LENESAS Application Note

RAOE1 Group
FPB-RAOE1 Tutorial

Introduction

This application note explains how to create a new project and debug a program using the e? studio
integrated development environment for the FPB-RAOE1 board with Renesas' RAOE1 group MCU.
Target Device

RAOEL1 group

Related Documents
[1] Renesas RA Family FPB-RAOE1 v1 User's Manual (R20UT5378)

[2] Integrated development environment e 2 studio 2022-07 or higher User's manual Quick start guide
Renesas microcontroller RA family (R20UT5210)

R0O1AN7315JJ0100 Rev.1.00 Page 1 of 41

RAOE1 Group FPB-RAOE1 Tutorial

Contents

1. DeVvelopmeENnt ENVIFONMENToviiiiiiiiiiiieiieeie ettt ettt ettt ettt ettt et e e e e e e e e et e e e e eeeeeeeeeeees 3
1.1 Hardware ENVIFONIMENTuiiiiiiiiee ittt sttt e sttt ettt e e sttt e e e s astbe e e s aabbe e e s ansbeeesansbeeeeanbbeeeeenbaeeeennbeeeeennteas 3
1.2 SOMfWAIrE ENVIFONMIENT ..ottt e e e e e ettt e e e e e e s s aba et e e eeee s s e nnbaeeeeeaeeseaasnbbseeeaaeesaannnes 3
2. SOTIWEAIE OVEIVIEWueiiiiiiiiiiiiitiiiiieiaetieeeeeeeeeaeses sttt 4
P R o (0T | =T g (I (o o (=T = T TUPPPTPTRTTRR 4
A (110 11] o] 5
S R O (o o] TSRS 5
A |1 1= TP 5
A T o | 1 5
3. HOW 1O Create @ PrOGIAIMt eeeeiieitiias e e e et e ettt e e e e e e e eeee s e e e et e eane s e s e e eaeeennnnnnaaaeeeaeeennnes 6
K R O == L= o[V o] {0 =T ot A O PP PP PR PRSP 6
3.1 1 ProJECLIAUNCHReieiiiei s 6
3.1.2 DeVice/TOO!I CONFIGUIALIONciitiiie ittt ettt e e e atb et e e e sab et e e e snbb e e e e aabneeeennenas 8
3.1.3 BUIld ArtifaCt SELHNQGSuvuuieiiiiiiiiiiiiiiiiii s 10
3.1 4 TemPIAte LYPE SELLNGS ..ooiveiie ettt e et e e e st et e e st et e e e st bt e e e sabb e e e e anbbeeeeabbeeeeabbeeeeaan 11
3.2 FSP COoNfIgUurator SELHNQGSuuuuuueeiuieiiiiiiiiiiii s 13
3.2.1 How to call the FSP CONfIQUIALOTcciiiiiiiiiiiiiee ettt e et e e e sbe e e e s anbneeeeaaes 13
G T O o Tox =Y =1 1 11 o 14
K T 1 o IR 1 1] o o O PO PP PP PPPPPPTPPPPPN 15
3.2.4 AdAING the TIMEE ..uuuiiiiiiiiiiiii s 17
K B O To [T O PP PPPPPUPPPRRN 23
3.3.1 Implementation Of the Main PrOgraM............uuuuiuiei s 23
3.3.2 Implementation Of INtEITUPL PrOGIEIMivuiiiiiiiiee ittt e et e e e sbb e e e e sbb e e e s sbbeeeeabreeeeaae 27
R = 111 o S PUPRPTOPRRR 33
A, HOW 10 DBIOUG ... 35
4.1 Debug Settings and StAITUDccoooeiiie e —————————— 35
A (- U)o) o PSS 38
4.3 Quit debugging and FESTAccoiiii i —————————— 40
REVISION HISTOMY ..o 41
RO1AN7315JJ0100 Rev.1.00 Page 2 of 41

RAOE1 Group FPB-RAOE1 Tutorial

1. Development environment
This application note explains using the following development environment.

1.1 Hardware environment
Use the following hardware:

e Board: FPB-RAOE1 (RTK7FPAOE1S00001BJ)
Connect the board and PC using the USB Type A to Type C cable included with the product.

1.2 Software environment
This document uses the following software. Please install the software in advance.

e Integrated development environment

— e? studio 2024- 01.1 or later
e compiler

— GNU ARM Embedded: 13.2.1.arm-13.7 or later
e Flexible Software Package

— Version: 5.2.0 or later
Download: https://github.com/renesas/fsp/releases

R0O1AN7315JJ0100 Rev.1.00 Page 3 of 41

https://github.com/renesas/fsp/releases

RAOE1 Group FPB-RAOE1 Tutorial

2. Software overview

This section explains the specifications of the program created using this application note.

2.1 Program to create

A program which alternately toggles two on-board LEDs using a 500ms periodic timer interrupt.

Indicates the board used and the location of the LEDs.

©OOD-

s oIS TP1TP2TP3
) ()L

118 9

[tetteeteedt
C7 oo o

e
=
—m 0 o
e O e
o
—
~ o

- °
-

o |

S1 SWo 3 ¢
- "FPB=RAOE]" °.~ o
RTKTFPAOE1S00001BJ 5

renesgs.com/r'a/fpb-ralel oo

R30muEm ° ° °

R29mm

Figure 2-1 On-board LED position

R0O1AN7315JJ0100 Rev.1.00 Page 4 of 41

RAOE1 Group FPB-RAOE1 Tutorial

2.2 Resources
This section describes the resources consumed by the program described in this application note.

2.2.1 Clock
HOCO clock frequency: 32MHz

HOCO clock division: 1 division
ICLK selection source: HOCO
ICLK frequency: 32MHz

TAU CKOO supply clock : 62.5kHz

2.2.2 Timer
Timer functions used: TAU channel 0
TAU clock supplied to channel O: CKO0O0
Channel 0 operating mode: interval timer mode
Interval timer period: 500ms
FSP software stack used: ritual
2.2.3 Port
Ports used: PO08 (LED1) / POO9(LED?2)
FSP software stack used: r_ioport
RO1AN7315JJ0100 Rev.1.00 Page 5 of 41
Mar.27.24

RENESAS

RAOE1 Group FPB-RAOE1 Tutorial

3. How to create a program

This chapter explains how to create a project, set up peripheral functions using FSP, write application code,
and build.

3.1 Create new project

3.1.1 Project launch
1. From the e? studio menu bar
Select "New" — "Renesas C/C++ Project " —

Renesas RA".

&) RA_workspace - €* studio
Eile Edit Source Refactor Navigate Search Project RenesasViews Run RenesasAl Window Help

New Alt+Shift+N > Renesas C/C++ Project > Renesas Debug
Open File... [c¥ Makefile Project with Existing Code I Renesas RA I
(C, Open Projects from File System... [] C/C++ Project "
|

Recent Files > Project...

Figure 3-1 Project launch

2. "Renesas RA C/C++ Project " and click "Next".
& New C/C++ Project 0 X

Templates for Renesas RA Project

‘ ‘ Renesas RA C/C++ Project
|C/C++ =S8N (Create an executable or static library C/C++ project
for Renesas RA.

Figure 3-2 Project launch

R0O1AN7315JJ0100 Rev.1.00 Page 6 of 41

RAOE1 Group

FPB-RAOE1 Tutorial

3. Project name Write any name and click "Next".
" Use default location ", the project will be created in the path shown below. If you want to create it in
another location, uncheck it and set the path.

&8 Renesas RA C/C++ Project

Renesas RA C/C++ Project

Project Name and Location

Project name

FPB_RAOE1_Tutorial|

Use default location

You can download more Renesas packs here

Figure 3-3 Project launch

R0O1AN7315JJ0100 Rev.1.00
Mar.27.24

RENESAS

Page 7 of 41

RAOE1 Group FPB-RAOE1 Tutorial

3.1.2 Device/Tool Configuration
The following steps outline the configuration of the projects target device and tooling.

1. FSP Version : Select the latest version (minimum 5.2.0)
Language : Select C.

Renesas RA C/C++ Project

Device and Tools Selection
Device Selection

FSP Version: 5.2.0 Boe
Board: | Custom User Board (Any Device) v]

Device: R7FAOQE1073CF)

Core: CM23

Language ©C OC++ D

[Trusi

Figure 3-4 Device/Tool Configuration

2. Board: Select FPB-RAOE1 from the list.
(Device and core is set automatically)

Device Selection

FSP Version: 5.2.0 y

Board: ustom User Board (Any Device) v

, EK-RA4WA
Device: EK-RAGE2
EK-RA6M1
Core: EK-RABM2
EK-RA6M3
Language: |cy paAeM3G
EK-RA6M4
EK-RA6MS
EK-RA8D1
EK-RABM1
FPB-RA2E1
FPB-RA2E2

CND DANC>

Figure 3-5 Device/Tool Configuration

R0O1AN7315JJ0100 Rev.1.00

Page 8 of 41

RAOE1 Group FPB-RAOE1 Tutorial

3. Toolchains settings : Select “* GNU ARM Embedded” . Select the latest version from the list of versions.

Toolchains

GNU ARM Embedded
LLVM Embedded Toolchain for Arm

13.2.1.arm-13-7

Figure 3-6 Device/Tool Configuration

4. Debugger settings: Select J -Link ARM .

Debugger
J-Link ARM ~

Figure 3-7 Device/Tool Configuration

The settings are complete.

5. Confirm the settings in the red framed areas and click "Next.

&) Renesas RA C/C++ Project

0 X
Renesas RA C{C++ Project —
Device and Tools Selection
Device Selection
FSP Version: 5.2.0 v Boae Descn;?tlon
Fast Prototyping Board for RAOE1 MCU Group
Board: FPB'RAOH b Visit https://www.renesas.com/ra/fpb-ra0e1 to get kit user's
. manual, quick start guide, errata, design package, example
Device: R7FAOE1073CF) projects, etc.
Core: cM23
language ©C OC++
Device Details
TrustZone No
Pins 32
Processor Cortex-M23
Toolchains Debugger
GNU ARM Embedded J-Link ARM v
LLVM Embedded Toolchain for Arm
13.2.1.arm-13-7 e
@ < Back Einis} Cancel
Figure 3-8 Device/Tool Configuration
R0O1AN7315JJ0100 Rev.1.00 Page 9 of 41

RAOE1 Group

FPB-RAOE1 Tutorial

3.1.3 Build artifact settings

In this application note, we will generate an executable file from the program, so select Executable.

Since we do not use RTOS, select No RTOS.

Click Next.

Q Renesas RA CfC++ Project

Renesas RA C/C++ Project
Build Artifact and RTOS Selection

Build Artifact Selection RTOS Selection
© Executable Mo RTOS
* Project builds to an executable file

() Static Library
* Project builds to a static library file

() Executable Using an RA Static Library
* Project builds to an executable file
* Project uses an existing RA static library project

Figure 3-9 Build artifact settings

R0O1AN7315JJ0100 Rev.1.00

Page 10 of 41

RAOE1 Group FPB-RAOE1 Tutorial

3.1.4 Template type settings
1. In this application note, we will explain how to use FSP, so this time we will select Bare Metal -
Minimal. Then click "Finish".

Brief overview of the options:

Bare Metal - Blinky will generate an application which toggles all on board LEDs determined from the
BSP using a simple software delay.

Bare Metal - Minimal will generate an empty application with basic C-runtime setup but no executable

code.
8 Renesas RA C/C++ Project O X
Renesas RA C/C++ Project y 3

Project Template Selection

Project Template Selection

@) (} Bare Metal - Blinky

Bare metal FSP project that includes BSP and will blink LEDs if available. This project will initialize clocks, pins, stacks, and
the C runtime environment.

[Renesas.RA.5.2.0.pack]

Q ()‘ '| Bare Metal - Minimal
Bare metal FSP project that includes BSP. This project will initialize clocks, pins, stacks, and the C runtime environment.
[Renesas.RA.5.2.0.pack]

Code Generation Settings
Use Renesas Code Formatter

5\

Figure 3-10 Template type settings

R0O1AN7315JJ0100 Rev.1.00 Page 11 of 41

RAOE1 Group

FPB-RAOE1 Tutorial

2. Explain this option opens the "FSP Configuration" Perspective which optimizes the FSP Configuration

workflow.

If you click no, it can be accessed again by selecting "Open New Perspective" ... then provide

images/instructions of this process.

a Open Associated Perspective?

Open the FSP Configuration perspective?

() Remember my decision

Open Perspective

Figure 3-11 Template type settings

3. Project creation is complete.

@ RA_workspace - FPB_RAOE1_Tutorial/configurationami - €° studio
File Edit Navigate Search Project RenesasViews Run RenesasAl Window Help

LR S =) Q-

[Project Explorer X | = & § = O |35 (FPB_RAOE! Tutorial] FSP Configuration X
~ 15 FPB_RACE1 Tutorial

X

No

= o X

Q S| Eyces | FSP Configuration | %5 F/(77
Lo = |

> 8 Includes Summary Generate Project Content
>B
> @ ragen Project Summary A
> @ src
> @ Debug Board: FPB-RAOE1 RENESAS
> & racly Device R7FAOE1073CFJ
’ - Toolchain: GCC ARM Embedded
X) FPB_RAQE1_Tutorial Debug_Flatlaunch Toolchaln Version 132 sm-A%:
> @ Developer Assistance FSF Version: 525
Project Type: Flat
Location: C:/RA_workspace/FPB_RAOE1_Tutorial <
Selected software components
Board Support Package Common Files v520
/0 Port v5.2.0
Arm CMSIS Version 5 - Core (M) v5.9 0+renesas.1.fsp.5.2.0 v
Board support package for R7TFAOE1073CFJ v5.2.0
I:::::I !!!I!I
Summary | BSP | Clocks | Pins | Interrupts| Event Links | Stacks | Components
|E 70i74- |1 ME | @ 23-b-759%- | B Console X bR 28~ 0
|RAFSP
|Extracting components...
|->Board Support Package Common Files
->1/0 Port
->Arm CMSIS Version § - Core (M)
for R7FAOE1073CFJ
| for RACE
->Board supp for RAOEL - FSP Data
->Board suppor: for RACEL - Events
| =>RAOE1-FPB Board Support Files
|Extracting from pack: Re: .5.2.0.pack
|Extracted file: ra/boa adel_fpb/board_init.h
|Excracted file: ra/board/radel_fpb/board_init.c
|Extracted file: ra/board/radel_fpb/board_leds.h
|Excracted file: ra/board/racel_fpb/board leds.c
|Excracted file: ra/board/radel_fpb/board.h
|Extracting from pack: Renesas.RA_mcu_raOel.5.2.0.pack
|Extracted file: ra/fsp/src/bsp/cmsis/Device/RENESAS/Include/R7FAOEL07.h
|Extracted file: script/fsp.ld
Extracted file: ra/fsp/inc/fsp_features.h
|Extractea file: ra/fsp/inc/instances/r_ioport.h
|Excracted file: ra/fsp/src/bsp/cmsis/Device/RENESAS/Source/system.c
|Excracted file: ra/fsp/src/bsp/cmsis/Device/RENESAS/So .
|Extracted file: ra/fsp/src/bsp/mcu/all/bsp_register
|Excracted file: ra/fsp/src/bsp/mcu/all/bsp_register_protection.c
|Excractea file: ra/fsp/szc/bsp/mcu/all/bsp_compiler_support.h
| « »

Figure 3-12 Template type settings

R0O1AN7315JJ0100 Rev.1.00 Page 12 of 41

RAOE1 Group

FPB-RAOE1 Tutorial

3.2 FSP Configurator settings

Use FSP Configurator to configure the system clock and initial settings for peripheral functions.

3.2.1 How to call the FSP Configurator

The FSP Configuration page should be open by default. If it is not open, double-click the configuration.xml

file in the Project Explorer to display the configuration screen.

8 RA_workspace - FPB_RAOE1_Tutorial/configurationam| - € studio
File Edit Navigate Search Project RenesasViews Run RenesasAl Window Help

LR e =] e
& Project Explorer X =% 7 § = O |[E (FPB_RAGE1 Tutorial] FSP Configuration X
v 15 FPB_RACE1 Tutorial Suma
>) Includes 0

Project Summary

Board: FPB-RAOE1
Device: R7FAQE1073CFJ
Toolchain: GCC ARM Embedded
bug_Fistaunch Toolchain Version: 13.2.1.arm-13-7
> (3 Developer Assistance FSP Version: 520
Project Type: Flat
Location: C/RA_workspace/FPB_RAOE1_Tutorial <4

Selected software components
Board Support Package Common Files
1/O Port

Am CMSIS Version 5 - Core (M)
Board support package for RTFAOE1073CFJ

QEO

v5.2.0
v520
v5.9.0+renesas.1.fsp.5.2.0
v5.2.0

Summary | BSP | Clocks| Pins| Interrupts | Event Links| Stacks | Components

[7o/(74- | \¥) M8 @ 23-h-7597- | B Console X
RAFSP

|Extracting components...

->Board Support Package Common Files

>I/0 Port
=>Arm CMSIS Version § - Core (M)

->Board support package for R7FAOE1073CFJ

->Board support package for RAOEL

->Board support package for RAOEl - FSP Data

|=>Board support package for RAOEL - Events

FPB Board Support Files

ng from pack: Renesas.RA_board ralel fpb.5.2.0.pack
file: ra/board/radel_fpb/board_init
|Excracted file: ra/board/radel_fpb/board_init.
Extracted fil a/board/ralel_fpb/board_leds.h
ra/boa: raOel_fpb/board leds.c
ra/board/radel_fpb/bo.
|Excracting from pack: Renesas.RA_mcu_ralel.5.2.0.pack

[Extracted file: ra/fsp/src/bsp/cmsis/Device/RENESAS/Include/R7FAOEL07.h

Extracted file: script/fsp.ld

Extracted file:
|Excracted file:
Extracted file:

ra/fsp/inc/fsp_features.h
ra/fsp/inc/instances/x_ioport.h
ra/fsp/szc/bsp/cmsis/Device/RENESAS/Source/system.c

|Excracted file: ra/fsp/src/bsp/cmsis/Device/RENESAS/S: e/startup.c
Extracted file: ra/fsp/src/bsp/mcu/all/bsp_register protection.h
Extracted file: ra/fsp/src/bsp/mcu/all/bsp_register_protection.c
Extracted file: ra/fsp/src/bsp/mcu/all/bsp_compiler_support.h

Figure 3-13 How to call the FSP Configurator screen

= o X

Q @9 | Byucss {5 FSP Configuration 3 727
=

Generate Project Content

~

RENESAS
v
BE ~EB-8-=0

RO1AN7315JJ0100 Rev.1.00

Page 13 of 41

RAOE1 Group

FPB-RAOE1 Tutorial

3.2.2 Clock setting

1. Selectthe “Clocks” tab to open the clock settings screen . Make sure the default screen looks like the

one below.

The path of each clock is indicated by a thick arrow.

i,;f [FPB_RAOQE1_Tutorial] FSP Configuration X

Clocks Configuration

HOCO 32MHz

MOCO 4MHz

v —> HOCO Div /1

—> MOCO Div /1

~ —> ICLK Src: HOCO

[> TAU CK0O0 Div /1

ICLK 32MHz

v —> TAU CK00 32MHz

X1 20MHz

SUBCLK 32768Hz

LOCO 32768Hz

—> X1Div/1

~> FSXP Src: SUBCLK

Summary BSI Clocks Pl'-s Interrupts | Event Links | Stacks | Components

[> TAU CK01 Div /1

[> TAU CK02 Div /2

~> TAU CK03 Div /256

v —> TAU CK01 32MHz

v —> TAU CK02 16MHz

v —> TAU CK03 125kHz

CLKOUT Disabled

UARTA Src: Disabled

TML32 FITLO Disabled

TML32 FITL1 Disabled v

TML32 FITL2 Disabled

v —> CLKOUT Div /1

v —> CLKOUT 0Hz

UARTA UTAO 0Hz

TML32 FITLO OHz

TML32 FITL1 OHz

TML32 FITL2 OHz

FSXP 32.768kHz

Figure 3-14 Clock setting

2. In the program being described we require a timer with period 500ms. As this cannot be created with
a supply clock (CKO00) of 32MHz we must reduce it down to a more sensible value of 62.5kHz.
Click TAU CKO0O Div /1 and select TAU CKO0O0 Div /512 from the list.

154 [FPB_RAOE1_Tutorial] FSP Configuration X

Clocks Configuration

HOCO 32MHz

MOCO 4MHz

X120MHz

SUBCLK 32768Hz

LOCO 32768Hz

v —> HOCO Div /1

——> MOCO Div /1

—> X1Div/1

> FSXP Src: SUBCLK

v —> |CLK Src: HOCO

CLKOUT Disabled

UARTA Src: Disabled

TML32 FITLO Disabled ~ ——

TML32 FITL1 Disabled

TML32 FITL2 Disabled

v ICLK 32MHz
> TAU CK0O Div /1 v [—> TAU CK00 32MHz
TAU CK00 Div /1
TAU CK00 Div /2 |)
o TAU CK01 32MHz
TAU CK00 Div /8
h>{TAU CKoo Div /16 ——> TAU CK02 16MHz
TAU CK00 Div /32
TAU CK00 Div /64
> TAU CK00 Div /128 —> TAU CK03 125kHz
TAU CK00 Div /256
TAU CK00 Div /512
¥ T[TAUCKoO Div /1024 [| CLKOUTOHz
TAU CK00 Div /2048
v —TAUCK00Div /409 L JARTA UTAO OHz
TAU CK00 Div /8192
TAU CK00 Div /16384
TAU CK0O Div /32768 F—> TML32 FITLO OHz
v TML32 FITL1 OHz
v TML32 FITL2 OHz

Summary | BSP | Clocks | Pins | Interrupts | Event Links | Stacks| Components

Figure 3-15 Clock setting

FSXP 32.768kHz

RO1AN7315JJ0100 Rev.1.00

Mar.27.24

RENESAS

Page 14 of 41

RAOE1 Group FPB-RAOE1 Tutorial
Check that the TAU CKOO supply clock is 62.5kHz.

ié} *[FPB_RAOQE1_Tutorial] FSP Configuration X
Clocks Configuration
HOCO 32MHz v —> HOCO Div /1 v —> ICLK Src: HOCO v ICLK 32MHz
MOCO 4MHz —> MOCO Div /1 v [> TAU CK00 Div /512 v~ —> TAU CK00 62.500kHz
X1 20MHz —> X1Div/1 v [> TAU CKo1 Div /1 v —> TAU CKO01 32MHz
SUBCLK 32768Hz = [> TAU CK02 Div /2 v —> TAU CK02 16MHz
LOCO 32768Hz ~> TAU CK03 Div /256 v —> TAU CK03 125kHz
CLKOUT Disabled v —> CLKOUT Div /1 v —> CLKOUT 0Hz
UARTA Src: Disabled v UARTA UTAO 0Hz
TML32 FITLO Disabled v TML32 FITLO OHz
TML32 FITL1 Disabled v TML32 FITL1 OHz
TML32 FITL2 Disabled v TML32 FITL2 OHz
> FSXP Src: SUBCLK Vv FSXP 32.768kHz
Summary | BSP | Clocks | Pins | Interrupts | Event Links | Stacks| Components

Figure 3-16 Clock setting

3.2.3 Pin settings

1. Select the "Pins" tab and then the "Pin Function” tab.
Then select P0O08.
You will see the Symbolic Name is given to LED1. This is because in section 3.1.2 the board FPB-
RAOE1 was selected and the BSP has this assignment saved. This is the same for other peripherals
and this Symbolic Name can be used when writing the code for the program.

19¢ *"[FPB_RAOE1_Tutorial] FSP Configuration X

Pin Configuration

Select Pin Configuration iy Export to CSVfile (57| Configure Pin Driver Warnings
FPB-RAOE1 ¥| Manage configurations... @ Generate data: g_bsp_pin_cfg
Pin Selection i= ¥ = |% Pin Configuration
Type filter text Name Value Link
v ¢ Ports Symbolic Name LED1
Comment GREEN_ARDUINO_A4
v v PO
v P008 Mode Output mode (Initial Low)
v P09 Output Type CMOS
v PO10 Drive Capacity L
v Po11 v Input/Output
&'Poi3 Po08 v GPIO
v Po13
v P04
v PO15
> v 1
> ¥ P2
> v P3
> v P4
> v P9
s « OtherPins Module name: Poo8
v ¢ Peripherals Port Capabilities: ADCO: AN0O2
< Walog:ADC

Pin Function | Pin Nugaky

Summary | BSP | Clock] | Pins | Ifiterrupts | Event Links | Stacks | Components

Figure 3-17 Pin settings

R0O1AN7315JJ0100 Rev.1.00 Page 15 of 41

RAOE1 Group

FPB-RAOE1 Tutorial

2. Since we want P0O08 to be initially lit (High output), set the "Mode" to "Output mode (Initial High)".

_ﬂ Export to CSV file [EZ| Configure Pin Driver Warnings

B Generate data: g_bsp_pin_cfg

iE‘:;“ *[FPE_RACE1_Tutorial] FSP Configuration >
Pin Configuration
Select Pin Configuration
FPE-RACE1 V| Manage configuraticns...
Pin Selection = /%, Pin Configuration
Type filter text Name
v « Pors Symbolic Name
v « PO Comment
" PO0G Mode
« Po0g Cutput Type
« PO10 Drive Capacity
« POt ~ Input/Cutput
« POz Poog
¥ PO13

Value Link

LED1
GREEN_ARDUINC_A4
Output mode (Initial Hic

Disabled
Input mode
Cutput mode (Initial Low)

e

Figure 3-18 Pin settings

3. Since we want P009 to be initially off (Low output), set the "Mode" to "Output mode (Initial Low)".

Pin Configuration

Select Pin Configuration

45 *[FPB_RAOE1_Tutorial] FSP Configuration *

FPB-RACQET

_iﬁ Export to CSV file [EZ) Cenfigure Pin Driver Warnings

'l Manage configurations...

Pin Selection

Type filter text

= 1% Pin Configuration

@ Generate data: g_bsp_pin_cfg

MName

« PO0B
« PO09
« P010
+ PO
+ P012

[P

Symbolic Name
Comment
Mode
Output Type
Drive Capacity
v Input/Cutput
P09

Value Link
LED2

GREEN_PMOD1_CS53_GPl...
Qutput mode (Initial Low)

CMOS

Figure 3-19 Pin settings

R0O1AN7315JJ0100 Rev.1.00
Mar.27.24

RENESAS

Page 16 of 41

RAOE1 Group FPB-RAOE1 Tutorial

3.2.4 Adding the Timer
1. Select the "Stack" tab - it is from here we can add all drivers and middleware components.

@ RA_workspace - FPB_RAOE1_Tutorial/configurationaml - e studio = o X

file Edit Novigate Search Project RenesasViews Run RenesasAl Window Help

L Q = v Q- Q | B+ | FsP Configuration 15 F/(2T
S Project xplorer X =0 | [T “[7PB_RAGE1 Tutoral] PSP Conbguration X =
S IPRRAEL Mo Stacks Configuration

Generate Project Content

Threads ¢ 3 = HAL/Common Stacks @] New Stack >
v ' HAL/Common -
& g ioport VO Port (cioport) & giopor VO Por
{Fioport
@
Objects

[Properties X |[2] M| @ 23-+-7597-| &’ 8% | B Console| 15 7177 o ell=)

Propertis are not available

Figure 3-20 Setting the timer function

2. Select "New Stack ", a list of functions will be displayed.
Select "Timers" > "Timer, Independent Channel, 16-bit and 8-bit Timer Operation (r_tau)".

()
Generate Project Content
HAL/Common Stacks 4| Mew Stac' ~
Al »
47 g_ioport I/O Port Analog ?
(r_ioport) Audic 3
Bootloader »
® .
Connectivity »
DSP >
Input »
Menitoring »
Motor »
Networking »
Power »
Security »
Sensor »
Storage »
System »
Cloc b e ol Timers >
Timer, Independent Channel, 16-bit and 8-bit Timer Cperaticn (r_tau) I Transfer »
_ " — " -
Timer, Simultanecus Channel Operation (r_tau_pwm) & Search.
Figure 3-21 Setting the timer function
R0O1AN7315JJ0100 Rev.1.00 Page 17 of 41

RAOE1 Group FPB-RAOE1 Tutorial

3. Verify that a stack named g_timer0 has been added.

The properties tab is where the configuration of drivers and middlewares is performed.
This is shown in the red frame for g_timer0 below.

€ RA_workspace - FPB_RAOE1_Tutorial/configuration.xml - € studio

File Edit Navigate Search Project RenesasViews Run RenesasAl Window Help

Hi®~&)~ B2:ip NSRS Q-

& Project Explorer X | 2% 7 8§ = O |[& [FPB_RAGE1 Tutorial] FSP Confguration X

< FPI ial . s
>/ FPRRALES Tuora Stacks Configuration

Threads &)

) - HAL/Common Stacks
v s HAL/Common —
42 g_ioport I/O Port (r_ioport) & g_ioport I/0 Port
@ g_timer0 Timer, Independent Channel, 16-bit and 8-bit Timer Operation (r_t (r_ioport)
@
Objects é %

Summary | BSP | Clocks | Pins | Interrupts | Event Links | Stacks | Components
L M| @ A7-+-7597-| 5 W8 | © Comsole| 42 717
g_timer0 Timer, Independent Channel, 16-bit and 8-bit Timer Operation (r_tau)

Settings Property
APlinfo | v Common
Parameter Checking
Pin Output Support
Pin Input Support
v Module g_timer0 Timer, Independent Channel, 16-bit and 8-bit Timer Operation (r_tau)
> General
> Input
> Output
> Interrupts
v Pins
Tioo
TO00

Value

Default (BSP)
Disabled
Disabled

<unavailable>
<unavailable>

Figure 3-22 Setting the timer function

If you cannot find the "Properties" window, select "Window" — "Show View" — "Properties" from the e2
studio menu bar to display it.

a RA_workspace - FPB_RAQE1_Tutorial/configuration.xml - e’ studio

File Edit Navigate Search Project RenesasViews Run Renesas Al Window Help

LmJl Q\“D'Q' Dt Q~ New Window
{5 Project Explorer X S Y 8§ = O |#E Editor > fguration X
v 15 FPB_RAOE1 Tutorial 2 Appearance >
> % Includes Shiow View " "
>Bra
= 1 Perspective >|] Properties
>3 g: Navigation > S St Beoseey
> = Debug :
her... Alt+Shift
> & racfg Preferences S 14Shilt= Q. Q

o~ Casaes e 1 '

Figure 3-23 Setting the timer function

RO1AN7315JJ0100 Rev.1.00

Page 18 of 41
Mar.27.24

RENESAS

RAOE1 Group FPB-RAOE1 Tutorial

4. Open the "General" properties list in preparation of the following steps as shown in the red frame
below.
[T Properties X |[2 P& | @ AV-h-T59%-| & 1% | B Console| 35 7/(v7

g_timer0 Timer, Independent Channel, 16-bit and 8-bit Timer Operation (r_tau)

Settings Property Value
APl Info v Common
Parameter Checking Default (BSP)
Pin Output Support Disabled
Pin Input Support Disabled
v _Module g timer0 Timer, Independent Channel,_16-bit and 8-bit Timer Operation (r tau)
v General
Name g_timer0
Channel 0
Function Interval Timer
Bit Timer Mode 16-bit timer
Operation Clock CKoo
Period 0x10000
Period Unit Raw Counts
Period (Higher 8-bit timer) 0x100
Period Unit (Higher 8-bit timer) Raw Counts
> Input
> Output
> Interrupts
v Pins
Tioo <unavailable>
TO00 <unavailable>

Figure 3-24 Setting the timer function

5. First, set the name of the timer module.
Name : Set the name of the timer module. This time, we will create it with the name " MyTimer ".

~ Maodule g_timerD Timer, Independent Channel, 16-bit and &-bit Timer Operaticon (r_tau)
w General
MName MyTirmer
Channel 0
Figure 3-25 Setting the timer function
R0O1AN7315JJ0100 Rev.1.00 Page 19 of 41

RAOE1 Group FPB-RAOE1 Tutorial

6. Next, set the following items.
Channel: 0
This is the TAU peripherals channel we will be using.
Function: Interval Timer
This is the function of the timer, here we will use it as an interval (periodic) timer.
Bit Timer Mode: 16-bit timer
This is the width of the count register.
Operation Clock : CK0O0
This is the clock supplied to the TAU channel used for counting.
Period: 500
This is the period in "units" of the timers counter.
Period Unit: Milliseconds
These are the units for the "period" being counted.

v Medule MyTimer Timer, Independent Channel, 16-bit and 8-bit Timer Operation (r_tau)

w General
Mame My Timer
Channel 0
Function Interval Timer
Bit Timer Mode 16-bit timer
Operation Clock Koo
Period 500
Period Unit Milliseconds
Pericd (Higher 8-bit timer) Raw Counts

Period Unit (Higher 8-bit timer) Na.nc-secc-nds
Microseconds

3 Input ‘Milliseconds

> Output Seconds
3 Interrupts Hertz
w Pins Kilchertz

Figure 3-26 Setting the timer function

7. Now open the "Interrupts" properties list to configure the interrupt settings.

w Interrupts
Setting of starting count and interrupt Timer interrupt is not generated when
Callback MULL
Interrupt Priority Disabled
Higher &-bit Interrupt Pricrity Disabled

Figure 3-27 Setting the timer function

R0O1AN7315JJ0100 Rev.1.00 Page 20 of 41

RAOE1 Group

FPB-RAOE1 Tutorial

8. Set a user-implementable interrupt handling function to Call back.
The default setting "NULL" means there is no function to implement.
This time we will create a callback function named " MyISR ".

w Interrupts

Setting of starting count and interrupt Timer interrupt is not generated when
Callback MylISR

Interrupt Pricrity Disabled

Higher &-bit Interrupt Pricrity Disabled

Figure 3-28 Setting the timer function

9. Set the interrupt priority in Interrupt Priority.
The default "Disabled" means interrupts are disabled.

Since we will be using interrupts this time, set the Priority to one of 0 to 3.
Ll

w Interrupts

Setting of starting count and interrupt Timer interrupt is not generated when countin
Callback MylSR
Interrupt Pricrity Priority 3
Higher 8-bit Interrupt Priority Priority 0 (highest)
w Pins Priority 1
Tioo Priority 2
TO00 Disabled

Figure 3-29 Setting the timer function

This completes the Timer settings.

10. The settings necessary for creating this program have been completed, so press the "Generate Project
Content" button to generate the code.

Q,

=1 | Bg C/C++ {8} FSP Configuration & T/(w7
= O
O

Generate Project Content

| Mew Stack > =% Extend Stack > % | Remove

Figure 3-30 Setting the timer function

R0O1AN7315JJ0100 Rev.1.00
Mar.27.24

Page 21 of 41
RENESAS

RAOE1 Group FPB-RAOE1 Tutorial

11. You will be asked if you want to save it to the Configuration.xml file, so click the "Proceed" button to

save it.
@ Generate Project Content X
Configuration must be saved before generating project content.
Proceed with save and generate?
(] Always save and generate without asking
Figure 3-31 Setting the timer function
RO1AN7315JJ0100 Rev.1.00 Page 22 of 41

RAOE1 Group FPB-RAOE1 Tutorial

3.3 Coding
In this section we will introduce writing the application code.

The contents to be implemented are as follows.
* Main program
Starting the timer
* Interrupt program

LED toggling

3.3.1 Implementation of the main program
1. When developing using the FSP, the application entry point is in the src\hal_entry.c file.
Double click this file to open it.
{3 Project Explorer X
v =% FPB_RAOE1_Tutorial [Debug]
> Y Includes

> (B ra
> B ra_gen
v (B src
> || hal_entry.c
> = Debug
> (& ra_cfg
> [script
1,3 configuration.xml
X] FPB_RAOE1_Tutorial Debug_Flat.launch
5 ra_cfg.txt
> (?) Developer Assistance

Figure 3-32 Implementation of the main program

2. The void hal_entry(void) function is the application entry point.
The initial 1/0 settings and C runtime setup is already performed when reaching this point.
The gray area on the screen indicates source code not being compiled due to preprocesor exclusion -
thus it can be ignored.

“void hal entry(void)
{

“#if BSP TZ SECURE BUILD
f* Enter non—secure code

R BSP NonSecureEnter ():
#endif]|

Figure 3-33 Implementation of the main program

R0O1AN7315JJ0100 Rev.1.00 Page 23 of 41

RAOE1 Group

FPB-RAOE1 Tutorial

3. First, define the return value variable defined by the function defined by the FSP.

fsp err t err;

It is written as

“wvoid hal entry(void)
{
add wvo

fasp err t err;

Figure 3-34 Implementation of the main program

4. Next, implement the timer open function.

Open the "Developer Assistance" list in the "Project Explorer” window and you will see the timer
module MyTimer, which was configured in "3.2.4 Timer Function Settings".

Open the list further and you will see a list of functions.

The function to open the timer is R_TAU_Open(). Drag and drop this function into the source file with

the mouse.
s [hal_entry.c
» (= Debug = .lT.c._.'.[I is -;-::-:‘Tc..-:cl by the RA Configuration e
> B ra_cfg void hal_entry(void)
v [= script { L .
/ : add your own code here
fsp.ld .
| LI Ep fsp_err_t err;
4o¢ configuration.xml - -
¥ FPB_RAOE1 Tutorial Debug_Flat.launch 4 Call R_TAU Open
=| ra_cfg.but ~ #1f BSP_TZ_SECURE_BUILD
~ (2) Developer Assistance * Enter non-secure code
hd !‘?& HAL/Commen R_BSP_NonSecureEnter ():
> 4% g_ioport I/0 Port (r_ioport) #endif
v My Timer Timer, Independent Channel, 16-bit an mer Operation (r_tau) 1
~ @ fsp_err_t R_TAU_Open(timer_c p_ctrl, timer_cfg_t const "const p_cfg)
= Call R_TAU_Open() 24 @ * This function is called at various points dur
se B fon ere # B TAIL Stonltioer ctel # *ronct n céel) 29 “wvoid R BSP WarmStart (bsp warm start event t ewven

Figure 3-35 Implementation of the main program

containing assignment statements will be generated.

Open APl is implemented in the source code. By declaring a return value variable in advance, code

Open APl is used for peripheral setup, that is turning the peripheral on and making any one-time

settings.

o is

main() e
“wvoid hal entry(voil
{
add wvo
fsp_err t err;

err E_TAU Cpen(&MyTimer ctrl,

EMyTimer cfg):

Figure 3-36 Implementation of the main program

RO1AN7315JJ0100 Rev.1.00

Page 24 of 41

RAOE1 Group

FPB-RAOE1 Tutorial

6. Next, implement the timer start function. The start APl is R_TAU_Start () .
Drag and drop with your mouse below “R _TAU_ Open ()” in the source file.

Start API is used to start peripheral operation, in this case it will begin the timers counting operation.

{é configuration.xml
|%] FPB_RAOE1_Tutorial Debug_Flat.launch
|E| ra_cfg.txt
~ (7) Developer Assistance
v & HAL/Common

WEIN(] 15 JeNerated OV Uhe FA CONTIgUraETIoN SOItor

: add your own code here */

> [Debug
¥ [= racfg “wvold hal_entry(void)
w [= script {
[L] fsp.d /
fsp_err t err;

err = R TAU Open (sMyTimer ctrl, &MyTimer cfg):

= #if BSP_TZ_SECURE_BUILD

> 4 g ioport 1/ Port (r_ioport) * Enter non-secure code */
v g My Timer Timer, Independent Channel, 16-bit and &-bit Timer Operaticn (r_tau) R_BSP_NonSecureEnter();
w @ fsp_err_t R_TAU_Open(timer_ctrl_t *const p_ctrl, timer_cfg_t const *cons #endif
£ Call R_TAU_Qpen() }
~ @ fsp_err_t R_TAU_Stop(timer_ctrl_t *const p_ctrl)
4 Call R_TAU_Stop() 2 @ # This function is called at various points during th
v @ fsp_err_t R_TAU Start(timer ¢ st p_ctrl) 231 “wvoid R BSP WarmStart (bsp_warm start_svent_t event)
&4 Call R_TAU_Start() 32 {
33 = if (BoD WARM START DECET == L !

7. A start function is implemented in the source code.

Figure 3-37 Implementation of the main program

{

fendif

“wvoid hal entry(void)

fsp err t err;
err = R TA&U Cpen (&MyTimer ctrl, sMyTimer cfg):

err = R_TRU_StaIt(&HyTimEI_CtIl]4
- #if BSP TZ SECURE BUTLD

R BSP NonSecureEnter(}:

Ll
(=)
L
m
]
i
i

add wvour own

Enter non—-secure code

Figure 3-38 Implementation of the main program

RO1AN7315JJ0100 Rev.1.00 Page 25 of 41

Mar.27.24

RENESAS

RAOE1 Group

FPB-RAOE1 Tutorial

8. To determine run time errors, checking for non-zero returns and hanging the application is used to alert

the developer of settings errors.

while (err) ;

If the program terminates abnormally, the above statement will loop infinitely.
Additionally upon successful execution, an infinite loop should be implemented.

while (1)

{
__NOP();

}

The source code of the hal_entry() function is as follows.

% * main() is genera
“wvoid hal entry(void)

{
add your own

fsp err t err;

err = R TAO Open (eMyTimer ctrl,
while (exx) ;

while (exx);

= while (1)
{
__NOE{():

- #if BSP TZ SECURE BUTLD
! Enter non-secure code

R BSP NonSecureEnter():
fendif

err = R TAO Start (sMyTimer ctrl);

eMyTimer cfg):

Figure 3-39 Implementation of the main program

9. The whole code is as follows. (Excluding invalid codes in gray)
void hal entry(void)

{

/* TODO: add your own code here */
fsp err t err;

err = R _TAU Open (&MyTimer ctrl, &MyTimer cfg);
while (err);

err = R TAU Start (&MyTimer ctrl);
while (err);

while (1)
{
__NOP();

RO1AN7315JJ0100 Rev.1.00

Page 26 of 41

RAOE1 Group

FPB-RAOE1 Tutorial

3.3.2 Implementation of interrupt program

1. Implement the interrupts callback function. The implementation should be placed in src\hal_entry.c

as in previous steps.

Drag and drop the timer module's "Callback function definition " from the list of Developer Assistance

onto the last line of the source file.

R_FACTI LP->DFLCTL = 1U;

#endif

if (BSP_FARM START POST C == event)
{

C runtim n

and

m
i

vironment SV
* Configure pins.

E_ICPORT Cpen (&g_ioport_ctrl,

S #if BSP_TZ SECURE_BUILD

FSPE_CPP_HELDER
BSP CMSE NONSECURE ENTRY void template |
/* Trustzone Secure Projects regquire at
=~ BSP_CMSE_NONSECURE _ENTRY void template |

{

1
FSP_CPP_FOOTER

gendif

w (7) Developer Assistance 45
v g HAL/Commen 46
> 4% g_ioport I/O Port (r_ioport) 47
v i My Timer Timer, Independent Channel, 16-bit and &-bit Timer (48
~ @ fsp_err_t R_TAU Open(timer_ctrl_t "const p_ctrl, timer_cfg_ : E
= Call R_TAU_Open() : _'
~ @ fsp_err t R_TAU Stop(timer_ctrl_t "const p_ctrl) : R
& Call R_TAU_Stop() o
~ @ fop_err_t B_TAU_ Start(timer_ctrl_t "const p_ctrl) ; B
i Call R_TAU_Start() .
v @ fsp_err_t R_TAU_Resetitimer_ctrl_t *const p_ctrl) N r
B Call R_TAU_Reset() -
~ @ fsp_err_t R_TAU Enable(timer_ctrl_t “const p_ctrl) 58
= Call R_TAU_Enable() 59
~ @ fsp_err_t R_TAU Disable(timer_ctrl_t "const p_ctr) &0
= Call B_TAU_Disable() 61
~ @ fep_err_t R_TAU_PericdSet(timer_ctrl_t "const p_ctrl, uint32 62
=1 Call B_TAU_PericdSet() &
v @ fsp_err_t R_TAU_DutyCycleSet{timer_ctrl_t *const p_ctrl, uir 64
4 Call R_TAU_DutyCycleSet() 65
~ @ fsp_err_t R_TAU InfoGet(timer_ctrl_t “const p_ctrl, timer_ini 66
= Call R_TAU_InfoGet() ’:
~ @ fsp_err t R_TAU StatusGet(timer_ctrl_t "const p_ctrl, timer_ :_:
B Call R_TAU_StatusGet() o
~ @ fop_err_t R_TAU_CallbackSet(timer_ctrl_t "const p_api_ctrl,» -
= Call B_TAU_CallbackSet() -
v @ fsp_err_t R_TAU_Close(timer_ctrl_t *const p_ctrl) -
= Call R_TAU_Close() .
& Callback function definition

Callback function definition

>

Figure 3-40 Implementation of interrupt program

2. The callback function name set in FSP will appear.
This function is described in “3.2.4 Adding the Timer”

We will add LED inversion output processing to this function.

FSP_CPP_FOOTER

fendif

add v

Callback function

“wvolid MyISR(cimer callkack args t *p args)

=

code

m

Figure 3-41 Implementation of interrupt program

RO1AN7315JJ0100 Rev.1.00

Page 27 of 41

RAOE1 Group FPB-RAOE1 Tutorial

3. Write the FSP return value type variable.
fsp err t status;

/% Callback function */f
“volid MyISR(cimer callkback args . *p_args)
{
i : add wyvour own code here

fsp err t status;

Figure 3-42 Implementation of interrupt program

4. Read the current output state of the LED.
The pin read function is R_IOPORT_PinRead ().
Drag and drop the 10 port module R_IOPORT_PinRead () from the Developer Assistance list into the
interrupt function body.

~ (2) Developer Assistance
v i HAL/Common
~ 47 g_ioport /O Port (r_ioport)
v @ fsp_err_t R_IOPORT_Open(ioport_ctrl_t "const p_ctrl, const iopc
B2 Call R_IOPORT_Open()
~ @ fsp_err_t R_IOPORT_Close(ioport_ctrl_t “const p_ctrl)
= Call R_IOPORT_Close()
v @ fsp_err_t R_IOPORT_PinsCig(icport_ctrl_t "const p_ctrl, const io
B2 Call R_IOPORT_PinsCig()
~ @ fsp_err_t R_IOPORT_PinCfg(ioport_ctrl_t *const p_ctrl, bsp_io_p
= Call R_IOPORT_PinCig()
v @ fsp_err_t R_IOPORT_PinRead(icport_ctrl_t "const p_ctrl, bsp_io_
= Call R_IOPORT_PinRead()

= if (B5P WARM START POST C == event)
{

f* C runtime environment and system clocks are 3

)

*# Configure pins. */

R_IOPORT_Open (sg_ioport_ctrl, sIOPORT_CFG_NAME)

1 © #if BSP_TZ_SECURE_BUILD

FSP_CPP_HEADER
4 BSP CHMSE NCWNSECURE ENTRY wvoid template nonsecure callabl

R . - - - S . Y
o r c &

v @ fsp_err_t R_IOPORT_PortRead(io| ctrl_t “const p_ctrl, bsp_io € /* Trusczone Secure Projects require at least one NONsecl
E= Call R_IQPORT_PortRead() 7 = BSP_CMSE_NONSECURE_ENTRY void template nonsecure callabl
v @ fsp_err_t R_IOPORT_PortWrite{ioport_ctrl_ nst p_ctrl, bsp_ia i
2 Call R_IOPORT_PortWrite()
~ @ fsp_err_t R_IOPORT_PinWrite(ioport_ctrl_t "const p_i }

B2 Call R_IOPORT_PinWrite()

v @ fsp_err_t R_IOPORT_PortDirectionSet(ioport_ctri_t *const p_c
=2 Call R_IOPORT_PortDirectionSet()

~ @ fsp_err_t R_IOPORT_PortEventinputRead(ioport_ctr_t "const p_
k= Call R_IOPORT_PortEventinputRead()

v @ fsp_err t R_IOPORT_PinEventinputRead(ioport_ctrl_t *const p_c
= Call R_IOPORT_PinEventinputRead()

~ @ fsp_err_t R_IOPORT_PortEventOutputWrite(ioport_ctrl_t "const
= Call R_IOPORT_PortEventOutputWrite()

v @ fsp_err_t R_IOPORT_PinEventCutputWrite(ioport_ctrl_t “const p
B2 Call B IOPORT PinEventOutputWrite(l

71 FSP_CPP_FOCTER
73 fendif

* Callback function

“void MyISR(timer callback args_t *p_args)
{

add your own
fsp_err t status;

Call R_IOPORT_PinRead

Figure 3-43 Implementation of interrupt program

5. The result should look as follows:

Callback function
“volid MyISR(cimer callback args t *p_args)
{

;* : add your own code here

fsp_err t status:

status = R_TOPORT PinRead (&g ioport_ctrl, pim, p pin value):

Figure 3-44 Implementation of interrupt program
R0O1AN7315JJ0100 Rev.1.00 Page 28 of 41

RAOE1 Group FPB-RAOE1 Tutorial

6. Above the R_IOPORT_PinRead() line, provide a definition for the BSP 10 level type, like so:
bsp io level t value;

7. The 2nd argument of R_IOPORT_PinRead () is the pin number toread =“ LED1 ",
Set the address of the variable (bsp_io_level_t value) that stores the read result in the 3rd argument .

Write the following:
status = R _IOPORT PinRead (&g ioport ctrl, LEDI1, &value);

63 }
64 FSP_CPP_FOOTER

#endif

Fraw e 5 e

“void MyISR(timer callback args t *p args)

add your own code here

fsp_err t status;

bsp io level t value;
= R_IOPORT_PinRead(&g_ioport_ct:l, LED1l, &value):;

Figure 3-45 Implementation of interrupt program

8. The symbol “LED1” is declared in ra_cfg\fsp_cfg\bsp\bsp_pin_cfg.h in the project tree and can be
referenced from hal_entry.c.

#define [RJIM (BSP_IO PORT 00 PIN 08) /* (
#define LEDZ (BSP_IC PORT_00_PIN 09) /* GREEN PMCOD1 C53_GPIOL0_ARDUING &3 */

Figure 3-46 Implementation of interrupt program

RO1AN7315JJ0100 Rev.1.00 Page 29 of 41

RAOE1 Group

FPB-RAOE1 Tutorial

9. Stores the value for inverting the read value and outputting it in the variable next_led1.
Write the following.

bsp io level t next ledl ;

Write the process to invert and output the read value.

while (status);

if (BSP_IO LEVEL HIGH

{

value)

next ledl = BSP_IO LEVEL LOW;
}
else
{
next ledl = BSP_ IO LEVEL HIGH;
}
“void MyISR(timer callback args t *p args)

(]
I"_'l
m

J
m
im

[
Ll

add your own

fsp err_t status;

bep io level t wvalue;

bep io level t next ledl:
status = R TOPORT PinRead (&g ioport ctrl, LEDI1,
while (status) ;

if (BSP I0 LEVEL HIGH == walue)

{

next ledl = BSP IO LEVEL LOW;

else
{

next_ledl = B5SP IO LEVEL HIGH:

tvalue) ;

Figure 3-47 Implementation of interrupt program

RO1AN7315JJ0100 Rev.1.00

Mar.27.24

RENESAS

Page 30 of 41

RAOE1 Group FPB-RAOE1 Tutorial

10. Add processing to write LED1 state
The pin write function is R_IOPORT_PinWrite().
Drag and drop the 10 port module R_ IOPORT ~__PinWrite() into the interrupt function.

V@ Developer Assistance 3 BSP_CMSE NONSECURE_ENTRY void template nonsecure_callable ():
v i HAL/Common 65
~ % g_ioport I/O Port r_ioport) 13 /* Trustzone Secure Projects require at least one nonsecure call
~ @ fsp_err_t RIOPORT_Open(ioport_ctrl_t "const p_ctrl, const iopc &7 = BSP CHMSE NONSECURE _ENTRY void template_nonsecure_callable ()
B4 Call R_IOPORT_Open() i

~ @ fsp_err_t R_IOPORT_Close{ioport_ctrl_t *const p_ctrl)
B2 Call R_IOPORT_Close()

~ @ fsp_err_t R_IOPORT_PinsCfg(ioport_ctrl_t *const p_ctrl, const io
= Call R_IOPORT_PinsCig() - s

~ @ fsp_err_t R_IOPORT_PinCig(ioport_ctrl_t *const p_ctrl, bsp_io_p s
B2 Call R_IOPORT_PinCfg())

~ @ fsp_err_t R_IOPORT_PinRead(icport_ctrl_t *const p_ctrl, bsp_io_
B2 Call R_IOPORT_PinRead()

~ @ fsp_err_t R_IOPORT_PortRead(ioport_ctrl_t *const p_ctrl, bsp_io,
b= Call R_IOPORT_PortRead()

~ @ fsp_err_t R_IOPORT_PortWrite(ioport_ctrl_t "const p_ctr, bsp_ia
B2 Call R_IOPORT_PortWrite()

~ @ fsp_err_t R_IOPORT_PinWrite(ioport_ctrl_t *const p_ctrl, bsp_io_
b2 Call R_IOPORT_PinWrite()

~ @ fsp_err_t R_IOPORT_PortDirection
b= Call R_IOPORT_PortDirectionSet()

~ @ fsp_err_t R_IOPORT_PortEventinputRead(ioport_ct
b= Call R_IOPORT_PorteventinputRead|)

~ @ fsp_err_t R_IOPORT_PinEventinputRead(ioport_ctrl_t *const p_c
b= Call R_IOPORT_PinEventinputRead()

~ @ fsp_err_t R_OPORT_PortEventQutputWrite(ioport_ctrl_t "const
b= Call R_IOPORT_PortEventOutputWrite])

~ @ fsp_err t R_IOPORT_PinEventOutputWrite(ioport_ctrl_t *const p
B2 Call R_IOPORT_PinEventOutputWrite()

70 }
71 FS5P_CPP_FOOTER

* Callback function */
“wvoid MyISR(timsr callback args t *p args)
{

/ : add your own code
fsp_err_t status;
bsp_ic level t wvalue;
bsp_io level t next_ledl;
status = R_IOPORT_PinRead(&g_ioport_ctrl, LED1l, &value);
while (status);

= if (BSP_I0 LEVEL HIGH == value)
{

mgort_ctrl_t"const p_ctrl,
next_ledl = BSP IQ LEVEL LOW:
else
= {

next_ledl = BSP IO LEVEL HIGH;

Figure 3-48 Implementation of interrupt program

11. The result is as follows:

else
= {
next ledl = BSP IC LEVEL HIGH:

status = R TOPORT PinWrite (&g ioport ctrl, , level) ;

Figure 3-49 Implementation of interrupt program

12. Set “ LED1 " to the 2nd argument of R_IOPORT _Pin Write() and the output value (=next_led1) to the
3rd argument .
Write the following.
status R _IOPORT PinWrite (&g ioport ctrl, LED 1 , next ledl);
while (status);

status = R _IOPORT PinWrite (&g ioport ctrl, LEDL, next ledl):
while (statu=) ;

Figure 3-50 Implementation of interrupt program

13. Write the process to output the previous value of LED1 to LED2 as follows.
status = R _IOPORT PinWrite (&g ioport ctrl, LED2, value);

R0O1AN7315JJ0100 Rev.1.00 Page 31 of 41

RAOE1 Group

FPB-RAOE1 Tutorial

14. The implementation of the interrupt function is as follows.

“wold MyISE (timer callkback args t "p args)
{
add your own code here

fzp err t =status;

besp io level t wvalue;
besp io level t© next ledl;

while (status) ;
= if (BSF_I0 LEVEL HIGH == wvalue)
{

next ledl = BSP IO LEVEL LOW:

else
= {

next ledl = BSP IO LEVEL HIGH;

while (status) ;

while (status) ;

status = E_TOPORT PinRead (&g ioport ctrl, LED1, &value):

status = R _IOPORT PinWrite (&g ioport ctrl, LEDLl, next ledl);

status = E_TOPORT PinWrite (&g ioport_ctrl, LEDZ, walue):

Figure 3-51 Implementation of interrupt program

15. The whole code is as follows.
/* Callback function */
void MyISR(timer callback args t *p args)
{
/* TODO: add your own code here */
fsp err t status;
bsp io level t value;
bsp io level t next ledl;
status = R _IOPORT PinRead (&g ioport ctrl, LEDI,
while (status);
if (BSP_IO LEVEL HIGH == value)
{
next ledl = BSP_ IO LEVEL LOW;
}
else
{
next ledl = BSP IO LEVEL HIGH;
}

status = R_IOPORT PinWrite (&g ioport ctrl, LEDl, next ledl);

while (status);

status = R_IOPORT PinWrite (&g ioport ctrl, LED2, value);

while (status);

}

R0O1AN7315JJ0100 Rev.1.00

Page 32 of 41

RAOE1 Group

FPB-RAOE1 Tutorial

3.4 Build

The following steps describe building the application executable in preparation for debugging.

1. Right-click the project name in the project tree and select Build Project.

> m Inc
>Bra
> @ ra_
> (B src
> & Del
v (= ra_
v

v

i

[

> [scr
f’,-é} cor
X] FPE
& ra
v () De
v

(i

vé "

{3 Project Explorer X
v 125 FPB_RAOF1 Tutarial [Debual

New >

Go Into

Open in New Window

Show In Alt+Shift+W >

Show in Local Terminal >

Copy Ctrl+C

Delete Delete

Source >

Rename... F2

Import...

Export...

Renesas FSP Export >

Build Project Incremental Build of Selected Projects |

Clean Project

Refresh Fs

Figure 3-52 Build

Or you can build it by clicking the icon below.

Q RA_workspace - FPB_RAOE1_Tutorial/src/hal_entry.c - e* studi

Eile Edit Source Refactor Navigate Search Project F
e
N] SR =) T Q-i 4

‘ {3 Project

“XP Build 'Debug' for project 'FPB_RAOE1_Tutorial' |

B e

Figure 3-53 Build

R0O1AN7315JJ0100 Rev.1.00
Mar.27.24

RENESAS

Page 33 of 41

RAOE1 Group

FPB-RAOE1 Tutorial

2. The build log will be output to the " Console" window.
“Build Finished. 0 errors,” is displayed at the end, it means that the build completed successfully.
Yellow bands indicate warnings detected by the compiler. Check the contents of the warning and
correct it if necessary.

[T Properties ||# F3% | @ Smart Browser | B Console X

CDT Build Console [FPB_RAOE1_Tutorial]

Building file: ../ra/fsp/src/bsp/mcu/all/bsp_guard.c

Building file: ../ra/fsp/src/bsp/mcu/all/bsp_io.c

Building file: ../ra/fsp/src/bsp/mcu/all/bsp _macl.c

Building file: ../ra/fsp/src/bsp/mcu/all/bsp_irq.c

../src/hal_enczy.c: In function 'MyISR':

../src/hal_entry.c:75:35: warning: unused parameter 'p_args' [-Wunused-parameter]
75 | void MyISR(timer_callback args_t *p_args)

| oo s s e i e

Building file: ../ra/fsp/src/bsp/mcu/all/bsp_rom registers.c
Building file: ../ra/fsp/src/bsp/mcu/all/bsp_register_protection.c
Building file: ../ra/fsp/src/bsp/mcu/all/bsp_sbrk.c
Building file: ../za/fsp/szc/bsp/mcu/all/bsp_securicy.c
Building file: ../ra/fsp/src/bsp/cmsis/Device/RENESAS/Source/startup.c
Building file: ../ra/fsp/src/bsp/cmsis/Device/RENESAS/Source/system.c
Building file: ../ra/board/ralel_fpb/board_init.c
Building file: ../ra/board/ralel fpb/board leds.c
Building target: FPB_RAOEl_Tutorial.elf
arm-none-eabi-objcopy -O srec "FPB_RAOE1l Tutorial.elf" "FPB_RAOE1l Tutorial.srec"
arm-none-eabi-size --format=berkeley "FPB_RAOEl Tutorial.elf"

text data bss dec hex filename

3044 8 1344 4396 112c FPB_RAOE1l Tutorial.elf

21:04:28 Build Finished. 0 errors, 1 warnings. (took 887ms)

Figure 3-54 Build

If there is any coding mistake, a red band will appear. Please check the relevant line and revise the
source code.

status = R_IOM(
while (status);
status = R_IOP
while (status);

[T] Properties | if. F3% | @ Smart Browser | & Console X
CDT Build Console [FPB_RAOE1_Tutorial]
Extracting support files...
21:06:55 **** Incremental Build of configuration Debug for project FPB_RACEl_Tutorial ****
make -r -jlé all
Building file: ../src/hal_entry.c
../srxc/hal_entry.c: In function 'MyISR':
../sxc/hal_entzy.c:97:5: error: 'aaa' undeclared (first use in this function)

97} aaa

l P ere

../sxc/hal_enczy.c:57:5: note: each undeclared identifier is reported only once for each function it appe

../srxc/hal_entry.c:97:8: error: expected ';' before '}' token
s | aaa
| ~
I H
98 | }
|~
../src/hal_entry.c:76:35: warning: unused parameter 'p_args' [-Wunused-parameter]

76 | void MyISR(timer_ callback args_t *p_args)

make: *** [src/subdir.mk:25: src/hal_entry.o] Error 1
"make -r -jl6é all" terminated with exit code 2. Build might be incomplete.

21:06:55 Build Failed. 3 errors, 1 warnings. (took 1l41lms)

Figure 3-55 Build

RO1AN7315JJ0100 Rev.1.00

Mar.27.24

RENESAS

Page 34 of 41

RAOE1 Group

FPB-RAOE1 Tutorial

4. How to debug

This chapter explains the settings required to run the program.

4.1 Debug settings and startup
After the build is complete, write the program to the MCU on the board.

For the first time only, check the settings for writing.

Connect the PC and FPB board with a USB cable.

1. From the project properties, select Debug — Debug Configurations.

Figure 4-1 Debug settings and startup

(5 Project Explorer X = % % & = B ||{& [FPB_RACE1 Tutorial] FSP Configuration [€ hal
v 15 FPB_RANET Tustarial Mahiinl S nmmm—
S 4P B ~.
> 3, Bini New > 75 allback function
> mY Incl Go Into
>Bra B “void MyISR(timer cal
> (8 rac Open in New Window {
v (B src Show In Alt+Shift+W > L add you
> 49 ! Show in Local Terminal > fsp_err t status
> & Det bsp_io_level t W
> & buil [B Copy Ctrl+C bsp_io_level t n
> B rac
> B scri status = R_IOPOR'
8% con X Delete Delete while (status);
R FPB Source > © if (BSP_IO LEVEL .
5l rac ; ledl =
v (@ Dev Rename... F2 next_ledl =
> i b)
g Import... else
- = {
& Export. next_ledl =
Renesas FSP Export > }
: 3 status = R_IOPOR'
Build Project while (status);
Clean Project status = R_IOPOR'
Refresh Fs while (status);
}
Close Project
[T Properties Build Targets >
CDT Build Con Index >
fxcract o Build Configurations >
21:09:06 sbug for project FPB_RAOEl Tutorial ****
make -r - Source >
Building
../sxc/ha) RunAs >
o1y /::c/ha %5 DebugAs > [c7 1GDBOpenOCD Hardware Debugging (DSF)
1 v = - .
| Restore from Local History... [c 2GDB Simulator Debugging (RH850)
Building MISRA-C > [€] 3Local C/C++ Application
arm-none- & (/C++ Project Settings Ctrl+Alt+P [E7 4Renesas GDB Hardware Debugging
azm;:i:e- Renesas C/C++ Project Settings > [E7 5Renesas Simulator Debugging (RX, RL78)
¥’ R 'C++ Code Analysi: .
9044 A Runcicys ikl I Debug Configurations... I
Te > — 5 :
21:09:07 cam : ¢’ 6 FPB_RAOE1 Tutorial Debug_Flat (Renesas GDB Hardware Debugging)
= i Compare With >

RO1AN7315JJ0100 Rev.1.00

Mar.27.24

RENESAS

Page 35 of 41

RAOE1 Group

FPB-RAOE1 Tutorial

2. The configuration screen will be displayed. Select Renesas GDB from the tree on the left. Select your
project name under Hardware Debugging.

Be@EX| B Y-

type filter text

[€] C/C++ Application

[€] C/C++ Remote Application

[EASE Script

[] GDB Hardware Debugging

[c¥] GDB Simulator Debugging (RH850)

v [c7] Renesas GDB Hardware Debugging

[c¥] FPB_RAOE1_Tutorial Debug_Flat

Name: FPB_RAOE1_Tutorial Debug_Flat

|) Main| %5 Debugger| > Startup | & Source | [7] Common|
Project:

FPB_RAOE1_Tutorial Browse...

C/C++ Application:
Debug/FPB_RAOE1_Tutorial.elf

Variables... Search Project... Browse...

Build (if required) before launching
Build Configuration: Use Active v

(O Enable auto build
© Use workspace settings

(O Disable auto build

Configure Workspace Settings...

Figure 4-2 Debug settings and startup

3. Select the Debugger tab and please verify the following settings:
Debug hardware = “J-link ARM”
Target Device = "R7FAOE107"

Press the "Debug" button to start writing the program to the microcontroller.

Create, manage. and run configurations

i B ‘e

type filter text

[C] C/C++ Application
[€] C/C++ Remote Application
[EASE Script
[€] GDB Hardware Debugging
[c*] GDB Simulator Debugging (RH850)
@ Launch Group
v [£7] Renesas GDB Hardware Debugging
[c*] FPB_RAOE1_Tutorial Debug_Flat

[€7] Renesas Simulator Debugging (RX, RL78)

PR

Filter matched 9 of 11 items

@

Name: FPB_RAOE1_ Tutorial Debug_Flat
5 Man vﬁDebuggerl ##]Startup | & Source | [C] Common

Debug hardware: J-Link ARM v

Target Device: | R7FAOE107

GDB Settings Connection Settings Debug Tool Settings
GDB Connection Settings

© Autostart local GDB server

(O Connect to remote GDB server

Host name or IP address: localhost
GDB port number: 61234

Connection timeout (s): 30 v

GDB
GDB Command: arm-none-eabi-gdb

() Step Mode

Browse... Variables...

Additional GDB Server Arguments

Close

Figure 4-3 Debug settings and startup

R0O1AN7315JJ0100 Rev.1.00
Mar.27.24

Page 36 of 41
RENESAS

RAOE1 Group FPB-RAOE1 Tutorial

4. After flashing is complete a pop-up will appear to ask if you would like to switch perspective to the
"Debug" perspective.
This operation optimizes the debug workflow and for this tutorial you should click "Switch".

This kind of launch is configured to open the Debug perspective when it suspends.

4
‘\! This Debug perspective supports application debugging by providing views for
displaying the debug stack, variables and breakpoints.

c Switch to this perspective?

(") Remember my decision

(o) w

Figure 4-4 Debug settings and startup

*Even if you press "No", you can switch the screen later by pressing the "Debug"” button at the top right of
e? studio.

Q @ | Egwc++ {8 FSP Configuration] 35 F/(y7
(%)= Vari... | 9% Bre... |i(5 Pro... |67 Ex... |@® Eve.. X | % Per.. |[[]10..| © O

B X % B| R |rcosonoz | | r
Type Address Data

() 5 Trace Start
() @ Trace Stop
() % Trace Record
() €9 Event Break
[)5 Timer Start
() Timer Stop

Figure 4-5 Debug settings and startup

5. When the program finishes writing, it pauses at the SystemInit () function in startup.c.

e RA_workspace - FPB_RAOE1_Tutorial/ra/fsp/src/bsp/cmsis/Device/RENESAS/Source/startup.c - e* studio
File Edit Source Refactor Navigate Search Project RenesasViews Run Renesas Al Window Help

| ® -4~ Qie|m» B3RP R F-Qrib-w-DE RS S
1 Debug X = ‘ i g = = %Ej [FPB_RAOE1_Tutorial] FSP Configuration 9 hal_entry.c |€) bsp_pin_cfg.h [bsp_io.h 9 startup.c X
v [c7] FPB_RAOE1_Tutorial Debug_Flat [Renesas GDB Hardware Debu (@i 064 000001£4 l SystemInit();

v 'E; FPB_RAOE1_Tutorial.elf [1] [cores: 0)
v o Thread #1 1 (single core) [core: 0] (Suspended : Signal :
= Reset_Handler() at startup.c:64 0x1f4
» arm-none-eabi-gdb (12.1)
») Renesas GDB server (Host)

76 ® * Default exception handler.[]

78 = BSP_SECTION_FLASH GAP void Default Handler (void)

Figure 4-6 Debug settings and startup

R0O1AN7315JJ0100 Rev.1.00 Page 37 of 41

RAOE1 Group FPB-RAOE1 Tutorial

4.2 Execution
In this state, the MCU has been reset and the program is not yet running.

You can confirm that neither LED1 nor LED2 on the board are lit.

1. Run the program by pressing the resume button in the red frame or the F8 key on your keyboard.

0 RA_workspace - FPB_RAOE1_Tutorial/ra/fsp/src/bsp/cmsis/Device/RENESAS/Source/startup.c - * studio
File Edit Source Refactor Navigate Search Project RenesasViews Run RenesasAl Window Help

B &~ Do B2 iR B Qb QSIS
k<3 Debug X - i § = 08 7.3.? [FPB_RAOE1_Tutorial) FSP Configuration L hal_entry.c L€} bsp_pin_cfg.h l¢] bsp_io.h L startup.c X
| v [€9] FPB_RAOE1_Tutorial Debug_Flat [Renesas GDB Hardware Debu (@if ¢ ¢ 1f4 [SystemInit();

v 2 FPB_RAOE1_Tutorial.elf [1] [cores: 0] B cs
v i Thread #1 1 (single core) [core: 0] (Suspended : Signal :| |88 ©¢ * Call user application. *
= Reset_Handler() at startup.c:64 0x1f4 i 7 f main();
s arm-none-eabi-gdb (12.1) f ¢

p Renesas GDB server (Host) S while (1)

S BSP_SECTION_

Defanlt_ﬂandler (void)

Figure 4-7 Execution

The program pauses at the beginning of the main function . (This is because the e? studio project
default is set to pause at the main function.)

In this state, Systeminit () has been completed and the initial settings have been completed.
If you check the board, you will see that LED1 is lit.

2. Press the resume button again to continue the program.

8 RA_workspace - FPB_RAOE1_Tutorial/ra_gen/main.c - e studio
File Edit Source Refactor Navigate Search Project RenesasViews Run RenesasAl Window Help

|| ~ 2 Q‘Lb @32 0 R~ QrikIsw-mE PSS
%5 Debug X =| ‘ i® § = B || (FPB_RACE1 Tutorial] FSP Configuration [€) hal_entry.c L€ bsp_pin_cfg.h [€ bsp_io.h [g) startup.c [mainc X
v [c7] FPB_RAOE1_Tutorial Debug_Flat [Renesas GDB Hardware Deb: 1 * generated main source file - do not edit *

v {2 FPB_RAOE1_Tutorial.elf [1] [cores: 0] 2 #include "hal data.h
v o Thread #1 1 (single core) [core: 0] (Suspended : Breakp| || 3 = 1int main(void)
= main() at main.c:5 0x53¢ {
» arm-none-eabi-gdb (12.1) 0000053c hal entry ():
p Renesas GDB server (Host) 0000542 ’ return 0;

Figure 4-8 Execution

R0O1AN7315JJ0100 Rev.1.00 Page 38 of 41

RAOE1 Group FPB-RAOE1 Tutorial

The execution status will be displayed at the bottom left of e2 studio. When " Running " is displayed, the
program is running.

3. If you check the board, you can see that LED1 and LED2 are lit alternately every 500ms.

Q RA_workspace - FPB_RAOE1_Tutorial/ra_gen/main.c - e* studio

File Edit Source Refactor Navigate Search Project RenesasViews Run

Br] - Biv 0. Wig|

45 Debug X - i* § = 0|l
v [c¥] FPB_RAOE1_Tutorial Debug_Flat [Renesas GDB Hardware Debugging]
v & FPB_RACE1_Tutorial.elf [1] [cores: 0]
»@ Thread #1 1 (single core) [core: 0] (Running)
s arm-none-eabi-gdb (12.1)
» Renesas GDB server (Host)

=]
FPE
St
............... @
Writable
Figure 4-9 Execution
RO1AN7315JJ0100 Rev.1.00 Page 39 of 41

RAOE1 Group FPB-RAOE1 Tutorial

4.3 Quit debugging and restart

1. If you want to end debugging, press the " Terminate" button.

RA_workspace - FPB_RAQE1_Tutorial/ra_gen/main.c - e’ studio

File Edit Source Refactor Navigate Search Project Renesas Viev

| &~ &~ Biw|mnmz .|

%5 Debug X = ’ i 8 °© Terminate (Ctrl+F2)

Figure 4-10 Quit debugging

2. The "Project Explorer" window is not displayed in the specified position because we are in the "Debug"
perspective.
To return to the C/C++ Perspective and navigate the project, click “C/C++” on the top right of e2 studio.

= [u] X

Q @) @ c/c++ 8] FSP Configuration s F/(vY

Figure 4-11 Quit debugging

3. If you debug again, your debug settings are remembered.
You can start debugging by [Right clicking] the project — “Debug As” — “6 Project Name” .

%5 DebugAs > [c9 1GDB OpenOCD Hardware Debugging (DSF)
Restore from Local History... [€ 2GDB Simulator Debugging (RH850)
MISRA-C > [€] 3Local (/C++ Application

¥ /C++ Project Settings Ctrl+Alt+P [E¥] 4 Renesas GDB Hardware Debugging
Renesas C/C++ Project Settings > [&] 5Renesas Simulator Debugging (RX, RL78)

%" Run C/C++ Code Analysis
b y

ione
Te > I =, ; z
s |c*] 6 FPB_RAOE1_Tutorial Debug_Flat (Renesas GDB Hardware Debugging) I
L JALsl

Figure 4-12 Quit debugging

Alternatively, you can start debugging by clicking the icon below.

& RA_workspace - FPB_RAOE1_Tutorial/ra_gen/main.c - e’ studio

Eile Edit Source Refactor Navigate Search Project RenesasViews Run

| &~ &~ Ea%&v}v & 1w

‘4_', Project Explorer X Debug FPB_RAOE1_Tutorial Debug_Flat }R
v 1% FPB_RAOE1_Tutorial [Debug] 1
Figure 4-13
R0O1AN7315JJ0100 Rev.1.00 Page 40 of 41

RAOE1 Group

FPB-RAOE1 Tutorial

Revision History

Rev.

Date

Description

page

Summary

1.00

2 024.03.27

First edition issued

RO1AN7315JJ0100 Rev.1.00

Mar.27.24

RENESAS

Page 41 of 41

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.
1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps
must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be
adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.
Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and
measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of
register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset
pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins
in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an 1/0 pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O
pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are
generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of
the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program
execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator
during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V.
(Max.) and Vi (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between V. (Max.) and Vix (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSl is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.
The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms
of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,
operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-
evaluation test for the given product.

Notice

1.

10.

11.

12.

13.
14.

(Notel)

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of
your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the
use of these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.
You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas
Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas
Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc.
Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products
outside of such specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you
are responsible for evaluating the safety of the final products or systems manufactured by you.
Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.
Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

“Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
WWw.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

“Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Contact information

For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

© 2024Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Development environment
	1.1 Hardware environment
	1.2 Software environment

	2. Software overview
	2.1 Program to create
	2.2 Resources
	2.2.1 Clock
	2.2.2 Timer
	2.2.3 Port

	3. How to create a program
	3.1 Create new project
	3.1.1 Project launch
	3.1.2 Device/Tool Configuration
	3.1.3 Build artifact settings
	3.1.4 Template type settings

	3.2 FSP Configurator settings
	3.2.1 How to call the FSP Configurator
	3.2.2 Clock setting
	3.2.3 Pin settings
	3.2.4 Adding the Timer

	3.3 Coding
	3.3.1 Implementation of the main program
	3.3.2 Implementation of interrupt program

	3.4 Build

	4. How to debug
	4.1 Debug settings and startup
	4.2 Execution
	4.3 Quit debugging and restart

	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

