-0400

6.5 Offset of Member in Structure Declaration

• Important Points:

Declare a frequently used member of a structure in the beginning of code to improve both the size and speed.

• Description:

A program accesses a structure member by adding an offset to the structure address. The smaller the offset, the more
advantageous both the size and speed. Therefore, declare a frequently used member in the beginning of code.

It is most effective to declare a member within less then 16 bytes from the beginning for char and unsigned char
types, within less then 32 bytes from the beginning for short and unsigned short types, and within less then 64 bytes
from the beginning for int, unsigned, long, and unsigned long types.

• Example of Use:

In the following example, the offset of a structure changes the code.

Source code before optimization

struct S{

 int a[100];

 int x;

};

int f(struct S *p){

 return p->x;

}

Assembly code before optimization

_f:

 MOV #100,R0

 SHLL2 R0

 RTS

 MOV.L @(R0,R4),R0

Source code after optimization

struct S{

 int x;

 int a[100];

};

int f(struct S *p){

 return p->x;

}

Assembly code after optimization

_f:

 RTS

 MOV.L @R4,R0

Section 6 Efficient Programming Techniques (Supplement)

Rev.4.00 2007.02.02 6-24
REJ05B0463-0400

6.6 Allocation of Bit Fields

• Important Points:

The bit fields to be referenced in connection with the same expression should be allocated to the same structure.

• Description:

Every time the members in different bit fields are referenced, it is necessary to load data including the bit fields. You
can manage to load this data only once by allocating related bit fields to the same structure.

• Example of Use:

In the following example, related bit fields are allocated to the same structure, thus improving both the speed and
size.

Source code before optimization

struct bits{

 unsigned int b0: 1;

} f1, f2;

int f(void){

 if (f1.b0 && f2.b0) return 1;

 else return 0;

}

Assembly code before optimization

_f:

 MOV.L L15,R6

 MOV.B @R6,R0

 TST #128,R0

 BT L12

 MOV.L L15+4,R6

 MOV.B @R6,R0

 TST #128,R0

 BT L12

 RTS

 MOV #1,R0

L12:

 RTS

 MOV #0,R0

L15:

 .DATA.L _f1

 .DATA.L _f2

Source code after optimization

struct bits{

 unsigned int b0: 1;

 unsigned int b1: 1;

} f1;

int f(void){

 if (f1.b0 && f1.b1) return 1;

 else return 0;

}

Assembly code after optimization

_f:

 MOV.L L11,R6

 MOV #-64,R3

 EXTU.B R3,R3

 MOV.B @R6,R0

 AND #192,R0

 CMP/EQ R3,R0

 RTS

 MOVT R0

L11:

 .DATA.L _f1

Section 6 Efficient Programming Techniques (Supplement)

Rev.4.00 2007.02.02 6-25
REJ05B0463-0400

6.7 Software Pipeline (Floating-Point Table Search)

• Important Points:

You can improve the execution speed of the table search code by designing it to compare data items referenced from
a table with the data items loaded in the previous loop iteration, instead of immediately compare them.

• Description:

Pipeline optimization cannot perform sufficient optimization of a loop with a few instructions such as table search
because there is no little room for rearranging the instructions. For floating-point table search, for example, the FCMP
operation must wait until the completion of load if the program performs comparison immediately after loading data
from the table. To work around this problem, design the program so that it loads comparison data into local variables in
one loop iteration and then compares them in the next iteration.

• Example of Use:

The code before improvement compares the loaded floating-point data (FR8) using the FCMP instruction written
immediately after it. If the code is improved so that the data referenced in one loop iteration will be compared in the
next iteration, the load is executed in parallel with a branch instruction of the loop.

Source code before optimization

float a[100];

int f(float b){

 int i=0;

 float *p=a;

 while (i<100){

 if (*p==b) return i;

 i++;

 p++;

 }

 return -1;

}

Assembly code before optimization

_f:

 MOV #0,R5

 MOV.L L16,R2

 MOV #100,R6

L11:

 FMOV.S @R2,FR8

 FCMP/EQ FR4,FR8

 BT L12

 DT R6

 ADD #1,R5

 BF/S L11

Source code after optimization

float a[100];

int f(float b){

 int i=0;

 float *p=a;

 float tmp=*p;

 while (i<100){

 if (tmp==b) return i;

 i++;

 p++;

 tmp=*p;

 }

 return -1;

}

Assembly code after optimization

_f:

 MOV.L L16+2,R2

 MOV #0,R5

 MOV #100,R6

 FMOV.S @R2,FR8

L11:

 FCMP/EQ FR4,FR8

 BT L12

 ADD #4,R2

 DT R6

 FMOV.S @R2,FR8

Section 6 Efficient Programming Techniques (Supplement)

Rev.4.00 2007.02.02 6-26
REJ05B0463-0400

 ADD #4,R2

 RTS

 MOV #-1,R0

L12:

 RTS

 MOV R5,R0

L16:

 .DATA.L _a

 BF/S L11

 ADD #1,R5

 RTS

 MOV #-1,R0

L12:

 RTS

 MOV R5,R0

L16:

 .RES.W 1

 .DATA.L _a

Section 6 Efficient Programming Techniques (Supplement)

Rev.4.00 2007.02.02 6-27
REJ05B0463-0400

6.8 Ensuring of Data Access Size

• Important Points:

Declare volatile to ensure the size (byte, word, long word) of a memory access instruction used to access a
peripheral register.

• Description:

Declare volatile to ensure the size of an instruction that accesses global variables and pointers. This will cause the
instruction to load and store data at the size of the data type. Declare volatile to access bit fields in order to access them
using the data type used when the bit fields are declared. Unless volatile is declared, the access to the bit fields will be
optimized, possibly causing accesses with other type than the declared one.

• Example of Use:

If volatile is not declared, member x is accessed as byte access. If volatile is declared, it is accessed as the declared
type (word).

Source code without volatile specification

struct S{

 short x: 8;

 short y: 8;

} *p;

int f(){

 return p->x;

}

Assembly code

_f:

 MOV.L L11+2,R2

 MOV.L @R2,R6

 MOV.B @R6,R2

 RTS

 EXTS.W R2,R0

L11:

 .RES.W 1

 .DATA.L _p

Source code with volatile specification

volatile struct S{

 short x: 8;

 short y: 8;

} *p;

int f(){

 return p->x;

}

Assembly code

_f:

 MOV.L L11,R2

 MOV.L @R2,R6

 MOV.W @R6,R2

 SHLR8 R2

 RTS

 EXTS.B R2,R0

L11:

 .DATA.L _p

Section 6 Efficient Programming Techniques (Supplement)

Rev.4.00 2007.02.02 6-28
REJ05B0463-0400

6.9 Use of Floating-Point Instructions

• Important Points:

To use single-precision floating-point instructions FABS (SH2-E, SH2A-FPU, SH-4, and SH-4A) and FSQRT
(SH2A-FPU, SH-4, SH-4A), include the include file <mathf.h> and call single-precision floating-point functions fabsf
and sqrtf.

• Description:

Use single-precision floating-point instructions FABS (SH2-E, SH2A-FPU, SH-4, and SH-4A) and FSQRT
(SH2A-FPU, SH-4, SH-4A) as follows:

(a) Include <math.h>.

(b) Call fabsf function (FABS) and sqrtf function (FSQRT).

• Example of Use:

In the example before improvement, <mathf.h> is not included and thus the Compiler calls the fabsf function from
the library, not recognizing it as a standard function. If <mathf.h> is included, the Compiler recognizes it as a function
corresponding to the FABS instruction and thus directly generates the FABS instruction.

Source code before optimization

float fabsf(float);

float f(float x, float y){

 return fabsf(x)+fabsf(y);

}

Assembly code before optimization

_f:

 STS.L PR,@-R15

 FMOV.S FR14,@-R15

 FMOV.S FR15,@-R15

 MOV.L L12+2,R2

 JSR @R2

 FMOV.S FR5,FR15

 MOV.L L12+2,R2

 FMOV.S FR0,FR14

 JSR @R2

 FMOV.S FR15,FR4

 FADD FR0,FR14

 FMOV.S FR14,FR0

 FMOV.S @R15+,FR15

 FMOV.S @R15+,FR14

 LDS.L @R15+,PR

 RTS

 NOP

L12:

Source code after optimization

#include <mathf.h>

float f(float x, float y){

 return fabsf(x)+fabsf(y);

}

Assembly code after optimization

_f:

 FABS FR4

 FABS FR5

 FADD FR5,FR4

 RTS

 FMOV.S FR4,FR0

Section 6 Efficient Programming Techniques (Supplement)

Rev.4.00 2007.02.02 6-29
REJ05B0463-0400

 .RES.W 1

 .DATA.L _fabsf

Note: Header <mathf.h> is not a standard C library function of ANSI.

Section 6 Efficient Programming Techniques (Supplement)

Rev.4.00 2007.02.02 6-30
REJ05B0463-0400

Section 7 Using HEW

Rev.4.00 2007.02.02 7-1
REJ05B0463-0400

Section 7 Using HEW

This chapter describes the use of HEW for build- and simulation-related processes.
Note that the supported functions and methods vary from one HEW version to another.
The appropriate version is indicated under "• Note:" for each topic.

The following table shows a list of the items relating to the use of HEW.

No. Category Item Section

1 Regenerating and Editing Automatically
Generated Files

7.1.1

2 Makefile Output 7.1.2

3 Makefile Input 7.1.3

4 Creating Custom Project Types 7.1.4

5 Multi-CPU Feature 7.1.5

6 Networking Feature 7.1.6

7 Converting from Old HEW Version 7.1.7

8 Converting a HIM Project to a HEW Project 7.1.8

9

Builds

Add Supported CPUs 7.1.9

10 Pseudo-interrupts 7.2.1

11 Convenient Breakpoint Functions 7.2.2

12 Coverage Feature 7.2.3

13 File I/O 7.2.4

14 Debugger Target Synchronization 7.2.5

15 How to Use Timers 7.2.6

16 Examples of Timer Usage 7.2.7

17

Simulations

Reconfiguration of Debugger Target 7.2.8

18 Creating a Stack Information File 7.3.1

19 Starting Call Walker 7.3.2

20 Call Walker Window and Opening a File 7.3.3

21 Editing Stack Information 7.3.4

22 Stack Area Size of Assembly Program 7.3.5

23

Call Walker

Merging Stack Information 7.3.6

24 Other Features 7.3.7

Section 7 Using HEW

Rev.4.00 2007.02.02 7-2
REJ05B0463-0400

7.1 Builds

7.1.1 Regenerating and Editing Automatically Generated Files

• Description:

HEW will automatically generate I/O register definition, interrupt function, and other various files if you select
Application for the project type when creating a new workspace.

However, when creating a new project, you may sometimes skip this automatic file generation process because you then
believe that the files are unnecessary.

You may also forget to edit or set such files.

If you do, you can use this feature to automatically generate and edit files after creating a project.

However, this feature is only available when you select Application for the project type when creating a new workspace.

• Usage:

HEW Menu: Project > Edit Project Configuration...

• Files that can be regenerated:

I/O Register Definition Files: iodefine.h

[Generation method]

You can regenerate iodefine.h by checking [I/O Register Definition Files (overwrite)] on the [I/O Register] tab in the [Edit
Project Configuration] dialog box.

If you modify iodefine.h inadvertently, you can regenerate it and overwrite it on the modified file.

Section 7 Using HEW

Rev.4.00 2007.02.02 7-3
REJ05B0463-0400

• Files that can be re-edited:

Stack size setting file: stacksct.h

[Editing method]

You can edit the initial values of [Stack Pointer Address] and [Stack Size] on the [Stack] tab in the [Edit Project
Configuration] dialog box.

• Note:

Regenerating and re-editing files are supported by HEW 2.0 or later.

Section 7 Using HEW

Rev.4.00 2007.02.02 7-4
REJ05B0463-0400

7.1.2 Makefile Output

• Description:

HEW allows you to create a makefile based on the current option settings.

By using the makefile, you can build the current project without having to install HEW completely. This is convenient
when you send a project to a person who has not installed HEW or manage the version of an entire build, including the
makefile.

• Makefile production method:

1. Make sure that the project that generates the makefile is the current project.

2. Make sure that the build configuration that builds the project is the current configuration.

3. Choose [Build > Generate make file].

4. You will see the following dialog box. In this dialog box, select one of the makefile generation methods.

• Makefile generation directory:

HEW creates a [make] subdirectory in the current workspace directory and generates makefiles in this subdirectory. The
makefile name is the current project or configuration name followed by the extension .mak (debug.mak, for example).
HEW-generated makefiles can be executed by the executable file HMAKE.EXE contained in the directory where HEW is
installed. However, user-modified makefiles cannot be executed.

• Makefile execution method:

1. Open the [Command] window and move to the [make] subdirectory that contains the generated makefile.

2. Execute HMAKE.On the command line, enter HMAKE.EXE <makefile-name>.

• Note:

This feature is supported by HEW 1.1 or later.

Section 7 Using HEW

Rev.4.00 2007.02.02 7-5
REJ05B0463-0400

7.1.3 Makefile Input

• Description:

HEW allows to input the makefiles that were generated by HEW or used by UNIX environment.

From the makefile, you can automatically obtain the file structure of the project.

(However, you cannot obtain option settings or similar specifications.) This facilitates the migration from the command
line to HEW.

• Makefile input method:

1. When creating a new workspace, select [Import Makefile] from the project type options in the [New Project
Workspace] dialog box.

2. Specify the makefile path in the [Makefile path] field in the [New Project-Import Makefile] dialog box and click on the
[Start] button.

Section 7 Using HEW

Rev.4.00 2007.02.02 7-6
REJ05B0463-0400

3. The [Source files] pane displays the makefile source file structure. In this structure chart, any file marked is a file
that has been proved through an analysis to contain no entity. This file will not be added to the project. (It is ignored.)

4. By following the wizard, specify CPU and other options and open the workspace. You can then begin a development
work.

• Note:

This feature is supported by HEW 3.0 or later.

Section 7 Using HEW

Rev.4.00 2007.02.02 7-7
REJ05B0463-0400

7.1.4 Creating Custom Project Types

• Description:

This feature allows a project created by a user to be used by another user as a template for program development on
another machine.

Information that can be contained in the template may concern the project file structure, build options, debugger settings,
and anything else relating to the project.

• Project type storing method:

1. Activate the project you want to store project information in because the active project accepts project information
when the workspace is open. To activate a project, select the project by choosing [Project -> Set Current Project].

2. Open the following project type wizard by choosing [Project -> Create Project Type...], assign a name to the project
type you will use as the template and specify whether to include the configuration directory containing the post-build
executable files and other resources in the template.

You can quit the project type wizard here by clicking on the [Finish] button.

The active project is identified by boldface characters.

Section 7 Using HEW

Rev.4.00 2007.02.02 7-8
REJ05B0463-0400

3. At [New project type wizard – Step 1], click on the [Next] button to open the following wizard: When opening the
project type templateat step (1), specify whether to display project information and bitmaps.

At step (2), you can change the project type icon to a user-specified icon. Click on the [Finish] button.

These settings are not mandatory.

4. A project type template named “Custom Project Generator” has thus been created. To use this template on another
machine, choose [Tools -> Administration...] to open the following dialog box:

When you check the following [Show all components] check box, you will see [Project Generators – Custom].

Click on the created project type and click on the [Export...] button.

(1)

(2)

Section 7 Using HEW

Rev.4.00 2007.02.02 7-9
REJ05B0463-0400

5. The following dialog box opens. Select a directory in which the Custom Project Generator template will be stored. The
directory must be empty.

The project type storage process is now complete.

• Installing Custom Project Generator:

Use the following procedure to install the Custom Project Generator template created by the above project type storage
method on another machine.

1. The following installation environment is created for the directory that was created at step 5 of the project type storage
method:

(Installation environment directory)

2. Copy the above installation environment and install the copy on another machine.

When you run Setup.exe, the following dialog box opens. Specify the location in which HEW2.exe is installed and
click on the [Install] button.

(Directory example: c:¥Hew2¥HEW2.exe)

3. The environment has been built up completely.

Section 7 Using HEW

Rev.4.00 2007.02.02 7-10
REJ05B0463-0400

• Custom Project Generator usage example:

An example of using the installed Custom Project Generator template is provided below.

1. Start HEW and choose [Create a new project workspace] in the [Welcome!] dialog box. The installed project type is
added to the [Projects] list. Click on the project type and click on the [OK] button.

You can now proceed with program development using the stored project template for any new project.

• Note:

This feature is supported by HEW 2.0 or later.

Created project type

Section 7 Using HEW

Rev.4.00 2007.02.02 7-11
REJ05B0463-0400

7.1.5 Multi-CPU Feature

• Description:

When inserting a new project in the workspace, you can insert a CPU of another type. This enables SH and H8 projects to
be managed in a single workspace.

• Example of inserting a different CPU family:

1. When an H8 (SH) project is open, click on [Project -> Insert Project...]. In the [Insert Project] dialog box, select a new
project and click on the [OK] button.

2. The following [Insert New Project] dialog box appears: Select a project name, select SH (H8) as the CPU type, and
click on the [OK] button. You can place different CPU types in addition to the current CPU types in the workspace.

3. With the procedure above, you can mix SH and H8 projects in a single workspace.

• Note:

This feature is supported by HEW 3.0 or later.

Section 7 Using HEW

Rev.4.00 2007.02.02 7-12
REJ05B0463-0400

7.1.6 Networking Feature

• Description:

HEW allows workspaces and projects to be shared by different users via a network.

Therefore, users can learn changes that other users have made, by manipulating the shared project at the same time.

This system uses one computer as its server.

For example, if a client adds a new file to a project, the server machine is notified, and then notifies the other clients of the
addition.

In addition, users can be granted rights for access to specific projects or files.

• Network access setup:

1. Choose [Tools -> Options...] and select the [Network] tab. Check the [Enable network data access] check box.

2. An administrator is added. Since the administrator does not have a password initially, you need to specify a password.
The administrator should be granted the highest access right.

3. Click on the [Password…] button and specify a password for the administrator.

4. Click on the [OK] button. This allows the administrator access to the network.

Report on

Server

Client A Client B Client C

Report on file addition

File addition

Section 7 Using HEW

Rev.4.00 2007.02.02 7-13
REJ05B0463-0400

[Change password] dialog box

[Network] Tab of the [Options] dialog box

Check

Password setting

Access rights
setting
User addition

Login Button

Section 7 Using HEW

Rev.4.00 2007.02.02 7-14
REJ05B0463-0400

• Adding a new user:

By default, an administrator and a guest have been added. You can register new users.

1. Click on the [Log in...] button shown on the previous page. Log in as a user granted administrator access right.

2. Click on the [Access rights…] button to open the following [User access rights] dialog box.

3. Click on the [Add…] button to open the [Add new user] dialog box.

4. Enter a new user name and password. (Password specification is mandatory.)

5. The new user name is then added to the user list. Select the user name and specify access right for the user.

6. Click on the [OK] button. Your specification will be put into effect.

User name list

Access rights selection

Section 7 Using HEW

Rev.4.00 2007.02.02 7-15
REJ05B0463-0400

• Selecting the server machine

Select the machine that will work as the server. If you make your own machine the server, you do not have to do anything.

If you specify another machine as the server, click on the [Select server…] button in the [Options] dialog box. Choose
[Remote] in the following dialog box, and then specify a computer name.

Click on the [OK] button. Your specification will be put into effect.

• Note:

This feature is supported by HEW 3.0 or later.

Use of this feature will lower the HEW performance.

Section 7 Using HEW

Rev.4.00 2007.02.02 7-16
REJ05B0463-0400

7.1.7 Converting from Old HEW Version

Here, the method for specifying the compiler version within the Renesas Integrated Development Environment is
explained. Compiler versions can be specified by upgrading the Renesas Integrated Development Environment.

If the workspace created in an old version (such as HEW1.1 or SHC5.1B) is opened in a new version (such as HEW3.0 or
SHC8.0), the following dialog box appears.

(1) Checking the project to be upgraded.

Check the name of the project to be upgraded.

High-performance Embedded Workshop

(2) Specifying the Compiler Version

Select the Compiler version which can be upgraded.

Change Toolchain Version Dialog Box

Section 7 Using HEW

Rev.4.00 2007.02.02 7-17
REJ05B0463-0400

(3) Confirmation message

The C/C++ Compiler Ver6.0 or later versions support only the file format ELF/DWARF for the object to be output.

The file format is changed to ELF/DWARF format at upgrading. If the current debugging environment does not support
the ELF/DWARF format, convert the ELF/DWARF format to the format supported by the debugging environment after
upgrading.

Confirmation Message Dialog Log

(4) Standard Library Generator Options

After upgrading, Standard Library Tab Category: [Mode] in the SuperH RISC engine Standard Toolchain dialog box
is changed to Build a library file(anytime), so should be careful.

Section 7 Using HEW

Rev.4.00 2007.02.02 7-18
REJ05B0463-0400

7.1.8 Converting a HIM Project to a HEW Project

By using the HimToHew tool supplied with the HEW system, you can convert HIM projects into HEW projects.

In the [Programs (P)] on the Windows® [Start Menu], select [Him To Hew Project Converter] from [Renesas
High-performance Embedded Workshop].

You will find Single and Multiple tabs.

Select the Single tab when generating an HEW workspace and an HEW project from one HIM project.

Select the Multiple tab when converting multiple HIM projects into HEW projects and registering them in an HEW
workspace in batch.

(1) Single tab

Press this button to start conversion.

Displays the conversion result.
If the conversion has been performed
successfully, Project converted
successfully is displayed.

Displays the conversionstatus.

Specify a new HEW
project name.

Specify an HIM
project.

Section 7 Using HEW

Rev.4.00 2007.02.02 7-19
REJ05B0463-0400

In the next step, start the HEW.

Select Browse to another project workspace, click on the [OK] button, and specify the HEW project that has been
converted.

The HEW project is opened as shown below:

Specify [Build Build] to execute the building process. On the command menu, click here.

Section 7 Using HEW

Rev.4.00 2007.02.02 7-20
REJ05B0463-0400

(2) Multiple tab

This tab converts multiple HIM projects into HEW projects.

Specify the directory in which the HIM
projects are stored.

Specify the HIM project name.

Select the SuperH RISC engine CPU
family.

Displays the conversion status.

Displays the conversion results.

Press this button to start the conversion.

After the conversion, start the HEW as in the case of the Single tab in order to build the converted HEW workspace.

Section 7 Using HEW

Rev.4.00 2007.02.02 7-21
REJ05B0463-0400

7.1.9 Add Supported CPUs

• Description:

HEW can automatically generate I/O register definition and vector table files, but HEW cannot support new CPUs which
are released after HEW release.

In this case, the tool DeviceUpdater can make HEW support new CPUs.

And this tool can update generated files to bug fixed version.

• How to get DeviceUpdater

Download from the following URL of Renesas Technology Corp.

Please refer to Notes of this page, too.

http://www.renesas.com/eng/products/mpumcu/tool/crosstool/support_tool/device_updater.html

• Execution Results of DeviceUpdater

CPU types are added as follows.

• Notes

This feature is supported by HEW 2.2 or later.

Section 7 Using HEW

Rev.4.00 2007.02.02 7-22
REJ05B0463-0400

7.2 Simulations

7.2.1 Pseudo-interrupts

• Description:

Pseudo-interrupt buttons, which simulate certain interrupt causes, when clicked on, can cause pseudo-interrupts manually.

For each button, specify an interrupt priority and interrupt condition.

• Usage:

1. When you choose [View -> CPU -> Trigger], the following view appears:

2. Click the right mouse button on this view and choose [Setting…]. The [Trigger Setting] dialog box appears.

If you check the [Enable] check box, the interrupt identified by trigger number 1 is enabled.

In addition, specify an interrupt name, interrupt priority, and interrupt condition (vector number).

The interrupt button identified by trigger number 1 becomes active.

3. The setting is now complete. When one of the buttons that was set during the above procedure is clicked on, the
program will stop as specified by the pertinent vector table.

• Note:

This feature is supported by HEW 2.1 or later.

Section 7 Using HEW

Rev.4.00 2007.02.02 7-23
REJ05B0463-0400

7.2.2 Convenient Breakpoint Functions

• Description:

The HEW breakpoint facility includes the following convenient functions, which will be activated not only upon ordinary
breaks, but when a break condition is satisfied.

File input

File output

Interrupt

• How to display a breakpoint view:

HEW 2.2 or earlier: Choose [View -> Code -> Breakpoints]

HEW 3.0 or later: Choose [View -> Code -> Eventpoints]

Note: For HEW 3.0 or later, go to the [Breakpoints] view and click on the [Software Event] tab.

• File input setting example:

Right-click on the [Breakpoints] view and choose [Setting…] to open the following [Set Break] dialog box. As shown
below, PC breakpoint is used so that a break condition is considered as satisfied when the PC reaches the following
address. The setting method is similar for other breakpoint types.

Click on the [Action] tab, select [File Input] in the [Action type] field, specify an input file name, an input address, and
other items, and then click on the [OK] button.

([Condition] ([Action] tab)

Section 7 Using HEW

Rev.4.00 2007.02.02 7-24
REJ05B0463-0400

• File input action example:

Let’s see the following practical action example:

As the result of the above setting, the breakpoint is at [H'00000814] and the input file contains [H'FF].

Run the program using the Go command or similar method.

You can see that, when the PC reaches [H'00000814], the break condition is satisfied and, as a consequence, the memory
contents of address H'F000 change.

• File output setting example:

The method for file output setting in the [Set Break] dialog box is similar to the method for file input setting. For file
output breakpoints, PC breakpoint is also used so that a break condition is considered as satisfied when the PC reaches the
following address. Click on the [Action] tab, select [File Output] in the [Action Type] field, specify an output file name,
an output address, and other items, and then click on the [OK] button.

(Source code fragment)

([Condition] tab) ([Action] tab)

Section 7 Using HEW

Rev.4.00 2007.02.02 7-25
REJ05B0463-0400

• File output action example:

Let’s see the following practical action example:

As the result of the above setting, the breakpoint is at [H'00000814] and the contents of address H'F000 are [H'FF].

Run the program using the Go command or similar method.

You can see that, when the PC reaches [H'00000814], the break condition is satisfied and, as a consequence, the contents
of address H'F000 are output to the file.

• Interrupt setting example:

The method for file output setting in the [Set Break] dialog box is similar to the method for file input setting. As shown
below, PC breakpoint is used so that a break condition is considered as satisfied when the PC reaches the following
address. The setting method is similar for other breakpoint types.

Click on the [Action] tab, select [Interrupt] in the [Action Type] field, specify an interrupt priority and an interrupt type
(vector number 7), and click on the [OK] button.

([Condition] tab) ([Action] tab)

(Source code fragment)

(Sample.dat contents as seen on a binary editor)

Section 7 Using HEW

Rev.4.00 2007.02.02 7-26
REJ05B0463-0400

• Interrupt action example:

Let’s see the following practical action example:

While the breakpoint is set at [H'00000814] as the result of the above setting, run the program by the Go command or
similar method.

You can see that, when the PC reaches [H'00000814], a non-maskable interrupt (NMI) of vector number 7 will occur.

(Source code fragment)

Section 7 Using HEW

Rev.4.00 2007.02.02 7-27
REJ05B0463-0400

7.2.3 Coverage Feature

• Description:

HEW allows users to collect statement coverage information within a user-specified address range during program
execution. By using statement coverage information, you can observe how each statement is being executed. In addition,
you can easily identify program code that has not been executed.

• How to open the [Open Coverage] dialog box:

[View -> Code -> Coverage...]

• How to collect new coverage information:

1. Open the [Open Coverage] dialog box, choose [New Window], and enter the start and end addresses that identify the
range from which you want to obtain coverage information. If the HEW version is 3.0 or later, you can specify a C or
C++ source file name to identify the information you want to collect.

To complete the above specification, click on the [OK] button.

(Address specification)

(File name specification) * Supported by HEW 3.0 or later

Section 7 Using HEW

Rev.4.00 2007.02.02 7-28
REJ05B0463-0400

2. When you click on the [OK] button, the following coverage view appears:

On the right view, click the right mouse button and choose [Enable]. The coverage is enabled.

3. Let’s run the program. Notice that the right coverage view contains a line with the [Times] column changed to 1. This
indicates that the statement at the address corresponding to this line has been executed.

On the left view, the C0 coverage value within the address range is displayed.

Note: The left coverage view exists when the HEW version is 3.0 or later.

4. In addition to the coverage view, you can use another method to see coverage information. A left column on the editor
screen indicates whether program execution has passed a particular source line.

• Save Data:

To save coverage information, click the right mouse button on the right coverage view and enter a file name with the
extension* .cov.

Section 7 Using HEW

Rev.4.00 2007.02.02 7-29
REJ05B0463-0400

• Information collection using existing coverage information:

You can rarely obtain a single collection of coverage information that covers the entire program.

You may want to increase the coverage percentage while repeating coverage collection steps, each of which is performed
under a different test condition.

For this purpose, specify a file that has been saved in the [Save Data] and select [Open a recent coverage file] or [Browse
to another coverage file] in the [Open Coverage] dialog box. Then click on the [OK] button.

The coverage view opens. Run the program again under a new condition.

As shown below, the coverage view and the editor display new information reflecting the current run, such as the number
of runs and the new C0 coverage value.

Section 7 Using HEW

Rev.4.00 2007.02.02 7-30
REJ05B0463-0400

7.2.4 File I/O

• Description:

HEW used to rely on the I/O simulation feature in order to simulate file I/O operations instead of actually performing file I/O.

However, HEW now allows actual files to be input or output if the following files are replaced.

• How to obtain files:

Download the files from the "Guideline for File Operatable Low-Level Interface Routines for Simulator and Debugger"
page on the following URL of Renesas Technology Corp.

http://www.renesas.com/

• How to create the environment:

(1) Create a project by HEW.

Select [Application] or [Demonstration] as the project type.

A number of files are created automatically under the created project.

(If you have selected [Application] as the project type, check the [Use I/O Library] check box at project creation step 3.

The value specified in the [Number of I/O Stream] field must be at least the number of actually handled files + 3
(number of standard I/O files.

(2) Of the created files, replace "lowsrc.c" and "lowlvl.src".*1

(3) Create the "C:\Hew2\stdio" directory.*2

(4) Perform a rebuild to create a simulator/debugger environment in which file I/O is possible.

Notes: 1. -lowsrc.c-

These files are common to SH and H8.

Replace the file with the "lowsrc.c" file contained in the project.

-lowlvl.src-

This file varies from one CPU to another.

Replace this file with the "lowlvl.src" file contained in the folder corresponding to the CPU that has created the
project.

 2. In the created environment, standard I/O files will be actually opened when program code for file I/O
processing is encountered, unlike the practice performed so far – simulation of file opening.

Therefore, files named "stdin", "stdout", and "stderr", which will be actually opened for standard I/O
processing are automatically generated when the program is first executed.

Since these files are defined so that they should be created in "C:\Hew2\stdio", you must create the directory as
explained in Item (3). If this directory does not exist, HEW will not work normally.

When the simulator runs, these files are opened by INIT_IOLIB() in the "lowsrc.c" file contained in the
project.

stdin = 0

stdout = 1

stderr = 2

Section 7 Using HEW

Rev.4.00 2007.02.02 7-31
REJ05B0463-0400

• Example of Use:

As in the following example, consider the use of printf or a similar method to output characters to the standard output
(stdout):

When you run this program, it creates a file named stdout in the "c:\Hew2\stdio" directory you have already created. The
file contents are as follows:

• How to redirect I/O:

To redirect I/O, change this in the _INIT_IOLIB function in the lowsrc.c file.

(Sample program code)

void main(void)
{
 printf("***** ID-1 OK *****\n");
}

(Contents of stdout)

***** ID-1 OK *****

Section 7 Using HEW

Rev.4.00 2007.02.02 7-32
REJ05B0463-0400

7.2.5 Debugger Target Synchronization

• Description:

HEW allows you to debug multiple targets on a single instance of HEW.

This means that you can debug multiple targets at the same time while synchronizing them with each other.

In addition, you can raise an event (such as a step or Go) in one session in synchronization with the same event in another
session.

• How to synchronize debugger targets:

1. Choose [Options -> Debug sessions...] to open the following dialog box and click the [Synchronized Debug] tab.

Check any session you want to synchronize and check the [Enable synchronized debugging] check box.

HEW

E6000

E8000

E10A

E10T

E7

Simulator

Section 7 Using HEW

Rev.4.00 2007.02.02 7-33
REJ05B0463-0400

2. Select [Sync. session] from the session combo box on the [Standard] tool bar.

3. The [Sync. session] tool bar appears in the tool bar. The setting is now complete.

• Available commands:

When synchronized debug is enabled, you can perform the following actions in synchronized mode:

User action Target debugger session 1 Target debugger session 2

[Run] during one of
the sessions

"Run" "Run"

[Step] during one of
the sessions

"Step" "Step"

ESC pressed
during one of the
sessions

"Stop" "Stop"

- "Stop" due to a breakpoint or user
program error

Stop (same as when ESC is
pressed)

- Stop (same as when ESC is
pressed)

"Stop" due to a breakpoint or user
program error

[CPU reset] during
one of the sessions

"CPU reset" "CPU reset"

• Synchronized debug example

An example of executing the step command is provided below.

1. Execute the step during [SH1 – SimSessionSH-1].The following condition results:

Session combo box displayed during
synchronized debug

Synchronized debug
session list

Enable/disable synchronized debug

SH – SimSessionSH-1 state H8300 - SimSessionH8-300 state

PC Previous PC

Section 7 Using HEW

Rev.4.00 2007.02.02 7-34
REJ05B0463-0400

2. Change the session using the [Sync. session] tool bar.

3. As shown below, you can see that the PC has also moved to the next line during the [H8300 – SimSessionH8-300]
session.

• Note:

This feature is supported by HEW 3.0 or later.

PC

SH – SimSessionSH-1 state H8300 - SimSessionH8-300 state

PC

Section 7 Using HEW

Rev.4.00 2007.02.02 7-35
REJ05B0463-0400

7.2.6 How to Use Timers

• Description:

HEW supports prioritization of timers and interrupts.

For each timer, only channel 0 is supported.

HEW support is limited to overflow, underflow, and compare match interrupts. HEW does not support interrupts that
involve terminal I/O, such as input capture interrupts.

• Supported timer control registers in each CPU

In the Supported column on the following table, indicates that the register is supported and Δ indicates that only the bits
associated with the feature described in the paragraph under [Description] are supported.

Debug platform
name

Timer
name

Supported control
register

Supported

TSTR Δ

TCR Δ

TIER

TSR

TCNT

GRA

SH-1 ITU0

GRB

CMSTR

CMCSR

CMCNT

SH-2/SH-2E/

SH2-DSP(SH7065)

CMT0

CMCOR Δ

TCR Δ

TCNT

TSTR

SH-3/SH3-DSP/

SH3-DSP(Core)/

SH-4/SH-4BSC/

SH-4(SH7750R)

TMU0

TCOR

TIER Δ

FTCSR Δ

FRC

OCRA

OCRB

SH2-DSP(Core) FRT0

TCR Δ

 TOCR Δ

Section 7 Using HEW

Rev.4.00 2007.02.02 7-36
REJ05B0463-0400

• Supported interrupt priority level setting registers in each CPU

In the Supported column on the following table, indicates that the register is supported and Δ indicates that only the bits
associated with the feature described in the paragraph under [Description] are supported.

Debug platform

name
Supported control

register
Supported

SH-1 IPRC Δ

SH-2 IPRG Δ

SH-2E IPRJ Δ

SH2-DSP(SH7065
)

IPRL Δ

SH-3/SH3-DSP/

SH3-DSP(Core)/
SH-4/SH-4BSC/

SH-4(SH7750R)

IPRA Δ

SH2-DSP(Core) INTPRI0B Δ

• Timer simulation method:

Choose [Options -> Simulator -> System...] to open the following [Simulator System] dialog box, check the [Enable
Timer] check box, and specify a ratio between the external clock and the peripheral module clock.

In addition, you can use timer control registers and write program code to enable them as shown below.

If you create a clock that drives timers via a peripheral module, specify the frequency division ratio using an appropriate
timer control register.

Enable timer ITU0.

[Enable Timer]
check box

Peripheral Clock Rate

Section 7 Using HEW

Rev.4.00 2007.02.02 7-37
REJ05B0463-0400

Note: Before setting the value to the timer control registers, confirm that the access to the timer register is permitted in
the "memory" tab of the "Simulator System" dialog box.

 If the access is not permitted, you can neither set the value to the control register nor use the timer.

• How to view timer register settings:

To view settings on timer registers and interrupt priority level setting registers, choose [View -> CPU -> I/O] to open the
following I/O window.

• Note:

This feature is supported by HEW 3.0 or later.

Section 7 Using HEW

Rev.4.00 2007.02.02 7-38
REJ05B0463-0400

7.2.7 Examples of Timer Usage

• Description:

This subsection outlines how to use compare match and cyclic handler interrupts, using ITU in the SH7034 (SH-1) as an
example.

• HEW setup:

Enable the timers by referring to the paragraph entitled “Timer simulation method” in subsection 7.2.6, How to Use
Timers.

• Sample program containing code that raises a compare match interrupt:

The following sample program contains code that raises a compare match interrupt.

Before a compare match interrupt can occur, the interrupt priority level specified by IPRC (interrupt priority register) must
be equal to or higher than the value specified by the interrupt mask bits in the SR (status register).

[Setting SR interrupt mask bits]
Set bits 4-7 in the SR to one of the values from 0 to 15 using a file that contains the following reset routine.

[Explanation of an interrupt generation program]

1

2

3

4

Mask bits 4-7 (0 to 15)

Section 7 Using HEW

Rev.4.00 2007.02.02 7-39
REJ05B0463-0400

1. When the IMFA (compare match flag A) bit in TIER (Timer Interrupt Enable register) becomes 1, the interrupt is
enabled.

2. Set an interrupt priority in IMFA.

3. Start the ITU0 timer.

4. Wait until the IMFA bit becomes 1. (Wait for a compare match.)

• Program execution:

Wait until TCNT0 (timer counter 0) and GRA (general register A) match (a compare match occurs) at step 4 in the
paragraph entitled “Explanation of an interrupt generation program.”
When the two match, a compare match interrupt occurs, with the result of calling the following interrupt routine:
For further information, refer to the pertinent hardware manual.

• Sample program containing code for a cyclic handler

The following sample program contains code for a cyclic handler.
When a compare match occurs, the program clears the timer, and then branches control to an interrupt handler.
After the interrupt is serviced, the program lowers the interrupt priority in IPRC (interrupt priority register).
Control then returns to the code that caused the interrupt. The program raises the interrupt priority to ensure that the IMFA
bit can be set.
For information on SR interrupt mask bit setting, refer to the compare match sample program.

1

2

3

4

Section 7 Using HEW

Rev.4.00 2007.02.02 7-40
REJ05B0463-0400

1. Set TCR (Timer Control register) to ensure that the timer counter (TCNT) will be cleared when the IMFA (compare
match flag A) bit becomes 1.

2. Set an interrupt priority in IMFA.

3. Start the ITU0 timer.

4. After a compare match occurs, the interrupt priority level is raised.

• Program execution:

The program waits until a compare match occurs. When a compare match occurs, the program passes control to the
following interrupt routine.

The interrupt routine services the interrupt, lowers the interrupt priority level in IMFA, and returns control to the program.

Interrupt processing can be completed in this way.

The program can then be ready to accept the next compare match interrupt.

For further information, refer to the pertinent hardware manual.

In accordance with the HEW specification, when an interrupt occurs, the PC stops at the beginning of the function that has
caused the interrupt.

When simulating a cyclic handler, you need to advance the PC at each cycle by using the Go command or similar method.

Section 7 Using HEW

Rev.4.00 2007.02.02 7-41
REJ05B0463-0400

7.2.8 Reconfiguration of Debugger Target

• Description:

HEW can configure Debugger Target, if you select Application for the project type when creating a new workspace.

However, when creating a new project, you may sometimes not configure this, because you then believe that this is
unnecessary.

If you do, you can use this feature to reconfigure Debugger Target after creating a project.

However, this feature is only available when you select Application for the project type when creating a new workspace.

• Usage:

HEW Menu: Project > Edit Project Configuration...

• Functions that can be reconfigured:

[Setting method]

You can set a simulator and other debugger targets on the [Target] tab in the [Edit Project Configuration] dialog box.

If a debugger is already connected to the session, you will see a message saying, “This target has already existed. It does
not support duplicated targets” and cannot connect to the debugger target.

• Note:

Reconfiguring a file is supported by HEW 2.1 or later.

Section 7 Using HEW

Rev.4.00 2007.02.02 7-42
REJ05B0463-0400

7.3 Call Walker

• Description:

Call Walker reads the stack information files (*.sni) that are output by the optimizing linkage editor or the profile
information files (*.pro) that are output by the simulator debugger. Call Walker also displays the sizes of the stacks that
are used statically.

Although the sizes of the stacks used by assembly language programs cannot be output to stack information files, you can
add the information by using the editing feature and obtain the sizes of the stacks used in the entire system.

Once you edit information about the sizes of the used stacks, you can save the modified information in a call information
file (*.cal) or read the modified information from the file.

You can also merge multiple call information files.

7.3.1 Creating a Stack Information File

Follow the procedure below to create a stack information file or a profile information file.

• How to create a stack information file (*.sni)

To create a stack information file, select the following option in the [Link/Library] page.

In this dialog box: Choose the [Link/Library] tab. Then select [Other] in the [Category] text box and select
 [Stack information output] in the [Miscellaneous options] list.
 Command line: STACk

• How to create a profile information file (*.pro)

Use the profile feature to execute a desired user program.
When you complete executing the user program, right-click on the Profile window to save the profile information and
create a profile information file (*.pro).

Section 7 Using HEW

Rev.4.00 2007.02.02 7-43
REJ05B0463-0400

For details about how to create profile information, see section 4.14, Viewing the Profile Information, in the
Simulator/Debugger Part in the High-performance Embedded Workshop 3 User's Manual.

[Profile window]
[View]->[Performance]->[Profile]

7.3.2 Starting Call Walker

You can start Call Walker in two ways.

• From the [Start] menu

Choose [Programs]->[Renesas High-performance Embedded Workshop]->[Call Walker].

• From HEW

Choose [Tools]->[Call Walker].

Section 7 Using HEW

Rev.4.00 2007.02.02 7-44
REJ05B0463-0400

7.3.3 Call Walker Window and Opening a File

When you start Call Walker, you open a desired stack information file (*.sni) or profile information file (*.pro) by
choosing [File]->[Import Stack File...].

You choose [File]->[Open...] to open an existing edited file (*.cal).

When you open a file, the following window appears.

Note: For assembler functions other than those in the standard library, the stack size is shown as 0. See section 7.3.4,
Editing Stack Information and set the appropriate stack size.

Menu bar Title bar Tool bar

Symbol details
View

Statesbar
Left comer : The explanation indication of each function
Center frame : CPU information in dication
Right corner : Symbol reference information

Call information
View

Section 7 Using HEW

Rev.4.00 2007.02.02 7-45
REJ05B0463-0400

• Call information view

This view shows the link hierarchy of the symbols.
The number on the right of each symbol name indicates the required stack size.

(1) Details about the symbols

The icon on the left of each symbol name indicates the type of the symbol.
The following types are available:

 Direct or indirect recursive functions

 (a) Direct recursive function
 This icon indicates that the indicated function directly calls itself.

 [Example]

 (b) Indirect recursive function
 This icon also indicates that the indicated function indirectly calls itself.

 [Example]

 File being edited

 Assembler

 C/C++ function

Section 7 Using HEW

Rev.4.00 2007.02.02 7-46
REJ05B0463-0400

 RTOS function (function of a realtime operating system such as ITRON)

 Unknown reference source function

 In the following example, the func1() function calls the Undef() function. However,
 if the Undef() function really does not exist, this icon is displayed for the Undef() function.

 Calling a non-existing function results in a linkage error. However, by using the change_
 message link option, you can change error messages to warning messages.
 You can create load modules even if warning messages exist. Therefore, you can create
 stack information files as well.

 [Example]

 Function with unresolved reference address

 This icon is displayed when the indicated function is called from a table as shown below.

 [Example]

 Abbreviation icon

This tool displays all the link levels. If the user application is large, the number of link levels
to be displayed is enormous.
Therefore, only the first symbols are displayed and other same symbols are abbreviated using
the abbreviation icon.
To show all the symbols, choose [View]->[Show All Symbols].
To show part of the symbols, choose [View]->[Show Simple Symbols].

 [Example]

Show All Show Simple

Section 7 Using HEW

Rev.4.00 2007.02.02 7-47
REJ05B0463-0400

• Detailed symbol view

This view shows the address, attributes, stack size, and other details about each symbol.
Click a symbol and then right-click to execute editing commands.

• Status bar

The status bar shows the CPU type and other information about the stack information file (at the time of creation) that is
currently open.

• Maximum stack size

"Max" indicates the maximum size of the statically-used stack in the currently open stack information file.

• Standard library version selection

Select the standard library version that is used when you create the currently open stack information file.
The stack size used by the assembler functions in the standard library is determined by the version of the standard library.
You do not need to select any version when you install only one HEW package.

7.3.4 Editing Stack Information

While a file is open, you can select a desired symbol name from the detailed symbol view on the right to add, change, or
delete the symbol using the Add..., Modify..., or Delete... command in the Edit menu.
You can also perform the same operations by right-clicking in the detailed symbol view.

Although this tool calculates the maximum size of the statically-used stack, the user needs to edit the information file to
determine the maximum size of the dynamically-used stack due to multiple interrupts and other reasons.

You can change the positions of symbols by dragging and dropping the desired symbol in the call information view on the
left.
When you move or edit a symbol, a check mark appears next to the corresponding symbol in the call information view in
the left.

Section 7 Using HEW

Rev.4.00 2007.02.02 7-48
REJ05B0463-0400

The following sections describe the available commands.

• Add... command

(1) Adding an existing symbol

When you click the Add... command, the following dialog box appears. The list on the right shows the symbols in the
current file. To add an existing symbol, select a desired symbol from the list and click the [OK] button.

(2) Adding a new symbol

When you select the [New symbol] check box on the left, you can create a new symbol.
At the same time, you can define the symbol name, symbol category, attributes, address, stack size, and other details.

Available

symbol list

Section 7 Using HEW

Rev.4.00 2007.02.02 7-49
REJ05B0463-0400

• Modify... command

Select the symbol whose information you want to change and click the [Modify...] command. The following dialog box
appears. You can modify several information items.

• Delete... command

To delete the symbols that are unnecessary for determining the stack size, select such a symbol (in the left or right view)
and click the [Delete...] command.

7.3.5 Stack Area Size of Assembly Program

Unlike by C/C++ program, the stack area size used by assembly program cannot be calculated automatically in assembling.
Therefore the stack area size used by assembly functions should be edited by using Call Walker.
But the stack area size is specified in the assembly function by using .STACK directive. Call Walker displays the value
specified by .STACK directive.

• Description of .STACK directive

Defines the stack amount for a specified symbol referenced by using Call Walker.

The stack value for a symbol can be defined only one time; the second and later specifications for the same symbol are
ignored. A multiple of 2 in the range from H'00000000 to H'FFFFFFFE can be specified for the stack value, and any other
value is invalid.

The stack value must be specified as follows:
• A constant value must be specified.
• Forward reference symbol, external reference symbol and relative address symbol must not be used.

• Specification Method of .STACK assembler directive

•.STACK <symbol> = <stack value>

Symbol

name

Symbol

category

Address

Function

size

Stack size

Symbol

attributes

Object file

name

Section 7 Using HEW

Rev.4.00 2007.02.02 7-50
REJ05B0463-0400

• Example of assembly program

• Displayed Example by Call Walker

As the following example, the stack area size used by _asm_symbol function is displayed “88” in Call Walker.

• Remarks

(1) .STACK assembler directive can only make Call Walker display stack size, and does NOT affect the behavior of
program.

(2) This assembler directive is supported in SuperH RISC engine Assembler Ver.7.00 or later.

7.3.6 Merging Stack Information

You can merge a stack information file that is saved or being edited with another stack information file. By doing so, the
edited stack information is not overwritten by the post-build stack information.

• Merge example

(1) Contents of test.c

(2) Open a stack information file from Call Walker.

 .EXPORT _asm_symbol

 .SECTION P,CODE,ALIGN=4

_asm_symbol:

 .STACK _asm_symbol=88

 :

 RTS

 NOP

 .END

← Stack Size of _asm_symbol function

Section 7 Using HEW

Rev.4.00 2007.02.02 7-51
REJ05B0463-0400

(3) Change the contents of the file (change the stack size of func1 to 100).

(4) Change the contents of test.c and perform build (add a call for func2).

(5) Open test.sni while test.cal is open in Call Walker.

Select here and choose the [Open] button.

(6) The information of func2 is added while keeping the stack size of func1 changed in step (3). This is merging of stack
information.

If you do not select the [Merge specified file] check box in step (5), the stack size of func1 changed in step (3) returns to
the previous value.

Section 7 Using HEW

Rev.4.00 2007.02.02 7-52
REJ05B0463-0400

• Detailed merge options

You can change the method of merging. Five methods are available.
For details about merge methods, read [Description] in the following dialog box.
How to specify a merge method
[Tools]-> [Merge Option...]

• Note

The merge feature is available in Call Walker version 1.3 or later.

7.3.7 Other Features

• Realtime operating system icon

You can show the icon of the realtime operating system as in the call information view in the left of the window.

[How to specify]
[Tools]-> [Realtime OS Option...]

This file with the csv extension is packaged in each realtime operating system product.

• Outputting lists

You can output stack information in text format in a file.

[How to output]
[File]->[Output List...]

Section 7 Using HEW

Rev.4.00 2007.02.02 7-53
REJ05B0463-0400

• Search feature
You can find the following two items from the call information view by specifying the desired target in the following
dialog box.

(1) Pass with the maximum stack size

(2) Symbol name

[How to specify]|
[Edit]->[Find...]
[Edit]->[Find Next...] (find the next item)
[Edit]->[Find Previous...] (find the previous item)

• Setting the display format for the call information view

You can use the following two commands to select the format for displaying stack sizes:

(1) Show Required Stack

The largest stack size is shown at the top and the smallest stack size is shown at the bottom.

(2) Show Used Stack

The smallest stack size is shown at the top and the largest stack size is shown at the bottom.

[How to specify]
[View]->[Show Required Stack] or [Show Used Stack]

Section 7 Using HEW

Rev.4.00 2007.02.02 7-54
REJ05B0463-0400

Section 8 Efficient C++ Programming Techniques

Rev.4.00 2007.02.02 8-1
REJ05B0463-0400

Section 8 Efficient C++ Programming Techniques

The Compiler supports the C++ and C languages.
This chapter describes in detail the options of an object-oriented language C++ and how to use the various C++ functions.

Code a C++ program for an embedded system with caution. Otherwise, the program will have a larger object size or a
lower processing speed than expected.
Therefore, this chapter presents some cases in which the performance of a C++ program is deteriorated compared with C
as well as codes with which you can work around such performance deterioration.

The following table shows a list of efficient C++ programming techniques:

No. Category Item Section

1 Initialization
Processing/Post-proc
essing

Initialization Processing and Post-Processing of
Global Class Object

8.1.1

2 How to Reference a C Object 8.2.1

3 How to Implement new and delete 8.2.2

4

Introduction to C++
Functions

Static Member Variable 8.2.3

5 C++ Language for Embedded Applications 8.3.1

6 Run-Time Type Information 8.3.2

7 Exception Handling Function 8.3.3

8

How to Use Options

Disabling Startup of Prelinker 8.3.4

9 Constructor (1) 8.4.1

10 Constructor (2) 8.4.2

11 Default Parameter 8.4.3

12 Inline Expansion 8.4.4

13 Class Member Function 8.4.5

14 operator Operator 8.4.6

15 Function Overloading 8.4.7

16 Reference Type 8.4.8

17 Static Function 8.4.9

18 Static Member Variable 8.4.10

19 Anonymous union 8.4.11

20

Advantages and
Disadvantages of C++
Coding

Virtual Function 8.4.12

Section 8 Efficient C++ Programming Techniques

Rev.4.00 2007.02.02 8-2
REJ05B0463-0400

8.1 Initialization Processing/Post-processing

8.1.1 Initialization Processing and Post-Processing of Global Class Object

• Important Points:

To use a global class object in C++, you need to call the initialization processing function (_CALL_INIT) and the
post-processing function (_CALL_END) before and after the main function, respectively.

• What is a global class object?

A global class object is a class object that is declared outside of a function.

• Why is initialization processing/post-processing necessary?

If a class object is declared inside a function as shown above, the constructor of class X is called when function main is
executed.
In contrast, a global class object declaration is not executed even when a function is executed.
Thus, you need to call _CALL_INIT before calling the main function in order to explicitly call the constructor of class X.
Likewise, call _CALL_END after calling the main function in order to call the destructor of class X.

• Operations when using and not using _CALL_INIT/_CALL_END:

The following shows the values obtained when the value of member variable x of class X is referenced.
When not using _CALL_INIT/_CALL_END, no correct value can be obtained and no expression in the while statement
will be executed as follows:

(Class object declaration inside a function) (Global class object declaration)

class X{
int x;

public:
X(int n){x = n}; // constructor
~X(){} // destructor

void Sample2(void);
};
X XSample(10); // global class object
void X::Sample2(void)
{

while(x == 10)
{
}

}
void main(void)
{

X* P = &XSample;

P->Sample2();
}

<-- Reference

(Value of member variable x)
When using _CALL_INIT --> 10

When not using _CALL_INIT --> 0

Section 8 Efficient C++ Programming Techniques

Rev.4.00 2007.02.02 8-3
REJ05B0463-0400

• How to call _CALL_INIT/_CALL_END:

Provide the following code before and after calling the main function.

If HEW is used, remove the comment characters in the section for calling _CALL_NIT/_CALL_END of resetprg.c.

(PowerON_Reset function of resetprg.c)

void INIT(void)

{

_INITSCT();

_CALL_INIT();

main();

_CALL_END();

}

__entry(vect=0) void PowerON_Reset(void)

{

set_imask_ccr(1);

_INITSCT();

// _CALL_INIT(); // Remove the comment when you use global class object

// _INIT_IOLIB(); // Remove the comment when you use SIM I/O

// errno=0; // Remove the comment when you use errno

// srand(1); // Remove the comment when you use rand()

// _s1ptr=NULL; // Remove the comment when you use strtok()

HardwareSetup(); // Use Hardware Setup

set_imask_ccr(0);

main();

// _CLOSEALL(); // Remove the comment when you use SIM I/O

// _CALL_END(); // Remove the comment when you use global class object

sleep();

}

Section 8 Efficient C++ Programming Techniques

Rev.4.00 2007.02.02 8-4
REJ05B0463-0400

8.2 Introduction to C++ Functions

8.2.1 How to Reference a C Object

• Important Points:

Use an 'extern "C"' declaration to directly use in a C++ program the resources in an existing C object program.
Likewise, the resources in a C++ object program can be used in a C program.

• Example of Use:

1. Use an 'extern "C"' declaration to reference a function in a C object program.

2. Use an 'extern "C"' declaration to reference a function in a C++ object program.

• Important Information:

1. A C++ object generated by a previous-version(Ver.5) compiler cannot be linked because the encoding and executing
methods have been changed.

Be sure to recompile it before using it.

2. A function called in the above method cannot be overloaded.

(C++ program)

extern "C" void CFUNC();

void main(void)

{

X XCLASS;

XCLASS.SetValue(10);

CFUNC();

}

(C program)

extern void CFUNC();

void CFUNC()

{

 while(1)

 {

 a++;

 }

}

(C program)

void CFUNC()

{

 CPPFUNC();

}

(C++ program)

extern "C" void CPPFUNC();

void CPPFUNC(void)

{

while(1)

{

 a++;

}

}

Section 8 Efficient C++ Programming Techniques

Rev.4.00 2007.02.02 8-5
REJ05B0463-0400

8.2.2 How to Implement new and delete

• Important Points:

To use new, implement a low-level function.

• Description:

If new is used in an embedded system, the dynamic allocation of actual heap memory is realized using malloc.
Thus, implement a low-level interface routine (sbrk) to specify the size of heap memory to be allocated just as when using
malloc.

• Implementation Method:

To use HEW, make sure that [Use Heap Memory] is checked when a workspace is created.
If this option is checked, sbrk.c and sbrk.h shown on the next page will be automatically created.
Specify the size of heap memory to be allocated in Heap Size.
To change the size after creating a workspace, change the value defined in HEAPSIZE in sbrk.h.

If HEW is not used, create a file shown on the next page and implement it in a project.

Section 8 Efficient C++ Programming Techniques

Rev.4.00 2007.02.02 8-6
REJ05B0463-0400

(sbrk.c)

#include <stdio.h>
#include "sbrk.h"

//const size_t _sbrk_size= /* Specifies the minimum unit of */

/* the defined heap area */

static union {

long dummy ; /* Dummy for 4-byte boundary */
char heap[HEAPSIZE]; /* Declaration of the area managed */

 /* by sbrk */
 }heap_area ;

static char *brk=(char *)&heap_area;/* End address of area assigned */

/**/
/* sbrk:Data write */
/* Return value:Start address of the assigned area (Pass) */
/* -1 (Failure) */
/**/
char *sbrk(size_t size) /* Assigned area size */
{

char *p;

if(brk+size>heap_area.heap+HEAPSIZE) /* Empty area size */
return (char *)-1 ;

p=brk ; /* Area assignment */
brk += size ; /* End address update */
return p ;

}

(sbrk.h)

/* size of area managed by sbrk */
#define HEAPSIZE 0x420

Section 8 Efficient C++ Programming Techniques

Rev.4.00 2007.02.02 8-7
REJ05B0463-0400

8.2.3 Static Member Variable

• Description:

In C++, a class member variable with the static attribute can be shared among multiple objects of a class type.
Thus, a static member variable comes in handy because it can be used, for example, as a common flag among multiple
objects of the same class type.

• Example of Use:

Create five class-A objects within the main function.
Static member variable num has an initial value of 0. This value will be incremented by the constructor every time an
object is created.
Static member variable num, shared among objects, will have a value of 5 at the maximum.

• FAQ:

The following lists some frequently asked questions on using a static member variable.

[L2310 Error Occurred]
When a static member variable is used, message "** L2310 (E) Undefined external symbol
"class-name::static-member-variable-name" referenced in "file-name"" is output at linkage.

[Solution]

This error occurs because the static member variable is not defined.
Add either of the following definition as shown on the next page:

If there is an initial value: int A::num = 0;
If there is no initial value: int A::num = 0;

[Unable to assign an initial value]

No initial value is assigned to a static member variable to be initialized.

[Solution]

A static member variable to be initialized, handled as a variable with an initial value, is created in the D-section by default.
Thus, specify the ROM implementation support option of the optimization linkage editor and, in the initial routine, copy
the D-section from the ROM to the RAM using the _INITSCT function*.

Note: * This solution is not required if HEW automatically creates an initial routine.

Section 8 Efficient C++ Programming Techniques

Rev.4.00 2007.02.02 8-8
REJ05B0463-0400

Section 8 Efficient C++ Programming Techniques

Rev.4.00 2007.02.02 8-9
REJ05B0463-0400

8.3 How to Use Options

8.3.1 C++ Language for Embedded Applications

• Description:

The ROM/RAM sizes and the execution speed are important for an embedded system.
The C++ language for embedded applications (EC++) is a subset of the C++ language. For EC++, some of the C++
functions not appropriate for an embedded system have been removed.
Using EC++, you can create an object appropriate for an embedded system.

• Specification method:

Dialog menu: C/C++ tab Category: Other tab, Check against EC++ language specification
Command line: eccp

• Unsupported keywords:

An error message will be output if either of the following keywords is included.

catch, const_cast, dynamic_cast, explicit, mutable, namespace, reinterpret_cast, static_cast, template, throw, try, typeid,
typename, using

• Unsupported language specifications:

A warning message will be output if either of the following language specifications is included.

Multiple inheritance, virtual base class

8.3.2 Run-Time Type Information

• Description:

In C++, a class object with a virtual function may have a type identifiable only at run-time.
A run-time identification function is available to provide support in such a situation.
To use this function in C++, use the type_info class, typeid operator, and dynamic_cast operator.
For the Compiler, specify the following option to use run-time type information.
Additionally, specify the following option at linkage to start up the prelinker.

• Specification method:

Dialog menu: CPU tab, Enable/disable runtime type information
Command line: rtti=on | off

Dialog menu: Link/Library tab, Category: Input tab, Prelinker control
 Then, select Auto or Run prelinker.
Command line: Do not specify noprelink (default).

Section 8 Efficient C++ Programming Techniques

Rev.4.00 2007.02.02 8-10
REJ05B0463-0400

• Example of Use of type_info Class and typeid Operator:

The type_info class is intended to identify the run-time type of an object.
Use the type_info class to compare types at program execution or acquire a class type.
To use the type_info class, specify a class object with a virtual function using the typeid operator.

#include <typeinfo.h>
#include <string>
class Base{
protected:
 string *pname1
public:
 Base() {
 pnamel = new string;
 if (pname1)
 *pname1 = "Base";
 }
 virtual string Show() {return *pname1}
 virtual ~Base() {
 if (pname1
 delete pname1;
 }
};
class Derived : public Base{
 string *pname2;
public:
 Derived() {
 pname2 = new string;
 if (pname2)
 *pname2 = "Derived";
 }
 string Show() {return *pname2;}
 ~Derived() {;
 if (pname2)
 delete pname2;
 }
};
void main(void)
{
 Base* pb = new Base;
 Derived* pd = new Derived;

 const type_info& t = typeid(pb);
 const type info& t1 = typeid(pd);
 t.name();
 t1 name();
}

Base class

Must be included

Virtual function

Virtual destructor

Derived class

Virtual destructor

Specifying a class
object

Acquiring type name [Base*]

Acquiring type name [Derived*]

Virtual function

Section 8 Efficient C++ Programming Techniques

Rev.4.00 2007.02.02 8-11
REJ05B0463-0400

• Example of Use of dynamic_cast Operator:

Use the dynamic_cast operator, for example, to cast at run-time a pointer or reference of the derived-class type to a pointer
or reference of the base-class type between a class including a virtual function and its derived class.

#include <string>

class Base{

protected:

 string *pname1;

public:

 Base() {

 pname1 = new string;

 if (pname1)

 *pname1 = "Base";

 }

 virtual string Show() {return *pname1;}

 virtual ~Base() {

 if (pname1)

 delete pname1;

 }

};

class Derived : public Base{

 string *pname2;

public:

 Derived() {

 pname2 = new string;

 if (pname2)

 *pname2 = "Derived";

 }

 string Show() {return *pname2;}

 ~Derived() {

 if (pname2)

 delete pname2;

 }

};

void main(void)

{
 Derived *pderived = new Derived;
 Base *pbase = dynamic_cast<Base *> (pderived);

 string ddd;
 ddd = pbase-> Show();

 delete pbase;

}

Base class

Derived class

Virtual function

Virtual
destructor

Acquiring class
name Base

Cast to Base * at
run-time

Virtual function

Virtual destructor

Section 8 Efficient C++ Programming Techniques

Rev.4.00 2007.02.02 8-12
REJ05B0463-0400

8.3.3 Exception Handling Function

• Description:

Unlike C, C++ has a mechanism for handling an error called an exception.
An exception is a means for connecting an error location in a program with an error handling code.
Use the exception mechanism to put together error handling codes in one location.
For the Compiler, specify the following option to use the exception mechanism.

• Specification method:

Dialog menu: CPU tab, Use try, throw and catch of C++
Command line: exception

• Example of Use:

If opening of file "INPUT.DAT" fails, initiate the exception handling and display an error in the standard error output.

• Important Information:

The coding performance may deteriorate.

8.3.4 Disabling Startup of Prelinker

• Description:

Starting up the Prelinker will reduce the link speed. The Prelinker need not be running unless the template function or
run-time type conversion of C++ is used.
To use the Linker from a command line, specify the following noprelink option.
If Hew is used and the Prelinker control list box is set to Auto, the output of the noprelink option will be automatically
controlled.

• Specification method:

Dialog menu: Link/Library tab, Category: Input tab, Prelinker control
Command line: noprelink

(C++ program example for exception handling)

void main(void)
{
 try
 {
 if ((fopen("INPUT.DAT","r"))==NULL){
 char * cp = "cannot open input file\n";
 throw cp;
 }
 }
 catch(char *pstrError)
 {
 fprintf(stderr,pstrError);
 abort();
 }
 return;
}

Section 8 Efficient C++ Programming Techniques

Rev.4.00 2007.02.02 8-13
REJ05B0463-0400

8.4 Advantages and Disadvantages of C++ Coding

The Compiler, when compiling a C++ program, internally converts the C++ program to a C program to create an object.
This chapter compares a C++ program and a C program after conversion and describes the influences on coding efficiency
of each function.

No. Function Development
and

maintenance

Size
Reduction

Speed Section

1 Constructor (1) Δ Δ 8.4.1

2 Constructor (2) Δ Δ 8.4.2

3 Default parameter 8.4.3

4 Inline expansion Δ 8.4.4

5 Class member function Δ Δ 8.4.5

6 operator Operator Δ Δ 8.4.6

7 Function overloading 8.4.7

8 Reference type 8.4.8

9 Static function 8.4.9

10 Static member variable 8.4.10

11 Anonymous union 8.4.11

12 Virtual function Δ Δ 8.4.12

Same as C
Requiring caution in use

ΔPerformance decrease

Section 8 Efficient C++ Programming Techniques

Rev.4.00 2007.02.02 8-14
REJ05B0463-0400

8.4.1 Constructor (1)

Development and
Maintenance

 Size Reduction Δ Speed Δ

• Important Points:

Use a constructor to automatically initialize a class object. However, use it with caution because it will influence the object
size and processing speed as follows:

• Example of Use:

Create a class-A constructor and destructor and compile them.The size and processing speed will be influenced because
the constructor and destructor will be called in the class declaration and decisions will be made in the constructor and
destructor codes.

(C++ program)

class A

{

private:

 int a;

public:

 A(void);

 ~A(void);

 int getValue(void){ return a; }

};

void main(void)

{

 A a;

 b = a.getValue();

}

A::A(void)

{

 a = 1234;

}

A::~A(void)

{

}

Section 8 Efficient C++ Programming Techniques

Rev.4.00 2007.02.02 8-15
REJ05B0463-0400

(C program after conversion)

struct A {

 int a;

};

void *_nw__FUl(unsigned long);

void __dl__FPv(void *);

void main(void);

struct A *__ct__A(struct A *);

void __dt__A(struct A *const, int);

void main(void)

{

 struct A a;

 __ct__A(&a);

 _ b = ((a.a));

 __dt__A(&a, 2);

}

Constructor call

Destructor call

struct A * __ct__A(struct A *this)

{

 if (this != (struct A *)0

|| (this = (struct A *)_nw__FUl(4))
 != (struct A *)0)

 {

 (this->a) = 1234;

 }

 return this;

}

void __dt__A(struct A *const this,

 int flag)

{

 if (this != (struct A *)0){

 if (flag & 1) {

 dl__FPv((void *)this);

 }

 }

 return;

}

Destructor code

Constructor code

Section 8 Efficient C++ Programming Techniques

Rev.4.00 2007.02.02 8-16
REJ05B0463-0400

8.4.2 Constructor (2)

Development and
Maintenance

 Size Reduction Δ Speed Δ

• Important Points:

To declare a class in an array, use a constructor to automatically initialize a class object. However, use it with caution
because it will influence the object size and processing speed as follows:

• Example of Use:

Create a class-A constructor and destructor and compile them.The memory needs to be dynamically allocated and
deallocated because the constructor and destructor are called in the class declaration but are declared in the array.
Use new and delete to dynamically allocate and deallocate the memory.
This requires implementation of a low-level function. (For details on the implementation method, refer to section 8.1.2,
Execution Environment Settings, in the SuperH RISC engine C/C++ Compiler, Assembler, Optimizing Linkage Editor
User's Manual.)
The size and processing speed will be influenced because decisions and the low-level function processing are added in the
constructor and destructor codes.

(C++ program)

class A

{

private:

 int a;

public:

 A(void);

 ~A(void);

 int getValue(void){ return a; }

};

void main(void)

{

 A a[5];

 b = a[0].getValue();

}

A::A(void)

{

 a = 1234;

}

A::~A(void)

{

}

Section 8 Efficient C++ Programming Techniques

Rev.4.00 2007.02.02 8-17
REJ05B0463-0400

(C program after conversion)

struct A {

 int a;

};

void *__nw__FUl(unsigned long);

void __dl__FPv(void *);

void main(void);

void *__vec_new();

void __vec_delete();

struct A *__ct__A(struct A *);

void __dt__A(struct A *const, int);

void main(void)

{

 struct A a[5];

 __vec_new((struct A *)a, 5, 4,

__ct__A);

 _ b = ((a.a));

 __vec_delete(&a, 5, 4, __dt__A, 0,

0);

}

struct A *__ct__A(struct A *this)

{

 if((this != (struct A *)0)

 || ((this = (struct A

*)__nw__FUl(4)) != (struct A *)0))

 {

 (this->a) = 1234;

 }

 return this;

}

void __dt__A(struct A *const this,

 int flag)

{

 if (this != (struct A *)0){

 if (flag & 1){

 __dl__FPv((void *)this);

 }

 }

 return;

}

Constructor call

Destructor call
Destructor code

Constructor code

Section 8 Efficient C++ Programming Techniques

Rev.4.00 2007.02.02 8-18
REJ05B0463-0400

8.4.3 Default Parameter

Development and
Maintenance

 Size Reduction Speed

• Important Points:

In C++, a default parameter can be used to set a default used when calling a function.
To use a default parameter, specify a default value for parameters of a function when declaring the function.
This will eliminate the need of specifying a parameter in many of the function calls and enable the use of a default
parameter instead, thus improving the development efficiency.
A parameter value can be changed if a parameter is specified.

• Example of Use:

The following shows an example of calling function sub when 0 is specified as a default parameter value in the declaration
of function sub.
As shown below, no parameter needs to be specified if the default parameter value is acceptable when calling function sub.
Moreover, the efficiency of a program is not deteriorated even when it is converted into C.
In sum, a default parameter ensures superior development and maintenance efficiency and has no disadvantage compared
with C.

(C++ program)

void main(void);

int sub(int, int = 0);

void main(void)

{

 int ret1;

 int ret2;

 ret = sub(1,2);

 ret = sub(3);

}

int sub (int a, int b /* =0 */)

{

 return a + b;

}

 (C program after conversion)

void main(void);

int sub(int, int);

void main(void)

{

 int ret1;

 int ret2;

 ret1 = sub(1, 2);

 ret2 = sub(3, 0);

}

int sub(int a, int b)

{

 return a + b;

}

Specifying 0 as a
parameter value in the
function declaration

Converted to the default
parameter value

No second parameter
specified

Section 8 Efficient C++ Programming Techniques

Rev.4.00 2007.02.02 8-19
REJ05B0463-0400

8.4.4 Inline Expansion

Development and
Maintenance

 Size Reduction Δ Speed

• Important Points:

When coding the definition of a function, specify inline in the beginning to cause inline expansion of the function. This
will eliminate the overhead of a function call and improve the processing speed.

• Example of Use:

Specify function sub as an inline function and inline-expand it in the main function.Then, remove the function sub code.
However, function sub cannot be reference from other files.
Use inline expansion with caution because, although the processing speed is certain to improve, the program size will
become too large unless only small functions are used.

(C++ program)

int a;

inline int sub(int x, int y)

{

 return (x+y);

}

void main(void)

{

 a = sub(1,2);

}

(C program after conversion)

int a;

void main(void)

{

 a = 3;

 return;

}

Expanding the
content of function
sub

Section 8 Efficient C++ Programming Techniques

Rev.4.00 2007.02.02 8-20
REJ05B0463-0400

8.4.5 Class Member Function

Development and
Maintenance

 Size Reduction Δ Speed Δ

• Important Points:

Defining a class will enable information hidingand improve the development and maintenance efficiency.
However, use this technique with caution because it will influence the size and processing speed.

• Example of Use:

In the following example, class member functions set and add are used to access private class member variables a, b, and c.
When calling a class member function, the parameter specification in a C++ program either has only a value or no
parameter.
As shown in the C program after conversion, however, the address of class A (struct A) is also passed as a parameter.
Additionally, private class member variables a, b, and c are accessed in the class member function code.
However, the this pointer is used to access them.
In sum, use a class member function with caution because it will influence the size and processing speed.

Section 8 Efficient C++ Programming Techniques

Rev.4.00 2007.02.02 8-21
REJ05B0463-0400

(C++ program)

class A

{

private:

 int a;

 int b;

 int c;

public:

 void set(int, int, int);

 int add();

};

int main(void)

{

 A a;

 int ret;

 a.set(1,2,3);

 ret = a.add();

 return ret;

}

void A::set(int x, int y, int z)

{

 a = x;

 b = y;

 c = z;

}

int A::add()

{

 return (a += b + c);

}

Section 8 Efficient C++ Programming Techniques

Rev.4.00 2007.02.02 8-22
REJ05B0463-0400

(C program after conversion)

struct A {

 int a;

 int b;

 int c;

};

void set__A_int_int(struct A *const, int, int, int);

int add__A(struct A *const);

int main(void)

{

 struct A a;

 int ret;

 set__A_int_int(&a, 1, 2, 3);

 ret = add__A(&a);

 return ret;

}

void set__A_int_int(struct A *const this, int x, int y, int z)

{

 this->a = x;

 this->b = y;

 this->c = z;

 return;

}

int add__A(struct A *const this)

{

 return (this->a += this->b + this->c);

}

Section 8 Efficient C++ Programming Techniques

Rev.4.00 2007.02.02 8-23
REJ05B0463-0400

8.4.6 operator Operator

Development and
Maintenance

 Size
Reduction

Δ Speed Δ

• Important Points:

In C++, use the keyword, operator to overload an operator.
This will enable simple coding of the user's operations such as matrix operations and vector calculations.
However, use operator with caution because it will influence the size and processing speed.

• Example of Use:

In the following example, unary operator "+" is overloaded using the operator keyword.
If the Vector class is declared as shown below, unary operator "+" can be changed to the user's operation.
However, the size and processing speed will be influenced because, as shown in the C program after conversion, reference
using the this pointer is made.

(C++ program)

class Vector

{

private:

 int x;

 int y;

 int z;

public:

 Vector & operator+ (Vector &);

};

void main(void)

{

 Vector a,b,c;

 a = b + c;

}

Vector & Vector::operator+ (Vector & vec)

{

 static Vector ret;

 ret.x = x + vec.x;

 ret.y = y + vec.y;

 ret.z = z + vec.z;

 return ret;

}

User's operation (addition)

Section 8 Efficient C++ Programming Techniques

Rev.4.00 2007.02.02 8-24
REJ05B0463-0400

(C program after conversion)

struct Vector {

 int x;

 int y;

 int z;

};

void main(void);

struct Vector *__plus__Vector_Vector(struct Vector *const, struct Vector *);

void main(void)

{

 struct Vector a;

 struct Vector b;

 struct Vector c;

 a = *__plus__Vector_Vector(&b, &c);

 return;

}

struct Vector *__plus__Vector_Vector(struct Vector *const this, struct Vector

*vec)

{

 static struct Vector ret;

 ret.x = this->x + vec->x;

 ret.y = this->y + vec->y;

 ret.z = this->z + vec->z;

 return &ret;

}

Reference using the this

Section 8 Efficient C++ Programming Techniques

Rev.4.00 2007.02.02 8-25
REJ05B0463-0400

8.4.7 Overloading of Functions

Development and
Maintenance

 Size
Reduction

 Speed

• Important Points:

In C++, you can "overload" functions, i.e., give the same name to different functions.
Specifically, this feature is effective when you use functions with the same processing but with different types of
arguments.
Be careful not to give the same name to functions with no commonality because it is sure to cause malfunctions.
The use of this function will not influence the size or processing speed.

• Example of Use:

In the following example, the first and second parameters are added and the resultant value is used as a return value.
All the functions have the same name, add but different parameter and return value types.
As shown in the C program after conversion, the call of the add functions or the code of the add functions do not increase
the code size.
Thus, the use of this feature will not influence the size and processing speed.

(C++ program)

void main(void);

int add(int,int);

float add(float,float);

double add(double,double);

void main(void)

{

 int ret_i = add(1, 2);

 float ret_f = add(1.0f, 2.0f);

 double ret_d = add(1.0, 2.0);

}

int add(int x,int y)

{

 return x+y;

}

float add(float x,float y)

{

 return x+y;

}

double add(double x,double y)

{

 return x+y;

}

Section 8 Efficient C++ Programming Techniques

Rev.4.00 2007.02.02 8-26
REJ05B0463-0400

(C program after conversion)

void main(void);

int add__int_int(int, int);

float add__float_float(float, float);

double add__double_double(double, double);

void main(void)

{

 auto int ret_i;

 auto float ret_f;

 auto double ret_d;

 ret_i = add__int_int(1, 2);

 ret_f = add__float_float(1.0f, 2.0f);

 ret_d = add__double_double(1.0, 2.0);

}

int add__int_int(int x, int y)

{

 return x + y;

}

float add__float_float(float x, float y)

{

 return x + y;

}

double add__double_double(double x, double y)

{

 return x + y;

}

Section 8 Efficient C++ Programming Techniques

Rev.4.00 2007.02.02 8-27
REJ05B0463-0400

8.4.8 Reference Type

Development and
Maintenance

 Size
Reduction

 Speed

• Important Points:

The use of a reference-type parameter will enable simple coding of a program and improve the development and
maintenance efficiency.
Additionally, the use of the reference type will not influence the size or processing speed.

• Example of Use:

As shown below, reference-type passing instead of pointer passing will enable simple coding.
In a reference type, not the values but the addresses of a and b are passed.
The use of a reference type, as shown in the C program after conversion, will not influence the size and processing speed.

(C++ program)

void main(void);

void swap(int&, int&);

void main(void)

{

 int a=100;

 int b=256;

 swap(a,b);

}

void swap(int &x, int &y)

{

 int tmp;

 tmp = x;

 x = y;

 y = tmp;

}

(C program after conversion)

void main(void);

void swap(int *, int *);

void main(void)

{

 int a=100;

 int b=256;

 swap(&a, &b);

}

void swap(int *x, int *y)

{

 int tmp;

 tmp = *x;

 *x = *y;

 *y = tmp;

}

Section 8 Efficient C++ Programming Techniques

Rev.4.00 2007.02.02 8-28
REJ05B0463-0400

8.4.9 Static Function

Development and
Maintenance

 Size
Reduction

 Speed

• Important Points:

If the class configuration becomes complex due to derived classes, etc., it will be increasingly more difficult to access
static class member variables with the private attribute until they need to be changed to the public attribute.
To access a static class member variable without changing the private attribute in such a case, create a member function to
be used as an interface and specify the static variable in the function.
A static function is thus used to access only static class member variables.

• Example of Use:

As shown on the next page, use a static function to access a static member variable.
Although the use of a class will influence the code efficiency, the use of a static function itself will not influence the size
and processing speed.

• Note:

For details on a static member variable, refer to section 8.2.3, Static Member Variable.

Section 8 Efficient C++ Programming Techniques

Rev.4.00 2007.02.02 8-29
REJ05B0463-0400

(C++ program)

class A

{

private:

 static int num;

public:

 static int getNum(void);

 A(void);

 ~A(void);

};

int A::num = 0;

void main(void)

{

 int num;

 num = A::getNum();

 A al;

 num = al.getNum();

 A a2;

 num = a2.getNum();

}

A::A(void)

{

 ++num;

}

A::~A(void)

{

 --num;

}

int A::getNum(void)

{

 return num;

}

Static member variable

Static function

Accessing the static member variable

Section 8 Efficient C++ Programming Techniques

Rev.4.00 2007.02.02 8-30
REJ05B0463-0400

(C program after conversion)

struct A

{

 char __dummy;

};

void *__nw__FUl(unsigned long);

void __dl__FPv(void *);

int getNum__A(void);

struct A *__ct__A(struct A *);

void __dt__A(struct A *const, int);

int num__1A = 0;

void main(void)

{

 int num;

 struct A a1;

 struct A a2;

 num = getNum__A();

 __ct__A(&a1);

 num = getNum__A();

 __ct__A(&a2);

 num = getNum__A();

 __dt__A(&a2, 2);

 __dt__A(&a1, 2);

}

int getNum__A(void)

{

 return num__1A;

}

struct A *__ct__A(struct A *this)

{

 if ((this != (struct A *)0)

 || ((this = (struct A *)__nw__FUl(1)) != (struct A *)0)){

 ++num__1A;

 }

 return this;

}

void __dt__A(struct A *const this, int flag)

{

 if (this != (struct A *)0){

 --num__1A;

 if(flag & 1){

 __dl__FPv((void *)this);

 }

 }

 return;

}

Static member variable

Static function

Accessing the static member variable

Section 8 Efficient C++ Programming Techniques

Rev.4.00 2007.02.02 8-31
REJ05B0463-0400

8.4.10 Static Member Variable

Development and
Maintenance

 Size
Reduction

 Speed

• Important Points:

In C++, a class member variable with the static attribute can be shared among multiple objects of a class type.
Thus, a static member variable comes in handy because it can be used, for example, as a common flag among multiple
objects of the same class type.

• Example of Use:

Create five class-A objects within the main function.
Static member variable num has an initial value of 0. This value will be incremented by the constructor every time an
object is created.
Static member variable num, shared among objects, will have a value of 5 at the maximum.
Additionally, the use of a class will influence the code efficiency.
However, the use of a static member variable itself will not influence the size and processing speed because the Compiler
internally handles member variable num as if it is an ordinary global variable.

• Note:

For details on a static member variable, refer to section 8.2.3, Static Member Variable.

Section 8 Efficient C++ Programming Techniques

Rev.4.00 2007.02.02 8-32
REJ05B0463-0400

(C++ program)

class A

{

private:

 static int num;

public:

 A(void);

 ~A(void);

};

int A::num = 0;

void main(void)

{

 A a1;

 A a2;

 A a3;

 A a4;

 A a5;

}

A::A(void)

{

 ++num;

}

A::~A(void)

{

 --num;

}

Creating a class A-type class object

Incrementing a static member variable

Section 8 Efficient C++ Programming Techniques

Rev.4.00 2007.02.02 8-33
REJ05B0463-0400

(C program after conversion)

struct A

{

 char __dummy;

};

void *__nw__FUl(unsigned long);

void __dl__FPv(void *);

struct A *__ct__A(struct A *);

void __dt__A(struct A *const, int);

int num__1A = 0;

void main(void)

{

 struct A a1;

 struct A a2;

 struct A a3;

 struct A a4;

 struct A a5;

 __ct__A(&a1);

 __ct__A(&a2);

 __ct__A(&a3);

 __ct__A(&a4);

 __ct__A(&a5);

 __dt__A(&a5, 2);

 __dt__A(&a4, 2);

 __dt__A(&a3, 2);

 __dt__A(&a2, 2);

 __dt__A(&a1, 2);

}

struct A *__ct__A(struct A *this)

{

 if((this != (struct A *)0)

 || ((this = (struct A *)__nw__FUl(1)) != (struct A *)0)){

 ++num__1A;

 }

 return this;

}

void __dt__A(struct A *const this, int flag)

{

 if(this != (struct A *)0){

 --num__1A;

 if (flag & 1){

 __dl__FPv((void *)this);

 }

 }

 return;

}

Handled by the Compiler as if it is
an ordinary global variable

Incrementing a static member variable

Creating class A-type class objects

Calling constructors

Calling destructors

Section 8 Efficient C++ Programming Techniques

Rev.4.00 2007.02.02 8-34
REJ05B0463-0400

8.4.11 Anonymous Union

Development and
Maintenance

 Size
Reduction

 Speed

• Important Points:

In C++, use an anonymous union to directly access a member without, like in C, having to specify the member name.
This will improve the development efficiency. Additionally, it will not influence the size and processing speed.

• Example of Use:

In the following example, function main is used to access union member variable s.
In the C++ program, member variable s is directly accessed. In the C program after conversion, it is accessed using a
member name that the Compiler has automatically created.
The use of this simple code enables access to a member variable without influencing the object efficiency.

(C++ program)

struct tag {

 union {

 unsigned char c[4];

 unsigned short s[2];

 unsigned long l;

 };

};

void main(void)

{

 tag t;

 t.s[1] = 1;

}

(C program after conversion)

struct tag {

 union _uni {

 unsigned char c[4];

 unsigned short s[2];

 unsigned long l;

 } access;

};

void main(void)

{

 struct tag t;

 t.access.s[1] = 1;

}

There is no
member name.

There is a
member name.

Section 8 Efficient C++ Programming Techniques

Rev.4.00 2007.02.02 8-35
REJ05B0463-0400

8.4.12 Virtual Function

Development and
Maintenance

 Size
Reduction

Δ Speed Δ

• Important Points:

A virtual function must be used if, as shown in the following program, there is a function with the same name in each of a
base class and a derived class. Otherwise, the function call cannot be properly made as intended.
If a virtual function is declared, these calls can be properly made as intended.
Use a virtual function to improve the development efficiency. However, use it with caution because it will influence the
size and processing speed.

• Example of Use:

In the main3 function call, two pointers store class-B addresses.
If virtual is declared, the class-B foo function is properly called.
If virtual is not declared, one of the pointers calls the class-A foo function.
The use of a virtual function, resulting in creation of a table, etc. as shown on the next page, will influence the size and
speed.

(C++ program)

class A

{

private:

 int a;

public:

 virtual void foo(void);

};

class B : public A

{

private:

 int b;

public:

 virtual void foo(void);

};

void A::foo(void)

{

}

void B::foo(void)

{

}

void main1(void)

{

 A a;

 a.foo();

}

void main2(void)

{

 B b;

 b.foo();

}

void main3(void)

{

 B b;

 A * pa = &b;

 B * pb = &b;

 pa->foo();

 pb->foo();

}

Virtual

function call

Virtual function

declaration

Virtual function

declaration

(Can be omitted)

Section 8 Efficient C++ Programming Techniques

Rev.4.00 2007.02.02 8-36
REJ05B0463-0400

• C program after conversion (tables, etc. for virtual functions):

struct __T5585724;

struct __type_info;

struct __T5584740;

struct __T5579436;

struct A;

struct B;

extern void main1__Fv(void);

extern void main2__Fv(void);

extern void main3__Fv(void);

extern void foo__1AFv(struct A *const);

extern void foo__1BFv(struct B *const);

struct __T5585724

{

 struct __T5584740 *tinfo;

 long offset;

 unsigned char flags;

};

struct __type_info

{

 struct __T5579436 *__vptr;

};

struct __T5584740

{

 struct __type_info tinfo;

 const char *name;

 char *id;

 struct __T5585724 *bc;

};

struct __T5579436

{

 long d; // this–pointer offset

 long i; // Unassigned

 void (*f)(); // For virtual function call

};

struct A { // Class-A declaration

 int a;

 struct __T5579436 *__vptr; // Pointer to a virtual function table

};

struct B { // Class-B declaration

 struct A __b_A;

 int b;

};

static struct __T5585724 __T5591360[1];

#pragma section $VTBL

extern const struct __T5579436 __vtbl__1A[2];

extern const struct __T5579436 __vtbl__1B[2];

extern const struct __T5579436 __vtbl__Q2_3std9type_info[];

#pragma section

extern struct __T5584740 __T_1A;

extern struct __T5584740 __T_1B;

Section 8 Efficient C++ Programming Techniques

Rev.4.00 2007.02.02 8-37
REJ05B0463-0400

static char __TID_1A; // Unassigned

static char __TID_1B; // Unassigned

static struct __T5585724 __T5591360[1] = // Unassigned

{

 {

 &__T_1A,

 0L,

 ((unsigned char)22U)

 }

};

#pragma section $VTBL

const struct __T5579436 __vtbl__1A[2] = // Virtual function table for class-A

{

 {

 0L, // Unassigned area

 0L, // Unassigned area

 ((void (*)())&__T_1A) // Unassigned area

 },

 {

 0L, // this–pointer offset

 0L, // Unassigned area

 ((void (*)())foo__1AFv) // ((void (*)())foo__1AFv) // Pointer to A::foo()

 }

};

const struct __T5579436 __vtbl__1B[2] = // Virtual function table for class-B

{

 {

 0L, // Unassigned area

 0L, // Unassigned area

 ((void (*)())&__T_1B) // Unassigned area

 },

 {

 0L, // this–pointer offset

 0L, // Unassigned area

 ((void (*)())foo__1BFv) // ((void (*)())foo__1BFv) // Pointer to B::foo()

 }

};

#pragma section

struct __T5584740 __T_1A = // Type information for class-A (unassigned)

{

 {

 (struct __T5579436 *)__vtbl__Q2_3std9type_info

 },

 (const char *)"A",

 &__TID_1A,

 (struct __T5585724 *)0

};

struct __T5584740 __T_1B = // Type information for class-B (unassigned)

{

 {

 (struct __T5579436 *)__vtbl__Q2_3std9type_info

 },

 (const char *)"B",

 &__TID_1B,

 __T5591360

};

Section 8 Efficient C++ Programming Techniques

Rev.4.00 2007.02.02 8-38
REJ05B0463-0400

• C program after conversion (virtual function calls):

void main1__Fv(void)

{

 struct A _a;

 _a.__vptr = __vtbl__1A;

 foo__1AFv(&_a); // Call A::foo()

 return;

}

void main2__Fv(void)

{

 struct B _b;

 _b.__b_A.__vptr = __vtbl__1A;

 _b.__b_A.__vptr = __vtbl__1B;

 foo__1BFv(&_b); // Call B::foo()

 return;

}

void main3__Fv(void)

{

 struct __T5579436 *_tmp;

 struct B _b;

 struct A *__pa;

 struct B *__pb;

 (*((struct A*)(&_b))).__vptr = __vtbl__1A;

 (*((struct A*)(&_b)))._vptr = __vtbl__lB;

 _pa = (struct A *)&_b;

 _pb = &_b;

 _tmp = _pa->__vptr + 1;

 ((void (*)(struct A *const)) _tmp->f) ((struct A *)_pa + _tmp->d);

 // Call to B::foo() (The object what is pointed by _pa is B)

 _tmp = _pb->__b_A.__vptr + 1;

 ((void (*)(struct B *const)) _tmp->f) ((struct B *)_pb + _tmp->d);

 // Call to B::foo()

 return;

}

Section 9 Optimizing Linkage Editor

Rev.4.00 2007.02.02 9-1
REJ05B0463-0400

Section 9 Optimizing Linkage Editor

This chapter describes the use of effective options at linkage, and the Inter-Module Optimization at linkage.

The following table shows a list of the items relating to the use of Optimizing Linkage Editor.

No. Category Item Section

Input Options 9.1.1 1 Input/Output Options

Output Options 9.1.2

2 Symbol Information List 9.2.1

3 Symbol Reference Count 9.2.2

4

List Options

Cross-Reference Information 9.2.3

5 Output to Unused Area 9.3.1

6 End code of S Type File 9.3.2

7 Debug Information Compression 9.3.3

8 Link Time Reduction 9.3.4

9 Notification of Unreferenced Symbol 9.3.5

10

Effective Options

Reduce Empty Areas of Boundary Alignment 9.3.6

11 Optimization at Linkage 9.4.1

12 Sub Options of Optimize Option

13 Unifies Constants/Strings 9.4.2

14 Eliminates Unreferenced Symbols 9.4.3

15 Optimizes Register Save/Restore
Codes

9.4.4

16 Unifies Common Codes 9.4.5

17

Optimizes Branch Instructions 9.4.6

18

Optimize Options

Optimization Partially Disabled 9.4.7

19 Confirm Optimization Results 9.4.8

Section 9 Optimizing Linkage Editor

Rev.4.00 2007.02.02 9-2
REJ05B0463-0400

9.1 Input/Output Options

9.1.1 Input Options

• Description

The optimizing linkage editor can input the following four files according to user usage.
This is one of the convenient features.

• Specification Method

Dialog menu: Link/Library Tab Category: [Input] Show entries for :
Command line: Input <suboption>:<file name>
 Library<file name>
 Binary<suboption>:<file name>

• Available Input Files

Kind of Files Command line

Object Files input

Relocatable Files input

Library Files library

Binary Files binary

(1) Object Files

Ordinary files output from the compiler or the assembler.

(2) Relocatable Files

Relocatable (Address Unresolved) Files.
This file consists of one or more object files, and is generated from the optimizing linkage editor with output options.
Symbols in relocatable files are linked, even if other files don’t refer to them.
So, in case of using Relocatable Files, be careful not to increase ROM size by linking unnecessary files.

Relocatable
Files

a.obj

b.obj c.obj

Section 9 Optimizing Linkage Editor

Rev.4.00 2007.02.02 9-3
REJ05B0463-0400

(3) Library Files

Relocatable (Address Unresolved) Files.
This file consists of one or more object files, and is generated from the optimizing linkage editor with output options.
Symbols in relocatable files are not linked, if other files don’t refer to them.

(4) Binary Files

Binary Files are available to input.
This file consists of one or more object files, and is generated from the optimizing linkage editor with output options.
When input binary files, section name should be specified. This section name is located with the start option.
As binary files have no debug information, C/C++ source level debugger can’t be used.

[Specification Method 1]

Section name should be specified.
Dialog menu: Link/Library Tab Category: [Input] Show entries for :
 Binary files
Command line: binary=bin_c.bin(PPP)

Library Files

a.obj

b.obj c.obj

Binary Files

a.obj

b.obj c.obj

Section 9 Optimizing Linkage Editor

Rev.4.00 2007.02.02 9-4
REJ05B0463-0400

[Specification Method 2]

Symbol can be defined at the head of the binary files.
Specify symbol name with section name, to do this.
For a variable name referred by a C/C++ program, add an underscore (_) at the head of the symbol name.

Dialog menu: Link/Library Tab Category: [Input] Show entries for :
 Binary files
Command line: binary=bin_c.bin(PPP,_func)

[Specification Method 3]

When input binary files, boundary alignment value can be specified.

When the boundary alignment specification is omitted, 1 is used as the default for the compatibility with earlier versions.
This boundary alignment specification is valid in the Optimizing Linkage Editor Ver.9.0 or later.

Dialog menu: Link/Library Tab Category: [Input] Show entries for : Binary files

Command line: binary=bin_c.bin(PPP:<boundary alignment>,_func)

 <boundary alignment>: 1 | 2 | 4 | 8 | 16 | 32 (default: 1)

9.1.2 Output Options

• Description

Some type of ROM writer can input only HEX files or only S-type files.
The optimizing linkage editor can output the following eight files according to user usage.
User can change the kind of output file, if necessary.

Section 9 Optimizing Linkage Editor

Rev.4.00 2007.02.02 9-5
REJ05B0463-0400

• Specification Method

Dialog menu: Link/Library Tab Category: [Output] Type of output file :
Command line: form{ absolute | relocate | object | library=s | library=u |
 hexadecimal | stype | binary }

• Available Output Files

No. Kind of Files Command line

1 Absolute Files form absolute

2 Relocatable Files form relocate

3 Object Files form object

4 User Library Files form library=s

5 System Library Files form library=u

6 HEX Files form hexadecimal

7 S-type Files form stype

8 Binary Files form binary

(1) Absolute Files

Address resolved Files by the optimizing linkage editor.
As this file has debug information, C/C++ source level debugger can be used.
When writing to ROM, this file should be transformed to either S-type format or HEX or Binary.

(2) Relocatable Files

Relocatable (Address Unresolved) Files.
As this file has debug information, C/C++ source level debugger can be used.
To execute this file, this file should be transformed to absolute file by linking again.

(3) Object Files

This file is used when a module (object) is extracted as an object file from a library with the extract option.

When specifying by command line, a needed object file can be extracted from the library file specified by this option.
When using HEW, specify the following options at Link/Library Tab Category: [Other] User defined options :
[Extract Options]
form=object
extract=<module name>

(4) User Library/System Library

Output Library Files.

(5) HEX Files

Output HEX Files.
As this files have no debug information, C/C++ source level debugger can’t be used.
For details of HEX file, please refer to “SuperH RISC engine C/C++ Compiler, Assembler, Optimizing Linkage Editor User’s Manual”
18.1.2 HEX File Format.

(6) S-type Files

Output S-type Files.
As this files have no debug information, C/C++ source level debugger can’t be used.
For details of S-type file, please refer to “SuperH RISC engine C/C++ Compiler, Assembler, Optimizing Linkage Editor User’s
Manual” 18.1.1 S-Type File Format.

(7) Binary Files

Output Binary Files.
As binary files have no debug information, C/C++ source level debugger can’t be used.

Section 9 Optimizing Linkage Editor

Rev.4.00 2007.02.02 9-6
REJ05B0463-0400

9.2 List Options

9.2.1 Symbol Information List

• Description

The optimizing linkage editor can output symbol address, size and optimization information in
addition to linkage map information, by specifying additional sub-options.

⎯ symbol address -ADDR

⎯ size -SIZE

⎯ optimization -OPT (ch- changed, cr- created, mv- moved)

• Specification Method

Dialog menu: Link/Library Tab Category: [List] Contents : Show symbol
Command line: list [=<file name>]
 Show symbol

<*.map file>

*** Options ***
 :
*** Error information ***
 :
*** Mapping List ***
 :
*** Symbol List ***

SECTION=
FILE= START END SIZE
 SYMBOL (1)ADDR (2)SIZE INFO COUNTS (3)OPT

SECTION=P
FILE=C:\Hew-exe\Hew3_SHV9\bin\bin\Debug\bin.obj

 00000800 00000821 22

 _main
 00000800 6 func ,g * ch
 _abort
 00000806 4 func ,g * ch
 _com_opt1
 0000080a 18 func ,g * cr ch

*** Delete Symbols ***
 :
*** Variable Accessible with Abs8 ***
 :
*** Variable Accessible with Abs16 ***
 :
*** Function Call ***
 :

Section 9 Optimizing Linkage Editor

Rev.4.00 2007.02.02 9-7
REJ05B0463-0400

9.2.2 Symbol Reference Count

• Description

The optimizing linkage editor can output static symbol reference count in addition to linkage map information, by specifying additional
sub-options.

⎯ symbol reference count -COUNTS

• Specification Method

Dialog menu: Link/Library Tab Category: [List] Contents : Show reference
Command line: list [=<file name>]
 Show reference

<*.map>

*** Options ***

 :

*** Error information ***

 :

*** Mapping List ***

 :

*** Symbol List ***

SECTION=
FILE= START END SIZE
 SYMBOL ADDR SIZE INFO (1)COUNTS OPT

SECTION=P
FILE=C:\Hew-exe\Hew3_SHV9\bin\bin\Debug\bin.obj

 00000800 00000821 22
 _main
 00000800 6 func ,g 1 ch
 _abort
 00000806 4 func ,g 0 ch
 _com_opt1
 0000080a 18 func ,g 2 cr ch
*** Delete Symbols ***
 :
*** Variable Accessible with Abs8 ***
 :
*** Variable Accessible with Abs16 ***
 :
*** Function Call ***

9.2.3 Cross-Reference Information

• Description

The optimizing linkage editor can output cross-reference information in addition to linkage map information, by
specifying additional sub-options. Cross-reference information makes it possible to search where a global symbol is
referenced.
Local symbols and static symbols are not output.

Section 9 Optimizing Linkage Editor

Rev.4.00 2007.02.02 9-8
REJ05B0463-0400

• Specification Method

Dialog menu: Link/Library Tab Category: [List] Contents : Show cross reference

Command line: list [=<file name>]
 Show xreference

<*.map file>

*** Cross Reference List ***

No Unit Name Global.Symbol Location External Information

(1) (2) (3) (4) (5)

---- ----------- --------------- -------- ---------------------

0001 test1

 SECTION=P

 _main

 00000100

 SECTION=B

 _sl1

 00007000 0001(0000011a:P)

 _sl2

 00007004 0001(0000010e:P)

 _ret

 00007008 0001(00000128:P)

 SECTION=D

0002 test2

 SECTION=P

 _func1

 0000015c 0001(00000124:P)

 _func2

 00000164 0001(0000013c:P)

 _func3

 00000170 0001(00000150:P)

• Description of Each Item

(1) Unit number, which is an identification number in object units, displayed in External Information (5)

(2) Object name, which specifies the input order at linkage

(3) Symbol name output in ascending order for every section

(4) Symbol allocation address, which is a relative value from the beginning of the section when relocatable format is
specified for output file format (form=relocate).

(5) Address from which an external symbol is referenced
 Output format: <Unit number> (<address or offset in section>:<section name>)

• Remarks

This option is valid for the Optimizing Linkage Editor Ver.9.0 or later.

Section 9 Optimizing Linkage Editor

Rev.4.00 2007.02.02 9-9
REJ05B0463-0400

9.3 Effective Options

9.3.1 Output to Unused Area

• Description

The optimizing linkage editor can output any data to unused area.
This is useful for ROM transfer, and this is useful to detect an abnormal interrupt by executing unused area with no data, when program
hangs.
A 1-, 2-, or 4-byte value is valid for output data size. If an odd number of digits are specified, the upper digits are extended with 0 to use
it as an even number of digits.
The maximum size of output data is 4-byte. If a value over 4-byte is specified, the lower 4-byte is used.
This option is available only when output file is S-type file, Binary or HEX.

• Specification Method

Dialog menu: Link/Library Tab Category: [Output] Show entries for :
 Specify value filled in unused area
Command line: space [=<numerical value>]

• Examples

(1) Divide file and specify the range to fill unused area with data by
Link/Library Tab Category: [Output] Show entries for : Divided output files
-output="C:\bin\Debug\a.bin"=00-0FFFF

(2) Specify the filling data by

Link/Library Tab Category: [Output] Show entries for : Specify value filled in unused area
-space=FF

The example of the following page <Specify value filled in unused area [H’FF]> shows how unused area is filled with data.

Section 9 Optimizing Linkage Editor

Rev.4.00 2007.02.02 9-10
REJ05B0463-0400

• Examples of S-type Files

As the following examples, 0xFF records are added to the unused areas in the range of data existing.
If this option is not specified, the records in the range of data not existing are not output.
If this option is specified, 0xFF records are added to the area in the range of data not existing, according to the output range
specification in the output option Divided output files.

<NOT Specify value filled in unused area>

…

<Specify value filled in unused area [H’FF]>

…

Range of Data
Existing

Range of Data
Existing

Range of Data
NOT Existing

Section 9 Optimizing Linkage Editor

Rev.4.00 2007.02.02 9-11
REJ05B0463-0400

• Examples of Binary Files

As the following examples, the unused areas in the range of data existing are changed from 0x00 to 0xFF.
If this option is not specified, the records in the range of data not existing are not output.
If this option is specified, 0xFF records are added to the area in the range of data not existing, according to the output range
specification in the output option Divided output files.

<NOT Specify value filled in unused area>

…

<Specify value filled in unused area [H’FF]>

 …

Range of Data
Existing

Range of Data
Existing

Range of Data
NOT Existing

Section 9 Optimizing Linkage Editor

Rev.4.00 2007.02.02 9-12
REJ05B0463-0400

• Examples of HEX Files

As the following examples, 0xFF records are added to the unused areas in the range of data existing.
If this option is not specified, the records in the range of data not existing are not output.
If this option is specified, 0xFF records are added to the area in the range of data not existing, according to the output range
specification in the output option Divided output files.

<NOT Specify value filled in unused area>

 …

<Specify value filled in unused area [H’FF]>

 …

• Remarks

This option is valid for the optimizing linkage editor Ver.8 or later.

Range of Data
Existing

Range of Data
Existing

Range of Data
NOT Existing

Section 9 Optimizing Linkage Editor

Rev.4.00 2007.02.02 9-13
REJ05B0463-0400

9.3.2 End code of S-Type File

• Description

In some type of ROM writer, run time error may occur during input to ROM writer, when the end code of S-type file is not s9 record.
This is because end code is s7 or s8, if the entry address exceeds 0x10000.
By specifying this option, the end code can be always s9.

• Specification Method

Dialog menu: Link/Library Tab Category: [Other] Miscellaneous options :
 Always output S9 record at the end
Command line: S9

• Remarks

For details of S-type file, please refer to section 18.1.1, S-Type File Format in the SuperH RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor User’s Manual.

9.3.3 Debug Information Compression

• Description

By specifying this option, the loading time is reduced when loading files to debugger.
But on the contrary, the link time is increased.

• Specification Method

Dialog menu: Link/Library Tab Category: [Other] Miscellaneous options :
 Compress debug information
Command line: compress
 uncompress

• Remarks

This option is valid only when output file is absolute file.

Section 9 Optimizing Linkage Editor

Rev.4.00 2007.02.02 9-14
REJ05B0463-0400

9.3.4 Link Time Reduction

• Description

When this option is specified, the linkage editor loads the necessary information at linkage in smaller units to reduce the memory
occupancy.
As a result, the link time may be reduced.
Try this option when processing is slow because a large project is linked and the memory size occupied by the linkage editor exceeds
the available memory in the machine used.

• Specification Method

Dialog menu: Link/Library Tab Category: [Other] Miscellaneous options :
 Low memory use during linkage
Command line: memory={high | low}

• Examples

The following example is the comparison of the link time when this option is specified or not.
At the following case, the link time is reduced by 34 %.

<Measurement Conditions>
• 1,000 files
• 100 symbols per each file
• 1,000 function symbols
• Specifies the same options, except this option

<memory=high>
 111 seconds

<memory=low>
 73 seconds

• Remarks

This option is valid for the optimizing linkage editor Ver.8 or later.

Section 9 Optimizing Linkage Editor

Rev.4.00 2007.02.02 9-15
REJ05B0463-0400

9.3.5 Notification of Unreferenced Symbol

• Description

When project is large, it is difficult to find the externally defined symbol which is defined but not referenced.

When this option is specified, the external symbol which is not referenced can be notified through an output message at
linkage.

To output a notification message, the message option* must also be specified.

Note : * Link/Library Tab Category: [Output] [Show entries for :] [Output messages] Repressed information
 level messages :

• Specification Method

Dialog menu: Link/Library Tab Category: [Output] [Show entries for :] [Output messages]
 Notify unused symbol

Command line: msg_unused

• Output Message

L0400 (I) Unused symbol “file”-“symbol”

The symbol named symbol in file is not used.

• Remarks

(1) This option is valid for the optimizing linkage editor Ver.9 or later.

(2) In any of the following cases, references are not correctly analyzed so that information shown by output messages will
be incorrect.

• –goptimize is not specified at assembly and there are branches to the same section within the same file.

• There are references to constant symbols within the same file.

• There are branches to immediate subordinate functions when optimization is specified at compilation.

• Optimization is specified at linkage and constants are unified.

Section 9 Optimizing Linkage Editor

Rev.4.00 2007.02.02 9-16
REJ05B0463-0400

9.3.6 Reduce Empty Areas of Boundary Alignment

• Description

When this option is specified, the empty areas, which are generated as the boundary alignment of sections for each object
file, are filled at linkage.

As a result, the unnecessary empty areas generated by boundary alignment are filled, reducing the size of the data sections
as a whole.

This option affects constant area (C section), initialized data area (D section) and uninitialized data area (B section).

• Specification Method

Dialog menu: Link/Library Tab Category: [Output] [Show entries for :]

 Reduce empty areas of boundary alignment

Command line: data_stuff

• Examples

The following example shows how empty areas of boundary alignment are reduced.

<When data_stuff is not specified>

When data_stuff is not specified, one byte empty area of boundary alignment is generated between file1.c and file2.c, because
boundary alignment value is 4 for SH CPU specification.

In this example, if the size of the top data which is linked next is one byte, there is no need of this boundary alignment.

But the top data of the next file is 2 bytes or more, boundary alignment at the end of this file (file1.c) should be performed.

As a result, data alignment and data size are

s1(2 bytes) + c1(1 byte) + empty area(1 byte) + c2(1 byte) = 5 bytes

(file1.c)

short s1;

char c1;

(file2.c)

char c2;

0000

0002

s1

empty area
0004

c1

c2

Section 9 Optimizing Linkage Editor

Rev.4.00 2007.02.02 9-17
REJ05B0463-0400

<When data_stuff is specified>

When data_stuff is specified, empty area of boundary alignment is not generated, if the size of the top data which is linked next is one
byte as this example.

As a result, data alignment and data size are

s1(2 bytes) + c1(1 byte) + c2(1 byte) = 4 bytes

Here, the data size is reduced to 4 bytes.

As this program example, empty areas generated as the boundary alignment of sections are filled at linkage. However, the order of data
allocation is not changed.

• Remarks

(1) This option is valid for the optimizing linkage editor Ver.8.00.06 or later.

(2) The function of this option is not applicable to object files generated by the assembler.

(3) Specification of this option is invalid in any of the following cases:

• library or object is specified as output format of the optimizing linkage editor

• absolute is specified as input format of the optimizing linkage editor

• memory=low is specified

• optimization at linkage (optimize) is specified

(4) Optimization will not be applied in the linkage of a relocatable file that was generated with this option specified.

0000

0002

s1

c1 c2

Section 9 Optimizing Linkage Editor

Rev.4.00 2007.02.02 9-18
REJ05B0463-0400

9.4 Optimize Options

9.4.1 Optimization at Linkage

• Description

Compiler outputs the supplement information to each module when generating object files.
According to this supplement information, the optimizing linkage editor performs the inter-module optimization which is impossible at
compile and links.
As a result, both ROM size and execution speed are improved.

• Specification Method

Dialog menu: Link/Library Tab Category: [Optimize] Optimize items
Command line: optimize=<suboption>
 <suboption> is described in 9.4.2, Unifies Constants/Strings, to 9.4.6, Optimizes Branch Instructions.

The following specification for supplement information is necessary at compile, even if optimization at linkage is specified. Without the
following specification, optimization at linkage is not available.

• Specification Method for Supplement Information

Dialog menu: C/C++ Tab Category: [Optimize] Generate file for inter-module optimization
Command line: goptimize

Section 9 Optimizing Linkage Editor

Rev.4.00 2007.02.02 9-19
REJ05B0463-0400

• Inter-Module Optimization Flow

Compiler

Specify for
Supplement

Information

C/C++

Program

Object

Files

Optimizing
Linkage Editor

Optimized

Load Module

Specify

Optimize
Options

Section 9 Optimizing Linkage Editor

Rev.4.00 2007.02.02 9-20
REJ05B0463-0400

9.4.2 Unifies Constants/Strings

Size Speed -

• Description

The same value constants and the same strings having the const attribute are unified across the modules.
This option deletes const section to improve Size.
Speed is not changed.

• Specification Method

Dialog menu: Link/Library Tab Category: [Optimize] Optimize items
 Unify strings
Command line: optimize=string_unify

• Examples of the sane value constants

The const long variables “cl1, cl2” which have the same constant value are unified to one constant.
This reduces ROM size by 4 bytes.

(file1.c)
#include <machine.h>
const long cl1=100;
void main(void);
void func01(long);
long g_max;
void main(void)
{
 func01(cl1+1);
 func02(cl1+2);
 func03(cl1+3);
}
void func01(long c_litr)
{
 g_max = c_litr++;
}

(file2.c)
#include <machine.h>
const long cl2=100;
void main(void);
void func02(long);
void func03(long);
extern long g_max;

void func02(long c_litr)
{
 func03(cl2+c_litr);
 nop();
}
void func03(long c_litr)
{
 g_max = c_litr;
}

Deleted

Section 9 Optimizing Linkage Editor

Rev.4.00 2007.02.02 9-21
REJ05B0463-0400

9.4.3 Eliminates Unreferenced Symbols

Size Speed -

• Description

Variables/functions which are never referred are deleted. When specifying this optimization, an entry function should be specified.
Without an entry function specification, this optimization is not performed.
This is because CPU jumps from vector table to entry function, and the optimization of entry functions or the functions whose address is
before entry functions changes the jump address.

• Specification Method

Dialog menu: Link/Library Tab Category: [Optimize] Optimize items
 Eliminate dead code
Command line: optimize=symbol_delete

• Specification Method for Entry Functions

Dialog menu: Link/Library Tab Category: [Input] Use entry point
Command line: entry=<symbol name> | <address>

When specify symbol name, add an underscore (_) at the head of the name.

Example: main -> _main

• Examples of eliminates unreferenced variables/functions

Variable g_max2 and function func03 which are never referred are deleted.

(file1.c)
void main(void);
extern void func01(long);
extern void func02(long);
char g_c1;
long g_max1,g_max2;
void main(void)
{
 g_max1 = 0x7FFFF;
 func01(g_max1 % 3);
 func02(g_max1 / 3);
}

(file2.c)
void func01(long);
void func02(long);
void func03(long);
extern long g_max1;
void func01(long l1)
{
 g_max1 = l1 % 4;
}
void func02(long l1)
{
 g_max1 = (l1 << 1);
}

Deleted

Deleted

Section 9 Optimizing Linkage Editor

Rev.4.00 2007.02.02 9-22
REJ05B0463-0400

The char type variable g_c1 is never referred, but is not deleted.
This is because SH is 4-byte boundary alignment, and if g_c1 is deleted, the address of next variable is not multiples of four.
The access for the odd address symbol occurs an address error because of the CPU specification

[If 1-byte variable is deleted]

If optimization is performed, 4-byte variable g_max1 is accessed by address 0x03.

9.4.4 Optimizes Register Save/Restore Codes

Size Speed

• Description

The relationships between function calls are analyzed and redundant register save/restore codes are deleted with this specification. In
addition, depending on the register state before and after the function call, the register numbers to be used are modified.

• Specification Method

Dialog menu: Link/Library Tab Category: [Optimize] Optimize items
 Reallocate registers
Command line: optimize=register

• Examples of Optimizes register save/restore codes

Function func1 calls function func2 and func3.

(file1.c)
void func1(int i1,int i2,int i3,int i4,int i5,long *l6)
{
 a = 0 * i1;
 b = 1 * i2;
 d = 4 * i4;
 h = 8 * i5;
 i = 9
 *l6 = b;
 func2(i,h,3000,200,100,l6);
 func3(i,h,3000,200,100,l6);
}

(file2.c)
void func2(int i1,int i2,int i3,int i4,int i5,long *l6)
{
 a = 0 * i1;
 b *= 1 * i2;
 d *= 4 * i4;
 f *= 6 / i2;
 g = 7 / i3;
 h = 8 * i5;
 i *= 9 / b ;
 *l6 = b * g;
}

0x00

0x04
g_max1

g_c1 Unused Area

g_max2 0x08

0x00

0x04 g_max1

Unused Area

g_max2

0x03

Section 9 Optimizing Linkage Editor

Rev.4.00 2007.02.02 9-23
REJ05B0463-0400

• Examples of Codes by Optimizes register save/restore codes

Examples of codes before and after this optimization are as follows.
Due to the addition of register save/restore codes in the parent function, register save/restore codes in the child function are reduced.

In the following example, which is SH-1,
 ROM Size: 532 bytes to 524 bytes
 Execution Speed: 718 cycles to 711 cycles

(file3.c)
void func3(int i1,int i2,int i3,int i4,int i5,long *l6)
{
 a = 0 * i1;
 b *= 1 * i2;
 c = 2 * i3;
 d *= 4 * i4;
 e *= 5 * i1;
 f *= 6 / i2;
 g *= i2 / i3;
 h *= 8 * i5;
 i *= (9 / b) * ((*l6)++);
 *l6 *= b * g;
}

_func1:
 MOV.L R13,@-R15
 MOV.L R14,@-R15

 …
 MOV.L @R15+,R14
 RTS
 MOV.L @R15+,R13

_func2:
 MOV.L R10,@-R15
 MOV.L R11,@-R15
 MOV.L R12,@-R15
 MOV.L R14,@-R15

…
 MOV.L @R15+,R14
 MOV.L @R15+,R12
 MOV.L @R15+,R11
 RTS
 MOV.L @R15+,R10

(Before Optimization)

save/restore R13-R14 (2 registers)

(After Optimization)

save/restore ER2-ER4 (7 registers)

save/restore R10,R11, R12, R14

(4 registers)
NO save/restore (0 registers)

_func2:
 STS.L PR,@-R15

…
 LDS.L @R15+,PR
 NOP
 RTS
 NOP

_func1:
 MOV.L R8,@-R15
 MOV.L R9,@-R15
 MOV.L R10,@-R15
 MOV.L R11,@-R15
 MOV.L R12,@-R15
 MOV.L R13,@-R15
 MOV.L R14,@-R15

 …
 MOV.L @R15+,R14
 MOV.L @R15+,R13
 MOV.L @R15+,R12
 MOV.L @R15+,R11
 MOV.L @R15+,R10
 MOV.L @R15+,R9
 RTS
 MOV.L @R15+,R8

Section 9 Optimizing Linkage Editor

Rev.4.00 2007.02.02 9-24
REJ05B0463-0400

9.4.5 Unifies Common Codes

Size Speed -

• Description

Multiple strings representing the same instruction are unified into a subroutine and the code size is reduced with this specification.
This optimization increases the overhead of function call and decreases execution speed, so should be careful.

The minimum code size for the optimization with the same-code unification can be specified.

When inline expansion of functions is specified at compile, this optimization is not performed, as execution speed is decreased.

• Specification Method

Dialog menu: Link/Library Tab Category: [Optimize] Optimize items
 Eliminate same code
Command line: optimize=same_code

• Specification Method for Unification Size

Dialog menu: Link/Library Tab Category: [Optimize] Eliminated size
Command line: samesize=<size>

_func3:
 MOV.L R8,@-R15
 MOV.L R9,@-R15
 MOV.L R10,@-R15
 MOV.L R11,@-R15
 MOV.L R12,@-R15
 MOV.L R13,@-R15
 MOV.L R14,@-R15

…
 MOV.L @R15+,R14
 MOV.L @R15+,R13
 MOV.L @R15+,R12
 MOV.L @R15+,R11
 MOV.L @R15+,R10
 MOV.L @R15+,R9
 RTS
 MOV.L @R15+,R8

save/restore R8-R14 (7 registers) save/restore R13,R14 (2 registers)

_func3:
 MOV.L R13,@-R15
 MOV.L R14,@-R15

…
 MOV.L @R15+,R14
 RTS
 MOV.L @R15+,R13

Section 9 Optimizing Linkage Editor

Rev.4.00 2007.02.02 9-25
REJ05B0463-0400

• Examples: C Source Programs

Function func00 and func01 have the same lines of expressions.

(file1.c)
void main(void);
int func00(int,int,int);
extern int func01(int,int,int);
int ret;
void main(void)
{
 ret = func00(10,11,12);
 ret += func01(20,21,22);
}
int func00(int i1,int i2,int i3)
{
 i1++;
 i2++;
 i3++;
 i1 = i3 & i2;
 i2 = i1 & i3;
 i3 = i2 & i3;
 return i1+i2+i3;
}

(file2.c)
void func01(void);
int func01(int,int,int);
int func01(int i1,int i2,int i3)
{
 i1++;
 i2++;
 i3++;
 i1 = i3 & i2;
 i2 = i1 & i3;
 i3 = i2 & i3;
 return i1+i2+i3;
}

Section 9 Optimizing Linkage Editor

Rev.4.00 2007.02.02 9-26
REJ05B0463-0400

• Examples: Codes

Examples of codes before and after this optimization are as follows.
Common codes are unified into a new function _com_opt1, which is called from the original positions.

In the following example, which is SH-1,
 ROM Size: 40 bytes to 24 bytes
 Execution Speed: 46 cycles to 60 cycles

(file1.c)
_main:
 STS.L PR,@-R15
 MOV #H'0C,R6
 MOV #H'0C,R5
 BSR _func00
 MOV #H'0A,R4
 MOV.L P_00001034,R2
 MOV.L P_00001038,R1
 MOV.L R0,@R2
 MOV #H'16,R6
 MOV #H'15,R5
 JSR @R1
 MOV #H'14,R4
 MOV.L P_00001034,R7
 MOV.L @R7,R2
 ADD R0,R2
 LDS.L @R15+,PR
 RTS
 MOV.L R2,@R7
_func00:
 STS.L PR,@-R15
 BSR _com_opt1
 NOP
 LDS.L @R15+,PR
 RTS
 ADD R2,R0
_com_opt1:
 ADD #1,R6
 MOV R6,R0
 ADD #1,R5
 and R5,R0
 MOV R0,R2
 AND R6,R2
 ADD R2,R0
 AND R6,R2
 RTS
 NOP

(file1.c)
_main:
 STS.L PR,@-R15
 MOV #12,R6
 MOV #11,R5
 BSR _func00
 MOV #10,R4
 MOV.L L13,R2
 MOV.L L13+4,R1
 MOV.L R0,@R2
 MOV #22,R6
 MOV #21,R5
 JSR @R1
 MOV #20,R4
 MOV.L L13,R7
 MOV.L @R7,R2
 ADD R0,R2
 LDS.L @R15+,PR
 RTS
 MOV.L R2,@R7
_func00:
 ADD #1,R6
 MOV R6,R0
 ADD #1,R5
 AND R5,R0
 MOV R0,R2
 AND R6,R2
 ADD R2,R0
 AND R6,R2
 RTS
 ADD R2,R0

(file2.c)
_func01:
 ADD #1,R6
 MOV R6,R0
 ADD #1,R5
 AND R5,R0
 MOV R0,R2
 AND R6,R2
 ADD R2,R0
 AND R6,R2
 RTS
 ADD R2,R0

(file2.c)
_func01:
 STS.L PR,@-R15
 BSR _com_opt1
 NOP
 LDS.L R15+,PR
 RTS
 ADD R2,R0

�����

Common
Codes

New
Function

(Before Optimization) (After Optimization)

Section 9 Optimizing Linkage Editor

Rev.4.00 2007.02.02 9-27
REJ05B0463-0400

9.4.6 Optimizes Branch Instructions

Size Speed

• Description

C/C++ Compiler calls functions by the absolute addressing mode (JSR), when access functions in other files, and when access over the
address range* which can be accessed by the PC relative addressing mode (BSR).
As the optimizing linkage editor performs optimization at linkage, it can recalculate the branch range of which the branch destination is
in other file.
The branch instruction can be changed to the PC relative addressing mode (BSR), if possible.

Though the original branch range exceeds the address range which can be accessed by the PC relative addressing mode, the branch
instruction can be also changed to BSR, if the branch range is reduced by other optimization.

If any other optimization item is executed, this optimization is always performed regardless of whether it is specified or not.

Note: *. The address range which can be accessed by the PC relative addressing mode: –4096 to 4094 byte

• Specification Method

Dialog menu: Link/Library Tab Category: [Optimize] Optimize items
 Optimize branches
Command line: optimize=branch

• Examples: C Source Programs

Function main calls function func01.

(file1.c)
long func01(long,long);
void main(void);
long g_l1,g_l2;
void main(void)
{
 g_l1 = 100;
 g_l2 = 200;
 g_l1 = func01(g_l1,g_l2);
}
 :
 :
long func01(long l1,long l2)
{
 return l1 + l2;
}

Section 9 Optimizing Linkage Editor

Rev.4.00 2007.02.02 9-28
REJ05B0463-0400

• Examples: Codes

Examples of codes before and after this optimization are as follows.
Function func01 is called by BSR.

In the following example, which is SH-1,
 ROM Size: 46 bytes to 42 bytes
 Execution Speed: 22 cycles to 21 cycles

(Before Optimization) (After Optimization)

_main:
 STS.L PR,@-R15
 MOV.L L13,R1
 MOV #-56,R5
 MOV.L L13+4,R2
 MOV #100,R4
 EXTU.B R5,R5
 MOV.L R4,@R1
 MOV.L L13+8,R3

 JSR @R3
 MOV.L R5,@R2
 MOV.L L13,R7
 LDS.L @R15+,PR
 RTS
 MOV.L R0,@R7
L13:
 .DATA.L _g_l1
 .DATA.L _g_l2
 .DATA.L _func01

_func01:
 ADD R5,R4
 RTS
 MOV R4,R0

_main:
 STS.L PR,@-R15
 MOV.L L13,R1
 MOV #--56,R5
 MOV.L L13+4,R2
 MOV #100,R4
 EXTU.B R5,R5
 MOV.L R4,@R1
 NOP
 BSR _func01
 MOV.L R5,@R2
 MOV.L L13,R7
 LDS.L @R15+,PR
 RTS
 MOV.L R0,@R7
L13:
 .DATA.L _g_l1
 .DATA.L _g_l2

_func01:
 ADD R5,R4
 RTS
 MOV R4,R0

Section 9 Optimizing Linkage Editor

Rev.4.00 2007.02.02 9-29
REJ05B0463-0400

9.4.7 Optimization Partially Disabled

• Description

When don’t want to optimize some variables or functions by the optimizing linkage editor, that variables or functions can be specified
as follows.
Disablements by the symbol name and by the address range are available.

• Disables elimination of unreferenced symbols

• Specification Method

Dialog menu: Link/Library Tab Category: [Optimize] Forbid item
 Elimination of dead code
Command line: symbol_forbid=<symbol name>

• Disables unification of common codes

• Specification Method

Dialog menu: Link/Library Tab Category: [Optimize] Forbid item
 Elimination of same code
Command line: samecode_forbid=<function name>

• Address Range where optimization is disabled

• Specification Method

Dialog menu: Link/Library Tab Category: [Optimize] Forbid item
 Memory allocation in
Command line: absolute_forbid=<address>[+size]

Section 9 Optimizing Linkage Editor

Rev.4.00 2007.02.02 9-30
REJ05B0463-0400

9.4.8 Confirm Optimization Results

• Description

Optimization results by the optimizing linkage editor can be confirmed as follows.

• Confirmation by message

When using HEW, optimization results are output by not checking in the following dialog.

Dialog menu: Link/Library Tab Category: [Output] Show entries for:
 Repressed information level messages
Command line: message[=<error number>]>
 : nomessage

• Example of message output

The following example shows that a new function has been created by the unification of common codes.

• Confirmation by list

Optimization results are confirmed by specifying the following options.
For more details, please refer to section 9.2.1, Symbol Information List.

Dialog menu: Link/Library Tab Category: [List] Contents : Symbol
Command line: list [=<file name>]
 Show symbol

Section 10 MISRA C

Rev.4.00 2007.02.02 10-1
REJ05B0463-0400

Section 10 MISRA C

10.1 MISRA C

10.1.1 What Is MISRA C?

MISRA C refers to the usage guidelines for the C language that were issued by the Motor Industry Software Reliability
Association (MISRA) in 1998, as well as the C coding rules standardized by those guidelines. The C language itself is
very useful, but suffers from some particular problems. The MISRA C guideline divides these problems into five types:
programmer errors, misconceptions about the language, unintended compiler operations, errors at execution, and errors in
the compiler itself. The purpose of MISRA C is to overcome these problems, while promoting safe usage of the C
language. MISRA C contains 127 rules of two types: required and advisory. Code development should aim to conform to
all of these rules, but as this is sometimes difficult to accomplish, there is also a process to confirm and document times
when the rule conformance is not followed. Compliance to various issues is also required separate from these rules, such
as when software metrics need to be measured.

10.1.2 Rule Examples

This subsection introduces some actual MISRA C rules. Figure 10.1 shows Rule 62, that all switch statements shall
contain a final default clause. This is categorized as a programmer error. In a switch statement, if the "default" label is
misspelled as "defalt", the compiler will not treat this as an error. If the programmer does not notice this error, the
expected default operation will never be executed. This problem can be avoided through the application of Rule 62.

Figure 10.1 Rule 62

Figure 10.2 shows Rule 46, that the value of an expression shall be the same under any order of evaluation that the
standard permits. This is categorized as a misconception about the language. Namely, if ++i is evaluated first, the
expression becomes 2+2, but if i is evaluated first, the expression becomes 2+1. Likewise, since no provision exists for the
evaluation order of function arguments, if ++j is evaluated first, the expression becomes f(2,2), but if j is evaluated first,
the expression becomes f(1,2). This problem can be avoided through the application of Rule 46.

Figure 10.2 Rule 46

Example:

 switch(x) {

 :

 defalt: Misspelled

 err = 1;

 break;

 }

Example:

 i = 1;

 x = ++i + i; x = 2 + 2? x = 2 + 1?

 j = 1;

 func(j, ++j); func(1, 2)? func(2, 2)?

Section 10 MISRA C

Rev.4.00 2007.02.02 10-2
REJ05B0463-0400

Figure 10.3 shows Rule 38, that the right hand operand of a shift operator shall lie between zero and one less than the
width in bits of the left hand operand. This is categorized as an unintended compiler operation. In ANSI, if the shift
number of the bit-shift operator is a negative number or larger than the size of the object to be shifted, the calculation
results are undefined. In Figure 10.3, if the shift number when us is shifted is not between 0 and 15, the results are
undefined and the value will differ depending on the compiler. This problem can be avoided through the application of
Rule 38.

Figure 10.3 Rule 38

Figure 10.4 shows Rule 51, that the evaluation of constant unsigned integer expressions should not lead to wrap-around.
This is categorized as an error at execution. When the result of an unsigned integer calculation is theoretically negative, it
is unclear whether a theoretically negative value is expected, or a result based on a calculation without the sign will suffice.
This situation could lead to a malfunction. Also, the results of an addition calculation may cause an overflow, resulting in
a very small value. This problem can be avoided through the application of Rule 51.

Figure 10.4 Rule 51

10.1.3 Compliance Matrix

With MISRA C, source code is checked for compliance with all 127 rules. In addition, a table as the one shown in Table
10.1 needs to be made, showing whether or not each rule is upheld. This is called a compliance matrix. Given the
difficulty of visually checking all rules, we recommend that you use a static check tool. The MISRA C guideline also
indicates such, stating that the use of a tool to adhere to rules is of utmost importance. As not every rule can be checked
using such a tool, you will need to perform a visual review to check such rules visually.

Table 10.1 Compliance Matrix

Rule number Compiler Tool 1 Tool 2 Review (visual)

1 Warning 347

2 Violation 38

3 Warning 97

4 Pass

...

Example:

 unsigned short us;

 us << 16; Undefined action

 us >> -1 Undefined action

Example:

 if(1UL - 2UL) What is intended: -1 or 0xFFFFFFFF?

 (char)(0xfffffffeUL + 2); Results in a 0 address.

Section 10 MISRA C

Rev.4.00 2007.02.02 10-3
REJ05B0463-0400

10.1.4 Rule Violations

Rule violations can consist of those that are known to be safe, and those that may have more effects. Rule violations such
as the former should be accepted, but some degree of safety is lost when rule violations are accepted too easily. This is
why MISRA C states a special procedure for accepting rule violations. Such violations require a valid reason, as well as
verification that the violation is safe. As such, locations and valid reasons for all accepted rules are documented. So that
violations are not accepted too easily, the signature of an individual with appropriate authority within the organization is
added to such documentation after consultation with an expert. This means that when a rule that is the same as one already
accepted is violated, it is deemed as an "accepted rule violation", and can be treated as accepted, without performing the
above procedures again. Of course, such violations need to be reviewed regularly.

10.1.5 MISRA C Compliance

To encourage MISRA C compliance, code needs to be developed in compliance with the rules, and rule violation
problems need to be resolved. To show whether code complies with the rules, documentation for the compliance matrix
and accepted rule violations is needed, along with signatures for each rule violation. To prevent future problems, you
should train programmers to make the most of the C language and tools used, implement policies regarding coding style,
choose adequate tools, and measure software metrics of various kinds. Such efforts should be officially standardized,
along with the appropriate documentation. MISRA C compliance requires more than just development of individual
products according to the guidelines, but rather of the organization itself.

10.2 SQMlint

10.2.1 What Is SQMlint?

SQMlint is a package that provides the Renesas C compiler with the additional function for checking whether it conforms
to the MISRA C rules. SQMlint statically checks the C source code, and reports the areas that violate the rules. SQMlint
runs as part of the C compiler in the Renesas product development environment. SQMlint can be started simply by adding
an option at compile-time, as shown in figure 10.5. It in no way affects the code generated by the compiler.

Table 10.2 lists the rules supported by SQMlint.

Figure 10.5 SQMlint Positioning

C source

Preprocessed C

source

Preprocessor

C compiler SQMlint

Assembly source
Rule violation

message

Renesas C Compiler

Section 10 MISRA C

Rev.4.00 2007.02.02 10-4
REJ05B0463-0400

Table 10.2 Rules Supported by SQMlint

Rule Test Rule Test Rule Test Rule Test Rule Test Rule Test

1 26 × 51 * 76 101 126

2 × 27 × 52 × 77 102 127

3 × 28 53 78 103

4 × 29 54 * 79 104

5 30 × 55 80 105

6 × 31 56 81 × 106 *

7 × 32 57 82 107 ×

8 33 58 83 108

9 × 34 59 84 109 ×

10 × 35 60 85 110

11 × 36 61 86 × 111

12 37 62 87 × 112

13 38 63 88 × 113

14 39 64 89 × 114 ×

15 × 40 65 90 × 115

16 × 41 × 66 × 91 × 116 ×

17 * 42 67 × 92 × 117 ×

18 43 68 93 × 118

19 44 69 94 × 119

20 45 70 * 95 × 120 ×

21 * 46 * 71 96 × 121

22 * 47 × 72 * 97 × 122

23 × 48 73 98 × 123

24

49

74

99

124

25 × 50 75 100 × 125 *

Table 10.3 Number of Rules Supported by SQMlint

Rule category Number of testable rules
(Supported by SQMlint / Total)

Required 67/93
Advisory 19/34
Total 86/127

: Testable ×: Not testable *: Testable with limitations

Section 10 MISRA C

Rev.4.00 2007.02.02 10-5
REJ05B0463-0400

10.2.2 Using SQMlint

SQMlint start options can be set easily from the window for setting the HEW Compile Options. Figure 10.6 shows the
dialog box for specifying HEW options, in which [MISRA C rule check] should be selected from [Category].

Figure 10.6 HEW Options Window

Thus, SQMlint will start at compile-time. The meaning of [Inspection Option] in this dialog is:

• [All]: Performs testing for all rules.

• [Required]: Performs testing only for rules necessary according to the MISRA C rule.

• [Custom]: Performs testing for the rules specified by the user. Please select the rules by using the check box and the
buttons of the right-side.

10.2.3 Viewing Test Results

Test results can be output in the following three ways:

(a) Standard error output

Messages are output the same as HEW compile errors. A tag jump can be performed by double-clicking the message,
or right-clicking the message and choosing [Jump]. . The source code can be easily corrected by the same operation as
the compile error.

Note that an explanation is displayed by right-clicking the message and choosing [Help].

(b) CSV file

A file format that can be read by spreadsheet software, allowing reviews to be performed more easily.

(c) SQMmerger

SQMmerger is a tool for merging a C source file with CSV-formatted report file generated by SQMlint into a file that
contains C source lines and their associated report messages.

To execute SQMmerger, use the following command entry format:

sqmmerger -src <c-source-file-name> -r <report-file-name> -o <output-file-name>

Displays both the source file and test results, as shown in figure 10.7.

Section 10 MISRA C

Rev.4.00 2007.02.02 10-6
REJ05B0463-0400

Figure 10.7 SQMmerger

10.2.4 Development Procedures

Figure 10.8 shows how to perform development using SQMlint.

Figure 10.8 Development Procedure Using SQMlint

− Collect all compile errors. SQMlint assumes that the C source code is valid.

− Find errors detected by SQMlint.

− Correct the errors that can be easily corrected.

− Create a list of the locations of rule violations that require investigation, and perform a review.

− Perform corrections for rules deemed unacceptable upon review.

− Document rules deemed acceptable upon review, to leave a record.

 1 : void func(void);

 2 : void func(void)

 3 : {

 4 : LABEL:

 [MISRA(55) Complain] label ('LABEL') should not be used

 5 :

 6 : goto LABEL;

 [MISRA(56) Complain] the 'goto' statement shall not be used

 7 : }

Code completion

Compile and

perform MISRA C test

Can be corrected

quickly

Correct

Investigation

necessary

List of violation areas

Review source

code

Unacceptable rule

violations
Correct

Documentation

Acceptable rule

violations

Section 10 MISRA C

Rev.4.00 2007.02.02 10-7
REJ05B0463-0400

10.2.5 Supported Compilers

The following compilers are supported by SQMlint:

• SH C/C++ Compiler Package V.9.00 Release00 and later

10.2.6 Rules That Can Be Checked by the SH C/C++ Compiler

The following rules cannot be checked by SQMlint, but violations of the rules can be detected via SH C/C++ compiler
messages.

Table 10.4 Rules That Can Be Checked with the SH C/C++ Compiler

Rule Number Rule Description SH C/C++ Compiler Message

9 Comments shall not be nested. C5009 (I) Nested comment is not allowed

A nested comment exists.

26 When an object or function is
declared more than once, the
declarations shall be compatible.

C2136 (E) Type mismatch

A variable or function with the extern or static memory class
has been declared more than once, but the types do not
match.

52 All statements shall be reachable. C0003 (I) Unreachable statement

A statement exists that will not be executed.

Section 10 MISRA C

Rev.4.00 2007.02.02 10-8
REJ05B0463-0400

Section 11 Q & A

Rev.4.00 2007.02.02 11-1
REJ05B0463-0400

Section 11 Q & A
This section presents answers to questions frequently asked by users.

11.1 C/C++ Compiler/Assembler

11.1.1 const Declaration

Question

I performed a const declaration, but cannot assign it to a constant area (C) section.

Answer
Declaring a symbol using const has the following effect.

(1) const char msg[]="sun";

C section assignment: character string "sun"

(2) const char *msg[]=("sun", "moon");

C section assignment: character strings "sun" and "moon"
D section assignment: msg[0] and msg[1]
(leading addresses of *msg[0] and *msg[1])

(3) const char *const msg[]=("sun", "moon");

C section assignment: character strings "sun" and "moon", msg[0] and msg[1]
(leading addresses of *msg[0] and *msg[1])

(4) char *const msg[]=("sun", "moon");

C section assignment: character strings "sun" and "moon", msg[0] and msg[1]
(leading addresses of *msg[0] and *msg[1])

11.1.2 Correct Evaluation of Single-Bit Data

Question
I tried to determine whether a single bit in a bit field was set or not, but in some cases was not able to evaluate the bit
correctly.

Answer
When single-bit data is declared as signed, that bit is interpreted as the sign bit.

Hence values represented using the single bit are "0" and "-1".

In order to represent the values "0" and "1", be sure to declare the data as unsigned.

Section 11 Q & A

Rev.4.00 2007.02.02 11-2
REJ05B0463-0400

Examples:

Evaluation always incorrect Correct evaluation

struct{ struct{

 char p7:1; unsigned char p7:1;

 char p6:1; unsigned char p6:1;

 char p5:1; unsigned char p5:1;

 char p4:1; unsigned char p4:1;

 char p3:1; unsigned char p3:1;

 char p2:1; unsigned char p2:1;

 char p1:1; unsigned char p1:1;

 char p0:1; unsigned char p0:1;

}s1; }s1;

if(s1.p0 == 1){ if(s1.p0 == 1){

 s1.p1 = 0; s1.p1 = 0;

} }

Note: When writing the condition for an if statement, the resulting code is more efficient if comparison is with 0.

Section 11 Q & A

Rev.4.00 2007.02.02 11-3
REJ05B0463-0400

11.1.3 Installation

Question
I input commands for the compiler, assembler or linker, but they would not start.

Answer
Check whether the installation directories for the compiler, assembler and linker are included in the "PATH" environment
variable.

To start the compiler from the DOS window, set the following environment:

(1) Setting the PATH

Set the PATH option to the place where the tool to be used is located.

Example:

c:\> PATH=%PATH%; C:\Hew3\Tools\Renesas\Sh\9_0_0\bin (RET)

This should be added to an existing PATH.

(2) Setting SHC_LIB

Indicates where the main files of the SuperH RISC engine C/C++ compiler are saved. This setting cannot be omitted.

Example:

c:\> set SHC_LIB=C:\Hew3\Tools\Renesas\Sh\9_0_0\bin (RET)

(3) Setting SHC_TMP

Specifies the path for creation of temporary files used by the C/C++ compiler. This setting cannot be omitted.

Example:

c:\> set SHC_TMP=C:\tmp

(4) Setting SHC_INC

This environment variable is set when reading the standard header files for the C/C++ compiler from a specified path.
Several paths can be specified by separating them with commas (','). If this environment variable is not set, the standard
header file is read from SHC_LIB.

Example:

c:\> set SHC_INC=C:\Hew3\Tools\Renesas\Sh\9_0_0\include

Section 11 Q & A

Rev.4.00 2007.02.02 11-4
REJ05B0463-0400

11.1.4 Runtime Routine Specifications and Execution Speed

Question
Tell me about the speed of the runtime routines provided by the compiler.

Answer
The following is a list of runtime routine speeds/FPL speeds when using internal ROM and RAM. For rules for naming
runtime routines, please refer to appendix A, Rules for Naming Runtime Routines. The options for creating a library are as
follows:

Table 11.1 Library Creation Options

 cpu Pic endian denormaliaztion round fpu double=float

SH-1 sh1 - big - - - None

SH-2 sh2 1 big - - - None

SH-2A sh2a 1 big - - - None
SH-3 sh3 1 big - - - None
SH-4 sh4 0 big off zero None -
SH-4A sh4a 0 big off zero None -

Table 11.2 List of Runtime Routine Speeds/FPL Speeds (1)

Number of Execution Cycles No. Type Function
Name

Stack
Size

SH-1 SH-2 SH-2A SH-3 SH-4 SH-4A

1.1 Multiply _muli 12 38 - - - - -

2.1 _divbs 4 38 38 - 26 24 24

2.2 _divbu 0 28 28 - 19 18 18

2.3 _divws 4 49 50 - 34 31 31

2.4 _divwu 0 39 39 - 26 25 26

2.5 _divls 8 37 / 109 39 / 109 - 26 / 73 20 / 50 21 /61

2.6 _divlsp 12 - 84 - - - -

2.7 _divlspnm 8 - 57 - - - -

2.8

Divide

_divlu 4 31 / 82 33 / 84 - 22 /56 17 / 50 19 / 50

3.1

Integer
operations

_modbs 8 57 60 - 40 33 33

3.2 _modbu 4 39 40 - 27 23 25

3.3 _modws 8 66 69 - 46 39 39

3.4 _modwu 4 49 50 - 34 29 31

3.5 _modls 12 45 / 95 47 / 97 - 31 / 65 23 / 57 23 / 56

3.6 _modlsp 12 - 84 - - - -

3.7

Remainder

_modlspnm 8 - 57 - - - -

3.8 _modlu 8 34 / 72 36 / 71 - 24 / 48 18 /43 20 /46

Notes: 1. The unit is cycles. Measured values include error.
 2. Maximum and minimum pattern values are indicated [maximum / minimum] for routines for which processing

differs significantly depending on the input values.

Section 11 Q & A

Rev.4.00 2007.02.02 11-5
REJ05B0463-0400

Table 11.2 List of Runtime Routine Speeds/FPL Speeds (2)

Number of Execution Cycles No. Type Function
Name

Stack
Size

SH-1 SH-2 SH-2A SH-3 SH-4 SH-4A

4.1 _adds 24 129 139 60 80 - -

4.2

Add

_addd_a 44 320 297 147 195 - -

5.1 _poas 44 135 145 64 84 - -

5.2

Post
Increment _poad 84 327 303 150 199 - -

6.1 _subs 24 144 125 62 86 - -

6.2

Substract

_subdr 44 383 308 149 213 - -

7.1 _poss 44 175 192 93 120 - -

7.2

Post
Decrement _posd 84 570 550 302 365 - -

8.1 _muls 24 144 17 9 11 - -

8.2

Multiply

_muld_a 64 383 108 50 69 - -

9.1 _divs 20 175 17 16 11 - -

9.2

Floating
point
operations

Divide

_divdr 60 570 108 50 69 - -

10.1 _eqs 20 16 36 16 24 - -

10.2 _eqd_a 32 90 108 50 70 - -

10.3 _nes 20 16 36 16 24 - -

10.4 _ned_a 32 90 108 50 70 - -

10.5 _gts 20 33 36 16 24 - -

10.6 _gtd_a 32 90 108 50 70 - -

10.7 _lts 20 33 36 16 24 - -

10.8 _ltd_a 32 90 108 50 70 - -

10.9 _ges 20 33 36 16 24 - -

10.10 _ged_a 32 90 108 50 70 - -

10.11

Compare

_les 20 33 36 16 24 - -

10.12 _led_a 32 90 108 50 70 - -

Notes: The unit is cycles. Measured values include error.

Section 11 Q & A

Rev.4.00 2007.02.02 11-6
REJ05B0463-0400

Table 11.2 List of Runtime Routine Speeds/FPL Speeds (3)

Number of Execution Cycles No. Type Function
Name

Stack
Size

SH-1 SH-2 SH-2A SH-3 SH-4 SH-4A

11.1 _negs 0 7 7 4 5 - -

11.2

Convert sign

_negd_a 12 30 39 18 26 - -

12.1 _stod_a 12 66 73 35 50 - -

12.2 _dtos_a 20 122 128 61 82 - -

12.3 _stoi 12 50 63 21 31 - -

12.4 _dtoi_a 20 148 141 72 86 - -

12.5 _stou 12 50 63 21 31 - -

12.6 _dtou_a 20 148 141 72 86 - -

12.7 _itos 12 88 91 45 59 - -

12.8 _itod_a 12 189 179 96 110 - -

12.9

Convert

_utos 8 81 82 46 52 - -

12.10 _utod_a 8 99 96 51 61 - -

Notes: The unit is cycles. Measured values include error.

Section 11 Q & A

Rev.4.00 2007.02.02 11-7
REJ05B0463-0400

Table 11.2 List of Runtime Routine Speeds/FPL Speeds (4)

Number of Execution Cycles No. Type Function Name Stack
Size

SH-1 SH-2 SH-2A SH-3 SH-4 SH-4A

13.1 _quick_evn_mvn 4 12+3*(n/4)

17+3*(n/4) (n<=64) 13.2 _quick_mvn 8

24+1.625*(n/4) (n>=68)

13.3 _quick_odd_mvn 4 12+3*(n/4)

13.4

Move area

_slow_mvn 12 21+5*n+3*((n-1)/4)

14.1 _quick_strcmp1 0 26+7*(n/4)+5*((n-1)%4)

14.2

Compare
character string _slow_strcmp1 0 35+7*n

15.1 _quick_strcpy 16 30+6*(n/4)+4*((n-1)%4)

15.2

Copy character
string _slow_strcpy 24 24+6*n+2*((n-1)/4)

16.1 Left-shift _sftl 4 19 / 42 21 / 39 - - - -

17.1 _sftrl 0 19 / 42 21 / 39 - - - -

17.2 _sftra 4 20 /43 22 / 47 - - - -

17.3 _sta_sftr6 0 8 9 - - - -

17.4 _sta_sftr7 0 10 11 - - - -

17.5 _sta_sftr10 0 7 8 - - - -

17.6 _sta_sftr11 0 8 9 - - - -

17.7 _sta_sftr12 0 9 10 - - - -

17.8 _sta_sftr13 0 10 11 - - - -

17.9 _sta_sftr21 0 10 11 - - - -

17.10 _sta_sftr27 0 10 11 - - - -

17.11 _sta_sftr28 0 10 11 - - - -

17.12

Right shift

_sta_sftr29 0 10 11 - - - -

18.1 _pack1_st16 4 12 13 5 10 6 8

18.2 _pack1_st32 4 18 19 8 16 8 12

18.3 _pack1_st64 4 33 35 16 30 16 22

18.4 _pack1_ld16 4 17 18 10 13 11 14

18.5 _pack1_ld32 4 29 30 17 22 18 -

18.6 _pack1_ld64 8 67 73 38 52 39 53

18.7 _bfs64sp1 60 289 / 599 333 / 580 174 / 339 205 / 392 141 / 295 163 / 266

18.8 _bfs64up1 60 289 / 599 333 / 580 174 / 339 205 / 392 141 / 295 163 / 266

18.9

Packed
structure

_bfx64sp1 36 239 / 591 276 / 563 144 / 334 194 / 385 130 / 289 147 / 256

18.10 _bfx64up1 40 227 / 588 264 / 550 144 / 332 186 / 377 124 / 282 149 / 266

Notes: 1. The unit is cycles. Measured values include error.
 2. Maximum and minimum pattern values are indicated [maximum / minimum] for routines for which processing

differs significantly depending on the input values.

Section 11 Q & A

Rev.4.00 2007.02.02 11-8
REJ05B0463-0400

Table 11.2 List of Runtime Routine Speeds/FPL Speeds (5)

Number of Execution Cycles No. Type Function
Name

Stack
Size

SH-1 SH-2 SH-2A SH-3 SH-4 SH-4A

19.1 _add64 8 32 42 21 27 18 25
19.2 _sub64 8 32 42 21 27 18 25
19.3 _mul64 36 134 92 40 64 48 45
19.4 _div64s 64 148 / 601 165 / 351 87 / 183 108 / 245 72 / 195 64 / 161
19.5 _div64u 60 121 / 527 137 / 326 74 / 169 90 / 227 59 / 182 51 / 152
19.6 _mod64s 64 142 /550 158 / 342 80 / 179 105 / 241 65 / 190 61 / 155
19.7 _mod64u 60 117 / 569 132 / 312 70 / 165 87 / 223 55 / 178 48 / 147
19.8 _neg64 8 26 33 17 24 15 19
19.9 _not64 8 24 31 16 21 15 19
19.10 _and64 8 32 42 19 28 18 26
19.11 _or64 8 32 42 19 28 18 26
19.12 _xor64 8 32 42 19 28 18 26
19.13 _shlld64 20 86 96 35 45 27 35
19.14 _shlrd64 20 85 94 37 48 29 40
19.15 _shard64 24 93 105 38 49 29 39
19.16 _bfs64s 52 133 / 446 157 / 404 82 / 241 79 / 266 51 /205 59 / 160
19.17 _bfs64u 52 133 / 446 157 / 404 82 / 241 79 / 266 51 /205 59 / 160
19.18 _bfx64s 24 89 / 441 105 / 392 47 / 238 71 / 262 43 / 202 42 / 151
19.19 _bfx64u 24 77 / 428 93 / 379 49 / 238 63 / 254 37 / 195 38 / 148
19.20 _cmplt64 4 23 26 12 16 13 16
19.21 _cmplt64u 4 23 26 12 16 13 16
19.22 _cmpgt64 4 23 26 12 16 13 16
19.23 _cmpgt64u 4 23 26 12 16 13 16
19.24 _cmple64 4 23 26 12 16 13 16
19.25 _cmple64u 4 23 26 12 16 13 16
19.26 _cmpge64 4 23 26 12 16 13 16
19.27 _cmpge64u 4 23 26 12 16 13 16
19.28 _cmpeq64 4 23 27 12 17 13 17
19.29 _cmpne64 4 24 28 14 18 14 18
19.30 _convi64 8 21 26 11 20 11 13
19.31 _convu64 8 18 23 9 18 10 13
19.32 _convs64 20 146 147 81 97 - -
19.33 _convs64u 20 146 147 81 97 - -
19.34 _convf64 20 - - - 74 67
19.35 _convf64u 20 - - - 74 67
19.36 _convw64 20 175 161 86 102 - -
19.37 _convw64u 20 175 161 86 102 - -
19.38 _convd64 20 - - - - 75 77
19.39 _convd64u 20 - - - - 75 77
19.40 _conv64i 0 4 4 3 3 3 4
19.41 _conv64u 0 4 4 3 3 3 4
19.42 _conv64s 24 258 260 141 166 - -
19.43 _conv64us 24 242 246 136 156 - -
19.44 _conv64f 28 - - - - 78 75
19.45 _conv64uf 28 - - - - 71 65
19.46 _conv64w 20 164 168 88 111 - -
19.47 _conv64uw 20 133 140 72 93 - -
19.58

longlong

_conv64d 20 - - - - 80 84
19.59 _conv64ud 20 - - - - 67 70

Notes: 1. The unit is cycles. Measured values include error.

 2. Maximum and minimum pattern values are indicated [maximum / minimum] for routines for which
processing differs significantly depending on the input values.

Section 11 Q & A

Rev.4.00 2007.02.02 11-9
REJ05B0463-0400

Table 11.3 List of Runtime Routine Speeds/FPL Speeds

Number of Execution Cycles No. Type Function Name Stack
Size

SH2-DSP SH3-DSP SH4AL-DSP

1.1 _padd24 8 50 33 32

1.2 _padd40 8 60 38 36

1.3 _pdiv16 24 830 514 442

1.4 _pdiv32 36 1164 742 625

1.5 _pdiv24 36 2279 1446 1246

1.6 _pdiv40 36 2750 1696 1439

1.7 _pmul32 16 51 35 32

1.8 _pmul24 24 143 94 87

1.9 _pmul40 44 188 135 105

1.10 _psub24 24 50 33 32

1.11 _psub40 8 60 38 36

1.12 _pconv16s 12 19 / 199 12 / 123 20 / 102

1.13 _pconv16w 16 57 / 212 37 / 126 39 / 115

1.14 _pconv32s 12 20 /340 12 / 196 19 / 140

1.15 _pconv32w 16 53 / 381 34 / 233 37 / 148

1.16 _pconv24s 12 18 / 280 11 / 171 19 / 116

1.17 _pconv24w 16 58 / 286 38 / 168 33 / 172

1.18 _pconv40s 16 29 / 568 18 / 339 24 / 220

1.19 _pconv40w 16 41 / 515 29 / 316 25 / 231

1.20 _pconvs16 16 71 / 1597 47 / 937 50 / 459

1.21 _pconvs32 16 70 / 1341 48 / 809 44 / 457

1.22 _pconvs24 16 104 / 1633 68 / 958 60 / 482

1.23 _pconvs40 16 106 / 1618 70 / 951 64 / 467

1.24 _pconvw16 16 86 / 12374 56 / 7223 49 / 3156

1.25 _pconvw32 20 106 / 3160 68 / 1848 59 / 853

1.26 _pconvw24 20 135 / 10354 86 / 6215 77 / 3172

1.27 _pconvw40 20 142 / 10338 91 / 6207 84 / 3160

1.28 _pcmplt40 4 30 19 17

1.29 _pcmple40 4 30 19 20

1.30 _pcmpgt40 4 30 19 20

1.31 _pcmpge40 4 30 19 20

1.32 _pcmpeq40 4 28 18 16

1.33 _pcmpne40 4 29 18 20

1.34 _pdiv16_sat 28 859 530 459

1.35

DSP

_pdiv32_sat 40 1262 790 625

1.36 _pmul32_sat 16 66 42 38

Notes: 1. The unit is cycles. Measured values include error.

 2. Maximum and minimum pattern values are indicated [maximum / minimum] for routines for which
processing differs significantly depending on the input values.

Section 11 Q & A

Rev.4.00 2007.02.02 11-10
REJ05B0463-0400

11.1.5 SH Series Object Compatibility

Question
Are there any problems with linking an object compiled with the compile options "-cpu=sh1" (or sh2, sh2e, sh3, sh4) and
"-pic=1"?

Answer
In essence the microcomputers are upward-compatible, so that an SH-1 object and an SH-3 object can be linked and then executed on

the SH-3. This means that previous resources can continue to be used without modification.

Figure 11.1 Object Compatibility

Note: (1) SH-1, SH-2, SH-2E, SH2-DSP, SH-2A, and SH2A-FPU are big-endian; when objects for these models are
used with the SH-3, SH3-DSP, SH4AL-DSP, SH-4, and SH-4A, they should be used as big-endian.

 (2) Objects compiled with the "=pic=1" option and objects compiled with the "=pic=0" option can be linked;
however, the resulting program will not be position-independent.

 (3) Operation during interrupts is different for the SH-3, SH3-DSP, SH4AL-DSP, SH-4, and SH-4A than for the
SH-1, SH-2, SH-2E, SH2-DSP, SH-2A, and SH2A-FPU, and interrupt handlers are necessary.

For information on the "-endian" option, refer to section 11.1.15, Data Endian Assignment.

SH-4

SH-1 SH-3 SH-2

 SH-2E

 SH2-DSP SH3-DSP

 SH-2A

SH-4A

SH4AL-DSP

 SH2A-FPU

Section 11 Q & A

Rev.4.00 2007.02.02 11-11
REJ05B0463-0400

11.1.6 Executing Host Machine and OS

Question
What are executing host machines and OSes?

Answer
The following table lists machines and OSes on which the SuperH RISC engine C/C++ Compiler (ver. 9.0) can run.

Table 11.4 List of Executing Machines and OSes

System name OS Notes
HP9000/700

HITACHI9000

HITACHI9000V

HP-UX ver.10.2

IBM-PC/AT Windows98/Me/2000/XP/NT Pentium® processor
SPARC Solaris ver. 2.5

Solaris ver. 8

Section 11 Q & A

Rev.4.00 2007.02.02 11-12
REJ05B0463-0400

11.1.7 C/C++ Source-Level debugging Not Possible.

Question
I used the "-debug" compiler option, but still can't perform debugging at the C source level.

Answer 1
To output debugging information during linking, as well as at compile-time, you need to specify the appropriate option.

Note that if the directory that contains the source program differs from the one that existed at compile-time, debugging
cannot be performed on the C source level. In this case, either return the source program to its original directory, or
recompile the program.

For Linker Ver.7 or later:

When specifying the output range during linking, so that output is divided among several files, debugging information will
not be appended to each file, but to only one separate file. As such, debugging cannot be performed on the C source level
unless the debugging information files are loaded into the debugger.

For Linker Ver.6:

During linking, you can specify a combination of options to output the object format for several types, but some of these
cannot be used by the debugger.

From the following table, choose the object format appropriate to the debugger used.

Table 11.5 Options/Subcommands and Compatible Debuggers

Options/Subcommands
Compatible Debuggers Object Format Debug Information

Output
3rd-party debugger supporting ELF/DWARF
format

ELF DEBUG

Hitachi Integration Manager (ver. 4), +E7000 SYSROFPLUS SDEBUG

Hitachi Integration Manager (ver. 3), +E7000 SYSROF SDEBUG

Hitachi Debugging Interface (ver. 2), +E6000 SYSROF DEBUG

Hitachi Debugging Interface (ver. 3), +E6000 ELF SDEBUG

Answer 2

When -code=asm is specified, debugging cannot be performed at the C source level.

If you use an inline assembler, specify -code=asm.

To perform debugging at the C source level for a project using an inline assembler, specify -code=asm only for files for
which the inline assembler is used.

Section 11 Q & A

Rev.4.00 2007.02.02 11-13
REJ05B0463-0400

11.1.8 Warning Occurs on Inline Expansion

Question
(1) On attempting inline expansion, the warning "Function (function name) in #pragma inline is not expanded" appeared.
(2) On attempting inline expansion, the warning "Function not optimized" appeared.

Answer
These warning messages do not prevent program execution.

(1) Check whether the function specified by #pragma inline satisfies the conditions for inline expansion.

Functions with the function name specified by #pragma inline and functions specified with the function specifier inline
(C++ language) are inline-expanded when they are called. However, in the following circumstances they are not
expanded.

• When the function is defined before the #pragma inline specifier

• When the function has a variable parameter

• When a parameter address is referenced within the function

• When calling is performed via the address of the function to be expanded

• From the second operator of a conditional/logical operator

 Example:

 #pragma inline(A,B)

 int A(int a)

 {

 if(a>10) return 1;

 else return 0;

 }

 int B(int a)

 {

 if(a<25) return 1;

 else return 0;

 }

 void main()

 {

 int a;

 if(A(a)==1 && B(a)==1)

{

}

 }

A() is inline-expanded, but B() is not.

(Since there are cases in which the

evaluation B(a)==1 need not be performed)

Section 11 Q & A

Rev.4.00 2007.02.02 11-14
REJ05B0463-0400

(2) This is due to insufficient memory. When the SuperH RISC engine C/C++ Compiler performs inline expansion, the
function size increases, and partway through optimization processing there may be insufficient memory, so that
optimization in larger than expression units is no longer possible. To remedy this situation, try the following.

• Do not expand large functions
• Do not expand functions called at numerous locations
• Reduce the number of expanded functions
• Increase the amount of memory available

11.1.9 A "Function not optimized" Warning Appears at Compilation

Question
When I used the "-optimize=1" option to compile, I received a "Function not optimized" warning. Previously I was able to
compile this program in the same system environment, using the same compile options, without problem. Why did I
receive this warning?

Answer
This warning does not prevent program execution.

The following are possible causes of the warning message.

(1) A compiler limit has been exceeded
During optimization, the compiler generates new internal variables, and in some cases a compiler limit is exceeded. In
such cases, functions should be divided into smaller functions.

For more information on compiler limits, refer to section 16.1, Limitations of the Compiler, in the SuperH RISC engine
C/C++ Compiler, Assembler, Optimizing Linkage Editor User's Manual.

(2) Memory is insufficient

If memory is insufficient during optimization processing, the SuperH RISC engine C/C++ compiler issues a warning and
ceases optimization of expression and larger units. Compiling is continued, but the end result is the same as if the
optimize=0 optimization level was selected. In order to avoid this warning, large functions in the C source program should
be broken up into smaller functions.

If this is not possible, the only other choice is to increase the amount of memory available to the compiler.

(3) Cases of inline expansion

Refer to section 11.1.8, Warning Occurs on Inline Expansion.

Section 11 Q & A

Rev.4.00 2007.02.02 11-15
REJ05B0463-0400

11.1.10 A "compiler version mismatch" Message Appears at Compilation

Question
On compiling, a fatal error message, "compiler version mismatch", appeared. Why is this?

Answer
Check whether the directories specified by the environment variables "PATH" and "SHC_LIB" are not erroneous.

Examples:

If the environment variables are set as follows, the above error message is output.

PATH =(path for SHC ver.8.0)

SHC_LIB = (path name for C compiler for SHC ver 6.0)

11.1.11 A "memory overflow" Error Occurs at Compilation

Question
On compiling, the fatal error "memory overflow" occurred. Why is this?

Answer
The following are possible causes of a memory overflow error.

(1) Insufficient memory
(2) Not all the C/C++ compiler files are present in the directory specified by the path name set in the "SHC_LIB"

environment variable.

Example:

When the following settings are used, the above error message will appear.
The environment variable is set to SHC_LIB=/SHC/BIN
Files are saved in both /SHC/BIN and in /SHC/MSG
In this case, all files must be present in /SHC/BIN.

(3) Environment variables are not set correctly.

In the case of the PC version, the environment variable "SHC_LIB" should be set not to the directory with the libraries,
but to the directory containing SHC.EXE. The batch file SETSHC.BAT created on compiler installation sets the
"SHC_LIB" variable to the directory "C:\SHC\BIN" containing the file SHC.EXE.

Section 11 Q & A

Rev.4.00 2007.02.02 11-16
REJ05B0463-0400

11.1.12 Precedence of Include Specification

Question

I don't understand all the various options for including files.

Tell me how they're used and the order of precedence.

Answer

The search path for include files is specified using an option or an environment variable.

Files surrounded by "<" and ">" are read from a directory specified using the "-include" option; if multiple directories are
specified, they are searched in the order in which they were specified. When a file is not found in the directories specified
using the "-include" option, the directory specified by the SHC_INC environment variable is searched, and then the system
directory (SHC_LIB) is searched.

Searches for files surrounded by quotes (") begin from the current directory. If they are not found in the current directory,
then the above rules are followed for searching.

Briefly, the order of precedence when searching directories for include files is as follows:

-inc > SHC_INC > SHC_LIB

There is also a "-preinclude" option for forced reading of a file, separate from the above rules. When this option is used,
the file specified by this option is placed at the beginning of all files for compiling, and compiling is executed.

By using this option to read a file intended for only temporary use, such as a file containing #pragma statements and test
data, recompiling is possible without modifying source files.

Section 11 Q & A

Rev.4.00 2007.02.02 11-17
REJ05B0463-0400

11.1.13 Compile Batch Files

Question

There are many options that need to be set when compiling, and it's troublesome to repeat them each time.

Is there some more convenient method?

Answer

 At compilation, the "-subcommand" option ("-subcommand=<filename>") can be used.

The "-subcommand" option can be used multiple times on the command line. A subcommand file can contain command
line parameters, separated by spaces, carriage returns or tabs. The contents of the subcommand file are expanded into the
command line parameters at the position of the subcommand specification.

However, the "-subcommand" option cannot itself be specified within a subcommand file.

 Examples:

 In the following example, the command line is expanded to be equivalent to

 shcΔ-optimize=1Δ-listfileΔ-debugΔ-cpu=sh2Δ-pic=1Δ-sizeΔ-euc

 Δ-endian=bigΔtest.c

Command line

 shcΔ-sub=test.subΔtest.c

Contents of test.sub

 -optimize=1

 -listfile

 -debug

 -cpu=sh2

 -pic=1

 -size

 -euc

 -endian=big

Section 11 Q & A

Rev.4.00 2007.02.02 11-18
REJ05B0463-0400

11.1.14 Japanese Text within Programs

Question

I have developed the source code for a program on a workstation and a PC, but the Japanese codes on the workstation and
on the PC are different, and it's difficult to manage the source files. Is there an easier way to do this?

Answer

When shift-JIS format is used for Japanese codes, if compiling on a workstation (which uses the EUC encoding for
Japanese), the "-sj" compiler option should be used. Conversely, when EUC code is used in a program to be compiled on a
PC, the "-euc" compile option should be specified. Even in a workstation network environment in which EUC and
shift-JIS codes are intermixed, by setting the appropriate compile option, compiling using either Japanese encoding is
possible.

Compiling can be performed using the Japanese code employed on the target machine.

Table 11.6 System and Japanese Code Correspondence

Host Default

SPARC EUC

HP9000/700 shift-JIS

PC9800 series shift-JIS

IBM-PC shift-JIS

Examples:

When source code is written on a workstation (SPARC) and compiled on a PC (IBM PC), the "-euc" option can be
used in compiling, to prevent misinterpretation of Japanese codes in character strings.

Section 11 Q & A

Rev.4.00 2007.02.02 11-19
REJ05B0463-0400

11.1.15 Data Endian Assignment

Question

Do the SH models use big-endian or little-endian data?

Answer

The Renesas Tecnology SuperH RISC engine family are big-endian systems.

However, the SH-3, SH3-DSP, SH-4, SH-4A, and SH4AL-DSP support an "-endian=Big(Little)" option to enable CPU
big/little-endian switching.

Note:

(1) The "-endian" option can be combined with any arbitrary suboption of the "-cpu" option, but little-endian object
programs cannot be executed on products other than the SH-3, SH3-DSP, SH-4, SH-4A, or SH4AL-DSP.

(2) Big-endian objects and little-endian objects cannot be used together.

(3) Differences in endian type may influence the results of program execution.
Example: Code which is affected by endian type

 f(){

 int a=0x12345678;

 char *p;

 p=((char *)(&a));

 if(*p==0x12){ (1) }

 else{ (2) }

 }

In this case, if data is big-endian (1) is executed, but if little-endian, then *p is 0x78, and so (2) is executed.

For more information on data assignment, refer to section 10.1.2 (4), Memory Allocation in Little Endian, in the SuperH
RISC engine C/C++ Compiler, Assembler, Optimizing Linkage Editor User's Manual.

(4) The "-denormalize=on|off" option can be used to select whether to handle non-normalized numbers or treat them as 0.
(when -cpu=sh4 or -cpu=sh4a only)

However, when "-denormalize=on", if non-normalized numbers are input to the FPU, an exception occurs. Hence
exception processing must be written on software for processing of non-normalized numbers.

Section 11 Q & A

Rev.4.00 2007.02.02 11-20
REJ05B0463-0400

11.1.16 Assembling Using "#pragma inline_asm"

Question

When assembling a program using "#pragma inline_asm", an "ILLEGAL DATA AREA ADDRESS" (error no. 452) error
occurs.

Answer

(1) Check whether you are compiling with the "-code=asmcode" option.

(2) Check whether there is a data table in the assembly language code.

The following is one possible cause of this situation.

#pragma inline_asm(bar)

int bar()

{

 MOV.L #160,R9

}

 In the above code, the line

 MOV.L #160,R9

is not interpreted by SuperH microcomputers as an instruction to move the value "160" directly to the register.

Normally a data pool must be created and loaded. The assembler automatically recognizes this and creates the data pool;
but this generated data does not have the alignment of the assembly language source output by the compiler, and an error
results. Such an instance of automatic data generation by an assembler is not anticipated by today's compilers, and so it is
not possible to write code in the assembly language source for an inline_asm function which causes the assembler to
automatically generate a data pool. However, the code of the above example can be modified as follows to avoid this
problem.

Example of modified code

< Prior to modification>

 MOV.L #160,R9

< After modification >

 MOV #100,R9

 ADD #60,R9

Section 11 Q & A

Rev.4.00 2007.02.02 11-21
REJ05B0463-0400

11.1.17 Privileged Mode

Question

The embedded functions "set_cr" and "get_cr" do not work correctly.

Answer

The above embedded function can only be used in privileged mode in the SH-3 and SH-4.

For general information refer to section 10.3.3, Intrinsic Functions, in the SuperH RISC engine C/C++ Compiler,
Assembler, Optimizing Linkage Editor User's Manual; for information on the priviledged mode, see the hardware manual
of each device. Verify that privileged mode is set at the time these embedded functions are called. (In priviledged mode,
the SR register MD bit is set.) In order to cause a transition from a non-privileged mode to privileged mode, a TRAPA
instruction must be issued.

11.1.18 Regarding Object Generation

Question

When generating an object directly from the compiler, and when generating the object via an assembler, the following
occur.

(1) The program sizes are different.

(2) Symbol types are DAT rather than ENT.

Answer

Due to differences in the method of object generation used when directly generating an object and when using an
assembler, the resulting load modules are generally different. This is not erroneous operation.

An object output by an assembler does not distinguish between ENT and DAT; this likewise is not erroneous behavior.

Section 11 Q & A

Rev.4.00 2007.02.02 11-22
REJ05B0463-0400

11.1.19 About the #pragma gbr_base Feature

Question

When I use the "#pragma gbr_base" feature and load the program into the emulator or try to write it to ROM, an error
occurs.

Answer

The sections $G0, $G1 should be treated as initialization data sections.

Normally variables are assigned as follows:

(1) Variables without an initial value specified are assigned to the uninitialized data section (by default, section name "B")

(2) Variables with an initial value specified are assigned to the initialized data section (by default, section name "D")

(3) Variables with a "const" specification are assigned to the constant section (by default, section "C")

However, for variables specified using "#pragma gbr_base" (or gbr_base1) no such distinction is made, and all are
assigned to section $G0 (or $G1); hence the compiler treats $G0, $G1 as initialized data areas, and generates an object
assuming that "0" is specified in the case of variables for which no initial value was specified.

11.1.20 Compiling Programs Containing Japanese Codes

Question

On compiling a program on a PC that was confirmed to compile correctly on a SPARC workstation, an error occurred.

Answer

Check whether Japanese codes are not included in the source program. The SuperH RISC engine C/C++ compiler supports
Japanese codes in both EUC and shift-JIS encodings, but the default encoding is different for different host machines. On
a SPARC workstation, the default Japanse encoding is EUC, but on a PC it is shift-JIS. When compiling a program which
uses EUC Japanese codes on a PC, the -euc option should be specified. For more information on the default Japanese
codes for different host machines, please refer to section 11.11.14, Japanese Text within Programs.

Section 11 Q & A

Rev.4.00 2007.02.02 11-23
REJ05B0463-0400

11.1.21 Speed of Floating Point Operations

Question

Tell me about the speed of execution of floating point operations.

Answer

The speed of execution of elementary functions using the standard libraries are shown in table11.8 (for the SH-1, SH-2,
SH-3), table 11.9 (SH-2E), table 11.10 (SH-4), table 11.11(SH-4A), and table 11.12(for the SH-2A, SH2A-FPU). For
information on the performance of arithmetic operations and other floating point operations, please refer to section 11.1.4,
Runtime Routine Specifications and Execution Speed.

Table 11.7 shows the conditions for creating a standard library.

Table 11.7 The Conditions for Creating a Standard Library

Options for Creating Library Condition

Cpu pic endian denormal round fpu double=
float

1 sh1 – big – – – None

2 sh2 0 big – – – None

3 sh3 0 big – – – None

4 sh2e 0 big – – – None

5 sh4 0 big off zero None –

6 sh4 0 big off zero single –

7 sh4 0 big off zero double –

8 sh4a 0 big off zero None –

9 sh4a 0 big off zero single –

10 sh4a 0 big off zero double –

11 sh2a 0 big – – – None

12 sh2afpu 0 big off zero None –

13 sh2afpu 0 big off zero single –

14 sh2afpu 0 big off zero double –

Section 11 Q & A

Rev.4.00 2007.02.02 11-24
REJ05B0463-0400

Table 11.8 Execution Speed of Floating Point Library Functions (SH-1, SH-2, SH-3)

CPU SH-1 SH-2 SH-3

Conditions for
Creating Library

1 2 3

Sinf 2,438 2,497 1,632

Cosf 2,384 2,434 1,599

Tanf 3,120 3,196 2,091

asinf 5,176 5,418 3,526

acosf 5,355 5,622 3,659

atanf 2,924 3,160 2,054

logf 3,710 3,816 2,490

sqrtf 3,252 1,018 661

expf 4,327 4,432 2,873

Single-
precision

powf 4,649 4,824 3,139

sin 5,297 4,964 3,282

cos 5,289 4,918 3,279

tan 7,460 7,087 4,673

asin 13,898 13,788 9,004

acos 14,158 14,084 9,196 Double-
precision atan 5,583 5,687 3,712

log 8,756 8,368 5,535

sqrt 2,903 2,946 1,803

exp 9,501 8,952 5,912

 pow 9,337 8,943 5,918

Notes: The unit is cycles. Measured values include error.

Section 11 Q & A

Rev.4.00 2007.02.02 11-25
REJ05B0463-0400

Table 11.9 Execution Speed of Floating Point Library Functions (SH-2E)

CPU SH-2E

Conditions for Creating Library 4

sinf 307

cosf 302

tanf 343

asinf 1,267

acosf 1,289

atanf 468

logf 213

sqrtf 648

expf 299

Single-
precision

powf 472

sin 3,005

cos 3,002

tan 4,339

asin 8,544

acos 8,717

atan 3,434

log 5,144

sqrt 1,896

Double-
precision

exp 5,475

 pow 5,437

Notes: The unit is cycles. Measured values include error.

Section 11 Q & A

Rev.4.00 2007.02.02 11-26
REJ05B0463-0400

Table 11.10 Execution Speed of Floating Point Library Functions (SH-4)

CPU SH-4

Conditions for Creating
Library

5 6 7

Sinf 63 59 139

Cosf 62 59 135

Tanf 80 78 186

Asinf 75 71 264

Acosf 72 72 269

Atanf 104 72 155

Logf 86 85 192

Sqrtf —* —* —*

Expf 119 100 193

Single-
precision

Powf 387 366 213

Sin 331 70 139

Cos 310 66 135

Tan 408 71 186

Asin 523 71 206

Acos 616 72 253

Atan 393 58 145

Log 403 85 192

Sqrt —* —* —*

Double-
precision

Exp 403 90 193

 Pow 1,032 366 213

Notes: The unit is cycles. Measured values include error.
 * The SH-4 supports the sqrt instruction, and so the sqrt function was omitted.

Section 11 Q & A

Rev.4.00 2007.02.02 11-27
REJ05B0463-0400

Table 11.11 Execution Speed of Floating Point Library Functions (SH-4A)

CPU SH-4A

Conditions for Creating
Library

8 9 10

Sinf 100 95 195

Cosf 113 96 188

Tanf 139 134 277

Asinf 117 113 336

Acosf 124 123 344

Atanf 148 122 205

Logf 131 130 233

Sqrtf —* —* —*

Expf 169 146 219

Single-
precision

Powf 408 388 194

Sin 305 110 194

Cos 288 107 187

Tan 377 128 247

Asin 466 113 267

Acos 558 122 324

Atan 331 97 191

Log 344 130 133

Sqrt —* —* —*

Double-
precision

Exp 387 133 256

 Pow 877 388 219

Notes: The unit is cycles. Measured values include error.
 * The SH-4 supports the sqrt instruction, and so the sqrt function was omitted.

Section 11 Q & A

Rev.4.00 2007.02.02 11-28
REJ05B0463-0400

Table 11.12 Execution Speed of Floating Point Library Functions (SH-2A,SH2A-FPU)

CPU SH-2A SH2A-FPU

Conditions for Creating
Library

11 12 13 14

Sinf 1,001 68 65 139

Cosf 954 68 64 135

Tanf 1,806 83 82 188

Asinf 1,545 79 75 273

Acosf 1,699 74 73 277

Atanf 1,602 98 73 156

Logf 1,720 92 93 196

Sqrtf 562 —* —* —*

Expf 1,463 121 102 208

Single-
precision

Powf 2,140 407 386 246

Sin 3,431 302 77 140

Cos 3,387 288 72 135

Tan 4,425 385 75 188

Asin 5,550 463 75 208

Acos 5,949 544 73 259

Atan 3,641 348 59 145

Log 4,557 401 93 196

Sqrt 1,622 —* —* —*

Double-
precision

Exp 4,137 410 93 208

 Pow 4,086 903 386 246

Notes: The unit is cycles. Measured values include error.
 * The SH-4 supports the sqrt instruction, and so the sqrt function was omitted.

Section 11 Q & A

Rev.4.00 2007.02.02 11-29
REJ05B0463-0400

11.1.22 Using the PIC Option

Question

I want to program using position-independent code; how do I proceed?

Detailed questions:

(1) I want to transfer multiple applications dynamically to available RAM for execution.

(2) I want to know how to perform initialization processing.

(3) Tell me about practical limits and things to watch out for.

Answer

In order to transfer a program from ROM to a fixed address in RAM for execution, do not use the -PIC option; instead, use
the procedure described in 11.2.4, Transfer to RAM and Execution of a Program.

In order to dynamically transfer code to RAM, the -PIC option is convenient; but this option is valid only for program
sections, and does not result in position independence for data. Hence data areas can only be loaded to a fixed address.

Because of this limitation, in order to make an entire program (including data) position-independent, special measures
must be taken in writing the program.

The following explains the procedure for programming when no data section is included.

• Programming procedure when no data section is included

Example of a program configuration

<Application 1> <Application 2>

section ID section ID

section P section P

section ED section ED

Figure 11.2 Section

C language program

<main.c>

main()

{

 int i;

 for (i=0;i<10;i++){

 sub(i);

 }

}

Section 11 Q & A

Rev.4.00 2007.02.02 11-30
REJ05B0463-0400

<sub.c>

sub(int p)

{

 int i;

 for (i=0;i<p;i++){

 ;

 }

}

Assembly language program

<pic.src>

 .import _main

 .section ED,DATA,ALIGN=4 ; generate the ending section ED

 .section ID,DATA,ALIGN=4 ; data section for header

 .data.l (STARTOF ED)

 .data.l _main

 .end

<lnk.sub>

 input main

 input sub

 input pic

 start ID,P,ED/0 ; assigned starting from address 0; ID at beginning, ED at end

 list pic

 exit

A header (ID section) is added to each program.

The contents of the ID section are:

Offset 0 address Program size

Offset 4 address Entry point (main address)

In this manner programs are generated, and the program controlling these calculates the load address and execution
address, taking into account ID.

Section 11 Q & A

Rev.4.00 2007.02.02 11-31
REJ05B0463-0400

The following shows an example fo the control program.

<control.c>

void load_program(int ID){

 char *p;

size=load_ID(ID); /* load program ID header data */

 /* return value is program size */

 p=malloc(size);

 if(p!=NULL){

 mload(p,ID); /* write program data to heap */

 go((*(long**)p+1)+(long*)p);

 /* set PC at leading address of program */

 /* and execute */

 }

 else {

 error(“Insufficient Memory”);

 }

}

This is a program image; the method of execution will differ depending on the OS used. The above example should be
regarded as a flow-level example when the program is run dynamically.

Section 11 Q & A

Rev.4.00 2007.02.02 11-32
REJ05B0463-0400

11.1.23 Optimization Causes Large Amounts of Code to be Deleted

Question

After compiling, large amounts of code are deleted.

Answer

It is possible that the following kinds of optimization are being performed.

(1) Deletion of empty loops

An empty loop, provided to make the program wait for a fixed amount of time, may be deleted through optimization.

Example

 set_param(); /* set parameter */

 for(i=0;i<10000;i++); /* after setting parameter, set result */

 /* empty loop to make the program wait a fixed amount of time */

 /* the compiler deletes the loop itself */

 /* as being meaningless */

 read_data(); /* acquire result */

 /* because the loop is deleted, the wait time is eliminated, */

 /* and an attempt to read the result before it is obtained fails */

(2) Deletion of substitution into local variables

Despite the fact that a value is substituted into a local variable, if the value is not referenced, the substitution operation is
itself deleted.

Example

int data1, data2, data3;

func()

{

 int res1,res2,res3;

 res1=data1*data2;

 res2=data2*data3; /*res2 is not referenced after this, and so the expression is deleted */

 res3=data3*data1;

 sub(res1,res1,res3); /* mistake in specifying the second parameter */

 /* if res2 is written instead of res1, the above expression is not deleted */

}

Local variables are valid up to the end of the function, and so normally values are not substituted into local variables
within a function and then not referenced. Hence deletion may occur when programming mistakes like the above are
made.

Section 11 Q & A

Rev.4.00 2007.02.02 11-33
REJ05B0463-0400

11.1.24 Values of Local Variables Cannot be Displayed during Debugging

Question

I can't see the values of local variables.

During debugging, the code references a local variable, but its value cannot be referenced, or is incorrect.

Answer

It is possible that the following kind of optimization has been performed.

(1) Constant operation at compile time

At compile time, any values that are already determined are calculated when compiling and not at runtime, and so
variables may themselves be eliminated.

Example 1

int x;

func()

{

 int a;

 a=3;

 x=x+a; /* here, at compile time this expression becomes x=x+3 */

 /* if a is not used elsewhere, then there is no reason to treat a as */

 /* a variable, and it is deleted from debugging information as well */

}

Example 2

func(int a,int b)

{

 int tmp;

 int len;

 tmp=a*a+b*b;

 len=sq(tmp); /* this becomes len=sq(a*a+b*b); and tmp is deleted */

 :

}

These kinds of cases are conceivable, but they have no effect on actual program operation.

Section 11 Q & A

Rev.4.00 2007.02.02 11-34
REJ05B0463-0400

(2) Deletion of unreferenced variables

Example 3

int data1, data2, data3;

func()

{

 int res1,res2,res3;

 res1=data1*data2;

 res2=data2*data3; /* this expression is deleted, and res2 is itself deleted as well */

 res3=data3*data1;

 sub(res1,res1,res3); /* error in writing the second parameter */

 /* deletion does not occur if res1 is changed to res2 */

}

Local variables are valid up to the end of the function, and so normally values are not substituted into local variables
within a function and then not referenced. Hence deletion may occur when programming mistakes like the above are
made.

Section 11 Q & A

Rev.4.00 2007.02.02 11-35
REJ05B0463-0400

11.1.25 Interrupt Inhibit/Enable Macros

Question

I want to use macros for interrupt inhibit/enable processing; how do I proceed?

Answer

This is possible using embedded functions, as in the following example. For further details on embedded functions, refer
to section 10.3.3, Intrinsic Functions, in the SuperH RISC engine C/C++ Compiler, Assemble, Optimizing Linkage Editor
User's Manual.

 Example

 #include <machine.h>

 #define disable() { save_cr=get_cr(); set_imask(0x0f); }

 #define enable() { set_cr(save_cr); }

 function()

{

 int save_cr;

 disable();

 sub();

 enable();

 }

Section 11 Q & A

Rev.4.00 2007.02.02 11-36
REJ05B0463-0400

11.1.26 Interrupt Functions in SH-3 and Later Models

Question

Are there any differences in the procedure for writing interrupt functions for SuperH microcomputers starting with SH-3?

(1) I want to use multiple interrupts, but using a function with #pragma interrupt specified,

 (a) The SSR, SPC save instructions are not available.

 (b) The instructions to clear the RB and BL bits of the SR cannot be used.

 (c) The SSR, SPC restore instructions are not available.

(2) I want to use a TRAP number specification with a #pragma interrupt statement, but the BL bit of the SR remains 1,
and so when a TRAPA instruction is issued an instruction exception occurs.

Answer

The compiler does not output SSR or SPC save/restore instructions. Either they should be written explicitly using the
"#pragma inline_asm" feature, or the program should be written using assembler. SR settings can be written using the
embedded functions set_cr, get_cr.

In the SH-3 and later models, interrupt processing is greatly changed from processing in the SH-1, SH-2, and SH-2E. In
the latter microcomputers, when an interrupt occurs the vector table is referenced, and control branches to the
corresponding interrupt routine. In the SH-3 and later, however, branching is to a fixed address. Hence normally an
interrupt handler must be placed at the interrupt branching destination in order to inhibit/enable multiple interrupts,
evaluate the interrupt factor and start processing for different interrupt factors. Ordinarily such interrupt handlers are
written in assembly language.

Refer to sections 2.2 and 2.3, Introduction of Sample Program.

Section 11 Q & A

Rev.4.00 2007.02.02 11-37
REJ05B0463-0400

11.1.27 An Operated Result by the Floating Point of SH4

Question

An operated result by the floating point of SH4 does not match an expectated value.

Answer

Compiler has FPU option. There are three patterns which are FPU=single/double/No specification in FPU option. The
followings show differences:

FPU=single: All floating point expression is treated as single precision.

FPU=double: All floating point expression is treated as double precision.

FPU=No specification: The precision of a floating point expression follows the type of C description.

According to the FPU option, PR bit setting at FPSCR register is different.

(1) This value (PR bit) is set [0(=single precision)] in the initial condition.

(2) If No specification at FPU option, C compiler generates code which change PR bits at each FPU operation. But a PR
changing code is not generated at all when specifying FPU=double/single.

(3) Therefore, option is operated correctly without considering of an above bit when specifying FPU=No specification
and FPU=single specification, but specifying [1=(double)] explicitly to PR bit at the users side when specifying
FPU=double is required.

11.1.28 Regarding Optimization Options

Question

What will be changed by optimization option (speed, size)?

Answer

Generated codes are changed by specified optimization option. (Do not change Algorithm of User program by
optimization.) By optimization, optimize codes like inline expansion of a function and loop unrolling, so the number of
times of run-time cycles is changed. Thereby, the timing of operation is also changed. First of all, please verify enough
about timing of operation. Moreover, optimization of variable access is also considered as concern matters other than the
above. The case that an instruction of data can be realized between registers without memories, and it is corresponded to
optimization of variable access, it may be said [Timing verification]. If you want [Do not want to optimize] variable,
please confirm including a necessity of an addition of volatile declaration.

Section 11 Q & A

Rev.4.00 2007.02.02 11-38
REJ05B0463-0400

11.1.29 An argument of function is not transferred correctly.

Question

An argument of function is not transferred correctly.

Answer

Please confirm whether a prototype of function is declared.

If a prototype of function is not declared, arguments (char, unsigned, char, float) are become an object of automatic type
translation. At the time, declaring a function side to call as a changed type is required.

Recommend to declare a prototype of function.

An existence of declaration of a prototype of function can be confirmed by message option of compiler.

Section 11 Q & A

Rev.4.00 2007.02.02 11-39
REJ05B0463-0400

11.1.30 How to Check Coding Which May Cause Incorrect Operation

Question

Is there any function to check for potential problem code, such as a missing prototype declaration for a function?

Answer

When coding a program, note that there are some kinds of codes which are not errors in language specifications but may
produce incorrect operation results. These codes can be checked by outputting information messages using an option.

The MISRA-C check tool can be used with version 9 or later.

[Specification method]
Dialog menu: C/C++tab Category: [Source] Messages, Display information level message
Command line:message

Remarks

In the dialog menu, removing the left-side checkmark from a message disables the output of the message. In the command
line, specifying an error number in a sub-option of the nomessage option disables the output of the message. For details on
error numbers, refer to section 12, Compiler Error Messages, in the SuperH RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor User’s Manual.

After generating information messages, the compiler performs an error recovery and generates an object program. Check
that the error recovery performed by the compiler conforms with the aims of the program.

(example)

 shc Δ -message Δ test.c (RET)

(C language program)

/* /* COMMENT */ →5009 : String “/*” in a comment
int ; →0002 : A declaration without a declarator
void func(int);

void main(void)

{

 long a;

 func(a+1); →0006 : Function parameter expression is converted
 into the parameter type specified in

 prototype declaration

 sub(); →0200 : No prototype declaration for called function
}

Section 11 Q & A

Rev.4.00 2007.02.02 11-40
REJ05B0463-0400

11.1.31 Comment Coding

Question

(1) How can I nest comments?

(2) How can I code C++ comments in a C language program?

Answer

(1) There is an option that allows you to nest comments without generating an error. In this case, note that these
comments are interpreted as described below.

[Specification method]
Dialog menu: C/C++ tab Category: [Other] Miscellaneous options: Allow comment nest
Command line: comment

Table 11.13 Nest of comment.

C/C++ Source Code Nested Comments Not
Allowed

Nested Comments
Allowed

/* comment */ Recognized as a comment
statement

Recognized as a comment
statement

/* /* comment */ */ Coding error Recognized as a comment
statement

/* /* /* comment */ Recognized as a comment
statement

Coding error

(2) The C++ comment code “//” can be used. There is the following relationship between the “//” and the C comment
code (/* */). The parts that can be recognized as comments are underlined:

void func()
{
 abc=0; // /* comment */

 def=1; /* comment
 ghi=2; // comment */
}

←Code after // is recognized as a comment

←Code enclosed in /**/ is recognized as a comment

Section 11 Q & A

Rev.4.00 2007.02.02 11-41
REJ05B0463-0400

11.1.32 How to Build Programs When the Assembler Is Embedded

Question

A warning message is output at compiling when the assembler intrinsic is performed using #pragma inline_asm.

Answer

Assembler embedded files should be output in the Assembly language and then be assembled.

To build a file on the HEW, specify the file containing the Assembler embedding to the Assembly output, How to Specify
Options for Each File. When built in this manner, the file that has been Assembly output will automatically be assembled.

In the following example, the file test.c containing an Assembly embedding is specified:

<HEW2.0 or later>

Figure 11.3 Compiler Dialog Box

Select Assembly source code (*.src) from C/C++ Tab Category: [Object] Output file type: .

Files are built normally with this specification.

Note that this specification disables C source debugging.

Section 11 Q & A

Rev.4.00 2007.02.02 11-42
REJ05B0463-0400

11.1.33 C++ Language Specifications

Question

Are there any function supporting the development of programs in the C++ language?

Answer

The SuperH RISC engine C/C++ compiler supports the following functions to support program development in C++:

(1) Support of EC++ class libraries

As EC++ class libraries are supported, the intrinsic C++ class libraries can be used from a C++ program without any
specification.

The following four-type libraries are supported:

• Stream I/O class library
• Memory manipulation library
• Complex number calculation class library
• Character string manipulation class library

For details, refer to section 10.4.2, EC++ Class Libraries, in the SuperH RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor User’s Manual.

(2) EC++ language specification syntax check function

Syntaxes are checked on C++ programs, based upon the EC++ language specifications, using a compiler option.

[Specification method]
Dialog menu: C/C++ Tab Category: [Other] Miscellaneous options: Check against EC++ language specification
Command line: ecpp

(3) Other functions

The following functions are supported for efficient coding of C++ programs:

<Better C functions>

• Inline expansion of functions
• Customization of operators such as +, -,<<
• Simplification of names through the use of multiple definition functions
• Simple coding of comments

<Object-oriented functions>

• Classes
• Constructors
• Virtual functions

For a description of how to set the execution environment at using library functions in a C++ program, refer to section
9.2.2(4), C/C++ library function initial settings(_INILIB), in the SuperH RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor User's Manual.

Section 11 Q & A

Rev.4.00 2007.02.02 11-43
REJ05B0463-0400

11.1.34 How to View Source Programs after Pre-Processor Expansion

Question

How can I review a program after macros are expanded?

Answer

The output of the source program expanded by the Pre-Processor is specified with the compiler option.

If the source program before expansion was a C language program, it is output with the extension <filename>.p. For a
C++ program, the extension is <filename>.pp.

In this case, no object program is created. Therefore, any optimization option specifications are not available.

[Specification method]
Dialog menu: C/C++ Tab Category: [Object] Output file type: Preprocessed source file (*.p/*.pp)
Command line: preprocessor

11.1.35 The Program Runs Correctly on the ICE But Fails When Installed on a Real Chip

Question

The program runs correctly at debugging on the ICE but fails when operated on a real chip.

Answer

If a program contains the initialization data area (D section), it uses emulation memory on the ICE. Therefore, read/write
operation can be performed on the ICE, however, only read operation can be performed on a real chip because memory on
a real chip is ROM. This causes the malfunction of the program execution whenever a write operation is attempted.

The initialization data area should be copied from the ROM area to the RAM area at the power-on reset.

Secure an area for each of ROM and RAM using the ROM implementation support option of the HEW2.0 or later
optimizing linkage editor and the HEW1.2 inter-module optimizer.

For a description of how to copy data from a ROM area to a RAM area, refer to section 2.3.4, Creating the Initialization
Part.

Section 11 Q & A

Rev.4.00 2007.02.02 11-44
REJ05B0463-0400

11.1.36 How to Use C language Programs Developed for H8 Microcomputers

Question

What points should I confirm when using a C language program developed for an H8S, H8/300 microcomputer on an SH
microcomputer?

Answer

Be careful on the following points for the program:

(1) int-type data are treated as 4-byte data.

On the H8S, H8/300, int type data are treated as 2-byte data, however, on the SH Family, they are treated as 4-byte data.
Confirm that there is not any problem on the range of values.

(2) Some expanded functions cannot be used.

Functions on the SH Family C/C++ compiler and the H8S and H8/300 Series C/C++ compiler are compatible by using the
#pragma statement, for example, however there are some differences between them in the expanded functions and
specifications.

Note that built-in functions are CPU-specific.

(3) Notes on assembler embedding

Because of differences in architecture, the SH series cannot handle any code in which an H8S, H8/300 Series assembly
source is embedded.

If you wish to use C source files created in the M32R development environment in the SH development environment,
Translation Helper is available.

This is a support tool to translate smoothly the all C source files created in the M32R development environment to the SH
development environment.

Translation Helper can be free downloaded from Renesas Development Environment site.

Section 11 Q & A

Rev.4.00 2007.02.02 11-45
REJ05B0463-0400

11.1.37 Optimizations That Cause Infinite Loops

Question

Why do infinite loops occur when I upgrade the compiler, or turn optimization on?

Answer

Infinite loops may occur due to compiler optimization, such as in the following common source, in which substitution for
a is read from the register instead of from memory, preventing the value of *d from being reflected when changed via
interrupt. This optimization is part of the compiler specification, and can be prevented by using the volatile-type specifier.

Example

C source

void f(int *d)

{

 int a;

 do

 {

 a=*d;

 }while(a!=0);

}

Assembler source with optimization

_f: ; function: f

 ; frame size=0

 .STACK _f=0

 MOV.L @R4,R2

L11:

 TST R2,R2 ; not read from memory

 BF L11

 RTS

 NOP

 .END

Modified C source

void f(volatile int *d)

{

 int a;

 do

 {

 a=*d;

 }while(a!=0);

}

Section 11 Q & A

Rev.4.00 2007.02.02 11-46
REJ05B0463-0400

Modified assembler source with optimization

_f: ; function: f

 ; frame size=0

 .STACK _f=0

L10:

 MOV.L @R4,R2 ; read from memory

 TST R2,R2

 BF L10

 RTS

 NOP

.END

Section 11 Q & A

Rev.4.00 2007.02.02 11-47
REJ05B0463-0400

11.1.38 Precautions Regarding the DSP Library

Question

When using the DSP library, I sometimes experience abnormal termination, and don't get the results I expect. Are there
any precautions regarding DSP library usage of which I should be aware?

Answer

Check the following:

1. Memory corruption

Since the DSP library uses heap memory, if the memory has been corrupted, proper calculation results cannot be obtained.

Heap memory corruption can also lead to abnormal operation.

2. Proper usage of DSP memory (X and Y memory)

There are some DSP library functions that require input and output data to be placed in X/Y memory. For such a DSP
library function, allocate sections containing input and output data to X/Y memory, according to the description of the
function. You can use #pragma section to separate sections on a finer level. For details, see section 3.7.2, Section
Switching.

Also, when using the "-dspc" option, you can use the X/Y memory modifier to easily separate X/Y memory sections.

Note that the workspace must be allocated to Y-RAM when the filter function is used. If the "-dspc" option is not specified,
allocate the DY and BY sections to Y-RAM during linkage. If the "-dspc" option is specified, allocate the $YD and $YB
sections to Y-RAM during linkage.

3. Usage methods for DSP library functions

When DSP library functions are used, special pre- or post-processing may be needed.

Check that the corresponding library functions, as well as the pre- and post-processing, are being used properly.

For details about how to use each library function, see section 3.13, DSP Library.

4. Scaling errors

Since the DSP library functions perform scaling processing, such processing may cause errors to occur.

For details about scaling, see section 3.13, DSP Library.

Section 11 Q & A

Rev.4.00 2007.02.02 11-48
REJ05B0463-0400

11.1.39 Maximum Sampling Data Count for a DSP Library Function

Question

What is the maximum sampling data count for a DSP library function?

Answer

The maximum sampling data count for a DSP library function depends largely on two things: DSP memory (X and Y
memory) capacity, and whether the function is an in-place or non-in-place function.

For the in-place function:

maximum-sampling-count = x-or-y-memory-size / 2 (short type size)

For the not-in-place functions, the maximum sampling count shall be half the result of the calculation, because the input
and output areas need to be separate.

When the X-RAM and Y-RAM are 8K:

• FftComplex

Maximum sampling count: 2048

Size of heap used: 17334

• FftReal

• When input data is placed outside of X/Y memory

Maximum sampling count: 4096

Size of heap used: 18358

• When input data is placed in X/Y memory

Maximum sampling count: 2048

Size of heap used: 17334

• IfftComplex

Maximum sampling count: 2048

Size of heap used: 17334

• IfftReal

Maximum sampling count: 2048

Size of heap used: 19382 (17334 + 2048)

(this is because even in IfftReal(), malloc is used to allocate the area.)

Section 11 Q & A

Rev.4.00 2007.02.02 11-49
REJ05B0463-0400

• FftInComplex

Maximum sampling count: 4096

Size of heap used: 18358

• FftInReal

Maximum sampling count: 4096

Size of heap used: 18358

• IfftInComplex

Maximum sampling count: 4096

Size of heap used: 18358

• IfftInReal

Maximum sampling count: 4096

Size of heap used: 18358

11.1.40 Read/write Instructions for Bit Fields

Question

struct bit{

 unsigned short int b0 : 1;

 unsigned short int b1 : 1;

 unsigned short int b2 : 1;

 unsigned short int b3 : 1;

 unsigned short int b4 : 1;

 unsigned short int b5 : 1;

 unsigned short int b6 : 1;

 unsigned short int b7 : 1;

 unsigned short int b8 : 1;

 unsigned short int b9 : 1;

 unsigned short int b10 : 1;

 unsigned short int b11 : 1;

 unsigned short int b12 : 1;

 unsigned short int b13 : 1;

 unsigned short int b14 : 1;

 unsigned short int b15 : 1;

} ;

In the above code, I'd like to define a bit field, and access the bits of a specific register for a 16 bit width, but I end up
performing access by byte and bit operation instruction. For registers that can only be accessed for 16 bits, when a byte
access or bit operation instruction is generated, I can't properly read the register value. What should I do?

Section 11 Q & A

Rev.4.00 2007.02.02 11-50
REJ05B0463-0400

Answer

As long as there are no particular specifications in the program, bit field members are accessed by compiler-optimized
instructions. SH-2A and SH2A-FPU generate bit access instructions, while other CPUs generate byte access instructions.
As a result, access may be performed by unintended instructions. Specify volatile to perform access using the type set for
the member variable.

To prevent changes to access methods and multiple accesses by the compiler, specify volatile explicitly for variables for
which you would like to prevent such changes.

C source without volatile

struct bit reg;

void f()

{

 reg.b6=1;

}

Assembler source without volatile
(other than SH-2A and SH2A-FPU)

 Assembler source without volatile
(for SH-2A SH2A-FPU)

_f: ; function: f f: ;function:f

 ; frame size=0 .STACK _f=0

 .STACK _f=0 MOV.L L11,R2 ; reg

 MOV.L L11+2,R6 ; _reg BSET.B #1,@(0,R2)

 MOV.B @R6,R0 RTS/N

 OR #2,R0

 RTS

 MOV.B R0,@R6

C source with volatile

volatile struct bit reg;

void f()

{

 reg.b6=1;

}

Assembler source with volatile
(other than SH-2A and SH2A-FPU)

 Assembler source with volatile
(for SH-2A SH2A-FPU)

_f: ; function: f f: ;function: f

 ; framesize=0 ;framesize=0;

 .STACK _f=0 .STACK _f=0

 MOV.L L11+2,R6 ; _reg MOV.L L11+2,R6;reg

 MOV #2,R5 ; H'00000002 MOV.W @R6,R2

 MOV.W @R6,R2 MOVI20 #512,R5 ;H’00000200

 SHLL8 R5 OR R5,R2

 OR R5,R2 RTS

 RTS MOV.W R2,@R6

 MOV.W R2,@R6

Section 11 Q & A

Rev.4.00 2007.02.02 11-51
REJ05B0463-0400

Note that bit fields whose type is long long are always accessed using run-time routines.

C source

struct bit{

 unsigned long long int b0 : 1;

 unsigned long long int b1 : 1;

 unsigned long long int b2 : 1;

 unsigned long long int b3 : 1;

 unsigned long long int b4 : 1;

 unsigned long long int b5 : 1;

 unsigned long long int b6 : 1;

 unsigned long long int b7 : 1;

};

struct bit reg;

void f()

{

 reg.b6=1;

}

Assembler source

_f: ; function: f

 ; frame size=12

 .STACK _f=12

 STS.L PR,@-R15

 MOV #1,R1 ; H'00000001

 MOV.L R1,@-R15

 MOV #0,R4 ; H'00000000

 MOV.L R4,@-R15

 MOV.L L11+4,R1 ; _reg

 MOV.L L11+8,R5 ; __bfs64u_p

 MOV.W L11,R0 ; H'0601

 JSR @R5

 MOV R15,R2

 ADD #8,R15

 LDS.L @R15+,PR

 RTS

 NOP

Section 11 Q & A

Rev.4.00 2007.02.02 11-52
REJ05B0463-0400

11.1.41 Specifying Interrupt Processing

Question

I want to specify interrupt processing. What should I do?

Answer

To specify interrupt processing, be sure to first check the vector table definition when setting up a HEW project. Since a
file containing the template for the interrupt processing function is generated, edit this file. Note also the interrupt
processing format for SH-1 and SH-2 is different than that for SH-3 and SH-4, and the files generated by HEW are
different.

• For SH-1 and SH-2

Interrupt processing requires: 1) the interrupt processing function, 2) the vector table, and 3) initialization of the interrupt
mask bit for the status register. As an example for SH-1 and SH-2, processing for the IRQ0 interrupt cause is specified in
the SH7020 project.

1. Interrupt processing function

HEW comes with an empty interrupt processing function. The intprg.c file contains a definition for void INT_IRQ0(void).
You can use this to specify IRQ0 processing. Note that #pragma interrupt needs to be specified for the interrupt processing
function. This is performed using vect.h, which does not need to be changed.

2. Vector table

This can be used as generated by HEW, and does not need to be edited. The vector table is void *INT_Vectors[], in
vecttbl.c. With SH-1 and SH-2, when an interrupt occurs, control moves to one of the functions registered in the vector
table. The vector number for IRQ0 is 64, as can be confirmed by checking the hardware documentation. When an interrupt
occurs due to the IRQ0 interrupt cause, a function in INT_Vectors[60] is called (60 = 64 - 4). Since a function named
INT_IRQ0 is registered in INT_Vectors[60], INT_IRQ0 is executed when an interrupt is caused by IRQ0.

//intprg.c

// 64 Interrupt IRQ0

void INT_IRQ0(void)

{

/* Specify processing here */

}

// vect.h

// 64 Interrupt IRQ0

#pragma interrupt INT_IRQ0

extern void INT_IRQ0(void);

void *INT_Vectors[] = {

// 4 Illegal code

 (void*) INT_Illegal_code,

...

// 64 Interrupt IRQ0

 (void*) INT_IRQ0,

...

};

Section 11 Q & A

Rev.4.00 2007.02.02 11-53
REJ05B0463-0400

3. Initializing the interrupt mask bit of the status register

For interrupt processing to be used, the interrupt mask bit of the status register must be properly initialized. In resetprg.c,
set SR_Init to an appropriate value from 0x000000F0. In PowerON_Reset_PC, set_cr can be used to set the interrupt mask
bit of the status register.

• For SH-3 and SH-4

For SH-3 and SH-4, interrupt processing also requires: 1) the interrupt processing function, 2) the vector table, and 3)
initialization of the interrupt mask bit for the status register. As an example for SH-3 and SH-4, processing for the IRQ0
interrupt cause is specified in the SH7705 project.

1. Interrupt processing function

Since HEW comes with an empty interrupt function, delete it and define a new function. Because _INT_IRQ0 is defined
in intprg.src, delete it, as well as the .global INT_IRQ0 specification in vect.inc. Then, use the C language as usual to
define void INT_IRQ0(void). You do not need to specify #pragma interrupt.

2. Vector table

This can be used as generated by HEW, and does not need to be edited. The vector table is _INT_Vectors in vecttbl.src.
With SH-3 and SH-4, when an interrupt occurs, control moves to IRQHandler in vhandler.src. The address of the interrupt
processing routine is calculated from the value of the interrupt event register, and then control moves to the routine. The
exception code for IRQ0 is H'600, as can be confirmed by checking the hardware documentation. The offset from
INT_Vectors is H'B8 obtained from the expression: {(H'600 - H'40)} / 4. Since the element size of INT_Vectors is 4,
INT_IRQ0, the 46th element (H'B6 / 4 = 46) of INT_Vectors, is called as the interrupt routine. IRQHandler processing is
as follows:

(1) An exception code is obtained from the interrupt event register.

(2) The INT_Vectors address is obtained.

(3) The address of the interrupt processing routine is calculated.

(4) The interrupt mask is obtained.

(5) The interrupt mask is set in ssr.

(6) The address of the interrupt processing routine is set in spc.

(7) Jump is performed to the interrupt processing routine, using rte.

#define SR_Init 0x000000F0

;intprg.src

...

;H'5E0 H-UDI

_INT_H_UDI

;H'600 IRQ0 ; Delete this

_INT_IRQ0 ; Delete this

;H'620 IRQ1

_INT_IRQ1

...

;vect.h

...

;H'5E0 H-UDI

.global _INT_H_UDI

;H'600 IRQ0 ; Delete this

.global _INT_IRQ0 ; Delete this

;H'620 IRQ1

.global _INT_IRQ1

...

Section 11 Q & A

Rev.4.00 2007.02.02 11-54
REJ05B0463-0400

3. Initializing the interrupt mask bit of the status register

Like SH-1 and SH-2, the interrupt mask bit of the status register must be properly initialized for SH-3 and SH-4. In
resetprg.c, set SR_Init to an appropriate value from 0x000000F0. In PowerON_Reset_PC, set_cr can be used to set the
interrupt mask bit of the status register.

 .org H'500

_IRQHandler:

 PUSH_EXP_BASE_REG

;

 mov.l #INTEVT,r0 ; set event address -(1)

 mov.l @r0,r1 ; set exception code

 mov.l #_INT_Vectors,r0 ; set vector table address -(2)

 add #-(h'40),r1 ; exception code - h'40

 shlr2 r1

 shlr r1

 mov.l @(r0,r1),r3 ; set interrupt function addr -(3)

;

 mov.l #_INT_MASK,r0 ; interrupt mask table addr

 shlr2 r1

 mov.b @(r0,r1),r1 ; interrupt mask

 extu.b r1,r1 -(4)

;

 stc sr,r0 ; save sr

 mov.l #(RBBLclr&IMASKclr),r2 ; RB,BL,mask clear data

 and r2,r0 ; clear mask data

 or r1,r0 ; set interrupt mask

 ldc r0,ssr ; set current status -(5)

;

 ldc.l r3,spc -(6)

 mov.l #__int_term,r0 ; set interrupt terminate

 lds r0,pr

;

 rte -(7)

 nop

;

 .pool

 .end

#define SR_Init 0x000000F0

Section 11 Q & A

Rev.4.00 2007.02.02 11-55
REJ05B0463-0400

11.1.42 Common Invalid Instruction Exceptions That Occur When Programs Are Run for an Extended Period of

Time

Question

Once the device has been running for 10 minutes to 2 hours, a common invalid instruction exception occurs, and a reset is
necessary. Is there some way to analyze from where the problem is occurring?

Answer

Ultimately, this means that a common invalid instruction is occurring, but the system may lose control and cause a
common invalid instruction exception due to the following reasons. If the system loses control after an extended period of
operation, (2) is very likely.

(1) An unintended interrupt is being performed.

(2) A stack overflow is corrupting valid RAM data.

(3) A problem exists with the board environment (such as a data conflict or memory software error).

To find the cause of the problem, perform the following and operate the device:

• Enable instruction tracing.

• Set breakpoints for the interrupt function jumped to during the common invalid instruction exception.

Once the device is operating and the common invalid instruction exception occurs, processing will stop at the breakpoint
set for the interrupt function. When this occurs, analyze the status of the instruction trace, and determine the cause of the
problem.

Use the following analysis method when a stack overflow is causing the problem:

• Set read/write break access for the address immediately before the address of the start of the stack area.

Once the device is operating and an access occurs that overflows the stack, processing will stop at the breakpoint set above.
When this occurs, if the access instruction is a stack access instruction, the cause of the problem is most likely a stack
overflow.

Section 11 Q & A

Rev.4.00 2007.02.02 11-56
REJ05B0463-0400

11.1.43 When the Result of an Integer Calculation Differs from the Expected Value

Question

Sometimes, when the results of an integer multiplication are substituted for a variable of the long long type, an unexpected
value is returned.

When I change 60000*70000 to 60000*30000, the correct value is obtained.

Why is an incorrect value obtained when the results of multiplication exceed the int value, even when substitution is
performed to a long long type variable?

Example1:

long long l_max;

 :

 l_max=60000*70000;

Example2:

long long l_max;

 :

int test=70000;

 :

 l_max=60000*test;

Answer

Even when the variable substituted is of the long long type, the calculated integer is handled as an int type (4 bytes) when
specified as a constant.

As such, 60000*70000 becomes 0xFA56EA00 during multiplication, but when substitution to the long long type is
performed, sign extension occurs, and it becomes 0xFFFFFFFFFA56EA00.

Since 60000*30000 becomes 0x6B49D200, no sign extension occurs, it becomes 0x000000006B49D200, and the proper
value is obtained.

To obtain the expected calculation results, you need to specify LL after the constant value so that the compiler explicitly
recognizes that the value is a long long type.

Example1:

long long l_max;

 :

 l_max = 60000LL * 70000LL; // Specify LL after one or both constants.

Example2:

long long l_max;

 :

int test=70000;

 :

 l_max = 60000LL * test; // Specify LL after constants.

Section 11 Q & A

Rev.4.00 2007.02.02 11-57
REJ05B0463-0400

11.2 Linkage Editor

11.2.1 An "Undefined symbol" Message Appears on Linking

Question
At linkage, an "undefined symbol" message appears. Why is this?

What does it mean?

Answer
Please check to make sure that libraries are being linked. Also check whether functions which have been declared or used
actually exist in code. For details, refer to section 3.15.2 (2), Important Information on Linking.

11.2.2 A "RELOCATION SIZE OVERFLOW" Message Appears at Linkage

Question
On linking, I receive a "RELOCATION SIZE OVERFLOW" warning message. Also, how do I go about checking for
missing section address specifications?

Answer
Check whether limits are not exceeded by the specifications #pragma abs16, #pragma gbr_base, or #pragma gbr_base1.

Section addresses are specified by section name using the START command; sections for which no specification is made
are placed after the last section for which an address is specified.

Such errors in programming tend to occur particularly frequently when there are numerous section names.

If there are sections not specified by the START command, this command causes a warning to be output.

(1) Message example
The following is an example of options and message output by the linkage editor.

input sample.obj

input low/__main.obj

input low/__exit.obj

library lib/shclib.lib

library low/shclow.lib

output sample.abs

form a

entry _$main

start C,B,D,P/0400 (specifications for $G0 and $G1 are missing)

;start C,B,D,$G0,$G1,P(0400) (parameter specification for normal termination)

Section 11 Q & A

Rev.4.00 2007.02.02 11-58
REJ05B0463-0400

** L1120 (W) Section address is not assigned to "$G0"

** L1120 (W) Section address is not assigned to "$G1"

LINKAGE EDITOR COMPLETED

11.2.3 A "SECTION ATTRIBUTE MISMATCH" Message Appears at Linkage

Question
On linking, a "SECTION ATTRIBUTE MISMATCH" warning message appears. What should I do about it?

Answer
This error may be caused by any of the following.

(1) Different alignments are specified for the same section.
Check whether different alignments have not been specified for the same section name.

(2) An attempt is made to link an object compiled with the "-cpu=sh4" option and an object compiled using a different
cpu option.

On compiling using the cpu=sh4 option*, each section is unconditionally set to aligndata8. Consequently alignment is
different with objects compiled using other cpu options. In such cases also, the ALIGN_SECTION option/subcommand of
the linkage editor can be used to avoid this.

(3) The modification shown in Answer 2 in 11.2.4, Transfer to RAM and Execution of a Program, meets all of the
following conditions. Note that you can ignore any warnings output.

(a) The name of the program section P was changed by using the section option of the C/C++ compiler or other means.

(b) The section in (a) above is specified as the transfer source section.

Note: * On compiling using the cpu=sh4 option, each section is unconditionally set to aligndata8 (Ver.5 or lower).
Memory areas may increase between sections as a result of the eight-byte alignment.

Warning messages are output because the $G0 and $G1
section names are not defined.

Section 11 Q & A

Rev.4.00 2007.02.02 11-59
REJ05B0463-0400

11.2.4 Transfer to RAM and Execution of a Program

Question
I want to transfer my program to RAM, from which execution is faster; how do I proceed?

<Operating environment>

Figure 11.4 Transferring a Program from ROM to RAM

<Details>

(1) Start the program resident in ROM.

(2) Transfer some of the sections of the program's own code to RAM.

Answer1
When the program code must be copied to a fixed address in RAM, as with initialization data, the ROM support function
of the linker can be used to execute the program from RAM (at linkage, address resolution occurs, and so it is not possible
to determine the address in RAM and copy the program code at runtime).

Figure 11.5 Example of Section Configuration

(2)Transfer

ROM RAM

(1) Start

VECT

INIT

INT

C

D

Section name

P

X

.

.

.

.

Transferred at runtime

10000000

Address

0

0F000000

.

.

Section 11 Q & A

Rev.4.00 2007.02.02 11-60
REJ05B0463-0400

An example of a program with section configuration as in figure 11.5 appears below.

C language part

/**/

/* file name "init.c" */

/*--*/

/* Compile option initializes program section names */

/**/

#include "sample.h" /* Includes the sample.h file of section 2 */

extern int *_B_BGN,*_B_END;

extern int *_P_BGN; /* Start address of section P */

extern int *_X_BGN; /* Start address of section X */

extern int *_X_END; /* End address of section X */

extern void _INITSCT(void);

extern void _INIT();

extern void main();

void _INIT()

{

 _INITSCT();

 main();

 for (; ;)

 ;

}

void _INITSCT(void)

{

 int *p,*q;

 for (p = _B_BGN; p < _B_END; p++)

 *p = 0;

 /* copy from section P to section X */

 for (p = _X_BGN, q = _P_BGN; p < _X_END; p++, q++)

 *p = *q;

}

/**/

/* file name "main.c" */

/*--*/

/* Program section name is "P" by default */

/**/

int a = 1;

int b;

Section 11 Q & A

Rev.4.00 2007.02.02 11-61
REJ05B0463-0400

const int c = 100;

void main(void)

{

 /* this routine is executed from the copy destination (RAM) */

 for (; ;)

 ;

}

/**/

/* file name "int.c" */

/**/

#include "sample.h" /* Includes the sample.h file of section 2 */

#include "7032.h" /* Includes the 7032.h file of section 2 */

extern int a; /* section D code */

extern int b; /* section B code */

extern const int c; /* section C code */

#pragma interrupt(IRQ0, inv_inst)

/**/

/* interrupt module IRQ0 */

/**/

extern void IRQ0(void)

{

 a = PB.DR.WORD;

 PC.DR.BYTE = c;

}

/**/

/* interrupt module inv_inst */

/**/

extern void inv_inst(void)

{

 return;

}

Section 11 Q & A

Rev.4.00 2007.02.02 11-62
REJ05B0463-0400

Assembly language code part

;**

;* file name "sct.src" *

;**

 .SECTION P,CODE,ALIGN=4

 .SECTION X,CODE,ALIGN=4

 .SECTION B,DATA,ALIGN=4

 .SECTION C,DATA,ALIGN=4

__P_BGN: .DATA.L (STARTOF P) ; Start address of section P

__X_BGN: .DATA.L (STARTOF X) ; Start address in RAM of section P

__X_END: .DATA.L (STARTOF X)+(SIZEOF X) ; End address in RAM of section P

__B_BGN: .DATA.L (STARTOF B) ; Start address of section BBS

__B_END: .DATA.L (STARTOF B)+(SIZEOF B) ; End address of section BBS

 .EXPORT __P_BGN

 .EXPORT __X_BGN

 .EXPORT __X_END

 .EXPORT __B_BGN

 .EXPORT __B_END

 .END

;**

;* file name "vect.src" *

;**

 .SECTION VECT,DATA,ALIGN=4

 .IMPORT __INIT

 .IMPORT _inv_inst

 .IMPORT _IRQ0

 .DATA.L __INIT

 .DATA.L H'FFFFFFC

 .ORG H'0080

 .DATA.L _inv_inst

 .ORG H'0100

 .DATA.L _IRQ0

 .END

Command line commands are as follows.

Section 11 Q & A

Rev.4.00 2007.02.02 11-63
REJ05B0463-0400

Command specifications

shcΔ-debugΔ-section=P=INITΔinit.c
shcΔ-debugΔ-section=P=INTΔint.c
shcΔ-debugΔmain.c
asmshΔsct.srcΔ-debug
asmshΔvect.srcΔ-debug
optlnkΔ-nooptimizeΔ-sub=rom.sub

Linker option file

;**

;* file name "rom.sub" *

;**

sdebug

input vect, sct, init, int, main

ROM (P,X) ; Address resolved so that section P is assigned to X

start VECT/0,INIT,INT,P,C,D/10000000,X/0f000000

 ; VECT, INIT, INT, P, C, D are in ROM, X is in RAM

output sample.abs

list sample.map

exit

By means of the above code, the program of section P is copied to section X and executed.

The section INIT is the routine which performs the copying, and so must be separate from the routine to be copied. Here
the main program (section P) is run from the copy destination.

Section 11 Q & A

Rev.4.00 2007.02.02 11-64
REJ05B0463-0400

Answer 2

With HEW version 2.0 or later, you can use the ROM support function of the optimization linkage editor to ease copying a
program section during execution to a fixed address in RAM (decided during linkage), and execute the program from
RAM.

First, to transfer the program section to be executed from RAM during startup, specify the address of the section. This
processing is added to the dbsct.c file generated by HEW. At this point, the code in the PXX section is transferred to the
XX section. Add specifications as follows.

After this processing is performed, at startup a copy is sent from the PXX section to the XX section.

Use the optimization linkage editor to specify the start address of the transfer destination section XX.

Choose [Build -> SuperH RISC engine Standard Toolchain... -> Optimization Linker]. On the opened page, select a
category section, and click the [Edit] button to display a dialog box for the section settings.

Figure 11.6 Section Settings Dialog Box

#pragma section $DSEC

static const struct {

 char *rom_s; /* Start address in ROM of the initialized data section */

 char *rom_e; /* End address in ROM of the initialized data section */

 char *ram_s; /* Start address in RAM of the initialized data section */

}DTBL[]= {{__sectop("D"), __secend("D"), __sectop("R")},

 {__sectop("PXX"),__secend("PXX"),__sectop("XX")}};

#pragma section $BSEC

static const struct {

 char *b_s; /* Start address of the uninitialized data section */

 char *b_e; /* End address of the uninitialized data section */

}BTBL[]= {__sectop("B"), __secend("B")};

The above are settings for the PXX section and XX section

Section 11 Q & A

Rev.4.00 2007.02.02 11-65
REJ05B0463-0400

Here, set up the PXX section and XX section.

Choose [Build -> SuperH RISC engine Standard Toolchain -> Optimization linker]. On the opened page, select [Output]
from [Category] and [Sections for mapping from ROM to RAM] from [Option item] to set up the mapping from PXX to
XX.

With these settings, the program can be executed from RAM.

Figure 11.7 Optimization Linker Dialog Box

Notes:

In the Ver.9 compiler or later, by selecting the enable_register option, variables with the register storage class specification
can be allocated preferentially to the registers. (The enable_register option isn't selected in Ver.9 compiler or later)

With improvements to HEW2.0 or later, messages are no longer output ordinarily, but in the following cases, the same
warning message as HEW1.2 (L1323 (W) Section attribute mismatch: "FXX") may be output.

When the above setting is done in HEW 1, 2, the Inter-Module Optimization Tool may output a warning message (1300
SECTION ATTRIBUTE MISMATCH IN ROM OPTION/SUBCOMMAND(XX)).

This reason is that a problem section is specified in the __sectop and __secend operations.
This warning can be ignored.

(1) The name of the program section P was changed by using the section option of the C/C++ compiler or other means.

(2) The section in (1) above is specified as the transfer source section.

Section 11 Q & A

Rev.4.00 2007.02.02 11-66
REJ05B0463-0400

11.2.5 Fixing Symbol Addresses in Certain Memory Areas for Linking

Question

After fixing a program in internal ROM, I want to develop the program for external memory, and in future want to update
only the external memory program.

Answer

When fixing a program in internal ROM, the link command fsymbol can be used to output a definition file of externally
defined labels for the internal ROM.

A definition file is created by the assembler EQU statement, and so when creating an external memory program, this file
can be assembled and input to reference a fixed address in ROM.

Example of Use:

Figure 11.8 illustrates an example in which the feature A of a product A is modified to the feature B, to develop the
product B. Using this, by resolving the addresses of symbols in shared ROM, the common ROM can be used.

Figure 11.8 Example of Use of the Feature for Output of Symbol Addresses

Example of specification of externally defined symbol file output

optlnkΔROM1,ROM2,ROM3Δ-output=FUNCAΔ-fsymbol=sct2,sct3

The externally defined symbols sct2 and sct3 are output to a file.

Example of file output (FUNCA.sym)

;H SERIES LINKAGE EDITOR GENERATED FILE 1997.10.10

;fsymbol = sct2, sct3

;SECTION NAME = sct1

.export sym1

sym1: .equ h'00FF0080

.export sym2

sym2: .equ h'00FF0100

;SECTION NAME = sct2

Product A Product B

Common
ROM

Common
functions

Feature A

Common data

ROM1

ROM2

ROM3

Linkage editor

A
ssem

bler

Feature B

Common
functions

Feature B

Common data

ROM4

ROM2

ROM3

Externally
defined
symbols

FUNCA.sym

Section 11 Q & A

Rev.4.00 2007.02.02 11-67
REJ05B0463-0400

.export sym3

sym3: .equ h'00FF0180

 .end

Example of specification of assembly and relinking

asmshΔROM4

asmshΔFUNCA.sym

optlnkΔROM4,FUNCA

The externally referenced symbols in ROM4 can be resolved without linking the object files ROM2, ROM3.

Note: When using this procedure, the symbols within feature A cannot be referenced from common functions.

Section 11 Q & A

Rev.4.00 2007.02.02 11-68
REJ05B0463-0400

11.2.6 Using Overlays

Question

I want to use an overlay in my program.

At runtime, I want to transfer a program from ROM to RAM for execution, but I want to execute two or more routines that
will not be executed simultaneously at the same RAM address.

Answer

For information on transferring programs from ROM to RAM for execution, refer to section 11.2.4, Transfer to RAM and
Execution of a Program.

The essence of the program is as follows, but the following procedure is required.

• Example

The following is an example of transfer of multiple programs or data sets, which do not exist simultaneously, from
external ROM to faster internal RAM for execution.

Figure 11.9 Assigning Multiple Sections to the Same Address

Command example

optlnkΔ-subcommand=test.sub

Contents of test.sub

INPUT A,B

ROM Sct1=RAM_sct1

ROM Sct3=RAM_sct3

ROM Sct2=RAM_sct2

ROM Sct4=RAM_sct4

START Sct1,Sct2,Sct3,Sct4/800000

START RAM_sct1,RAM_sct3:RAM_sct2,RAM_sct4/0F00000

H'F00000

H'FFFFFF

Sct1

Sct2

Sct3

ROM

Sct4

RAM_sct1

RAM_sct3

RAM

RAM_sct2

RAM_sct4

RAM
H'800000

H'8FFFFF

State 1 State 2

Copied at runtime

File A

File B

Section 11 Q & A

Rev.4.00 2007.02.02 11-69
REJ05B0463-0400

Explanation

RAM_sct1 and RAM_sct2 are assigned from the same address. RAM_sct3 is concatenated with RAM_sct1, and
RAM_sct4 with RAM_sct2.

11.2.7 Specifying Error Output for Undefined Symbols

Question

I want to have an error message output, and prevent output of the load module, if there are undefined symbols at link time.

Answer

The UDFCHECK option should be specified at link time.

By this means, if there are any undefined symbols present, error message 221 will be output and output of the load module
will be suppressed.

(If the UDFCHECK option/subcommand is not specified, the warning message 105 is displayed, and the load module is
generated.)

In the Linkage Editor Ver7 or later, however, the UDFCHECK option is eliminated and the UDFCHECK is always
enabled.

11.2.8 Unify Output Forms of S-Type File

Question

I would like to unify mixed output forms S1, S2, S3 of S type file.

Answer

These can be output by specific data record (S1, S2, S3) irrespective of load address by options.

Example: optlnk test.abs -form=stype -output=test.mot -record=s2 ; All data records are output by S2.

11.2.9 Dividing an Output File

Question

I would like to divide an output file for each ROM devices into some files.

Answer

If specify a start address and termination address in the end of an output file name, an object of specified area can be
output. An output file name can be specified more than two.

Example: An area of 0x0-0xFFFF is output into optlnk test.abs -form=stype -output=test1. mot=0-FFFF
test2.mot=10000-1FFFF; test1.mot, an area of 0x10000-0x1FFFF is output into test2.mot.

Section 11 Q & A

Rev.4.00 2007.02.02 11-70
REJ05B0463-0400

ELF/DWARF
format

converter

Optimizing
Linkage editor

Debugger
SYSROF

load
module

ELF/DWARF1
load

module

ELF/DWARF2
load

module

Hexdecimal
load

module

SType
load

module

Binary
load

module

For ROM programmer

11.2.10 Execution of optlinksh.exe on Windows 2000

Question

If "optlnksh.exe" is executed in Windows2000, [2020 SYNTAX ERROR] is output.

Answer

Please confirm whether there is a space in environment variable SHC_TMP.

It can be operated correctly in shc even SHC_TMP has a space, but an error (2020 SYNTAX ERROR) occurs in optlnksh.
Temporarily directory in Windows 2000 is C:\Documents and Settings\foo\Local Settings\Temp (the foo is user name).

11.2.11 Output File Format of Optimizing Linkage Editor

Question

Tell me about the load module file format available to a ROM Programmer.

Answer

The load modules output by the optimizaton linkage editor are shown below:

When creating a load module for a ROM Programmer, output it in the hexdecimal or SType format. In this case, no
debugging information is output.

• Optimization linkage editors supporting the C/C++ Compiler V7.1, V8.0 output load modules in the ELF/DWARF2
 format at debugging. The load modules created by earlier versions is output in either the SYSROF or ELF/DWARF1
 format, and so the format should be changed with the ELF/DWARF format converter to use in the latest version.

Figure 11.10 Optimizing Linkage Editor Output Load Module

Section 11 Q & A

Rev.4.00 2007.02.02 11-71
REJ05B0463-0400

11.2.12 Method for Calculating the Program Sizes (ROM and RAM)

Question

Can you tell me how to measure the ROM and RAM sizes properly?

Answer

You can check them in the list file output by the optimization linkage editor.

Specification method

From the dialog box menu: [Optimization Linker] tab -> [Category]: [List] linkage list output

From the command line:-list=file-name

Check method

Specify this option to output the following list file (*.map).

In this case, since the code attribute section is from DVECTTBL, DINTTBL, PIntPRG, PResetPRG, P, C$BSEC,
C$DSEC, and D, the ROM size is 0x00006a8.

The RAM area is from B, R and S, and therefore its size is 0x0000052c.

*** Mapping List ***

SECTION START END SIZE ALIGN

DVECTTBL

 00000000 0000000f 10 4

DINTTBL

 00000010 000003ff 3f0 4

PIntPRG

 00000400 00000557 158 4

PResetPRG

 00000800 00000833 34 4

P

 00001000 000010db dc 4

C$BSEC

 000010dc 000010e3 8 4

C$DSEC

 000010e4 000010ef c 4

D

 000010f0 0000111b 2c 4

B

 7c000000 7c0003ff 400 4

R

 7c000400 7c00042b 2c 4

S

 7c000500 7c0005ff 100 4

Section 11 Q & A

Rev.4.00 2007.02.02 11-72
REJ05B0463-0400

11.2.13 When Section Alignment Mismatch Is Output

Question

When I input a binary file like the following, and reference the section name of the binary file via a section address
operator, the L1322 warning is output. What can I do to avoid this?

[Option specified]

binary=project.bin(BIN_SECTION)

[C/C++ program]

void main(void)

{

 unsigned char *s_ptr;

 s_ptr = __sectop("BIN_SECTION");

 dummy(s_ptr);

}

Answer

When the section address operators (__sectop and __second) are used, a section with the size of 0 and with the boundary
alignment number of 4 is created in the code generated by the compiler, as shown below.

In this case, a binary section is input, but the boundary alignment number for the entity of the binary section is 1. Since
there is more than one boundary alignment number for the same section name, the L1322 warning message is output.

Note that despite this warning message being output, program operation is not affected.

This warning message can be avoided by specifying a boundary alignment number when the binary file is input with the
optimization linker.

[Code when __sectop is used]

_main: ; function: main

 ; frame size=0

 .STACK _main=0

 MOV.L L13+2,R4 ; STARTOF BIN_SECTION

 BRA _dummy

 NOP

...
 .SECTION . BIN_SECTION,DATA,ALIGN=4 ; Section with the size of 0, and with the

 boundary alignment number of 4

 .END

Section 11 Q & A

Rev.4.00 2007.02.02 11-73
REJ05B0463-0400

Example of how to avoid the warning

From the dialog box menu: [Optimization Linker] tab -> [Category]: [Input] option item: binary file

From the command line: binary=binary_data.bin(BIN_SECTION:4)

Figure 11.11 Add binary file Dialog Box

Remarks

Specification of a boundary alignment number when a binary file is input is supported by the Linkage Editor of version 9
or later.

For details, see section 9.1.1(4) Binary files.

Section 11 Q & A

Rev.4.00 2007.02.02 11-74
REJ05B0463-0400

11.3 Standard Library

11.3.1 Reentrant Function and the Standard Library

Question
Are there any precautions of which I need to be aware for making a function reentrant?

Answer
Functions which use global variables are not reentrant.

Moreover, even when a function is created as a reentrant function, if the standard library is used employing the following
standard include file, global variables are used and so the function is no longer reentrant.

Below a list of reentrant library functions is indicated. In the table, the _errno variable is set for functions denoted by
triangles; if _errno is not referenced within the program, reentrant execution is possible.

You can also make the standard library reentrant. For details about how to make the standard library reentrant, see section
11.3.2, I would like to use reentrant library function in standard library file.

Table 11.14 List of Reentrant Library Functions (1)

 Reentrant column O: Reentrant; X: Non-reentrant; Δ: _errno variable set

No. Standard
Include

File

 Function
Name

Reentrant No. Standard
Include

File

 Function
Name

Reentrant

1 stddef.h 1 offsetof 18 acos Δ

2 assert.h 2 assert x 17 asin Δ

3 isalnum 18 atan Δ

4 isalpha 19 atan2 Δ

5 iscntrl 20 cos Δ

6 isdigit 21 sin Δ

7 isgraph 22 tan Δ

8 islower 23 cosh Δ

9 isprint 24 sinh Δ

10 ispunct 25 tanh Δ

11 isspace 26 exp Δ

12 isupper 27 frexp Δ

13 isxdigit 28 ldexp Δ

3 ctype.h

14 tolower

4 math.h

29 log Δ

 15 toupper 30 log10 Δ

Section 11 Q & A

Rev.4.00 2007.02.02 11-75
REJ05B0463-0400

Table 11.14 List of Reentrant Library Functions (2)

 No. Standard
Include

File

 Function
Name

Reentrant

No. Standard
Include

File

 Function
Name

Reentrant

31 modf Δ 61 fputs x

32 pow Δ 62 getc x

33 sqrt Δ 63 getchar x

34 ceil Δ 64 gets x

35 fabs Δ 65 putc x

36 floor Δ 66 putchar x

4 math.h

37 fmod Δ 67 puts x

38 setjmp 68 ungetc x 5 setjmp.h

39 longjmp 69 fread x

40 va_start 70 fwrite x

41 va_arg 71 fseek x

6 stdarg.h

42 va_end 72 ftell x

43 fclose x 73 rewind x

44 fflush x 74 clearerr x

45 fopen x 75 feof x

46 freopen x 76 ferror x

47 setbuf x

7 stdio.h

77 perror x

48 setvbuf x 78 atof Δ

49 fprintf x 79 atoi Δ

50 fscanf x 80 atol Δ

51 printf x 81 strtod Δ

52 scanf x 82 strtol Δ

53 sprintf Δ 83 rand x

54 sscanf Δ 84 srand x

55 vfprintf x 85 calloc x

56 vprintf x 86 free x

57 vsprintf Δ 87 malloc x

58 fgetc x 88 realloc x

7 stdio.h

59 fgets x

8 stdlib.h

89 bsearch

 60 fputc x 90 qsort

Section 11 Q & A

Rev.4.00 2007.02.02 11-76
REJ05B0463-0400

Table 11.14 List of Reentrant Library Functions (3)
No. Standard

Include
File

 Function
Name

Reentrant No. Standard
Include

File

 Function
Name

Reentrant

91 abs 103 memchr

92 div Δ 104 strchr

93 labs 105 strcspn

8 stdlib.h

94 ldiv Δ 106 strpbrk

95 memcpy 107 strrchr

96 strcpy 108 strspn

97 strncpy 109 strstr

98 strcat 110 strtok x

99 strncat 111 memset

100 memcmp 112 strerror

9 string.h

101 strcmp

9 string.h

113 strlen

 102 strncmp 114 memmove

Section 11 Q & A

Rev.4.00 2007.02.02 11-77
REJ05B0463-0400

11.3.2 I would like to use reentrant library function in standard library file.

Question

I would like to use reentrant library function in standard library file.

Answer

There are reentrant function lists on [11.3.1 reentrant library]. Reentrant function can be generated by setting of library
generator in SHC V7.0 or later.

• On command line, use the lbgsh-reent option.

• The setting in the HEW is shown in figure 11.12.

Figure 11.12 Standard Library Dialog Box

11.3.3 There is no standard library file. (SHC V6, 7, 8)

Question

There is no standard library file which is supported in SHC V6 or later. (SHC V6, 7, 8).

Answer

Since SHC V6, the specification of the standard library was changed. and the options become to be able to be specified.
This enabled the user to have the standard libraries turned by the options. Please generate a standard library file by using a
library generator since a standard library file has not been attached to a product in SHC V6 or later.

Section 11 Q & A

Rev.4.00 2007.02.02 11-78
REJ05B0463-0400

11.3.4 Warning Message on Building Standard Library

Question

[L1200(W) Backed up file "a.lib" into "b.lbk"] may be output when generate a standard library file.

Answer

This is just warning message which HEW will make backup files when it generates new library files.

If you select "Build a library file (option changed)" at [Standard Library] mode: in HEW/[OPTIONS]/[SuperH RISC
engine Standard Toolchain], the warning will not be issued. When you select "BUILD ALL" in HEW, Linkage editor
generates a standard library at first. For the first project you created, it is necessary to build a standard library, and so you
must select the “Build a library file” in the [Standard Library] mode of the HEW/[OPTIONS]/[SuperH RISC engine
Standard Toolchain.].

However, a standard library is already created in the file for which BUILD ALL is once specified, and so the automatic
generation of a standard library is not necessary for this file. In this case, since a standard library is automatically
generated for each BUILD ALL specification, the existing library is backed up.

If you select the “Build a library file (option changed)”, this warning message can be avoided. Also, this can save the time
required for automatically generating a standard libray on BUILD ALL.

Figure 11.13 Standard Library Dialog Box

Section 11 Q & A

Rev.4.00 2007.02.02 11-79
REJ05B0463-0400

11.3.5 Size of Memory Used as Heap

Question

Tell me how to calculate the size of the memory used as heap.

Answer

The size of the memory used as heap is the total of memory areas assigned by the memory management library functions
(calloc, malloc, ralloc, new) in a C/C++ program. However, these functions use four bytes as management area each time
they are called. Calculate the heap size by adding this size to the size of the actually assigned area.

The compiler manages the heap in 1024 byte unit. Calculate the size of the area allocated as heap (HEAPSIZE) as follows:

HEAPSIZE = 1024 x n (n≥1)

(area size allocated by memory management library) + (Management area size≤HEAPSIZE)

The I/O library functions use the memory management library functions in internal processing. The size of the area
allocated during I/O is 516 bytes x maximum number of concurrently open files.

Note: The area freed by the memory management library function free or delete is reused by a memory management
library function for allocation. Even if the total size of the free area is sufficient, repeating allocations causes the
free area to be divided into smaller ones, making the allocation of newly requested large areas impossible. To
prevent this situation, use the heap area according to following suggestions.

a. Large sized areas should be allocated immediately after the program starts to run.

b. The size of the data area to be freed and reused should be constant.

Section 11 Q & A

Rev.4.00 2007.02.02 11-80
REJ05B0463-0400

11.3.6 Editing Library Files

Question

How can I edit an existing library file, so that I can re-use it?

Answer

Existing library files can be edited by using the options for the optimization linkage editor. The following explains each
editing function.

The H Series Librarian Interface is provided to launch the optimization linkage editor from the GUI.

Starting the H Series Librarian Interface

To start the H Series Librarian Interface, from HEW, choose [Tools -> H Series Librarian Interface].

(A) Changing the section names of the modules in the library

You can change the section names and place sections at a specific address for specific modules in the library.

(1) Open the appropriate library, and select the module that you would like to allocate to a specific address.

(2) Choose [Action -> Rename Section...] to display the following dialog box, and click the [After] button to change
the section name.

Figure 11.14 Rename Section Dialog Box

Section 11 Q & A

Rev.4.00 2007.02.02 11-81
REJ05B0463-0400

[For the command line]

optlnk –form=lib –lib=library-file-name -rename=name-of-the-module-in-the-library (P=P123)

(B) Swapping modules in the library and adding new modules to the library

You can swap library modules, as well as add new ones.

(1) Open the appropriate library, and choose [Action -> Add/Replace...].

(2) Open the module to be swapped, of the same name. If a module with a different name is opened, the module is
added.

[For the command line]

optlnk –form=lib –lib=library-file-name -replace=name-of-the-module-in-the-library

(C) Deleting modules in the library

You can delete library modules.

(1) Open the appropriate library, and select the module or modules you would like to delete.

(2) Choose [Action -> Delete...] to display the Delete dialog box, and the click the [Delete] button.

[For the command line]

optlnk –form=lib –lib=library-file-name -delete=name-of-the-module-in-the-library

(D) Extracting modules from the library

You can extract library modules.

(1) Open the appropriate library, and select the module or modules you would like to extract.

(2) Choose [Action -> Extract...] to display the following dialog box, set the output destination, and then click the
[OK] button.

(3) The module or modules are output to the set output destination (this is C:\ in the following example).

Section 11 Q & A

Rev.4.00 2007.02.02 11-82
REJ05B0463-0400

Figure 11.15 Extract Dialog Box

[For the command line]

optlnk –lib=library-file-name -extract=name-of-the-module-in-the-library -form=output-file-format

Note that the output format for this example is object.

Section 11 Q & A

Rev.4.00 2007.02.02 11-83
REJ05B0463-0400

11.4 HEW

11.4.1 Failure to Display Dialog Menu

Question

Tool option dialog boxes are not displayed correctly with the HIM and the HEW.

Answer

If an old release (such as 400.950a) of Windows®95 is used, an application error occurs when options in the C/C++
compiler, the Assembler, or the IM OptLinker are opened, and the HEW may aborts the operation abnormally or option
dialog boxes may not be displayed correctly. This problem is caused when the version of the COMCTL32.DLL file that is
located in the System directory of the Windows directory is too old. In this case, upgrade the Windows®95.

11.4.2 Linkage Order of Object Files

Question

I would like to specify an order of link of an object file on HEW.

Answer

Please add an object file by pushing [Add] and select the Show entry for: [Relocatable files and object files] from the
category [Input] in the Link/Library tab of the SuperH RISC engine Standard Toolchain. An object is linked in order
specified in this time.

Figure 11.16 Link/Library Dialog Box

SHC V.8.00 Release02 or later eases specifying the link order.

To display the dialog box for customizing the link order, choose [Build], and then [Specify link order].

Section 11 Q & A

Rev.4.00 2007.02.02 11-84
REJ05B0463-0400

Here, specify the link order. The items higher on the list are linked first.

Figure 11.17 Linkage Order Dialog Box

Section 11 Q & A

Rev.4.00 2007.02.02 11-85
REJ05B0463-0400

11.4.3 Specifying the MAP Optimization

Question

Specifying the MAP optimization will cause a warning message to appear.

Answer

If you check the “Include map file” in the C/C++ tab’s category: [Optimize] of the SuperH RISC engine Standard
Toolchain, the warning message shown in figure 11.18 appears. This is to automatically enable the “Generate map file” in
the Link/Library tab’s category: [Output].

Figure 11.18 C/C++ Dialog Box

Figure 11.19 Warning Message

Section 11 Q & A

Rev.4.00 2007.02.02 11-86
REJ05B0463-0400

11.4.4 Excluding a project file

Question

I would like to eliminate a project file from Build temporarily.

Answer

The file is eliminated from Build if choose [Exclude Build <file>] by pressing a right button of mouse onto the file of
"Projects" tab on work space window. If sending a file back to Build again, please choose [Include Build <file>] by
pressing a right button of mouse on the file of "Projects" tab on work space window.

Figure 11.20 Exclude Build Menu

Section 11 Q & A

Rev.4.00 2007.02.02 11-87
REJ05B0463-0400

11.4.5 Specifying the Default Options for Project Files

Question

I would like to automatically specify a default option into file when adding a project into file.

Answer

The list of files is displayed on the left of the SuperH RISC enging Standard Toolchain (see figure 11.21). Please open the
folder in file group in which Default Option is to be specified by the file list. "Default Options" icon is displayed in the
folder. Please choose an icon and click "OK" by specifying an option in the right side of an option dialog box. This option
can be applied when a file of the file group is first added to the project.

Figure 11.21 Default Options

11.4.6 Changing Memory Map

Question

A memory map can not be changed.

Answer

When a memory source of the memory window has been mapped, a memory map can not be changed in the system
configuration window. Please change a memory map after mapping of a memory resource was released.

Section 11 Q & A

Rev.4.00 2007.02.02 11-88
REJ05B0463-0400

11.4.7 How to Use HEW on Network

Question

(1) Can the HEW be installed on a network?

(2) Can projects and programs be installed on a network?

Answer

(1) The HEW system itself cannot be installed on a network.

(2) No problem. Be careful not to access a single file by plural users.

11.4.8 Limitations on File and Directory Names Created in HEW

Question

The message ”Error has occurred whilst saving file <filename>” is displayed at the HEW system startup. Why is it?

Answer

Files and directories created on the HEW system have limitations.

For the specifications of the following items, only half-width alphanumeric characters and half-width underlines can be
used:

• Names of the directories to be installed

• Names of the directories in which projects are to be created

• Project names

Section 11 Q & A

Rev.4.00 2007.02.02 11-89
REJ05B0463-0400

11.4.9 Failure of Japanese Font Display with the HEW Editor or HDI

Question

(1) Japanese fonts are not displayed with the HEW editor.

(2) Japanese characters are rotated 90 degrees with the HEW editor.

(3) The inter-module optimizer generates SYNTAX ERROR messages.

Answer

When coding Japanese with the HEW editor, specify Japanese font as follows:

<HEW2.0 or later>

Use Font of the Font tab in Tools-> Format Views.:

Figure 11.22 Font Dialog Box

Section 11 Q & A

Rev.4.00 2007.02.02 11-90
REJ05B0463-0400

If Japanese fonts are not correctly displayed with the HDI, modify as follows:

[Setup->Customize->Font…]

Figure 11.23 Font Dialog Box

11.4.10 How to Convert Programs from HIM to HEW

Question

How can I use a project created under HIM (Hitachi Integration Manager) on the HEW?

Answer

Projects can be converted from HIM to HEW using a tool called " HIM To HEW Project Converter” that is supplied with
the HEW system.

For details on this tool, refer to section 3, Converting a Project from HIM to HEW, in the Renesas High-performance
Embedded Workshop Release Notes.

Section 11 Q & A

Rev.4.00 2007.02.02 11-91
REJ05B0463-0400

11.4.11 Corresponding Device Not Available during HEW Project Setup

Question

When I attempted to use HEW to set up a project, the device I want to select was not available for selection. What should
I do?

Answer

Download Device Updater from the Renesas web site.

Device Updater is a tool for updating project files generated by HEW. Project support for new CPUs is performed in
order.

If the corresponding device still cannot be selected after the project files have been updated by Device Updater, the files
generated by HEW will have to be rewritten manually. For example, take the case of setting up the SH7018 project for the
SH-2 core. First, create a new project in HEW, with SH-2 selected for the CPU series, and Other selected for the CPU type.
Download the I/O register definition file from the Renesas web site, and add SH7018.H to the project. If Other was not
selected for the CPU type during project setup, rename SH7018.H to iodefine.h, overwriting the file of the same name, as
generated by HEW.

Also, when interrupt functions are used, files generated by HEW must be changed. For details, see section 11.1.41,
Specifying Interrupt Processing.

Section 11 Q & A

Rev.4.00 2007.02.02 11-92
REJ05B0463-0400

11.4.12 I want to use an old compiler (tool chain) in the latest HEW.

Question

I have an old compiler package. When I bought an Emulator, new HEW was bundled.

In order to Build and Debug with new HEW, I want to use an old tool chain in the new HEW.

Can I do that?

Answer

It depends on the version of the compiler package you are using. See below.

[SHC V.4 or previous]

< Build >

The tool chain cannot be registered in the latest HEW. Therefore, building by new HEW is not available.

< Debug >

 Absolute file (*.abs) cannot be used. You can only use S-type format file.

Moreover, debugging at C source level is not available. Only at assembler level is available.

[SHC V.5.0]

< Build >

The tool chain cannot be registered in the latest HEW. Therefore, building by new HEW is not available.

(Note)

"HIM to HEW Project Converter" is usable if you have SHC V.5.1 compiler package.

By using this tool, you can convert HIM project into HEW project. You can use SHC V.5.1 with new HEW after
conversion.

< Debug >

 Absolute file (*.abs) cannot be used. You can only use S-type format file.

Moreover, debugging program at C source level is not available. Only at assembler level is available.

Section 11 Q & A

Rev.4.00 2007.02.02 11-93
REJ05B0463-0400

[SHC V.5.1]

< Build >

The tool chain can be registered in the latest HEW. Therefore, building by new HEW is available.

But you cannot create new project with the latest HEW.

In case of creating new project, you must use HEW V.1 bundled with the older compiler package.

Once you create project by HEW V.1, you can open it with in new HEW.

< Debug >

 Absolute file (*.abs) cannot be used. You can only use S-type format file.

Moreover, debugging program at C source level is not available. Only at assembler level is available.

[SHC V.6]

< Build >

The tool chain can be registered in the latest HEW. Therefore, building by new HEW is available.

But you cannot create new project with the latest HEW.

In case of creating new project, you must use HEW V.1 bundled with the older compiler package.

Once you create project by HEW V.1, you can open it in new HEW.

< Debug >

 Absolute file (*.abs) can be used.

 By registering absolute file, debugging at C source level is available.

[SHC V.7 or later]

 <Build & Debug>

 There is no limitation. You can use all functions of new HEW.

Section 11 Q & A

Rev.4.00 2007.02.02 11-94
REJ05B0463-0400

Appendix A

Rev.4.00 2007.02.02 Appendix A-1
REJ05B0463-0400

Appendix A Rules for Naming Runtime Routines

The rules for naming function names of runtime routines are as follows.

(1) Rules for naming integer operations, floating point operations, sign conversion, and bit field functions

[operation name] [size] [sign] [r] [p] [nm]

[size] : b …1 byte

 : w …2 bytes

 : l …4 bytes

 : s …4 bytes (single-precision floating point)

 : d …8 bytes (double-precision floating point)

[sign] : s …signed

 : u …unsigned

[r] : _subdr, _divdr only; only when the order of parameter stack pushing is different from

 _subd, _divd respectively

[p] : Added only in peripheral processing

[nm] : No mask; added only in peripheral processing when there is no interrupt mask

 exception: _muli

Note: The [sign] identifier is added only for integer operations.

(2) Rules for naming conversion functions

 _[size]to[size]

[size] : i …Signed, 4 bytes

 : u …Unsigned, 4 bytes

 : s …Single-precision floating point

 : d …Double-precision floating point

(3) Rules for naming shift functions

 [sta] sft [direction] [sign] [number of bits]

[sta_] : Added only when the number of bits is added

[direction] : l …Left-shift

 : r …Right-shift

[sign]*1 : l …Logical shift

 : a …Arithmetic shift

[number of bits]*2: 0 to 31

Notes: 1. [sign] added only when [direction] is r.
2. [number of bits] added only when [sta_] is added.

(4) Rules for naming other functions

Memory area movement, character string comparison, and character string copy functions are special cases.

Appendix B

Rev.4.00 2007.02.02 Appendix B-2
REJ05B0463-0400

Appendix B Added Features

B.1 Features Added between Ver. 1.0 and Ver. 2.0

Table B.1 summarizes the features added to version 2.0 of the SHC compiler.

Table B.1 Summary of Features Added to Version 2.0 of the SHC Compiler

No. Feature Description

1 Support for SH7600 Series
In addition to the SH7000 Series, objects can be
created which use instructions for the SH7600
Series as well.

2 Position-independent code
SH7600 Series objects can be created with
program sections assigned to arbitrary
addresses.

3
Specification of output area for character
strings

An option can be used to select whether to place
character string data in a constant section
(ROM) or in a data section (RAM).

4 Comment nesting
An option is supported to specify whether
comments are nested or not.

5 Optimize for speed or for size
An option is provided to specify whether to
optimize for speed or for size at time of object
creation.

6 Support for section name switching
By using #pragma instructions midway through a
program, object output section names can be
switched.

7 mac embedded function
An embedded function is supported for
performing multiply-and-accumulate operations
on two arrays using the MAC instruction.

8 Embedded functions for system calls
Embedded functions are supported for making
direct system calls to the ITRON-specification
OS HI-SH7.

9
Single-precision elementary function
library

A single-precision elementary function library is
supported.

10 char-type bit fields char-type bit fields are supported.

Appendix B

Rev.4.00 2007.02.02 Appendix B-3
REJ05B0463-0400

B.2 Features Added between Ver. 2.0 and Ver. 3.0

Table B.2 summarizes the features added to version 3.0 of the SHC compiler.

Table B.2 Summary of Features Added to Version 3.0 of the SHC Compiler

No. Feature Description

1 Strengthened optimization
Optimization performance was greatly enhanced.

Also, provisions were made for selective use of the option
to optimize for speed or for size.

2 SH-3 support

An option was provided for generating objects for the
SH-3, and the little-endian format characteristic of the
SH-3 was also supported. Also, an SH-3 data prefetch
instruction was supported as an embedded function.

3 Extension of compiler limits
The number of files that can be compiled at once, the
maximum nesting levels for include files, and other
compiler limits were extended.

4
Support for Japanese character
codes in character strings

Provisions were added for character string data
containing shift-JIS and EUC Japanese character codes.

5
Specification of options using
files

Files can be used to specify command line options.

6 Utilization of the SH-2 divider
Division operation code is generated which makes use of
the SH-2 divider.

7 Inline expansion
Specifications can be added for inline expansion of user
routines written in C and assembly languages.

8
Use of short address
specifications

Variables can be specified for short addressing, including
two-byte addresses and GBR-relative data.

9
Control of register save/restore
operations

Statements can be added to suppress register
save/restore operations, to improve function speed and
size.

(1) Strengthened optimization

Optimization in ver. 3.0 provides options for emphasizing speed (the -SPEED option) and size (the -SIZE option), and
both types of optimization have been reinforced.

To enhance speed, loop optimization has been improved and inline expansion employed to improve execution speed by
about 10%, achieving an execution speed of 1 MIPS/MHz.

In order to reduce program size, instructions which shrink code size are generated and overlapping processing is combined
for significant improvements, to cut object size by approximately 20%. And, by using expansion features introduced in
ver.3.0 (8. Use of short address specifications, and 9. Control of register save/restore operations), object size can be further
reduced.

(2) SH-3 support

In addition to the SH-1 and SH-2, objects can now be created for the SH-3 (using the -CPU=SH3 option). Also, the
following features for the SH-3 are supported.

(a) An -ENDIAN option (-ENDIAN=BIG or LITTLE) corresponding to a feature for setting the order of bits in memory
is supported.

(b) A prefetch extended embedded function for generating a cache prefetch instruction (PREF) is supported.

Appendix B

Rev.4.00 2007.02.02 Appendix B-4
REJ05B0463-0400

(3) Extension of compiler limits

Compiler limits were extended as indicated in the following table.

Table B.3 Extended Compiler Limits

No. Description Ver.2.0 Ver.3.0

1
Number of source programs that can be compiled
at once

16 files unlimited

2 Number of source code lines per file 32,767 lines 65535 lines

3
Number of source code lines in an entire
compiled unit

32,767 lines unlimited

4 Maximum number of #include nesting levels 8 levels 30 levels

(4) Support for Japanese character codes in character strings

Shift-JIS and EUC Japanese character codes can also be included in programs as character string data.

When input codes are shift-JIS (-SJIS option), output codes are also shift-JIS; when input codes are EUC (-EUC option),
output codes are also EUC.

However, the graphical user interface currently does not support display of Japanese character code data.

(5) Specification of options using files

By using the -SUBCOMMAND option to specify a file name, options can be included in the specified file rather than on
the command line. As a result, numerous complex options need not be entered on the command line each time.

(6) Utilization of the SH-2 divider

The following options are supported to enable use of the SH-2 divider.

(a) Objects which do not use the divider can be generated through the -DIVISION=CPU option.
(b) Objects which use the divider can be generated by using the -DIVISION=PERIPHERAL option. During use of the

divider, interrupts are disabled.
(c) Objects which use the divider can be generated through the -DIVISION=NOMASK option. This assumes that the

divider will not be used during interrupt processing.

(7) Inline expansion

(a) Inline expansion of C functions
When the -SPEED option is used, the compiler automatically inline-expands small functions. Also, by using the -INLINE
option, the maximum size of functions for inline expansion can be modified. Inline expansion can also be explicitly specified
using a #pragma statement. The "#pragma inline" statement specifies inline expansion of a user function written in C.

Example (inline expansion of C function):

#pragma inline(func)

int func(int a,int b)

{

 return(a+b)/2;

}

main()

{

Appendix B

Rev.4.00 2007.02.02 Appendix B-5
REJ05B0463-0400

 i=func(10,20); /* expanded to i=(10+20)/2 */

}

(b) Inline expansion of an assembler function
The "#pragma inline_asm" option can be used to specify inline expansion of user functions written in assembly language.
However, when using "#pragma inline_asm" for inline expansion, the output of the compiler is assembly language source
code. In such cases debugging at the C language level is not possible.

Example (inline expansion of an assembler function):

#pragma inline_asm(rotl)

int rotl(int a)

{

 ROTL R4

 MOV R4,R0

}

main()

{

 i=rotl(i); /* set the variable i in the register R4, and expand the code for the function rotl */

}

(8) Use of short address specifications

(a) Specifying two-byte address variables

Using the "#pragma abs16(<variable name>)" statement, variables can be specified for assignment to an address range
addressable using two bytes (-32768 to 32767). By this means, the size of an object referring to such a variable can be
reduced.

(b) Specification of GBR base variables

Using the "#pragma gbr(<variable name>)" statement, a variable can be specified for referencing in GBR-relative
addressing mode. By this means, the size of an object referencing this variable can be reduced, and memory-based bit
manipulation instructions specific to the GBR-relative addressing mode can be employed.

(9) Control of register save/restore operations

The "#pragma noregsave(<function name>)" statement can be used to suppress register save/restore operations at the entry
and exit points of functions. This can be used to produce fast, compact functions without register save/restore overhead. A
function for which "#pragma noregsave" is specified cannot be called by ordinary functions, but can be called by C
language functions which are specified explicitly (using "#pragma regsave") for calling a function for which "#pragma
noregsave" has been specified.

By using "#pragma noregsave" with functions which are executed frequently, program size can be reduced and speed of
execution increased.

Appendix B

Rev.4.00 2007.02.02 Appendix B-6
REJ05B0463-0400

B.3 Features Added between Ver. 3.0 and Ver. 4.1

The features added to version 4.1 of the SuperH RISC engine C/C++ compiler are summarized below.

(1) Register assignment of external variables

The "#pragma global_register(<variable name>=<register number>)" statement can be used to assign external variables to
registers.

(2) Cache-savvy optimization

An "-align16" option is supported for assigning labels with 16-byte alignments, for efficient use of cache memory and
fetch instructions.

(3) Strengthened inline expansion feature

A feature was added such that, when as a result of inline expansion a function is itself no longer used, it is deleted.
Functions which are not themselves necessary after inline expansion should be declared using "static". Similarly, static
functions which are not called or referenced by address are deleted.

Examples:

 #pragma inline(func) #pragma inline(func)

 int a; int a;

 static int func(){ /* func() function is itself deleted */

 a++;

 }

 main(){ main(){

 func(); a++; /* inline expansion

 } }

(4) Recursive inline expansion

A feature was added for recursive inline expansion of functions. The depth of recursion can be specified using the
"-nestinline" option.

(5) Option for loop expansion optimization

The "-loop" and "-noloop" options can be used to specify whether or not loop processing is expanded in optimization,
independently of the "-speed" and "-size" options. (These options are invalid when the option to omit optimization is
specified.)

(6) Option for two-byte-address variables

Previously, variables with two-byte addresses had to be specified individually using the "#pragma abs16" statement, but
now an "-abs16" option enables specification for all variables at once. The option "-abs16=run" specifies two-byte
addresses only for runtime routines; "-abs16=all" specifies two-byte addresses for all variables and functions, including
runtime routines.

(7) Upper byte of function return value guaranteed

Previously, the upper byte of values returned by functions in the (unsigned) char and short types was not guaranteed. By
specifying the "-rtnext" option, the upper byte of the return value is now guaranteed (the upper byte of R0 is
sign-extended or zero-extended).

Appendix B

Rev.4.00 2007.02.02 Appendix B-7
REJ05B0463-0400

(8) More complete listing files

Compared with previous versions, the information contained in object lists and assembly lists is now more complete and
easier to read.

By the simultaneously output in statement units of C source and assembly language source in a list file, the
correspondence between them is easier to grasp (using the "-show=source,object" option).

(in addition, the default for the "-show" option was changed from source to nosource.)

A list of runtime routine names used in a function has been added, as information for computing the amount of stack space
used by the function.

The data loaded by an instruction for data loading from a constant pool is added as a comment.

Examples:

1: float x;

2: func(){

3: x/=1000;

4: }

Listing file

func.c 1 float x;

func.c 2 func(){*(a) Simultaneous output of C source and assembly language

 code

000000 _func: ; function: func

 ; frame size=4

 ; used runtime library name:

 ; divs *(b) Runtime routine name

000000 4F22 STS.L PR,@-R15

func.c 3 x/=1000;

000002 D404 MOV.L L216+2,R4 ; x

000004 D004 MOV.L L216+6,R0 ; H'447A0000 *(c) Load data

000006 D305 MOV.L L216+10,R3 ; __divs

000008 430B JSR @R3

00000A 6142 MOV.L @R4,R1

func.c 4 }

00000C 4F26 LDS.L @R15+,PR

00000E 000B RTS

000010 2402 MOV.L R0,@R4

000012 L216:

000012 00000002 .RES.W 1

000014 <00000000> .DATA.L _x

000018 447A0000 .DATA.L H'447A0000

00001C <00000000> .DATA.L __divs

000000 _ x: ; static: x

000000 00000004 .RES.L 1

Appendix B

Rev.4.00 2007.02.02 Appendix B-8
REJ05B0463-0400

(9) More complete error messages

By specifying the "-message" option to output information messages, programming errors can be checked more easily.

Examples:

1: void func(){

2: int a;

3: a++;

4: sub(a);

5: }

Information messages

line 3: 0011 (I) Used before set symbol: "a" (reference of undefined auto variable)

line 4: 0200 (I) No prototype function (no prototype declaration)

In addition, the identifier, token or number causing the error is added to the message to make it easier to find the error
location.

Examples:

: 2118 (E) Prototype mismatch "identifier"

: 2119 (E) Not a parameter name "identifier"

: 2201 (E) Cannot covert parameter "number"

: 2225 (E) Undeclared name "identifier"

: 2500 (E) Illegal token "token"

(10) Automatic conversion of Japanese character codes

When a character string containing either EUC or shift-JIS Japanese character codes is output to an object file, the
Japanese character codes are automatically converted to the encoding specified by an encoding option.

(a) An "-outcode=euc" option causes automatic conversion to EUC codes.
(b) An "-outcode=sjis" option results in automatic conversion to shift-JIS codes.

(11) Specification of CPU type by an environment variable

It is now possible to use an environment variable instead of a command line option to specify the CPU type.

Environment variable specification

 SHCPU=SH1 (equivalent to the "-cpu=sh1" option)

 SHCPU=SH2 (equivalent to the "-cpu=sh2" option)

 SHCPU=SH3 (equivalent to the "-cpu=sh3" option)

(12) Option to treat double data types as float types

By using the "-double=float" option, data declared as the double type can be read as the float type. In programs where the
precision of the double type is not required, execution speed can be improved without the need to modify the source code.

Appendix B

Rev.4.00 2007.02.02 Appendix B-9
REJ05B0463-0400

B.4 Features Added between Ver. 4.1 and Ver. 5.0

The features added to version 5.0 of the SuperH RISC engine C/C++ compiler are summarized below.

(1) Extension of the number of characters in a line

The limit on the number of characters in a single logical line was extended from 4,096 characters to 32,768 characters.

(2) Removal of the limit on compiler source lines

The limit of 65,535 lines in a single file for compiling was removed. However, that part of the file exceeding 65,535 lines
cannot be debugged.

(3) Compatibility with SH-4 instructions

This compiler version is also compatible with the SH-4, to maintain compliance with the SH Family of CPUs. By using
the "-cpu=sh4" option, SH-4 objects can be generated.

(4) Addition of a normalize mode

By using the "-denormalize=on|off" option, it is possible to choose whether to handle non-normalized numbers or set them
to zero. This is valid only when "-cpu=sh4" is used.

However, when "-denormalize=on", if a non-normalized number is input to the FPU, an exception occurs. Hence an
exception handler must be written to handle processing of non-normalized numbers.

(5) Addition of a rounding mode

By using the "-round=nearest|zero" option, it is possible to choose whether to round to zero or to the nearest number. This
is valid only when "-cpu=sh4" is used.

(6) Compatibility of compiler option environment variable with SH-4

Instead of using command line options to specify the CPU, the environment variable "SHCPU" can be used to specify the
SH-4, by setting "SHCPU=SH4".

(7) Compatibility with the SH-2E

By using the "-cpu-sh2e" option, objects for the SH-2E can be generated.

(8) Compatibility of compiler option environment variable with SH-2E

Instead of using command line options to specify the CPU, the environment variable "SHCPU" can be used to specify the
SH-2E, by setting "SHCPU=SH2E".

(9) Use of extensions to distinguish between C and C++ files

By selective use of the shc and shcpp commands, the compiler enables determination of the syntax used. Now, C++ files
can be compiled based on file extensions or an options even when using the shc command. For details refer to the table
below.

Appendix B

Rev.4.00 2007.02.02 Appendix B-10
REJ05B0463-0400

Table B.4 Conditions for Determining Compiling Syntax

Command Option
Extension of File

for Compiling
Syntax Used in

Compiling

shcpp Arbitrary Arbitrary Compiled as C++

-lang=c Compiled as C

-lang=cpp
Arbitrary

Compiled as C++

shc *.c Compiled as C

 No -lang option *.cpp, *.cc, *.cp,
*.CC

Compiled as C++

Appendix B

Rev.4.00 2007.02.02 Appendix B-11
REJ05B0463-0400

B.5 Features Added between Ver. 5.0 and Ver. 5.1

The features added to version 5.1 of the SuperH RISC engine C/C++ compiler are summarized below.

(1) Support for the SH3-DSP library

In addition to the older SH-DSP, support is now also available for libraries that can be applied to SH3-DSP.

(2) Support for embedded C++ language

Support is now available for embedded C++ language specification, which is the C++ specification compatible with
embedded systems.

• Support for bool-type

• Multiple inheritance warnings

• Support for embedded C++ language class libraries

(3) Support for inter-module optimization functions

Implements the following optimization, and generates objects with optimal size/speed.

With this optimization, size is reduced by approximately 10%, and execution speed is improved by 7 to 8%.

• Reduction of superfluous register save/restore code

• Deletion of unreferenced variables/functions

• Routinization of common codes

• Optimization of function call codes

(4) Improved compiling speed

Fast compiling speed has been achieved through improved optimization processing.

A maximum of double speed, and an average speed increase of 130% has been achieved.

(5) Extension of limits

• The limit on command line length has been extended from 256 to 4,096.

• The limit on file name length has been extended from 128 to 251.

• The limit on character string literal length has been extended from 512 to 32,767.

(6) Strengthened optimization

The various kinds of optimization for improving object performance have been strengthened.

(7) Support for C++ comments

In the C language, use of "//" comments is now possible.

(8) Changes to the integrated environment (PC version)

The older PC integrated environment HIM (Hitachi Integration Manager) has been replaced by the new integrated
environment HEW (High-performance Embedded Workshop).

The following functions have been added, as compared with HIM.

• Project generator

Automatically generates header files that define peripheral I/Os for each CPU.

• Combination interface with the version management tools

Supports the interface with the version management tools provided by the third party.

Appendix B

Rev.4.00 2007.02.02 Appendix B-12
REJ05B0463-0400

• Hierarchy project support

Can define multiple subprojects in a project and hierarchically manage them.

• Network support

Provides development environment under WindowsNT CSS.

Appendix B

Rev.4.00 2007.02.02 Appendix B-13
REJ05B0463-0400

B.6 Features Added between Ver. 5.1 and Ver. 6.0

The features added to version 6.0 of the SuperH RISC engine C/C++ compiler are summarized below.

(1) Relaxation of limits

Limits for source programs and command lines have been greatly relaxed.

• File name length: 251 bytes → No limit

• Symbol length: 251 bytes → No limit

• Number of symbols: 32,767 symbols → No limit

• Number of source program rows: C/C++: 32,767 rows, ASM: 65,535 rows → No limit

• C program character string length: 512 characters → 32,766 characters

• Assembly program row length: 255 characters → 8,192 characters

• Subcommand file row length: ASM: 300 bytes, optlnk: 512 bytes → No limit

• Number of parameters for the Optimizing Linkage Editor rom option: 64 parameters → No limit

(2) Hyphens (-) in directory names and filenames

Hyphens (-) can now be specified in directory names and filenames

(3) Elimination of copyright notice

By specifying the logo/nologo option, it is now possible to specify whether or not to display a copyright notice.

(4) Error message prefixes

Along with support for the error help function in the Integrated Development Environment, the start of error messages in
the compiler and Optimizing Linkage Editor have been ascribed prefixes.

(5) Addition of fpscr options

If the cpu=sh4 option is specified, and the fpu option is not specified, it is now possible to specify whether to guarantee the
FPSCR register precision mode before and after calling on the function.

(6) #pragma extensions

#pragma extensions can now be written without ().

(7) Addition of embedded functions

trace functions have been added.

(8) Addition of implicit declarations

_ _HITACHI_ _ and _ _HITACHI_VERSION_ _ are implicitly declared with #define.

(9) static label name

In order that static labels inside the file can be referenced by #pragma inline_asm, the label name has been changed to _ _$
(name). However, it is displayed as _(name) in the linkage list.

(10) Extension and changes to the language specification

• Errors when unions are initialized have been eliminated.

Appendix B

Rev.4.00 2007.02.02 Appendix B-14
REJ05B0463-0400

Example:

union{

char c[4];

} uu={{'a','b','c'}};

• It is now possible to substitute a structure and make a declaration at the same time.

Example:

struct{

int a, int b;

} s1

void test()

{

struct S s2=s1;

}

• The boundary alignment of bool-type data is now 4 bytes.

• Exception processing and template functions are now supported as the C++ language specification.

• The C preprocessor is now ANSI/ISO compliant.

Appendix B

Rev.4.00 2007.02.02 Appendix B-15
REJ05B0463-0400

B.7 Features Added between Ver. 6.0 and Ver. 7.0

From the SuperH RISC engine C/C++ Compiler Ver.7.0 algorithm and code generation has been greatly improved.
So the options and generated codes are much different from those of Ver.6.0.
The features added to version 7.0 of the SuperH RISC engine C/C++ compiler are summarized below.

(1) External access optimization function (map option support)

This function performs optimization of external variable access and function branch instructions based on the allocated
address of the variables and functions at linkage. Optimization is implemented by recompiling the external symbol
allocation information files which are output (specified to map option) by the Optimizing Linkage Editor at the time of the
first linkage.

(2) Automatic generation of GBR relative access code (gbr option support)

If gbr=auto is specified, the compiler automatically generates GBR settings and GBR relative access code. Before and
after a function call, the GBR value is guaranteed. However, GBR-related embedded functions cannot be used.

(3) Strengthened speed/size selection options

speed/size selection options (shift, blockcopy, division, approxdiv options) have been added, and it is now possible to
make finer size/speed adjustments.

(4) Strengthened functions for embedded systems

• Addition of embedded functions
Double precision multiplication, SWAP instruction, LDTLB instruction, NOP instruction

• Addition and change of #pragma extension
Support for #pragma entry entry function specification and SP setting
Support for #pragma stacksize stack size specification
Support for #pragma interrupt sp=<variable>+<constant> and sp=&<variable>+<constant>

• Support for section operators
Supports functions of coding the size references in C language.

• Relaxation of address cast errors
Errors of cast expressions with regard to address initialization when initializing external variables have been relaxed.

(5) Improved libraries

• Support for reentrant libraries
If the reent option is specified with the Library Creation Tool, a reentrant library is generated.

• The units of the malloc reserve size and the number of input and output files has been made variable.
It is now possible to specify the malloc reserve size with _sbrk_size, and the number of input and output files with
_nfiles in the initial settings of the C/C++ library functions. This substantially reduces RAM capacity.
If this specification is omitted, the malloc reserve size is 520, and the number of input and output files is 20.

• Support for easy I/O
If the nofloat option is specified with the Library Creation Tool, floating point conversions are not supported, and a
small I/O routine is generated.

(6) Addition of optimization options (V7.0.06)

• Added Options

The following shows the options added to Ver.7.0.06. Uppercase letters indicate the abbreviations and characters
underlined indicate the defaults.

Appendix B

Rev.4.00 2007.02.02 Appendix B-16
REJ05B0463-0400

Table B.5 Added options

 Item Command Line Format Specification

1 Treatment of
global variables

GLOBAL_Volatile = { 0 |

 1 }

Treat global variables as
non-volatile-qualified except variables
which are volatile-qualified

Treats global variables as volatile-qualified

2 Optimizing range
of global
variables

OPT_Range = {All |

 NOLoop |

 NOBlock }

Optimizes all the global variables in a
whole function

Suppresses a motion of global
variables out of a loop or optimization
of a loop control variable

Suppresses an optimization of the global
variables cross over a branch or a loop

3 Deletion of
vacant loops

DEL_vacant_loop ={ 0 |

 1}

Suppresses a deletion of a vacant loop

Deletes a vacant loop

4 Specification of
maximum unroll
factor

MAX_unroll = <numeric
value>
<numeric value>:1-32

Specifies the maximum number of loop
unroll factor

Default : 1

(when the speed or loop option is
specified, the default is 2)

5 Deletion of
assignments
before an infinite
loop

INFinite_loop = {0 |

 1 }

Suppresses a deletion of assignments to
global variables before an infinite loop

Deletes assignments to global
variables before an infinite loop

6 Allocation of
global variable

GLOBAL_Alloc = {0 |

 1 }

Suppresses register allocation of global
variables

Allocates registers of global variables

7 Allocation of
struct/union
member

STRUCT_Alloc = {0 |

 1 }

Suppresses register allocation of struct
or union members

Allocates registers to struct or union
members

8 Propagation of
const-qualified
variable

CONST_Var_propagate = {0 |

 1 }

Suppresses the propagation of
variables which are const-qualified

Propagates variables which are
const-qualified

9 IInline expansion
of constant load

CONST_Load = {Inline |

 Literal }

Performs inline expansion of constant load

Loads constant data from literal pool

Default : When size is specified, up to
two or three instructions are
expanded

10 Scheduling of
instructions

SChedule = {0 |

 1 }

Suppresses instruction scheduling

Schedules instructions

Appendix B

Rev.4.00 2007.02.02 Appendix B-17
REJ05B0463-0400

Treatment of global variables

GLOBAL_Volatile

Optimize[Details][Global variables][Treat global variables as volatile qualified]

Command Line Format

GLOBAL_Volatile = { 0 | 1 }

Description

When global_volatile=0 is specified, the compiler optimizes accesses of the global variables which are
non-volatile-qualified. So a count or an order of accesses to global variables may differ from that of the C/C++ program.

When global_volatile=1 is specified, all the global variables are treated as volatile-qualified. So a count or an order of
accesses to global variables may be the same as that of the C/C++ program.

The default for this option is global_volatile=0.

Remarks

When global_volatile=1 is specified, schedule=0 becomes the default.

Appendix B

Rev.4.00 2007.02.02 Appendix B-18
REJ05B0463-0400

Optimizing range of global variables

OPT_Range

Optimize[Details][Global variables][Specify optimizing range :]

Command Line Format

OPT_Range = { All | NOLoop | NOBlock }

Description

When opt_range=all is specified, the compiler optimizes accesses to all the global variables in a function.

When opt_range=noloop is specified, the compiler does not optimize accesses to the global variables which are used in a
loop or a loop conditional expression.

When opt_range=noblock is specified, the compiler does not optimize accesses to the global variable cross over a branch
or a loop.

The default for this option is opt_range=all.

Example

(1) Example of optimization across a branch (opt_range=all or noloop is specified)

 int A,B,C;

 void f(int a) {

 A = 1;

 if (a) {

 B = 1;

 }

 C = A;

 }

 <source image after optimizing>

 void f(int a) {

 A = 1;

 if (a) {

 B = 1;

 }

 C = 1; /* Deletes reference of variable A and propagates A=1 */

 }

(2) Example of optimization against loop (opt_range=all is specified)

 int A,B,C[100];

 void f() {

 int i;

Appendix B

Rev.4.00 2007.02.02 Appendix B-19
REJ05B0463-0400

 for (i=0;i<A;i++) {

 C[i] = B;

 }

 }

 <source image after optimizing>

 void f() {

 int i;

 int temp_A, temp_B;

 temp_A = A; /* Remove reference of variable A used in loop conditional expression */

 temp_B = B; /* Remove reference of variable B in a loop */

 for (i=0;i<temp_A;i++) { /* Delete reference of variable A */

 C[i] = temp_B; /* Delete reference of variable B */

 }

 }

Remarks

Whenever opt_range=noloop is specified, max_unroll=1 becomes the default.

Whenever opt_range=noloblock is specified, max_unroll=1, const_var_propagate=0, and

global_alloc=0 becomes the default.

Deletion of vacant loops

DEL_vacant_loop

Optimize[Details][Miscellaneous][Delete vacant loop]

Command Line Format

DEL_vacant_loop = { 0 | 1 }

Description

When del_vacant_loop=0 is specified, the compiler does not delete a vacant loop.

When del_vacant_loop=1 is specified, the compiler deletes a vacant loop.

The default for this option is del_vacant_loop=0.

Remarks

Note that the default differs between version 7.0.04 and 7.0.06.
Up to V7.0.04 : Delete vacant loop
V7.0.06 or later : Does not delete vacant loop

Appendix B

Rev.4.00 2007.02.02 Appendix B-20
REJ05B0463-0400

Specification of maximum unroll factor

MAX_unroll

Optimize[Details][Miscellaneous][Specify maximum unroll factor :]

Command Line Format

MAX_unroll = <numeric value>

Description

Specifies the maximum unroll factor when a loop is expanded.

The <numeric value> accepts a decimal number from 1 to 32. If < numeric value > is specified out of the range, an error
will occur.

When the speed or loop option is specified, the default for this option is max_unroll=2.

Otherwise the default for this option is max_unroll=1.

Remarks

Whenever opt_range=noloop or opt_range=noblock is specified, the default for this option is max_unroll=1.

Deletion of assignments before an infinite loop

INFinite_loop

Optimize[Details][Global variables]

[Delete assignment to global variables before an infinite loop]

Command Line Format

INFinite_loop = { 0 | 1 }

Description

When infinite_loop=0 is specified, the compiler does not delete an assignment to a global variable before an infinite loop.

When infinite_loop=1 is specified, the compiler deletes an assignment before an infinite loop to a global variable which is
not referred to in the infinite loop.

The default for this option is infinite_loop =0.

Example

 int A;

 void f()

 {

 A = 1; /* Assignment to variable A */

Appendix B

Rev.4.00 2007.02.02 Appendix B-21
REJ05B0463-0400

 while(1) {} /* Variable A is not referred in a loop */

 }

 <source image when specified infinite_loop=1)

 void f()

 {

 /* Delete assignment to variable A */

 while(1) {}

 }

Remarks

Note that the default differs between version 7.x (up to V7.0.04) and 7.0.06 or later.
Up to V7.0.04 : Deletes an assignment before an infinite loop to a global variable which is not
 referred to in the infinite loop
V7.0.06 or later : Does not delete an assignment to a global variable before an infinite loop

Allocation of global variable

GLOBAL_Alloc

Optimize[Details][Global variables][Allocate registers to global variables :]

Command Line Format

GLOBAL_Alloc = { 0 | 1 }

Description

When global_alloc=0 is specified, the compiler does not allocate registers to global variables.

When global_alloc=1 is specified, the compiler allocates registers to global variables.

The default for this option is global_alloc=1.

Remarks

When opt_range=noblock is specified, global_alloc=0 becomes the default.

When optimize=0 is specified, note that the default differs between version 7.x (up to V.7.0.04) and 7.0.06 or later.

 Up to V7.0.04 : Allocates registers to global variables

 V7.0.06 or later : Does not allocate registers to global variables

Appendix B

Rev.4.00 2007.02.02 Appendix B-22
REJ05B0463-0400

Allocation of struct/union member

STRUCT_Alloc

Optimize[Details][Miscellaneous][Allocate registers to struct/union members]

Command Line Format

STRUCT_Alloc = { 0 | 1 }

Description

When struct_alloc=0 is specified, the compiler does not allocate registers to struct or union members.

When struct_alloc=1 is specified, the compiler allocates registers to struct or union members.

The default for this option is struct_alloc=1.

Remarks

When either opt_range=noblock or global_alloc=0, and struct_alloc=1 is specified, the compiler

allocates registers only to local struct or union members.

When optimize=0 is specified, note that the default differs between version 7.x (up to V7.0.04) and 7.0.06 or later.

 Up to V7.0.04 : Allocate registers to struct or union members

 V7.0.06 or later : Does not allocate registers to struct or union members

Propagation of const-qualified variable

CONST_Var_propagate

Optimize[Details][Global variables][Propagate variables which are const qualified :]

Command Line Format

CONST_Var_propagate = { 0 | 1 }

Description

When const_var_propagate=0 is specified, the compiler does not propagate global variables which

are const-qualified.

When const_var_propagate=1 is specified, the compiler propagates global variables which are

const-qualified.

The default for this option is const_var_propagate=1.

Appendix B

Rev.4.00 2007.02.02 Appendix B-23
REJ05B0463-0400

Example

 const int X = 1;

 int A;

 void f() {

 A = X;

 }

 <source image when specified const_var_propagate=1>

 void f() {

 A = 1; /* Propagates X=1 */

 }

Remarks

When opt_range=noblock is specified, the default for this option is const_var_propagate=0.

Variables which are const-qualified in C++ program are always propagated even if

const_var_propagate=0 is specified.

Inline expansion of constant load

CONST_Load

Optimize[Details][Miscellaneous][Load constant value as :]

Command Line Format

CONST_Load = { Inline | Literal }

Description

When const_load=inline is specified, the load of all the 2-byte constant data or some 4-byte constant data is expanded.

When const_load=literal is specified, all the 2-byte or 4-byte constant data are loaded from literal pool.

The default for this option is below.

 When the speed option is specified:

 The default is const_load=inline.

 When the size or nospeed option is specified:

 If 2-byte or 4-byte constant data can be expanded into 2 or 3 instructions respectively,

 const_load=inline is applied.

 Otherwise the default is const_load=literal.

Appendix B

Rev.4.00 2007.02.02 Appendix B-24
REJ05B0463-0400

Example

 int f() {

 return (257);

 }

(1) When const_load=inline or speed option is specified:

 MOV #1,R0 ; R0 <- 1

 SHLL8 R0 ; R0 <- 256 (1<<8)

 RTS

 ADD #1,R0 ; R0 <- 257 (256+1)

(2) When const_load=literal, size or nospeed is specified:

 MOV.W L11,R0

 RTS

 NOP

 L11:

 .DATA.W H'0101

Scheduling of instructions

SChedule

Optimize[Details][Global variables][Schedule instructions :]

Command Line Format

SChedule = { 0 | 1 }

Description

When schedule=0 is specified, the compiler does not schedule instructions. They will be executed in the order written in the C/C++
program.

When schedule=1 is specified, the compiler schedules instructions paying attention to the pipeline or superscalar (only SH-4)
mechanism.

The default for this option is schedule=1.

Remarks

When opt_range=noblock is specified, schedule=0 becomes the default.

• The default in optimize=0

When optimize=0 is specified, the defaults of the added options are shown below.

 global_volatile=0

Appendix B

Rev.4.00 2007.02.02 Appendix B-25
REJ05B0463-0400

 opt_range=noblock

 del_vacant_loop=0

 max_unroll=1

 infinite_loop=0

 global_alloc=0

 struct_alloc=0

 const_var_propagate=0

 const_load=literal

 schedule=0

The defaults of the following options differ from optimize=1.

 optimize=0 optimize=1

opt_range noblock all

global_alloc 0 1

struct_alloc 0 1

const_var_propagate 0 1

const_load literal Depending on
speed/size/nospeed

schedule 0 1

• Compatibility in V7 (up to V7.0.04)

The defaults of the following options differ between version 7.x (up to V.7.0.04) and 7.0.06 or later.

(i) Deletion of a vacant loop (del_vacant_loop)

 Up to V7.0.04 : Deletes a vacant loop

 V7.0.06 or later : Does not delete a vacant loop

(ii) Deletion of an assignment before an infinite loop (infinite_loop)

 Up to V7.0.04 : Deletes an assignment before an infinite loop to global variable which is not referred to in the infinite loop

 V7.0.06 or later : Does not deletes assignment to global variable before an infinite loop

The specification of the following with optimize=0 differs between version 7.x (up to V.7.0.04) and 7.0.06 or later.

(i) Allocation of global variables (global_alloc)

 Up to V7.0.04 : Allocates global variables to registers

 V7.0.06 or later : Does not allocate global variables to registers

(ii) Allocation of struct or union members (struct_alloc)

 Up to V7.0.04 : Allocates struct or union members to registers

 V7.0.06 or later : Does not allocate struct or union members to registers

Appendix B

Rev.4.00 2007.02.02 Appendix B-26
REJ05B0463-0400

• System of Optimization

The levels of the optimization of global variables are shown below. When one of those levels is selected in HEW, the
options related to the optimization of global variables can be controlled together.

The level is set at Optimize[Details][Level :].

(i) Level 1

All the optimizations of global variables are suppressed.

 global_volatile=1

 opt_range=noblock

 infinite_loop=0

 global_alloc=0

 const_var_propagate=0

 schedule=0

(ii) Level 2

The optimizations of global variables which are not volatile-qualified are done within a basic block

(sequence of instructions which have no labels or branches except at beginning or end).

 global_volatile=0

 opt_range=noblock

 infinite_loop=0

 global_alloc=0

 const_var_propagate=0

 schedule=1

(iii) Level 3

All the optimizations of global variables which are non-volatile-qualified are done.

 global_volatile=0

 opt_range=all

 infinite_loop=0

 global_alloc=1

 const_var_propagate=1

 schedule=1

(iv) Custom

User specifies these options according to the programs.

When level 1, level 2, or level 3 is specified, above-mentioned options cannot be changed separately.

• The followings are features added to Optimizing Linkage Editor.

(7) Support for wild cards

It is possible to specify wild cards for input files and start option section names.

(8) Search path

It is possible to specify search paths for multiple input files and library files with the environment variable (HLNK_DIR).

(9) Separate output of load modules

It is possible to perform separate output of absolute load module files.

Appendix B

Rev.4.00 2007.02.02 Appendix B-27
REJ05B0463-0400

(10) Changed error levels

The error level for messages for information, warnings, and error levels, and whether or not to output them can be changed
individually.

(11) Support for binary and HEX

It is now possible to input and output binary files.

In addition, it is now possible to choose to output in the Intel HEX format.

(12) Output of the stack capacity usage information

With the stack option, it is possible to output data files for the stack analysis tools.

(13) Debug information deletion tool

With the strip option, it is possible to delete just the debug information within the load module files and library files.

The features added to version 7.1 of the SuperH RISC engine C/C++ Optimizing Linkage Editor are summarized below.

(14) Output external symbol allocation information files (map option support)

If the map option is specified, the compiler generates an external symbol allocation information file to be used for external
variable access optimization.

Appendix B

Rev.4.00 2007.02.02 Appendix B-28
REJ05B0463-0400

B.8 Features Added between Ver. 7.0 and Ver. 7.1

• The features added to version 7.1 of the SuperH RISC engine C/C++ compiler are summarized below.

(1) Strengthened optimization

(a) Deletion of EXTU immediately after MOVT

Deletes the unnecessary EXTU immediately after MOVT.
(As nothing besides 1 or 0 can be set, EXTU is unnecessary)

Before optimization After optimization

_f:

MOV.L L12+2,R6 ; _a1

MOV.B @R6,R0

TST #128,R0

MOVT R0

EXTU.B R0,R0

_f:

MOV.L L12+2,R6 ; _a1

MOV.B @R6,R0

TST #128,R0

MOVT R0

As nothing besides 1 or 0 can be set for R0, EXTU is unnecessary.

(b) Deletion of EXTU after a right shift of a zero extended register

Even if a zero extended register is zero extended after a right shift, the value does not change so it is deleted.

Before optimization After optimization

_f:

 MOV.L L13+2,R2; _a2

 MOV #1,R5

 MOV.W @R2,R6

 EXTU.W R6,R6

 MOV R6,R2

 SHLR2 R2

 SHLR R2

 EXTU.W R2,R2

 CMP/GE R5,R2

 :

_f:

 MOV.L L13+2,R2; _a2

 MOV #1,R5

 MOV.W @R2,R6

 EXTU.W R6,R6

 MOV R6,R2

 SHLR2 R2

 SHLR R2

 CMP/GE R5,R2

 :

As the upper 2 bytes are zero-cleared with EXTU, the value does not change even if
EXTU is performed again.

Appendix B

Rev.4.00 2007.02.02 Appendix B-29
REJ05B0463-0400

(c) Unifying consecutive AND

If ANDs to the same variable are made consecutively, they are grouped into 1 AND.

Before optimization After optimization

_f:

 MOV.L L11+2,R6 ; _a5

 MOV.B @R6,R0

 AND #3,R0

 RTS

 AND #1,R0

_f:

 MOV.L L11+2,R6 ; _a5

 MOV.B @R6,R0

 RTS

 AND #1,R0

Grouped into 1 AND.

(d) Bit field comparison and combination

Unifies evaluation (TST#n, R0) of multiple bit fields.

Before optimization After optimization

_f:

 :

 MOV R4,R0

 TST #64,R0

 BF L12

 TST #32,R0

 BF L12

 MOV R6,R0

 :

_f:

 :

 MOV R4,R0

 TST #96,R0

 BF L12

 MOV R6,R0

 :

Unifies the criteria of the bit fields, and replaces them with 1 evaluation.

(e) Deletion of EXTS of consecutive EXTS+EXTU

After EXTS, if EXTU of the same size is executed, EXTS is unnecessary so it is deleted.

Before optimization After optimization

_f:

 :

 EXTS.B R6,R2

 EXTU.B R2,R0

 :

_f:

 :

 EXTU.B R6,R0

 :

EXTU is executed on a value from EXTS, so EXTS is unnecessary.

Appendix B

Rev.4.00 2007.02.02 Appendix B-30
REJ05B0463-0400

(f) Deletion of MOVT(+XOR)+EXTU+CMP/EQ

Deletes the unnecessary MOVT(+XOR)+EXTU+CMP/EQ after TST, and makes a conversion so as to reference the T bit
with a direct branch instruction.

Before optimization After optimization

_f:

 :

 TST #4,R0

 MOVT R0

 MOV.L L23+6,R6 ; _st2

 XOR #1,R0

 EXTU.B R0,R0

 CMP/EQ #1,R0

 MOV.B @R6,R0

 BF L16

 :

_f:

 :

 TST #4,R0

 MOV.L L23+6,R6; _st2

 MOV.B @R6,R0

 BT L16

 :

Directly references the T bit.

(g) AND #imm, R0+CMP/EQ #imm, R0 → TST #imm, R0

Replaces AND #imm, R0+CMP/EQ #imm, R0 with TST #imm, R0.

Before optimization After optimization

L17:

 MOV.B @R6,R0

 AND #1,R0

 CMP/EQ #1,R0

 BF L19

 MOV.B @R5,R0

 AND #1,R0

L17:

 MOV.B @R6,R0

 TST #1,R0

 BT L19

 MOV.B @R5,R0

 AND #1,R0

Appendix B

Rev.4.00 2007.02.02 Appendix B-31
REJ05B0463-0400

(h) Deletion of EXTU when comparing (==) unsigned char and constant

Deletes the unnecessary EXTU when comparing the unsigned char and constant immediately after the load.

Before optimization After optimization

_f:

 MOV.L L11,R6 ; _b

 MOV.B @R6,R2

 MOV #-128,R6;
H'FFFFFF80

 EXTU.B R6,R6

 EXTU.B R2,R2

 CMP/EQ R6,R2

 MOVT R2

 MOV.L L11+4,R6 ; _a

 RTS

 MOV.B R2,@R6

_f:

 MOV.L L11,R6 ; _b

 MOV.B @R6,R2

 MOV #-128,R6;
H'FFFFFF80

 CMP/EQ R6,R2

 MOVT R2

 MOV.L L11+4,R6 ; _a

 RTS

 MOV.B R2,@R6

Deletes the unnecessary extension.

(i) Deletion of extension after LOAD / before STORE of bit field

Deletes the unnecessary extension of the bit field after LOAD and before STORE.

Before optimization After optimization

_f:

 MOV.L L11+2,R6;_st

 MOV.B @R6,R2

 EXTU.B R2,R0

 OR #128,R0

 :

_f:

 MOV.L L11+2,R6;_st

 MOV.B @R6,R2

 OR #128,R0

 :

Deletes the unnecessary extension.

Appendix B

Rev.4.00 2007.02.02 Appendix B-32
REJ05B0463-0400

(j) Deletion of copy when evaluating switch-case

Deletes the copy of the value when performing each case evaluation of switch statements.

Before optimization After optimization

_f:

:

 MOV R0,R2

 MOV R2,R0

 CMP/EQ #1,R0

 BT L24

 CMP/EQ #2,R0

 BT L26

 MOV R2,R0

 CMP/EQ #3,R0

 BT L28

 MOV R2,R0

 CMP/EQ #4,R0

 BT L30

 MOV R2,R0

 :

_f:

:

 MOV R0,R2

 MOV R2,R0

 CMP/EQ #1,R0

 BT L24

 CMP/EQ #2,R0

 BT L26

 CMP/EQ #3,R0

 BT L28

 CMP/EQ #4,R0

 BT L30

 :

Deletes the unnecessary copy.

(k) Unifying consecutive OR

If ORs to the same variable are made consecutively, they are grouped into 1 OR.

Before optimization After optimization

_f:

 MOV.L L11+2,R6 ; _a5

 MOV.B @R6,R0

 OR #3,R0

 RTS

 OR #1,R0

_f:

 MOV.L L11+2,R6 ; _a5

 MOV.B @R6,R0

 RTS

 OR #3,,R0

Grouped into 1 OR.

Appendix B

Rev.4.00 2007.02.02 Appendix B-33
REJ05B0463-0400

(l) Deletion of EXTS immediately in front of AND #imm,R0 or TST #imm,R0

Deletes the unnecessary extension immediately in front of;

(i) AND #imm,R0

(ii) TST #imm,R0

Before optimization After optimization

_f:

 :

 EXTS.B R6,R0

 AND #32,R0

 :

_f:

 :

 AND #32,R0

 :

_f:

 :

 EXTS.B R6,R0

 TST #32,R0

 :

_f:

 :

 TST #32,R0

 :

Deletes the unnecessary extension.

(m) Deletion of EXTU of consecutive EXTU+EXTS

After EXTU, if EXTS of the same size is executed, EXTU is unnecessary so it is deleted.

Before optimization After optimization

_f:

 :

 EXTU.B R6,R2

 EXTS.B R2,R0

 :

_f:

 :

 EXTS.B R6,R0

 :

EXTS is executed on a value from EXTU, so EXTU is unnecessary.

Appendix B

Rev.4.00 2007.02.02 Appendix B-34
REJ05B0463-0400

(n) Deletion of EXTU immediately after XOR #imm,R0(OR,AND) after MOVT

Deletes the unnecessary EXTU immediately after;

(i) XOR #imm,R0

(ii) OR #imm,R0

(iii) AND #imm,R0

after MOVT

Before optimization After optimization

 :

MOVT R0

XOR #1,R0

RTS

EXTU.B R0,R0

 :

MOVT R0

RTS

XOR #1,R0

MOVT R0

OR #2,R0

RTS

EXTU.B R0,R0

 :

MOVT R0

RTS

OR #2,R0

 :

MOVT R0

AND #1,R0

RTS

EXTU.B R0,R0

 :

MOVT R0

RTS

AND #1,R0

Deletes the unnecessary extension.

(o) Deletion of unnecessary EXTS when making comparison

Deletes redundant EXTS re-output when comparing registers after sign expansion.

Before optimization After optimization

_f:

 :

 EXTS.B R6,R6

 CMP/GT R6,R2

 BF L13

 :

_f:

 :

 CMP/GT R6,R2

 BF L13

 :

If R6 is already extended previously, EXTS is unnecessary.

Appendix B

Rev.4.00 2007.02.02 Appendix B-35
REJ05B0463-0400

(p) Disabling (immediately) of allocation of constant values to registers

Disables allocation of functional parameter constants (-128 to 127) to registers.

Before optimization After optimization

_f:

 PUSH R14

 :

 MOV.B #127,R14

 :

 MOV.B R14,R4

 BSR sub

 :

 POP R14

_f:

 :

 :

 MOV.B #127,R4

 BSR sub

 :

Loads directly constant values #127 to parameter registers without allocating to registers.

(q) Strengthened DT instructions

Performs DT instruction for variables allocated to registers.

Before optimization After optimization

_f:

 MOV.L L16+2,R6; _x

 MOV.L @R6,R2

 ADD #-1,R2

 TST R2,R2

 BT/S L12

 :

_f:

 MOV.L L16+2,R6; _x

 MOV.L @R6,R2

 DT xxxx R2 xxxx

 BT/S L12

 :

Performs DT instruction.

(r) Improved literal output position

Precision of instruction size calculation when deciding literal data output position is improved, and it is possible to output
the literal data output position later.

Appendix B

Rev.4.00 2007.02.02 Appendix B-36
REJ05B0463-0400

(s) Deletion of 1byte&=1byte redundant EXTU

Deletes the unnecessary EXTU when 1byte&=1byte.

Before optimization After optimization

_f:

 :

 MOV.B @(R0,R7),R6

 MOV.B @R5,R2

 EXTU.B R6,R6

 AND R6,R2

 MOV.B R2,@R5

 MOV.B @R14,R2

 :

_f:

 :

 MOV.B @(R0,R7),R6

 MOV.B @R5,R2

 AND R6,R2

 MOV.B R2,@R5

 MOV.B @R14,R2

 :

Deletes the unnecessary extension.

(t) 2 byte literal expansion

Prevents the same code from being expanded twice.

Before optimization After optimization

_f:

 MOV.L L13+4,R4 ; _b

 SHLL8 R0

 ADD #-48,R0

 MOV.W @(R0,R4),R2

 MOV #8,R0

 SHLL8 R0

 ADD #-46,R0

 EXTU.W R2,R6

 MOV.W @(R0,R4),R2

 MOV #8,R0

 SHLL8 R0

 ADD #-44,R0

 EXTU.W R2,R5

 MOV.W @(R0,R4),R2

_f:

 MOV.L L13+4,R4 ; _b

 SHLL8 R0

 ADD #-48,R0

 MOV.W @(R0,R4),R2

 MOV #8,R0

 SHLL8 R0

 ADD #-46,R0

 EXTU.W R2,R6

 MOV.W @(R0,R4),R2

 ADD #2,R0

 EXTU.W R2,R5

 MOV.W @(R0,R4),R2

Prevents the same code from being expanded twice.

Appendix B

Rev.4.00 2007.02.02 Appendix B-37
REJ05B0463-0400

(u) Improving expansion of loop condition determination

If size is given priority, copying of loop determination is not executed when performing loop condition determination.

Before optimization After optimization (v7) After optimization (v7.1)

while (cond) {

 :

}

if (cond) {

 do {

 :

 } while (cond);

}

 goto L1;

 do {

 :

L1:;

 } while (cond);

cond appears in one place rather than in two places.

(v) Elimination of redundant if statement condition determination

When the result of the first if statement makes the later if statement unnecessary, the later if statement is eliminated.

Before optimization After optimization

if (cond)

 t=65;

 else

 t=67;

 if (t == 65)

 fx();

 else

 fy();

if (cond) {

 t=65;

 fx();

 } else {

 t=67;

 fy();

 }

When the result of the first if statement makes the later if statement unnecessary, the
later if statement is eliminated.

(w) Direct operations of temporary variables

Disables substitution to redundant temp variables, and changes the operation sequence of the equation.

Before optimization After optimization

k = i + prime;

p = flags + k;

p = i + prime + flags;

k is not used later so superfluous substitution to temp is not executed.

Appendix B

Rev.4.00 2007.02.02 Appendix B-38
REJ05B0463-0400

(x) Post increment addressing

Uses MOV.L @Rm+,Rn for the LOAD 4-byte variable.

Before optimization After optimization

 :

L11:

 MOV.L @R5,R2

 ADD #4,R5

 DT R6

 ADD R2,R4

 BF L11

 :

 :

L11:

 MOV.L @R5+,R2

 DT R6

 ADD R2,R4

 BF L11

 :

Executes MOV.L @Rm+,Rn with one instruction.

(y) Improving loop termination conditions

Relaxes conditions for performing optimization of loop termination, and makes optimization easy to apply.

Before optimization After optimization

int a, b;

func() {

 unsigned short sx;

 for (sx=0; sx<1; sx++) {

 a++;

 b++;

 f();

 }

}

int a, b;

func() {

 a++;

 b++;

 f();

}

Performs loop termination.

Appendix B

Rev.4.00 2007.02.02 Appendix B-39
REJ05B0463-0400

(z) Optimization of 1-bit evaluation

Groups conditional expressions that reference multiple bit fields of 1-bit width into 1, and generates code that
simultaneously performs fetching and comparison of values using bit AND.

Before optimization After optimization

struct S {

 char bit0:1;

 char bit1:1;

 char bit2:1;

 char bit3:1;

}ss1;

if((ss1.bit0|ss1.bit1|ss1.bit2)!= 0){

 :

 :

}

struct S {

 char bit0:1;

 char bit1:1;

 char bit2:1;

 char bit3:1;

}ss1;

if ((*(char *)&ss1 & 0xe0)!= 0){

 :

 :

}

Simultaneously performs fetching and comparison using AND.

Appendix B

Rev.4.00 2007.02.02 Appendix B-40
REJ05B0463-0400

B.9 Features Added between Ver. 7.1 and Ver. 8.0

The features added to version 8.0 of the SuperH RISC engine C/C++ compiler are summarized below.

(1) Supporting new CPUs

SH-4A and SH4AL-DSP are now supported.

(2) Expanding and changing the language specifications

• SP-C is now supported.

• The long long and unsigned long long types are now supported.

(3) Improving the built-in functions

• Adding the built-in functions for DSP

Absolute value, MSB detection, arithmetic shift, round-off operation, bit pattern copy, modulo addressing setup,
modulo addressing cancellation, and CS bit setting

• Adding the built-in functions for SH-4A and SH4AL-DSP

Sine and cosine calculation, reciprocal of the square root, instruction cache block invalidation, instruction cache block
prefetch, and synchronization of data operations

• Adding and changing the #pragma extension

#pragma ifunc Suppressing the saving or recovery of the floating-point register

#pragma bit_order Specifying the order of bit fields

#pragma pack Specifying the alignment number for the structure, union, or class

(4) Automatic selection of the size of the enumerated type (supporting the auto_enum option)

The enumerated type is processed as a smallest type that can contain the enumerated type.

(5) Specifying the alignment number for the structure, union, or class members (supporting the pack option)

The alignment number for the structure, union, or class members can be specified.

(6) Specifying the order of bit fields (supporting the bit_order option)

The order of the bit field members can be specified.

(7) Changing the error level (supporting the change_message option)

The error level for information and warning messages can be changed for each message.

(8) Deregulation of limitations

The maximum allowable number of switch statements is now increased to 2048.

(9) Supporting a fixed point for the DSP library

A fixed point for the DSP library is now supported.

Appendix B

Rev.4.00 2007.02.02 Appendix B-41
REJ05B0463-0400

B.10 Features Added between Ver. 8.0 and Ver. 9.0

• The features added to version 9.0 of the SuperH RISC engine C/C++ compiler are summarized below.

(1) Support for New CPUs

The SH-2A and SH2A-FPU are supported.

An option and a #pragma extension are added to use TBR in the SH-2A and SH2A-FPU.

(2) Extension and Change of Language Specifications

• The following items conform to the ANSI standard.

⎯ Array index

int iarray[10], i=3;

i[iarray] = 0; /* Same as iarray[i] = 0; */

⎯ union bit field specification enabled

union u {

int a:3;

};

⎯ Constant operation

static int i=1||2/0; /* Error is changed to warning for zero division */

⎯ Addition of library and macro

strtoul, FOPEN_MAX

• The following items conform to the ANSI standard when the strict_ansi option is specified, which may cause a
difference in results between Ver. 9 and earlier versions.

⎯ unsigned int and long operations

⎯ Associativity of floating-point operations

• The variables with register storage class specification are preferentially allocated to registers when the enable_register
option is specified.

(3) Enhancement of Intrinsic Functions

• Intrinsic functions for SH-2A and SH2A-FPU are added.

Saturation operations and TBR setting and reference

• Intrinsic functions for instructions that cannot be written in C are added.

Reference and setting of the T bit, extraction of the middle of registers connected,addition with carry, subtraction with
borrow, sign inversion, 1-bit division, rotation, and shift.

(4) Loosening Limits on Values

The following limits are loosened.

• Nesting level in a combination of repeat statements (while, do, and for) and select statements (if and
 switch): 32 levels -> 4096 levels

• Number of goto labels allowed in one function: 511 -> 2,147,483,646

• Nesting level of switch statements: 16 levels -> 2048 levels

• Number of case labels allowed in one switch statement: 511 -> 2,147,483,646

• Number of parameters allowed in a function definition or function call: 63 ->2,147,483,646

• Length of section name: 31 bytes -> 8192 bytes

• Number of sections allowed in #pragma section in one file: 64 -> 2045

Appendix B

Rev.4.00 2007.02.02 Appendix B-42
REJ05B0463-0400

(5) Extension of Memory Space Allocation

More detailed settings can be made for memory space allocation.

• abs16/abs20/abs28/abs32 option

• #pragma abs16/abs20/abs28/abs32

(6) Specification of Absolute Address for Variables (support for #pragma address)

An absolute address can be specified for an external variable.

(7) Extension of Optimization for External Variable Access (support for smap option)

Optimization is applied to access to external variables defined in the file to be compiled. Recompilation, which is required
for the map option, is not necessary.

(8) Improvement in Precision of Mathematics Library

The precision of operation using the mathematics library is improved, which may cause a difference in results between
Ver. 9 and earlier versions.

Appendix C

Rev.4.00 2007.02.02 Appendix C-43
REJ05B0463-0400

Appendix C Notes on Version Upgrade

This section describes notes when the version is upgraded from the earlier version (SuperH RISC engine C/C++ Compiler
Package Ver. 6.x or lower).

C.1 Guaranteed Program Operation

When the version is upgraded and program is developed, operation of the program may change. When the program is
created, note the followings and sufficiently test your program.

(1) Programs Depending on Execution Time or Timing

C/C++ language specifications do not specify the program execution time. Therefore, a version difference in the compiler
may cause operation changes due to timing lag with the program execution time and peripherals such as the I/O, or
processing time differences in asynchronous processing, such as in interrupts.

(2) Programs Including an Expression with Two or More Side Effects

Operations may change depending on the version when two or more side effects are included in one expression.

Example

a[i++]=b[i++]; /* i increment order is undefined. */

f(i++,i++) ; /* Parameter value changes according to increment order. */
 /* This results in f(3, 4) or f(4, 3) when the value of i is 3. */

(3) Programs with Overflow Results or an Illegal Operation

The value of the result is not guaranteed when an overflow occurs or an illegal operation is performed. Operations may
change depending on the version.

Example

int a, b;

x=(a*b)/10; /* This may cause an overflow depending on the value range of a and b. */

(4) No Initialization of Variables or Type Inequality

When a variable is not initialized or the parameter or return value types do not match between the calling and called
functions, an incorrect value is accessed. Operations may change depending on the version.

 File 1: File 2:

The information provided here does not include all cases that may occur. Please use this compiler prudently, and
sufficiently test your programs keeping the differences between the versions in mind.

int f(double d)

{

:

}

int g(void)

{

f(1);

}

The parameter of the caller

function is the int type, but the

parameter of the callee function

is the double type. Therefore, a

value cannot be correctly

referenced.

Appendix C

Rev.4.00 2007.02.02 Appendix C-44
REJ05B0463-0400

C.2 Compatibility with Earlier Version

The following notes cover situations in which the compiler (Ver. 5.x or lower) is used to generate a file that is to be linked
with files generated by the earlier version or with object files or library files that have been output by the assembler (Ver.
4.x or lower) or linkage editor (Ver. 6.x or lower). The notes also covers remarks on using the existing debugger supplied
with the earlier version of the compiler.

(1) Object Format

The standard object file format has been changed from SYSROF to ELF. The standard format for debugging information
has also been changed to DWARF2.

When object files (SYSROF) output by the earlier version of the compiler (Ver. 5.x or lower) or assembler (Ver. 4.x or
lower) are to be input to the optimizing linkage editor, use a file converter to convert it to the ELF format. However,
relocatable files output by the linkage editor (extension: rel) and library files that include one or more relocatable files
cannot be converted.

(2) Point of Origin for Include Files

When an include file specified with a relative directory format was searched for, in the earlier version, the search would
start from the compiler’s directory. In the new version, the search starts from the directory that contains the source file.

(3) C++ Program

Since the encoding rule and execution method were changed, C++ object files created by the earlier version of the
compiler cannot be linked. Be sure to recompile such files.

The name of the library function for initial/post processing of the global class object, which is used to set the execution
environment, has also been changed. Refer to section 9.2.2, Execution Environment Settings, and modify the name, in the
SuperH RISC engine C/C++ Conpiler, Assembler, Optimizing Linkage Editor User's Manual.

(4) Abolition of Common Section (Assembly Program)

With the change of the object format, support for a common section has been abolished.

(5) Specification of Entry via .END (Assembly Program)

Only an externally defined symbol can be specified with .END.

(6) Inter-module Optimization

Object files output by the earlier version of the compiler (Ver. 5.x or earler) or the assembler (Ver. 4.x or earler) are not
targeted for inter-module optimization. Be sure to recompile and reassemble such files so that they are targeted for
inter-module optimization.

Appendix D

Rev.4.00 2007.02.02 Appendix D-45
REJ05B0463-0400

Appendix D ASCII Code Table

Table D.1 ASCII Code Table

Upper four bits

Lower four bits

0 1 2 3 4 5 6 7

0 NULL DLE SP 0 @ P ′ p

1 SOH DC1 ! 1 A Q a q

2 STX DC2 " 2 B R b r

3 ETX DC3 # 3 C S c s

4 EOT DC4 $ 4 D T d t

5 ENQ NAK % 5 E U e u

6 ACK SYN & 6 F V f v

7 BEL ETB ' 7 G W g w

8 BS CAN (8 H X h x

9 HT EM) 9 I Y i y

A LF SUB * : J Z j z

B VT ESC + ; K [k {

C FF FS , < L • l |

D CR GS - = M] m }

E SO RS . > N ^ n ~

F SI US / ? O _ o DEL

Appendix C

Rev.4.00 2007.02.02 Appendix D-46
REJ05B0463-0400

Renesas Microcomputer Development Environment System
Application Note
SuperH RISC engine C/C++ Compiler Package

Publication Date: Rev.1.00, November 9, 2004
 Rev.4.00, February 2, 2007
Published by: Sales Strategic Planning Div.
 Renesas Technology Corp.
Edited by: Customer Support Department
 Global Strategic Communication Div.
 Renesas Solutions Corp.

© 2007. Renesas Technology Corp., All rights reserved. Printed in Japan.

Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

http://www.renesas.com
Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.
450 Holger Way, San Jose, CA 95134-1368, U.S.A
Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501
Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120
Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898
Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong
Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd.
10th Floor, No.99, Fushing North Road, Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999
Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd.
Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea
Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145
Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: <603> 7955-9390, Fax: <603> 7955-9510

RENESAS SALES OFFICES

Colophon 6.0

1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan

SuperH RISC engine C/C++ Compiler Package

REJ05B0463-0400

Application Note

	Cover
	Notes regarding these materials
	Preface
	Contents
	Section 1 Overview
	1.1 Summary
	1.2 Features
	1.3 Method of Installation
	1.3.1 PC Version
	1.3.2 UNIX Version

	1.4 Method of Execution
	1.4.1 Starting the Embedded Workshop
	1.4.2 Starting the Compiler

	1.5 Procedure for Program Development

	Section 2 Procedure for Creating and Debugging a Program
	2.1 Creating a Project
	2.1.1 Creating the Project for a Simulator Debugger

	2.2 Introduction of Sample Program (SH-1, SH-2, SH-2E, SH-2A, SH2A-FPU, SH2-DSP)
	2.2.1 Creating a Vector Table
	2.2.2 Creating a Header File
	2.2.3 Creating the Main Processing Program
	2.2.4 Creation of the Initialization Unit
	2.2.5 Creating Interrupt Functions
	2.2.6 Creating a Batch File for a Load Module
	2.2.7 Creating a Linkage Editor Subcommand File

	2.3 Introduction of Sample Program (SH-3,SH3-DSP,SH-4,SH-4A, and SH4AL-DSP)
	2.3.1 Creating an Interrupt Handler
	2.3.2 Creating the Vector Table
	2.3.3 Creating the Header File
	2.3.4 Creating the Initialization Part
	2.3.5 Creating the Main Processing Part and Interrupt Processing Part
	2.3.6 Creating a Batch File for the Load Module
	2.3.7 Creating a Linkage Editor Subcommand File

	2.4 Debugging using Simulator Debugger
	2.4.1 Setting Configuration
	2.4.2 Allocating Memory Resources
	2.4.3 Downloading a Sample Program
	2.4.4 Setting Simulated I/O
	2.4.5 Setting Trace Information Acquisition Conditions
	2.4.6 Status Window
	2.4.7 Registers Window
	2.4.8 Trace
	2.4.9 Displaying Breakpoints
	2.4.10 Displaying Memory Contents

	2.5 Standard I/O and File I/O Processing in the Simulator/Debugger

	Section 3 Compiler
	3.1 Interrupt Functions
	3.1.1 Definitions of Interrupt Functions (No Options)
	3.1.2 Definitions of Interrupt Functions (with Options)
	3.1.3 Creating a Vector Table

	3.2 Built-in Functions
	3.2.1 Setting and Referencing to the Status Register
	3.2.2 Setting and Referencing to the Vector Base Register
	3.2.3 Accessing I/O Registers(1)
	3.2.4 Accessing I/O Registers(2)
	3.2.5 System Control
	3.2.6 Multiply-and-Accumulate Operations (1)
	3.2.7 Multiply-and-Accumulate Operations (2)
	3.2.8 64-Bit Multiplication (1)
	3.2.9 64-Bit Multiplication (2)
	3.2.10 Swapping Upper and Lower Data
	3.2.11 System Call
	3.2.12 Prefetch Instruction
	3.2.13 LDTLB Instruction
	3.2.14 NOP Instruction
	3.2.15 Single-Precision Floating-Point Operations
	3.2.16 Accessing the Extension Register
	3.2.17 DSP Instruction
	3.2.18 Sine and Cosine
	3.2.19 Reciprocal of the Square Root
	3.2.20 Invalidation of the Instruction Cache
	3.2.21 Cache Block Operations
	3.2.22 Instruction Cache Prefetch
	3.2.23 System Synchronization
	3.2.24 Referencing and Setting the T Bit
	3.2.25 Cutting Out the Middle of the Contatenated Register
	3.2.26 Addition with Carry
	3.2.27 Subtraction with Borrow
	3.2.28 Sign Inversion
	3.2.29 One-Bit Division
	3.2.30 Rotation
	3.2.31 Shift
	3.2.32 Saturation Operation
	3.2.33 Referencing and Setting the TBR

	3.3 Inline Expansion
	3.3.1 Inline Expansion of Functions
	3.3.2 Inline Expansion of Assembly Language
	3.3.3 Sample Program with an Inline Assembly Function

	3.4 Register Specification
	3.4.1 Specification of GBR Base Variables
	3.4.2 Register Allocation of Global Variables

	3.5 Control of Register Save/Restore Operations
	3.6 Specification of 16/20/28/32-Bit Address Areas
	3.7 Section Name Specification
	3.7.1 Section Name Specification
	3.7.2 Section Switching

	3.8 Specification of Entry Functions, and SP Settings
	3.9 Position-Independent Code
	3.10 MAP Optimization
	3.10.1 Procedure for Use
	3.10.2 Example of Improved External Variable Access Code (1)
	3.10.3 Example of Improved External Variable Access Code (2)
	3.10.4 Example of Improved External Variable Access Code (3)
	3.10.5 Example of Improved External Variable Access Code (4)

	3.11 Options
	3.11.1 Options for Code Generation
	3.11.2 Options for Optimization Linkage
	3.11.3 Options for Creating Standard Libraries

	3.12 SH-DSP Features
	3.13 DSP Library
	3.13.1 Summary
	3.13.2 Data Format
	3.13.3 Efficiency
	3.13.4 Fast Fourier transform
	3.13.5 Window Functions
	3.13.6 Filters
	3.13.7 Convolution and Correlation
	3.13.8 Other

	3.14 Performance of the DSP Library
	3.15 Issues Related to Cross-Software
	3.15.1 Issues Related to Assembly Language Programs
	3.15.2 Use With the Optimization Linkage Editor
	3.15.3 Use With the Simulator-Debugger

	3.16 Changing the Alignment Number for the Structure
	3.17 long long type
	3.18 DSP-C Specifications
	3.18.1 Fixed-Point Data Type
	3.18.2 Memory Qualifier
	3.18.3 Saturation Qualifier
	3.18.4 Circular Qualifier
	3.18.5 Type Conversion
	3.18.6 Arithmetic Conversion

	3.19 MAP Optimization Extended Option
	3.19.1 Usage
	3.19.2 Example of Improved External Variable Access Code (1)
	3.19.3 Example of Improved External Variable Access Code (2)

	3.20 TBR-Relative Function Call
	3.21 Generating a GBR-Relative Logic Operation Instruction
	3.22 Enabling Register Declarations
	3.23 Specifying Absolute Addresses of Variables
	3.24 Strengthened optimization
	3.24.1 Improved Literal Data (1)
	3.24.2 Improved Literal Data (2)
	3.24.3 Disabling EXTU (1)
	3.24.4 Disabling EXTU (2)
	3.24.5 Improved Bit Operations (1)
	3.24.6 Improved Bit Operations (2)
	3.24.7 Improved Bit Operations (3)
	3.24.8 Improved Bit Operations (4)
	3.24.9 Improved Bit Operations (5)

	3.25 Controlling the Output Order of Uninitialized Variables
	3.26 Specifying the Placement of Variables

	Section 4 HEW
	4.1 Specifying options in HEW2.0 or later
	4.1.1 C/C++ Compiler Options
	4.1.2 Assembly Options
	4.1.3 Optimizing Linkage Editor Options
	4.1.4 Standard Library Generator Options
	4.1.5 CPU Options

	4.2 Specifying the Compiler Version from the Renesas Integrated Development Environment

	Section 5 Efficient Programming Techniques
	5.1 Data Specification
	5.1.1 Local Variable (Data Size)
	5.1.2 Global Variables (Signs)
	5.1.3 Data Size (Multiplication)
	5.1.4 Data Structures
	5.1.5 Data Alignment
	5.1.6 Initial Values and the Const Type
	5.1.7 Local Variables and Global Variables
	5.1.8 Use of Pointer Variables
	5.1.9 Referencing Constants (1)
	5.1.10 Referencing Constants (2)
	5.1.11 Variables Which Remain Constant (1)
	5.1.12 Variables Which Remain Constant (2)

	5.2 Function Calls
	5.2.1 Incorporation of Functions in Modules
	5.2.2 Calling Functions Using Pointer Variables
	5.2.3 Function Interface
	5.2.4 Tail Recursion
	5.2.5 Using the FSQRT and FABS Instructions

	5.3 Operations
	5.3.1 Movement of Invariant Expressions within Loop
	5.3.2 Reducing the Number of Loops
	5.3.3 Use of Multiplication and Division
	5.3.4 Application of Identities
	5.3.5 Use of Tables
	5.3.6 Conditionals
	5.3.7 Eliminating Load/Store Instructions

	5.4 Branching
	5.5 Inline Expansion
	5.5.1 Inline Expansion of Functions
	5.5.2 Inline Expansion with Embedded Assembly Language

	5.6 Use of the Global Base Register (GBR)
	5.6.1 Offset Reference Using the Global Base Register (GBR)
	5.6.2 Selective Use of Global Base Register (GBR) Area

	5.7 Control of Register Save/Restore Operations
	5.8 Specification Using Two-Byte Addresses
	5.9 Cache Use
	5.9.1 Prefetch Instruction
	5.9.2 Tiling

	5.10 Matrix Operations
	5.11 Software Pipelines
	5.12 About Cache Memory
	5.12.1 Description of Terms

	5.13 SuperH Family Caches
	5.14 Techniques for Cache Utilization

	Section 6 Efficient Programming Techniques (Supplement)
	6.1 How to Specify Options
	6.1.1 Options for Starting HEW (Floating Point Setting)
	6.1.2 How to Specify Optimization Options (Speed and Size)
	6.1.3 Options Needing Attention for Program Compatibility (Function Interface)
	6.1.4 Options for Handling Variables with volatile Declaration (volatile Variable)
	6.1.5 Disabling Deletion of Empty Loops
	6.1.6 Disabling Optimization of const Variables
	6.1.7 Options Effective for Enhancing Execution Efficiency of Floating Points

	6.2 Optimization of Division by Constant
	6.3 Size of Division by Integer
	6.4 Register Declaration
	6.5 Offset of Member in Structure Declaration
	6.6 Allocation of Bit Fields
	6.7 Software Pipeline (Floating-Point Table Search)
	6.8 Ensuring of Data Access Size
	6.9 Use of Floating-Point Instructions

	Section 7 Using HEW
	7.1 Builds
	7.1.1 Regenerating and Editing Automatically Generated Files
	7.1.2 Makefile Output
	7.1.3 Makefile Input
	7.1.4 Creating Custom Project Types
	7.1.5 Multi-CPU Feature
	7.1.6 Networking Feature
	7.1.7 Converting from Old HEW Version
	7.1.8 Converting a HIM Project to a HEW Project
	7.1.9 Add Supported CPUs

	7.2 Simulations
	7.2.1 Pseudo-interrupts
	7.2.2 Convenient Breakpoint Functions
	7.2.3 Coverage Feature
	7.2.4 File I/O
	7.2.5 Debugger Target Synchronization
	7.2.6 How to Use Timers
	7.2.7 Examples of Timer Usage
	7.2.8 Reconfiguration of Debugger Target

	7.3 Call Walker
	7.3.1 Creating a Stack Information File
	7.3.2 Starting Call Walker
	7.3.3 Call Walker Window and Opening a File
	7.3.4 Editing Stack Information
	7.3.5 Stack Area Size of Assembly Program
	7.3.6 Merging Stack Information
	7.3.7 Other Features

	Section 8 Efficient C++ Programming Techniques
	8.1 Initialization Processing/Post-processing
	8.1.1 Initialization Processing and Post-Processing of Global Class Object

	8.2 Introduction to C++ Functions
	8.2.1 How to Reference a C Object
	8.2.2 How to Implement new and delete
	8.2.3 Static Member Variable

	8.3 How to Use Options
	8.3.1 C++ Language for Embedded Applications
	8.3.2 Run-Time Type Information
	8.3.3 Exception Handling Function
	8.3.4 Disabling Startup of Prelinker

	8.4 Advantages and Disadvantages of C++ Coding
	8.4.1 Constructor (1)
	8.4.2 Constructor (2)
	8.4.3 Default Parameter
	8.4.4 Inline Expansion
	8.4.5 Class Member Function
	8.4.6 operator Operator
	8.4.7 Overloading of Functions
	8.4.8 Reference Type
	8.4.9 Static Function
	8.4.10 Static Member Variable
	8.4.11 Anonymous Union
	8.4.12 Virtual Function

	Section 9 Optimizing Linkage Editor
	9.1 Input/Output Options
	9.1.1 Input Options
	9.1.2 Output Options

	9.2 List Options
	9.2.1 Symbol Information List
	9.2.2 Symbol Reference Count
	9.2.3 Cross-Reference Information

	9.3 Effective Options
	9.3.1 Output to Unused Area
	9.3.2 End code of S-Type File
	9.3.3 Debug Information Compression
	9.3.4 Link Time Reduction
	9.3.5 Notification of Unreferenced Symbol
	9.3.6 Reduce Empty Areas of Boundary Alignment

	9.4 Optimize Options
	9.4.1 Optimization at Linkage
	9.4.2 Unifies Constants/Strings
	9.4.3 Eliminates Unreferenced Symbols
	9.4.4 Optimizes Register Save/Restore Codes
	9.4.5 Unifies Common Codes
	9.4.6 Optimizes Branch Instructions
	9.4.7 Optimization Partially Disabled
	9.4.8 Confirm Optimization Results

	Section 10 MISRA C
	10.1 MISRA C
	10.1.1 What Is MISRA C?
	10.1.2 Rule Examples
	10.1.3 Compliance Matrix
	10.1.4 Rule Violations
	10.1.5 MISRA C Compliance

	10.2 SQMlint
	10.2.1 What Is SQMlint?
	10.2.2 Using SQMlint
	10.2.3 Viewing Test Results
	10.2.4 Development Procedures
	10.2.5 Supported Compilers
	10.2.6 Rules That Can Be Checked by the SH C/C++ Compiler

	Section 11 Q & A
	11.1 C/C++ Compiler/Assembler
	11.1.1 const Declaration
	11.1.2 Correct Evaluation of Single-Bit Data
	11.1.3 Installation
	11.1.4 Runtime Routine Specifications and Execution Speed
	11.1.5 SH Series Object Compatibility
	11.1.6 Executing Host Machine and OS
	11.1.7 C/C++ Source-Level debugging Not Possible.
	11.1.8 Warning Occurs on Inline Expansion
	11.1.9 A "Function not optimized" Warning Appears at Compilation
	11.1.10 A "compiler version mismatch" Message Appears at Compilation
	11.1.11 A "memory overflow" Error Occurs at Compilation
	11.1.12 Precedence of Include Specification
	11.1.13 Compile Batch Files
	11.1.14 Japanese Text within Programs
	11.1.15 Data Endian Assignment
	11.1.16 Assembling Using "#pragma inline_asm"
	11.1.17 Privileged Mode
	11.1.18 Regarding Object Generation
	11.1.19 About the #pragma gbr_base Feature
	11.1.20 Compiling Programs Containing Japanese Codes
	11.1.21 Speed of Floating Point Operations
	11.1.22 Using the PIC Option
	11.1.23 Optimization Causes Large Amounts of Code to be Deleted
	11.1.24 Values of Local Variables Cannot be Displayed during Debugging
	11.1.25 Interrupt Inhibit/Enable Macros
	11.1.26 Interrupt Functions in SH-3 and Later Models
	11.1.27 An Operated Result by the Floating Point of SH4
	11.1.28 Regarding Optimization Options
	11.1.29 An argument of function is not transferred correctly.
	11.1.30 How to Check Coding Which May Cause Incorrect Operation
	11.1.31 Comment Coding
	11.1.32 How to Build Programs When the Assembler Is Embedded
	11.1.33 C++ Language Specifications
	11.1.34 How to View Source Programs after Pre-Processor Expansion
	11.1.35 The Program Runs Correctly on the ICE But Fails When Installed on a Real Chip
	11.1.36 How to Use C language Programs Developed for H8 Microcomputers
	11.1.37 Optimizations That Cause Infinite Loops
	11.1.38 Precautions Regarding the DSP Library
	11.1.39 Maximum Sampling Data Count for a DSP Library Function
	11.1.40 Read/write Instructions for Bit Fields
	11.1.41 Specifying Interrupt Processing
	11.1.42 Common Invalid Instruction Exceptions That Occur When Programs Are Run for an Extended Period of Time
	11.1.43 When the Result of an Integer Calculation Differs from the Expected Value

	11.2 Linkage Editor
	11.2.1 An "Undefined symbol" Message Appears on Linking
	11.2.2 A "RELOCATION SIZE OVERFLOW" Message Appears at Linkage
	11.2.3 A "SECTION ATTRIBUTE MISMATCH" Message Appears at Linkage
	11.2.4 Transfer to RAM and Execution of a Program
	11.2.5 Fixing Symbol Addresses in Certain Memory Areas for Linking
	11.2.6 Using Overlays
	11.2.7 Specifying Error Output for Undefined Symbols
	11.2.8 Unify Output Forms of S-Type File
	11.2.9 Dividing an Output File
	11.2.10 Execution of optlinksh.exe on Windows 2000
	11.2.11 Output File Format of Optimizing Linkage Editor
	11.2.12 Method for Calculating the Program Sizes (ROM and RAM)
	11.2.13 When Section Alignment Mismatch Is Output

	11.3 Standard Library
	11.3.1 Reentrant Function and the Standard Library
	11.3.2 I would like to use reentrant library function in standard library file.
	11.3.3 There is no standard library file. (SHC V6, 7, 8)
	11.3.4 Warning Message on Building Standard Library
	11.3.5 Size of Memory Used as Heap
	11.3.6 Editing Library Files

	11.4 HEW
	11.4.1 Failure to Display Dialog Menu
	11.4.2 Linkage Order of Object Files
	11.4.3 Specifying the MAP Optimization
	11.4.4 Excluding a project file
	11.4.5 Specifying the Default Options for Project Files
	11.4.6 Changing Memory Map
	11.4.7 How to Use HEW on Network
	11.4.8 Limitations on File and Directory Names Created in HEW
	11.4.9 Failure of Japanese Font Display with the HEW Editor or HDI
	11.4.10 How to Convert Programs from HIM to HEW
	11.4.11 Corresponding Device Not Available during HEW Project Setup
	11.4.12 I want to use an old compiler (tool chain) in the latest HEW.

	Appendix
	Appendix A Rules for Naming Runtime Routines
	Appendix B Added Features
	B.1 Features Added between Ver. 1.0 and Ver. 2.0
	B.2 Features Added between Ver. 2.0 and Ver. 3.0
	B.3 Features Added between Ver. 3.0 and Ver. 4.1
	B.4 Features Added between Ver. 4.1 and Ver. 5.0
	B.5 Features Added between Ver. 5.0 and Ver. 5.1
	B.6 Features Added between Ver. 5.1 and Ver. 6.0
	B.7 Features Added between Ver. 6.0 and Ver. 7.0
	B.8 Features Added between Ver. 7.0 and Ver. 7.1
	B.9 Features Added between Ver. 7.1 and Ver. 8.0
	B.10 Features Added between Ver. 8.0 and Ver. 9.0

	Appendix C Notes on Version Upgrade
	C.1 Guaranteed Program Operation
	C.2 Compatibility with Earlier Version

	Appendix D ASCII Code Table

	Colophon

