
 Development Guide

R01AN4875EJ0130 Rev.1.30 Page 1 of 67

Dec. 22, 2022

RX23W Group Bluetooth Mesh Stack

Development Guide

Introduction

Bluetooth® Mesh Stack is the software library to build a mesh network that is compliant with Bluetooth Mesh
Networking Specification and to perform many-to-many wireless communication.

This document describes the overview of software architecture and its layers of the Bluetooth Mesh Stack
Package and how to develop a mesh application. For more information on how to get started with Bluetooth
Mesh Stack Package, refer to "RX23W Group Bluetooth Mesh Stack Startup Guide" (R01AN4874).

Target Device

RX23W Group

Related Documents

The following documents are published on Renesas website.

Document Title Document No.

RX23W Group

User’s Manual: Hardware

R01UH0823

CC-RX Compiler

User's Manual

R20UT3248

Bluetooth Low Energy Protocol Stack Basic Package

User's Manual

R01UW0205

RX23W Group

Bluetooth Low Energy Application Developer's Guide

R01AN5504

RX23W Group Bluetooth Mesh Stack

Startup Guide

R01AN4874

RX23W Group Bluetooth Mesh Stack

Development Guide

R01AN4875

This document

RX23W Group Bluetooth Mesh Stack Development Guide

R01AN4875EJ0130 Rev.1.30 Page 2 of 67

Dec. 22, 2022

Contents

1. Bluetooth Mesh Overview .. 4

1.1 Node .. 4

1.2 Element ... 4

1.3 Address ... 4

1.4 State .. 5

1.5 Model ... 5

1.5.1 Client and Server ... 5

1.5.2 Foundation Models .. 6

1.5.3 Configuration Model .. 6

1.5.4 Health Model ... 6

1.5.5 Publication and Subscription ... 7

1.6 Message .. 8

1.7 Mesh Bearer .. 9

1.8 Provisioning ... 10

1.9 Configuration ... 10

1.10 Optional Features .. 11

1.10.1 Relay ... 11

1.10.2 Proxy ... 12

1.10.3 Friendship .. 13

2. Bluetooth Mesh Stack Package ... 14

2.1 System Architecture .. 15

2.2 Mesh Application ... 16

2.2.1 Mesh Core Module .. 17

2.2.2 Mesh Model Module .. 17

2.2.3 Mesh Model Composition .. 17

2.2.3.1 Configuration Model .. 18

2.2.3.2 Health Model ... 19

2.2.3.3 Generic OnOff Model .. 19

2.2.3.4 Vendor Model .. 20

2.3 Bluetooth Mesh Stack ... 21

2.4 Bluetooth Bearer .. 23

2.4.1 Bearer Functions for Message Transmission and Reception (blebrr.c) .. 23

2.4.2 Bearer Functions for Connection Control (blebrr_pl.c, blebrr_gatt.c) ... 24

2.4.3 Mesh GATT Services (gatt_db.c) .. 25

2.4.4 ADV Bearer Operation .. 26

2.4.5 GATT Bearer Operation .. 27

2.5 MCU Peripheral Functions .. 28

2.6 Mesh Sample Program Configurations ... 30

2.6.1 Basic Operation Configurations ... 30

RX23W Group Bluetooth Mesh Stack Development Guide

R01AN4875EJ0130 Rev.1.30 Page 3 of 67

Dec. 22, 2022

2.6.2 Provisioning Operation Configurations .. 32

2.7 Bluetooth Bearer Configurations ... 35

2.8 Mesh Driver Configurations ... 38

3. Application Development ... 39

3.1 Main Routine ... 40

3.2 Node Composition ... 42

3.3 Provisioning ... 43

3.3.1 Provisioning Server ... 43

3.3.2 Provisioning Sequence .. 44

3.4 Proxy ... 48

3.4.1 Proxy Server .. 48

3.4.2 Proxy Client ... 49

3.4.3 Proxy Sequence .. 50

3.5 Friendship .. 52

3.5.1 Friend Node ... 52

3.5.2 Low Power Node ... 52

3.5.3 Low Power Node Sequence .. 53

3.5.4 Friend Node Sequence ... 55

3.6 Configuration ... 57

3.6.1 Configuration Server ... 57

3.6.2 Configuration Server Sequence .. 58

3.7 Health Model ... 59

3.7.1 Health Server... 59

3.7.2 Health Server Sequence ... 60

3.8 Application Model .. 61

3.8.1 Server Model ... 61

3.8.2 Client Model ... 62

3.8.3 Generic OnOff Model Sequence ... 63

3.8.4 Vendor Model Sequence ... 63

3.8.5 Mesh Monitoring .. 64

3.8.5.1 Mesh Monitoring Sequence .. 65

4. Appendix ... 66

4.1 Command Line Interface Program .. 66

RX23W Group Bluetooth Mesh Stack Development Guide

R01AN4875EJ0130 Rev.1.30 Page 4 of 67

Dec. 22, 2022

1. Bluetooth Mesh Overview

This chapter describes the basic concepts defined by Bluetooth Mesh Networking Specifications. For more

information, refer to Specifications List on Bluetooth SIG website.

Figure 1-1 shows the basic composition of Bluetooth mesh network.

Figure 1-1 Basic Composition of Bluetooth Mesh Network

1.1 Node

A device joining a network is referred to as a Node. Network is a group of nodes sharing common address

space and encryption keys. Communication among nodes is encrypted with Network Key. Each network is

identified by Network ID generated by the Network Key. By default, one Network referred to as primary

subnet is built. Multiple subnets can be also built to isolate communication scope.

1.2 Element

Element is a logical entity within a node. A node has at least one element and can also have multiple

elements. First element is referred to as primary element.

Each element is identified uniquely in a network by Unicast Address that is assigned by Provisioning.

1.3 Address

Address used in a network is 16-bit length. Unassigned address, Unicast Address, Virtual Address, and

Group address are defined as address types.

Table 1-1 Address Types

Address Type Value Value Range

Unassigned Address 0b0000000000000000 0x0000

Unicast Address 0b0xxxxxxxxxxxxxxx (excluding 0b0000000000000000) 0x0001 to 0x7FFF

Virtual Address 0b10xxxxxxxxxxxxxx 0x8000 to 0xBFFF

Group Address 0b11xxxxxxxxxxxxxx 0xC000 to 0xFFFF

• Unassigned Address

Unassigned Address is set to an element which Unicast Address has not been assigned yet. This

address cannot be used as source address or destination address in a message.

Node

Element

Client Model

Node

Element

Server Model

State

Messages

Node Node

Node Node

Node

Node

https://www.bluetooth.com/specifications/specs/

RX23W Group Bluetooth Mesh Stack Development Guide

R01AN4875EJ0130 Rev.1.30 Page 5 of 67

Dec. 22, 2022

• Unicast Address

Unicast Address is an address to identify a single element. 32,767 Unicast Address can be used in a

network. Unicast Address can be used for source address and destination address in a message.

• Virtual Address

Virtual Address is a multicast address generated by a Label UUID. Virtual Address can be used for

destination address in a message.

Label UUID is a 128-bit value to categorize multiple elements. This value can be generated randomly and

shared by OOB (Out-Of-Band) among devices. Also, Virtual address and Label UUID need not to be

managed centrally.

• Group Address

Group Address is a multicast address managed and assigned dynamically for any usage. Group Address

can be used for destination address in a message. Also, Fixed Group Addresses such as all-nodes are

defined.

Table 1-2 Fixed Group Addresses

Fixed Group Address Value

all-proxies 0xFFFC

all-friends 0xFFFD

all-relays 0xFFFE

all-nodes 0xFFFF

1.4 State

State is a value representing a condition of an element. States that are composed of two or more values are

known as composite states. Moreover, States having a relationship whereby one state changes in

conjunction with other state is referred to as bound states.

The State can change instantaneously or over a period of time. Time from initial State to target State is

referred to as transition time. Also, time from current State to target State is referred to as remaining time.

1.5 Model

Model is a standardized typical functionality so that nodes perform operations in accordance with application

scenario. Model defines States, Messages that act upon a state, and associated behaviors.

1.5.1 Client and Server

Model is a Server - Client architecture. Server model have at least on state, while Client model does not

have state.

Client model can get a state of Server model with GET message or set a new state to Server model with

SET message or SET Unacknowledged message.

Server model sends STATUS message as an ACK when State is changed, or an GET message or SET

message is received. Server model does not send STATUS message as an ACK when SET

Unacknowledged message is received.

RX23W Group Bluetooth Mesh Stack Development Guide

R01AN4875EJ0130 Rev.1.30 Page 6 of 67

Dec. 22, 2022

Node can have multiple elements. Also, each element can use multiple models that are different from each

other. Server model controls states of the element by receiving message from client model.

Figure 1-2 Node Composition

1.5.2 Foundation Models

Foundation Models are models to configure and manage operations of elements. Primary element of each

node must have Configuration Server model and Health Server model.

Table 1-3 Fixed Group Addresses

Model SIG Model ID

Configuration Server 0x0000

Configuration Client 0x0001

Health Server 0x0002

Health Client 0x0003

1.5.3 Configuration Model

Configuration Model is a model for configuring operations of node. Configuration values of a node and

elements are defined as Configuration states.

Configuration Server Model is a model that has Configuration states. On the other hand, Configuration Client

Model is a model for managing configurations of Configuration Server by Configuration messages. Each

Configuration message is encrypted with a Device Key. Device Keys are different from each node.

1.5.4 Health Model

Health Model is a model for monitoring the physical condition of a node.

Health Server Model is a model that has Fault State for storing a physical fault information. On the other

hand, Health Client Model is a model for monitoring fault information of Health Server by Health messages.

Each Health message is encrypted with an Application Key.

Node

Element Element

Server Model

State

Client Model Server Model

State

State

RX23W Group Bluetooth Mesh Stack Development Guide

R01AN4875EJ0130 Rev.1.30 Page 7 of 67

Dec. 22, 2022

1.5.5 Publication and Subscription

Transmission operation of model messages is referred to as Publication, and reception operation of them is

referred to as Subscription respectively. Model can publish messages to multiple elements by setting a

Multicast Address to destination address. Also, model can subscribe messages sent to Multicast Address

selectively.

Figure 1-3 shows the message publication and Subscription by models. Each model sends messages in

accordance with the Publish Address in Model Publication state. If the publish address is multicast address,

each message is subscribed by multiple models in accordance with Subscription Addresses in Subscription

List state.

Figure 1-3 Message Publication and Subscription by models

Publish Address:
multicast address A

element

model

Publish Address:
multicast address B

element

model

element

model

Subscription Address:
multicast address A

element

model

Subscription Address:
multicast address A
multicast address B

element

model

Subscription Address:
multicast address B

messages for multicast address A messages for multicast address B

Publication Publication

Subscription Subscription Subscription

messages for multicast address A messages for multicast address B

Subscription

RX23W Group Bluetooth Mesh Stack Development Guide

R01AN4875EJ0130 Rev.1.30 Page 8 of 67

Dec. 22, 2022

1.6 Message

Data transmitted and received in a network is referred to as Message.

Unsegmented Message and Segmented Message are defined as message formats.

• Unsegmented Message

Unsegmented message is a message to transport unsegmented data. It can transport Access PDU up to

11 bytes.

• Segmented Message

Segmented Message is a message to transport each segmented data up to 32 segments. It can transport

Access PDU up to 380 bytes. When receiving all Segmented Messages, destination node reassembles

data.

Figure 1-4 shows the segmentation and Reassembly of Access PDU. Each node transmits and receives

Network PDU as a Mesh Message.

Figure 1-4 Segmentation and Reassembly of Access PDU

Header of Network PDU includes fields such as Source Address (SRC), Destination Address (DST), and

Sequence Number (SEQ). Network PDUs are encrypted with a Network Key, so only devices joining same

network can decrypt them. Also, Source Address and Destination Address of them are obfuscated, so other

devices that does not have Network Key cannot trace them.

Header of Lower Transport PDU includes fields such as such as SEG to indicate whether Unsegmented or

Segmented and SeqZero, SegO, and SegN to reassemble segmented data.

Access PDU is composed of two fields: Application Opcode and Application Parameters. Also, Access PDU

is encrypted with Application Key or Device Key, so data can be share among only nodes that share the

Application Key or Device Key. Applications Keys are generated and are distributed by Configuration Client.

Access PDU Opcode Parameters

Upper Transport
Access PDU

Encrypted Access Payload TransMIC

Lower Transport
Access PDU

Segment 1Segment 0Header Header

Network PDU TransportPDU NetMIC TransportPDU NetMICHeaderHeader

Segment 2Header

TransportPDU NetMICHeader

Encrypting Decrypting

DecryptingEncrypting Decrypting Encrypting Encrypting Decrypting

ReassemblyReassembly ReassemblySegmentation Segmentation Segmentation

RX23W Group Bluetooth Mesh Stack Development Guide

R01AN4875EJ0130 Rev.1.30 Page 9 of 67

Dec. 22, 2022

1.7 Mesh Bearer

Mesh Bearer is a method to transport messages in a mesh network. Two bearers using Bluetooth Low

Energy technology are defined as follows:

• ADV bearer

This bearer sends messages by the Non-Connectable and Non-Scannable Undirected Advertising.

Messages sent by ADV bearer can be received by many nodes simultaneously.

Also, this bearer is referred to as PB-ADV when it transmits Provisioning PDUs during Provisioning.

• GATT bearer

This bearer sends messages over GATT service. A node of Client side sends messages by Write Without

Response and a node of Server side sends messages by Notification. Before communicating over the

GATT service, establishing a connection is required. Messages sent by GATT bearer can be received by

a connected peer node only.

Also, this bearer is referred to as PB-GATT when it transmits Provisioning PDUs during Provisioning.

Figure 1-5 ADV Bearer and GATT Bearer

GATT BearerADV Bearer

GATT Server (Peripheral role)

GATT Client (Central role)

Notification Write Without Response

non-connectable and non-scannable
undirected advertising

(ADV_NONCONN_IND)

Advertiser / Scanner

Advertiser / Scanner Advertiser / Scanner

RX23W Group Bluetooth Mesh Stack Development Guide

R01AN4875EJ0130 Rev.1.30 Page 10 of 67

Dec. 22, 2022

1.8 Provisioning

Provisioning is a process for joining a network. In provisioning, Provisioning Data that includes Network Key

and Unicast Addresses of each element is distributed. Provisioning Data contains the following information.

• Network Key and Network Key Index

• Flags: Key Refresh Flag and IV Update Flag

• Current IV Index

• Unicast Address of the primary element

A device that is not joined yet is referred to as Unprovisioned Device. Each Unprovisioned Device is

identified by 128-bit Device UUID.

A device that invites other devices and distributes Provisioning Data is referred to as Provisioning Client or

Provisioner. Generally, Provisioning Client is a smart phone or other mobile computing device.

A device that receives Provisioning Data and joins a network is referred to as Provisioning Server or

Provisionee. The device that has joined a network is referred to as a Node.

1.9 Configuration

To communicate with other nodes by using Models, each node needs Configuration. By Configuration

process, information required for Model operation such as Application Keys, Publish Address, Subscription

Address is configured.

Figure 1-6 shows a typical lifecycle of a node.

Newly introduced device is provisioned by Provisioner and joins a network. Furthermore, this device is

configured by Configuration Client and becomes to be able to communicate with other nodes with Mesh

Model. Generally, Configuration Client is a smart phone or other mobile computing device.

Configuration Client removes a node from a network by sending Config Node Reset message. Besides,

Configuration Client updates encryption keys used in the network, and the removed node becomes unable to

communicate with other nodes.

Figure 1-6 Lifecycle of a node

Configuration Client

Unprovisioned
Device

Configured
Mesh Node

Provisioning Server
(Provisoinee)

Configuration

Provisioning Client
(Provisioner)

Provisioning

Configuration Server

Unconfigured
Node

reuse disposal

Configuration Server Configuration Client

Node Removal

introduction

Mesh Model communication with other nodes

RX23W Group Bluetooth Mesh Stack Development Guide

R01AN4875EJ0130 Rev.1.30 Page 11 of 67

Dec. 22, 2022

1.10 Optional Features

The following features are defined as Optional Features.

• Relay feature

• Proxy feature

• Friend feature

• Low Power feature

It is possible to form various mesh network by enabling each optional features of nodes.

Figure 1-7 Mesh Network

1.10.1 Relay

Relay feature is the ability that a node supporting ADV bearer relays messages by retransmit them received

over ADV bearer. Even if destination node is out direct radio range of an originator, messages are relayed by

other nodes and spreads throughout a network, then the messages can reach the destination node.

A node that relays message is referred to as a Relay node.

Figure 1-8 Relay

Relay

GATT bearer path

ADV bearer path

Proxy Client

node

Proxy node

Relay node

Friend node

Low Power

Low Power

Relay

Relay

Relay

Relay + Friend

Relay + Proxy Server

Low Power node

direct radio range

(destination node)(message originator)

ADV bearer path

Relay

Relay

RX23W Group Bluetooth Mesh Stack Development Guide

R01AN4875EJ0130 Rev.1.30 Page 12 of 67

Dec. 22, 2022

1.10.2 Proxy

Proxy feature is the ability that a node supporting both GATT bearer and ADV bearer forwards messages

between both bearers.

A node supporting only GATT bearer communicates with a connected peer node only. In this case, this node

establishes a connection with a node that supports Proxy feature. Thereby messages sent by this node are

forwarded by ADV bearer of the Proxy node, then they can reach the destination node. Moreover, messages

sent by other nodes are forwarded by GATT bearer of the Proxy node, and they can reach this node.

A node that transmits messages between both GATT bearer and ADV bearer is referred to as a Proxy

Server. Also, A node that connects with Proxy Server and then transmits and receives messages over GATT

bearer is referred to as a Proxy Client.

Proxy Server has a list to manage Subscription Addresses of Proxy Client, and it is referred to as a Proxy

Filter List. Either white list filter or black list filter can be set as a Proxy Filter Type. When Proxy Filter Type is

white list filter, Proxy Server forwards only messages addressed to the address registered in the list. When

Proxy Filter Type is black list filter, Proxy Server does not forward messages addressed to the address

registered in the list.

Figure 1-9 Proxy

GATT bearer path

ADV bearer path

Proxy Server

Proxy Client

Proxy Client

RX23W Group Bluetooth Mesh Stack Development Guide

R01AN4875EJ0130 Rev.1.30 Page 13 of 67

Dec. 22, 2022

1.10.3 Friendship

In general, a node supporting ADV bearer always perform Scan, to receive Advertising packets including

messages. Low Power feature is the ability to reduce Scan duty cycle. A node supporting Low Power feature

can reduce power consumption by suspending Scan.

To perform Low Power feature, the node must establish a Friendship with one node supporting Friend

feature. Friend feature is the ability that stores incoming messages needed by Low Power node and then

forwards them when Low Power node requests.

First, Low Power node requests a Friend node to become its friend. When the Friend node accepts it,

Friendship is established. After establishing, Low Power node can suspend Scan, while Friend node must

store received messages addressed to Low Power node.

Friend node has a list to manage Subscription Addresses of Low Power node, and it is referred to as a

Friend Subscription List. After establishing a Friendship, Friend node stores messages addressed to

Subscription Addresses registered in the list.

Low Power node polls Friend node intermittently if any messages are stored and resumes Scan only within a

polling period. Friend node forwards the stored messages at this timing.

Figure 1-10 Friendship

Low Power node

(originator node)

ADV bearer path

Friend node

(destination node)

Friend Poll

stored messages

RX23W Group Bluetooth Mesh Stack Development Guide

R01AN4875EJ0130 Rev.1.30 Page 14 of 67

Dec. 22, 2022

2. Bluetooth Mesh Stack Package

This chapter explains the overview of the software included in Bluetooth Mesh Stack Package.

Bluetooth Mesh Stack package includes not only sample program of Mesh Application but also Bluetooth

Mesh Stack, Bluetooth Bearer, Bluetooth Low Energy Protocol Stack, and other FIT Modules that are

needed to build the sample program. In addition, the following demo projects are included.

tbrx23w_mesh_client: Project for Target Board for RX23W - Client Models

tbrx23w_mesh_server: Project for Target Board for RX23W - Server Models

tbrx23wmodule_mesh_client: Project for Target Board for RX23W module - Client Models

tbrx23wmodule_mesh_server: Project for Target Board for RX23W module - Server Models

rsskrx23w_mesh_client: Project for Renesas Solution Starter Kit for RX23W - Client Models

rsskrx23w_mesh_server: Project for Renesas Solution Starter Kit for RX23W - Server Models

Composition of demo project is shown as below. This document describes software indicated in bold. For

details of other FIT Modules, refer to each application note.

{project}\

 +---src\

 | main.c

 | mesh_appl.h

 | mesh_core.c

 | mesh_model.c

 |

 +---vendor_model\

 | vendor_api.h

 | vendor_client.c

 | vendor_server.c

 +---smc_gen\

 +---r_mesh_rx23w\

 | +---json\

 | +---lib\

 | +---src\

 | +---bearer\

 | +---drivers\

 | +---include\

 +---r_ble_rx23w\

 | +---lib\

 +---r_bsp\

 +---r_byteq\

 +---r_cmt_rx\

 +---r_flash_rx\

 +---r_gpio_rx\

 +---r_irq_rx\

 +---r_lpc_rx\

 +---r_sci_rx\

 +---r_config\

 +---r_pincfg\

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

Mesh Sample Program

Mesh Sample Header

Mesh Core Module

Mesh Model Module

Vendor Model Header

Vendor Client Module

Vendor Server Module

Mesh FIT Module (R01AN4930)

- Mesh GATT Service Definitions for QE for BLE

- Mesh Stack Library

- Bluetooth Bearer

- Mesh Driver

- Mesh Stack Header

BLE FIT Module (R01AN4860)

- Bluetooth Low Energy Protocol Stack Library

BSP FIT Module (R01AN1685)

BYTEQ FIT Module (R01AN1683)

CMT FIT Module (R01AN1856)

FLASH FIT Module (R01AN2184)

GPIO FIT Module (R01AN1721)

IRQ FIT Module (R01AN1668)

LPC FIT Module (R01AN2769)

SCI FIT Module (R01AN1815)

FIT Module Configuration

MCU Pin Configuration

Regarding how to setup an environment for building sample program, refer to Chapter 6 in "RX23W Group

Bluetooth Mesh Stack Startup Guide" (R01AN4874)

RX23W Group Bluetooth Mesh Stack Development Guide

R01AN4875EJ0130 Rev.1.30 Page 15 of 67

Dec. 22, 2022

2.1 System Architecture

Figure 2-1 shows the system architecture of Bluetooth Mesh Stack Package.

Figure 2-1 System Architecture of Bluetooth Mesh

Bluetooth Mesh Stack Package is composed of the following software:

• Mesh Application

The Mesh Application is an application program that performs Bluetooth mesh communication features.

Users are required to understand specification of Mesh Stack API and Bluetooth Bearer API to develop

own Mesh Applications. Also, sample program of Mesh Application is included in Bluetooth Mesh Stack

package.

• Bluetooth Mesh Stack

The Bluetooth Mesh Stack (hereinafter referred to as "Mesh Stack") is the software stack that provides

applications with many-to-many wireless communication features which is compliant with the Bluetooth

Mesh Networking specifications. This stack has Mesh Stack API to use mesh network communication

features. Also, Mesh Stack is included in RX23W Group Mesh FIT Module.

• Bluetooth Bearer

The Bluetooth Bearer is the abstraction layer that provides the Bluetooth Mesh Stack and application with

wrapper functions of Bluetooth Low Energy Protocol Stack. Also, Bluetooth Bearer is included in RX23W

Group Mesh FIT Module.

• Bluetooth Low Energy Protocol Stack

The Bluetooth Low Energy Protocol Stack (hereinafter referred to as " Bluetooth LE Stack") is the

software that provides upper layers with wireless communication features which is compliant with the

Bluetooth Low Energy specifications. This stack has R_BLE API to use Bluetooth Low Energy

communication features. Also, Bluetooth LE Stack is included in RX23W Group BLE FIT Module.

• Peripheral Driver Modules

Application, Mesh Stack, Bluetooth LE Stack use peripheral functions of microcontroller. Peripheral

drivers that are provided as Firmware Integration Technology (FIT) Modules can used for developing

software for RX microcontrollers.

Bluetooth Bearer

RX23W MCU

Mesh Application

Mesh Stack API

Bluetooth Bearer API

Bluetooth Mesh Stack

R_BLE API

Bluetooth Low Energy Protocol Stack

Peripheral
Driver

Modules

Driver APIs

RX23W Group Bluetooth Mesh Stack Development Guide

R01AN4875EJ0130 Rev.1.30 Page 16 of 67

Dec. 22, 2022

2.2 Mesh Application

Users is required to develop own Mesh Application for performing wireless communication capability with

Bluetooth Mesh. Bluetooth Mesh Stack package includes source code of sample program that can be used

as a reference for developing Mesh Applications.

The sample program of Mesh Application (hereinafter referred to as "Mesh Sample Program) uses the API of

Mesh Stack and performs Provisioning and basic operations as a mesh node. This section describes the

detail of Mesh Sample Program.

Notable features of Mesh Sample Program are shown as below:

• Unprovisioned Device operation: supports both PB-ADV bearer and PB-GATT bearer

• Configuration Server operation: stores Configuration information in Data Flash memory

• Generic OnOff Client operation: sends Generic OnOff Set message when on-board switch is

pushed

• Generic OnOff Server operation: controls on-board LED when Generic OnOff Set message is

received.

• Vendor Client operation: sends Vendor Set message with character string input over UART

• Vendor Server operation: outputs character string included in Vendor Set message received

• Low Power operation: establishes a Friendship to Friend node and registers Subscription

List with Friend Subscription List

• Proxy Server operation: establish a connection to Proxy Client and forwards messages

over GATT bearer

• IV Update Initiation functionality: monitors sequence number of messages and initiates IV update

procedure when the sequence number exceeds threshold value.

• Mesh Monitoring functionality: monitors incoming and outgoing messages and outputs log to

console over UART

This sample program includes the following two modules:

• Core Mesh Module

This module performs Provisioning as a Provisioning Server and enables GATT bearer as a Proxy

Server after Provisioning. In addition, this module controls a Friendship as a Low Power Node.

• Mesh Model Module

This module performs operations associated with Generic OnOff models and original Vendor models as

well as Configuration Server model and Health Server model.

RX23W Group Bluetooth Mesh Stack Development Guide

R01AN4875EJ0130 Rev.1.30 Page 17 of 67

Dec. 22, 2022

2.2.1 Mesh Core Module

Mesh Core Module included in Mesh Sample Program performs the following operations. This module is

implemented in "mesh_core.c".

• Provisioning process

• Proxy feature

• Low Power feature

• IV Update process

• Mesh Monitoring functionality

2.2.2 Mesh Model Module

Mesh Model module included in Mesh Sample Program performs the following operations. This module is

implemented in "mesh_model.c".

• Mesh Model Composition

• Configuration Model

• Generic OnOff Model

• Vendor Model

2.2.3 Mesh Model Composition

This sample program uses the following model.

• Configuration Server model

• Health Server model

• Generic OnOff Server model

• Generic OnOff Client model

• Vendor Server model

• Vendor Client model

Figure 2-2 show the model compositions of Mesh Sample Program of each project. Generic OnOff Client

model, Generic OnOff Server model, Vendor Client model, and Vendor Server model as well as

Configuration Server model and Health Server model are located on the Primary element.

Figure 2-2 Model Composition of Mesh Sample Program

node

element

Configuration Server model

Health Server model

Generic OnOff Server model

Vendor Server model

node

element

Configuration Server model

Health Server model

Generic OnOff Client model

Vendor Client model

tbrx23w_mesh_server project
rsskrx23w_mesh_server project

tbrx23w_mesh_client project
rsskrx23w_mesh_client project

RX23W Group Bluetooth Mesh Stack Development Guide

R01AN4875EJ0130 Rev.1.30 Page 18 of 67

Dec. 22, 2022

2.2.3.1 Configuration Model

Configuration model is the model to configure a node. Configuration Server has multiple Configuration states

storing configurations of operation of node, element, and model. These states are operated by messages

from Configuration Client.

For details of states and messages defined by Configuration Model, refer to Chapter 4 "Foundation models"

in the Mesh Profile Specification.

Table 2-1 States of Configuration Model

Model Name SIG Model ID (16bits) State

Configuration Server 0x0000 Secure Network Beacon

Composition Data

Default TTL

GATT Proxy

Friend

Relay

Model Publication

Subscription List

NetKey List

AppKey List

Model to AppKey List

Node Identity

Key Refresh Phase

Heartbeat Publish

Heartbeat Subscription

Network Transmit

Relay Retransmit

PollTimeout List

Configuration Client 0x0001 -

Memory for storing Configuration states is allocated in Mesh Stack. When receiving Configuration message,

Mesh Stack updates values of the state automatically. Therefore, application does not have to handle them.

Also, application can access values of the Configuration states by using Mesh Stack API.

RX23W Group Bluetooth Mesh Stack Development Guide

R01AN4875EJ0130 Rev.1.30 Page 19 of 67

Dec. 22, 2022

2.2.3.2 Health Model

Health model is the model to monitor the physical condition of a node. Health Server has Fault states for

storing physical fault condition of node. These states are updated when fault occurs. In addition, self-testing

of a node can be performed by messages from Health Server.

Also, Health Server has Attention Timer state to activate a mechanism (e.g., LED blinking or noise making)

to attract human's attraction.

For details of states and messages defined by Health Model, refer to Chapter 4 "Foundation models" in the

Mesh Profile Specification.

Table 2-2 States of Health Model

Model Name SIG Model ID (16bits) State

Health Server 0x0002 Current Fault

Registered Fault

Health Period

Attention Timer

Health Client 0x0003 -

Memory for storing Health states is allocated in Mesh Stack.

2.2.3.3 Generic OnOff Model

Generic OnOff Model is a model that is defined by Bluetooth SIG. Generic OnOff Server has a Generic

OnOff state storing value of either On or Off. This state is operated by messages from Generic OnOff Client.

For details of states and messages defined by Generic OnOff Model, refer to Chapter 3 "Generics" in the

Mesh Model Specification.

Table 2-3 State of Generic OnOff Model

Model Name SIG Model ID (16bits) State

Generic OnOff Server 0x1000 Generic OnOff (0x00: Off, 0x01: On)

Generic OnOff Client 0x1001 -

Application must allocate memory for storing Generic OnOff state. Mesh Stack notifies received Generic

OnOff message by callback function. Application must handle Generic OnOff state in accordance with

Generic OnOff message notified by the callback function.

RX23W Group Bluetooth Mesh Stack Development Guide

R01AN4875EJ0130 Rev.1.30 Page 20 of 67

Dec. 22, 2022

2.2.3.4 Vendor Model

User can also define Vendor-specific Model by using Access Layer API provided by Mesh Stack.

This page describes Vendor Model implemented in Mesh Sample Program. Vendor Server has a Vendor

state storing any variable-length data. This state is operated by messages from Vendor Client.

Table 2-4 State of Vendor Model

Model Name Vendor Model ID (32bits) State

Vendor Server 0x00010036 (default value) Vendor state (any variable-length data)

Vendor Client 0x00020036 (default value) -

Table 2-5 Vendor Messages

State Message Name Opcode Direction

Vendor Vendor Get 0xC10036 (default value) Client → Server

Vendor Set 0xC20036 (default value) Client → Server

Vendor Set Unacknowledged 0xC30036 (default value) Client → Server

Vendor OnOff Status 0xC40036 (default value) Server → Client

RX23W Group Bluetooth Mesh Stack Development Guide

R01AN4875EJ0130 Rev.1.30 Page 21 of 67

Dec. 22, 2022

2.3 Bluetooth Mesh Stack

Bluetooth Mesh Stack provides applications with many-to-many wireless communication features which is

compliant with the Bluetooth Mesh Networking specifications. Library file of the Mesh Stack is included in the

package, so you can use the Mesh features via Bluetooth Mesh Stack API.

Figure 2-3 shows the internal architecture of Bluetooth Mesh Stack.

Figure 2-3 Internal Architecture of Bluetooth Mesh Stack

The Bluetooth Mesh Stack is composed of the following two blocks:

• Mesh Core

Mesh Core block is composed of modules corresponding with each layer defined by Mesh Profile

Specification and provides application with the features to perform Provisioning process and mesh

networking operations. Regarding the Mesh Profile Specification, visit the Specifications List website of

Bluetooth SIG and refer to Mesh Profile Specification document.

• Mesh Models

Mesh Models block is composed of modules corresponding with each model defined by Mesh Model

Specification and provides application with the features to support Mesh models that defines basic

operations on a mesh network. Regarding the Mesh Model Specification, visit the Specifications List

website of Bluetooth SIG and refer to Mesh Model Specification document.

Regarding the specification of Mesh Stack API, refer to the Bluetooth Mesh Stack API Manual

"blemesh_api.chm" included in the Mesh FIT Module.

Mesh Models

Mesh Core

Provisioning
layer

Bearer layer

Access layer

Network layer

Lower Transport layer

Upper Transport layer

Generic models

Lighting models

Time and Scenes models

Sensors models

Mesh Stack API

Configuration models Health model

https://www.bluetooth.com/specifications/specs/
https://www.bluetooth.com/specifications/specs/

RX23W Group Bluetooth Mesh Stack Development Guide

R01AN4875EJ0130 Rev.1.30 Page 22 of 67

Dec. 22, 2022

Mesh Stack consists of modules to implement protocol defined by Bluetooth Mesh Networking

Specifications. Mesh Stack API has the following function prefixes corresponding to each module.

Mesh Application is required to call Mesh Stack API in accordance with scenario of application.

Table 2-6 Mesh Stack Functions

Module Function Prefix

Mesh Model

 Generic OnOff MS_generic_onoff_*()

Generic Level MS_generic_level_*()

Generic Default Transition Time MS_generic_default_transition_time_*(),

Generic Power OnOff MS_generic_power_onoff_*()

Generic Power Level MS_generic_power_level_*()

Generic Battery MS_generic_battery_*()

Generic Location MS_generic_location_*()

Generic Property MS_generic_property_*()

Sensor MS_sensor_*()

Time MS_time_*()

Scene MS_scene_*()

Scheduler MS_scheduler_*()

Light Lightness MS_light_lightness_*()

Light CTL MS_light_ctl_*()

Light HSL MS_light_hsl_*()

Light xyL MS_light_xyl_*()

Light LC MS_light_lc_*()

Configuration MS_config_*()

Health MS_health_*()

Mesh Core

 Access Layer MS_access_*()

Transport Layer MS_trn_*()

Lower Transport Layer MS_ltrn_*()

Network Layer MS_net_*()

Bearer Layer MS_brr_*()

Provisioning Layer MS_prov_*()

RX23W Group Bluetooth Mesh Stack Development Guide

R01AN4875EJ0130 Rev.1.30 Page 23 of 67

Dec. 22, 2022

2.4 Bluetooth Bearer

Bluetooth Bearer provides Mesh Stack and applications with wrapper functions of Bluetooth LE Stack.

Source code files of Bluetooth Bearer are included in the package. Regarding the specification of Bluetooth

Bearer API, refer to the Bluetooth Mesh Stack API Manual "blemesh_api.chm" included in the Mesh FIT

Module.

Bluetooth LE Stack provides upper layers with wireless communication features which is compliant with the

Bluetooth Low Energy specifications. Library file of Bluetooth LE Stack is included in the package. Regarding

the specification of R_BLE API, refer to the R_BLE API Specification "r_ble_api_spec.chm" in the BLE FIT

module.

Figure 2-4 shows the internal architecture of Bluetooth Bearer. Bearer functions for message transmission

and reception are used by Mesh Stack. Bearer functions for connection control must be used by Mesh

Application as necessary.

Figure 2-4 Bluetooth Bearer Operations

2.4.1 Bearer Functions for Message Transmission and Reception (blebrr.c)

Table 2-7 shows the bearer functions for message transmission and reception. The bearer functions provide

the functionalities for ADV bearer mode control as well as message transmission and reception. The bearer

functions are registered with Mesh Stack by R_MS_BRR_Setup(). Mesh Stack sends and receives

Provisioning PDUs as well as mesh messages and controls ADV bearer mode by using bearer functions.

Table 2-7 Bearer Functions for Message Transmission and Reception

Function Routine

blebrr_adv_send() Send Data

(no registration required) NOTE Handle Received Data

blebrr_adv_sleep() Bearer Sleep

blebrr_adv_wakeup() Bearer Wakeup

NOTE: A function to handle received data is registered by Mesh Stack automatically by

MS_brr_add_bearer() called in R_MS_BRR_Setup().

Bluetooth Mesh Stack

Bluetooth Bearer API

Bluetooth Bearer

Bluetooth Low Energy Protocol Stack

Mesh Application

GATT Bearer Connection
Control functions

ADV bearer and GATT bearer
Transmission and Reception functions

R_BLE API

RX23W Group Bluetooth Mesh Stack Development Guide

R01AN4875EJ0130 Rev.1.30 Page 24 of 67

Dec. 22, 2022

2.4.2 Bearer Functions for Connection Control (blebrr_pl.c, blebrr_gatt.c)

Mesh Stack manages neither connection status nor GATT service. Therefore, to use GATT bearer, Mesh

Application must control a connection and GATT services by using the bearer functions for connection

control directly.

Table 2-8 shows the bearer functions for connection control. Those functions provide the functionalities for

service discovery and notification permission as well as connection establishment and disconnection.

Table 2-8 Bearer Functions for Connection Control

Function Routine GATT Server

(Peripheral)

GATT Client

(Central)

R_MS_BRR_Register_GattIfaceCallback() Register GATT Interface Callback used used

R_MS_BRR_Set_GattMode() Set GATT Bearer Mode NOTE1 used used

R_MS_BRR_Get_GattMode() Get GATT Bearer Mode NOTE1 used used

R_MS_BRR_Disconnect() Disconnect used used

R_MS_BRR_Set_ScanRspData() Set Scan Response Data used not used

R_MS_BRR_Scan_GattBearer() Scan Connectable Device not used used

R_MS_BRR_Create_Connection() Create Connection not used used

R_MS_BRR_Cancel_CreateConnection() Cancel to Create Connection not used used

R_MS_BRR_Discover_Service() Perform Service Discovery not used used

R_MS_BRR_Config_Notification() Configure Mesh GATT Services

Notification Permission NOTE2

not used used

R_MS_BRR_Config_ServChanged() Configure GATT Service Changed

Indication Permission

not used used

NOTE1: GATT Bearer Mode is either Provisioning Mode or Proxy Mode.

NOTE2: GATT Server configures MTU size to Mesh Stack when Notification is enabled. When changing

MTU size, GATT Client must perform MTU Exchange procedure before enabling Notification.

Regarding how to change MTU size, refer to Section 8.4 in "RX23W Group Bluetooth Low Energy

Application Developer's Guide"(R01AN5504).

RX23W Group Bluetooth Mesh Stack Development Guide

R01AN4875EJ0130 Rev.1.30 Page 25 of 67

Dec. 22, 2022

2.4.3 Mesh GATT Services (gatt_db.c)

Mesh GATT Services are used for mesh message transmission and reception over GATT bearer.

Composition of the Mesh GATT Services are listed in Table 2-9. Mesh Provisioning Service is used for

Provisioning over PB-GATT bearer, and Mesh Proxy Service is used for Proxy connection after Provisioning.

Which one of Mesh GATT Services are exposed is switched by R_MS_BRR_Set_GattMode().

Table 2-9 Composition of the Mesh GATT Services

Service

(UUID)

Characteristic (UUID) Property Value

Mesh

Provisioning

Service

(0x1827)

Mesh Provisioning Data In

Characteristic (0x2ADB)

Write

Without

Response

Provisioning PDU from a Provisioning Client to a

Provisioning Server

Mesh Provisioning Data Out

Characteristic (0x2ADC)

Notify Provisioning PDU from a Provisioning Server to a

Provisioning Client.

Mesh Proxy

Service

(0x1828)

Mesh Proxy Data In

Characteristic (0x2ADD)

Write

Without

Response

Proxy PDU message containing Network PDU, mesh

beacons, or proxy configuration from a Proxy Client to

a Proxy Server

Mesh Proxy Data Out

Characteristic (0x2ADE)

Notify Proxy PDU message containing Network PDU, mesh

beacon, or proxy configuration from a Proxy Server to

a Proxy Client.

GATT Database that defines Mesh Proxy Service and other services is implemented in "gatt_db.c" of

Bluetooth Bearer.

RX23W Group Bluetooth Mesh Stack Development Guide

R01AN4875EJ0130 Rev.1.30 Page 26 of 67

Dec. 22, 2022

2.4.4 ADV Bearer Operation

When Mesh Application calls R_MS_BRR_Setup(), Bluetooth Bearer registers message transmission and

reception functions for ADV Bearer with Mesh Stack and starts Scan operation.

Advertising packets received by Bluetooth LE Stack are notified to Mesh Stack. Also, Bluetooth LE Stack

transmits Advertising packets when Mesh Stack calls the message transmission function.

Figure 2-5 ADV Bearer Operation

ADV Bearer Registration

R_MS_BRR_Setup()

MS_brr_add_bearer()

R_BLE_GAP_StartScan()

ADV Bearer Reception

BLE_GAP_EVENT_ADV_REPT_IND

ADV Bearer Transmission

R_BLE_GAP_StartAdv()

BLE_GAP_EVENT_SCAN_ON

BLE_GAP_EVENT_ADV_ON

R_BLE_GAP_StopAdv()

BLE_GAP_EVENT_ADV_OFF

Mesh Application Mesh Stack Bluetooth Bearer Bluetooth LE Stack

RX23W Group Bluetooth Mesh Stack Development Guide

R01AN4875EJ0130 Rev.1.30 Page 27 of 67

Dec. 22, 2022

2.4.5 GATT Bearer Operation

When a connection is established and enabling Notification completes, Bluetooth Bearer registers message

transmission and reception functions for GATT Bearer with Mesh Stack.

In the case that node works as a GATT Server, Bluetooth LE Stack transmits message by Notification when

Mesh Stack calls the message transmission function. Also, message transmitted by Write Without Response

is notified to Mesh Stack.

In the case that node works as a GATT Client, Bluetooth LE Stack transmits message by Write Without

Response when Mesh Stack calls the message transmission function. Also, message transmitted by

Notification is notified to Mesh Stack.

Figure 2-6 GATT Bearer Operation

GATT Bearer Addition

MS_brr_add_bearer()

BLE_GAP_EVENT_CONN_IND

BLEBRR_GATT_IFACE_UP event

(enable Notification)

BLEBRR_GATT_IFACE_ENABLE event

GATT Bearer Removal

BLE_GAP_EVENT_DISCONN_IND

BLE_GATTS_EVENT_WRITE_RSP_COMP

MS_brr_remove_bearer()

(disable Notification)

BLEBRR_GATT_IFACE_DISABLE event

BLEBRR_GATT_IFACE_DOWN event

[GATT Client] BLE_GATTC_EVENT_CHAR_WRITE_RSP

[GATT Server] BLE_GATTS_EVENT_WRITE_RSP_COMP

BLE_GATTS_EVENT_WRITE_RSP_COMP

[GATT Client] BLE_GATTC_EVENT_CHAR_WRITE_RSP

[GATT Server] BLE_GATTS_EVENT_WRITE_RSP_COMP

GATT Bearer Communication (GATT Server → GATT Client)

GATT Bearer Communication (GATT Client → GATT Server)

[GATT Server]

BLE_GATTC_EVENT_HDL_VAL_NTF

[GATT Client]

R_BLE_GATTS_Notification()

[GATT Client]

R_BLE_GATTC_WriteCharWithoutRsp()

BLE_GATTS_EVENT_DB_ACCESS_IND

[GATT Server]

Mesh Application Mesh Stack Bluetooth Bearer Bluetooth LE Stack

RX23W Group Bluetooth Mesh Stack Development Guide

R01AN4875EJ0130 Rev.1.30 Page 28 of 67

Dec. 22, 2022

2.5 MCU Peripheral Functions

Mesh Sample Program uses some RX23W peripheral functions listed in Table 2-10.

Table 2-10 RX23W Peripheral Functions used

RX23W Peripherals Peripheral Driver Software using Peripherals

I/O Ports

- P15, PB0, and PC0: when Target Board is used

- P30, P31, P42, and P43: when RSSK is used

GPIO FIT Module

(R01AN1721)

Mesh Sample Program

Serial Communication Interface (SCI)

- SCI8

SCI FIT Module

(R01AN1815)

Mesh Sample Program

Compare Match Timer (CMT)

- CMT2 and CMT3: Bluetooth LE Stack use

exclusively

- CMT0 or CMT1: Mesh Sample Program and

Bluetooth Bearer share

CMT FIT Module

(R01AN1856)

Mesh Sample Program

Mesh Stack

Bluetooth Bearer

Bluetooth LE Stack

Low Power Consumption Function (LPC) LPC FIT Module

(R01AN2769)

Mesh Sample Program

Bluetooth LE Stack

E2 Data Flash memory (FLASH)

- Block 1 to 5

FLASH FIT Module

(R01AN2184)

Mesh Stack

8-bit Timer (TMR)

- TMR2 and TMR3

driver is included in

Mesh FIT Module

(R01AN4930)

Mesh Stack

• I/O Ports

Mesh Sample Program uses GPIO FIT Module to use General Purpose I/O Port (GPIO) for the following

processing.

• LED Control on development board

• Switch Pushing Detection on development board

• Serial Communication Interface (SCI)

Mesh Sample Program uses SCI FIT Module to output and input console over UART.

• Compare Match Timer (CMT)

Software Timer (R_BLE_TIMER) to share one channel of CMT for multiple processing is included in BLE FIT

Module. R_BLE_TIMER uses one channel of CMT exclusively by using CMT FIT Module. Also, Bluetooth LE

Stack of BLE FIT Module uses CMT2 and CMT exclusively.

Bluetooth Bearer uses R_BLE_TIMER for the following processing.

• Advertising Transmission Control for ADV Bearer

Mesh Sample Program uses R_BLE_TIMER for the following processing.

• LED Blinking on development board

• Avoiding Chattering of Switch on development board

• MCU Reset Delay after receiving Config Node Reset

• Completion of IV Update Procedure

RX23W Group Bluetooth Mesh Stack Development Guide

R01AN4875EJ0130 Rev.1.30 Page 29 of 67

Dec. 22, 2022

• Low Power Consumption (LPC)

Mesh Sample Program uses LPC FIT Module to enable Low Power Consumption function of MCU.

• Flash memory (FLASH)

Data Flash driver to use Data Flash memory is implemented in "mesh_dataflash.c". This driver accesses

Data Flash memory by using FLASH FIT Module. Flash memory area used by this driver can be configured

by the MESH_CFG_DATA_FLASH_BLOCK_ID macro and the MESH_CFG_DATA_FLASH_BLOCK_NUM macro.

Figure 2-7 Data Flash memory area used

Mesh Stack stores the following information to Data Flash memory.

• Information exchanged during Provisioning

mesh addresses

encryption keys

• Information exchanged during Configuration

model composition

model configuration

• IV index and associated state

• Sequence Number

This information will be changed very rarely except for Sequence Number. The sequence number is

incremented for each new network message transmission. If it is written for each increment, the flash

memory reaches the write cycle limit in a short span of time.

Thus, to reduce frequency of writing into the flash memory, sequence numbers are handled as block and

written only when the sequence number reaches next block. The block size that means distance between the

sequence numbers can be configured by the MESH_CFG_NET_SEQ_NUMBER_BLOCK_SIZE macro and default

block size is 2048.

• 8-bit Timer (TMR)

System Time driver to use 8-bit Timer is implemented in "mesh_systemtime.c". This driver uses two

channels of 8-bit Timer and generates 32bit length system time in units of 1msec.

Mesh Stack monitors 96 hours that is minimum duration of IV Update Procedure by using the system time.

0010 1FFFh Block7

Block4

Block5

Block6

Block2

Block3 MESH_CFG_DATA_FLASH_BLOCK_NUM

0010 0000h Block0
MESH_CFG_DATA_FLASH_BLOCK_ID

Block1

RX23W Group Bluetooth Mesh Stack Development Guide

R01AN4875EJ0130 Rev.1.30 Page 30 of 67

Dec. 22, 2022

2.6 Mesh Sample Program Configurations

2.6.1 Basic Operation Configurations

Mesh Sample Program has compilation switches to configure its basic operation. Compilation switches are

implemented in "mesh_appl.h".

mesh_appl.h

/**

 * Monitor SEQ of Incoming and Outgoing message.

 * If SEQ is greater than or equal to threshold, initiating IV Update procedure.

 */

#define IV_UPDATE_INITIATION_EN (1)

/**

 * Low Power Feature

 */

#define LOW_POWER_FEATURE_EN (0)

/**

 * Monitoring Mesh Layer

 * Combination of the following macros can be set like "(MS_MONITOR_ACCESS_PDU |

MS_MONITOR_NET_PDU)".

 * - MS_MONITOR_ACCESS_PDU

 * - MS_MONITOR_TRANS_PDU

 * - MS_MONITOR_LTRANS_PDU

 * - MS_MONITOR_NET_PDU

 * - MS_MONITOR_GENERIC_LOG

 * To specify all layer, MS_MONITOR_ALL macro can be set.

 * To disable monitoring, set MS_MONITOR_NONE.

 */

#define CONSOLE_MONITOR_CFG (MS_MONITOR_NONE)

/** Logging Console using SCI (Serial Communication Interface) */

#define CONSOLE_OUT_EN (1)

/** ANSI escape sequence - CSI (Control Sequence Introducer) */

#define ANSI_CSI_EN (1)

/** SCI String Reception */
#define SCI_RCV_STRING_EN (1)
#define SCI_RCV_STRING_BUFFER_LEN (0x100)

/** Monitoring CPU Usage */

#define CPU_USAGE_EN (0)

• Enabling IV Update Initiation Processing

IV Update Initiation processing is enabled by setting the IV_UPDATE_INITIATION_EN macro to (1). This

processing monitors sequence number of incoming and outgoing message and initiates IV Update procedure

when the sequence number is greater than or equal to threshold. It prevents sequence number of own node

or other nodes from exhausting.

Configuration Macro Configuration Value Description

IV_UPDATE_INITIATION_EN 0 Disable IV Update Initiation processing

1 Enable IV Update Initiation processing

RX23W Group Bluetooth Mesh Stack Development Guide

R01AN4875EJ0130 Rev.1.30 Page 31 of 67

Dec. 22, 2022

• Enabling Low Power Feature

Low Power feature is enabled by setting the LOW_POWER_FEATURE_EN macro to (1). After Provisioning, Mesh

Sample Program establishes a Friendship with Friend node and works as a Low Power node.

Configuration Macro Configuration Value Description

LOW_POWER_FEATURE_EN 0 Disable Transition to Low Power Node

1 Enable Transition to Low Power Node

• Mesh Monitoring Configuration

Mesh Monitoring functionality is enabled by setting Monitor Configuration macro into the
CONSOLE_MONITOR_CFG macro. Logs of messages and beacons that are transmitted or received by each

layer of Mesh Stack, so it is possible to analyze mesh network communication in Mesh Application
development.

Configuration Macro Configuration Value Description

CONSOLE_MONITOR_CFG MS_MONITOR_ACCESS_PDU Access PDU

MS_MONITOR_TRANS_PDU Transport PDU

MS_MONITOR_LTRANS_PDU Lower Transport PDU

MS_MONITOR_NET_PDU Network PDU and Secure Network Beacon

MS_MONITOR_GENERIC_LOG Mesh Stack Internal Miscellaneous Event

• Console Output Configuration

Console Output is enabled by setting the CONSOLE_OUT_EN macro to (1). It is possible to trace API called by

Mesh Sample Program and events returned by Mesh Stack.

Configuration Macro Configuration Value Description

CONSOLE_OUT_EN 0 Disable Console Log Output

1 Enable Console Log Output

• ANSI CSI Console Output Configuration

Output ANSI CSI (Control Sequence Introducer) to console is enabled by setting the ANSI_CSI_EN macro to

(1). Mesh Sample Program colors some log. In the case that serial terminal emulator you use does not

support ANSI CSI, set the ANSI_CSI_EN macro to (0).

Configuration Macro Configuration Value Description

ANSI_CSI_EN 0 Disable ANSI CSI Output to Console Log

1 Enable ANSI CSI Output to Console Log

• Console String Reception Configuration

String reception from console is enabled by setting the SCI_RCV_STRING_EN macro to (1). String received is

notified by a callback function.

Configuration Macro Configuration Value Description

SCI_RCV_STRING_EN 0 Disable String Reception from Console

1 Enable String Reception from Console

SCI_RCV_STRING_BUFFER_LEN 0x0001 to 0xFFFF String Reception Buffer Size

RX23W Group Bluetooth Mesh Stack Development Guide

R01AN4875EJ0130 Rev.1.30 Page 32 of 67

Dec. 22, 2022

• CPU Usage Measurement Configuration

CPU Usage Measurement is enabled by setting the CPU_USAGE_EN macro to (1). Mesh Sample Program

measures the time of CPU RUN state and CPU SLEEP state and outputs CPU usage log to console.

Configuration Macro Configuration Value Description

CPU_USAGE_EN 0 Disable CPU Usage Measurement

1 Enable CPU Usage Measurement

2.6.2 Provisioning Operation Configurations

Mesh Sample Program has setting macros to configure Provisioning operation. Setting macros are

implemented in "mesh_core.c".

mesh_core.c

/** Public Key OOB Flag (0:unavailable, 1:available) */
#define CORE_PROV_PUBKEY_OOBINFO (0)
/** Static OOB Flag (0:unavailable, 1:available) */
#define CORE_PROV_STATIC_OOBINFO (0)
/** Output OOB Actions Supported (bit0-bit4 specified with PROV_MASK_OOOB_ACTION_*) */
#define CORE_PROV_OUTPUT_OOB_ACTIONS (0)
/** Output OOB Maximum size supported (0:not supported, 1-8 digits supported) */
#define CORE_PROV_OUTPUT_OOB_SIZE (0)
/** Input OOB Actions supported (bit0-bit4 specified with PROV_MASK_IOOB_ACTION_*) */
#define CORE_PROV_INPUT_OOB_ACTIONS (0)
/** Input OOB Maximum size supported (0:not supported, 1-8 digits supported) */
#define CORE_PROV_INPUT_OOB_SIZE (0)

/** OOB Information (bit0-bit6 and bit11-bit15 specified with PROV_OOB_TYPE_*) */
#define CORE_PROV_BEACON_OOB_INFO (0)
/**
 * Encoded URI Information (payload length is up to 29 octets)
 */
#define CORE_PROV_BEACON_URI_INFO {.payload = "\x17//www.example.com", .length = 18}

• OOB Public Key

OOB Public Key is enabled by setting the CORE_PROV_PUBKEY_OOBINFO macro to (1). Public Key to be

delivered via OOB will be displayed in console.

Configuration Macro Configuration Value Description

CORE_PROV_PUBKEY_OOBINFO 0 Disable OOB Public Key

1 Enable OOB Public Key

• Static OOB Authentication

Static OOB Authentication is enabled by setting the CORE_PROV_STATIC_OOBINFO macro to (1). AuthValue to

be delivered via OOB will be displayed in console during Provisioning initialization.

Configuration Macro Configuration Value Description

CORE_PROV_STATIC_OOBINFO 0 Disable Static OOB Authentication

1 Enable Static OOB Authentication

RX23W Group Bluetooth Mesh Stack Development Guide

R01AN4875EJ0130 Rev.1.30 Page 33 of 67

Dec. 22, 2022

• Output OOB Authentication

Output OOB Authentication is enabled by setting the CORE_PROV_OUTPUT_OOB_SIZE macro to the number of

digits (1 to 8) of AuthValue. AuthValue to be delivered via OOB will be displayed in console during

Provisioning procedure.

OOB action to output AuthValue must be set to CORE_PROV_OUTPUT_OOB_ACTIONS macro. Multiple Output

OOB Actions can be set. When Blink action and Beep action are supported, for example,

(PROV_MASK_OOOB_ACTION_BLINK | PROV_MASK_OOOB_ACTION_BEEP) should be set.

Configuration Macro Configuration Value Description

CORE_PROV_OUTPUT_OOB_SIZE 0 Disable Output OOB Authentication

1 to 8 Enable Output OOB Authentication

Set the supported number of digits

of AuthValue

CORE_PROV_OUTPUT_OOB_ACTIONS PROV_MASK_OOOB_ACTION_BLINK Blink action (Numeric)

PROV_MASK_OOOB_ACTION_BEEP Beep action (Numeric)

PROV_MASK_OOOB_ACTION_VIBRATE Vibrate action (Numeric)

PROV_MASK_OOOB_ACTION_NUMERIC Numeric output

PROV_MASK_OOOB_ACTION_ALPHANUMERIC Alphanumeric output

• Input OOB Authentication Configuration

Input OOB Authentication is enabled by setting the CORE_PROV_INPUT_OOB_SIZE macro to the number of

digits (1 to 8) of AuthValue. Enter AuthValue delivered via OOB in console.

OOB action to input AuthValue must be set to CORE_PROV_INPUT_OOB_ACTIONS macro. Multiple Input OOB

Actions can be set. When Push action and Twist action are supported, for example,

(PROV_MASK_IOOB_ACTION_PUSH | PROV_MASK_IOOB_ACTION_TWIST) should be set.

Configuration Macro Configuration Value Description

CORE_PROV_INPUT_OOB_SIZE 0 Disable Input OOB Authentication

1 to 8 Enable Input OOB Authentication

Set the supported number of digits

of AuthValue

CORE_PROV_INPUT_OOB_ACTIONS PROV_MASK_IOOB_ACTION_PUSH Push action (Numeric)

PROV_MASK_IOOB_ACTION_TWIST Twist action (Numeric)

PROV_MASK_IOOB_ACTION_NUMERIC Numeric input

PROV_MASK_IOOB_ACTION_ALPHANUMERIC Alphanumeric input

• OOB Information

OOB Information should be set to CORE_PROV_STATIC_OOBINFO macro. OOB Information is delivered by

Unprovisioned Device Beacon. Multiple OOB Information can be set. When URI and Barcode are set,

(PROV_OOB_TYPE_URI | PROV_OOB_TYPE_BARCODE) should be set.

Configuration Macro Configuration Value Description

CORE_PROV_BEACON_OOB_INFO PROV_OOB_TYPE_OTHER Other

PROV_OOB_TYPE_URI URI

PROV_OOB_TYPE_2DMRC 2D machine-readable code

PROV_OOB_TYPE_BARCODE Bar code

PROV_OOB_TYPE_NFC Near Field Communication (NFC)

PROV_OOB_TYPE_NUMBER Number

PROV_OOB_TYPE_STRING String

PROV_OOB_TYPE_ONBOX On box

PROV_OOB_TYPE_INSIDEBOX Inside box

PROV_OOB_TYPE_ONPIECEOFPAPER On piece of paper

PROV_OOB_TYPE_INSIDEMANUAL Inside manual

RX23W Group Bluetooth Mesh Stack Development Guide

R01AN4875EJ0130 Rev.1.30 Page 34 of 67

Dec. 22, 2022

PROV_OOB_TYPE_ONDEVICE On device

• Encoded URI Information

When PROV_OOB_TYPE_URI is set to CORE_PROV_BEACON_OOB_INFO macro described above, Encoded URI

Information must be set to CORE_PROV_BEACON_URI_INFO macro. Encoded URI Information will be delivered

with <<URI>> of AD Type and Hash value of Encoded URI Information will be delivered with Unprovisioned

Device Beacon.

Configuration Macro Configuration

Value

Description

CORE_PROV_BEACON_URI_INFO max.29 octets Encoded URI

URI Scheme must be encoded with "URI Scheme Name String

Mapping" defined in Assigned Numbers of Bluetooth SIG

https://www.bluetooth.com/specifications/assigned-numbers/

RX23W Group Bluetooth Mesh Stack Development Guide

R01AN4875EJ0130 Rev.1.30 Page 35 of 67

Dec. 22, 2022

2.7 Bluetooth Bearer Configurations

Configurations of Bluetooth Bearer included in Mesh FIT Module are shown below.

blebrr.h

/** Enable GATT Bearer Client Role */

/* ROM/RAM used can be reduced by disabling GATT Client functionalities */

#define BLEBRR_GATT_CLIENT (1)

/** Specify Device Address Type

 * Either Public Address or Static Random Address can be set by the macro below.

 * - BLE_GAP_ADDR_PUBLIC

 * - BLE_GAP_ADDR_RAND

 * Device Address is obtained from BLE Protocol Stack via Vendor Specific API.

 */

#define BLEBRR_VS_ADDR_TYPE (BLE_GAP_ADDR_RAND)

• Enabling GATT Client

GATT Client functionality for GATT bearer is enabled by setting the BLEBRR_GATT_CLIENT macro to (1).

Configuration Macro Configuration Value Description

BLEBRR_GATT_CLIENT 0 Disable GATT Client Operation of GATT Bearer

1 Enable GATT Client Operation of GATT Bearer

• Device Address Type Configuration

Device Address Type used by Bluetooth Bearer can be configured by setting Device Address Type macro
into the BLEBRR_VS_ADDR_TYPE macro.

Configuration Macro Configuration Value Description

BLEBRR_VS_ADDR_TYPE BLE_GAP_ADDR_PUBLIC Public Device Address

BLE_GAP_ADDR_RAND Random Device Address

blebrr.c

#define BLEBRR_QUEUE_SIZE 64

#define BLEBRR_ADV_TIMEOUT 4

#define BLEBRR_ADVREPEAT_COUNT 3

#define BLEBRR_ADVREPEAT_RAND_DELAY 10

• ADV Bearer Transmission Configuration

Configuration macros for ADV bearer transmission are defined as follows:

Configuration Macro Configuration Value Description

BLEBRR_QUEUE_SIZE 4 or more Transmission Queue Size

BLEBRR_ADVREPEAT_RAND_DELAY 1 or more Transmission Randomized Delay in units of

1msec

RX23W Group Bluetooth Mesh Stack Development Guide

R01AN4875EJ0130 Rev.1.30 Page 36 of 67

Dec. 22, 2022

blebrr_pl.c

#define BLEBRR_CON_ADVINTMIN 0xA0

#define BLEBRR_CON_ADVINTMAX 0xA0

#define BLEBRR_CON_ADVTYPE BLE_GAP_LEGACY_PROP_ADV_IND

#define BLEBRR_CON_ADVCHMAP BLE_GAP_ADV_CH_ALL

#define BLEBRR_CON_ADVFILTERPOLICY BLE_GAP_ADV_ALLOW_SCAN_ANY_CONN_ANY

#define BLEBRR_SCAN_INTERVAL 0x0060

#define BLEBRR_SCAN_WINDOW 0x0060

#define BLEBRR_INIT_SCANINTERVAL 0x0060

#define BLEBRR_INIT_SCANWINDOW 0x0060

#define BLEBRR_CONN_INTERVAL_MIN 0x0040

#define BLEBRR_CONN_INTERVAL_MAX 0x0040

#define BLEBRR_CONN_LATENCY 0x0000

#define BLEBRR_CONN_SUPERVISION_TO 0x03BB

• GATT Bearer Connectable Advertising Configuration

Configuration macros for Connectable Advertising for GATT bearer are defined as follows:

Configuration Macro Configuration Value Description

BLEBRR_CON_ADVINTMIN 0x20 to 0xFFFFFF Minimum Advertising Interval (in units of

0.625msec)

BLEBRR_CON_ADVINTMAX 0x20 to 0xFFFFFF Maximum Advertising Interval (in units of

0.625msec)

BLEBRR_CON_ADVTYPE BLE_GAP_LEGACY_PROP_ADV_IND Advertising Type:

Connectable and Scannable Undirected

Legacy Advertising

BLEBRR_CON_ADVCHMAP BLE_GAP_ADV_CH_37 Advertising Channel 37ch

BLE_GAP_ADV_CH_38 Advertising Channel 38ch

BLE_GAP_ADV_CH_39 Advertising Channel 39ch

BLE_GAP_ADV_CH_ALL All Advertising Channels

BLEBRR_CON_ADVFILTERPOLICY BLE_GAP_ADV_ALLOW_SCAN_ANY_

CONN_ANY

Advertising Filter Policy:

Process Scan Requests and Connection

Requests from All Devices

• ADV Bearer Scan Configuration

Configuration macros for ADV bearer Scan are defined as follows:

NOTE: Scan Window Size should be equal to Scan Interval to avoid missing incoming Advertising packets.

Configuration Macro Configuration Value Description

BLEBRR_SCAN_INTERVAL 0x0004 to 0xFFFF Scan Interval (in units of 0.625msec)

BLEBRR_SCAN_WINDOW 0x0004 to 0xFFFF Scan Window Size (in units of 0.625msec)

RX23W Group Bluetooth Mesh Stack Development Guide

R01AN4875EJ0130 Rev.1.30 Page 37 of 67

Dec. 22, 2022

• GATT Bearer GATT Client Connection Configuration

Configuration macros for GATT Client Connection of GATT Bearer are defined as follows:

Configuration Macro Configuration Value Description

BLEBRR_INIT_SCANINTERVAL 0x0004 to 0xFFFF Scan Interval for Initiating (in units of 0.625msec)

BLEBRR_INIT_SCANWINDOW 0x0004 to 0xFFFF Scan Windows Size for Initiating (in units of

0.625msec)

BLEBRR_CONN_INTERVAL_MIN 0x0006 to 0x0C80 Minimum Connection Interval (in units of

1.25msec)

BLEBRR_CONN_INTERVAL_MAX 0x0006 to 0x0C80 Maximum Connection Interval (in units of

1.25msec)

BLEBRR_CONN_LATENCY 0x0000 to 0x01F3 Peripheral Latency (the number of connection

events)

BLEBRR_CONN_SUPERVISION_TO 0x000A to 0x0C80 Supervision Timeout (in units of 10msec)

RX23W Group Bluetooth Mesh Stack Development Guide

R01AN4875EJ0130 Rev.1.30 Page 38 of 67

Dec. 22, 2022

2.8 Mesh Driver Configurations

Configurations of Mesh Driver included in Mesh FIT Module are shown below.

mesh_dataflash.h

#define DATAFLASH_EN (1)

• Enabling Data Flash Driver

Data Flash driver is enabled and then driver functions are registered with Mesh Stack by setting the

DATAFLASH_EN macro to (1).

Configuration Macro Configuration Value Description

DATAFLASH_EN 0 Disable Data Flash Access

1 Enable Data Flash Access

mesh_systemtime.h

#define SYSTEMTIME_EN (1)

#define SYSTEMTIME_STRING_EN (1)

• Enabling System Time Driver

System Time Driver for generating 32bit system time is enabled and then driver function is registered with

Mesh Stack by setting the SYSTEMTIME_EN macro to (1).

Configuration Macro Configuration Value Description

SYSTEMTIME_EN 0 Disable System Time Generation

1 Enable System Time Generation

• System Time String Configuration

Function to generate string of 32bit system time is enabled by setting the SYSTEMTIME_STRING_EN macro to

(1).

Configuration Macro Configuration Value Description

SYSTEMTIME_STRING_EN 0 Disable String Output of System Time

1 Enable String Output of System Time

RX23W Group Bluetooth Mesh Stack Development Guide

R01AN4875EJ0130 Rev.1.30 Page 39 of 67

Dec. 22, 2022

3. Application Development

This chapter describes how to develop an application using Bluetooth Mesh Stack while referring to the

implementation of Mesh Sample Program. Figure 3-1 shows the sequence chart of Mesh Sample Program.

Figure 3-1 Sequence Chart of Mesh Sample Program

Mesh Sample Program

BLE Protocol Stack, Bluetooth Bearer
Wrapper, and Mesh Stack Initialization

Mesh Node, Element, and Model Configuration

GATT Interface Callback Registration

Configuration Client node

Vendor message communication

Proxy Connection Establishment

Proxy Client node

Vendor message communication

Update Friend Subscription List

Friend node

Friendship is established

Vendor Client model nodes

Generic OnOff message communication

Generic OnOff Server model nodes

Provisioner device

PB-GATT Bearer Connection Establishment
or PB-ADV Link Establishment

Provisioning Process

PB-GATT Bearer Connection Termination
or PB-ADV Link Close

Saving Configuration Information to non-volatile storage

Saving Provisioning Data to non-volatile storage

[Proxy feature is enabled]opt

[Low Power feature is enabled]opt

RX23W Group Bluetooth Mesh Stack Development Guide

R01AN4875EJ0130 Rev.1.30 Page 40 of 67

Dec. 22, 2022

3.1 Main Routine

Mesh Stack works on Bluetooth LE Stack. Therefore, application must initialize Bluetooth LE Stack and

Bluetooth Bearer before initializing Mesh Stack.

Each processing of Bluetooth LE Stack is performed by Bluetooth LE Stack Scheduler. Therefore,

application must continue to execute R_BLE_Execute() that is scheduler function at main loop after

initializing Bluetooth LE Stack.

Main routine of Mesh Sample Program is shown as below.

• Main Routine (main.c)

Initialize Bluetooth LE Stack and Bluetooth Bearer by R_BLE_Open() and R_MS_BRR_Init(). Initialize other

FIT modules too as necessary. Execute Bluetooth LE Stack Scheduler, R_BLE_Execute(), iteratively in a

main loop.

Initialization processing of Bluetooth Bearer is performed by Bluetooth LE Stack Scheduler and completion of

the initialization is notified by a callback function.

int main(void)

{

 /* Initialize Bluetooth LE Protocol Stack */

 R_BLE_Open();

 /* Initialize the Low Power Control function */

 R_BLE_LPC_Init();

 /* Initialize Timer */

 R_BLE_TIMER_Init();

 /* Initialize underlying BLE Protocol Stack to use as a Mesh Bearer */

 R_MS_BRR_Init(blebrr_init_cb);

 /* main loop */

 while (1)

 {

 /* Process Event */

 R_BLE_Execute();

 }

}

• Callback Function of Bluetooth Bearer Initialization Completion (main.c)

Implement a callback function to receive a notification of completion of Bluetooth Bearer initialization. In this

callback function, initialize resources for Mesh Stack and initialize Mesh Stack by MS_init_ext() and

register Bluetooth Bearer with Mesh Stack by R_MS_BRR_Setup(). After initializing these, start mesh

application.

static void blebrr_init_cb(st_ble_dev_addr_t * own_addr)

{

 API_RESULT retval;

 MS_CONFIG config;

 /* Initialize Mesh Resources */

 mesh_section_init();

 mesh_mempool_init();

RX23W Group Bluetooth Mesh Stack Development Guide

R01AN4875EJ0130 Rev.1.30 Page 41 of 67

Dec. 22, 2022

 mesh_storage_init();

 #if SYSTEMTIME_EN

 mesh_systemtime_init();

 #endif /* SYSTEMTIME_EN */

 /* Initialize Mesh Stack */

 MESH_MS_CONFIG(config);

 retval = MS_init_ext(&config);

 if (API_SUCCESS == retval)

 {

 /* Registers ADV Bearer with Mesh Stack and Start Scan */

 R_MS_BRR_Setup();

 /* Start Mesh Application */

 mesh_model_config(&gs_mesh_model_callbacks);

 mesh_core_setup();

 }

}

• Mesh Stack Termination

When Mesh Stack is no longer needed, Mesh Stack can be terminated by MS_shutdown().

If Light LC Server Model is used, Light LC Server Model is terminated by MS_light_lc_server_deinit().

Health Server Model is terminated by MS_health_server_deinit().Mesh Stack is terminated by

MS_shutdown(). Resources used by Bluetooth Bearer are freed by R_MS_BRR_Close().

When Bluetooth LE Stack is no longer needed, Bluetooth LE Stack can be terminated by R_BLE_Close().

 /* Deinitialize Light LC Server Model, if it was initialized */
 MS_light_lc_server_deinit();

 /* Deinitialize Health Server Model */
 MS_health_server_deinit();

 /* Terminate Mesh Stack */
 MS_shutdown();

 /* Free the resources allocated by Bluetooth Bearer */
 R_MS_BRR_Close();

 /* Terminate Software Timer */
 R_BLE_TIMER_Terminate();

 /* Terminate Bluetooth LE Protocol Stack */
 R_BLE_Close();

RX23W Group Bluetooth Mesh Stack Development Guide

R01AN4875EJ0130 Rev.1.30 Page 42 of 67

Dec. 22, 2022

3.2 Node Composition

Application must configure node composition such as elements and models. Its composition depends on

each scenario that application should carry out; it means what and how application will control.

Configuring Node composition of Mesh Sample Program is shown as below.

• Node and Elements (mesh_model.c)

Create a Node by MS_access_create_node() and then register any number of Elements by

MS_access_register_element_ext(). The necessary number of elements differs from each application

scenario. Set MS_ACCESS_DEFAULT_ELEMENT_HANDLE to the element handle for Primary Element and set the

value of MS_ACCESS_DEFAULT_ELEMENT_HANDLE incremented by one to the element handles for subsequent

Elements. When three elements are registered, for example, each element handle is

MS_ACCESS_DEFAULT_ELEMENT_HANDLE, (MS_ACCESS_DEFAULT_ELEMENT_HANDLE+1), and

(MS_ACCESS_DEFAULT_ELEMENT_HANDLE+2). Each element handle is used for adding Mesh Models.

API_RESULT mesh_model_config(const mesh_model_callbacks_t * callbacks)

{

 API_RESULT retval;

 MS_ACCESS_NODE_ID node_id;

 MS_ACCESS_ELEMENT_DESC element_desc;

 /* Create Node */

 retval = MS_access_create_node(&node_id);

 /* Register Element */

 if (API_SUCCESS == retval)

 {

 gs_element_handle = MS_ACCESS_DEFAULT_ELEMENT_HANDLE;

 element_desc.loc = ELEMENT_DESC_LOCATION;

 retval = MS_access_register_element_ext(node_id, &element_desc, gs_element_handle);

 }

 return retval;

}

RX23W Group Bluetooth Mesh Stack Development Guide

R01AN4875EJ0130 Rev.1.30 Page 43 of 67

Dec. 22, 2022

3.3 Provisioning

3.3.1 Provisioning Server

To join a network and communicate with other nodes, application must perform Provisioning as a

Provisioning Server and must receive a Provisioning Data from Provisioning Client.

Mesh Sample Program works as Provisioning Server. Processing for Provisioning Server is shown as below.

• Registration of Provisioning Capabilities and Provisioning Callback Function (mesh_core.c)

Register Provisioning Capabilities such as Authentication method as well as Provisioning Callback Function

with Mesh Stack by MS_prov_register().

For example of using MS_prov_register(), refer to the implementation of mesh_core_prov_config() in

Mesh Sample Program (mesh_core.c).

• Start of Provisioning (mesh_core.c)

Start transmission of Unprovisioned Device Beacon and connectable advertising by MS_prov_setup() and

MS_prov_bind().

For example of using MS_prov_setup() and MS_prov_bind(), refer to the implementation of

mesh_core_prov_setup() and mesh_core_prov_bind() respectively in Mesh Sample Program

(mesh_core.c).

• Provisioning Callback Function (mesh_core.c)

Implement a callback function to receive Provisioning events. Provisioning Data provided by a Provisioning

Client is required to be registered with Mesh Stack by MS_access_cm_set_prov_data().

For example of Provisioning callback function, refer to the implementation of mesh_core_prov_cb() in Mesh

Sample Program (mesh_core.c).

Mesh Stack API Sequence for Provisioning Server is shown on the following pages.

RX23W Group Bluetooth Mesh Stack Development Guide

R01AN4875EJ0130 Rev.1.30 Page 44 of 67

Dec. 22, 2022

3.3.2 Provisioning Sequence

(1) Provisioning Setup

This sample program supports both PB-ADV bearer and PB-GATT bearer and transmits Unprovisioned

Device beacon by PB-ADV bearer and connectable advertising for PB-GATT bearer alternately.

Figure 3-2 Provisioning Setup

(2) Session Establishment over PB-ADV

To perform Provisioning Process over PB-ADV, Provisioning Server establishes a session with Provisioning

Client. Also, Provisioning Server closes a session after Provisioning Process.

Figure 3-3 Session Establishment over PB-ADV

Provisioning Setup

Unprovisioned Device

MS_prov_register()

MS_prov_bind()

R_MS_BRR_Set_GattMode()

MS_prov_setup()

Connectable Advertising
for PB-GATT

Unprovisioned Device Beacon

R_MS_BRR_Register_GattIfaceCallback()

loop

Mesh Application Mesh Stack Bluetooth Bearer

PB-ADV Link Establishment

Unprovisioned Device Beacon

Link Open

Link Ack

PB-ADV Link Close

Link Close

Unprovisioned Device

Provisioning Process

Mesh Application Mesh Stack Bluetooth Bearer Provisioner Device

RX23W Group Bluetooth Mesh Stack Development Guide

R01AN4875EJ0130 Rev.1.30 Page 45 of 67

Dec. 22, 2022

(3) Connection Establishment over PB-GATT

To perform Provisioning Process over PB-GATT, Provisioning Client establishes a connection with

Provisioning Server and enables notification of the Mesh Provisioning Service. Also, Provisioning Client

terminates the connection after Provisioning Process.

Figure 3-4 Connection Establishment over PB-GATT

PB-GATT Bearer Connection Establishment

Connectable Advertising
for PB-GATT

Connection RequestBLEBRR_GATT_IFACE_UP event

Enable Notification by
Write Characteristic

MS_prov_bind()

PB-GATT Bearer Connection Termination

MS_brr_remove_bearer()

Disable Notification by
Write Characteristic

Disconnection Indication

Provisioning Process

Unprovisioned Device

BLEBRR_GATT_IFACE_DISABLE event

BLEBRR_GATT_IFACE_DOWN event

BLEBRR_GATT_IFACE_ENABLE event

MS_brr_add_bearer()

Mesh Application Mesh Stack Bluetooth Bearer Provisioner Device

RX23W Group Bluetooth Mesh Stack Development Guide

R01AN4875EJ0130 Rev.1.30 Page 46 of 67

Dec. 22, 2022

(4) Provisioning Process

After establishing a session or a connection over Provisioning Bearer, Provisioning Process from Invitation to

Distribution of provisioning data is performed and Provisioning PDUs are exchanged. The same process is

performed over either PB-ADV or PB-GATT during Provisioning Process.

Figure 3-5 Provisioning Process

To reduce security risk of Provisioning Procedure, the followings are recommended:

• Using OOB (Out Of Band) in Public Key Exchange step

• Selecting a cryptographically secure random value or a pseudorandom number having the maximum

permitted 128bit entropy as AuthValue in Authentication step

To deliver Public Key via OOB, generate a Public and a Private Key by MS_prov_generate_ecdh_key_pl()

and set the Public Key to Mesh Stack by MS_prov_get_local_public_key(). Set the methods to deliver

the Public Key to peer Provisioner device in the argument pdevice->oob of MS_prov_setup() with the

macro PROV_OOB_TYPE_*.

128bit random number, that can be used as a AuthValue for OOB Authentication, can be generated by

R_BLE_VS_GetRand(). When Static OOB Authentication is available. set the generated AuthValue to Mesh

Stack with MS_prov_set_static_oob_auth_pl(). When Output OOB Authentication is available. set the

generated AuthValue to Mesh Stack with MS_prov_set_authval().

Unprovisioned Device

Provisioning Process

Provisioning Invite

Provisioning Capabilities

Provisioning Start

Provisioning Random

Provisioning Data

Provisioning Complete

PROV_EVT_PROVDATA_INFO event

PROV_EVT_PROVISIONING_COMPLETE event

Provisioning Public Key

Provisioning Confirmation

PROV_EVT_PROVISIONING_SETUP event

MS_access_cm_set_prov_data()

Mesh Application Mesh Stack Bluetooth Bearer Provisioner Device

RX23W Group Bluetooth Mesh Stack Development Guide

R01AN4875EJ0130 Rev.1.30 Page 47 of 67

Dec. 22, 2022

Figure 3-6 Provisioning Process with OOB

Unprovisioned Device

Provisioning Process

Provisioning Invite

Provisioning Capabilities

Provisioning Start

Provisioning Random

Provisioning Data

Provisioning Complete

PROV_EVT_PROVDATA_INFO event

PROV_EVT_PROVISIONING_COMPLETE event

Provisioning Confirmation

PROV_EVT_PROVISIONING_SETUP event

MS_access_cm_set_prov_data(

Provisioning Setup

MS_prov_register()

MS_prov_bind()

MS_prov_setup()

Connectable Advertising
for PB-GATT

Unprovisioned Device Beacon

loop

opt Static OOB Authentication

MS_prov_set_static_oob_auth_pl()

alt with OOB Public Key

alt Output OOB

MS_prov_set_authval()

Provisioning Public Key

opt OOB Public Key

MS_prov_set_local_public_key()

without OOB Public Key

Provisioning Public Key

PROV_EVT_OOB_DISPLAY event

MS_prov_input_authval()

PROV_EVT_OOB_ENTRY event

Input OOB Authentication

Provisioning Input Complete

Mesh Application Mesh Stack Bluetooth Bearer Provisioner Device

MS_prov_generate_ecdh_key_pl()

RX23W Group Bluetooth Mesh Stack Development Guide

R01AN4875EJ0130 Rev.1.30 Page 48 of 67

Dec. 22, 2022

3.4 Proxy

This section shows how to implement for working as a Proxy Server or Proxy Client.

3.4.1 Proxy Server

Mesh Sample Program can work as a Proxy Server. Processing for working as a Proxy Server is shown as

below.

• Registration of Proxy Callback Function (mesh_core.c)

Change Bluetooth Bearer Mode to BLEBRR_GATT_PROXY_MODE with R_MS_BRR_Set_GattMode(). Register a

Proxy callback function with Mesh Stack by MS_proxy_register().

For example of using R_MS_BRR_Set_GattMode() and MS_prov_register(), refer to the implementation of

mesh_core_proxy_setup() in Mesh Sample Program (mesh_core.c).

• Starting Connectable Advertising (mesh_core.c)

To establish a Proxy connection with Proxy Client, start Connection Advertising by

MS_proxy_server_adv_start().

For example of using MS_proxy_server_adv_start(), refer to the implementation of

mesh_core_proxy_start() in Mesh Sample Program (mesh_core.c).

• Proxy Callback Function (mesh_core.c)

Implement a callback function to receive Proxy events.

When a connection is established and GATT Proxy Service is enabled, MS_PROXY_UP_EVENT is notified. To

deliver Key Refresh Flag, IV Update Flag, and current IV Index to Proxy Client. send Secure Network

Beacon by MS_net_broadcast_secure_beacon().

For example of Proxy callback function, refer to the implementation of mesh_core_proxy_cb() in Mesh

Sample Program (mesh_core.c).

• Terminating Proxy Connection

To terminate a connection, call R_MS_BRR_Disconnect().

 retval = R_MS_BRR_Disconnect(gs_proxy_client_conn_hdl);

RX23W Group Bluetooth Mesh Stack Development Guide

R01AN4875EJ0130 Rev.1.30 Page 49 of 67

Dec. 22, 2022

3.4.2 Proxy Client

Mesh Sample Program can work as a Proxy Server. Processing for working as a Proxy Server is shown as

below.

• Registration of Proxy Callback Function (mesh_core.c)

Change Bluetooth Bearer Mode to BLEBRR_GATT_PROXY_MODE. Register a Proxy callback function with Mesh

Stack by MS_proxy_register().

For example of using R_MS_BRR_Set_GattMode() and MS_prov_register(), refer to the implementation of

mesh_core_proxy_setup() in Mesh Sample Program (mesh_core.c).

• Establishing Proxy Connection

To establish a Proxy connection with Proxy Server, call R_BRR_Create_Connection(). To scan Proxy

Servers, call R_MS_BRR_Scan_GattBearer(). Device Address of each Proxy Server is notified by

BLEBRR_GATT_IFACE_SCAN event.

 st_ble_dev_addr_t remote_addr;
 retval = R_MS_BRR_Create_Connection(&remote_addr, BLEBRR_GATT_PROXY_MODE);

• Proxy Callback Function (mesh_core.c)

Implement a callback function to receive Proxy events.

When a connection is established and GATT Proxy Service is enabled, MS_PROXY_UP_EVENT is notified.

Configure Proxy Filter Type of Proxy Server with either MS_proxy_set_whitelist_filter() or

MS_proxy_set_blacklist_filter(). Add Subscription Address to Proxy Filter List of Proxy Server by

MS_access_cm_get_all_model_subscription_list().

For example of Proxy callback function, refer to the implementation of mesh_core_proxy_cb() in Mesh

Sample Program (mesh_core.c).

• Terminating Proxy Connection

To terminate Proxy connection, call R_MS_BRR_Disconnect().

 retval = (API_SUCCESS == R_MS_BRR_Disconnect(gs_proxy_server_conn_hdl);

Mesh Stack API Sequence for Proxy Server is shown on the following pages.

RX23W Group Bluetooth Mesh Stack Development Guide

R01AN4875EJ0130 Rev.1.30 Page 50 of 67

Dec. 22, 2022

3.4.3 Proxy Sequence

(1) Proxy Setup

This sample program supports Proxy feature so Configuration Client that supports only GATT bearer can

configure the sample program over GATT bearer. Moreover, this sample program can forward messages

between GATT bearer and ADV bearer for a node that supports only GATT bearer.

Figure 3-7 Proxy Setup

MS_proxy_register()

MS_proxy_server_adv_start()

R_MS_BRR_Set_GattMode()

Proxy Server Setup

R_MS_BRR_Register_GattIfaceCallback()

Connectable Advertising
for Proxy connection

Proxy Server node

loop

Mesh Application Mesh Stack Bluetooth Bearer

RX23W Group Bluetooth Mesh Stack Development Guide

R01AN4875EJ0130 Rev.1.30 Page 51 of 67

Dec. 22, 2022

(2) Proxy Connection Establishment

Proxy Client establishes a connection with Proxy Server and enables notification of the Mesh Proxy Service.

After enabling Notification, Proxy Client becomes able to perform Message Communication over GATT

bearer.

Figure 3-8 Proxy Connection Establishment and Termination

Proxy Connection Establishment

Proxy Connection Termination

Termination by Proxy Server

Termination by Proxy Client

R_MS_BRR_Disconnect()

Connectable Advertising
for Proxy connection

Connection RequestBLEBRR_GATT_IFACE_UP event

BLEBRR_GATT_IFACE_ENABLE event

Enable Notification by
Write Characteristic Descriptor

Secure Network Beacon

Message Communication over GATT Bearer

MS_brr_remove_bearer()

Disable Notification by
Write Characteristic DescriptorMS_PROXY_DOWN_EVENT event

BLEBRR_GATT_IFACE_DISABLE event

Disconnection Indication

Disconnection IndicationBLEBRR_GATT_IFACE_DOWN event

BLEBRR_GATT_IFACE_DOWN event

Proxy Server node

MS_brr_add_bearer()

MS_net_broadcast_secure_beacon()

MS_PROXY_UP_EVENT event

Mesh Application Mesh Stack Bluetooth Bearer Proxy Client node

RX23W Group Bluetooth Mesh Stack Development Guide

R01AN4875EJ0130 Rev.1.30 Page 52 of 67

Dec. 22, 2022

3.5 Friendship

This section shows how to implement for working as a Friend node or Low Power node.

3.5.1 Friend Node

To work as a Friend node, Friend feature must be enabled. Friend feature is enabled by the following way:

• Configuration Client sends Config Friend Set message.

• Mesh Application calls MS_ENABLE_FRIEND_FEATURE().

After enabling Friend feature, Friend-related-processing such as Friendship establishment, Friend Queue

management, and response for Low Power node is handled automatically by Mesh Stack, so application

does not have to handle it.

3.5.2 Low Power Node

To work as a Low Power node, application must enable Low Power feature and request a Friend node to

establish a Friendship. After establishing a Friendship, Mesh Stack polls the Friend node if any messages

are stored and suspends and resumes Scan automatically.

Mesh Sample Program can work as a Low Power Node. Processing for establishing a Friendship as a Low

Power node is shown as below.

NOTE: This feature is disabled by default. To enable this feature, change the value of

LOW_POWER_FEATURE_EN macro by referring to Section 2.6.

• Enabling Low Power feature (mesh_core.c)

Enable Low Power feature by MS_ENABLE_LPN_FEATURE().

 #if LOW_POWER_FEATURE_EN

 MS_ENABLE_LPN_FEATURE();

 #endif /* LOW_POWER_FEATURE_EN */

• Requirement for Friendship Establishment (mesh_core.c)

To establish a friendship as a Low Power node, send Friend Request message by

MS_trn_lpn_setup_friendship(). As arguments for this function, set parameters related to timing of

polling Friend node as well as Friendship callback function.

For example of using MS_trn_lpn_setup_friendship(), refer to the implementation of

mesh_core_lpn_setup() in Mesh Sample Program (mesh_core.c).

• Friendship Callback Function (mesh_core.c)

Implement a callback function to receive Friendship events notified by Mesh Stack. When a friendship is

established, MS_TRN_FRIEND_SETUP_CNF is notified. Also, when a friendship is terminated,

MS_TRN_FRIEND_TERMINATE_IND is notified.

Low Power node can add and remove Subscription Addresses to/from Friend Subscription List of Friend

node. After establishing a Friendship, Mesh Sample Program gets all Subscription Addresses from

Subscription List by MS_access_cm_get_all_model_subscription_list() and adds them to Friend

Subscription List of Friend node by MS_trn_lpn_subscrn_list_add().

For example of Friendship callback function, refer to the implementation of mesh_core_lpn_cb() in Mesh

Sample Program (mesh_core.c).

RX23W Group Bluetooth Mesh Stack Development Guide

R01AN4875EJ0130 Rev.1.30 Page 53 of 67

Dec. 22, 2022

3.5.3 Low Power Node Sequence

(1) Enabling Low Power Feature and Friendship Request

This sample program supports Low Power feature and transmits Friend Request to establish a Friendship.

Figure 3-9 Enabling Low Power Feature and Friendship Request

MS_trn_lpn_setup_friendship()

Enabling Low Power feature and Friendship Request

MS_ENABLE_LPN_FEATURE()

Low Power node

loop

Friend Request

Mesh Application Mesh Stack Bluetooth Bearer

RX23W Group Bluetooth Mesh Stack Development Guide

R01AN4875EJ0130 Rev.1.30 Page 54 of 67

Dec. 22, 2022

(2) Friendship Establishment and Termination

Friendship is established by receiving Friend Offer. After Friendship establishment, this sample program

registers all Subscription Addresses with Friend Subscription List of Friend node. After registration, the

Friend node stores messages addressed to the Subscription Addresses. Also, Low Power node performs

Message Polling periodically and receives messages from the Friend node.

When Message Polling fails continuously and then Friendship is terminated by arising Friend Poll Timeout,

this sample program transmits Friend Request to establish a Friendship again.

Figure 3-10 Friendship Establishment and Termination

MS_access_cm_get_all_model_subscription_list()

Friendship establishment and Updating Friend Subscription List

Friend Poll

Friend Update

MS_trn_lpn_subscrn_list_add()

Friend Subscription List Add

Friend Subscription List Confirm

Friend Request

Friend Offer

MS_TRN_FRIEND_SETUP_CNF event

MS_TRN_FRIEND_SUBSCRNLIST_CNF event

Low Power node

Low Power operation and Polling Message

Friendship termination

Friend Poll

MS_TRN_FRIEND_TERMINATE_IND event

MS_trn_lpn_setup_friendship()

loop

Friend Request

Friendship Request

Friend Poll Timeout expires

Mesh Application Mesh Stack Bluetooth Bearer Friend node

RX23W Group Bluetooth Mesh Stack Development Guide

R01AN4875EJ0130 Rev.1.30 Page 55 of 67

Dec. 22, 2022

If Low Power Node terminates a Friendship spontaneously, send Friend Clear message by

MS_trn_lpn_clear_friendship(). Completion of termination is notified by MS_TRN_FRIEND_CLEAR_CNF

event.

Figure 3-11 Friendship Termination

3.5.4 Friend Node Sequence

(1) Enabling Friend Feature

By being enabled Friend feature by Configuration Client, this sample program can work as a Friend Node.

Mesh Stack does not notify any events regarding Friend Node operation such as friendship establishment

and termination.

Figure 3-12 Enabling Friend Feature

Friendship termination

MS_trn_lpn_clear_friendship()

Friend Clear

Friend Clear ConfirmMS_TRN_FRIEND_CLEAR_CNF event

Low Power node

Mesh Application Mesh Stack Bluetooth Bearer Friend node

Friend Node Setup

Config Friend Status

Config Friend Set

Friend node

Mesh Application Mesh Stack Bluetooth Bearer
Configuration Client

node

RX23W Group Bluetooth Mesh Stack Development Guide

R01AN4875EJ0130 Rev.1.30 Page 56 of 67

Dec. 22, 2022

(2) Friendship Establishment and Termination

Figure 3-13 Friendship Establishment and Termination

Friendship establishment and Updating Friend Subscription List

Friend node

Friend Poll

Friend Update

Friend Request

Friend Offer

Friend Subscription List Add

Friend Subscription List Confirm

Friend operation

Friendship termination

Friend Poll Timeout expires

Mesh Application Mesh Stack Bluetooth Bearer Low Power node

RX23W Group Bluetooth Mesh Stack Development Guide

R01AN4875EJ0130 Rev.1.30 Page 57 of 67

Dec. 22, 2022

3.6 Configuration

This section shows how to implement for working as a Configuration Server.

3.6.1 Configuration Server

After Provisioning, a node must receive configuration information such as Application Key, Publish Address,

and Subscription Address from Configuration Client so that a node communicates by each model. There

configuration information is handled as Configuration States by Configuration model.

When application registers Configuration Server model, memory area for storing Configuration states is

allocated in Mesh Stack. By receiving Configuration messages from Configuration Client, Mesh Stack

updates the Configuration states automatically. Therefore, application does not have to manage the

Configuration states.

Mesh Stack provides application with API to access local Configuration states. Application can access the

Configuration states directly by using Mesh Stack API. Regarding API to access local Configuration states,

refer to refer to [Modules]→[Mesh Core]→[ACCESS (Access Layer)]→[API Definitions] in the Bluetooth

Mesh Stack API Manual "blemesh_api.chm".

Mesh Sample Program works as a Configuration Server. Implementation for Configuration Server Model of
Mesh Sample Program is shown as below.

• Registration of Configuration Server Model (mesh_model.c)

Register Configuration Server model with element by MS_config_server_init().

For example of using MS_config_server_init(), refer to the implementation of

mesh_foundation_model_register() in Mesh Sample Program (mesh_model.c).

• Configuration Server Callback Function (mesh_model.c)

Implement a callback function to receive a message from Configuration Client.

For example of Configuration Server callback function, refer to the implementation of

mesh_model_config_server_cb() in Mesh Sample Program (mesh_model.c).

Mesh Stack API Sequence for Configuration Server is shown on the following page.

RX23W Group Bluetooth Mesh Stack Development Guide

R01AN4875EJ0130 Rev.1.30 Page 58 of 67

Dec. 22, 2022

3.6.2 Configuration Server Sequence

When receiving Config Node Reset message, Mesh Stack delete all Configuration states. Also, this sample

program resets MCU and performs Provisioning again.

Figure 3-14 Configuration Server Model Operation of Mesh Sample Program

MS_config_server_init()

Configuration messagecallback function for Configuration Server

Configuration Acknowledgement message

Config Node Resetcallback function for Configuration Server

Config Node Reset Status

MCU Reset

Configuration Server Setup

Configuration Message Reception

Config Node Reset Message Reception

Configuration Server node

Configuration Information Deletion

Configuration Information Update

Mesh Application Mesh Stack

Configuration Client
node

RX23W Group Bluetooth Mesh Stack Development Guide

R01AN4875EJ0130 Rev.1.30 Page 59 of 67

Dec. 22, 2022

3.7 Health Model

This section shows how to implement for working as a Health Server.

3.7.1 Health Server

Health Server performs self-testing by receiving Health Fault Test message from Health Client. Also, Health

Server starts Attention Timer by receiving Health Attention Set message from Health Client.

• Registration of Health Server Model (mesh_model.c)

Register Health Server model with element by MS_health_server_init().

For example of using MS_health_server_init(), refer to the implementation of

mesh_foundation_model_register() in Mesh Sample Program (mesh_model.c).

• Definition of Test ID (main.c)

Define Test IDs of self-testing performed by receiving Health Fault Test message.

For example of Test ID, refer to the definition of e_mesh_health_test_id_t in Mesh Sample Program

(main.c).

• Definition of Test Function (main.c)

Define Test Functions of self-testing performed by receiving Health Fault Test message.

For example of test function, refer to the implementation of mesh_health_self_test_00() and

mesh_health_self_test_01() in Mesh Sample Program (main.c).

• Registration of Pairs of Test ID and Test Function (main.c)

Register pairs of defined Test IDs and defined Test functions.

For example of using MS_health_server_report_fault(), refer to the implementation of

mesh_model_health_server_fault_status() in Mesh Sample Program (mesh_model.c).

• Setting and Notification of Self Testing Result (mesh_model.c)

Call MS_health_server_report_fault() to add self-testing result to Fault state and to send Health Fault

Status message.

For example of using MS_health_server_report_fault(), refer to the implementation of

mesh_model_health_server_fault_status() in Mesh Sample Program (mesh_model.c).

• Attention Timer Callback Function (main.c)

Implement an Attention Timer callback function performed by receiving Health Attention Set message.

MS_HEALTH_SERVER_ATTENTION_START event is notified when Attention Timer starts, and

MS_HEALTH_SERVER_ATTENTION_RESTART event is notified when Attention Timer restarts. Start attention

behavior such as LED blinking by these events.

MS_HEALTH_SERVER_ATTENTION_STOP event is notified when Attention Timer stops. Stop attention behavior

by this event.

For example of Attention Timer callback function, refer to the implementation of mesh_health_server_cb()

in Mesh Sample Program (main.c).

RX23W Group Bluetooth Mesh Stack Development Guide

R01AN4875EJ0130 Rev.1.30 Page 60 of 67

Dec. 22, 2022

3.7.2 Health Server Sequence

Figure 3-15 Health Server Model Operation of Mesh Sample Program

MS_health_server_init()

Health Server Setup

Attention Timer Start

Health Server node

Health Attention Set messageMS_HEALTH_SERVER_ATTENTION_STOP

alt

Health Attention Set message

Health Attention Status message

MS_HEALTH_SERVER_ATTENTION_START

Health Attention Set messageMS_HEALTH_SERVER_ATTENTION_START

when receiving Health Attention Set Acknowledged

when receiving Health Attention Set Unacknowledged

alt

opt

Health Attention Set message

Health Attention Status message

MS_HEALTH_SERVER_ATTENTION_RESTART

Health Attention Set messageMS_HEALTH_SERVER_ATTENTION_RESTART

when receiving Health Attention Set Acknowledged

when receiving Health Attention Set Unacknowledged

Attention Timer Restart

Attention Timer Stop

Performing Self-Test

alt

Health Fault Test message

Health Fault Status message

Self-test function

Health Fault Test Unaknowledged messageMS_HEALTH_SERVER_ATTENTION_START

when receiving Health Fault Test

when receiving Health Fault Test Unaknowledged

MS_health_server_report_fault()

MS_health_server_report_fault()

Health Client node

Mesh Application Mesh Stack

RX23W Group Bluetooth Mesh Stack Development Guide

R01AN4875EJ0130 Rev.1.30 Page 61 of 67

Dec. 22, 2022

3.8 Application Model

Models that should be used by application differs depends on each application scenario. Application can use

single model or multiple models. Mesh Stack provides application with API to use models defined by

Bluetooth Mesh Model Specification.

This section shows how to implement Application Models while referring to the implementation of Generic

OnOff model of Mesh Sample Program.

Mesh Sample Program works as a Configuration Client or Generic OnOff Server. Generic OnOff Client

model can change the Generic OnOff state of Generic OnOff Server model into either ON or OFF.

Implementation for Configuration Server Model of Mesh Sample Program is shown as below.

3.8.1 Server Model

• Definition and Initialization of state (mesh_model.c)

Define a global variable as instance of state and initialize the variable.

For example of Generic OnOff state definition, refer to the gs_onoff_state variable in Mesh Sample

Program (mesh_model.c).

For example of Generic OnOff state initialization, refer to the implementation of

mesh_application_model_states_init() in Mesh Sample Program (mesh_model.c).

• Registration of Server Model (mesh_model.c)

Register Server Model to register its element handle and the callback function.

For example of registering Generic OnOff Server Model, refer to the implementation of

mesh_application_model_register() in Mesh Sample Program (mesh_model.c).

• Server Model Callback function (mesh_model.c)

Implement a callback function to receive messages from Client and handle the state defined as the global

variable.

For example of Generic OnOff Server Model callback function, refer to the implementation of

mesh_model_onoff_server_cb() in Mesh Sample Program (mesh_model.c).

RX23W Group Bluetooth Mesh Stack Development Guide

R01AN4875EJ0130 Rev.1.30 Page 62 of 67

Dec. 22, 2022

3.8.2 Client Model

• Registration of Client Model (mesh_model.c)

Register Client Model to register its element handle and the callback function.

For example of registering Generic OnOff Client Model, refer to the implementation of

mesh_application_model_register() in Mesh Sample Program (mesh_model.c).

• Callback function to receive messages (mesh_model.c)

Implement a callback function to receive messages from Server.

For example of Generic OnOff Client Model callback function, refer to the implementation of

mesh_model_onoff_client_cb() in Mesh Sample Program (mesh_model.c).

• Functions to transmit messages (mesh_model.c)

Implement functions to transmit message such as GET and SET. In addition to this, application must execute

these functions in accordance with a trigger such as push-switch.

For example of Generic OnOff message transmission, refer to the implementation of

mesh_model_onoff_client_get(), mesh_model_onoff_client_set(), and

mesh_model_onoff_client_set_unack() in Mesh Sample Program (mesh_model.c).

Mesh Stack API Sequence for Generic OnOff Model is shown on the following page.

RX23W Group Bluetooth Mesh Stack Development Guide

R01AN4875EJ0130 Rev.1.30 Page 63 of 67

Dec. 22, 2022

3.8.3 Generic OnOff Model Sequence

Mesh Sample Program which works as a Generic OnOff Client node sends Generic OnOff Set

Unacknowledged message when a switch on board is pushed. On the other hand, Mesh Sample Program

which works as a Generic OnOff Server node turns LED on board either on or off when receiving Generic

OnOff Set message or Generic OnOff Set Unacknowledged message.

Figure 3-16 Generic OnOff Model Operation of Mesh Sample Program

3.8.4 Vendor Model Sequence

Mesh Sample Program which works as a Vendor Server node sends Vendor Set Unacknowledged message

when character string is input from console. On the other hand, Mesh Sample Program which works as a

Vendor Server output character string to console when receiving Vendor Set message or Vendor Set

Unacknowledged message.

Figure 3-17 Vendor Model Operation of Mesh Sample Program

Generic OnOff Set
Unacknowledged message

Switch is pushed

turn LED on/off

Callback function for
Generic OnOff Server

MS_generic_onoff_set_
unacknowledged()

Generic OnOff Client node Generic OnOff Server node

Mesh Application Mesh Stack Mesh Stack Mesh Application

Vendor Set Unacknowledged
message

Console input

Console output

Callback function for
Vendor Server

MS_vendor_set_unack()

Vendor Client node Vendor Server node

Mesh Application Mesh Stack Mesh Stack Mesh Application

RX23W Group Bluetooth Mesh Stack Development Guide

R01AN4875EJ0130 Rev.1.30 Page 64 of 67

Dec. 22, 2022

3.8.5 Mesh Monitoring

Mesh Sample Program can output log of Protocol Data Unit (PDU) and Secure Network Beacon (SNB) that

are transmitted and received by each layer of Mesh Stack. This will make it easier to understand

communication state when you develop a Mesh application.

Mesh Monitoring of Mesh Sample Program is shown as below.

NOTE: This feature is disabled by default. To enable this feature, change the value of

CONSOLE_MONITOR_CFG macro by referring to Section 2.6.

• Enabling Mesh Monitoring (mesh_core.c)

Enable Mesh Monitoring by MS_monitor_register_pl().

For example of using MS_monitor_register_pl(), refer to the implementation of

mesh_core_monitor_setup() in Mesh Sample Program (mesh_core.c).

• Mesh Monitoring Callback Functions (mesh_core.c)

Implement console output processing to Mesh monitoring callback functions.

For example of Mesh Monitoring callback functions, refer to the implementation of

mesh_core_monitor_access_pdu(), mesh_core_monitor_trans_pdu(),

mesh_core_monitor_ltrans_pdu(), mesh_core_monitor_net_pdu(), and

mesh_core_monitor_generic_log() in Mesh Sample Program (mesh_core.c).

Mesh Stack API Sequence for Mesh Monitoring is shown on the following page.

RX23W Group Bluetooth Mesh Stack Development Guide

R01AN4875EJ0130 Rev.1.30 Page 65 of 67

Dec. 22, 2022

3.8.5.1 Mesh Monitoring Sequence

This sample program enables Mesh Monitoring functionality of Mesh Stack. Protocol Data Unit (PDU) and

Secure Network Beacon (SNB) that are transmitted and received by each layer of Mesh Stack are notified by

callback function.

Figure 3-18 Mesh Monitoring

Mesh Monitor Setup

MS_monitor_register_pl()

callback function for Newtork PDU

message

callback function for Lower Transport PDU

callback function for Upper Transport PDU

callback function for Access PDU

callback function for Newtork PDU

message

callback function for Lower Transport PDU

callback function for Upper Transport PDU

callback function for Access PDU

Secure Network Beacon

callback function for SNB

callback function for SNB

Secure Network Beacon

Message Reception

Message Transmission

Secure Network Beacon Reception

Secure Network Beacon Transmission

Mesh Application Mesh Stack

RX23W Group Bluetooth Mesh Stack Development Guide

R01AN4875EJ0130 Rev.1.30 Page 66 of 67

Dec. 22, 2022

4. Appendix

4.1 Command Line Interface Program

Command Line Interface (CLI) is an interface to execute Mesh Stack API over serial interface from PC.

Command Line Interface Program (mesh_cli) is included in the Bluetooth Mesh Stack Package.

By using this program, you can check wireless communication operation of Mesh Stack. In addition, you can

refer to the implementation of this program as a example for using Mesh Stack API.

Figure 4-1 shows the example usage of Command Line Interface Program.

Figure 4-1 Example Usage of Command Line Interface Program

Figure 4-2 shows the example sequence of Command Line Interface. This program can work as both role

such as Provisioning Client and Provisioning Server, Configuration Client and Configuration Server.

Figure 4-2 Example Sequence of Command Line Interface

PC

RX23W Developement Board

(TB for RX23W, TB for RX23W module, or RSSK for RX23W)

Configuration Model

mesh_climesh_cli

Beaconing

root->core->provision->setup 2 1 root->core->provision->setup 1 1

root->core->provision->bind 1 0

root->core->provision->bind 1 0

Invitation

Exchanging public keys

Authentication

Distribution of provisioning data

Composition Data

root->model->modelc->config->
compositiondataget 0

root->model->modelc->config->
publishaddr 100

AppKey List

root->model->modelc->config->
appkeyadd 0 0 12345678

Model Publication

root->model->modelc->config->
modelpublicationset
100 c001 0 0 3f 0 0 0 1000

Model to AppKey List

root->model->modelc->config->
bind 100 0 1000 1001

Provisioning

Configuration Client Configuration Server

Provisioning Client Provisioning Server

RX23W Group Bluetooth Mesh Stack Development Guide

R01AN4875EJ0130 Rev.1.30 Page 67 of 67

Dec. 22, 2022

Regarding the environment setup for building Command Line Interface, refer to Section 6 in "RX23W Group

Bluetooth Mesh Stack Startup Guide" (R01AN4874) and use "mesh_cli" project generated in the workspace

directory.

Target Board for RX23W and RSSK for RX23W have USB Serial Converter for communicating with PC. To

operate Command Line Interface, use serial terminal tool on PC. (e.g. Tera Term)

Table 4-1 shows the serial port setting to communicate with Command Line Interface Program.

Table 4-1 Serial Port Setting

Regarding the specification of Command Line Interface, refer to "FITDemos\mesh_cli\mesh_cli_guide.pdf"

included in the Bluetooth Mesh Stack Package.

Item Setting

Baud rate 115200 bps

Data 8 bits

Parity none

Stop 1 bit

Flow Control none

https://ttssh2.osdn.jp/index.html.en

Trademark and Copyright

The Bluetooth® word mark and logos are registered trademarks owned by Bluetooth SIG, Inc. and any use of
such marks by Renesas Electronics Corporation is under license. Other trademarks and registered
trademarks are the property of their respective owners.

RX23W Group Bluetooth Mesh Stack uses the following open source software.

crackle; AES-CCM, AES-128bit functionality

BSD 2-Clause License

Copyright (c) 2013-2018, Mike Ryan

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this

 list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,

 this list of conditions and the following disclaimer in the documentation

 and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"

AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE

FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,

OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

https://github.com/mikeryan/crackle

Revision History

Rev. Date Description

1.00 Sep. 30, 2019 - First edition

1.01 Nov. 29, 2019 P.4 Added Figure 1-1 "Basic Composition of Bluetooth Mesh Network"

P.5 Added Section 1.4 "State"

P.8 Added Section 1.6 "Message"

P.10 Added Section Figure 1-6 "Lifecycle of a node"

P.40 Added Subsection 2.5.1 "Scheduler"

P.57 Added Section 3.6 "Configuration"

P.52 Added Section 3.5 "Friendship"

P.63 Added Section 3.8.3 "Generic OnOff Model Sequence"

P.63 Added Section 3.8.4 "Vendor Model Sequence"

P.66 Added Chapter 4 "Appendix"

1.10 Sep. 30, 2020 P.4 Merged "Network" Section with Section 1.1 "Node"

P.4 Merged "Address" Section with Section 1.2 "Element"

P.8 Added Figure 1-4 to Section 1.5 "Message"

P.10 Removed "Lifecycle of Mesh Device" Section and added Figure 1-6

P.11 Added Section 1.10 "Optional Features"

P.15 Added Demo Project Composition to Section 2.1 "System Architecture"

P.16 Added Notable Features of Mesh Sample Program to Section 2.2 "Mesh

Application"

P 39 Added Figure 3-1 to Section 2.2 "Mesh Application"

P.53 Added Subsection 3.5.3 "Low Power Node Sequence"

P.65 Added Subsection 3.8.5.1 "Mesh Monitoring Sequence"

P.58 Added Table 5, Table 6, and Figure 24 to Subsection 2.2.2.2 "Configuration

Model"

P.63 Added Table 7, Table 8, and Figure 25 to Subsection 2.2.2.3 "Generic OnOff

Model"

P.63 Added Subsection 2.2.2.4 "Vendor Model"

P.22 Added Table 2-6 to Section 2.3 "Bluetooth Mesh Stack"

P.26 Added Subsection 2.4.4 "ADV Bearer Operation"

P.27 Added Subsection 2.4.5 "GATT Bearer Operation"

- Removed "Bluetooth Protocol Stack" Section

P.30 Added Section 2.6 "Mesh Sample Program Configurations"

P.35 Added Section 2.7 "Bluetooth Bearer Configurations"

P.38 Added Section 2.8 "Mesh Driver Configurations"

- Removed "Vendor Specific Mesh Model"

Overall Updated some section order, description, figures, and source codes

1.20 Sep. 30, 2021 P.6 Added Subsection 1.5.2 "Foundation Models"

P.6 Added Subsection 1.5.4 "Health Model"

P.39 Moved sequence diagrams from Chapter 2 Bluetooth Mesh Stack Package"

to Chapter 3 "Application Development"

P.19 Added Subsection 2.2.3.2 "Health Model"

P.25 Added Subsection 2.4.3 "Mesh GATT Services (gatt_db.c)"

P.48 Added Section 3.4 "Proxy"

P.59 Added Section 3.7 "Health Model"

P.64 Added Subsection 3.8.5 "Mesh Monitoring"

Overall Updated some section order, description, figures, and source codes

1.30 Dec. 22, 2022 P.14 Added Demo Projects for Target Board for RX23W module

P.14 Added "json" folder in the composition of demo project.

P.18 to

P.19

Removed SIG Models' message list and added the chapter in Mesh

specification to be referred

P.31 Added the description of "Console String Reception Configuration"

P.32 Added Subscription 2.6.2 "Provisioning Operation Configurations"

P.40 Changed Mesh Stack initialization API from MS_init() to MS_init_ext()

described in "Callback Function of Bluetooth Bearer Initialization Completion"

P.41 Added the description of "Mesh Stack Termination"

P.42 Changed Element Registration API from MS_access_register_element()

to MS_access_register_element_ext() described in "Node and Elements"

P.46 Updated the description of using OOB Public Key and OOB Authentication

P.43 to

P.64

Removed code quoted from Mesh Sample Program and added the location of

Mesh Sample Program to be referred

Overall Updated document links in this document

Overall Correct mistakes in some sequence charts in this document

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products
Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The
characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of
internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating
margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for
the given product.

© 2022 Renesas Electronics Corporation. All rights reserved.

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your

product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use

of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,

or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this

document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics

or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,

manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any

and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for

each Renesas Electronics product depends on the product’s quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas

Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to

human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space

system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics

disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product

that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics

hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but

not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS

ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING

RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,

HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND

ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT

PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH

RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO

THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for

Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by

Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas

Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such

specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific

characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability

product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics

products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily

injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as

safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for

aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are

responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas

Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of

controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these

applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance

with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is

prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations

promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or

transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled

subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,

Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

 For further information on a product, technology, the most up-to-date

version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/.

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics

Corporation. All trademarks and registered trademarks are the property

of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Bluetooth Mesh Overview
	1.1 Node
	1.2 Element
	1.3 Address
	1.4 State
	1.5 Model
	1.5.1 Client and Server
	1.5.2 Foundation Models
	1.5.3 Configuration Model
	1.5.4 Health Model
	1.5.5 Publication and Subscription

	1.6 Message
	1.7 Mesh Bearer
	1.8 Provisioning
	1.9 Configuration
	1.10 Optional Features
	1.10.1 Relay
	1.10.2 Proxy
	1.10.3 Friendship

	2. Bluetooth Mesh Stack Package
	2.1 System Architecture
	2.2 Mesh Application
	2.2.1 Mesh Core Module
	2.2.2 Mesh Model Module
	2.2.3 Mesh Model Composition
	2.2.3.1 Configuration Model
	2.2.3.2 Health Model
	2.2.3.3 Generic OnOff Model
	2.2.3.4 Vendor Model

	2.3 Bluetooth Mesh Stack
	2.4 Bluetooth Bearer
	2.4.1 Bearer Functions for Message Transmission and Reception (blebrr.c)
	2.4.2 Bearer Functions for Connection Control (blebrr_pl.c, blebrr_gatt.c)
	2.4.3 Mesh GATT Services (gatt_db.c)
	2.4.4 ADV Bearer Operation
	2.4.5 GATT Bearer Operation

	2.5 MCU Peripheral Functions
	2.6 Mesh Sample Program Configurations
	2.6.1 Basic Operation Configurations
	2.6.2 Provisioning Operation Configurations

	2.7 Bluetooth Bearer Configurations
	2.8 Mesh Driver Configurations

	3. Application Development
	3.1 Main Routine
	3.2 Node Composition
	3.3 Provisioning
	3.3.1 Provisioning Server
	3.3.2 Provisioning Sequence
	(1) Provisioning Setup
	(2) Session Establishment over PB-ADV
	(3) Connection Establishment over PB-GATT
	(4) Provisioning Process

	3.4 Proxy
	3.4.1 Proxy Server
	3.4.2 Proxy Client
	3.4.3 Proxy Sequence
	(1) Proxy Setup
	(2) Proxy Connection Establishment

	3.5 Friendship
	3.5.1 Friend Node
	3.5.2 Low Power Node
	3.5.3 Low Power Node Sequence
	(1) Enabling Low Power Feature and Friendship Request
	(2) Friendship Establishment and Termination

	3.5.4 Friend Node Sequence
	(1) Enabling Friend Feature
	(2) Friendship Establishment and Termination

	3.6 Configuration
	3.6.1 Configuration Server
	3.6.2 Configuration Server Sequence

	3.7 Health Model
	3.7.1 Health Server
	3.7.2 Health Server Sequence

	3.8 Application Model
	3.8.1 Server Model
	3.8.2 Client Model
	3.8.3 Generic OnOff Model Sequence
	3.8.4 Vendor Model Sequence
	3.8.5 Mesh Monitoring
	3.8.5.1 Mesh Monitoring Sequence

	4. Appendix
	4.1 Command Line Interface Program

	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

