To our customers,

Old Company Name in Catalogs and Other Documents

On April 1%, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESAS

10.

11

12.

Notice

All information included in this document is current as of the date this document isissued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful atention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

Y ou should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. Y ou are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any lossesincurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. Y ou should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the devel opment of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errorsin or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’ s quality grade, as
indicated below. Y ou must check the quality grade of each Renesas Electronics product before using it in aparticular
application. You may not use any Renesas Electronics product for any application categorized as “ Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not bein any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “ Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “ Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances, machine tools; personal electronic equipment; and industrial robots.
“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.
“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or heathcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose adirect threat to human life.
Y ou should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especialy with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physica injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as aresult of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sdes office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics’ as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

-
»
9
ﬁ\
7
<
O
-
c
)

LENESAS

H8S, H8/300 Series
C/C++ Compiler, Assembler,
Optimizing Linkage Editor

Compiler Package Ver.7.00 User’s Manual

Renesas Microcomputer
Development Environment
System

Renesas Electronics Rev.1.00 2009.08

Rev. 1.00 Aug. 17,2009 Page ii of xii
REJ10J2039-0100 RENESAS

10.

11.

12.

13.

Notes regarding these materials

This document is provided for reference purposes only so that Renesas customers may select the appropriate
Renesas products for their use. Renesas neither makes warranties or representations with respect to the
accuracy or completeness of the information contained in this document nor grants any license to any
intellectual property rights or any other rights of Renesas or any third party with respect to the information in
this document.
Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising
out of the use of any information in this document, including, but not limited to, product data, diagrams, charts,
programs, algorithms, and application circuit examples.
You should not use the products or the technology described in this document for the purpose of military
applications such as the development of weapons of mass destruction or for the purpose of any other military
use. When exporting the products or technology described herein, you should follow the applicable export
control laws and regulations, and procedures required by such laws and regulations.
All information included in this document such as product data, diagrams, charts, programs, algorithms, and
application circuit examples, is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas products listed in this
document, please confirm the latest product information with a Renesas sales office. Also, please pay regular
and careful attention to additional and different information to be disclosed by Renesas such as that disclosed
through our website. (http://www.renesas.com)
Renesas has used reasonable care in compiling the information included in this document, but Renesas
assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information
included in this document.
When using or otherwise relying on the information in this document, you should evaluate the information in
light of the total system before deciding about the applicability of such information to the intended application.
Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any
particular application and specifically disclaims any liability arising out of the application and use of the
information in this document or Renesas products.
With the exception of products specified by Renesas as suitable for automobile applications, Renesas
products are not designed, manufactured or tested for applications or otherwise in systems the failure or
malfunction of which may cause a direct threat to human life or create a risk of human injury or which require
especially high quality and reliability such as safety systems, or equipment or systems for transportation and
traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communication
transmission. If you are considering the use of our products for such purposes, please contact a Renesas
sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above.
Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:

(1) artificial life support devices or systems

(2) surgical implantations

(3) healthcare intervention (e.g., excision, administration of medication, etc.)

(4) any other purposes that pose a direct threat to human life
Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who
elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas
Technology Corp., its affiliated companies and their officers, directors, and employees against any and all
damages arising out of such applications.
You should use the products described herein within the range specified by Renesas, especially with respect
to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or
damages arising out of the use of Renesas products beyond such specified ranges.
Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific
characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use
conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and
injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for
hardware and software including but not limited to redundancy, fire control and malfunction prevention,
appropriate treatment for aging degradation or any other applicable measures. Among others, since the
evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or
system manufactured by you.
In case Renesas products listed in this document are detached from the products to which the Renesas
products are attached or affixed, the risk of accident such as swallowing by infants and small children is very
high. You should implement safety measures so that Renesas products may not be easily detached from your
products. Renesas shall have no liability for damages arising out of such detachment.
This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written
approval from Renesas.
Please contact a Renesas sales office if you have any questions regarding the information contained in this
document, Renesas semiconductor products, or if you have any other inquiries.

Rev. 1.00 Aug. 17,2009 Page iii of xii

RENESAS REJ10J2039-0100

Rev. 1.00 Aug. 17,2009 Page iv of xii
REJ10J2039-0100 RENESAS

This manual describes the facilities and operating procedures for the H8S, H8/300 series C/C++
compiler (hereinafter H8S, H8/300 compiler or simply the compiler). The compiler translates
source programs written in C/C++ into object programs and load modules for Renesas H8SX
series, H8S/2600 series, H8S/2000 series, H8/300H series, H8/300 series, and H8/300L series
microcomputers. Please read this H8S, H8/300 Series C/C++ Compiler User’s Manual before
using the this cross software to fully understand the system.

Notes on Symbols: The following symbols are used in this manual.

Symbols Used in This Manual

Symbol Explanation
<> Indicates an item to be specified.
[] Indicates an item that can be omitted.

Indicates that the preceding item can be repeated.

A Indicates one or more blanks.

(RET) Indicates the carriage return key (return key).

| Indicates that one of the items must be selected.

(CNTL) Indicates that the control key should be held down while pressing the key
that follows.

The compiler operating in IBM PC*' and other compatible computers are referred to as the PC
version. This manual is intended for Microsoft® Windows® 2000, Microsoft® Windows® XP
and Windows Vista®*’,

Notes: 1. IBM is a registered trademark of International Business Machines Corporation.

2. Microsoft®, Windows®, and WindowsNT® are registered trademarks of Microsoft
Corporation in the United States and/or other countries.

* All other company names and product names are trademarks or registered trademarks

of corresponding companies.

Rev. 1.00 Aug. 17,2009 Page v of xii
RENESAS REJ10J2039-0100

All trademarks and registered trademarks are the property of their respective owners.

Rev. 1.00 Aug. 17,2009 Page vi of xii
REJ10J2039-0100 RENESAS

Contents

SECHON 1 OVEIVIEW ...uiiiiiiieiiiee ettt ettt ettt e e et e e e e tee e e e sveeeeesnsaaeesenssaeeeennnns 1
1.1 Procedures for Developing Programscccoceeriieniiiniienieenieenieesieeste e sve et e e 1
L2 COMPILET cenitieiiieiiieeieeetee sttt ettt ettt ettt e sat e et e e bt e et e e bbeenbeeesbaeebaesnbaeenbeesnbaesnseas 3
1.3 ASSEIMDIET ettt ettt ettt ettt e be e e bbbt e e e nee 3
1.4 Optimizing Linkage EdItOrcoooiiiiiiiiiieeee ettt st 4
| o (<) 1111 GG OO SRR 4
1.6 Standard Library GeNETator........cocuuiirieeriierieeriiienieeniteesiteesiteesieeesiaeestteessreessseessseessseesssesnsees 4
1.7 Stack ANalysis TOOLccocuiiiiiiiiieiiienieectt ettt ettt ettt e siae et e ite e sbae e baeesbeeebaeenaeas 5
1.8 FOIMAat COMVETTETeouviiuiiruiiiiiiieiteteete ettt ettt et ettt sbt e bt e e estesatesatesbeesaeeaeenneeanens 5
Section 2 C/C++ Compiler Operating Methodcccoooveeiiiiiiniiiniciiiicnees 7
2.1 Command Line FOIMALccoeiiiiiiiiieeie ettt ettt e 7
2.2 Interpretation Of OPtIONScccuveeriitiiieeieeeiteeieestteeteeste e st e sbeesabeesabeesabeesaseessseesssesnseeensseennes 7
22,1 SOUICE OPLIONS..c.utiiiriiriiierieenitierieenttesteestteesteestteesiteesaseestesssseesssessseesssessssesnssesnses 8
2.2.2 ODJECE OPLIONS c.vuvieeuiieiuiieeiieeiieeritesteeeieestteeteesbeeebeesbeessbeesabeessseesaseesnseesnseesseens 12
N T B 1 A) 5 (o) s OO SPRS 23
2.2.4 OPtMIZE OPLOMS ..eeueeiietietieieeite ettt et et et e ete st e st e s bt enteenteeseesstesbeesbeenseensesneesaes 26
2.2.5 Other OPLIONS.....ccueiiiieitieiieit ettt ettt ettt e st e st et e bt et e esteeseesbeesbeenbeebeeneeeaes 45
2.2.0 CPU OPUOMNS ...eeiiieiiiesiiiesteesitesteesiteesteesiteesiteesateesseesateessseessseesssesssseesssesssseesseens 52
2.2.77 Options Other Than ADOVE........c.covciiiiiiiiriiiiiieeite ettt 63
Section 3 ASSEMDIET OPLIONS....cccuieeriieeriieeiiie et ettt eeiee e sreesaaeesaree e 67
3.1 Command Line FOIMAtccooiiiiiiiiiiiiiiieiieieee ettt 67
3.2 LSt OF OPLIONS ..eueeiiiiieieieetiete ettt ettt ettt sttt ettt e st e eaeeeb e e bt e beebeenaesaeesaeesaeenae 67
32,1 SOUICE OPLIONS...utieriiieriiieriieriieeiteesteesiteesteesteesbeesaeesabeessseessseessseessseesseesseessseess 68
3.2.2 ODJECE OPLIONS c.uuvieeniieiiiieeiieeiteeritesteeeieesbeeeteesbeeebeesbeessbeesabeessseesaseessseesaseesseess 73
3.2.3 LASE OPUONS.c.utieiiiieeiiesiiieetee st e et e sttt e st e sttt e sbeesateesabeesebeesabeessaeessseensseenaseensseenaneens 80
3.2.4 TUNING OPLONS ..euvieiieiieiieie et etteet et et eteeeeesstesaeesae e bt eneeeateeseesbeenbeebeenseeneesneesaes 86
3.2.5 Other OPLIONS.....coueiiiieiieiieie ettt ettt et te st e st et e b e et e eseeebeesbeesbeebeeabeeneeeae 88
32,0 CPU OPHONSeuenrinteientinieeiteit ettt sttt ettt s sre st sae et et e s stesbesaeeneeneen 89
3.2.7 Options Other Than ADOVE..........covuiiiiiieriiieiieete ettt 95
Section 4 Optimizing Linkage Editor Options...........ccceecveeeviieeniiennieennieeennee. 103
4.1 Option SPECITICATIONS ...uveeutieuiietiertiertiesteete ettt e st e st eteeateeseesteesbe e e eateeseesseesbeenseeseeneesaeenne 103
4.1.1 Command Line FOrmatcoccceviiiiiiiiiiiiiinieeneeeceeeeeeeesee e 103
4.1.2 Subcommand File FOrmat..........ccccooiiiiiiiiiiiiieiee e 103
4.2 LISt OF OPLIONS 1uuvieeitieiiienieeiieeeiee st e st e st e st e sbeesbeesabeessbeesabeeesbeesabeeenseesabaesnseesnbaesnseenns 103
42,1 INPUL OPLIONS 1evieirieeiiieiiieniteeieeeite st e steesbeesiteesbeesabeesbeesabeesseesabeesseesaseesnseesnne 104

Rev. 1.00 Aug. 17,2009 Page vii of xii
RENESAS REJ10J2039-0100

422 OULPUL OPLIONIS.c..teeirieriiienieeittesteesteesteesteestteesteesibeesaseessseessseessseessseessseessseensees 111

423 LISt OPUOMS. c.evieiiieeiieeeitesieestteetee st e steesbeesabeesbeesabeesabeesaseesaseessseesnseesnseesnseennses 131
424 OptMIZe OPLIONS ...eeueiiuiiiiiiriiertieit ettt te ettt ettt teetesaeesaeesteebeesbeeseesneesseeseas 135
4.2.5 SECLION OPLIONS....uuiiiiiiieiiieitietteit ettt et ettt et e ete st e saeesaeenteebeesteeseesseenbeenseas 143
4.2.0 VErify OPLONS ...ocueiiiiiiiieitieieeie ettt ettt ettt st e st e bt ettt esteeseesaeesbeenaeas 147
4277 Other OPLONS. ..cuvieriieriierieerttesteesteesteesbeesteesbeesbeesbeesaseesseessseesseessseessseessnes 152
4.2.8 Subcommand File OPtionsS........ccceervuieriiieriiieniieiiienieesieenteesreesireesreesireesveenenes 164
4.2.9 CPU OPUOMN...cutiiiiiiierientieieeiteit ettt ettt ettt et sbe bbbt es et ebesbesbesbesaeebeene 165
4.2.10 Options Other Than ADOVE.........ccoiieiieiiiiieieeie ettt 166
Section 5 Standard Library Generator Operating Method..............cccccoceeneeee 169
5.1 Comand Line FOrmatcccocuieiiriiriiniiieiceic ettt et 169
5.2 Option DESCIIPHONSeiiuiiiiiiieiieeitteite ettt erite ettt ertteeiteerbteebtessbaesbee s baessbeesbeesnseesseesnsens 169
5.2.1 Additional OPtioNS....cccueeevieerueeritieeiieeiiieeite ettt esiteeieeesiteesteeesiaeenbeeessreesseessssesnsees 170
5.2.2 Options Unavailable for Standard Library Generatorcccceeceereereeneeneeeenne 175
5.2.3 Notes on Specifying OPLioNScccerierierieniieieeiesiestees ettt 176
Section 6 Operating Stack Analysis TOOL........c...ccccverviiiiiniiiniinieeeeeee 177
0.1 OVEIVIEW ..ottt st sttt et e bt e e saae bt e b e st eanesane e 177
6.2 Starting the Stack ANalysis TOOL.......cociiiiiiiiiiiiiiiiriieeeere e e 177
Section 7 Environment Variablescccoooiiiiiiiiiiiiiiiiiiiceceeceeee 179
7.1 Environment Variables LIStcccceiiiiiiiieriei ettt 179
7.2 Compiler Implicit DecClarationcccceecuierriieniiieniiieniienieeriee et e e 183
Section 8 File SpecifiCationscccueeeiiiiiiiieniiieeieesiee e 185
8.1 NAMING FILES ...ttt sttt et ettt et et enee e 185
8.2 COMPILET LISHINEZS . c..ieutieieiiiiiiieitiee ettt ettt sttt ettt ettt e bt et e beenteenteas 187
8.2.1 Structure of Compiler LiStINgS........ceouerieriinirriieie ettt 187
8.2.2 SOUTCE LISHNG ...eeeruiiiiiiiriiieiieesit ettt ettt ettt et site e s beesabeesabeesabeesebeenaneens 188
8.2.3 Error INformationcoccoieriiniiniiiiieieeteee ettt e 190
8.2.4 Symbol Allocation INfOrmationc.ceevueeriieeiriieniiieiieeniee sttt eieesree e 191
8.2.5 Object INfOrmation.......c..ccceviririeieiiniinienieieeteeereeeeste sttt 194
8.2.6 Statistics INfOrmMationcccueeiiriiiiiiiee et 196
8.3 ASSEMDIET LISHIES. .coueiuiiiiiiiiniiniieiietet ettt sttt ettt s 197
8.3.1 Structure of ASSEMDbIEr LiStINZS.....cueervuieriiiiriiieriieniienieeniee st sreesreesbeeseee s 197
8.3.2 SOUTCE LISHNG ...eeiruiiiiiiiiiieriieerit ettt ettt ettt ettt et e sabe e sabeesabeesebeenaneens 197
8.3.3 Cross Reference LiStNgZc.ceviiiiiieriiiniiieie ettt ettt e seeeesiaeesaeeens 199
8.3.4 Section Information LiStNGcccueviiiiiiiiiiiie et 201
8.4 LiINKa@e LASTNES...cuietieuieitieitietiete ettt ettt ettt e bt et et et st e it s ae et et e et eneeas 202
8.4.1 Structure of Linkage LiStINGccceerieiiiriiiiieiieiieeee et 202
8.4.2 Option INFOTrMALIONeevuiiiriiieiiiiiieenie ettt ettt e st esabeesbeesaree s 203

Rev. 1.00 Aug. 17,2009 Page viii of xii
REJ10J2039-0100 RENESAS

8.4.3 Error INfOrmationcoooiuuviiiiiiiieiiieeee ettt e e etaaaeee s 203

8.4.4 Linkage Map INformationcccoecueeriieriiieniiiiiiieciee et 204
8.4.5 Symbol INfOrmationccueeiiriierieniiie ettt 204
8.4.6 Symbol Deletion Optimization Informationcccceeceriereeneeienieneneeneeeee 206
8.4.7 Variable Access Optimization Symbol Informationccecevierienieneeneennne 206
8.4.8 Function Access Optimization Symbol Information.............cccceeevvirviernieinnennnnn. 208
8.4.9 Cross-Reference Information..........cccccecuerierienienieniiiinicnicneeeccee et 209
8.5 LDIAry LISHNES . .couieeiiiiiieeiieeiteeiee ettt sttt sttt st sat e sbeesabeesabeesabeesabeesabeesabeesaneas 210
8.5.1 Structure of Library LiStINgccccceriirieiieiieieeiesieieeeee et 210
8.5.2 Option INfOIrMAtioNcec.eeiuieiirieiieiiereere ettt ettt s sae e 211
8.5.3 Error INfOrmationcocuieiiiuieiiieitieeee ettt 212
8.5.4 Library INfOrmationccc.eeevueeriieniieeniieeiee sttt ettt et 212
8.5.5 Module, Section, and Symbol Information within Library........c.ccccoeeeeervvennennne. 213
Section 9 Programming..........ccceecveeeiuieeniiieenieeenieeesieeenieeesreeessseessreessnseesnnnes 215
9.1 Program STIUCIUIEcouiiiiiiiiiiiii ettt e 215
LT B BN T () OSSOSO 215
0.1.2 C/CH+ Program SECLIONSccccveerrieriieniierieeeieesieesteesreesseesseessseesseesssesssseesnnes 215
9.1.3 Assembly Program SECHIONScccueiriieriieeriienieenieeneterteenireesreesireesreesaeeesaveenanes 220
0.1.4 LiANKING SECLIONS ..eevuvieririerieeiiierieenieesteesteeeteesbeesteesabeesateesabeesaseesnbeesnseesnseesases 222
9.2 Creation of Initial Setting Programs...........coceeeeeeeeienienieninineeeeeeeeteiestese s eneenens 226
0.2.1 MemOry AllOCALIONc..couerteuiiieiitenienienie ettt ettt sttt ettt e ne e sre st eanens 226
9.2.2 Execution Environment SEttings.........cccceveeeeieiinienenieneneeeeeereeenrenesreseeeennens 236
9.3 Linking C/C++ Programs and Assembly Programs............cceccveevieiniieniieeniieenieenieeeieenane 276
9.3.1 Method for Mutual Referencing of External Names..........c.ccocceeeveeiniiernieeeneennnen. 276
9.3.2 Function Calling INterfacecccevvuieriiiiiiiiiiiie ettt 278
9.3.3 Examples of Parameter ASSIZNMENTc.eevereeierienienenineneerereienienreseseeneene 289
9.3.4 Using the Registers and Stack AT€a..........ccceeevevveviinineninenieeeeieneneneseneeeeenens 299
9.4 Important Information on Program Creation..........c..ceceeeeeereerieneneneneneeneenieneneneseeneene 304
9.4.1 TImportant Information on Program Codingccccceevvuieeviiinieenieeinieenieenieene 304
9.4.2 Important Information on Compiling a C Program with the C++ Compiler......... 307
9.4.3 Important Information on Program Development............ccccceevieeniiiniennieenieennnen. 308
9.4.4 Important Information on Compiling a C89 Program with the C99 Compiler 309
Section 10 C/C++ Language SpecifiCationsccceeeveerueeneeriieenieeneeenieennennn 311
10.1 Language SPeCIfiCAtiONScevuviiriiiriieriieniterieestteetee st etee st e et e sbae et e saeeebeeesaneenaeas 311
10.1.1 Compiler SpecifiCationS.........cuerrueeiriieriiieiiieeiie ettt ettt sbeesaee s 311
10.1.2 Internal Data RepreSentation.........cceceeviierieeriienieeniiesieenieeesreesireesreesieeesiaeeeees 320
10.1.3 Floating-Point Number SpecifiCations...........ccceeueriereereniieiienieneeieeie e 334
10.1.4 Operator Evaluation Order...........ccooeeiiiiirienieieeieeeee st 342
10.2 Extended FUNCHIONS.......ccutiuiiiiiie ittt sttt ettt et enbe e e enae e 343
10.2.1 #pragma Extension Specifiers and Keywords..........cccoevveeviiinieinieenieenieenieeee, 343

Rev. 1.00 Aug. 17,2009 Page ix of xii
RENESAS REJ10J2039-0100

10.2.2 Section Address OPETatorcoceeerveeeruieeriieeriieeitteerieeeieeeieesbeeeaeesnbeeeseesseesnseees 392

10.2.3 INtrinsic FUNCHONS ...coc.eviiiiiiiiiiinienitececetc ettt st 394
10.3 C/CH+ LIDIATIES -.ouvivetieeietieieie ettt ettt te ettt ettt eseent e s e sesbesbeeteeneeneeneeneensenseneas 423
10.3.1 Standard C LIDIAriescccueerveeeieerieeeieesieesieesiteesteeesveesseeessseesseeessseessesesssessens 423
10.3.2 Embedded C++ ClIass LiDIariesccceeeeuieeriieeiiieeiieecieeeieeesieeesieeesveeseneesveeenas 670
10.3.3 Reentrant LiDTaryccccooieriiiiiiieniieeieerieeeitestt ettt sive et siaeesaneens 757
10.3.4 Unsupported LIDTATIEScevvieriieriierieiniiierieeriie ettt siteesre et esaveesieeesaneens 761
Section 11 Assembly SpecifiCationscccceevueeeriiieeniieeeniie e 763
11.1 Program EISMENtSccccoiiiiiiiiieiieieete ettt sttt ettt setesbe e be e beeaae e 763
T1.1.1 SOUICE StAtEIMENLS....ueietieeiieiieeeieeeieeeieesreesteesteestaeesareessreessseesseeessseenseeessassens 763
11.1.2 ReSEIVEd WOTAS ...cc.eeouiiiiiiiiiieiieieeieee ettt ettt sae e 767
T1.1.3° SYMDOIS ittt ettt s bt eae 767
T1.1.4 COMSLANLS....cueiiieiieiietieieeiteet ettt ettt ettt sae et e bttt et eatesanesaaesaeenbeenaeenneeaneeas 771
11.1.5 LOCAtION COUNLETueeeuvieeiiieeeiieeieeeieeeteeesteeesteeetaeesseeessseesseeessseessseessseensseessseensss 773
T1.1.6 EXPIESSIONS ...eeutieutieiieieeieeiteeitestte st ettt et e et e s bt e be e bt e aeeneesatesaeesbeesbeenseenteeneeas 774
1117 String LIteral...c.eoovieiieie et ettt 782
11.1.8 LoCAl Labelcooiiiiiiiiiiiiiiieiicrctecet ettt st 783
11.2 Executable INSIUCTIONS ...c.eeritiiiiiiiiiritenieeieetteet ettt et sttt et e naeens 785
11.2.1 Overview of Executable INStruCtionsScocueevieeenienieniennienienieneeneeneeneeeens 785
11.2.2 Notes on Executable INStrucCtionsS.........ccceecvieeeiieeiiieeiieesiieeieeecieeesieeesve e esve e 787
11.3 ASSCMDICT DITECHIVES ...eecuvieiiiieieieiiiiieciieeeiieeeteestteestveetteesaeeteeesaeeseeesseessesanseesnsessseennsens 809
11.4 File INCIusion FUNCHONccviiiiiiiiiecieecieecie ettt et sae e sveesab e e sabaessbeesssaenenas 884
11.5 Conditional Assembly FUNCHOMN.ccc.eeriiiiiiiiiiiiieeiie ettt st esbee s 887
11.5.1 Overview of the Conditional Assembly Function..........cceccceveveeviieeniiieniienieenneen. 887
11.5.2 Conditional AsSembly DIr€CtIVESccceerruieeriieiiiieeiieriieeieesiee et seeesiaeens 893
11.6 MACIO FUNCHOMNuiiiiieiiieciie ettt ettt et e et eeve e s e e e beestbeessbeessbeesssaeessaessseessseesnseesssens 909
11.6.1 Overview of the Macro FUNCHIONcceevviiiiieiiieciiecieeee e e 909
11.6.2 Macro Function DIFECLIVEScccuieeruieeiiieiiieeiiecieeeieesreeereesveesveesseeseseesnveennnas 911
11.6.3 MaACTO BOAY ..covvviiiiiiiiieiieetteee ettt ettt et ettt et saae e ateesane e 915
11.6.4 MaACTO Calloviiiiiiiiiieiieieeteet ettt ettt s s 919
11.6.5 String Literal Manipulation FUNCLIONScccueeviiiriiiiiiiieiie et 921
11.7 Overview of Structured ASSEMDIYc..coceeieiiiriiniiiiiiiececee e 925
11.7.1 Notes on Structured ASSEmMDbIY..........ccoeiiiiiiiiiiii e 926
11.7.2 Structured Assembly Dir€CtiVes.eeeeeeierienienenininieieeeietentese e eeeeenens 927
Section 12 Compiler Error MeSSagesccocveeeriieriiiieniieerieeerieeeieee e esvee s 951
12.1 Error Format and Error LevelS.......cocccoiiiiniiniiiiiiiinienicecceeec e 951
12.2 BITOT MESSAZES. ...ccuviiuiiiiiiiiiieiieetiete ettt et 951
12.3 C Library Function Error MESSaZesccceerueirieriirieiieniiesiiesteeie ettt seee e 1035

Rev. 1.00 Aug. 17,2009 Page x of xii
REJ10J2039-0100 RENESAS

Section 13 Assembler Error MesSagesccccveevueeerieeinieeniieeniieeniee e 1039

13.1 Error Message Format and Error Levels ... 1039
13.2 EBITOT MESSAZES.....couiiuiiiiiiiiiiie ittt et s e st st 1039
Section 14 Error Messages for the Optimizing Linkage Editor...................... 1057
14.1 Error Format and Error Levels..........cocooiiiiiiiiiniiiniiiiiiccccccen 1057
14.2 LISt OF IMESSAZES. . veeirieiieeiiieniteeitte ettt ettt et e ettt e tteesbteesbte ettt esbtesabeessteeabaeensaesnbaesseesases 1057

Section 15 Error Messages for the Standard Library Generator and Format

COMVETTOT ...ttt ettt ettt 1073

15.1 Error Format and Error Levels........cocooieiiiniiniiiiiiiieneeieieciccceicsee e 1073
15.2 LSt OF IMESSAZES. c..veeuiiieiieeiiieieeite et ettt et e ettt e et e ettt e abeesbteesbtesabeeestesabaesnsaesnbaeenseesnses 1073
Section 16 Limitationscocceerieiiiiriieenieiieeieeeieeee et 1077
16.1 Limitations of the COMPILET.......c.cooiiiiiiiiiiiieieeeee e 1077
16.2 Limitations of the ASSEMDIETccceioiiiiiiiiiiieeee ettt 1080
Section 17 Feature for AES/RS4........oooiiiiiiiiieeeeeeeeeceeeeen 1081
17.1 ComPiler FUNCHIONSccoouiiiiieeiieiiieeite ettt ettt ettt e et siaeesba e e saaeesbseenaneenns 1081
L7101 OVEIVIBW ..ueeiiieiieitett ettt ettt et e bt et ettt sat e eat et e bt enbeemtesseeabeesbeenbeenseenteeneeens 1081

17.1.2 COMPILET OPLIONS.eieiieuiieiieetieiteeite ettt ettt te st et et eteestesaeesaeeseeesaeebeeneeens 1081

17.1.3 Intrinsic FUNCHONSccoiiiiiiiiieiieieee et e 1083

17.2 Assembler FUNCHONS.cooiiitiiiiriirtenientecetc ettt ettt esae e eaee e 1086
Section 18 Notes on Version Upgrade..........cceevveeeriieenieeniiieeniieeniee e 1087
18.1 Notes 0n Version UPGIradeccueeieiieiieriieniieieeie ettt ettt neee e 1087
18.1.1 Guaranteed Program OpPeration.cceecueeieruierieriienieeieeiesiesieesieeseeeseeeeeeeeens 1087

18.1.2 Compatibility with the Earlier Versioncc.ccocceeceroienienieneeneeiceeeeceeeene 1088

18.1.3 Command-line INterfacecccccocuiriiriiniiiiiniicicececeeeee e 1092

18.1.4 Provided CONLENLS.....cccuerueiriiiriieiietieteetenitenie ettt ettt ettt esneearesaeenaee 1095

18.1.5 List File SpecifiCationccccueeriiiriiriiiiiieeiieeeeeiie ettt s 1096

18.2 Additions and IMProOVEMENLScceruireririenienienienttneeeetetete sttt s eaeene 1096
18.2.1 Common Additions and IMProvementscccccoeeverenereeienienenieneneeeeeennens 1096

18.2.2 Added and Improved Compiler FEatureseceeevevueninerenieneenieneneneneeeene 1097

18.2.3 Added and Improved Features for the Assembler...........ccoceevvieiniiiinniiniieenneenne 1108

18.2.4 Added and Improved Features for the Optimizing Linkage Editor..................... 1109

18.3 Operating FOrmat CONVEITETcccuieriieiiierieeniienieesieesiteesieesteesteessaeesbeeesseesbeeensnesnne 1111
18.3.1 Object File FOrmat.........cccoeoiiiiiiiiiieieeit ettt 1111

18.3.2 Compatibility with Earlier VErsionscccceeeereerierrieiiieiieneenieee e 1111

18.3.3 Command Line FOrmatccceeiiiiiiiiiiiiieeieeecee e 1112

18.3.4 Interpretation Of OPHONS.....cccuiviiiiiiieriierieeeiee et eitesieeebeeeieesbeeebeesbeeeseeeaee 1113

Rev. 1.00 Aug. 17,2009 Page xi of xii
RENESAS REJ10J2039-0100

Section 19 APPENAIX ..oevuiiiiiiiieiiiieiiie ettt ettt e e e e saeees 1115

19.1 S-Type and HEX File FOmMatccccooviiiiiiiiiiiiiiieeiie ettt 1115
19.1.1 S-Type File FOrMat.......ccccceviriiiieiiiiniinieneeteeeteteetesie ettt 1115
19.1.2 HEX File FOIMAL ...c.oiiiiiiiiiieiietieeeeee ettt 1117
19.2 ASCII COAE LIS ..niiiiiiiiiietieieeie ettt ettt ettt et ettt e e sbeesbeesbeebeesesneesaeeee 1119
19.3 Access Range of Short Absolute AdAIESSESceovveriireriieiriieeieeie et 1120
INAEX e e 1121

Rev. 1.00 Aug. 17,2009 Page xii of xii
REJ10J2039-0100 RENESAS

Section 1 Overview

Section 1 Overview

1.1 Procedures for Developing Programs

Figure 1.1 shows the procedures for developing programs. The shaded parts show software
provided in the Renesas C/C++ Compiler Package for H8, H8S and H8SX family.

The C/C++ compiler, assembler, optimizing linkage editor, standard library generator, stack
analysis tool, and format converter are explained in this manual.

Rev. 1.00 Aug. 17,2009 Page 1 of 1156
RENESAS REJ10J2039-0100

Section 1 Overview

Standard
include
files

User Assembly

source

assembly
program

Assembler

SYSROF
object/
library

ELF/DWARF
format
converter

SYSROF
load
module

Note: —> : Input/output
------ » : Initiation

Additional information files include:
- Template information files

- Parameter information files

- Instance information files

User
include
source file file

User
C/C++

C/C++ compiler

Prelinker

Optimizing
linkage editor

Additional
information
file*

Standard library generator

Standard

library
file

4
Load Profile Stack
module information information
4
y y'd \
Debugger | Stack analysis tool

- Tentative defined variable information files

Called
information

Figure 1.1 Procedures for Developing Programs

Rev. 1.00 Aug. 17,2009 Page 2 of 1156
REJ10J2039-0100

RENESAS

Section 1 Overview

Outlines of the C/C++ compiler, assembler, optimizing linkage editor, prelinker, standard library
generator, stack analysis tool, and format converter are given in the following sections.

1.2 Compiler

The H8S, H8/300 series C/C++ compiler (hereinafter referred to as compiler) is software that
takes source programs written in C or C++ language as inputs, and produces relocatable object
programs or assembly source programs for the H8S, H8/300 series microcomputers.

Features of this compiler are as follows:

1. Generates an object program that can be written to ROM for installation in a user system.

2. Supports an optimization that improves the speed of execution of object programs and
minimizes ROM and RAM size.

3. Supports extended features and options to take advantage of CPU’s features such as short
absolute addressing mode and indirect addressing mode.

4. Supports the C and C++ programming languages.

5. Supports features that are essential for the programming of embedded programs but are not
standards in the C and C++ languages as extended features. Such features include interrupt
functions and descriptions of system instructions.

6. Supports output of debugging information to enable C/C++ source-level debugging by the
debugger.

7. Either an assembly source program or a relocatable object program can be selected for output.

8. Supports output of an inter-module optimization information used by the optimizing linkage
editor.

1.3 Assembler

The H8S, H8/300 series assembler (hereinafter referred to as assembler) takes source programs
written in assembly language, and outputs relocatable object programs for the H8S, H8/300 series
microcomputers.

Features of this assembler are as follows:

1. Enables the efficient writing of source programs by providing the preprocessor functions
listed below:

— File include function
— Conditional assembly function
— Macro function

— Structured assembly function

Rev. 1.00 Aug. 17,2009 Page 3 of 1156
XRENESAS REJ10J2039-0100

Section 1 Overview

2. The mnemonics for execution instructions and assembly directives conform to the naming
rules laid out in the IEEE-694 specifications, and the system is uniform.

14 Optimizing Linkage Editor

The optimizing linkage editor is software that takes multiple object programs output by the
compiler or assembler and produces a load module or a library file.

Features of this optimizing linkage editor are as follows:

1. Optimization can be applied to a set of several object files, depending on memory allocation
and relations among function calls which cannot be optimized by the compiler.

2. Any of the following five types of load modules can be selected for output:
— Relocatable ELF format
— Absolute ELF format
— S-type format
— HEX format
— Binary format
Generates and edits library files.
Outputs symbol reference count list.

Deletes debugging information from library and load module files.

A

Specifies the output of a stack information file for use by the stack analysis tool.

1.5 Prelinker

The prelinker is called from the optimizing linkage editor. When a C++ program template or
runtime type information is used, the prelinker calls the compiler and makes it generate the
necessary object files. When neither a C++ program template nor the runtime type information is
used, the speed of linkage can be improved by specifying the noprelink option for the optimizing
linkage editor.

1.6 Standard Library Generator

The H8S, H8/300 series standard library generator (hereinafter referred to as the standard library
generator) is a software system for the reconfiguration of standard library files provided, using
user-specified options.

The standard library functions provided with the compiler include the standard set of C library
functions, a set of C++ class library functions for embedded systems, and a set of runtime routines
(arithmetic operations that are necessary for the execution of a program). In some cases, runtime

Rev. 1.00 Aug. 17,2009 Page 4 of 1156
REJ10J2039-0100 RENESAS

Section 1 Overview

routines will be necessary, even though the use of library functions in source programs has not
been specified.

1.7 Stack Analysis Tool

The stack analysis tool is software that takes the stack information file that is output by the
optimizing linkage editor and calculates the size of the stack that will be used by C/C++ programs.

1.8 Format Converter

The ELF/DWAREF format converter (hereinafter referred to as format converter) takes object files
and library files that have been output by an earlier version of the compiler or assembler and
converts them to the ELF format. It can also take an ELF-format absolute load module and convert
it to the output format of an earlier version of the linkage editor.

Rev. 1.00 Aug. 17,2009 Page 5 of 1156
RENESAS REJ10J2039-0100

Section 1 Overview

Rev. 1.00 Aug. 17,2009 Page 6 of 1156
REJ10J2039-0100 RENESAS

Section 2 C/C++ Compiler Operating Method

Section 2 C/C++ Compiler Operating Method

2.1 Command Line Format
The format of the command line to initiate the compiler is as follows:
ch38 [A<option>...] [A<file names>[A<options>...] ...]
<options>:-<options [=<suboption>] [,...]
2.2 Interpretation of Options

In the command line format, uppercase letters indicate the abbreviation and characters underlined
indicate the defaults setting.

The dialog menus of the HEW is shown in the form of
Tab name <Category>[Item]....

The order of options correspond to that of the tabs and the categories in the HEW.

Note that conditions apply to the application of some options related to optimization, i.e. some
may not be applicable. Check the output code to see whether or not the optimization has actually
been performed.

Rev. 1.00 Aug. 17,2009 Page 7 of 1156
RENESAS REJ10J2039-0100

Section 2 C/C++ Compiler Operating Method

2.2.1 Source Options

Table 2.1 Source Options

Item Command Line Format

Dialog Menu

Specification

Include file
directory

—

Include = <path name>[,...

C/C++ <Source>
[Show entries for :]
[Include file
directories]

Specifies include-file include
path name.

Default include PREInclude =

file <file name>|[,...]

C/C++ <Source>
[Show entries for :]
[Preinclude files]

Includes the specified files at
the head of compiling units.

Macro name DEFine = <sub>[,...]

definition <sub>:
<macro name>

[=<string literal>]

C/C++ <Source>
[Show entries for :]
[Defines]

Defines <string literal> as
<macro names>.

Information Message
message NOMessage

output control

[= <error code>
[-<error code]L,...]]

C/C++ <Source>
[Show entries for :]
[Messages]
[Display information
level messages]

Outputs information message.

Does not output information
message (error number and
range can be specified).

Inter-file inline FILE_INLINE_PATH =
<path name>|,...]

expansion
directory
specification

C/C++ <Source>
[Show entries for :]
[File inline path]

Specifies the path name where
obtains a file that has function
definitions to be expanded as
inline functions.

Rev. 1.00 Aug. 17,2009 Page 8 of 1156

REJ10J2039-0100

RENESAS

Section 2 C/C++ Compiler Operating Method

Include: Include File Directory
C/C++ <Source>[Show entries for :][Include file directories]

e Command Line Format
Include = <path name>[,...]
e Description
Specifies the name of the path where the include file is stored.
Two or more path names can be specified by separating them with a comma (,).

System include files are retrieved in the order of include specification directory and the
environment variable CH38 specification directory. User include files are retrieved in the
order of the current directory, include specification directory, and the environment variable
CH38 specification directory.

e Example
ch38 -include=c:\usr\inc,c:\usr\CH38 test.c

Directories c:\usr\inc and c:\usr\CH38 are retrieved as include file paths.
PREInclude: Default Include File
C/C++ <Source>[Show entries for :][Preinclude files]

¢ Command Line Format
PREInclude = <file name>[,...]
e Description

Includes the specified file contents at the head of the compiling unit. Two or more path names
can be specified by separating them with a comma (,).

e Example
ch38 -preinclude=a.h test.c
— Contents of <test.c>
int a;
main(){...}
— Interpretation at compilation
#include "a.h"
int a;

main(){...}

Rev. 1.00 Aug. 17,2009 Page 9 of 1156
XRENESAS REJ10J2039-0100

Section 2 C/C++ Compiler Operating Method

DEFine: Macro Name Definition
C/C++ <Source>[Show entries for :][Defines]

e Command Line Format

DEFine = <sub> [,...]
<sub>: <macro name> [= <string literal>]

e Description
This option is the same as #define written in the C/C++ source file.

When <macro name>=<string literal> is specified, <string literal> is defined as a macro
name.

When only <macro name> is specified for a suboption, the macro name is regarded as defined.

<string literal> allows name or constant intger.
Message, NOMessage: Information Message
C/C++ <Source>[Show entries for :][Messages][Display information level messages]

e Command Line Format

Message
NOMessage [= <error code> [- <error code>] [,...]]

e Description
Specifies whether to output information-level messages.
If message is specified, the compiler outputs information-level messages.
If nomessage alone is specified, the compiler does not output any information-level messages.
If an error code is specified for the suboption, display of messages of the specified codes is
disabled. The range of error messages to be disabled can also be specified for the suboption by
using a hyphen (-):
<error code> - <error code>.
When this option is not specified, the compiler assumes that nomessage is specified.

e Example
ch38 -nomessage=5,300-306 test.c
Information-level message codes C0005 and C0300 to C0306 will not be displayed.

e Remarks
An <error code> allows Warning or Information code.
The Ver. 4.0 or earlier version of the compiler validates only the last specification of message
or nomessage options when such optoins are specified more than once. This version, Ver. 6.0,
or later suppresses output of the union of messages specified by the nomessage options.

Rev. 1.00 Aug. 17,2009 Page 10 of 1156
REJ10J2039-0100 RENESAS

Section 2 C/C++ Compiler Operating Method

FILE_INLINE_PATH: Inter-file Inline Expansion Directory Specification

C/C++ <Source>[Show entries for :][File inline path]

Command Line Format

FILE_INLINE_PATH = <path name> [,...]

Description

Specifies the name of the path where a file for inter-file inline expansion is stored.
Two or more path names can be specified by separating them with a comma (,).

Files for inter-file inline expansion are retrieved in the order of the file_inline_path option
specification directory and the current directory.

Example
ch38 —file_inline_path=c:\usr\file —file_inline=test2.c test.c

A directory “c:\usr\file” is as inter-inline expansion searching directory and the compiler try to
find the “test2.c” as “file_inline” option.

Remarks

This option is valid only when the CPU type is H8SX or H8S(without legacy=v4 option).

Rev. 1.00 Aug. 17,2009 Page 11 of 1156
RENESAS REJ10J2039-0100

Section 2 C/C++ Compiler Operating Method

2.2.2 Object Options

Table 2.2 Object Options

Item Command Line Format Dialog Menu Specification

Pre- PREProcessor C/C++ <Object> Outputs source program after
processor [= <file name>] [Output file type :] preprocessor expansion.
expansion [Preprocessed source

file]

Object type Code = C/C++ <Object>
[Output file type :]
{ Machinecode [Machine code]

| Asmcode }

Outputs machine code program.

[Assembly source code] Outputs assembly-source

program.

Debugging DEBug
information

C/C++ <Object>
[Generate debug

Outputs debug information

NODEBug information] Not output debug information
Section SEction = <sub>[,...] C/C++ <Object>
name <sub>:{ [Section :]
Program=<section name> [Program section (P)] Program area section name
| Const=<section name> [Const section (C)] Constant area section name
| Data=<section name> [Data section (D)] Initialized data area section name
| Bss=<section name> [Uninitialized data Non-initialized data area section
} section (B)] name
Area of STring = { Const C/C++ <Object> Outputs string literal to constant
string literal [Store string data in:] section (C).

to be output | Data }

Outputs string literal to initialized
data section (D).

Operation CPUExpand [=V6] C/C++ <Object> Multiplication and division are

size [Mul/Div operation code-generated by the CPU

expanded specification] instruction specifications.

interpre- - NOCPUExpand Multiplication and division are

tation code-generated based on the
ANSI C-language specification.

Object file OBject [= <file name>] C/C++ <Object> Qutputs an object file.

OUtpL,’t_ NOOBject [Output directory] Not output an object file.

specifica-

tion

Rev. 1.00 Aug. 17,2009 Page 12 of 1156

REJ10J2039-0100 RENESAS

Section 2 C/C++ Compiler Operating Method

Table 2.2 Object Options (cont)
ltem Command Line Format Dialog Menu Specification
Template Template={ None C/C++ <Object> Not generate instances.
instance [Template :]
generation | Static Generates instances as internal
linkage only for referenced
templates
| Used Generates instances as external
linkage only for referenced
templates.
| ALI Generates instances for templates
defined or referenced.
| AUto } Generates instances at linkage
Boundary ALign [=4] C/C++ <Object> Modifies allocation order by the
alignment [Group by alignment :] boundary alignment.
value and : Allocates the variables in the order
disable of - NOALigN of declaration.
boundary
alignment

Compatibili- LEgacy=v4
ty of output

C/C++ <Object>
[Ver.4.0 Optimization

Qutput objects generated by
Ver.4.0 optimization technology of

object code technology generation:] H8S
ANSI STRict_ansi C/C++ <Other> Conforms to the ANSI standard for
conforman [Miscellaneous options :]the following processing:
ce [Obgy ansl Associative rule of floating-point
specifications more)
strictly] operations
Block EEpmov C/C++ <Other> Expands structure assignment
transfer [Miscellaneous options :]expression by the eepmov
instruction [Use EEPMOVE in instruction.

block copy]

PREProcessor: Preprocessor Expansion

C/C++ <Object>[Output file type :][Preprocessed source file]

e Command Line Format

PREProcessor [= <file name>]

e Description

Outputs a source program processed by the preprocessor.

Rev. 1.00 Aug. 17,2009 Page 13 of 1156

RENESAS

REJ10J2039-0100

Section 2 C/C++ Compiler Operating Method

If no <file name> is specified, an output file with the same file name as the source file and
with a standard extension is created. The standard extension after C compilation is “p” (if the
input source program is written in C), and that after C++ compilation is “pp” (if the input
source program is written in C++).

When preprocessor is specified, no object file is output by the compiler.
e Remarks

When preprocessor is specified, the following options become invalid:

code, object, outcode, debug, pack, string, list, show=object, statistics, allocation, section,
optimize, speed, goptimize, byteenum, volatile, regexpansion, cmncode, case, indirect, abs8,
abs16, cpuexpand, eepmov, regparam, stack, align/noalign, structreg, longreg, macsave,
bit_order, ptrl6, opt_range, del_vacant_loop, max_unroll, infinite_loop, global_alloc,
struct_alloc, const_var_propagate, library, volatile_loop, sbr, legacy=v4, scope, noscope,
file_inline, file_inline_path, enable_register, strict_ansi and cpuexpand=v6.

Code: Object Type
C/C++ <Object>[Output file type :] [Machine code] [Assembly source code]

e Command Line Format

Code = { Machinecode | Asmcode }
e Description

Specifies an object file output type.

When code=machinecode is specified, a relocatable object program (in machine code) is
generated.

When code=asmcode is specified, an assembly source program is generated.

Within the assembly program, stack information usage by all functions is reflected by .stack
directives.

When this option is not specified, the compiler assumes that code=machinecode is specified.
e Remarks

When code=asmcode is specified, show=object or goptimize becomes invalid.
DEBug, NODEBug: Debugging Information
C/C++ <Object>[Generate debug information]

e Command Line Format
DEBug

NODEBug

Rev. 1.00 Aug. 17,2009 Page 14 of 1156
REJ10J2039-0100 RENESAS

Section 2 C/C++ Compiler Operating Method

Description

Specifies whether to output the information necessary for source-level debugging into the
object file.

This option is valid regardless of the optimization option specified.
When nodebug is specified, no debugging information will be output to the object file.
If this option is not specified, the compiler will assume nodebug is specified.

SEction: Section Name

C/C++ <Object>[Section :] [Program section (P)] [Const section (C)] [Data section (D)]

[Uninitialized data section (B)]

Command Line Format
SEction = <sub> [,...]
<sub>: { Program=<section name> |
Const=<section name> |
Data=<section name> |
Bss=<section name> }
Description
Specifies the section name of an object program.
section=program=<section name> specifies the section name in of the program area.
section=const=<section name> specifies the section name in of the constant area.
section=data=<section name> specifies the section name in of the initialized data area.
section=bss=<section name> specifies the section name in of the non-initialized data area.

The <section name> must consist of alphabetics, numerics, underscore (_) or dollar sign ($)
except that the first character must not be numeric. The section name must be specified within
8192 characters.

The default section names are as follows: P for the program area section, C for the constant
area section, D for the initialized data area section, and B for the non-initialized data area
section.

Remarks

For details on programs and section names, refer to section 9.1, Program Structure. The same
section name cannot be specified for different areas of the section. Changing the section name
of P, C, B or D into S by section causes a warning error because S is the reserved name for the
stack area.

Rev. 1.00 Aug. 17,2009 Page 15 of 1156
RENESAS REJ10J2039-0100

Section 2 C/C++ Compiler Operating Method

STring: String Literal Output Area

C/C++ <Object>[Store string data in :]

Command Line Format

STring = { Const | Data }

Description

Specifies the destination where string literal is output.

When string=const is specified, the compiler outputs the string literal to the constant area.

When string=data is specified, the compiler outputs the string literal to the initialized data
area.

The string literal output to the initialized data area can be modified during program execution;
however, the initialized data area must be allocated in both ROM and RAM in order to transfer
the string literal to RAM from ROM at the beginning of program execution. For details on the
initial settings of the initialized data area or on memory allocation, refer to section 9.2.1
Memory Allocation.

When this option is not specified, the compiler assumes that string=const is specified.

CPUExpand, NOCPUExpand: Operation Size Expanded Interpretation

C/C++ <Object>[Mul/Div operation specification]

Command Line Format
CPUExpand [=V6]
NOCPUExpand
Description

cpuexpand generates multiplication and division code for variables by deviating from the
ANSI C-language standard.

Specifying cpuexpand=v6 makes Ver.6.0 cpuexpand specification when output code is
generated by Ver.4.0 optimization technology.

With this sub-option, generated codes are affected by the following C-source descriptions.
(a) signed long = signed int << Constant

(b) signed long = unsigned int << Constant

(c) unsigned long = signed int << Constant

(d) unsigned long = unsigned int << Constant

(e) signed int = (signed int << Constant) / signed int

(f) signed int = (unsigned int << Constant) / signed int

(g) signed int = (unsigned int << Constant) / unsigned int

(h) unsigned int = (signed int << Constant) / signed int

Rev. 1.00 Aug. 17,2009 Page 16 of 1156
REJ10J2039-0100 RENESAS

Section 2 C/C++ Compiler Operating Method

(1) unsigned int = (unsigned int << Constant) / signed int

(j) unsigned int = (unsigned int << Constant) / unsigned int

When nocpuexpand is specified, the compiler generates multiplication and division code
conforming to the ANSI C-language standard.

When this option is not specified, the compiler assumes that nocpuexpand is specified.

e Remarks

When cpuexpand and cpuexpand=V6 is specified, the operation specifications exceed the
range guaranteed by the C language specifications, and the result may be different from that
obtained when nocpuexpand is specified.

Table 2.3 shows examples of multiplication and division code generated by specifying this

option.

Table 2.3

Operation

cpuexpand Option Specifications

Operation Size of us1*us2 (for H8S/2600)

cpuexpand Is Specified

nocpuexpand Is Specified

unsigned short
us1,us2;

unsigned long ul;
ul=usi*us2;

The intermediate result is held
as unsigned long.*
Output example:

MOV . W @ usl,Rd
MOV.W @ us2,Rs
MULXU.W Rs, ERd

MOV.L ERd,@ ul

4-byte result of us1*us2 is
assigned to ul.

Calculated as unsigned short.
Output example:

MOV . W @ usl,Rd
MOV.W @ us2,Rs
MULXU.W Rs, ERd
EXTU.L ERd
MOV.L ERd,@ ul

Low-order two bytes of us1*us2 result are
zero-extended and assigned to ul.

unsigned short
us1,us2,usg3;

unsigned short us;
us=us1*us2/us3;

The intermediate result is held
as unsigned long.*
Output example:

MOV . W @ usl,Rd
MOV.W @ us2,Rs
MULXU.W Rs, ERd
MOV.W @ us3,Rs
DIVXU.W Rs,ERd
MOV . W Rd,@ us

4-byte result of us1*us2 is
used as the dividend.

Calculated as unsigned short.
Output example:
MOV.W @ usl,Rd
MOV.W @ us2,Rs
MULXU.W Rs, ERd
EXTU.L ERd

MOV.W @ us3,Rs
DIVXU.W Rs, ERd
MOV.W Rd,@ us

Low-order two bytes of us1*us2 result are
zero-extended and used as the dividend.

Note: The intermediate 4-byte result of a multiplication of two 2-byte data is used as it is if the
result is assigned to or converted to a 4-byte object, or is divided by a 2-byte divisor.

cpuexpand=V6 is valid only when the CPU type is H8S and legacy=v4 has been specified or
CPU type is H8/300 and H8/300H.

Rev. 1.00 Aug. 17,2009 Page 17 of 1156

RENESAS REJ10J2039-0100

Section 2 C/C++ Compiler Operating Method

OBject, NOOBject: Object File Output

C/C++ <Object>[Output directory :]

Command Line Format

OBject [= <object file name>]

NOOBject

Description

Specifies whether or not to output an object file.
When noobject is specified, no object file is output.

If <object file name> is not specified in object, the object file name becomes the same as that
of the source file and the extension becomes “obj” for a relocatable object program and “src”
for an assembly source program, which is determined by the code option.

When this option is not specified, the compiler assumes that object is specified.
Remarks

When noobject is specified, the following options become invalid:

outcode, debug, pack, string, show=object, statistics, allocation, section, optimize, speed,
goptimize, byteenum, volatile, regexpansion, cmncode, case, indirect, abs8, abs16, cpuexpand,
eepmov, regparam, stack, align/noalign, structreg, longreg, macsave, bit_order, ptrl6,
opt_range, del_vacant_loop, max_unroll, infinite_loop, global_alloc, struct_alloc,
const_var_propagate, library, volatile_loop, sbr, legacy=v4, scope, noscope, file_inline,
file_inline_path, enable_register, strict_ansi and cpuexpand=v6.

Template: Template Instance Generation

C/C++ <Object>[Template :]

Command Line Format
Template = { None
| Static
| Used | ALl |AUto}
Description
Specifies the condition to generate template instances.
When template=none is specified, instances are not generated.
When template=static is specified, instances of templates referenced in the compiling unit are
generated. However, generated functions contain the internal linkage.
When template=used is specified, instances of templates referenced in the compiling unit are
generated. However, generated functions contain the external linkage.

Rev. 1.00 Aug. 17,2009 Page 18 of 1156
REJ10J2039-0100 RENESAS

Section 2 C/C++ Compiler Operating Method

When template=all is specified, instances of all templates defined or referenced in the
compiling unit are generated.

When template=auto is specified, instances needed at linkage are generated.
When this option is not specified, the compiler assumes that template=auto is specified.
Remarks

When a code = asmcode is specified, template=static is always valid.

ALign, NOALign: Boundary Alignment Value and Disable of Boundary Alignment

C/C++ <Object>[Group by alignment :]

Command Line Format

ALign [=4]

NOALign

Description

The noalign option allocates defined variables in the order of declaration.

The align option relocates variables so as to reduce space by boundary alignment. When the
relocation is performed, generally the empty area is reduced and the object size is also reduced.

The align=4 option divides a data section into a 4-byte boundary alignment section, a 2-byte
boundary alignment section and a 1-byte boundary alignment section. A datum whose size is a
multiple of 4 is generated into a 4-byte boundary alignment section, whose section name is the
original section name with $4 postfixed. When the CPU type is H8SX, the speed of access to a
4-byte datum aligned on a 4-byte boundary address is improved.

A datum whose size is odd is generated into a 1-byte boundary alignment section, whose
section name is the original section name with $1 postfixed. This can reduce the empty area.

The remaining data whose size is even and is not a multiple of 4 remains in the original section.

If the section name is changed by #pragma section or the section option, $4 or $1 will be
appended to the changed section name.

When this option is not specified, align is assumed.
Remarks
When the CPU type is H8SX or H8S(without legacy=v4), align=4 can be specified.

To locate the 1-byte or 4-byte data section at specific addresses with align=4 specified, each
section needs to be explicitly specified with the start option of the optimizing linkage editor.

In order to remain the boundary data construction unchanged, specify noalign.

Rev. 1.00 Aug. 17,2009 Page 19 of 1156
RENESAS REJ10J2039-0100

Section 2 C/C++ Compiler Operating Method

e Example

char a;

short b;

char c;

long d;

#pragma section _v
short e;

long T;

#pragma section

main()

{

e noalign specified

~ 2 bytes ~

a { Empty area

b 1 b

c l Empty area

d ' d
””” d T
<Section B>

Size: 10 bytes
Boundary alignment: 2

« align specified (default setting)

— 2 bytes ~
b ! b
,,,,,, d o ...d |
d ' d
a [c

<Section B>
Size: 8 bytes

Boundary alignment: 2
« align=4 specified

~ 2 bytes ~
,,,,,, di...do]
d : d

<Section B$4>

Size: 4 bytes

Boundary alignment: 4
l b b]
<Section B>

Size: 2 bytes

Boundary alignment: 2

[a [¢ |

<Section B$1>
Size: 2 bytes
Boundary alignment: 1

{

e] e
,,,,,, | I S SR
f : f
<Section B_v>

Size: 6 bytes

Boundary alignment: 2

<Section B_v>
Size: 6 bytes
Boundary alignment: 2

f f

””” [
<Section B_v$4>

Size: 4 bytes

Boundary alignment: 4

[e T e |
<Section B_v>
Size: 2 bytes
Boundary alignment: 2

o Data is located in the order of declaration.
0 2-byte-aligned data is always located

at an even address, thus generating

an empty area being unused

after odd-size data.

0 2-byte aligned data is allocated before
1-byte aligned data in order to
minimize the empty area.

o Data are categorized into the following 3 groups:
X. data whose size is a multiple of 4
Y. data whose size is odd
Z. the others (data whose size is even but is not

a multiple of 4)

o The original data section is divided into the above
3 groups. For example, the B section will be
divided into B$4, B$1 and B as shown below.

X: The section consting of data whose size is a multiple of 4
is aligned on a 4-byte boundary and "$4" is appended
after the original section name. (e.g. B$4)

Y: The section consisting of data whose size is odd
is aligned on a 1-byte boundary and "$1" is appended
after the original section name. (e.g. B$1)

Z: The other data remains in the original section
whose boundary alignment is 2-byte and
the section name is unchanged. (e.g. B)

Rev. 1.00 Aug. 17,2009 Page 20 of 1156

REJ10J2039-0100

RENESAS

Section 2 C/C++ Compiler Operating Method

LEgacy=v4: Code generation of Ver.4.0 Optimization technology

None

Command Line Format

LEgacy=v4

Description

If this option is specified along with 2600A, 2600N, 2000A, or 2000N as the CPU option,
basic optimization processing is the same as in version 4 and earlier versions. When this option
is not specified, the object code output by the compiler is subject to more optimization than
with version 4.

Remarks

This option is invalid when the CPU type is not 2600A, 2600N, 2000A, or 2000N.

When legacy=v4 is specified, the following options become invalid:

opt_range, del_vacant_loop, max_unroll, infinite_loop, global_alloc, struct_alloc,
const_var_propagate, volatile_loop, scope, noscope, strict_ansi, file_inline, file_inline_path,
and enable_register

STRIct_ansi: ANSI Conformance

C/C++ <Other> [Miscellaneous options :][Obey ansi specifications more strictly]

Format

STRIct_ansi

Description

Conforms to the ANSI standard for the following processing:
— Associative rule of floating-point operations

Remarks

When this option is specified, the operation results may be different from Ver.6.0 compiler or
earlier.

This option is valid only when the CPU type is H8SX or H8S(without legacy=v4 option).

Rev. 1.00 Aug. 17,2009 Page 21 of 1156
RENESAS REJ10J2039-0100

Section 2 C/C++ Compiler Operating Method

EEpmov: Block Transfer Instruction

C/C++ <Other>[Miscellaneous options :] [Use EEPMOVE in block copy]

Command Line Format

EEpmov

Description

Expands the assignment statements of structures and initial value assignment expressions for
the arrays declared by local variables as the block transfer instruction(s). If the CPU is H8SX,
the MOVMD instruction is used. Otherwise, the EEPMOYV instruction is used. If the transfer
size is too large for a block transfer instruction, a run-time routine will be used.

When this option is not specified, the compiler expands then to the MOV instructions or run-
time routines.

Remarks

For H8/300H and H8S(with legacy=v4 option), if an interrupt is accepted during the
EEPMOYV.W instruction, the control moves to the next instruction after returning from the
interrupt, and therefore the EEPMOYV operation result cannot be guaranteed. For source files
including the functions which may accept an interrupt, this option should not be specified.

For H8SX and H8S(without legacy=v4 option), expanded code can work if an interrupt occurs.

Rev. 1.00 Aug. 17,2009 Page 22 of 1156
REJ10J2039-0100 RENESAS

Section 2 C/C++ Compiler Operating Method

2.2.3 List Options

Table 2.4 List Options

Item Command Line Format Dialog Menu Specification

Listing file List [= <file name>] C/C++ <List> Outputs a list file
NOList [Generate list file] ot output a list file

Listing SHow = <sub> [,...] C/C++ <List>

contents _g ps: { [Contents :]

and format

SOurce | NOSOurce
| Object | NOObject
| STatistics | NOSTatistics
| Allocation | NOAllocation

| Expansion | NOExpansion
| Width = <numeric value>

| Length = <numeric value>

| Tab={4]|8}

With/without source list
With/without object list
With/without statistics information

With/without symbol allocation
information

With/without list after macro expansion

Maximum characters per line:
Oor80to 132

Maximum lines per page:
0 or 20 to 255

Number of columns when using tabs:
4|8

List, NOList: List File

C/C++ <List>[Generate list file]

Command Line Format

List [= <list file name>]

NOList

Description

Specifies whether a list file is output or not.

When list is specified, a list file name can be specified

When nolist is specified, a list file will not be output.

A list file name should be specified in accordance with section 8.1, Naming Files.

Rev. 1.00 Aug. 17,2009 Page 23 of 1156

RENESAS REJ10J2039-0100

Section 2 C/C++ Compiler Operating Method

If no list file name is specified in list, a list file with the same name as the source file and a
standard extension (lis/1st/lpp) is created. The standard extension for the UNIX version is
“lis”, that for the PC version at C compilation is “Ist”, and that for PC version at C++

compilation is “lpp”.

If this option is not specified, the compiler assumes list is specified.

SHow: List Contents and Format

C/C++ <List> [Contents :]

e Command Line Format

SHow= <sub>:

e Description

{ SOurce | NOSOurce |
Object | NOObject |
STatistics | NOSTatistics |
Allocation | NOAllocation |
Expansion | NOExpansion
Width= <numeric value> |
Length= <numeric value> |
Tab={4[8} }

Specifies the contents and format of the list output by the compiler, and the cancellation of list

output.

For examples of each list in this section, refer to section 8.2, Compiler Listings.

If this option is not specified, the compiler assumes show=source, noobject, statistics,
noallocation, noexpansion, width=0, length=0, tab=8 are specified.

Rev. 1.00 Aug. 17,2009 Page 24 of 1156

REJ10J2039-0100

RENESAS

Section 2 C/C++ Compiler Operating Method

e Description

Table 2.5 shows a list of suboptions.

Table 2.5 List of Suboptions of show Option

Suboption Description

source Outputs a list of source programs

nosource Does not output list of source programs

object Outputs a list of object programs

noobject Does not output list of object programs

statistics Outputs a list of statistics information

nostatistics Does not output list of statistics information
allocation Outputs a list of symbol allocation information
noallocation Does not output list of symbol allocation information
expansion Outputs a source program list of include files and results of macro

expansion. If the nosource suboption and the expansion suboption
are specified simultaneously, the expansion suboption will be invalid,
and no source program list will be output to a file.

noexpansion

Outputs a source program list before include files or macros have been
expanded. If the nosource suboption and the noexpansion suboption
are specified simultaneously, the noexpansion suboption will be
invalid, and no source program list will be output to a file.

width=<numeric value>

The number specified by <numeric value> is set as the maximum
number of characters in a single line of a list. The <numeric value>
can specify decimal numbers from 80 to 132 or 0.

If <numeric value> is specified as 0, the maximum number of
characters in a single line is not limited.

length=<numeric value>

The number specified by <numeric value> is set as the maximum
number of lines on a single page of a list. The <numeric value> can
specify decimal numbers from 20 to 255 or 0.

If <numeric value> is specified as 0, the maximum number of lines on a
single page of a list is not limited.

Tab={4 | 8}

Specifies the tab size when displaying a list.

Rev. 1.00 Aug. 17,2009 Page 25 of 1156

RENESAS REJ10J2039-0100

Section 2 C/C++ Compiler Operating Method

224 Optimize Options

Table 2.6 Optimize Options

Command Line

ltem Format Dialog Menu Specification

Optimization OPtimize ={0 C/C++ <Optimize> Outputs object without optimization.
|1} [Optimization] Outputs object with optimization.

Inter-module Goptimize C/C++ <Optimize> Outputs inter-module optimization

optimization [Generate file for supplementary information.

information inter-module

optimization]

Optimization SPeed [=<sub>[,...]] C/C++ <Optimize>
for speed <sub>: [Speed or size]

{ Register [Speed sub-options :]

| SHift
| Loop [={1
[21]]
| SWitch
| Inline
[=<numeric value>]

| STruct

| Expression }

Specifies code creation optimized for
speed is specified.

Performs register save and restore by
push and pop expansion.

Enhances the execution time of shift
operation.

Eliminates induction variables in a
loop statement.

Eliminates induction variables in a
loop statement and expands the loop.

Shortens the execution time of switch
statement.

Automatic inline expansion

Shortens the execution time of
structure assignment expression.

Shortens the execution time of
arithmetic operations, comparison,
and assignment expressions.

switch CAse = { Auto C/C++ <Optimize> Determined by whether or not speed

statement [Switch statement ;] is specified.

output code Expanded with if_then comparisons

selection | Ifthen P T P '
| Table } Expanded with jump table.

Memory INDirect = { Normal = C/C++ <Optimize> Expands function call in memory

indirect | Extended } [Function call :] indirect addressing mode.

addressing Expands function call in extended

mode

memory indirect addressing mode.

Rev. 1.00 Aug. 17,2009 Page 26 of 1156
REJ10J2039-0100 RENESAS

Section 2 C/C++ Compiler Operating Method

Table 2.6 Optimize Options (cont)
ltem Command Line Format Dialog Menu Specification
Pointer size PTr16 C/C++ <Optimize> Specifies the size of a pointer to data
[2byte pointer] as two bytes.
Short ABS8 C/C++ <Optimize> Accesses 8-bit data by the 8-bit
absolute [Data access :] absolute address.
addressing Ags16 Accesses all data by the 16-bit
mode absolute address.
External Volatile C/C++ <Optimize> Disables external variable
variable NOVolatile [Details...] optimization.
optimization [Global variables] Enables external variable
[Tr.eat global optimization.
variables as
volatile qualified]
External OPT_Range = { All C/C++ <Optimize> Optimizes external variables within the
variable [Details...] entire function.
optimization | NOLoop [Global variables] pisapies 10op control variables or
range [Spe(?lfy OptiMizing gy ternal variables in a loop from being
range:] moved outside the loop.
| NOBlock Disables optimization of external
variables which extend across loops
} or branches.
Vacant loop DEL_vacant_loop={Q C/C++ <Optimize> Disables elimination of vacant loops.
elimination |1) [Details..] Eliminates vacant loops.
[Miscellaneous]
[Delete vacant
loop]
Maximum MAX_unroll = <numeric C/C++ <Optimize> Specifies the maximum number of
number of value> [Details...] times a loop is expanded.
loop <numeric value>: 1 to 32 [Miscellaneous] Default: 1 (2 when speed or
expansions ' [Specify maximum speed=loop[=2] is specified)

unroll factor :]

Elimination of INFinite_loop = { 0

expression
preceding
inifinite loop

[1}

C/C++ <Optimize> Disables elimination of an assignment
[Details...] expression for external variables
[Global variables] preceding an infinite loop.

[Delete assigNMent i ninates an assignment expression

to global variables {5 oytemal variables preceding an
before an infinite

infinite loop.
loop]

Rev. 1.00 Aug. 17,2009 Page 27 of 1156
RENESAS REJ10J2039-0100

Section 2 C/C++ Compiler Operating Method

Table 2.6 Optimize Options (cont)

ltem Command Line Format Dialog Menu Specification

External GLOBAL_Alloc={0 C/C++ <Optimize> Disables allocation of external
variable [Details...] variables to registers.

reglste.r [1} [Global varlaples] Allocates external variables to
allocation [Allocate registers

! registers.
to global variables]

Structure/ STRUCT_Alloc = {0
union

C/C++ <Optimize> Disables allocation of structure/union
[Details...] members to registers.

member [1} [Global variables] - Ajocates structure/union members to
register [Allocate registers registers.
allocation to struct/union
members]
const variable CONST_Var_propagate = C/C++ <Optimize> Disables constant propagation of
constant {0 [Details...] external constants declared by const.
propagation [Global variables] Performs constant propagation of
[11} [p“?Pagate) external constants declared by const.
variables which are
const qualified]
Inline LIBrary = { Function C/C++ <Optimize> Makes function calls for memcpy and
expansion of [Details...] strcpy.
specific | Intrinsic } [Miscellaneous] petorms inline expansion for
library [Inline memcpy and strcpy.
functions memcpy/strcpy]

Division of SCOpe
optimizing NOSCope
ranges

— Optimizing ranges are divided.
Optimizing ranges are not divided.

Inter-file inlineFILe_inline =
expansion <file name>|,...]

C/C++ <Optimize> Specifies a file for inter-file inline
[Details...] expansion.

[Inline]

[inline file path]

Disable of VOLATILE_Loop
loop iteration

condition

optimization

C/C++ <Other> Disables optimization of loop iteration
[Miscellaneous ~ condition.

options :]

[Treats loop

condition as

volatile qualified]

Rev. 1.00 Aug. 17,2009 Page 28 of 1156

REJ10J2039-0100

RENESAS

Section 2 C/C++ Compiler Operating Method

Item Command Line Format Dialog Menu Specification

Common CMncode C/C++ <Other> Optimizes with common
subexpressio [Miscellaneous subexpression elimination.
n elimination options :]

[Put common
subexpression on

a
register
temporarily]
Preferential ENAble_register C/C++ <Other> Preferentially allocates the variables
allocation of [Miscellaneous with register storage class
register options :] specification to registers.
storage [Enable register
class declaration]
variables
C++ inline CPP_NOINLINE C/C++ <Optimize> Default C++’s inline functions are not
expansion [Details] [Inline] expanded.
[Doesn't Expand
C++ Inline
Functions]

OPtimize: Optimization
C/C++ <Optimize>[Optimization]

e Command Line Format
OPtimize = { 0|1 }
e Description
Specifies the level of compiler optimization for the object program.
When optimize=0 is specified, the compiler does not optimize the object program.
When optimize=1 is specified, the compiler optimizes the object program.

If this option is not specified, the compiler assumes optimize=1 is specified.

Rev. 1.00 Aug. 17,2009 Page 29 of 1156
RENESAS REJ10J2039-0100

Section 2 C/C++ Compiler Operating Method

Remarks

When optimize=0 is specified, speed=inline or loop is invalid.

Goptimize: Inter-Module Optimization Information

C/C++ <Optimize>[Generate file for inter-module optimization]

Command Line Format

Goptimize

Description

Outputs the supplement information for the inter-module optimization.

For the file specified with this option, the inter-module optimization is performed at linkage.

SPeed: Optimization for Speed

C/C++ <Optimize>[Speed or size :][Speed sub-options :]

Command Line Format

SPeed = <sub> [,...]

<sub>: { Register |
SHift |
Loop [={1]2}] |
SWitch |
Inline [= <numeric value>] |
STruct |
Expression }

Description

Specifies optimization for speed for the object created by the compiler.

When 300ha, 300hn, or 300 is selected for the CPU/operating mode, speed=register uses the
PUSH and POP instructions to save and restore the contents of the registers at the entry and
exit of a function, instead of using a run-time routine.

The speed=shift option expands the shift operation to a code that does not use a run-time
routine.

The speed=loop=1 option eliminates induction variables.
The speed=loop=2 option eliminates induction variables and performs loop expansion.

The speed=switch option performs optimization for speed for code expansion of the switch
Statement.

The speed=inline option performs inline expansion for small-size functions.

Rev. 1.00 Aug. 17,2009 Page 30 of 1156
REJ10J2039-0100 RENESAS

Section 2 C/C++ Compiler Operating Method

The speed=inline=<numeric value> modifies the maximum size of the target function for
inline expansion. If CPU is H8SX or H8S(without legacy=v4 option), <numeric value> means
the percentage of increase in program size allowed by inline expansion. For example, with
speed=inline=50, inline expansion is performed up to 50% increase in program size, or up to
1.5 times larger.

If CPU is H8/300, H8/300H or H8S(with legacy=v4 option), <numeric value> is specified as
the number of function nodes (total number of words consisting of variables and operators
except for definitions). This means that functions smaller than the threshold shown by the
<numeric value> are expanded. Here, the amount of program size increase depends on the size
of the function to be expanded and the frequency of the calls of those functions. Hence the
upper bound of the increase cannot be explicitly specified as can in H8SX or H8S(without
legacy=v4 option).

If <numeric value> is omitted, 100 is assumed if the CPU type is H8SX or H8S, and 110 is
assumed otherwise.

For details on the conditions of inline expansion, refer to the description on the in-line
expansion of functions in section 10.2.1 (2), Extended Specifications Related to Functions.
The speed=struct option expands structure-type or double-type assignment to a code that does
not use run-time routines.

The speed=expression option expands arithmetic operation, comparison, and assignment
expressions to a code that does not use run-time routines (some expressions are excluded from
this option).

If only speed is specified, optimization for speed is performed for speed=register, shift, loop,
switch, inline, struct, and expression. If this option is not specified, the compiler optimizes
for size instead of speed.

Remarks

When no optimization (optimize=0) is specified, speed=loop or inline is invalid.

CAse: Switch Statement Output Code Selection Method

C/C++ <Optimize>[Switch statement :]

Command Line Format

CAse = { Auto | Ifthen | Table }

Description

Specifies a switch-statement-output code-selection method.

When case=auto is specified, the compiler automatically selects an optimization method to
reduce the size of the object code.

If speed or speed=switch is specified, the compiler automatically selects optimization for
speed.

Rev. 1.00 Aug. 17,2009 Page 31 of 1156
RENESAS REJ10J2039-0100

Section 2 C/C++ Compiler Operating Method

When case=ifthen is specified, switch statement codes are created using the if_then method,
which repeats, for all case labels, comparing the evaluated value of the expression in the
switch statement with the case label value and jumps to the statement of the case label if they
match. This method increases the object code size depending on the number of case labels in
the switch statement.

When case=table is specified, switch statement codes are created using the table method,
which stores the case label jump destinations in a jump table and enables a jump to the
statement of the case label that matches the expression in the switch statement by accessing
the jump table only once. This method increases the jump table size in the constant area
depending on the range of case labels in the switch statement, but the execution speed is
always the same.

If this option is not specified, the compiler assumes case=auto is specified.

Example

int a, b;

switch(a) {

case 1: b=3; break;
case 2: b=2; break;
case 3: b=1; break;

}

The following shows an example of a code expansion of a source program (when cpu=2600n)

When case=ifthen is specified When case=table is specified
MOV.W @ a:16,R0 MOV.W @ a:16,R0
MOV.B ROH,ROH SUB.W #H'1,R0
BNE Ld CMP.W #H’'2,R0
CMP.B #1,ROL BHI Ld
BEQ L1 MOV.B @(L1l:16,ER0),ROL
CMP.B #2,ROL EXTU.W RO
BEQ L2 ADD.W #LWORD Lp, RO
CMP.B #3,ROL JMP @ERO
BNE L4 Lp:

BRA L3 :
Ll: L1l: (jump table)

Rev. 1.00 Aug. 17,2009 Page 32 of 1156
REJ10J2039-0100 RENESAS

Section 2 C/C++ Compiler Operating Method

Table 2.7 Comparison of switch Statement Expansion by Expression Value

if_then Method table Method
Value of a - - - - - - - -
Object File Size Execution Cycle Obiject File Size Execution Cycle
1 22 bytes 9 29 (26 + 3) bytes 17
3 17

INDirect: Memory Indirect Addressing Mode
C/C++ <Optimize>[Function call :]

e Command Line Format
INDirect = { Normal | Extended }

e Description
Specifies the memory indirect addressing mode for calling functions from the source program.
If indirect=normal is specified, all functions are called in memory indirect addressing mode
(@ @aa:8).
If indirect=extended is specified, all functions are called in extended memory indirect
addressing mode (@ @vec:7).

The compiler outputs an address table for memory-indirect calls of the functions defined in the
source program in the sections below:

— If indirect=normal is specified, section “$SINDIRECT”
— If indirect=extended is specified, section “SEXINDIRECT”

For details on how to specify the section name, refer to the description on the section switching
in section 10.2.1 (1), Extended Specifications Related to Memory Allocation.

e Remarks
The address table can be stored in the address ranges below:
— Section “$INDIRECT”: Area from 0x0000 to OxO0FF
— Section “$EXINDIRECT”: Area from 0x000 to 0xO1FF in the normal mode
: Area from 0x200 to 0x03FF in the other modes

At linkage, explicitly specify the location of these sections in the relevant address range with
the start option.

The indirect=extended specification is valid only when the CPU type is H8SX.

To specify memory indirect addressing mode for a specific function, use #pragma indirect,

_ _indirect, or _ _indirect_ex. These specifications are given priority compared to this option.
For details, refer to section 10.2.1 (2), Extension Functions Related to Functions.

Use either normal or extended exclusively between the definition and the call of the same
function.

Rev. 1.00 Aug. 17,2009 Page 33 of 1156
RENESAS REJ10J2039-0100

Section 2 C/C++ Compiler Operating Method

PTr16: Pointer Size Specification

C/C++ <Optimize>[2byte pointer]

Command Line Format

PTr16

Description

Sets the size of the pointer indicating data to two bytes.
Remarks

If this option is not specified, the size of the pointer indicating data is four bytes. If this option
is specified, the data section to be referenced must be explicitly located in the 16-bit absolute
address area. Addresses where to locate sections are specified with the start option of the
optimizing linkage editor. For details on the start option, refer to section 4.2.5, Section
Options. For details on the 16-bit absolute address area, refer to section 19.3, Access Range of
Short Absolute Addresses.

This option is valid only if the CPU/operating mode is H8SXA, H8SXX, H8S/2600A, or
H8S/2000A.

Take care the use of the ptrl6 option so that the handling of the same data and caller-callee
relationship of the same function are consistent among files because changing the size of the
pointer-to-data from 4 to 2 affects not only the resource allocation, but also the method to pass
a function parameter and the function return value.

ABSS8, ABS16: Short Absolute Addressing Mode

C/C++ <Optimize>[Data access :]

Command Line Format

ABSS

ABS16

Description

Accesses the data to be allocated to the static area in short absolute addressing mode.

When abs8 is specified, the compiler generates codes in 8-bit absolute addressing mode
(@aa:8) for accessing char, unsigned char, and composite data, which is 1-byte aligned,
consisting of char or unsigned char elements or members.

When abs16 is specified, the compiler generates codes for accessing data in 16-bit absolute
addressing mode (@aa:16) for the CPU/operating mode of H§SXA, H8SXX, 2600a, 2000a,
and 300ha. For the CPU/operating mode of HSSXN, H8SXM, 2600n, 2000n, 300hn, and 300,
abs16 is invalid.

Rev. 1.00 Aug. 17,2009 Page 34 of 1156
REJ10J2039-0100 RENESAS

Section 2 C/C++ Compiler Operating Method

The data to be accessed in 8-bit absolute addressing (abs8 option) is output to section name
“$ABS8C”, “$ABS8D”, or “SABS8B”. The data to be accessed in 16-bit absolute addressing
mode (abs16 option) is output to section name “$ABS16C”, “SABS16D”, or “$ABS16B”.

The variables to be accessed in short absolute addressing mode can also be specified by

#pragma abs8 and #pragma abs16, and keywords of _ _abs8 and _ _abs16. If both an
option and #pragma/keyword are specified, the #pragma/keyword specification is given

priority over the option.

Remarks

The section output by this option must be allocated to the short absolute address area at linkage.
For the range of the short absolute address area, refer to section 19.3, Access Range of Short
Absolute Addresses. For section name specifications for the short absolute address area, refer
to the description on section switching in section 10.2.1 (1), Extended Specifications Related

to Memory Allocation.

Volatile, NOVolatile: External Variable Optimization

C/C++ <Optimize>[Details...][Global variables][Treat global variables as volatile qualified]

Command Line Format

Volatile

NOVolatile

Description

When volatile is specified, the compiler does not optimize external variables.

When novolatile is specified, the compiler optimizes external variables that do not have a
volatile specifier.

When this option is not specified, the compiler assumes that novolatile is specified.
Example
Source program
volatile int a;
int b;
void main (void) {
aj
b;

}

Rev. 1.00 Aug. 17,2009 Page 35 of 1156
RENESAS REJ10J2039-0100

Section 2 C/C++ Compiler Operating Method

When volatileis specified
mov.w @ a,R0
mov.w @_b,RO ; bis accessed as a volatile variable
rts
When novolatile is specified
mov.w @ a,R0

rts ; As a result of optimization, the access to b may be deleted
OPT_Range: External Variable Optimization Range Specification
C/C++ <Optimize> [Details...][Global variables][Specify optimizing range :]

e Command Line Format
OPT_Range = { All | NOLoop | NOBlock }
e Description
When opt_range=all is specified, the compiler optimizes external variables within the entire
function.
When opt_range=noloop is specified, external variables in a loop and external variables used
in a loop iteration condition are not to be optimized.
When opt_range=noblock is specified, external variables extending across branches
(including loops) are not to be optimized.
When this option is omitted, opt_range=all is assumed.
e Examples
(1) Optimization extending across a branch (done when opt_range=all or opt_range=noloop
is specified)
int A,B,C;

void f(int a) {

A= 1;

if (a) |
B = 1;

}

C = A;

Rev. 1.00 Aug. 17,2009 Page 36 of 1156
REJ10J2039-0100 RENESAS

Section 2 C/C++ Compiler Operating Method

<Source program image after optimization>
int A,B,C;
void f(int a) {

A =1;
if (a) |
B = 1;
}
c=1; /* Reference of A is eliminated and A =1 is propagated */

(2) Optimization in a loop (done when opt_range=all is specified)
int A,B,C[100]; /* External variables */
void £() {
int i;

for (i=0;i<A;i++)

Cc[i] = B;
}
}
<Source program image after optimization>
void £() {
int i;
int temp A, temp B; /* Local variables */
temp A = A; /* Reference of A by loop iteration condition is moved outside the loop */
temp B = B; /* Reference of B in the loop is moved outside the loop */
for (i=0;i<A;i++) { /* Reference of A in the loop is eliminated */
C[i] = temp B; /* Reference of B in the loop is eliminated */
}
}
Remarks

This option is valid only when the CPU type is H8SX or H8S(without legacy=v4 option).
When opt_range=noloop is specified, max_unroll=1 is always the default.

When opt_range=noblock is specified, max_unroll=1, const_var_propagate=0, and
global_alloc=0 are always the default.

Rev. 1.00 Aug. 17,2009 Page 37 of 1156
XRENESAS REJ10J2039-0100

Section 2 C/C++ Compiler Operating Method

DEL_vacant_loop: Vacant Loop Elimination

C/C++ <Optimize>[Details...][Miscellaneous][Delete vacant loop]

Command Line Format
DEL_vacant_loop={ 0] 1}
Description

When del_vacant_loop=0 is specified, even when there is no statements inside the loop, a
loop is not eliminated.

When del_vacant_loop=1 is specified, loops without statements inside are eliminated.
When this option is omitted, del_vacant_loop=0 is assumed.
Remarks

This option is valid only when the CPU type is H8SX or H8S(without legacy=v4 option).

MAX_unroll: Loop Expansion Maximum Number Specification

C/C++ <Optimize>[Details...][Miscellaneous][Specify maximum unroll factor :]

Command Line Format
MAX_unroll = <numeric value>
Description

Specifies the maximum number of loop expansions. An integer from 1 to 32 can be specified
for <numeric value>. If any other value is specified, an error will occur.

When del_vacant_loop=1 is specified, loops with no internal processing are eliminated.

When this option is omitted, max_unroll=2 is assumed with speed or speed=loop[=2]
specified. For any other cases, max_unroll=1 is assumed.

Remarks
This option is valid only when the CPU type is H8SX or H8S(without legacy=v4 option).

When opt_range=noloop or opt_range=noblock is specified, max_unroll=1 is always the
default.

Rev. 1.00 Aug. 17,2009 Page 38 of 1156
REJ10J2039-0100 RENESAS

Section 2 C/C++ Compiler Operating Method

INFinite_loop: Elimination of Expression Preceding Infinite Loop

C/C++ <Optimize>[Details...][Global variables][Delete assignment to global variables before an
infinite loop]

Command Line Format
INFinite_loop={ 0] 1 }
Description

When infinite_loop=0 is specified, an assignment expression for external variables that is
located immediately before an infinite loop is not eliminated.

When infinite_loop=1 is specified, an assignment expression that is located immediately
before an infinite loop and that is an assignment to the external variable that is not used in the
infinite loop is eliminated.

When this option is omitted, infinite_loop=0 is assumed.
Example
int A;
void £ ()
{
A= 1; /* Assignment expression to external variable A */
while (1) {} /* Adisnotreferenced */
}
<Source program image when infinite_loop=1 is specified>
void £ ()
{
/* Assignment expression to external variable A is eliminated */

while (1) {}

Remarks

This option is valid only when the CPU type is H8SX or H8S(without legacy=v4 option).

Rev. 1.00 Aug. 17,2009 Page 39 of 1156
RENESAS REJ10J2039-0100

Section 2 C/C++ Compiler Operating Method

GLOBAL_Alloc: External Variable Register Allocation
C/C++ <Optimize>[Details...][Global variables][Allocate registers to global variables]

e Command Line Format
GLOBAL_Alloc={ 0|1}

e Description
When global_alloc=0 is specified, allocation of external variables to registers is disabled.
When global_alloc=1 is specified, external variables are allocated to registers.
When this option is omitted, global_alloc=1 is assumed.

e Remarks
This option is valid only when the CPU type is H8SX or H8S(without legacy=v4 option).
When opt_range=noblock is specified, global_alloc=0 is the default.

STRUCT_Alloc: Structure/Union Member Register Allocation
C/C++ <Optimize>[Details...][Global variables][Allocate registers to struct/union members]

e Command Line Format
STRUCT _Alloc={0]1}
e Description

When struct_alloc=0 is specified, allocation of structure or union members to registers is
disabled.

When struct_alloc=1 is specified, structure or union members are allocated to registers.
When this option is omitted, struct_alloc=1 is assumed.

e Remarks
This option is valid only when the CPU type is H8SX or H8S(without legacy=v4 option).

If struct_alloc=1 is specified and if opt_range=noblock or global_alloc=0 is specified, only
local structure or union members are allocated to registers.

Rev. 1.00 Aug. 17,2009 Page 40 of 1156
REJ10J2039-0100 RENESAS

Section 2 C/C++ Compiler Operating Method

CONST_Var_propagate: const Constant Propagation

C/C++ <Optimize>[Details...][Global variables][Propagate variables which are const qualified]

Command Line Format
CONST_Var_propagate={ 0|1}
Description

When const_var_propagate=0 is specified, constant propagation for external variables
declared by const is disabled.

When const_var_propagate=1 is specified, constant propagation is performed even for
external variables declared by const.

When this option is omitted, const_var_propagate=1 is assumed.
Example
const int x = 1;
int A;
void £() {
A = X;
}
<Source program image when const_var_propagate=1 is specified>
void £() {
A= 1; /* x=11is propagated */
}
Remarks
This option is valid only when the CPU type is H8SX or H8S(without legacy=v4 option).
When opt_range=noblock is specified, const_var_propagate=0 is the default.

Variables declared by const in a C++ program cannot be controlled by this option (constant
propagation is always performed).

LIBrary: Specific Library Function Inline Expansion

C/C++ <Optimize>[Details...][Miscellaneous][Inline memcpy/strcpy]

Command Line Format

LIBrary = { Function | Intrinsic }

Description

Regarding library functions memcpy and strcpy:

— When library=function is specified, these functions are called as functions.

— When library=intrinsic is specified, inline expansion is performed for these functions.

Rev. 1.00 Aug. 17,2009 Page 41 of 1156
RENESAS REJ10J2039-0100

Section 2 C/C++ Compiler Operating Method

Remarks

Specifying library=intrinsic is valid only when the CPU type is H8SX.

SCOpe, NOSCope: Division of Optimizing Ranges

None

Command Line Format

SCOpe

NOSCope

Description

When the scope option is specified, the compiler divides the optimizing ranges of the large-
size functions into some blocks.

When the noscope option is specified, the compiler does not divide the optimizing ranges.
When the optimizing range is expanded, the object performance is generally improved
although the compilation time becomes longer. However, if registers are insufficient, the
object performance may not be improved.

Use this option at performance tuning because it affects the object performance depending on
the program.

Remarks

This option is valid only when the CPU type is H8SX or H8S(without legacy=v4 option).

FILe_inline: Inter-file Inline Expansion

C/C++ <Optimize>[Details...][Inline][Inline file path]

Command Line Format
FILe_inline=<file name>[,...]
Description

Performs inline expansion for functions that extend across files for the files specified with
<file name>.

Remarks

When the file_inline option is specified, inline expansion is only applied to the functions
specified with #pragma inline or keyword inline included in the file specified by <file name>.
If the —speed=inline option is specified simultaneously, inline expansion is applied to all
possible functions in the file.

If a global function is defined twice or more in files as the <file name> sub-option, no
operation is guaranteed (using a single function definition randomly selected for inline
expansion).

The extension of the file name specified by <file name> cannot be omitted.

Rev. 1.00 Aug. 17,2009 Page 42 of 1156
REJ10J2039-0100 RENESAS

Section 2 C/C++ Compiler Operating Method

A file to be compiled cannot be specified with the file_inline option.
A wild card (* or ?) cannot be specified for <file name>.
If a file has #pragma asm-endasm, #pragma inline_asm or __asm, it will not be expanded.

This option is valid only when the CPU type is H8SX or H8S(without legacy=v4 option).

VOLATILE_Loop: Disabling Optimization against Loop Iteration Condition

C/C++ <Other>[Miscellaneous options :][Treats loop condition as volatile qualified]

Command Line Format

VOLATILE_Loop

Description

Disables optimization of the loop iteration condition if it includes an external variable.

Note however that if type conversion is performed, if two or more external variables are
included, or if composite operation is performed, optimization may be performed.

Remarks

This option is valid only when the CPU type is H8SX or H8S(without legacy=v4 option).

If this option is specified, external variables within the loop are not optimized even though the
volatile option has not been specified.

Without this option, if the loop iteration condition is invariant in the loop, the loop iteration
condition may be eliminated.

CMncode: Common Expression Optimization

C/C++ <Other>[Miscellaneous options :] [Put common subexpression on a register temporarily]

Command Line Format

CMncode

Description

Increases the number of target expressions for the optimization that converts a common
subexpression into a temporary variable.

In general, when the number of target expressions for common subexpression optimization is
increased by specifying this option, the temporary variables are allocated to registers and the
performance of the object program is improved. However, when there are not enough registers,
temporary variables are allocated to memory and the performance may be lowered. Use this
option examining the performance of the program at performance tuning.

Remarks

This option is valid only when the CPU type is H8/300, H8/300H or CPU type is H8S (with
legacy=v4 option)).

Rev. 1.00 Aug. 17,2009 Page 43 of 1156
RENESAS REJ10J2039-0100

Section 2 C/C++ Compiler Operating Method

ENADble_register: Preferential Allocation of register Storage Class Variables

C/C++ <Other> [Miscellaneous options :][Enable register declaration]

Format

ENAble_register

Description

Preferentially allocates the variables with register storage class specification to registers.
Remarks

If a variable cannot be allocated to a register, message C0101 (I) Register is not
allocated to "variable name" in "function name" will be output. Note, however,
that this message will not be output if a parameter is not allocated to a register. This option is
valid only when the CPU type is H§SX or H8S(without legacy=v4 option).

CPP_NOINLINE: C++ inline expansion

C/C++ <Optimize> [Details] [Inline] [Doesn't Expand C++ Inline Functions]

Format

CPP_NOINLINE

Description

In compilation of a C++ source program, this option prevents inline expansion of an inline-
specified function or a member function defined in a class or structure and generates a code as
a calling static function with internal linkage.

Remarks

This option is valid only in compilation of C++ source programs. If the inline or speed option
is specified or #pragma inline is used, the inline expansion of a function that is supposed to be
prevented by CPP_NOINLINE may be carried out.

Rev. 1.00 Aug. 17,2009 Page 44 of 1156
REJ10J2039-0100 RENESAS

Section 2 C/C++ Compiler Operating Method

2.2.5 Other Options

Table 2.8 Other Options

Command Line

ltem Format Dialog Menu Specification
Comment COMment C/C++ <Other> Allows comment (/* */)
nesting [Miscellaneous options :] nesting.
[Allow comment nest]
Embedded ECpp C/C++ <Other> Checks the syntax
C++ language [Miscellaneous options :] according to the EC++
[Check against EC++ language language specifications
specification] and determines the used
memory management
libraries.
MAC register MAcsave C/C++ <Other> Always keeps the MAC
[Miscellaneous options :] register contents

[Interrupt handler saves/restores unchanged after an
MACH and MACL registers if used] interrupt function is

called.
Enumeration Byteenum C/C++ <Other> Handles enumeration
data size [Miscellaneous options :] data declared by enum

[Treat enum as char if it is in the with char.
range of char]

Increase of Regexpansion C/C++ <Other> Uses (E)R3 to (E)R6
reg!sters for NORegexpansion [Miscellaneous gptions | . Uses (E)R4 to (E)R6
register [Increase a register for register
variables variable]
Restriction for NOLINe C/C++ <Other> Disables #line output at
output at [Miscellaneous options :] preprocessor expansion.
prepro- [Suppress #line in preprocessed
cessor source file]
expansion
Message level CHAnge_message C/C++ <Other> Changes message level.
=<sub>[,...] [User defined options :]
<sub>:<level>
[=<n>[-m],...]
<level>:{Information
| Warning
| Error }
Code DIVS_INST C/C++ <Other> Generates divs
Expansion for [User defined options :] instructions divisions.
Divisions

Rev. 1.00 Aug. 17,2009 Page 45 of 1156
RENESAS REJ10J2039-0100

Section 2 C/C++ Compiler Operating Method

Command Line
ltem Format Dialog Menu Specification

C++ STDIO C99STDIO C/C++ <Other> Uses C99’s stdio
[User defined options :]

COMment: Comment Nesting
C/C++ <Other>[Miscellaneous options :] [Allow comment nest]

e Command Line Format

COMment
e Description

Enables nested comments to be written.

When this option is omitted, if nested comments are written, an error will occur.
e Example

/* This is an example of/* nested */ comment */

T
ey

When comment is specified, the compiler handles the above line as a nested comment,
however, when the option is not specified, the compiler assumes (1) as the end of the comment.

Rev. 1.00 Aug. 17,2009 Page 46 of 1156
REJ10J2039-0100 RENESAS

Section 2 C/C++ Compiler Operating Method

ECpp: Embedded C++ Language

C/C++ <Other>[Miscellaneous options :] [Check against EC++ language specification]

Command Line Format

ECpp

Description

Checks the syntax of the C++ source program according to the Embedded C++ language
specifications. The Embedded C++ language specifications do not support catch, const_cast,
dynamic_cast, explicit, mutable, namespace, reinterpret_cast, static_cast, template,
throw, try, typeid, typename, and using. Therefore, if these keywords are written in the
source program, the compiler will output an error message.

This option also determines the memory management libraries used in EC++/C++ programs.
This option must be specified to use an EC++ library.

Remarks

The Embedded C++ language specifications do not support a multiple inheritance or virtual
base class.

If a multiple inheritance or virtual base class is written in the source program, the compiler will
show the error message "C5882 (E) Embedded C++ does not support multiple or virtual
inheritance" at compilation.

This option and the exception option cannot be specified simultaneously.

MAcsave: MAC Register

C/C++ <Other>[Miscellaneous options :]
[Interrupt handler saves/restores MACH and MACL registers if used]

Command Line Format
MAcsave
Description

The contents of the MAC register always remain unchanged after an interrupt function is
called.

When macsave is specified, and if the MAC register is used in an interrupt function or if a
function is called in the interrupt function, a save and restore code is created for the MAC
register.

If macsave is not specified, a save and restore code is created for the MAC register only when
the MAC register is used in an interrupt function.

Rev. 1.00 Aug. 17,2009 Page 47 of 1156
RENESAS REJ10J2039-0100

Section 2 C/C++ Compiler Operating Method

Byteenum: Enumeration Data Size
C/C++ <Other>[Miscellaneous options :] [Treat enum as char if it is in the range of char]

e Command Line Format
Byteenum
e Description
Handles the declared enum data as char data or unsigned char data.

If this option is specified, the compiler selects the enum data type according to the range of the
members of the enum data. If the value is in the range from —128 to 127, the compiler handles
the data as char data, whereas if the value is in the range from 0 to 255, the data is handled as
unsigned char data.

When this option is not specified or at least one of the enum data members exceeds the above
range, even if this option is specified, the enum data is handled as int data.
e Example
Source program
enum EM {a,b,c} E;
void main(void) {E=Db;}
When byteenum is specified
mov.b #1,RO0L ; Transfers a 1-byte data
mov.b ROL,@ E
rts
_E:
.res.b 1 ; Allocates a 1-byte area to E
When byteenum is not specified
mov.w #1,R0 ; Transfers a 2-byte data
mov.w RO,@ E
rts
E:

.res.w 1 ; Allocates a 2-byte area to E

Rev. 1.00 Aug. 17,2009 Page 48 of 1156
REJ10J2039-0100 RENESAS

Section 2 C/C++ Compiler Operating Method

Regexpansion, NORegexpansion: Increasing Number of Registers for Register Variables

C/C++ <Other>[Miscellaneous options :] [Increase a register for register variable]

Command Line Format
Regexpansion
NORegexpansion
Description

When regexpansion is specified, the compiler increases the number of registers to which
register variables are allocated.

When noregexpansion is specified, the compiler does not increase the number of registers to
which register variables are allocated.

Generally, variable-access speed increases when the number of registers is increased.

For details on register variable allocation, refer to section 9.3.2 (3), Rules concerning registers.
When this option is not specified, the compiler assumes that regexpansion is specified.
Remarks

The regexpansion/noregexpansion specification is invalid when the CPU type is HS§SX or
H8S.

Rev. 1.00 Aug. 17,2009 Page 49 of 1156
RENESAS REJ10J2039-0100

Section 2 C/C++ Compiler Operating Method

NOLINe: Restriction for Output at Preprocessor Expansion

C/C++ <Other>[Miscellaneous options :] [Suppress #line in preprocessed source file]

Command Line Format

NOLINe

Description

When this option is specified, disables #line output at preprocessor expansion.
Remarks

This option is valid only when preprocessor is specified.

CHAnge_message: Message Level

C/C++ <Other>[Use defined options :]

Command Line Format

CHAnge_message = <sub>[,...]
<sub> : <error level>[=<error number>[- <error number>][,...]]
<error level> : { Information | Warning | Error }

Description

Changes the message level of information-level and warning-level messages.
Example

change message=information=1001,5038-5047

Warning-level messages with the specified error numbers C1001 and from C5038 to C5047
are changed to information-level messages.

change message=warning=5007-5009

Information-level messages with the specified error numbers from C5007 to C5009 are
changed to warning-level messages.

change message=error=2-1024

Information-level and warning-level messages with the specified error numbers from C0002 to
C1024 are changed to error-level messages.

change message=information

All the warning-level messages are changed to information-level messages.

change message=warning

All the information-level messages are changed to warning-level messages.

change message=error

All the information-level and warning-level messages are changed to error-level messages.

Rev. 1.00 Aug. 17,2009 Page 50 of 1156
REJ10J2039-0100 RENESAS

Section 2 C/C++ Compiler Operating Method

Remarks

Output of the messages which were changed to the information-level can be suppressed by the
nomessage option.

An error number which is not defined is ignored.

When this option is specified more than once, all the specifications are valid. If a number is
specified more than once, the last specification is valid.

DIVS_INST : Code Expansion for Divisions

C/C++ <Other>[User defined options :]

Command Line Format

DIVS_INST

Description

When this option is specified, divs instructions are always generated regardless of the type of
the divisor. For the CPU type H8SX (e.g. H8SX/17xx), program execution may be faster.
Since the effect of this option depends on the program, we recommend that this option be
specified at performance tuning.

Remarks

Thedivs inst option isvalid only when the CPU typeis H8SX or AES.

C99STDIO : C++ STDIO

C/C++ <Other>[User defined options :]

Command Line Format

C99STDIO

Description

Specify the C99 stdio’s library is used if cpp is selected as lang option.
Remarks

Specify ¢99stdio if low-level interface routines for C99 and a source file is compiled as C++
language. And generating a library and a relocatable object file are specified as well.

If the library or relocatable object is generated without ¢99stdio, the absolute file may not
work.

This is option is valid if lang=cpp only.

Rev. 1.00 Aug. 17,2009 Page 51 of 1156
RENESAS REJ10J2039-0100

Section 2 C/C++ Compiler Operating Method

2.2.6 CPU Options
Table 2.9 CPU Options
Item Command Line Format Dialog Menu Specification
CPU/operating CPu = CPU
mode { AE5 ceu: AE5*3
[Multiple/Divide :]
| HBSXN [:<*2>] H8SX normal mode
| HBSXM[:<*1>][:<*2>] H8SX middle mode
| HBSXA[:<*1>][:<*2>] H8SX advanced mode
| HBSXX[:<*1>][:<*2>] H8SX maximum mode
| 2600N H8S/2600 normal mode
| 2600A[:<*1>] H8S/2600 advanced mode
| 2000N H8S/2000 normal mode
| 2000A[:<*1>] H8S/2000 advanced mode
| 300HN-20 H8/300H normal mode
| 300HA [:<*1>] H8/300H advanced mode
| 300 | 300L | 300Reg } H8/300
Parameter REGParam={ 2 CPU Uses (E)RO and (E)R1

storage register

[Change number of

| 3} parameter registers from 2Uses (E)RO, (E)R1, and
(default) to 3] (E)R2
Allocating STRUctreg CPU Allocates 4-byte or less
structure NOSTRUctreg [Eass gtruct parameter structure parametgr or
parameter or via register] return value to register.
return value to
register
Allocating 4-byte LONgreg CPU Allocates 4-byte parameter
parameter or NOLONgreg [Pass 4-byte parameter/ or return value to register
return value to return value via register] (cpu=300).
register
double to float DOuble=Float CPU Handles double-type
conversion [Treat double as float] variable as float-type
variable.
Stack size STAck = { CPU Specifies stack calculation
specification [Stack calculation] size:
Small 1 byte
| Medium 2 bytes
| Large } 4 bytes

Rev. 1.00 Aug. 17,2009 Page 52 of 1156
REJ10J2039-0100

RENESAS

Section 2 C/C++ Compiler Operating Method

Table 2.9 CPU Options (cont)
Item Command Line Format Dialog Menu Specification
Runtime type RTti = { ON CPU Enables dynamic_cast and
information [Enable/disable runtime typeid.
| OFf } information] Disables dynamic_cast and
typeid.
Exception EXception CPU Enables exception
processing [Use try, throw and catch processing function
NOEXception of C++] Disables exception
processing function.
Boundary PAck = {1 CPU Assumes the boundary
alignment of |2} [Pack struct, union and alignment value to be 1.
structure, union, - class] Follows the boundary
and class alignment.
members
8-bit absolute SBr = <address> CPU Specifies the start address

area address

[Specify SBR address :]

of the 8-bit absolute area.

Bit field order Blt_order {= Left C/C++ <Object> Stores members from
gpecifica- | Right >} [Bit field alloc-order :] upper bit.
tion Stores members from lower
bit.
C89 STDIO C89STDIO CPU C89 stdio uses in C99
[Use C89 stdio in C99
library]

Notes: 1. Bit width of address space

2. Specification of multiplier and divider
3. For details, refert to section 17, Feature for AE5/RS4.

Rev. 1.00 Aug. 17,2009 Page 53 of 1156

RENESAS

REJ10J2039-0100

Section 2 C/C++ Compiler Operating Method

CPu: CPU/Operating Mode
CPU [CPU:][Multiple/Divide :]

e Command Line Format
CPu= {AE5|

RS4 [: <multiplier specification>] |
HS8SXN [: <multiplier and divider specification>] |
H8SXM [: <address space bit width>][: <multiplier and divider specification>] |
H8SXA [: <address space bit width>][: <multiplier and divider specification>] |
H8SXX [: <address space bit width>][: <multiplier and divider specification>] |
2600N |

2600A [: <address space bit width>] |
2000N |
2000A [: <address space bit width>] |
300HN |
300HA [: <address space bit width>] |
300 | 300L | 300Reg }
<address space bit width> : {20 | 24 | 28 | 32}
<multiplier specification>: {M } M:multiplier
<multiplier and divider specification> : {M | D | MD} M:multiplier, D:divider
e Description
Specifies the CPU type and operating mode for the object program to be created.

If no input is made for the multiplier and divider specification, assumed there is no multiplier
and divider.

Sub-options and their specifiable bit widths are listed in table 2.10.

Rev. 1.00 Aug. 17,2009 Page 54 of 1156
REJ10J2039-0100 RENESAS

Section 2 C/C++ Compiler Operating Method

Table 2.10 Suboptions for cpu Option

Suboption Description Bit Width Miltiplier/Divider
AES5 Object for AE5 — —

RS4 Object for RS4 — M
H8SXN H8SX normal mode — M, D, MD
H8SXM H8SX middle mode 20, 24 M, D, MD
H8SXA H8SX advanced mode 20, 24, 28, 32 M, D, MD
H8SXX H8SX maximum mode 28, 32 M, D, MD
2600n H8S/2600 normal mode — —
2600a H8S/2600 advanced mode 20, 24, 28, 32 —
2000n H8S/2000 normal mode — —
2000a H8S/2000 advanced mode 20, 24, 28, 32 —
300hn H8/300H normal mode — —
300ha H8/300H advanced mode 20, 24 —

300 Object for H8/300 — —

3001 Object for H8/300 — —

Provided to maintain the compatibility with
the assembiler.

300reg Object for H8/300 — —

Provided to maintain the compatibility with
the older version of the C compiler.

Note: When the bit width is not specified, the underlined default value is assumed.

e Example

-cpu H8SXM:20 ; Without multiplier and divider, H8SX middle mode with 20-bit width

-cpu = h8sxa:32:md ; With multiplier and divider, H8SX advanced mode with 32-bit width
-cpu = H8SXA:D ; With divider, H8SX advanced mode with 24-bit width

e Remarks
When the cpu option is not specified, the compiler uses the H38CPU environment variable
specifications. When the cpu option and the H38CPU environment variable are specified, the
compiler uses the cpu specifications. When neither the cpu option nor the H38CPU
environment variable is specified, an error will occur. For the CPU sub-option of AES and RS4,
see section 17, Feature for AES/RS4.

Rev. 1.00 Aug. 17,2009 Page 55 of 1156
XRENESAS REJ10J2039-0100

Section 2 C/C++ Compiler Operating Method

REGParam: Parameter Storage Register

CPU [Change number of parameter registers from 2(default) to 3]

Command Line Format

REGParam = { 2|3}

Description

Specifies the number of registers for storing parameters.

If regparam=2 is specified, parameters are passed in two registers: ERO and ER1 (RO and R1
for the H8/300).

If regparam=3 is specified, parameters are passed in three registers: ERO, ER1, and ER2 (RO,
R1, and R2 for the H8/300).

When this option is not specified, regparam=2 is assumed.

STRUctreg, NOSTRUctreg: Register Allocation of Structure Parameters

CPU [Pass struct parameter via register]

Command Line Format

STRUctreg

NOSTRUctreg

Description

Specifies whether structure parameters or return values are allocated to registers or not.
If nostructreg is specified, parameters are passed via a memory instead of a register.
If structreg is specified, parameters can be passed via a register.

The size of structures which can be passed as parameters are 2 bytes when CPU=300, and 4
bytes for other CPU specifications.

When this option is omitted, nostructreg is assumed.

Remarks

If the CPU is H8/300 and the longreg is specified, up to 4 bytes of data can be allocated to a
register as a parameter and a return value.

Rev. 1.00 Aug. 17,2009 Page 56 of 1156
REJ10J2039-0100 RENESAS

Section 2 C/C++ Compiler Operating Method

LONgreg, NOLONgreg: Register Allocation of 4-Byte Parameters

CPU [Pass 4-byte parameter/return value via register]

Command Line Format

LONgreg

NOLONgreg

Description

Specifies whether 4-byte parameters or return values are allocated to registers or not.

The type of variable to be allocated to a register by this option is long, unsigned long, and
float.

If nolongreg is specified, parameters are passed via a memory instead of a register.
If longreg is specified, parameters can be passed via a register.

When this option is omitted, nolongreg is assumed.

Remarks

This option can be specified only when the CPU is H8/300.

When the CPU is not H8/300, 4-byte data can always be allocated to registers.

DOuble=Float: double to float Conversion

CPU [Treat double as float]

Command Line Format
DOuble=Float
Description

Generates an object after converting double-type (double-precision floating-point)
variables/values to float-type (single-precision floating-point) ones.

Rev. 1.00 Aug. 17,2009 Page 57 of 1156
RENESAS REJ10J2039-0100

Section 2 C/C++ Compiler Operating Method

STAck: Stack Size Specification

CPU [Stack calculation :]

Command Line Format

STAck = { Small | Medium | Large }
Description

Specifies the stack size.

When stack=small is specified, stack addresses are calculated only in the least significant
1 byte without a carry to the upper bytes.

When stack=medium is specified, stack addresses are calculated only in the least significant
2 bytes without a carry to the upper bytes.

When stack=large is specified, stack addresses are calculated as 4byte value.
When this option is omitted, stack=medium is assumed.

Remarks

This option should be specified to the whole program with the same suboption.

If stack address calculation is performed with a size larger than the specified size, or a variable
is allocated beyond the 1-byte, 2-byte and 4-byte address boundary values, the compiler does
not output an error or warning message. Note, however, that the goptimize option allows the
output of these warning messages by the optimizing linkage editor.

In this case, increase the size of the stack.

Example:
-stack=small

H'FEOO
Allocate the stack so that stack

addresses can be operated within .
1 byte. STACK Section

HFEFF

Rev. 1.00 Aug. 17,2009 Page 58 of 1156
REJ10J2039-0100 RENESAS

Section 2 C/C++ Compiler Operating Method

RTti: Runtime Type Information

CPU [Enable/disable runtime information]

Command Line Format

RTti = { ON | OFf }

Description

Enables or disables runtime type information.

When rtti=on is specified, dynamic_cast and typeid are enabled.
When rtti=off is specified, dynamic_cast and typeid are disabled.
When this option is omitted, rtti=off is assumed.

Remarks

Do not define object files which are created by specifying this option in a library, and do not
output files with this information as relocatable object files. A symbol double definition error
or symbol undefined error will occur.

EXception, NOEXception: Exception Processing

CPU [Use try, throw and catch of C++]

Command Line Format

EXception

NOEXception

Description

When noexception is specified, the C++ exception processing functions are disabled.

When exception is specified, the C++ exception processing functions (try, catch, and throw)
are enabled.

When an exception processing function is used, the code performance may be reduced.
When this option is omitted, noexception is assumed.

The exception option and ecpp option cannot be specified simultaneously.

Rev. 1.00 Aug. 17,2009 Page 59 of 1156
RENESAS REJ10J2039-0100

Section 2 C/C++ Compiler Operating Method

PAck: Boundary Alignment of Structure, Union, and Class Members
CPU [Pack struct, union and class]

e Command Line Format
PAck ={1]2}
e Description
Specifies the boundary alignment of structure, union, and class members.

Boundary alignment of structure members can also be specified by the #pragma pack
extension. If both this option and #pragma are specified, only #pragma is valid.

The boundary alignment of structures, unions, and classes equals to the maximum boundary
alignment of members.

For details, refer to section 10.1.2 (2), Compound Type (C), Class Type (C++).
When this option is not specified, the compiler assumes that pack=2 is specified.
e Remarks

Table 2.11 shows the boundary alignment of structure, union, and class members when pack is
specified.

Table 2.11 Boundary Alignment of Structure, Union, and Class Members when the pack

Option is Specified
Not

Member Type pack=1 pack=2 Specified
[unsigned] char 1 1 1
[unsigned] short, [unsigned] int, [unsigned] long, 1 2 2
floating-point type, pointer type
Structures, unions, and classes aligned to a 1-byte 1 1 1
boundary
Structures, unions, and classes aligned to a 2-byte 1 2 2
boundary

A member of a struct, union or class to which the pack=1 option or #pragma pack 1 is
specified must not be accessed via a pointer (including an access via a pointer in a member
function).

Rev. 1.00 Aug. 17,2009 Page 60 of 1156
REJ10J2039-0100 RENESAS

Section 2 C/C++ Compiler Operating Method

Example: (cpu=2600a and pack=1)
struct S {
char x;
int y;
}os;
int *p=&s.y; [/ the address of s.y can be an odd nunber
void test ()
{
s.y=1; [/ accessed correctly
*p =1; [/ can be accessed incorrectly

SBr: 8-Bit Absolute Area Address Specification

CPU [Specify SBR address :]

Command Line Format

SBr = <address>

Description

Specifies the start address of the 8-bit absolute area.

When sbr=<address> is specified, a 1-byte area starting from <address> is used as the 8-bit
absolute area.

Remarks

This option is valid only when the CPU type is HSX.

An <address> should be within a data area.

When this option is omitted, the default 8-bit absolute address is assumed as <address>. For
details on the 8-bit absolute address area, refer to section 19.3, Access Range of Short
Absolute Addresses.

Example

ch38 -sbr=A0000 test.c
Compiled assuming the 8-bit absolute address area begins at 0OxA0000.

Rev. 1.00 Aug. 17,2009 Page 61 of 1156
RENESAS REJ10J2039-0100

Section 2 C/C++ Compiler Operating Method

BIt_order: Bit Field Order Specification
CPU [Bit field alloc-order]

e Command Line Format
BlIt_order = { Left | Right }
e Description
Specifies the order of bit field members.
When bit_order=left is specified, members are allocated from the most significant bit.
When bit_order=right is specified, members are allocated from the least significant bit.
When this option is not specified, the compiler assumes that bit_order=left is specified.
e Remarks

For details on allocation of bit field members, refer to section 10.1.2, Internal Data
Representation, and the description on #pragma bit_order in section 10.2.1, #pragma
Extension Specifiers and Keywords.

Keep the order of the same bit field members consistent among files.
C89STDIO: C89’s stdio
CPU [Use C89 stdio in C99 library]

e Command Line Format
C89STDIO

e Description
Specify the C89(legacy) stdio’s library is used if C99 is selected as lang option.
C99 stdio features are not available. C89 stdio features only.

e Remarks

Specify c89stdio if low-level interface routines which works on V.6.02.01 or before are used
and a source is compiled as C99. And generating a library and a relocatable object file are
specified as well.

If the library or relocatable object is generated without ¢89stdio, the absolute file may not
work.

This is option is valid if lang=c99 only.

Rev. 1.00 Aug. 17,2009 Page 62 of 1156
REJ10J2039-0100 RENESAS

Section 2 C/C++ Compiler Operating Method

2.277 Options Other Than Above

Table 2.12 Options Other Than Above

Command Line

ltem Format Dialog Menu Specification
SelectingCor LANg={C — Compiled as C source program.
C++ language | CPp (Determined by an Compiled as C++ source program.
|Ccggy ©xtension) Compiled as C99 source program.

Disable of LOGO — Outputs copyright.
copyright output N6 oGO (nologo is always valid) Disables copyright output.
Character code EUc — Selects euc code.
gelect In string SJis Selects sjis code.
literal

LATin1 Selects latin1 code.

UTF8 Selects UTF8 code
Japanese OUtcode = { Euc — Selects euc code.
charactgr . | Sjis Selects sjis code.
conversion within
object code | UTF8} Selects UTF8 code.
Subcommand fileSUbcommand = — Command option is fetched from the

<file name> file specified with <file name>.

LANg: Selecting C or C++ Language

None (Always determined by an extension)

Command Line Format

LANg={ C|CPp|C99 }

Description

Specifies the language of the source program.

If lang=c is specified, the compiler will compile the program file as a C source program.

If lang=cpp is specified, the compiler will compile the program file as a C++ source program.

If lang=c99 is specified, the compiler will compile the program file as a C99 source program.
If this option is not specified, the compiler will determine whether the source program is a C or
a C++ program by the extension of the source program file name. If the extension is c, the
compiler will compile it as a C source program. If the extension is cpp, cc, or cp, the compiler
will compile it as a C++ source program. If there is no extension, the compiler will compile
the program as a C source program.

Rev. 1.00 Aug. 17,2009 Page 63 of 1156
RENESAS REJ10J2039-0100

Section 2 C/C++ Compiler Operating Method

e Example
ch38 test.c Compiled as a C source program.
ch38 test.cpp Compiled as a C++ source program.
ch38 -lang=cpp test.c Compiled as a C++ source program.
ch38 test Assumed to be test.c and thus compiled as a C source program.
e Remarks
If lang=c is specified, ecpp is invalid.
Variable assignment is different between lang=c and lang=c99.
Variable length array in C99 is not supported.
example:
int func(int iSize) {
char cal[iSize+1]; // Variable length array

return sizeof (ca);

}

LOGO, NOLOGO: Disable of Copyright Output
None (nologo is always available)

e Command Line Format
LOGO
NOLOGO
e Description
Disables the copyright output.
When logo is specified, copyright display is output.
When nologo is specified, the copyright display output is disabled.

When this option is omitted, logo is assumed.

Rev. 1.00 Aug. 17,2009 Page 64 of 1156
REJ10J2039-0100 RENESAS

Section 2 C/C++ Compiler Operating Method

EUc, SJis, LATinl: Character Code Select in String Literal
None

e Command Line Format
EUc
Slis
LATinl
UTF8
e Description

Use this option to specify the character code to be output to the object program for Japanese
language or ISO-Latinl code written in a string literal, a character constant, or a comment.

Table 2.13 shows character code in the string literal for three types of host computers.

Table 2.13 Relationship between Host Computer and Character Code in String Literal

Option Specification
Host Computer euc sjis latin1 UTF8 Not Specified

PC euc sjis latin1 utf8 sjis

e Remarks

If latin1 is specified, outcode will be invalid.
OUtcode: Japanese Code Conversion in Object Code
None

e Command Line Format
OUtcode = Euc | Sjis | UTF8
e Description

Specifies the Japanese character code to be output to the object program when Japanese is
written in string literal and character constants.

If outcode=euc is specified, the compiler outputs the Japanese character code in the euc code.
If outcode=sjis is specified, the compiler outputs the Japanese character code in the sjis code.
If outcode=utf8 is specified, the compiler outputs the Japanese character code in the utf8 code.

euc or sjis can be specified for the Japanese character code in a source program.

Rev. 1.00 Aug. 17,2009 Page 65 of 1156
RENESAS REJ10J2039-0100

Section 2 C/C++ Compiler Operating Method

SUbcommand: Subcommand File
None

e Command Line Format
SUbcommand = <subcommand file name>
e Description

Specifies the subcommand file where options used at compiler initiation are stored. The
command format in the subcommand file is the same as that on the command line.

e Example
opt.sub: -show=object -debug -byteenum
Command line specification: ch38 -cpu=2600a -subcommand=opt.sub test.c

Interpretation by compiler: ch38 -cpu=2600a -show=object -debug
-byteenum test.c

Rev. 1.00 Aug. 17,2009 Page 66 of 1156
REJ10J2039-0100 RENESAS

Section 3 Assembler Options

Section 3 Assembler Options

3.1 Command Line Format
The format of the command line to initiate the assembler is as follows:

asm38 [A<option> ..] [A<file name> [,..*]] [A<options> ..]

<option>: -<option> [=<suboptions> [,..]]

Note*: When the user specifies multiple source files, the assembler will merge and assemble
these files as one unit in the order they were specified. In this case, the user must
write the .END assembly directive only in the file that was specified last.

3.2 List of Options

Table 3.1 shows assembler option formats, abbreviations, and defaults. In the command line
format, uppercase letters indicate the abbreviations. Characters underlined indicate the default
assumptions.

The format of the dialog menus that correspond to the HEW is as follows:
Tab name [Item]

Options are described in the order of tabs in the HEW option dialog box.

Rev. 1.00 Aug. 17,2009 Page 67 of 1156
RENESAS REJ10J2039-0100

Section 3 Assembler Options

3.2.1 Source Options

Table 3.1 Source Options

Item Command Line Format Dialog Menu Specification

Include file Include = <path name>[,...] Assembly <Source> Specifies include-file
directory [Show entries for :] destination path name.
[Include file directories]

Replacement DEFine = <sub>][, ...] Assembly <Source> Defines replacement string
symbol <sub>: [Show entries for :] literal.
definition <replacement symbol> [Defines]
= <string literal>
Integer ASsignA = <sub>[, ...] Assembly <Source> Defines integer preprocessor
preprocessor <sub>: [Show entries for :] variable.
variable <variable name> [Preprocessor
definition = <integer constant> variables]
Character ASsignC = <sub>|, ...] Assembly <Source> Defines character preprocessor
preprocessor <sub>: [Show entries for :] variable.
variable <variable name> [Preprocessor
definition = <string literal> variables]

Rev. 1.00 Aug. 17,2009 Page 68 of 1156
REJ10J2039-0100 RENESAS

Section 3 Assembler Options

Include

Assembly <Source> [Show entries for :] [Include file directories]

Command Line Format

Include = <path name> [,...]

Description

The include option specifies the include file directory. The directory name depends on the
naming rule of the host machine used. As many directory names as can be input in one
command line can be specified. The current directory is searched first, and then the directories
specified by the include option are searched in the specified order.

Example: asm38 aaa.mar -include=c:/usr/tmp,c:/tmp

(.INCLUDE "file.h" is specified in aaa.mar.)

The current directory, c:/usr/tmp, and c:/tmp are searched for file.h in that order.

Relationship with Assembler Directives

Option Assembler Directive Result
include (regardless of any specification) (1) Directory specified
by .INCLUDE
(2) Directory specified by
include*
(no specification) .INCLUDE <file name> Directory specified by .INCLUDE

Note: The directory string literals specified by the include option must come before the literal

specified by .INCLUDE directive.

Rev. 1.00 Aug. 17,2009 Page 69 of 1156
RENESAS REJ10J2039-0100

Section 3 Assembler Options

DEFine
Assembly <Source> [Show entries for :] [Defines]

e Command Line Format

DEFine = <sub> [,...]
<sub>: <replacement symbol> = <string literal>

e Description

The define option defines the specified symbol as the corresponding string literal to be
replaced by the preprocessor.

Differences between the define option and the assignc option are the same as those
between .DEFINE and .ASSIGNC.

Relationship with Assembler Directives

Option Assembler Directive Result

define .DEFINE directive* String literal specified by define
(no specification) String literal specified by define

(no specification) .DEFINE directive String literal specified by .DEFINE

Note: When a string literal is assigned to a replacement symbol by the define option, the
definition of the replacement symbol by .DEFINE is invalidated. This replacement is not
applied to the .AENDI, .AENDR, .AENDW, .AIFDEF, .END, .ENDM, .ENDI, .ENDS,
and .ENDW, directives.

Rev. 1.00 Aug. 17,2009 Page 70 of 1156
REJ10J2039-0100 RENESAS

Section 3 Assembler Options

ASsignA

Assembly <Source> [Show entries for :][Preprocessor variables]

Command Line Format

ASsignA = <sub>[,...]

<sub>: <preprocessor variable> = <integer constant>

Description

The assigna option sets an integer constant to a preprocessor variable. The naming rule of
preprocessor variables is the same as that of symbols. An integer constant is specified by
combining the radix (B', Q', D', or H') and a value. If the radix is omitted, the value is assumed
to be decimal. An integer constant must be within the range from —2,147,483,648 to
4,294,967,295. To specify a negative value, use a radix other than decimal.

Example: asm38 aaa.mar -assigna=_ $=H'FF

Value H'FF is assigned to preprocessor variable _$. All references (\&_$) to preprocessor
variable _$ in the source program are set to H'FF.

Remarks

If the host computer OS is UNIX, and if the dollar mark ($) is in the preprocessor variable or
the apostrophe (') of the radix is in the integer constant, a backslash (\) must be specified
before the dollar mark ($) or the apostrophe (') of the radix.

Relationship with Assembler Directives

Option Assembler Directive Result

assigna .ASSIGNA* Integer constant specified by assigna
(no specification) Integer constant specified by assigna

(no specification) .ASSIGNA Integer constant specified by .ASSIGNA

Note: When a value is assigned to a preprocessor variable by the assigna option, the definition of

the preprocessor variable by .ASSIGNA is invalidated.

Rev. 1.00 Aug. 17,2009 Page 71 of 1156
RENESAS REJ10J2039-0100

Section 3 Assembler Options

ASsignC

Assembly <Source> [Show entries for :][Preprocessor variables]

Command Line Format

ASsignC = <sub>
<sub>: <preprocessor variable> = <string literal>

Description

The assignc option sets a string literal to a preprocessor variable.

The naming rule of preprocessor variables is the same as that of symbols.
A string literal must be enclosed with double-quotation marks (").

Up to 255 characters can be specified for a string literal.

Example: asm38 aaa.mar -assignc=_$=ON!OFF

String literal ON!OFF is assigned to preprocessor variable _$. All references (\&_$) to
preprocessor variable _$ in the source program are set to ON!OFF.

Remarks

To specify the following characters in a string literal when the host computer OS is UNIX,
specify a backslash (\) before the characters. To specify a string literal before or after the
following characters, enclose the string literal with double-quotation marks (").

— Exclamation mark (!)

— Double-quotation mark (")
— Dollar mark ($)

— Single quotation mark (")

Relationship with Assembler Directives

Option Assembler Directive Result

assignc .ASSIGNC* String literal specified by assignc
(no specification) String literal specified by assignc

(no specification) .ASSIGNC String literal specified by .ASSIGNC

Note: When a string literal is assigned to a preprocessor variable by the assignc option, the

definition of the preprocessor variable by .ASSIGNC is invalidated.

Rev. 1.00 Aug. 17,2009 Page 72 of 1156
REJ10J2039-0100 RENESAS

Section 3 Assembler Options

3.2.2 Object Options

Table 3.2 Object Options

Item Command Line FormatDialog Menu Specification
Debugging Debug Assembly <Object> Outputs debug information.
information NODebug [Debug information :] Not output debug information.
Pre-processorEXPand Assembly <Object> Outputs preprocessor expansion
expansion [= <output file name>] [Generate assembly result.
result source file after
preprocess]
Optimization OPtimize Assembly <Object> Optimized.
NOOPtimize [Optimize] Not optimized.
Displacement BR relative = <sub> Assembly <Object> Sets the default size for the
size setting [Default of branch number of bits used to represent
displacement size :] displacements for branch
instructions.
<sub>: { 8| Set to 8 bits.
16} Set to 16 bits.
Inter-module GOptimize Assembly <Object> Outputs additional information for
optimization [Generate file for inter- inter-module optimization.
module optimization]
Object Object Assembly <Object> Outputs an object file.
module [= <output file name>] [Output file directory :]
output NOObject

Not output an object file.

Rev. 1.00 Aug. 17,2009 Page 73 of 1156
RENESAS REJ10J2039-0100

Section 3 Assembler Options

Debug, NODebug
Assembly <Object> [Debug information :]

e Command Line Format
Debug

NODebug
e Description

The debug option specifies output of debugging information. The nodebug option specifies
no output of debugging information. The debug and nodebug options are only valid in cases
where an object module is generated.

e Remarks

Debugging information is required when debugging a program with the debugger. Debugging
information includes information about source statement lines and symbols.

Relationship with Assembler Directives

The assembler gives priority to specifications made by options.

Option Assembler Directive Result
debug (regardless of any specification) Debugging information is output.
nodebug (regardless of any specification) Debugging information is not
output.
(no specification) .OUTPUT DBG Debugging information is output.
.OUTPUT NODBG Debugging information is not
output.
(no specification) Debugging information is not
output.

Rev. 1.00 Aug. 17,2009 Page 74 of 1156
REJ10J2039-0100 RENESAS

Section 3 Assembler Options

EXPand

Assembly <Object> [Generate assembly source file after preprocess]

Command Line Format
EXPand [= <output file name>]
Description

The expand option outputs an assembler source file for which macro expansion, conditional
assembly, structured assembly, and file inclusion have been performed.

When this option is specified, no object will be generated.
When the output file parameter is omitted, the assembler takes the following actions:
— If the file extension is omitted:
The file extension will be exp.
— If the specification is completely omitted:

The source file name will be the same name as that of the input source file (the source file
specified first) and the file extension will be exp.

Remarks

Do not specify the same file name for the input and output files.

Rev. 1.00 Aug. 17,2009 Page 75 of 1156
XRENESAS REJ10J2039-0100

Section 3 Assembler Options

OPtimize, NOOPtimize
Assembly <Object> [Optimize]

e Command Line Format

OPtimize
NOOPtimize
e Description
The optimize option specifies whether or not to optimize the PC relative format, displacement
size of register-indirect with displacement, and address size of the absolute addressing format.

Regarding the MOVA instruction of H8SX, the optimization is performed or not as shown in
the table below.

The frist operand Whether optimized or not
@ (disp,Reg) *1 Yes
@(disp,@ERn.sz) 2 Yes

@ (disp, @+ERn.sz) or @(disp,@-ERn.sz) =2 Yes

@(disp, @ ERn+.sz) or @ (disp, @ERnN-.sz) *2 Yes

@(disp, @ (disp,Req).sz) *2 *3 No

@ (disp, @abs.sz) =2 No

Note: 1. “Reg” can be RnL.B, RnH.B, Rn.W or En.W.
2. “sz” can be either B or W.
3. “Reg” can be ERn, RnL.B, Rn.W or ERn.L.

This option is valid for executable instructions when a displacement (:8 or :16) is not specified,
or an allocated size (:8, :16, :24, or :32) of an absolute address is not specified. The
displacement size is set as shown below according to the displacement value of the PC relative
format.

When no optimization is specified in the H8S/2600 advanced mode:

Type of Displacement Size
Absolute value (-32768 to 32767) 16 bits*
Relative value 16 bits
External reference value 16 bits

Note: Only valid when an absolute symbol that is defined after the instruction is referenced.

Rev. 1.00 Aug. 17,2009 Page 76 of 1156
REJ10J2039-0100 RENESAS

Section 3 Assembler Options

When optimization is specified in the H8S/2600 advanced mode:

Type of Displacement Size

Absolute value (-128 to 127) 8 bits
(-32768 to —129) 16 bits
(128 to 32767)

Relative value 16 bits

External reference value 16 bits

Example

asm38 aaa.mar -optimize

The object module is optimized.

asm38 aaa.mar

The object module is not optimized.

Relationship with Assembler Directives

The assembler gives priority to specifications made by using options

Option 1 Option 2 Assembler Directive Result

optimize (regardless of (regardless of any specification) Optimized number of bits
esl;:’:za,cification)

nooptimize br_relative (regardless of any specification) Number of bits specified by

br_relative
(no .DISPSIZE Number of bits specified
specification) by .DISPSIZE
(no specification) 8 bits
Note: The optimize option has priority over the br_relative option for the output of the object

module and the .DISPSIZE directive.

Rev. 1.00 Aug. 17,2009 Page 77 of 1156

RENESAS

REJ10J2039-0100

Section 3 Assembler Options

BR_relative
Assembly <Object> [Default of branch displacement size :]

e Command Line Format
BR_relative = {8 | 16}
e Description
The br_relative option specifies a default size for the displacements of the instructions that
reference the symbol which is defined in advance.
— 8: The default size is 8 bits
— 16: The default size is 16 bits
This option is valid when a displacement size (:8 or :16) is specified and the optimize option
has not been specified.
e Remarks
In the H8/300 and the H8/300L, br_relative has a fixed value of 8, and thus has no meaning.

Relationship with Assembler Directives

The assembler gives priority to specifications made by options.

Option 1 Option 2 Assembler Directive Result
optimize (regardless of (regardless of any specification) Optimized number of bits
any
specification)
nooptimize br_relative (regardless of any specification) Number of bits specified by
br_relative
(no .DISPSIZE Number of bits specified
specification) by .DISPSIZE
(no specification) 8 bits

cpu=300, 300L, 300HN, 2000N,
2600N, H8SXN

(no specification) 16 bits
cpu=300HA, 2000A, 2600A,
H8SXM, H8SXA, H8SXX, AE5

Note: The optimize option has priority over the br_relative option for the output of the object
module and the .DISPSIZE directive.

Rev. 1.00 Aug. 17,2009 Page 78 of 1156
REJ10J2039-0100 RENESAS

Section 3 Assembler Options

GOptimize

Assembly <Object> [Generate file for inter-module optimization]

Command Line Format
GOptimize
Description

The goptimize option specifies outputs of additional information for the inter-module
optimization. Inter-module optimization is performed when the files for which this option is
specified are linked.

Object, NOObject

Assembly <Object> [Output file directory :]

Command Line Format
Object [= <output file name>]
NOObject
Description
The object option specifies output of an object module.
The noobject option specifies no output of an object module.
When the object output file parameter is omitted, the assembler takes the following actions:
— If the file extension is omitted:
The file extension will be obj.
— If the specification is completely omitted:

The source file name will be the same name as that of the input source file (the source file
specified first) and the file extension will be obj.

Relationship with Assembler Directives

The assembler gives priority to specifications made by options.

Option Assembler Directive Result

object (regardless of any specification) An object module is output.

noobject (regardless of any specification) An object module is not output.

(no specification) .OUTPUT OBJ An object module is output.
.OUTPUT NOOBJ An object module is not output.
(no specification) An object module is output.

Rev. 1.00 Aug. 17,2009 Page 79 of 1156
RENESAS REJ10J2039-0100

Section 3 Assembler Options

Note: Do not specify the same file name for the input source file and the output object module. If
the same file is specified, the contents of the input source file will be lost.

3.2.3 List Options

Table 3.3 List Options

Item Command Line Format Dialog Menu Specification

Assemble LISt [= <output file name>] Assembly <List> Outputs a source program list.
listing NOLISt [Generate list file]Not output a source program list.
output [= <output file name>]

control

Source SOurce Assembly <List> Controls output of source program
program NOSOurce [Source listing.

listing program :]

output

control

Part of SHow [= <item>[, ...]] Assembly <List> Controls output of part of source
source NOSHow [= <item>[, ...]] [Source program listing.

program <item>: program list

listing {CONditionals | Definitions | contents :] [Code]

output CAlls | Expansions |

control* Structured | CODe}

Cross- CRoss_reference Assembly <List> Outputs a cross-reference listing.
reference NOCRoss_reference [Cross Not output a cross-reference listing.
listing reference :]

output

control*

Section SEction Assembly <List> Outputs a section information listing.
information NOSEction [Section] Not output a section information listing.
listing

output

control*

Note: These options are valid only if the list option is specified.

Rev. 1.00 Aug. 17,2009 Page 80 of 1156
REJ10J2039-0100 RENESAS

Section 3 Assembler Options

LISt, NOLISt

Assembly <List> [Generate list file]

Command Line Format

LISt [= <output file name>]

NOLISt [= <output file name>]
Description

The list option outputs an assemble listing.

The nolist option does not output an assemble listing. If the nolist option is specified and the
specification is made to output the file name, the assembly listing is output to the file for only
the line where the error occurred.

When the listing output file parameter is omitted, the assembler takes the following actions:
— If the file extension is omitted:

The file extension will be lis.
— If the specification is completely omitted:

The output file name will be the same name as that of the input source file (the source file
specified first) and the file extension will be lis.

Relationship with Assembler Directives

The assembler gives priority to specifications made by options.

Option Assembler Directive Result

list (regardless of any specification) An assemble listing is output.

nolist (regardless of any specification) An assemble listing is not output.

(no specification) .PRINT LIST An assembile listing is output.
.PRINT NOLIST An assembile listing is not output.
(no specification) An assemble listing is not output.

Note: Do not specify the same file for the input source file and the output object file. If the same

file is specified, the contents of the input source file will be lost.

Rev. 1.00 Aug. 17,2009 Page 81 of 1156
RENESAS REJ10J2039-0100

Section 3 Assembler Options

SOurce, NOSOurce

Assembly <List> [Source program :]

e Command Line Format

SOurce
NOSOurce

e Description

The source option outputs a source program listing to the assemble listing.

The nosource option does not output a source program listing to the assemble listing.

The source and nosource options are only valid in cases where an assemble listing is being

output.

Relationship with Assembler Directives

The assembler gives priority to specifications made by options.

Result (When an Assemble

Option Assembler Directive Listing Is Output)
source (regardless of any specification) A source program listing is output.
nosource (regardless of any specification) A source program listing is not

output.

(no specification)

.PRINT SRC

A source program listing is output.

.PRINT NOSRC

A source program listing is not
output.

(no specification)

A source program listing is output.

Rev. 1.00 Aug. 17,2009 Page 82 of 1156

REJ10J2039-0100

RENESAS

Section 3 Assembler Options

SHow, NOSHow

Assembly <List> [Source program list contents :] [Code:]

Command Line Format

SHow [= <output type>[,...]]

NOSHow [= <output type>[,...]]

<output type>: { CONditionals | Definitions | CAlls | Expansions | Structured | CODe}
Description

Outputs or suppresses a part of preprocessor source statements in the source program listing,
and outputs or suppresses a part of object code lines.

The items specified by <output type> will be output or suppressed depending on the option.
When no output type is specified, all items will be output or suppressed.

show: Output
noshow: No output (suppress)

The show option and noshow option is valid only if assemble listing is output. The following
output types can be specified:

Output Type Object Description
conditionals Unsatisfied condition Unsatisfied .AlF or .AIFDEF statements
definitions Definition Macro definition parts,

.AREPEAT and .AWHILE definition parts,
INCLUDE directive statements
.ASSIGNA and .ASSSIGNC directive statements

calls Call Macro call statements,

.AlF, .AIFDEF, and .AENDI directive statements
expansions Expansion Macro expansion statements

.AREPEAT and .AWHILE expansion statements
structured Structured expansion Structured assembly expansion statements
code Object code lines The object code lines exceeding the source

statement lines

Remarks

In a PC version, when specifying more than two output types, enclose the types with
parentheses.

Rev. 1.00 Aug. 17,2009 Page 83 of 1156
RENESAS REJ10J2039-0100

Section 3 Assembler Options

Relationship with Assembler Directives

The assembler gives priority to specifications made by options.

Option Assembler Directive

Result

show[=<output type>] (regardless of any specification)

The object code is output.

noshow[=<output type>] (regardless of any specification)

The object code is not output.

(no specification) .LIST <output type> (output)

The object code is output.

.LIST <output type> (suppress)

The object code is not output.

(no specification)

The object code is output.

CRoss_reference, NOCRoss_reference
Assembly <List >[Cross reference :]

e Command Line Format
CRoss reference
NOCRoss_reference

e Description

The cross_reference option specifies output of a cross-reference listing to the assemble listing.

The nocross_reference option specifies no output of a cross-reference listing to the assemble

listing.

The cross_reference and nocross_reference options are valid only if an assemble listing is

being output.

Relationship with Assembler Directives

The assembler gives priority to specifications made by options.

Option Assembler Directive

Result (When an Assemble
Listing Is Output)

cross_reference (regardless of any specification)

A cross-reference listing is output.

nocross_reference (regardless of any specification)

A cross-reference listing is not
output.

(no specification) .PRINT CREF

A cross-reference listing is output.

.PRINT NOCREF

A cross-reference listing is not
output.

(no specification)

A cross-reference listing is output.

Rev. 1.00 Aug. 17,2009 Page 84 of 1156

REJ10J2039-0100 RENESAS

Section 3 Assembler Options

SEction, NOSEction
Assembly <List > [Section :]

e Command Line Format

SEction
NOSEction

e Description

The section option specifies output of a section information listing to the assemble listing.

The nosection option specifies no output of a section information listing to the assemble

listing.

The section and nosection options are valid only if an assemble listing is being output.

Relationship with Assembler Directives

The assembler gives priority to specifications made by options.

Result (When an Assemble

Option Assembler Directive Listing Is Output)

section (regardless of any specification) A section information listing is
output.

nosection (regardless of any specification) A section information listing is not

output.

(no specification)

.PRINT SCT A section information listing is
output.
.PRINT NOSCT A section information listing is not

output.

(no specification)

A section information listing is
output.

RENESAS

Rev. 1.00 Aug. 17,2009 Page 85 of 1156

REJ10J2039-0100

Section 3 Assembler Options

3.24 Tuning Options

Table 3.4 Tuning Options

Command Line

ltem Format Dialog Menu Specification
Specification of ~ ABS8 Assembly <Tuning> Specifies whether
symbols for 8-or ABS16 [Option to set 1] symbols to be accessed
16-bit absolute as 8- or 16-bit absolute
address format addresses.

ABSS8, ABS16

Assembly <Tuning> [Option to set :]

Command Line Format

ABSS8 [= <symbol> [,...]]
ABS16 [= <symbol> [,...] |

Description

The abs8 option specifies a symbol to be accessed in 8-bit absolute address format.

The abs16 option specifies a symbol to be accessed in 16-bit absolute address format.

When a symbol is omitted, all externally referenced symbols and externally defined symbols
are specified.

When the abs8 and abs16 options are both specified for the same symbol, the option on the
right hand side has the priority:

— When —abs8 —abs16 is specified:
All external symbols are accessed in 16-bit absolute address format.

— When —-abs8=<symbol> —abs16=<symbol> is specified:
<symbol> is accessed in 16-bit absolute address format, and all others are determined by
the CPU. However, when a symbol is specified in one option and when symbols are
omitted in another option, both options are exclusively valid.

— When —abs8=<symbol> —abs16 is specified:

<symbol> is accessed in 8-bit absolute address format, and the others are accessed in 16-bit
absolute address format.

Priority of Access Size Settings

Rev. 1.00 Aug. 17,2009 Page 86 of 1156
REJ10J2039-0100 RENESAS

Section 3 Assembler Options

Priority Access Size Format
High 1 Size specified for the absolute address format
2 Access size set by .IMPORT, .EXPORT, or .GLOBAL directives
.ABS8 and .NOABSS directives
Low 3 abs8 or abs16 settings
Example: asm38 aaa.mar -abs8=syml -abslé6

When an external symbol is specified in the absolute address format, sym1 is addressed in 8-
bit absolute address format, and other external symbols are addressed in 16-bit absolute
address format.

asm38 aaa.mar-abs8=syml -absl6=sym2,sym3,sym4

Contents of aaa.mar

.CPU 2600A

. IMPORT

.IMPORT sym4:8
MOV.B @syml ,R1H
MOV.B @sym2 ,RI1H
MOV B @sym3:8,R1H
MOV.B @sym4 ,RI1H
MOV.B @sym5 ,R1H
MOV.B

syml, sym2, sym3, sym5

;8 bits (-abs8 option specified)

;16 bits (-abslé option specified)

;8 bits (size explicitly specified)

;8 bits (address size specified by .IMPORT)
;32 bits (no specification)

@(syml+sym2) ,R1H ;8 bits (the smaller of -abs8 and -abslé)

Note: When more than one external symbols is specified for the absolute address format, the

minimum address size is used.

Rev. 1.00 Aug. 17,2009 Page 87 of 1156
XRENESAS REJ10J2039-0100

Section 3 Assembler Options

3.2.5 Other Options

Table 3.5 Other Options

Command Line

ltem Format Dialog Menu Specification
Unreferenced Exclude Assembly <Other> Not output the symbol
import symbol [Miscellaneous options :] information on import
output control [Remove unreferenced external symbols that have not
symbols] been referred to.
NOExclude Outputs the symbol

information on import
symbols that have not
been referred to.

Exclude, NOExclude
Assembly <Other> [Miscellaneous options :] [Remove unreferenced external symbols]

e Command Line Format

Exclude
NOExclude

e Description

The exclude option prevents the output of symbol information on import symbols that have
not been referred to.

The noexclude option specifies the output of the symbol information on import symbols that
have not been referred to.

Suppressing the output of this information makes the object modules smaller.
Example : asm38 aaa.mar -exclude

The information on import symbols that have not been referred to is not output.
asm38 aaa.mar -noexclude

The information on import symbols that have not been referred to is output.

Rev. 1.00 Aug. 17,2009 Page 88 of 1156
REJ10J2039-0100 RENESAS

Section 3 Assembler Options

3.2.6 CPU Options

Table 3.6 CPU Options

Item Command Line Format Dialog Menu Specification
CPU type CPU = CPU Specifies the CPU type.
specification { AE5 | [CPU 1]

H8SXN[:{M|D|MD}] |

H8SXM[:<bit width>] [:{M|D|MD}] |

HB8SXA[:<bit width>] [:{M|D|MD}] |

H8SXX[:<bit width>] [:{M|D|MD}] |

2600N |

2600A [:<bit width>] |

2000N |

2000A [:<bit width>] |

300HN |

300HA [:<bit width>] |

300 | 300L }
Origin SBR CPU Specifies the origin of the
specification [Specify SBR 8-bit short absolute area.
in the 8-bit address :]
short absolute
area

Rev. 1.00 Aug. 17,2009 Page 89 of 1156
RENESAS REJ10J2039-0100

Section 3 Assembler Options

CPu
CPU [CPU ;]

e Command Line Format
CPu = {AE5 |
H8SXN [:{M|D|MD}] |
H8SXM [:<bit width of the address space>] [:{M|D|MD}] |
H8SXA [:<bit width of the address space>] [:{M|D|MD}] |
H8SXX [:<bit width of the address space>] [:{M|D|MD}] |
2600N |
2600A [:<bit width of the address space>] |
2000N |
2000A [:<bit width of the address space>] |
300HN |
300HA [:<bit width of the address space>] |
300 | 300L }

e Description

Specifies the CPU type and the operating mode for the object program to be generated, the bit
width of the address space, and whether or not a multiplier and/or a divider exist.

Table 3.7 lists the suboptions.

Rev. 1.00 Aug. 17,2009 Page 90 of 1156
REJ10J2039-0100 RENESAS

Section 3 Assembler Options

Table 3.7 Suboptions for cpu Option

Suboption

Description

AE5

Creates an object for the AE5 Refer to section 17, Feature for
AE5/RS4.

H8SXN [:{M|D|MD}]

Creates an object for the H8SX normal mode. A multiplier and/or
a divider can be specified.

H8SXM [:<bit width of the
address space>] [:{M|D|MD}]

Creates an object for the H8SX middle mode. <bit width of the
address space> is 20 or 24, which is 1 Mbyte or 16 Mbytes,
respectively. <bit width of the address space> is 24 by default. A
multiplier and/or a divider can be specified.

HB8SXA [:<bit width of the
address space>] [:{M|D|MD}]

Creates an object for the H8SX advanced mode. <bit width of the
address space> is 20, 24, 28, or 32, which is 1 Mbyte, 16
Mbytes, 256 Mbytes, or 4 Gbytes, respectively. <bit width of the
address space> is 24 by default. A multiplier and/or a divider can
be specified.

H8SXX[:<bit width of the address Creates an object for the H8SX maximum mode. <bit width of the

space>] [:{M|D|MD}]

address space> is 28 or 32, which is 256 Mbytes or 4 Gbytes,
respectively. <bit width of the address space> is 32 by default. A
multiplier and/or a divider can be specified.

2600N

Creates an object for the H8S/2600 normal mode.

2600A[:<bit width of the address
space>]

Creates an object for the H8S/2600 advanced mode. The value
of <bit width of the address space> is 20, 24, 28, or 32, to
indicate 1 Mbyte, 16 Mbytes, 256 Mbytes, or 4 Gbytes,
respectively. <bit width of the address space> is 24 by default.

2000N

Creates an object for the H8S/2000 normal mode.

2000A[:<bit width of the address
space>]

Creates an object for the H8S/2000 advanced mode. The value
of <bit width of the address space> is 20, 24, 28, or 32, to
indicate 1 Mbyte, 16 Mbytes, 256 Mbytes, or 4 Gbytes,
respectively. <bit width of the address space> is 24 by default.

300HN

Creates an object for the H8/300H normal mode.

300HA[:<bit width of the address
space>]

Generates the object for the H8/300H advanced mode. The
value of <bit width of the address space> is 20 or 24, to indicate
1 Mbyte or 16 Mbytes, respectively. <bit width of the address
space> is 24 by default.

300

Creates an object for the H8/300.

300L

Creates an object for the H8/300L.

Rev. 1.00 Aug. 17,2009 Page 91 of 1156
RENESAS REJ10J2039-0100

Section 3 Assembler Options

Specify whether or not a multiplier and a divider exist as follows:

Multiplier/Divider Specification Method
Without multiplier and without divider No specification

With multiplier and without divider M

Without multiplier and with divider D

With multiplier and with divider MD

Use MAC, LDMAC, STMAC, CLRMAC, MULU/U, or MULS/U as an additional instruction
with a multiplier.

There are no additional instructions with a divider.

e Remarks

When the cpu option is omitted, the contents of the H38CPU environmental variable are
referred to. Priority is given to the cpu option when both a cpu option and H38CPU
environmental variable are specified. When neither a cpu option nor a H38CPU
environmental variable is set, the error message 933 is output.

Relationship with Assembler Directives

The assembler gives priority to specifications made by options.

Assembler Environmental Result (When an Assemble
Option Directive Variable Listing Is Output)
cpu=cpu type (regardless of (regardless of Cpu type as specified by cpu.

any specification) any specification)

(no specification) .CPU cpu type (regardless of Cpu type as specified by
any specification) the .CPU.

(no specification) h38cpu=cpu type Cpu type set by the environmental
variable.

(no specification) Output of error message 933

Rev. 1.00 Aug. 17,2009 Page 92 of 1156
REJ10J2039-0100 RENESAS

Section 3 Assembler Options

SBR
CPU [Specify SBR address :]

e Command Line Format
SBR = {<constant> | USER}

e Description
When SBR=<constant> is specified, the 256-byte area whose origin is <constant> as the
access area of the 8-bit absolute addressing format. As for the constant, radix H’ should be
specified and the lower 8 bits should be fixed to 0. When SBR = USER is specified, the origin
of the 8-bit short absolute address is as shown below depending on the bit width of the address

space.
CPU/Operating Mode Origin of the 8-Bit Short Absolute Address
H8SX maximum mode H8SXX[:32] HFFFFFFOO0

H8SXX:28 H’OFFFFFO0O0
H8SX advanced mode H8SXA:32 H'FFFFFFOO

H8SXA:28 H’OFFFFFO0O0

HB8SXA[:24] H’00FFFFOO0

H8SXA:20 H’000FFFO00
H8SX middle mode H8SXM[:24] H’00FFFFO0

H8SXM:20 H’000FFF00
H8SX normal mode H8SXN H’0000FF00

Only when the CPU is H8SXN, H8SXM, H8SXA, or H8SXX, the SBR option can be
specified.

Rev. 1.00 Aug. 17,2009 Page 93 of 1156
RENESAS REJ10J2039-0100

Section 3 Assembler Options

Relationship with Assembler Directives

Option

Assembler Directive

Origin of the Access Area of the 8-Bit Absolute
Address

sbr=<constant>

.SBR <constant>

Constant specified with the SBR directive

.SBR

Constant specified with the sbr option

(no specification)

Constant specified with the sbr option

sbr=USER

.SBR <constant>

Constant specified with the SBR directive

.SBR

Value determined by the bit width of the address
space

(no specification)

Value determined by the bit width of the address
space

(no specification)

.SBR <constant>

Constant specified with the SBR directive

.SBR

Value determined by the bit width of the address
space

(no specification)

Value determined by the bit width of the address
space

Example:

e Remarks

asm38 aaa.mar —sbr=H’ff0000
The 8-bit short absolute address area is in the range from
H’00ff0000 to H’00ffOOff.

Contents of aaa.mar

.CPU H8SXX:32

MOV.L
LDC.L

MOV.B @sym2 ,R1H

#H’00ff0000,ER1
ERI,SBR
MOV.B @syml ,R1H

;8 bits (within the 8-bit short absolute

; address area specified with —sbr)

;16 bits (without the 8-bit short absolute
; address area specified with —sbr)

syml: .equ H’00ff0040
sym2: .equ H’ffffff40

If the host computer OS is UNIX, specify a backslash (\) before the apostrophe (') of the radix

indicator “H'”.

Rev. 1.00 Aug. 17,2009 Page 94 of 1156

REJ10J2039-0100

RENESAS

Section 3 Assembler Options

3.2.7 Options Other Than Above
Table 3.8 Options Other Than Above
Command Line
ltem Format Dialog Menu Specification
Change of error level ABort = {Warning | Assembly <Other> Changes the error level at
at which the Error} [User defined options :] which the assembler is
assembler is abnormally terminated.
abnormally
terminated
ISO-Latin1 Code LATIN1 Assembly <Other> Enables the use of Latin1
[User defined options :] code characters in source
file.
Shift JIS code SJIS Assembly <Other> Interprets Japanese
[User defined options :] character in source file as
shift JIS code.
EUC code EUC Assembly <Other> Interprets Japanese

[User defined options :]

character in source file as
EUC code.

Specification of
Japanese character

OUtcode = {SJIS |
EUC}

Assembly <Other>
[User defined options :]

Specifies the Japanese
character for output to
object code.

Setting of the
number of lines in
the assemble listing

LINes =
<number of lines>

Assembly <Other>
[User defined options :]

Specifies the number of
lines in assemble listing.

Setting of the
number of digits in
the assemble listing

COlumns =
<number of digits>

Assembly <Other>
[User defined options :]

Specifies the number of
digits in assemble listing.

Copyright LOGO - Outputs logo

NOLOGO (nologo is always valid) Not output logo
Specification of SUBcommand = - Inputs command line from
subcommand <file name> a file.

Rev. 1.00 Aug. 17,2009 Page 95 of 1156

RENESAS

REJ10J2039-0100

Section 3 Assembler Options

ABort
Assembly <Other> [User defined options :]

e Command Line Format
ABort = {Warning | Error}
e Description
The abort option specifies the error level.
When the return value to the OS becomes 1 or larger, the object module is not output.
The abort option is valid only if the object module is output.

The return value to the OS is as follows:

Return Value to OS when Option Specified

Number of Cases abort=warning abort=error
Warning Error Fatal Error PC UNIX PC UNIX
0 0 0 0 0 0 0
1ormore O 0 2 1 0 0
— 1ormore O 2 1 2 1
— — 1 or more 4 1 4 1

LATIN1
Assembly <Other> [User defined options :]

e Command Line Format
LATIN1
e Description

The latinl option enables the use of ISO-Latinl code characters in strings literal and in
comments.

Do not specify this option together with the sjis, euc, or outcode option.

Rev. 1.00 Aug. 17,2009 Page 96 of 1156
REJ10J2039-0100 RENESAS

Section 3 Assembler Options

SJIS

Assembly <Other> [User defined options :]

Command Line Format
SIIS
Description

When the sjis option is specified, Japanese characters in strings literal and comments are
interpreted as shift JIS code.

When the sjis option is omitted, Japanese characters in strings literal and comments are
interpreted as Japanese characters depending on the host computer.

Do not specify this option together with the latinl or euc option.

EUC

Assembly <Other> [User defined options :]

Command Line Format
EUC
Description

When the euc option is specified, Japanese characters in strings literal and comments are
interpreted as EUC code.

When the euc option is omitted, Japanese characters in strings literal and comments are
interpreted as Japanese characters depending on the host computer.

Do not specify this option together with the latin1 or sjis option.

Rev. 1.00 Aug. 17,2009 Page 97 of 1156
XRENESAS REJ10J2039-0100

Section 3 Assembler Options

OUtcode
Assembly <Other> [User defined options :]

e Command Line Format
OUtcode = {SJIS | EUC}
e Description

The outcode option converts Japanese characters in the source file to the specified Japanese
character for output to the object file.

The Japanese character output to the object file depends on the outcode specification and the
Japanese character (sjis or euc) in the source file as follows:

Japanese Character in Source File

outcode Specification sjis euc No Specification
sjis Shift JIS code Shift JIS code Shift JIS code
euc EUC code EUC code EUC code

No specification Shift JIS code EUC code Default code

Default code is as follows.

Host Computer Default Code
PC Shift JIS code
SPARC station EUC code

HP9000/700 series Shift JIS code

Rev. 1.00 Aug. 17,2009 Page 98 of 1156
REJ10J2039-0100 RENESAS

Section 3 Assembler Options

LINes

Assembly <Other> [User defined options :]

Command Line Format
LINes = <Number of lines>
Description

The lines option sets the number of lines on a single page of the assemble listing. The range of
valid values for the line count is from 20 to 255.

The lines option is valid only if an assemble listing is being output.

Relationship with Assembler Directives

The assembler gives priority to specifications made by options.

Option Assembler Directive Result
lines=<number of lines> (regardless of any specification) The number of lines on a page is
given by lines
(no specification) .FORM LIN=<number of lines> The number of lines on a page is
given by .FORM.
(no specification) The number of lines on a page is
60 lines.

COlumns

Assembly <Other> [User defined options :]

Command Line Format
COlumns = <Number of digits>
Description

The columns option sets the number of digits in a single line of the assemble listing. The range
of valid values for the column count is from 79 to 255.

The columns option is valid only if an assemble listing is being output.

Rev. 1.00 Aug. 17,2009 Page 99 of 1156
RENESAS REJ10J2039-0100

Section 3 Assembler Options

Relationship with Assembler Directives

The assembler gives priority to specifications made by options.

Option Assembler Directive Result

columns= (regardless of any specification) The number of digits_in a line is

<number of digits> given by columns.

(no specification) .FORM COL=<number of digits> The number of digits in a line is
given by .FORM.

(no specification) The number of digits in a line is

132.

LOGO, NOLOGO

None (nologo is always available)

e Command Line Format
LOGO
NOLOGO
e Description
Disables the copyright output.
When the logo is specified, copyright display is output.
When the nologo is specified, the copyright display output is disabled.

When this option is omitted, logo is assumed.

Rev. 1.00 Aug. 17,2009 Page 100 of 1156
REJ10J2039-0100 RENESAS

Section 3 Assembler Options

SUBcommand

None

Command Line Format

SUBcommand = <file name>

Description

The subcommand option inputs command line specifications from a file.

Specify input file names and options in the subcommand file in the same order as for normal
command line specifications.

Only one input file name or option can be specified in one line in the subcommand file.
This option must not be specified in a subcommand file.

Example: asm38 aaa.src -subcommand=aaa.sub

The subcommand file contents are expanded to a command line and assembled.
Contents of aaa.sub

bbb.src

-list

-noobj

The above command line and file aaa.sub are expanded as follows:

asm38 aaa.src,bbb.src -list -noobj

Remarks

One subcommand file can include a maximum of 65,535 bytes.

Rev. 1.00 Aug. 17,2009 Page 101 of 1156
XRENESAS REJ10J2039-0100

Section 3 Assembler Options

Rev. 1.00 Aug. 17,2009 Page 102 of 1156
REJ10J2039-0100 RENESAS

Section 4 Optimizing Linkage Editor Options

Section 4 Optimizing Linkage Editor Options

4.1 Option Specifications

4.1.1 Command Line Format
The format of the command line is as follows:

optlnk [{A<file name>|A<option strings}...]

<option strings:-<options[=<suboption>[,...]]
4.1.2 Subcommand File Format
The format of the subcommand file is as follows:

<option>{=|A} [<suboption>[, ...]] [A&] [;<comment>]

&: means line continuous.

For details, refer to section 4.2.8, Subcommand File Option.

4.2 List of Options

In the command line format in the following sections, uppercase letters indicate abbreviations.
Underlined characters indicate the default settings.

The format of the corresponding dialog menus in the HEW is as follows:
Tab name <Category>[Item]....

For details on dialog menus, refer to the HEW.

The order of option description corresponds to that of the tabs and the categories in the HEW.

Rev. 1.00 Aug. 17,2009 Page 103 of 1156
RENESAS REJ10J2039-0100

Section 4 Optimizing Linkage Editor Options

4.2.1 Input Options
Table 4.1 Input Category Options
Item Command Line Format Dialog Menu Specification
Input file Input = <sub>[{,|A}...] Link/Library <Input> Specifies input file.
<sub>: [Show entries for] (Input file is specified without
<file name> [Relocatable files and input on the command line.)
[(«<module name>],...])] object files]
Library file LIBrary = <file name>[,...] Link/Library <Input> Specifies input library file.
[Show entries for]
[Library files]
Binary file Binary = <sub> [,...] Link/Library <Input> Specifies input binary file.
<sub>: [Show entries for]
<file name>(<section name> [Binary files]
[:<boundary alignment>]
[,<symbol name>])
Symbol DEFine = <sub>],...] Link/Library <Input> Defines undefined symbols
definition <sub>: [Show entries for] forcedly.
<symbol name> = [Defines:] Defined as the same value of
{<symbol name> symbol name.
|<numerical value>} Defined as a numerical value.
Execution ENTry = { <symbol name> | Link/Library <Input> Specifies an entry symbol.
start address <address>} [Use entry point :] Specifies an entry address.
Prelinker NOPRElIlink Link/Library <Input> Disables prelinker initiation.

[Prelinker control :]

Rev. 1.00 Aug. 17,2009 Page 104 of 1156
REJ10J2039-0100

RENESAS

Section 4 Optimizing Linkage Editor Options

Input

Input File

Format:

Description:

Examples:

Remarks:

Link/Library <Input>[Show entries for :][Relocatable files and object files]
Input = <suboption>[{, | A}...]
<suboption>: <file name>[(<module name>[,...])]

Specifies an input file. Two or more files can be specified by separating them
with a comma (,) or space.

Wildcards (* or ?) can also be used for the specification. String literals specified
with wildcards are expanded in alphabetical order. Expansion of numerical values
precedes that of alphabetical letters. Uppercase letters are expanded before
lowercase letters.

Specifiable files are object files output from the compiler or the assembler, and
relocatable or absolute files output from the optimizing linkage editor. A module
in a library can be specified as an input file using the format of <library
name>(<module name>). The module name is specified without an extension.

If an extension is omitted from the input file specification, obj is assumed when a
module name is not specified and lib is assumed when a module name is
specified.

input=a.obj 1libl (e) ; Inputs a.obj and module e in lib1.lib.
input=c*.obj ; Inputs all .obj files beginning with c.

When form=object or extract is specified, this option is unavailable.

When an input file is specified on the command line, input should be omitted.

Rev. 1.00 Aug. 17,2009 Page 105 of 1156
RENESAS REJ10J2039-0100

Section 4 Optimizing Linkage Editor Options

LIBrary

Library File

Format:

Description:

Examples:

Link/Library <Input>[Show entries for :][Library files]
LIBrary = <file name>[,...]

Specifies an input library file. Two or more files can be specified by separating
them with a comma (,).

Wildcards (* or ?) can also be used for the specification. String literals specified
with wildcards are expanded in the alphabetical order. Expansion of numerical
values precedes that of alphabetical letters. Uppercase letters are expanded before
lowercase letters.

If an extension is omitted from the input file specification, lib is assumed.

If form=library or extract is specified, the library file is input as the target
library to be edited.

Otherwise, after the linkage processing between files specified for the input files
are executed, undefined symbols are searched in the library file.

The symbol search in the library file is executed in the following order: user
library files with the library option specification (in the specified order), the
system library files with the library option specification (in the specified order),
and then the default library (environment variable HLNK_LIBRARY1,2,3).

library=a.lib,b ;Inputs a.lib and b.lib.
library=c*.1lib ; Inputs all files beginning with ¢ with the extension .lib.

Rev. 1.00 Aug. 17
REJ10J2039-0100

, 2009 Page 106 of 1156

RENESAS

Section 4 Optimizing Linkage Editor Options

Binary Binary File
Link/Library <Input>[Show entries for :][Binary files]
Format: Binary = <suboption>[,...]
<suboption>: <file name>(<section name>[:<boundary alignment>]
[,<symbol name>])
<boundary alignment>: 1|2 |4 | 8|16 |32 (default: 1)
Description: Specifies an input binary file. Two or more files can be specified by separating
them with a comma (,).
If an extension is omitted for the file name specification, bin is assumed.
Input binary data is allocated as the specified section data. The section address is
specified with the start option. That section cannot be omitted.
When a symbol is specified, the file can be linked as a defined symbol. For a
variable name referenced by a C/C++ program, add an underscore (_) at the head
of the reference name in the program.
A boundary alignment value can be specified for the section specified by this
option. A power of 2 can be specified for the boundary alignment; no other values
should be specified.
When the boundary alignment specification is omitted, 1 is used as the default.
Examples: input=a.obj
start=P,D*/200
binary=b.bin(Dlbin),c.bin(D2bin:4, datab)
form=absolute
Allocates b.bin from 0x200 as the D1bin section.
Allocates c.bin after D1bin as the D2bin section (with boundary alignment = 4).
Links c.bin data as the defined symbol _datab.
Remarks: When form={object | library} or strip is specified, this option is unavailable.

If no input object file is specified, this option cannot be specified.

Rev. 1.00 Aug. 17,2009 Page 107 of 1156
RENESAS REJ10J2039-0100

Section 4 Optimizing Linkage Editor Options

DEFine

Symbol Definition

Format:

Description:

Examples:

Remarks:

Link/Library <Input>[Show entries for :][Defines]
DEFine = <suboption>][,...]
<suboption>: <symbol name>={<symbol name> | <numerical value>}

Defines an undefined symbol forcedly as an externally defined symbol or a
numerical value.

The numerical value is specified in the hexadecimal notation. If the specified
value starts with a letter from A to F, symbols are searched first, and if no
corresponding symbol is found, the value is interpreted as a numerical value.
Values starting with 0 are always interpreted as numerical values.

If the specified symbol name is a C/C++ variable name, add an underscore (_) at
the head of the definition name in the program. If the symbol name is a C++
function name (except for the main function), enclose the definition name with
the double-quotes including parameter strings. If the parameter is void, specify as
"<function name>()".

define=_ syml=data ; Defines _syml as the same value as
; the externally defined symbol data.

define=_ sym2=4000 ; Defines _sym2 as 0x4000.

When form={object | relocate | library} is specified, this option is unavailable.

Rev. 1.00 Aug. 17
REJ10J2039-0100

, 2009 Page 108 of 1156

RENESAS

Section 4 Optimizing Linkage Editor Options

ENTry

Execution Start Address

Format:

Description:

Examples:

Remarks:

Link/Library <Input>[Use entry point :]
ENTry = {<symbol name> | <address>}

Specifies the execution start address with an externally defined symbol or
address.

The address is specified in hexadecimal notation. If the specified value starts with
a letter from A to F, symbols are searched first, and if no corresponding symbol is
found, the value is interpreted as an address. Values starting with 0 are always
interpreted as addresses.

For a C function name, add an underscore (_) at the head of the definition name
in the program. For a C++ function name (except for the main function), enclose
the definition name with double-quotes in the program including parameter
strings. If the parameter is void, specify as "<function name>()".

If the entry symbol is specified at compilation or assembly, this option precedes
the entry symbol.

entry= main ; Specifies main function in C/C++ as the execution
; start address.

entry="init ()" ; Specifies init function in C++ as the execution
; start address.

entry=100 ; Specifies 0x100 as the execution start address.

When form={object | relocate | library} or strip is specified, this option is
unavailable.

When optimization with undefined symbol deletion (optimize=symbol_delete) is
specified, the execution start address should be specified. If it is not specified, the
specification of the optimization with undefined symbol deletion is unavailable.

Rev. 1.00 Aug. 17,2009 Page 109 of 1156
RENESAS REJ10J2039-0100

Section 4 Optimizing Linkage Editor Options

NOPREIlink Prelinker
Link/Library <Input>[Show entries for :][Prelinker control :]

Format: NOPRElink
Description: Disables the prelinker initiation.

The prelinker supports the functions to generate the C++ template instance
automatically and to check types at run time. When the C++ template function
and the runt-time type test function are not used, specify the noprelink option to
reduce the link time.

Remarks: When extract or strip is specified, this option is unavailable.

Rev. 1.00 Aug. 17,2009 Page 110 of 1156
REJ10J2039-0100 RENESAS

Section 4 Optimizing Linkage Editor Options

4.2.2 Output Options
Table 4.2 Output Category Options
Item Command Line Format Dialog Menu Specification
Output format FOrm ={ Absolute Link/Library <Output> Absolute format
| Relocate [Type of output file :] Relocatable format
| Object Object format
| Library [= {S|U}] Library format
| Hexadecimal HEX format
| Stype S-type format
| Binary } Binary format
Debugging DEBug Link/Library <Output> Output (in output file)
information ~ SDebug [Debug information :] Debugging information file
NODEBug output
Not output
Record size REcord={ H16 Link/Library <Output> HEX record
unification | H20 [Data record header :] Expansion HEX record
| H32 32-bit HEX record
| 81 S1 record
| 82 S2 record
| S31} S3 record
ROM support ROm = <sub>[,...] Link/Library <Output> Reserves an area in RAM for
function <sub>:<ROM section name> [Show entries for :] the relocatign of a symbol with
—<RAM section names [ROM to RAM mapped an address in RAM.
sections:]
Output file OUtput = <sub>[,...] Link/Library <Output> Specifies output file (range
<sub>:<file name> [Show er?tnes for:] specification and divided
[=<output range>] [Output file path/ output are enabled)
Messages] or
<output range>: [Divided output files:]
{<start address>
-<end address>
|<section name>[:...]}
External MAp [= <file name>] Link/Library <Output> Specifies output of the
symbol- [Generate external symbol- external symbol-allocation
allocation allocation information file] information file (for SuperH)
information
file
Output to SPace [= {<numerical value> | Link/Library <Output> Specifies a value to output to

unused area

Random}]

[Specify value filled in
unused area] [Output
padding data]

unused area

Rev. 1.00 Aug. 17,2009 Page 111 of 1156

RENESAS

REJ10J2039-0100

Section 4 Optimizing Linkage Editor Options

Item Command Line Format Dialog Menu Specification
Information Message Link/Library <Output> Output
message NOMessage [= <sub>[,...]] [Show entries for :] No output

<sub>:<error code>
[-<error code>]

[Output file path/
Messages]

[Repressed information
level messages:]

(error number specification
and range specification are
enabled)

Notification of MSg_unused Link/Library <Output> Notifies the user of the defined
unreferenced [Show entries for] symbol which is never

defined [Notify unused symbol:] referenced

symbol

Reduce DAta_stuff Link/Library <Output> Reduces empty areas

empty areas
of boundary

[Show entries for]
[Reduce empty areas of

generated as the boundary
alignment of sections after

alignment boundary alignment:] compilation (for SuperH and
H8)
Specification BYte_count=<numerical value> Link/Library <Output> Specifies the maximum byte
of data record [Length of data record :] count of a data record
byte count
CRC CRc = <suboption> Link/Library <Output> Calculates the cyclic
<suboptions: [zhow entngs éor 1] reduntf:iancy check (CRC)
<address where the result is [Generate CRC code] ;(all(ue ortr:je target rahnge atI
output>=<target range> in ra:ge an ,f?lgplgzt @ result
[/<polynomial expression>] to the specified address.
[:<endian>]
<address where the result is
output>: <address>
<target range>: <start address>-
<end address>],...]
<polynomial expression>:
{CCITT |16}
Filling PADDING Link/Library <Output> Outputs padding data to the

padding data
at section end

[Padding]

end of a section to make the
section match the boundary
alignment.

Rev. 1.00 Aug. 17,2009 Page 112 of 1156

REJ10J2039-0100

RENESAS

Section 4 Optimizing Linkage Editor Options

FOrm Output Format

Link/Library <Output>[Type of output file :]

Format: FOrm = { Absolute | Relocate | Object | Library[={S | U}]}
| Hexadecimal | Stype | Binary}

Description: Specifies the output format.

When this option is omitted, the default is form=absolute. Table 4.3 lists the
suboptions.

Table 4.3 Suboptions of Form Option

Suboption Description

absolute Outputs an absolute file

relocate Outputs a relocatable file

object Outputs an object file. This is specified when a module is extracted as an

object file from a library with the extract option.

library Qutputs a library file.

When library=s is specified, a system library is output.
When library=u is specified, a user library is output.

Default is library=u.

hexadecimal Outputs a HEX file. For details of the HEX format, refer to appendix 19.1.2,
HEX File Format.

stype Outputs an S-type file. For details of the S-type format, refer to appendix
19.1.1, S-Type File Format.

binary Outputs a binary file.

Remarks: Table 4.4 shows relations between output formats and input files or other options.

Rev. 1.00 Aug. 17,2009 Page 113 of 1156
RENESAS REJ10J2039-0100

Section 4 Optimizing Linkage Editor Options

Table 4.4 Relations Between Output Format And Input File Or Other Options
Output Enabled
Format Specified Option File Format Specifiable Option*'
Absolute strip specified Absolute file input, output
Other than above Object file input, library, binary, debug/nodebug,

Relocatable file sdebug, cpu, ps_check, start, rom, entry,

Binary file output, map, hide, optimize/nooptimize,

Library file samesize, symbol_forbid,
samecode_forbid, variable_forbid,
function_forbid, section_forbid,
absolute_forbid, profile, cachesize, sbr,
compress, rename, delete, define,
fsymbol, stack, noprelink, memory,
msg_unused, data_stuff, show=symbol,
reference, xreference

Relocate extract specified Library file library, output, show=symbol, reference
Other than above Object file input, library, debug/nodebug, output, hide,

Relocatable file rename, delete, noprelink, msg_unused,

Binary file data_stuff, show=symbol, xreference

Library file

Object extract specified Library file Library, output, show=symbol
Hexadecimal Object file Input, library, binary, cpu, ps_check, start,
Stype Relocatable file rom, entry, output, map, space,

Binary Binary file optimize/nooptimize, samesize,

Library file symbol_forbid, samecode_forbid,
variable_forbid, function_forbid,
section_forbid, absolute_forbid, profile,
cachesize, sbr, rename, delete, define,
fsymbol, stack, noprelink, record, s9%%,
byte_count**, memory, msg_unused,
data_stuff, show=symbol, reference,
xreference

Absolute file input, output, record, s9**, byte_count*°,
show=symbol, reference, xreference

Library strip specified Library file library, output, memory**, show=symbol,
section
extract specified Library file library, output, show=symbol, section
Other than above Object file input, library, output, hide, rename, delete,

Relocatable file replace, noprelink, memory**,

show=symbol, section
Notes: 1. message/nomessage, change_message, logo/nologo, form, list, and

subcommand can always be specified.
2. s9 can be used only when form=stype is specified for the output format.
3. byte_count can be used only when form=hexadecimal is specified for the output
format.
4. memory cannot be used when hide is specified.

Rev. 1.00 Aug. 17,2009 Page 114 of 1156
REJ10J2039-0100

RENESAS

Section 4 Optimizing Linkage Editor Options

DEBug, SDebug, NODEBug Debugging Information

Format:

Description:

Remarks:

Link/Library <Output>[Debug information :]
DEBug
SDebug
NODEBug
Specifies whether debugging information is output.
When debug is specified, debugging information is output to the output file.

When sdebug is specified, debugging information is output to <output file
name>.dbg file.

When nodebug is specified, debugging information is not output.
If sdebug and form=relocate are specified, sdebug is interpreted as debug.

If debug is specified and if two or more files are specified to be output with
output, they are interpreted as sdebug and debugging information is output to
<first output file name>.dbg.

When this option is omitted, the default is debug.

When form={object | library | hexadecimal | stype | binary}, strip or extract is
specified, this option is unavailable.

Rev. 1.00 Aug. 17,2009 Page 115 of 1156
RENESAS REJ10J2039-0100

Section 4 Optimizing Linkage Editor Options

REcord Record Size Unification
Link/Library <Output>[Data record header :]
Format: REcord = { H16 | H20 | H32 | S1|S2|S3 }
Description: Outputs data with the specified data record regardless of the address range.
If there is an address that is larger than the specified data record, the appropriate
data record is selected for the address.
When this option is omitted, various data records are output according to each
address.
Remarks: This option is available only when form=hexadecimal or stype is specified.
ROm ROM Support Function
Link/Library <Output>[Show entries for :][ROM to RAM mapped sections]
Format: ROm = <suboption>[,...]
<suboption>: <ROM section name>=<RAM section name>
Description: Reserves ROM and RAM areas in the initialized data area and relocates a defined
symbol in the ROM section with the specified address in the RAM section.
Specifies a relocatable section including the initial value for the ROM section.
Specifies a nonexistent section or relocatable section whose size is 0 for the RAM
section.
Examples: rom=D=R
start=D/100,R/8000
Reserves R section with the same size as D section and relocates defined symbols
in D section with the R section addresses.
Remarks: When form={object | relocate | library}or strip is specified, this option is

unavailable.

Rev. 1.00 Aug. 17,2009 Page 116 of 1156

REJ10J2039-0100

RENESAS

Section 4 Optimizing Linkage Editor Options

OUtput

Output File

Link/Library <Output> [Show entries for :][Output file path/ Messages] or [Divided output files]

Format:

Description:

Examples:

OUtput = <suboption>[,...]
<suboption>: <file name>[=<output range>]
<output range>: {<start address>-<end address> | <section name>[:...]}

Specifies an output file name. When form=absolute, hexadecimal, stype, or
binary is specified, two or more files can be specified. An address is specified in
the hexadecimal notation. If the specified data starts with a letter from A to F,
sections are searched first, and if no corresponding section is found, the data is
interpreted as an address. Data starting with O are always interpreted as addresses.

When this option is omitted, the default is <first input file name>.<default
extension>.

The default extensions are as follows:

form=absolute: abs form=relocate: rel form=object: obj
form=library: lib form=hexadecimal: hex form=stype: mot
form=Dbinary: bin

output=filel.abs=0-ffff,file2.abs=10000-1f£fff

Outputs the range from 0 to Oxffff to filel.abs and the range from 0x10000 to
Ox 1fff to file2.abs.

output=filel.abs=secl:sec2,file2.abs=sec3

Outputs the secl and sec2 sections to filel.abs and the sec3 section to file2.abs.

Rev. 1.00 Aug. 17,2009 Page 117 of 1156
RENESAS REJ10J2039-0100

Section 4 Optimiz

ing Linkage Editor Options

MAp

Output of External Symbol Allocation Information File

Format:

Description:

Remarks:

Link/Library <Output>[Generate external symbol-allocation information file]
MAp [= <file name>]

Outputs the external-symbol-allocation information file that is used by the
compiler in optimizing access to external variables.

When <file name> is not specified, the file has the name specified by the output
option or the name of the first input file, and the extension bls.

If the order of the declaration of variables in the external-symbol-allocation
information file is not the same as the order of the declaration of variables found
when the object was read after compilations, an error will be output.

This option is valid only when form={absolute | hexadecimal | stype | binary}
is specified.

This option is available when the CPU type is SuperH.

Rev. 1.00 Aug. 17,2009 Page 118 of 1156

REJ10J2039-0100

RENESAS

Section 4 Optimizing Linkage Editor Options

SPace

Output to Unused Areas

Format:

Description:

Remarks:

Link/Library <Output>[Show entries for :][Specify value filled in unused area]
[Output padding data]

SPace [= {<numerical value> | Random}]

Fills the unused areas in the output ranges with random values or a user-specified
hexadecimal value.

The following unused areas are filled with the value according to the output range
specification in the output option:

When section names are specified for the output range:
The specified value is output to unused areas between the specified sections.

When an address range is specified for the output range:
The specified value is output to unused areas within the specified address range.

A 1-, 2-, or 4-byte value can be specified. The number of hexadecimal digits
specified to the space option determines the size of the <numerical value>. If a 3-
byte value is specified, the upper digit is extended with O to use it as a 4-byte
value. If an odd number of digits are specified, the upper digits are extended with
0 to use it as an even number of digits.

If the size of an unused area is not a multiple of the size of the specified value, the
value is output as many times as possible, then a warning message is output.

When no numerical value is specified by this option, unused areas are not filled
with values.

This option is available only when form={binary | stype | hexadecimal} is
specified.

When no output range is specified by the output option, this option is
unavailable.

Rev. 1.00 Aug. 17,2009 Page 119 of 1156
RENESAS REJ10J2039-0100

Section 4 Optimizing Linkage Editor Options

Message, NOMessage Information Message

Format:

Description:

Examples:

Link/Library <Output>[Show entries for :] [Output file path/ Messages]
[Repressed information level messages :]

Message

NOMessage [=<suboption>[,...]]

<suboption>: <error number>[-<error number>]

Specifies whether information level messages are output.

When message is specified, information level messages are output.

When nomessage is specified, the output of information level messages are
disabled. If an error number is specified, the output of the error message with the
specified error number is disabled. A range of error message numbers to be
disabled can be specified using a hyphen (-). If a warning or error level message
number is specified, the message output is disabled assuming that
change_message has changed the specified message to the information level.

When this option is omitted, the default is nomessage.
nomessage=4,200-203,1300

Messages of L0004, L0200 to L0203, and L1300 are disabled to be output.

Rev. 1.00 Aug. 17
REJ10J2039-0100

, 2009 Page 120 of 1156

RENESAS

Section 4 Optimizing Linkage Editor Options

MSg_unused

Notification of Unreferenced Symbol

Link/Library <Output>[Show entries for :] [Output Messages] [Notify unused symbol:]

Format:

Description:

Examples:

Remarks:

MSg_unused

Notifies the user of the externally defined symbol which is not referenced during
linkage through an output message.

optlnk -msg unused a.obj
When an absolute file is input, this option is invalid.
To output a notification message, the message option must also be specified.

The linkage editor may output a message for the function that was inline-
expanded at compilation. To avoid this, add a static declaration for the function
definition.

In any of the following cases, references are not correctly analyzed so that
information shown by output messages will be incorrect.

e goptimize is not specified at assembly and there are branches to the same
section within the same file (only when an H8-series CPU is specified).

e There are references to constant symbols within the same file.

e There are branches to immediate subordinate functions when optimization is
specified at compilation.

e The external variable access optimization is valid at compilation (only when
an SH-series CPU is specified).

e An offset value is directly specified in a #pragma tbr in the C source
program (only when the SH-2A or SH2A-FPU is specified as the CPU).

e Optimization is specified at linkage and constants or literals are unified.

Rev. 1.00 Aug. 17,2009 Page 121 of 1156
RENESAS REJ10J2039-0100

Section 4 Optimizing Linkage Editor Options

DAta_stuff Reduce empty areas of boundary alignment

Link/Library <Output>[Show entries for :] [Reduce empty areas of boundary alignment:]
Format: DAta_stuff

Description: At linkage, reduces empty areas of boundary alignment. This option affects
constant, initialized and uninitialized data areas.

When this option is specified, empty areas generated as the boundary alignment
of sections after compilation are filled at linkage. However, the order of data
allocation is not changed.

When this option is not specified, linkage is based on the boundary alignment of
sections after compilation.

Specifying this option fills the unnecessary empty areas generated by boundary
alignment, reducing the size of the data sections as a whole.

Examples: <tpl.c> <tp2.c>
long aj; char d;

char b, c; long e;

char f;

Sizes of data sections after compilation (taking the output of the SH compiler as
an example):

tpl.obj: 4 + 1 + 1 = 6 bytes

tp2.0bj: 1 + 3 [*] +4 + 1 =9 bytes

Sizes of data sections for tpl.obj and tp2.obj after linkage:

1) When data_stuff is not specified
Object files are linked based on the boundary alignment of the sections
(conventional process).
6 bytes [tpl] + 2 bytes [*] + 9 bytes [tp2] = 17 bytes

2) When data_stuff is specified
Linkage is performed with filling of the unnecessary empty spaces generated
between sections by boundary alignment.
(4 + 1+ 1)bytes + 1 byte + 1 byte [*] + 4 bytes + 1 byte = 13 bytes

Notes: 1. * indicates an empty area generated by boundary alignment.

Rev. 1.00 Aug. 17,2009 Page 122 of 1156
REJ10J2039-0100 RENESAS

Section 4 Optimizing Linkage Editor Options

Remarks:

BYte_count

2. The sizes of the data sections after compilation may differ from
those in the above example according to the specification of other
options, etc. at compilation.

Correct operation is not guaranteed if this option is specified when an object file
compiled with the smap option of the SuperH compiler is linked.

The function of this option is not applicable to object files generated by the
assembler.

Specification of this option is invalid in any of the following cases:

e form=library or object is specified
e An absolute load module is input
¢ memory=low is specified

e nooptimize is not specified

Optimization will not be applied in the linkage of a relocatable file that was
generated with this option specified.

Specification of Data Record Byte Count

Format:

Description:

Examples:

Remarks:

Link/Library <Output>[Length of data record :]
BYte_count=<numerical value>

Specifies the maximum byte count for a data record when a file is to be created in
the Intel-Hex format. Specify a one-byte hexadecimal value (01 to FF) for the
byte count. When this option is not specified, the linkage editor assumes FF as
the maximum byte count when creating an Intel-Hex file.

byte count=10

This option is invalid when the file to be created is not an Intel-Hex-type
(form=hex) file.

Rev. 1.00 Aug. 17,2009 Page 123 of 1156
RENESAS REJ10J2039-0100

Section 4 Optimizing Linkage Editor Options

CRc

CRC

Format:

Description:

Link/Library <Output> [Show entries for :] [Generate CRC code]
CRc = <suboption>

<suboption>: <address where the result is output>=<target range>
[/<polynomial expression>][:<endian>]

<address where the result is output>: <address>
<target range>: <start address>-<end address>[,...]
<polynomial expression>: { CCITT | 16 }

This option is used for cyclic redundancy checking (CRC) of values from the
lowest to the highest address of each target range and outputs the calculation
result to the specified address.

CRC-CCITT or CRC-16 is selectable as a polynomial expression (default:
CRC-CCITT).

Polynomial expression:

CRC-CCITT
XA 6+XAM2+XA5+1
In bit expression: (10001000000100001)

CRC-16
XM O6+XM5+XM2+1
In bit expression: (11000000000000101)

Rev. 1.00 Aug. 17,2009 Page 124 of 1156

REJ10J2039-0100

RENESAS

Section 4 Optimizing Linkage Editor Options

Example 1: optlnk *.obj -form=stype -start=P1,P2/1000,P3/2000
-crc=2FFE=1000-2FFD -output=out.mot=1000-2FFF

. Setting for the Output
After linkage CRC output option (out.mot)
0x1000 0x1000
P1 P1 P1
P2 P2 P2
Free Calculated as
OXFF T(ao' gf:)(;g”ge
to
0x2000 X
P3 P3 OX2FFF) P3
Calculated as
Free OxFF OX2FFE
Address where the
OX2FFE resut will be output Result of CRC | oyoFFF

crc option: -crc=2FFE=1000-2FFD

In this example, CRC will be calculated for the range from 0x1000 to 0x2FFD
and the result will be output to address Ox2FFE.

When the space option has not been specified, space=0xFF is assumed for
calculation of free areas within the target range.

output option: -output=out.mot=1000-2FFF

Since the space option has not been specified, the free areas are not output to the
out.mot file. OXFF is used in CRC for calculation of the free areas, but will not be
filled into these areas.

Notes: 1. The address where the result of CRC will be output cannot be
included in the target range.

2. The address where the result of CRC will be output must be included
in the output range specified with the output option.

Rev. 1.00 Aug. 17,2009 Page 125 of 1156
RENESAS REJ10J2039-0100

Section 4 Optimizing Linkage Editor Options

Example 2: optlnk *.obj -form=stype -start=P1/1000,P2/1800,P3/2000
-space=7F -crc=2FFE=1000-17FF,2000-27FF
-output=out .mot=1000-2FFF

. Setting for the Output
After linkage CRC output option (out.mot)
0x1000 0x1000
P1 P1 P1
Free Calculated as Filled with
0x7F O0x7F
0x1800 po po
E Target range Filled with
ree (0x1000 to Ox7F
O0x2FFF
0x2000 = P3) P3
Calculated as
0x7F || Filled with
0x2800| Free Ox7F
O0x2FFE
Ox2FFF et s oot Resullof GRC | 0x2F FF

crc option: -crc=2FFE=1000-17FF,2000-27FF

In this example, CRC will be calculated for the two ranges, 0x1000 to 0x17FF
and 0x2000 to 0x27FF, and the result will be output to address 0x2FFE.

Two or more non-contiguous address ranges can be selected as the target range
for CRC.

space option: - space=7F
The value of the space option (0x7F) is used for CRC in free areas within the
target range.

output option: -output=out .mot=1000-2FFF
Since the space option has been specified, the free areas are output to the out.mot
file. Ox7F will be filled into the free areas.

Notes: 1. The order that CRC is calculated for the specified address ranges is
not the order that the ranges have been specified. CRC proceeds from
the lowest to the highest address.

2. Even if you wish to use the crc and space options at the same time,
the space option cannot be set as random or a value of 2 bytes or
more. Only 1-byte values are valid.

Rev. 1.00 Aug. 17,2009 Page 126 of 1156
REJ10J2039-0100 RENESAS

Section 4 Optimizing Linkage Editor Options

Example 3:

Remarks:

Sample Code:

optlnk *.obj -form=stype -start=P1,P2/1000,P3/2000
-crc=1FFE=1000-1FFD,2000-2FFF
-output=£flmeml.mot=1000-1FFF

. Setting for the Output
After linkage CRC output option (fimem.mot)
0x1000 0x1000
P1 P1 P1
P2 P2 Target range P2
(0x1000 to
Calculated as O0x1FFF)
Free OxFF Ox1FFE
Address where th
resulte::II beeoilpjl Result of CRC Ox1FFF
0x2000 P3 p3
Free Calculated as
OxFF
Ox2FFF

cre option: -crc=1FFE=1000-1FFD, 2000-2FFF

In this example, CRC will be calculated for the two ranges, 0x1000 to Ox1FFD
and 0x2000 to 0x2FFF, and the result will be output to address Ox 1 FFE.

When the space option has not been specified, space=0xFF is assumed for
calculation of free areas within the target range.

output option: -output=flmeml.mot=1000-1FFF

Since the space option has not been specified, the free areas are not output to the
flmem1.mot file. OXFF is used in CRC for calculation of the free areas, but will
not be filled into these areas.

This option is invalid when two or more absolute files have been selected.
This option is valid only when form={hexadecimal | stype}.

When the space option has not been specified and the target range includes free
areas that will not be output, the linkage editor assumes in CRC that OxFF has
been set in the free areas.

An error occurs if the target range includes an overlay area.

The sample code shown below is provided to check the result of CRC figured out
by the cre option. The sample code program should match the result of CRC by
optlnk.

Rev. 1.00 Aug. 17,2009 Page 127 of 1156

RENESAS REJ10J2039-0100

Section 4 Optimizing Linkage Editor Options

When the selected polynomial expression is CRC-CCITT:

typedef unsigned char uint8_t;
typedef unsigned short uintlé_t;
typedef unsigned long uint32_t;
uintlé_t CRC_CCITT(uint8_t *pData, uint32 t iSize)
{
uint32 t uiz2 ij;
uint8_t *pui8_Data;
uintleé_t uilé CRC = OxFFFFu;
pui8 Data = (uint8_t *)pData;
for(ui32_i = 0; ui32_ i < iSize; ui32_ i++)
{
uilé CRC = (uintlé t) ((uilé_CRC >> 8u) |
((uintlé_t) ((uint32_t)uilé CRC << 8u)));
uilé CRC "= pui8 Data[ui32 i];
uilé CRC “= (uintl16_t) ((uilé CRC & OxFFu) >> 4u);
uilé CRC "= (uintlé t) ((uilé CRC << 8u) << 4u);
uilé CRC “= (uintlé6 t) (((uilé_CRC & O0xFFu) << 4u) << 1lu);
}
uilé_CRC = (uintlé_t) (0x0000FFFFul &
((uint32_t)~(uint32 t)uilé_CRC));
return uilé_CRC;
!

Rev. 1.00 Aug. 17,2009 Page 128 of 1156
REJ10J2039-0100 RENESAS

Section 4 Optimizing Linkage Editor Options

When the selected polynomial expression is CRC-16:

#define POLYNOMIAL 0xa00l // Generated polynomial expression CRC-16

typedef unsigned char uints8_t;
typedef unsigned short uintlé_t;
typedef unsigned long uint32_t;

uintlé_t CRC16 (uint8_ t *pData, uint32 t iSize)
{

uintlé_t crcdData = (uintlé_t)O;

uint32_t data = 0;

uint32 t i,cycLoop;

for(i=0;i<iSize;i++) {
data = (uint32_t)pDatalil;

A

crcdData = crcdData data;
for (cycLoop = 0; cycLoop < 8; cycLoop++) {
if (crcdbata & 1) {
crcdData = (crcdData >> 1) * POLYNOMIAL;
} else {

crcdData = crcdData >> 1;

}

return crcdData;

Rev. 1.00 Aug. 17,2009 Page 129 of 1156
XRENESAS REJ10J2039-0100

Section 4 Optimizing Linkage Editor Options

PADDING

Filling padding data at section end

Format:

Description:

Examples:

Remarks:

PADDING

Fills in padding data at the end of a section so that the section size is a multiple of
the boundary alignment of the section.

-start=P,C/0 -padding

When the boundary alignment of section P is 4 bytes, the size of section P is
0x06 bytes, the boundary alignment of section C is 1 byte, and the size of section
C is 0x03 bytes, two bytes of padding data is filled in section P to make its size
become 0x08 bytes and then linkage is performed.

-start=P/0,C/7 -padding

When the boundary alignment of section P is 4 bytes, the size of section P is
0x06 bytes, the boundary alignment of section C is 1 byte, and the size of section
C is 0x03 bytes, if two bytes of padding data is filled in section P to make its size
become 0x08 bytes and then linkage is performed, error L2321 will be output
because section P overlaps with section C.

The value of the created padding data is 0x00.

Since padding is not performed to an absolute address section, the size of an
absolute address section should be adjusted by the user.

Rev. 1.00 Aug. 17
REJ10J2039-0100

, 2009 Page 130 of 1156

RENESAS

Section 4 Optimizing Linkage Editor Options

4.2.3 List Options

Table 4.5 List Category Options
Item Command Line Format Dialog Menu Specification
List file LISt [= <file name>] Link/Library <List> Specifies the output of list file.
[Generate list file]
List contents SHow [= <sub>[,...]] Link/Library <List>
<sub>: { SYmbol | [Contents :] Symbol information
Reference | Number of references
SEction | Section information
Xreference | Cross-reference information
Total_size| Total sizes of sections
VECTOR| Vector Information
ALL All information
}
LISt List File
Link/Library <List> [Generate list file]
Format: LISt [=<file name>]
Description: Specifies list file output and a list file name.
If no list file name is specified, a list file with the same name as the output file (or
first output file) is created, with the extension Ibp when form=library or extract
is specified, or map in other cases.
SHow List Contents
Link/Library <List> [Contents]
Format: SHow [=<sub>[,...]]
<sub>:{ SYmbol | Reference | SEction | Xreference | Total_size | VECTOR |
ALL}
Description: Specifies output contents of a list.

Table 4.6 lists the suboptions.

For details of list examples, refer to section 7.3, Linkage List, and section 7.4,
Library List in the user’s manual.

Rev. 1.00 Aug. 17,2009 Page 131 of 1156
RENESAS REJ10J2039-0100

Section 4 Optimizing Linkage Editor Options

Table 4.6 Suboptions of show Option

Output Format

Suboption Name

Description

form=library symbol Outputs a symbol name list in a module
or ex.tract IS reference Not specifiable
specified.
section Outputs a section list in a module
xreference Not specifiable
total_size Not specifiable
vector Not specifiable
all Not specifiable (when extract is specified)
Outputs a symbol name list and a section list in a module (when
form=library)
Other than symbol Outputs symbol address, size, type, and optimization contents.
form=I|brar¥ reference Outputs the number of symbol references.
and extract is not
specified. section Not specifiable
xreference Outputs the cross-reference information.
total_size Shows the total sizes of sections allocated to the ROM and RAM
areas.
vector Outputs vector information.
all If form=rel, the linkage editor outputs the same information as

when show=symbol, xreference, or total_size is specified.

If form=rel and data_stuff have been specified, the linkage
editor outputs the same information as when show=symbol or
total_size is specified.

If form=abs, the linkage editor outputs the same information as
when show=symbol, reference, xreference, or total_size is
specified.

If form=hex, stype, or bin, the linkage editor outputs the same
information as when show=symbol, reference, xreference, or
total_size is specified.

If form=obj, all is not specifiable.

Rev. 1.00 Aug. 17,2009 Page 132 of 1156
REJ10J2039-0100

RENESAS

Section 4 Optimizing Linkage Editor Options

Remarks: The following table shows whether suboptions will be valid or invalid by all
possible combinations of options form, show, and/or show=all.

Symbol Reference Section Xreference Total_size

form=abs show Valid Valid Invalid Invalid Invalid
show=all Valid Valid Invalid Valid Valid
form=lib show Valid Invalid Valid Invalid Invalid
show=all Valid Invalid Valid Invalid Invalid
form=rel show Valid Invalid Invalid Invalid Invalid
show=all Valid Invalid Invalid Valid* Valid
form=obj show Valid Valid Invalid Invalid Invalid
show=all Valid Invalid Invalid Invalid Invalid
form=hex/bin/sty ~ show Valid Valid Invalid Invalid Invalid
show=all Valid Valid Invalid Valid Valid*

Note: The option is invalid if an absolute-format file is input.

Note the following limitations on output of the cross-reference information.

e When the relocatable format is specified for the output file and the data_stuff option is
specified, no cross-reference information is output.

e When an absolute-format file is input, the referrer address information is not output.

e When -goptimize is not specified at assembly, information about branches to the same section
within the same file is not output (only when an H8 CPU is specified).

¢ Information about references to constant symbols within the same file is not output.

e When optimization is specified at compilation, information about branches to immediate
subordinate functions is not output.

e When optimization of access to external variables is specified, information about references to
variables other than base symbols is not output (only when an SH CPU is specified).

e When an offset value is directly specified in a #pragma tbr in the C source program,
information about that function is not output (only when the SH-2A or SH2A-FPU is specified
as the CPU).

e When optimization is specified at linkage and constants or literals are unified, information
about references to these constants or literals is not output.

Rev. 1.00 Aug. 17,2009 Page 133 of 1156
XRENESAS REJ10J2039-0100

Section 4 Optimizing Linkage Editor Options

e Both show=total_size and total_size output the same information.

o When show=reference is valid, the number of references of the variable specified by
#pragma address is output as 0 (only when an SH CPU is specified).

Rev. 1.00 Aug. 17,2009 Page 134 of 1156
REJ10J2039-0100 RENESAS

Section 4 Optimizing Linkage Editor Options

4.2.4 Optimize Options
Table 4.7 Optimize Category Options
Item Command Line Format Dialog Menu Specification
Optimization OPtimize = <sub>][...] Link/Library <Optimize> Executes optimization.
<sub>: {STring_unify [Show entries for :] Unifies constants/string literals.
| SYmbol_delete [Optimize items] Deletes unreferenced symbols.
| Variable_access [Optimize] Uses short absolute addressing
mode.
| Register Provides optimization with
register save/restore.
| SAMe_code Unifies same codes.
| SHort_format Shortens the addressing mode.
| Function_call Uses indirect addressing mode.
| Branch Provides optimization for
branches.
| Speed Provides optimization for speed.
| SAFe } Provides safe optimization.
NOOPtimize} No optimization.
Same code = SAMESize = <size> Link/Library <Optimize> Specifies the minimum size to
size (default: sames=1e) [Eliminated size] unify same codes.
Profile PROfile = <file name> Link/Library <Optimize> Specifies a profile information
information [Include profile :] file. (Dynamic optimization is
provided.)
Cache size CAchesize=<sub> Link/Library <Optimize>
<sub>: Size=<size> | [Cache size] Specifies a cache size.
Align=<line size> Specifies a cache line size.
(default: ca=s=8,a=20) (for SuperH)
Optimization SYmbol_forbid= Link/Library <Optimize> Specifies a symbol where
partially <symbol name>[,...] [Show entries for :] unreferenced symbol deletion is
disabled [Forbid item] disabled.

SAMECode_forbid=
<function name>[,...]
Variable_forbid=
<symbol name>],...]

FUnction_forbid=
<function name>[,...]

SEction_forbid = <sub>[,...]
<sub>: [<file name>|
<module name>]
(<section name>[,...])

Absolute_forbid=

<address>[+<size>][,...]

Specifies a symbol where same
code unification is disabled.
Specifies a symbol where short
absolute addressing mode is
disabled.

Specifies a symbol where
indirect addressing mode is
disabled.

Specifies a section where
optimization is disabled.

Specifies an address range
where optimization is disabled.

Rev. 1.00 Aug. 17,2009 Page 135 of 1156

RENESAS REJ10J2039-0100

Section 4 Optimizing Linkage Editor Options

OPtimize, NOOPtimize Optimization

Link/Library <Optimize> [Show entries for :][Optimize items][Optimize :]
Format: OPtimize [= <suboption>[,...]]
NOOPtimize

<suboption>: { STring_unify | SYmbol_delete | Variable_access | Register
| SAMe_code | SHort_format | Function_call | Branch | SPeed
| SAFe }

Description: Specifies whether the inter-module optimization is executed.

When optimize is specified, optimization is performed for the file specified with
the goptimize option at compilation or assembly.

When nooptimize is specified, no optimization is executed for a module.
When this option is omitted, the default is optimize.
Table 4.8 shows the suboptions

Table 4.8 Suboptions of Optimize Option

Program to be Optimized*'

Suboption Description SHC SHA H8C HS8A
No parameter Provides all optimizations (0] x (0] O
string_unify Unifies same-value constants having the const O X o} x
attribute. Constants having the const attribute
are:

e Variables defined as const in C/C++
program
e Initial value of character string data

e Literal constant

symbol_delete Deletes variables/functions that are not o X o} x
referenced. The entry option should be
specified.

variable_access Allocates frequently accessed variables to the x X (0] O

area accessible in the 8/16 bit absolute
addressing mode. The cpu option should be
specified at compilation and assembly.

Rev. 1.00 Aug. 17,2009 Page 136 of 1156
REJ10J2039-0100 RENESAS

Section 4 Optimizing Linkage Editor Options

Suboption

Program to be Optimized+'

Description SHC SHA H8C HS8A

register

Investigates function calls, relocates registers (0] X
and deletes redundant register save or restore
codes. The entry option should be specified.

(0] X

same_code

Creates a subroutine for the same instruction (0] X
sequence.

short_format

Replaces an instruction having a displacement x X
or an immediate value with a smaller-size

instruction when the code size of the

displacement or immediate value can be

reduced.

function_call

Allocates addresses of frequently accessed X X
functions to the range 0 to OxFF if there is a
space. When the CPU is H8SX, the following
ranges are also used:
HB8SXN: 0x100 to Ox1FF
H8SXM,H8SXA,H8SXX: 0x200 to Ox3FF
The cpu option should be specified at
compilation and assembly.

branch

Optimizes branch instruction size accordingto O X
program allocation information. Even if this

option is not specified, it is performed when any

other optimization is executed.

speed

Executes optimizations other than those (0] X
reducing object speed. This suboption is the

same as the following specifications:
optimize=string_unify, symbol_delete,

variable_access, register, short_format, or

branch

safe

Executes optimizations other than those limited O X
by variable or function attributes. This suboption

is the same as the following specifications:
optimize=string_unify, register, short_format, or

branch

Notes: 1. SHC: C/C++ program for SH
SHA: Assembly program for SH
H8C: C/C++ program for H8
H8A: Assembly program for H8

Rev. 1.00 Aug. 17,2009 Page 137 of 1156

RENESAS

REJ10J2039-0100

Section 4 Optimizing Linkage Editor Options

Remarks:

SAMesize

When form={object | relocate | library} or strip is specified, this option is
unavailable.

When optimization of access to external variables is specified at compilation,
optimization with unification of constants/string literals (optimize=string_unify)
is invalid.

optimize=short_format is available only when the CPU is H8SX.

When the CPU is SH-2A or SH2A-FPU, the code size may increase due to the
optimize=register function.

Common Code Size

Format:

Description:

Remarks:

Link/Library <Optimize> [Eliminated size :]
SAMESize = <size>

Specifies the minimum code size for the optimization with the same-code
unification (optimize=same_code). Specify a hexadecimal value from 8 to 7FFF.

When this option is omitted, the default is samesize=1E.

When optimize=same_code is not specified, this option is unavailable.

Rev. 1.00 Aug. 17
REJ10J2039-0100

, 2009 Page 138 of 1156

RENESAS

Section 4 Optimizing Linkage Editor Options

PROfile Profile Information
Link/Library <Optimize> [Include profile :]

Format: PROfile = <file name>
Description: Specifies a profile information file.

Specifiable profile information files are those output from the High-performance
Embedded Workshop Ver. 2.0 or later.

When a profile information file is specified, inter-module optimization according
to dynamic information can be performed.

Table 4.9 shows optimizations influenced by a profile information input.

Table 4.9 Relations Between Profile Information and Optimization

Program to be Optimized*'

Suboption Description SHC SHA H8C HS8A

variable_access Allocates variables from those that are X X (0] (0]
dynamically accessed more frequently.

function_call Lowers the optimizing priority of functions that ~ x X (0] O
are dynamically accessed frequently.

branch Allocates a function that is dynamically (0] A¥® O A
accessed frequently near the calling function.

For the SH program, the optimization with
allocation is performed depending on the cache
size specified using the cachesize option.
Notes: 1. SHC: C/C++ program for SH
SHA: Assembly program for SH
H8C: C/C++ program for H8
H8A: Assembly program for H8

2. Movement is provided not in the function unit, but in the input file unit.

Remarks: When the optimize option is not specified, this option is unavailable.

Rev. 1.00 Aug. 17,2009 Page 139 of 1156
RENESAS REJ10J2039-0100

Section 4 Optimizing Linkage Editor Options

CAchesize Cache Size
Link/Library <Optimize> [Cache size :]

Format: CAchesize = <suboption>
<suboption>: Size = <size> | Align = <line size>
Description: Specifies a cache size and cache line size.

When profile is specified, this option is used at the branch instruction
optimization (optimize=branch).

Specify the size in Kbytes and specify the line size in bytes in the hexadecimal
notation.

When this option is omitted, the default is cachesize=size=8, align=20.

Remarks: If profile is not specified, this option is unavailable.

Rev. 1.00 Aug. 17,2009 Page 140 of 1156
REJ10J2039-0100 RENESAS

Section 4 Optimizing Linkage Editor Options

SYmbol_forbid, SAMECode_forbid, Variable_forbid,
FUnction_forbid, SEction_forbid, Absolute_forbid Optimization Partially Disabled

Format:

Description:

Link/Library <Optimize> [Show entries for :] [Forbid item]

SYmbol_forbid = <symbol name> [,...]
SAMECode_forbid = <function name> [,...]
Variable_forbid = <symbol name> [,...]
FUnction_forbid = <function name> [,...]
SEction_forbid = <sub>[,...]

<sub>: [<file name>|<module name>](<section name>[,...])
Absolute_forbid = <address> [+<size>] [,...]

Disables optimization for the specified symbol, section, or address range. Specify
an address or the size in the hexadecimal notation. For a C/C++ variable or C
function name, add an underscore (_) at the head of the definition name in the
program. For a C++ function, enclose the definition name in the program with
double-quotes including the parameter strings. When the parameter is void,
specify as "<function name>()".

Table 4.10 shows the suboptions.

Table 4.10 Suboptions of Optimization Partially Disabling Option

Suboption Parameter Description
symbol_forbid Function name Disables optimization regarding unreferenced symbol
| variable name deletion
samecode_forbid Function name Disables optimization regarding same-code unification
variable_forbid Variable name Disables optimization regarding short absolute
addressing mode
function_forbid Function name Disables optimization regarding indirect addressing
mode
section_forbid Section name Disables optimization for the specified section. If an
File name input file name or library module name is also
Module name specified, the optimization can be disabled for a
specific file, not only the entire section.
absolute_forbid Address [+ size] Disables optimization regarding address + size
specification

Rev. 1.00 Aug. 17,2009 Page 141 of 1156
RENESAS REJ10J2039-0100

Section 4 Optimizing Linkage Editor Options

Examples:

Remarks:

symbol forbid="f (int)" ; Does not delete the C++ function f(int)
; even if it is not referenced.

section_forbid=(P1) ; Disables any optimization for section
; P1.

section_ forbid=a.obj (P1,P2) ; Disables any optimization for sections
; P1 and P2 in a.obj.

If optimization is not applied at linkage, this option is ignored.

To disable optimization for an input file with its path name, type the path with the
file name when specifying section_forbid.

Rev. 1.00 Aug. 17
REJ10J2039-0100

, 2009 Page 142 of 1156
RENESAS

Section 4 Optimizing Linkage Editor Options

4.2.5 Section Options

Table 4.11 Section Category Options
Item Command Line Format Dialog Menu Specification
Section STARt = <sub>[,...] Link/Library <Section> Specifies a section start address
address <sub>: [(]J<section name> [Show entries for]
[{:], }<section name>][,...]] [Section]
DIL-..] [/<address>]
Symbol FSymbol = <section name>[,...] Link/Library <Section> Outputs externally defined
address file [Show entries for] symbol addresses to a definition
[Symbol file] file.
STARt Section Address
Link/Library <Section> [Show entries for :] [Section]
Format: STARt = <sub> [,...]
<sub>: [(] <section name> [{ : |, } <section name> [,...]] D] [,...]
[/ <address>]
Description: Specifies the start address of the section. Specify an address as the hexadecimal.

The section name can be specified with wildcards “*”. Sections specified with
wildcards are expanded according to the input order.

Two or more sections can be allocated to the same address (i.e., sections are

[T3% 2}

overlaid) by separating them with a colon “:
Sections specified at a single address are allocated in the specification order.
Sections to be overlaid can be changed by enclosing them by parentheses “()”.

Objects in a single section are allocated in the specification order of the input file
or the input library.

If no address is specified, the section is allocated at 0.

A section which is not specified with the start option is allocated after the last
allocation address.

Rev. 1.00 Aug. 17,2009 Page 143 of 1156
RENESAS REJ10J2039-0100

Section 4 Optimizing Linkage Editor Options

Examples:

This example shows how sections are allocated when the objects are input in the
following order (names enclosed by parentheses are sections in the objects).

tpl.obj (A,D1,E) -> tp2.0obj(B,D3,F) -> tp3.obj(C,D2,E,QG)
(1) -start=A,B,E/400,C,D*:F:G/8000

0x400 0x8000

[A" T8 TEtpy | E(tp2iglib) | C [m [[
F

G

Sections C, F, and G separated by colons are allocated to the same address.

Sections specified with wildcards “*” (in this example, the sections whose
names start with D) are allocated in the input order.

Objects in the sections having the same name (E in this example) are allocated
in the input order.

An input library’s section having the same name (E in this example) as those
of input objects is allocated after the input objects.

(2) -start=A,B,C,D1:D2,D3,E,F:G/400

0x400
A B c | o |
D2 | D3 E [F |

C

o The sections that come immediately after the colons (A, D2, and G in this
example) are selected as the start and allocated to the same address.

(3) -start=A,B,C, (D1:D2,D3) ,E, (F:G) /400

0x400
[A B JcC DL E F |

D2 D3 G

e When the sections to be allocated to the same address are enclosed by
parentheses, the sections within parentheses are allocated to the address
immediately after the sections that come before the parentheses (C and E in
this example).

o The section that comes after the parentheses (E in this example) is allocated
after the last of the sections enclosed by the parentheses.

Rev. 1.00 Aug. 17,2009 Page 144 of 1156
REJ10J2039-0100 RENESAS

Section 4 Optimizing Linkage Editor Options

Remarks:

When form={object | relocate | library} or strip is specified, this option is
unavailable.

Parentheses cannot be nested.

One or more colons must be written within parentheses. Parentheses cannot be
written without a colon.

Colons cannot be written outside of parentheses.

When this option is specified with parentheses, optimization with the linkage
editor is disabled.

Rev. 1.00 Aug. 17,2009 Page 145 of 1156
RENESAS REJ10J2039-0100

Section 4 Optimizing Linkage Editor Options

FSymbol

Symbol Address File

Format:

Description:

Examples:

Remarks:

Link/Library <Section> [Show entries for :][Symbol file]
FSymbol = <section name> [,...]

Outputs externally defined symbols in the specified section to a file in the
assembler directive format.

The file name is <output file>.fsy.

fSymbol = sct2, sct3
output=test.abs

Outputs externally defined symbols in sections sct2 and sct3 to test.fsy.

[Output example of test.fsy]
;OPTIMIZING LINKAGE EDITOR GENERATED FILE 1999.11.26
;Esymbol = sct2, sct3

;SECTION NAME = sct2
.export _f
f: .equ h’00000000

.export g

~g: .equ h’00000016
;SECTION NAME = sct3
.export _main

_main: .equ h’00000020

.end

When form={object | relocate | library} or strip is specified, this option is
unavailable.

This option is available when the CPU type is H8 or SuperH series.

Rev. 1.00 Aug. 17,2009 Page 146 of 1156

REJ10J2039-0100

RENESAS

Section 4 Optimizing Linkage Editor Options

4.2.6 Verify Options

Table 4.12 Verify Category Options

Item Command Line Format Dialog Menu Specification
Address CPu={ <memory type> = Link/Library <Verify> Specifies a specifiable
check <address range>[,...] [CPU information check :] allocation range for section
| STRIDE} addresses.
<memory type>: The specified section will be
{ ROm | RAm divided.
| XROm | XRAmM
| YROm | YRAm }
<address range>:
<start address>
-<end address>
Physical PS_check=<sub>[:<sub>...] Link/Library <Verify> Specifies address ranges that
space overlap <sub>: <LS>,<LS>],...] [Physical space overlap may overlap each other in the
check <LS>: <start address> check :] physical space.

-<end address>

Not divide the CONTIGUOUS_SECTION
specified = <section name>|,...]
section

Link/Library <Verify>
[Not divide the specified
section :]

The specified section will not
be divided.

Rev. 1.00 Aug. 17,2009 Page 147 of 1156

RENESAS

REJ10J2039-0100

Section 4 Optimizing Linkage Editor Options

CPu Address Check
Verify [CPU information check:]
Format: CPu={<cpu information file name>
| <memory type> = <address range> [,...]
| STRIDE}
<memory type>: { ROm | RAm | XROm | XRAm | YROm | YRAm | FIX}
<address range>: <start address> - <end address>
Description: When cpu=stride is not specified, a section larger than the specified range of

addresses leads to an error.

When cpu=stride is specified, a section larger than the specified range of
addresses is allocated to the next area of the same memory type or the section is
divided.

[Example]

When the stride suboption is not specified:

start=D1,D2/100

cpu=ROM=100-1FF,RAM=200-2FF

The result is normal when D1 and D2 are respectively allocated within the ranges
from 100 to 1FF and from 200 to 2FF. If they are not allocated within the ranges,
an error will be output.

[Example]

When the stride suboption is specified:

start=D1,D2/100

cpu=ROM=100-1FF,RAM=200-2FF,ROM=300-3FF

cpu=stride

The result is normal when D1 and D2 are allocated within the ROM area
(regardless of whether the section is divided). A linkage error occurs when they
are not allocated within the ROM area even though the section is divided.

xrom and xram specify the X memory areas and yrom and yram specify the Y
memory areas in the DSP.

Specify an address range in which a section can be allocated in hexadecimal
notation. The memory type attribute is used for the inter-module optimization.

FIX for <memory type> is used to specify a memory area where the addresses
are fixed (e.g. I/O area).

Rev. 1.00 Aug. 17,2009 Page 148 of 1156

REJ10J2039-0100

RENESAS

Section 4 Optimizing Linkage Editor Options

Remarks:

If the address range of <start>-<end> specified for FIX overlaps with that
specified for another memory type, the setting for FIX is valid.

When <memory type> is ROM or RAM and the section size is larger than the
specified memory range, sub-option STRIDE can be used to divide a section and
allocate them to another area of the same memory type. Sections are divided in
module units.

[Example]

cpu=ROM=0-FFFF,RAM=10000-1FFFF

Checks that section addresses are allocated within the range from 0 to FFFF or
from 10000 to 1FFFF.

Object movement is not provided between different attributes with the inter-
module optimization.

cpu=ROM=100-1FF,ROM=400-4FF,RAM=500-5FF

cpu=stride

When section addresses are not allocated within the range from 100 to 1FF, the
linkage editor divides the sections in module units and allocates them to the range
from 400 to 4FF.

When form={object | relocate | library} or strip is specified, this option is
unavailable.

Memory types Xrom, xram, yrom, and yram are available only when the CPU is
SHDSP, SH2DSP, SH3DSP or SH4ALDSP.

When cpu=stride and optimize=register are valid, error L2230 may be output.
In such cases, disable optimize=register.

When section B is divided by cpu=stride, the size of section C$BSEC increases
by 8 bytes x number of divisions because this amount of information is required
for initialization.

Rev. 1.00 Aug. 17,2009 Page 149 of 1156
RENESAS REJ10J2039-0100

Section 4 Optimizing Linkage Editor Options

PS_check

Physical Space Overlap Check

Format:

Description:

Examples:

Remarks:

Verify [Physical space overlap check :]
PS_check=<sub>[:<sub>...]
<sub>: <LS>,<L.S>|,...]
<LS>: <start address>-<end address>

Specifies objects that may overlap each other when they are allocated to the
memory.

Use this option to detect SH3 or SH4 objects that will overlap each other when
they are allocated to the actual memory even if their virtual addresses do not
overlap.

If an overlap is detected after this option setting, an error will be output and the
linkage operation will be terminated.

Specify address ranges (<LS> in the command line format) that may overlap each
other in the memory.

To check multiple physical memory spaces, specify them by separation with a
colon (©).

In the SH4, the 4-Gbyte address space is mapped to the 512-Mbyte (29-bit
address) external memory area when the MMU is disabled (the upper three bits of
address for the 4-Gbyte space are ignored).

For example, when the U0 area (00000000 to Ox7fffffff) that can be used in user
mode is mapped to the external memory (512 Mbytes), overlapped objects can be
detected through the following setting.

-PS check=00000000-1ffff£fff,20000000-3££f£££fEf,
40000000-5fffffff,60000000-7£££££FE

This setting means that addresses 00000000, 20000000, 40000000, and 60000000
are allocated to the same location in the actual memory.

This option is only valid for the SuperH-series CPUs.

This option is invalid if object, relocate, or library is specified for the output
format (form option).

Rev. 1.00 Aug. 17,2009 Page 150 of 1156

REJ10J2039-0100

RENESAS

Section 4 Optimizing Linkage Editor Options

This option is invalid when an absolute file is input.

For the address space specifications of the CPU, refer to the hardware manual of
the target CPU.

CONTIGUOUS_SECTION Not divide the specific section

Format:

Description:

Examples:

Remarks:

Link/Library <Verify> [Not divide the specified section :]
CONTIGUOUS_SECTION=<section name>[,...]

Allocates the specified section to another available area of the same memory type
without dividing the section when cpu=stride is valid.

start=P,PA,PB/100
cpu=ROM=100-1FF,ROM=300-3FF,ROM=500-5FF
cpu=stride

contiguous_section=PA

Section P is allocated to address 100.

If section PA which is specified as contiguous_section is over address 1FF,
section PA 1is allocated to address 300 without being divided.

If section PB which is not specified as contiguous_section is over address 3FF,
section PB is divided and allocated to address 500.

When cpu=stride is invalid, this option is unavailable.

Rev. 1.00 Aug. 17,2009 Page 151 of 1156
RENESAS REJ10J2039-0100

Section 4 Optimizing Linkage Editor Options

4.2.7 Other Options

Table 4.13 Other Category Options

Item Command Line Format

Dialog Menu

Specification

End code S9

Link/Library <Other>
[Miscellaneous options :]
[Always output S9 record
at the end]

Always outputs the S9 record.

Stack STACK
information
file

Link/Library <Other>
[Miscellaneous options :]
[Stack information output]

Outputs a stack use information
file.

Debugging Compress
information
compression NOCOmpress

Link/Library <Other>
[Miscellaneous options :]
[Compress debug

Compresses debugging
information
Does not compress debugging

information] information
Memory MEMory = [High | Low] Link/Library <Other> Specifies the memory
occupancy [Miscellaneous options ;] occupancy when an input file is
reduction [Low memory use during loaded

linkage]

Symbol name REName = <sub>][,...]

modification <sub>:
{<file name>

(<name>=<name>[,...])
| <module name>
(<name><name>[,...]) }

Link/Library <Other>
[User defined options :]

Modifies a symbol name or
section name.

Symbol name DELete = <sub>[,...] Link/Library <Other> Deletes a symbol name or
deletion <sub>: [User defined options :] module name.
{<module name>
| [<file name>]
(<name>[,...]) }
Module REPlace = <sub>[,...] Link/Library <Other> Replaces modules of the same

replacement <sub>: <file>

[(<module>[,...])]

[User defined options :]

name in a library file.

Module EXTract = <module>|,...] Link/Library <Other> Extracts the specified module
extraction [User defined options :] in a library file.
Debugging STRip Link/Library <Other> Deletes debugging information

information
deletion

[User defined options:]

in an absolute file or a library
file.

Rev. 1.00 Aug. 17,2009 Page 152 of 1156

REJ10J2039-0100

RENESAS

Section 4 Optimizing Linkage Editor Options

Item Command Line Format Dialog Menu Specification
Message CHange_message=<sub>[,...] Link/Library <Other> Modifies message levels.
level <sub>: [User defined options:]

{Information | Warning | Error }
[=<error number>
[-<error number>] [,...]]

Local symbol Hide Link/Library <Other> Deletes local symbol name
name hide [User defined options:] information
Showing total Total_size Link/Library <Other> This newly added option sends
sizes of [Miscellaneous options ;] total sizes of sections after
sections [Displays total section linkage to standard output.

size]
Information RTs_file Link/Library <Other> Outputs an information file for
file for the [Miscellaneous options ;] the emulator (for SuperH).
emulator [Rts information output]
S9 End Code

Link/Library <Other>[Miscellaneous options :][Always output S9 record at the end]
Format: S9
Description: Outputs the S9 record at the end even if the entry address exceeds 0x10000.

Remarks: When form=stype is not specified, this option is unavailable.

Rev. 1.00 Aug. 17,2009 Page 153 of 1156
RENESAS REJ10J2039-0100

Section 4 Optimizing Linkage Editor Options

STACk Stack Information File
Link/Library <Other>[Miscellaneous options :][Stack information output]
Format: STACk
Description: Outputs a stack consumption information file.
The file name is <output file name>.sni.
Remarks: When form={object | relocate | library} or strip is specified, this option is
unavailable.
COmpress, NOCOmpress Debugging Information Compression
Link/Library <Other>[Miscellaneous options :][Compress debug information]
Format: COmpress
NOCOmpress
Description: Specifies whether debugging information is compressed.
When compress is specified, the debugging information is compressed.
When nocompress is specified, the debugging information is not compressed.
By compressing the debugging information, the debugger loading speed is
improved. If the nocompress option is specified, the link time is reduced.
If this option is omitted, the default is nocompress.
Remarks: When form={object | relocate | library | hexadecimal | stype | binary} or strip

is specified, this option is unavailable.

Rev. 1.00 Aug. 17,2009 Page 154 of 1156

REJ10J2039-0100

RENESAS

Section 4 Optimizing Linkage Editor Options

MEMory

Memory Occupancy Reduction

Format:

Description:

Remarks:

Link/Library <Other>[Miscellaneous options :][Low memory use during linkage]
MEMory = [High | Low]

Specifies the memory size occupied for linkage.

When memory = high is specified, the processing is the same as usual.

When memory = low is specified, the linkage editor loads the information
necessary for linkage in smaller units to reduce the memory occupancy. This
increases file accesses and processing becomes slower when the occupied
memory size is less than the available memory capacity.

memory = low is effective when processing is slow because a large project is
linked and the memory size occupied by the linkage editor exceeds the available
memory in the machine used.

When one of the following options is specified, this option is unavailable:
optimize, compress, delete, rename, map, stack, replace, and
combination of list and show[={reference | xreference}]

Some combinations of this option and the input or output file format are
unavailable. For details, refer to table 4.4 in section 4.2.2, Output Options.

Rev. 1.00 Aug. 17,2009 Page 155 of 1156
RENESAS REJ10J2039-0100

Section 4 Optimizing Linkage Editor Options

REName Symbol Name Modification
Link/Library <Other>[User defined options :]
Format: REName = <suboption> [,...]
<suboption>: {[<file>] (<name> = <name> [,...])
| [<xmodule>] (<name> = <name> [,...]) }
Description: Modifies a symbol name or a section name.
Symbol names or section names in a specific file or library in a module can be
modified.
For a C/C++ variable name, add an underscore (_) at the head of the definition
name in the program.
When a function name is modified, the operation is not guaranteed.
If the specified name matches both section and symbol names, the symbol name
is modified.
If there are several files or modules of the same name, the priority depends on the
input order.
Examples: rename= (_syml=data) ;Modifies syml to data.
rename=1ibl (P=P1) ; Modifies the section P to P1
; in the library module lib1.
Remarks: When extract or strip is specified, this option is unavailable.

When form=absolute is specified, the section name of the input library cannot be
modified.

Rev. 1.00 Aug. 17,2009 Page 156 of 1156

REJ10J2039-0100

RENESAS

Section 4 Optimizing Linkage Editor Options

DELete

Symbol Name Deletion

Format:

Description:

Examples:

Remarks:

Link/Library <Other>[User defined options :]
DELete = <suboption> [,...]
<suboption>: {[<file>] (<name>[,...]) | <module>}
Deletes an external symbol name or library module.
Symbol names or modules in the specified file can be deleted.

For a C/C++ variable name or C function name, add an underscore (_) at the head
of the definition name in the program. For a C++ function name, enclose the
definition name in the program with double-quotes including the parameter
strings. If the parameter is void, specify as "<function name>()". If there are
several files or modules of the same name, the file that is input first is applied.

When a symbol is deleted using this option, the object is not deleted but the
attribute is changed to the internal symbol.

delete=(_syml) ; Deletes the symbol _syml1 in all files.

delete=filel.obj (_sym2) ; Deletes the symbol _sym2
; in the input file filel.obj.

When extract or strip is specified, this option is unavailable.

Rev. 1.00 Aug. 17,2009 Page 157 of 1156
RENESAS REJ10J2039-0100

Section 4 Optimizing Linkage Editor Options

REPlace Module Replacement
Link/Library <Other>[User defined options :]
Format: REPlace = <suboption> [,...]
<suboption>: <file name> [(<module name> [,...]) }
Description: Replaces library modules.
Replaces the specified file or library module with the module of the same name in
the library specified with the library option.
Examples: replace=filel.obj ; Replaces the module filel
; with the module filel.obj.
replace=1ibl.1ib(mdl1l) ; Replaces the module mdll with
; the module mdl1 in the input library
; file lib1.lib.
Remarks: When form={object | relocate | absolute | hexadecimal | stype | binary},
extract, or strip is specified, this option is unavailable.
EXTract Module Extraction
Link/Library <Other>[User defined options :]
Format: EXTract = <module name> [,...]
Description: Extracts library modules.
Extracts the specified library module from the library file specified using the
library option.
Examples: extract=filel ; Extracts the module filel.
Remarks: When form={absolute | hexadecimal | stype | binary} or strip is specified, this

option is unavailable.

Rev. 1.00 Aug. 17,2009 Page 158 of 1156

REJ10J2039-0100

RENESAS

Section 4 Optimizing Linkage Editor Options

STRip Debugging Information Deletion
Link/Library <Other>[User defined options :]

Format: STRip

Description: Deletes debugging information in an absolute file or library file.
When the strip option is specified, one input file should correspond to one output
file.

Examples: input=filel.abs file2.abs file3.abs
strip
Deletes debugging information of filel.abs, file2.abs, and file3.abs, and outputs
this information to filel.abs, file2.abs, and file3.abs, respectively. Files before
debugging information is deleted are backed up in filel.abk, file2.abk, and
file3.abk.

Remarks: When form={object | relocate | hexadecimal | stype | binary} is specified, this

option is unavailable.

Rev. 1.00 Aug. 17,2009 Page 159 of 1156
RENESAS REJ10J2039-0100

Section 4 Optimiz

ing Linkage Editor Options

CHange_message Message Level

Format:

Description:

Examples:

Link/Library <Other>[User defined options :]
CHange_message = <suboption> [,...]
<suboption>: <error level> [= <error number> [-<error number>] [,...]]
<error level>: {Information | Warning | Error}
Modifies the level of information, warning, and error messages.
Specifies the execution continuation or abort at the message output.

change message=warning=2310
Modifies L2310 to the warning level and specifies execution continuation at
L2310 output.

change message=error
Modifies all information and warning messages to error level messages.
When a message is output, the execution is aborted.

Rev. 1.00 Aug. 17
REJ10J2039-0100

, 2009 Page 160 of 1156
RENESAS

Section 4 Optimizing Linkage Editor Options

Hide

Local Symbol Name Hide

Format:

Description:

Examples:

Link/Library <Other>[User defined options :]
Hide

Deletes local symbol name information from the output file. Since all the name
information regarding local symbols is deleted, local symbol names cannot be
checked even if the file is opened with a binary editor. This option does not affect
the operation of the generated file.

Use this option to keep the local symbol names secret.

The following types of symbol names are hidden:

C source: Variable or function names specified with the static qualifiers
C source: Label names for the goto statements

Assembly source: Symbol names of which external definition (reference)
symbols are not declared

The following is a C source example in which this option is valid:
int gil;

int g2=1;
const int g3=3;

static int s1;
static int s2=1;

static const int s3=2;

static int subl ()

{
static int s1;
int 11;
sl = 11; 11 = s1;
return(11) ;

}

int main()

{
subl () ;
if (gl==1)

goto L1;

g2=2;

//<- The static variable name will be hidden.
//<- The static variable name will be hidden.
//<- The static variable name will be hidden.

//<- The static function name will be hidden.

//<- The static variable name will be hidden.

RENESAS

Rev. 1.00 Aug. 17,2009 Page 161 of 1156
REJ10J2039-0100

Section 4 Optimizing Linkage Editor Options

Remarks:

Total_size

Ll: //<- The label name of the goto statement
/I will be hidden.
Return(0) ;

}

This option is available only when the output file format is specified as absolute,
relocate, or library.

When the input file was compiled or assembled with the goptimize option
specified, this option is unavailable if the output file format is specified as
relocate or library.

To use this option with the external variable access optimization, do not use this
option for the first linkage, and use it only for the second linkage.

The symbol names in the debugging information are not deleted by this option.

Showing total sizes of sections

Format:

Description:

Remarks:

Link/Library <Other> [Miscellaneous options :] [Displays total section size]
Total_size

Sends total sizes of sections after linkage to standard output. The sections are
categorized as follows, with the overall size of each being output.

e Executable program sections
e Non-program sections allocated to the ROM area

e Sections allocated to the RAM area

This option makes it easy to see the total sizes of sections allocated to the ROM
and RAM areas.

The show=total_size option must be used if total sizes of sections are to be
output in the linkage listing.

When the ROM-support function (rom option) has been specified for a section,
the section will be used by both the source (ROM) and destination (RAM) of the
transfer. The sizes of sections of this type will be added to the total sizes of
sections in both ROM and RAM.

Rev. 1.00 Aug. 17,2009 Page 162 of 1156

REJ10J2039-0100

RENESAS

Section 4 Optimizing Linkage Editor Options

RTs_file

Information File for the Emulator

Format:

Description:

Remarks:

Link/Library <Other> [Miscellaneous options :] [Rts information output]
RTs_file

This option creates a return address information file (.rts file) for the emulator.
For usage of this option, refer to the user’s manual for the emulator in use. This
option is not available in some types of emulators.

The name of the return address information file is <load module name>.rts. If
the file to be output is test.abs as specified with the output option, for example,
its file will be created as test.rts. The return address information file is created
under the same directory where the load module has been created.

This option is invalid when form={object | relocate | library} has been
specified.

This option is invalid when an absolute file is selected as an input file.

For usage of this option, refer to the user’s manual for the emulator in use. This
option is not available in some types of emulators.

Rev. 1.00 Aug. 17,2009 Page 163 of 1156
RENESAS REJ10J2039-0100

Section 4 Optimizing Linkage Editor Options

4.2.8 Subcommand File Options

Table 4.14 Subcommand Tab Option

Item Command Line Format Dialog Menu Specification
Subcommand SUbcommand = Link/Library Specifies options with a
file <file name> <Subcommand file> subcommand file

[Use external
subcommand file]

SUbcommand

Subcommand File

Format:

Description:

Examples:

Link/Library <Subcommand file> [Use external subcommand file]
SUbcommand = <file name>
Specifies options with a subcommand file.

The format of the subcommand file is as follows:
<option> { =| A } [<suboption> [,...]] [A&] [;<comment>]

w__

The option and suboption are separated by an sign or a space.
For the input option, suboptions are separated by a space.

One option is specified per line in the subcommand file.

If a subcommand description exceeds one line, the description can be allowed to
overflow to the next line by using an ampersand (&).

The subcommand option cannot be specified in the subcommand file.

Command line specification:
optlnk filel.obj -sub=test.sub file4.obj

Subcommand specification:
input file2.obj file3.obj ; Thisis a comment.
library libl.lib, & ; Specifies line continued.
lib2.1ib

Option contents specified with a subcommand file are expanded to the location at
which the subcommand is specified on the command line and are executed.

The order of file input is filel.obj, file2.obj, file3.0bj, and file4.obj.

Rev. 1.00 Aug. 17,2009 Page 164 of 1156

REJ10J2039-0100

RENESAS

Section 4 Optimizing Linkage Editor Options

4.2.9 CPU Option

Table 4.15 CPU Tab Option

Item Command Line Format Dialog Menu Specification

SBR address SBr = { <SBR address> CPU Specifies the start address of

specification | User} [Specify SBR address :] the 8-bit absolute area (for
H8SX).

SBr SBR Address Specification

CPU [Specify SBR address :]
Format: SBr = { <address> | User }
Description: Specifies the SBR address.

When the SBR address is specified in this option, optimization using the abs8
area is available. When user is specified in this option, optimization for the abs8
area is disabled.

Remarks: This option is available only when the CPU is H8SX.

If more than one SBR address is specified within the source or by tool options,
the optimizing linkage editor assumes that user is specified regardless of this
option setting.

Rev. 1.00 Aug. 17,2009 Page 165 of 1156
RENESAS REJ10J2039-0100

Section 4 Optimizing Linkage Editor Options

4.2.10 Options Other Than Above

Table 4.16 Options Other Than Above

Item Command Line Format Dialog Menu Specification
Copyright LOgo — Output
NOLOgo Not output

Continuation END — Executes option strings already

input, inputs continuing option
strings and continues

processing.
Termination EXIt — Specifies the termination of
option input.
LOgo, NOLOgo Copyright
None (nologo is always available.)
Format: LOgo
NOLOgo

Description: Specifies whether the copyright is output.
When the logo option is specified, the copyright is displayed.
When the nologo option is specified, the copyright display is disabled.

When this option is omitted, the default is logo.

Rev. 1.00 Aug. 17,2009 Page 166 of 1156
REJ10J2039-0100 RENESAS

Section 4 Optimizing Linkage Editor Options

END Execution Continued
None

Format: END

Description: Executes option strings specified before END. After the linkage processing is

terminated, option strings that are specified after END are input and the linkage
processing is continued.

This option cannot be specified on the command line.

Examples: input=a.obj,b.obj ; Processing (1)
start=P,C,D/100,B/8000 ; Processing (2)
output=a.abs ; Processing (3)
end
input=a.abs ; Processing (4)
form=stype ; Processing (5)
output=a.mot ; Processing (6)

Executes the processing from (1) to (3) and outputs a.abs. Then executes the
processing from (4) to (6) and outputs a.mot.

Rev. 1.00 Aug. 17,2009 Page 167 of 1156
RENESAS REJ10J2039-0100

Section 4 Optimizing Linkage Editor Options

EXIt Termination Processing
None
Format: EXIt
Description: Specifies the end of the option specifications.
This option cannot be specified on the command line.
Examples: Command line specification:

optlnk -sub=test.sub -nodebug

test.sub:
input=a.obj,b.obj ; Processing (1)
start=P,C,D/100,B/8000 ; Processing (2)
output=a.abs ; Processing (3)
exit

Executes the processing from (1) to (3) and outputs a.abs.

The nodebug option specified on the command line after exit is executed is
ignored.

Rev. 1.00 Aug. 17
REJ10J2039-0100

, 2009 Page 168 of 1156

RENESAS

Section 5 Standard Library Generator Operating Method

Section 5 Standard Library Generator Operating Method

51 Comand Line Format
The format of the command line is as follows:

1bg38 [A<option strings>...]
<option strings:-<options>[=<suboption>[,...]]

5.2 Option Descriptions

Options and suboptions of the standard library generator are based on the C/C++ compiler options.
The following section describes the difference between the options and suboptions of the standard
library generator and those of the C/C++ compiler. For details on C/C++ compiler options, refer
to section 2, C/C++ Compiler Operating Method.

In the command line format, uppercase letters indicate abbreviations. The format of the dialog
menus that correspond to the HEW is as follows:
Tab name <Category>[Item] ...

Rev. 1.00 Aug. 17,2009 Page 169 of 1156
RENESAS REJ10J2039-0100

Section 5 Standard Library Generator Operating Method

5.2.1 Additional Options

Table 5.1 shows additional options.

Table 5.1 Additional Options
ltem Command Line Format Dialog Menu Specification
Header file Head = <sub>[,...] Standard Library Specifies parts to be generated
<sub>:{ ALL | <Standard All library functions
RUNTIME | Library> Runtime routine
CTYPE | [Category] ctype.h(C89/C99) + runtime routine
MATH | math.h(C89/C99) + runtime routine
MATHF | mathf.h(C89/C99) + runtime routine
STDARG | stdarg.h(C89/C99) + runtime routine
STDIO | stdio.h(C89/C99) + runtime routine
STDLIB | stdlib.h(C89/C99) + runtime routine
STRING | string.h(C89/C99) + runtime routine
I0S | ios(EC++) + runtime routine
NEW | new(EC++) + runtime routine
COMPLEX | complex(EC++) + runtime routine
CPPSTRING | string(EC++)+ runtime routine
C99_COMPLEX | complex.h (C99) and runtime library
INTTYPE | inttypes.h (C99) and runtime library
WCHAR | wchar.h (C99) and runtime library
WCTYPE } wctype.h (C99) and runtime library
Output file OUTPut = <file name> Standard Library Specifies an output library file name
<Object>
[Output file path :]
Reentrant REent Standard Library Creates reentrant library
library <Object>
[Generate
reentrant library]
Library LANG={C | Standard Library Selects the available functions in the
language C99} <Language> C standard library.
C++STDIO C99STDIO <Other> C99 stdio is used in C++ program.
C89STDIO C89STDIO <CPU> C89 stdio is used in C99 program.
Rev. 1.00 Aug. 17,2009 Page 170 of 1156
REJ10J2039-0100 RENESAS

Section 5 Standard Library Generator Operating Method

Head

Standard Library <Standard Library>[Category :]

e Command Line Format

Head = <sub>[,...]

<sub>:{ ALL
RUNTIME
CTYPE
MATH
MATHF
STDARG
STDIO
STDLIB
STRING
10S
NEW
COMPLEX
CPPSTRING
C99_COMPLEX
INTTYPE
WCHAR
WCTYPE}

e Description
Specifies one or more categories to be generated with a header file name.
For relationships between header files and library functions, refer to section 10.3, C/C++
Libraries. The runtime routine is always generated.
The default interpretation of this option is head=all.
e Example
1bg38 -output=h8s.lib -head=mathf -cpu=2600a
Compiles library functions defined by mathf.h and runtime routine with option: -cpu=2600a,
and outputs library file h8s.lib.

Rev. 1.00 Aug. 17,2009 Page 171 of 1156
RENESAS REJ10J2039-0100

Section 5 Standard Library Generator Operating Method

OUTPut

Standard Library <Object>[Output file path :]

Command Line Format

OUTPut = <File name>

Description

Specifies an output file name. The default of this option is output=stdlib.lib.
Example

1bg38 -output=h8s.lib -optimize -speed -goptimize -cpu=2600a
Compiles all standard library source files with options: -optimize -speed -goptimize -
cpu=2600a, and outputs library file h8s.lib.

REent

Standard Library <Object> [Generate reentrant library]

Command Line Format

REent

Description

Creates reentrant functions. Note that the rand and srand functions are not reentrant functions.
Also note that the behavior of subsequent calls of the strtok function using the same string is
not guaranteed.

Example (user program)

#define REENTRANT
#include <stdlib.h>

Remarks

When reentrant functions are linked, use #define statements to define macro names (#define
_REENTRANT) or use the define option to define _REENTRANT at compilation before
including standard include files in the program.

Rev. 1.00 Aug. 17,2009 Page 172 of 1156
REJ10J2039-0100 RENESAS

Section 5 Standard Library Generator Operating Method

LANG

Standard Library <Language>

Command Line Format
LANG={C | C99}
Description

This option selects which functions are to be usable in the C standard library.

When lang=c is specified, only the functions conforming to the C89 standard are included in
the C standard library, and the extended functions of the C99 standard are not included. When
lang=c99 is specified, the functions conforming to the C89 standard and the functions
conforming to the C99 standard are included in the C standard library.

Remarks

There are no changes in the functions included in the C++ and EC++ standard libraries.

When lang=c99 is specified, all functions including those specified by the C99 standard can be
used. Since the number of available functions is greater than when lang=c is specified,
however, generating a library may take a long time.

C99STDIO

Standard Library <Other>

Command Line Format

LANG={C | C99}

Description

Specify the C99 stdio’s library is used if c¢pp is selected as lang option.

Example

1bg38 -c99stdio

Remarks

Specify €¢99stdio if low-level interface routines for C99 and a source file is compiled as C++
language. And generating a library and a relocatable object file are specified as well.

If the library or relocatable object is generated without ¢99stdio, the absolute file may not
work.

Rev. 1.00 Aug. 17,2009 Page 173 of 1156
RENESAS REJ10J2039-0100

Section 5 Standard Library Generator Operating Method

C89STDIO
Standard Library <CPU>

e Command Line Format
C89STDIO

e Description
Specify the C89(legacy) stdio’s library is used if C99 is selected as lang option. C99 stdio
features are not available. C89 stdio features only.

e Example
1bg38 -c89stdio

e Remarks
Specify c89stdio if low-level interface routines which works on V.6.02.01 or before are used
and a source is compiled as C99. And generating a library and a relocatable object file are
specified as well.
If the library or relocatable object is generated without ¢89stdio, the absolute file may not
work.

Rev. 1.00 Aug. 17,2009 Page 174 of 1156
REJ10J2039-0100 RENESAS

Section 5 Standard Library Generator Operating Method

5.2.2 Options Unavailable for Standard Library Generator

Table 5.2 shows C/C++ compiler options that cannot be specified for the standard library
generator. If any of the options listed in table 5.2 are specified, these specifications are ignored.

Table 5.2 Options Not Unavailable for Standard Library Generator
Compiler
ltem Option Interpretation Description
Include file directory Include N/A —
Macro name definition DEFine N/A —
Disable preprocessor NOLINe N/A —
#line output
Message output Message NOMessage No output
control NOMessage
Preprocessor PREProcessor N/A —
inline output
Object type Code Code = Machinecode Outputs machine code program
Debugging information DEBug NODEBug No output
NODEBug
Object file output Object Object Output
NOOBject
Template instance Template N/A No template function used
generation
Listing file List NOList No output
NOList
Listing format SHow N/A —
Comment nesting COMment N/A No comment nesting function
used
MAC register MAcsave N/A No interrupt function included
Message level CHANnge_message N/A —
Selecting C or C++ LANg N/A Determined by an extension
language
Disable of Copyright LOGo NOLOGo Copyright output disabled
output NOLOGo
Character code select in EUc N/A No character code used
string literals Sjis
LATin1
UTF8
Rev. 1.00 Aug. 17,2009 Page 175 of 1156
RENESAS REJ10J2039-0100

Section 5 Standard Library Generator Operating Method

Compiler
ltem Option Interpretation Description
Japanese character OUtcode N/A No character code used
conversion within object
code

523 Notes on Specifying Options
When options are specified, follow the rules below:

(1) Specify the same options as in compiling for options cpu, regparam,
structreg/nostructreg, longreg/nolongreg, stack, double=float, byteenum, pack,
rtti=on/off, exception/noexception, bit_order=left/right, indirect=normal/extended,
ptr1l6, and sbr.

(2) In order to use #pragma global_register, specify a header file that consists of the #pragma
global_register declaration with the preinclude option. When the HEW is used, specify it
with Standard Libary <Other>[User defined options :].

Rev. 1.00 Aug. 17,2009 Page 176 of 1156
REJ10J2039-0100 RENESAS

Section 6 Operating Stack Analysis Tool

Section 6 Operating Stack Analysis Tool

6.1 Overview

The stack analysis tool displays the stack amount by reading the stack information file (*.sni)
output by the optimizing linkage editor or the profile information file (*.pro) output by the
simulator debugger.

For the stack amount of the assembly program (assembled by the assembler) that cannot be output
in the stack information file, the information can be added or modified by using the edit function.
In addition, the assembler Ver.6.01 can output the stack size for symbol and the stack amount of
whole systems can be calculated.

The information on the edited stack amount can be saved and read as the call information file
(*.cal).

6.2 Starting the Stack Analysis Tool

To start the stack analysis tool, select [Run...] from the start menu of Windows® and specify
Call.exe for execution.

When the HEW is used, select [Program] from the start menu of Windows®, select the HEW
menu, and then select Call Walker.

After the HEW is started, the stack analysis tool can also be started from the [Tools] menu.

For details on operation, refer to the help of the stack analysis tool.

Rev. 1.00 Aug. 17, 2009 Page 177 of 1156
RENESAS REJ10J2039-0100

Section 6 Operating Stack Analysis Tool

Rev. 1.00 Aug. 17, 2009 Page 178 of 1156
REJ10J2039-0100 RENESAS

Section 7 Environment Variables

Section 7 Environment Variables

7.1 Environment Variables List
The environment variables to be used by the compiler are listed in table 7.1.

Table 7.1 Environment Variables

Environment
Variable Description

path Specifies a storage directory for the execution file.
Specification format:

PC version: C> path = <execution file path name>[;<previous path name>;...]
UNIX C shell: %set path = (<execution file path name> $path)
UNIX Bourne shell: %PATH = :<execution file path name>
[:<previous path name>:...]
Y%export PATH

Rev. 1.00 Aug. 17,2009 Page 179 of 1156
RENESAS REJ10J2039-0100

Section 7 Environment Variables

Table 7.1 Environment Variables (cont)

Environment

Variable Description
H38CPU Specifies the CPU type overridden by the compiler or assembler cpu option.
<CPUl/operating Bit Width in Address Space Multiplier and Divider
mode> <valuei> Specification <value2>
AE5 — —
H8SXN — M|D|MD
H8SXM 20|24 (24) M|D|MD
H8SXA 2024|2832 (24) M|D|MD
H8SXX 28|32 (32) M|D|MD
2600n —
2600a 2024|2832 (24) —
2000n — —
2000a 2024|2832 (24) —
300hn — —
300ha 20 | 24 (24) —
300 — —
3001 — —

The default value is enclosed by parentheses, ().

When the specification of CPU by H38CPU environment variable and the

cpu option differs, a warning message is displayed. Cpu option has priority over
H38CPU specification.

Specification format:
PC version: C> set H38CPU = <CPU/operating mode>[:<value1>][:<value2>]

Rev. 1.00 Aug. 17,2009 Page 180 of 1156
REJ10J2039-0100 RENESAS

Section 7 Environment Variables

Table 7.1 Environment Variables (cont)

Environment
Variable Description

CH38 * Specifies an include file storage directory
The search order for system include files is any directory specified by an
include option, then this directory.
The search order for user include files is the current directory, any directory
specified by an include option, then this directory.

If environment variable CH38 is not specified, /usr/CH38 is assumed in the
UNIX version. The PC version does not have default.

Specification format:
PC version: C> set CH38 = <include path name> [;<include path
name>;...]

CH38TMP Specifies a directory in which the compiler creates temporary files. If
CHB38TMP is not specified, temporary files are created in the current
directory.

Specification format:
PC version: C> set CH38TMP = <temporary file path name>

CH38SBR Specifies a short address base register (SBR) for the compiler. The method
of specification is the same as that of the compiler’s sbr option.

Specification format:
PC version: C> set CH38SBR = <address>

Rev. 1.00 Aug. 17,2009 Page 181 of 1156
RENESAS REJ10J2039-0100

Section 7 Environment Variables

Table 7.1 Environment Variables (cont)

Environment
Variable

Description

HLNK_LIBRARY1
HLNK_LIBRARY2
HLNK_LIBRARY3

Specifies a default library name for the optimizing linkage editor. Libraries
which are specified by a library option are linked first. Then, if there is an
unresolved symbol, the default libraries are searched in the order 1, 2, 3.

Specification format:

PC version: C> set HLNK_LIBRARY1 = <library name 1>
C> set HLNK_LIBRARY2 = <library name 2>
C> set HLNK_LIBRARY3 = <library name 3>

HLNK_TMP Specifies a directory in which the optimizing linkage editor creates temporary
files. If HLNK_TMP is not specified, temporary files are created in the
current directory.

Specification format:
PC version: C> set HLNK_TMP = <temporary file path name>

HLNK_DIR * Specifies an input file storage directory for the optimizing linkage editor.

The search order for files which are specified by the input and the library
options is the current directory then this directory.

However, when a wildcard is used in the file specification, only the current
directory is searched.

Specification format:
PC version: C> set HLNK_DIR = <input file path name> [;<input file
path name >;...]

Note: More than one directory can be specified by dividing directories by a semicolon (;) in the PC

version.

Rev. 1.00 Aug. 17,2009 Page 182 of 1156

REJ10J2039-0100

RENESAS

Section 7 Environment Variables

7.2 Compiler Implicit Declaration

The compiler implicitly defines the macro names according to its version and options specified.

Table 7.2 Compiler Implicit Declaration

Option Implicit Declaration

cpu = 300L #define _ _300L_ _

cpu = 300 #define _ _300_ _

cpu = 300HN #define _ _300HN_ _

cpu = 300HA #define _ _300HA_ _

cpu = 2000N #define _ _2000N_ _

cpu = 2000A #define _ _2000A_ _

cpu = 2600N #define _ _2600N_ _

cpu = 2600A #define _ _2600A_ _

cpu = H8SXN #define _ _H8SXN_ _

cpu = H8SXM #define _ _H8SXM_ _

cpu = H8SXA #define _ _H8SXA_ _

cpu = H8SXX #define _ _H8SXX_ _

cpu = <H8SX>:M or MD #define _ _HAS_MULTIPLIER_ _
cpu = RS4 #define _ _HAS_MULTIPLIER_ _
cpu = <H8SX>:D or MD #define _ _HAS_DIVIDER_ _
cpu = AE5 #define _ _AE5_ _

cpu = RS4 #define _ _RS4_ _

double = float #define _ _FLT_

byteenum

#define _ _BENM_ _

cpuexpand

#define _ _CPUEX_ _

library=intrinsic

#define _ _INTRINSIC_LIB_ _

abs16 #define _ _ABS16_ _

— #define _ _ADDRESS_SPACE_ "

— #define _ _DATA_ADDRESS_SIZE_ _**
— #define _ _H8 *

— #define _ _RENESAS_VERSION_ _**
— #define _ _HITACHI_VERSION_ _**

— #define _ _RENESAS_ _*

_ #define _ _HITACHI__*

c89stdio #define _C89STDIO_

c99stdio #define _C99STDIO_

RENESAS

Rev. 1.00 Aug. 17,2009 Page 183 of 1156

REJ10J2039-0100

Section 7 Environment Variables

Notes: 1. Address width (16, 20, 24, 28, or 32 bits) is defined.

2. _ _DATA_ADDRESS_SIZE_ _ is defined as 2 or 4 as shown below.
2: 300, normal or middle mode, or advanced or maximum mode with the ptr16 option
4: Advanced or maximum mode without the ptr16 option

3. The value of _ _RENESAS_VERSION_ _ and _ _HITACHI_VERSION_ _ is as follows:
C source program: _ _RENESAS_VERSION_ _==0xaabb
aa: version
bb: revision
Example definition in the compiler:
#define _ _RENESAS_VERSION_ _ 0x0301 //Version 3.1C
#define _ _RENESAS_VERSION_ _ 0x0400 //Version 4.0

4. Always defined.

Rev. 1.00 Aug. 17,2009 Page 184 of 1156
REJ10J2039-0100 RENESAS

Section 8 File Specifications

Section 8 File Specifications

8.1 Naming Files

A standard file extension is automatically added to the name of a compiled file when the file
extension is omitted at file-naming. The standard file extensions used in the development
environment are shown in table 8.1.

Rev. 1.00 Aug. 17,2009 Page 185 of 1156
RENESAS REJ10J2039-0100

Section 8 File Specifications

Table 8.1 Standard File Extensions Used in the Development Environment

No. File Extension Description

1 c Source program file written in C

2 cpp, cc, cp Source program file written in C++

3 h Include file

4 lis, Ist *' C source program listing file

5 lis, Ipp *' C++ source program listing file

6 p File after the expansion by the C source program
preprocessor

7 pp File after the expansion by the C++ source program
preprocessor

src, mar Assembly source program file
exp File after the expansion by the assembly source

program preprocessor

10 lis Assembly source program listing file

11 obj Relocatable object program file

12 rel Relocatable load module file

13 abs Absolute load module file

14 map Linkage map listing file

15 lib Library file

16 Ibp Library listing file

17 mot S-type format

18 hex HEX format

19 bin Binary file

20 fsy Symbol address file for optimizing linkage editor output

21 sni Stack information file

22 pro Profile information file

23 dbg DWARF2-format debugging information file

24 rti Object that includes a definition specified in the file with

extension td

25 cal Calling information file

Note: 1. The extension is “lis” for the UNIX version, and “Ist* or “Ipp” for the PC version.

Lt}

Do not name a file a name beginning with “rti_", which indicates a file reserved for system use.

Table 8.2 lists the extensions for files that are output under the tpldir folder generated by each
project.

Rev. 1.00 Aug. 17,2009 Page 186 of 1156
REJ10J2039-0100 RENESAS

Section 8 File Specifications

Table 8.2 tpldir Folder Output File

No. File Extension Description

1 td Tentatively-defined variable information file
2 ti Template information file

3 pi Parameter information file

4 ii Instance information file

For general rules on naming files, refer to the user's manual of the host computer because naming
rules vary according to each host computer.

8.2 Compiler Listings

This section deals with compiler listings and their formats.

8.2.1

Structure of Compiler Listings

Table 8.3 shows the structure and contents of compiler listings.

Table 8.3

Structure and Contents of Compiler Listings

Option Specification

List Structure Contents Method Default
Source listing Source program listing*! show=source Output
information show=nosource
Source program listing of ~ show=expansion No output
include file and after macro show=noexpansion
expansion*2
Error information Errors detected during — Output
compilation
Symbol allocation Variables allocated to show=allocation No output
information stack frame of a function show=noallocation
Object information Machine code in object show=object No output
program and the assembly show=noobject
code
Statistics Length of each section show=statistics Output
information (byte), number of symbols, show=nostatistics

and object types

Notes: 1. Source program listings are inserted in the object information when the noexpansion
and object suboptions are specified simultaneously.

2. The source program listing of include files and after macro expansion is valid only when
show=source is specified.

Rev. 1.00 Aug. 17,2009 Page 187 of 1156

RENESAS

REJ10J2039-0100

Section 8 File Specifications

8.2.2 Source Listing

The source listing may be output in two ways. When show=noexpansion is specified, the
unpreprocessed source program listing is output. When show=expansion is specified, the
preprocessed source program listing is output. Figures 8.1 (a) and (b) show these output formats,
respectively. In addition, figure 8.1 (b) shows the differences between them with bold characters.

*kkkkkkxkkkk*x SOURCE LISTING ***xkkkkkkkkx

Line Pi 0----4----l----4-oo-2---opooo3oooopooogoooopooo5o—oopoo 6
FILE NAME: m0260.c

1 [1] #include "header.h"
2

3 int sum2 (void)
4 { int j;

5

6 #ifdef SMALL
7 j=SML_INT;
8 #telse

9 j=LRG_INT;
10 #endif

11

12 return j; /*
continue 123456789012345678901234567890123456789012345678901234567890123456789@8
23456789012345678901234567890 */

3)

[2]

Figure 8.1 (a) Source Listing Output for show=noexpansion

Rev. 1.00 Aug. 17,2009 Page 188 of 1156
REJ10J2039-0100 RENESAS

Section 8 File Specifications

*kkkkkkkkk*x* SOURCE LISTING ***kkkkkkkk*

Line Pi O————+————l————+————2————+————3————+————4————+————5————+————6——8%
FILE NAME: m0260.c
1 [1] #include "header.h"
FILE NAME: header.h

1 #define SML_ INT 1
#define LRG_INT 100
FILE NAME: m0260.c
2
3 int sum2 (void)
4 { int j;
5
6 #ifdef SMALL
7 X j=SML_INT;
8[3] #else
9 E §=100;
10 [4] #endif
11
12 return j; /* continuelz345678901234567890123456789012345678%
23456789012345678901234567890 */
3}
[2]

Figure 8.1 (b) Source Listing Output for show=expansion
Description

[1] Source program file name or include file name

[2] Line number in source program or include file

[3] If show=expansion is specified and conditional directives such as #ifdef and #elif are used, a
source program line that is not to be compiled is marked with an X.

[4] If show=expansion is specified and #define directives are used to expand macros, a line
containing a macro expansion is marked with an E.

Rev. 1.00 Aug. 17,2009 Page 189 of 1156
XRENESAS REJ10J2039-0100

Section 8 File Specifications

8.2.3 Error Information

Figure 8.2 shows an example of error information.

xxkxxkxkkxkx GOURCE LI STI NG *****x*kxkkx

Line Pi 0----+----1----+----2----+--——3----+----4----+----5----+————6————SS
FI LE NAVE: nD260. c

1 #i ncl ude "header.h"
2
3 extern int sunB(int);
4
5 sunB(int x)
6 {
7 int i;
8 int j;
9
10 j =0;
11 for (i=0; i<=x; i++){
13 }
14
15 return j;
16 }

xxkxxkxxxx* ERROR | NFORMATI QN ** * % * % x %% x

n0260.c(12) : C2225 (E) Undeclared nanme "Kk"

(1 [2] (31 [4 (8]
NUVBER OF ERRCRS: 116
NUVBER OF WARNI NGS: 0
NUVBER OF | NFORMATI ONS: 0 [7]

Figure 8.2 Source Listing Including Errors and Error Information
Description

[1] The name of the source program in which the error occurred is indicated within the first ten
characters.

[2] The line number containing the error is shown.
[3] The error number identifies the error message.
[4] (I) Information level

(W)Warning level

(E) Error level

(F) Fatal level

[5] Contents of the error message.

Rev. 1.00 Aug. 17,2009 Page 190 of 1156
REJ10J2039-0100 RENESAS

Section 8 File Specifications

[6] The total number of error-level messages and the total number of warning-level messages.

[7] The total number of information-level messages (only when the message option is specified).

8.24 Symbol Allocation Information

Symbol allocation information is the information of function parameters and local variables.
Figure 8.3 shows an example of symbol allocation information when a program is compiled in

H8S/2600 advanced mode.

kkkKkkkkkkkk*x QGOURCE LISTING **¥**kkkkkkkkx

Line Pi O————+————1————+————2————+————3————+————4————+————5————+————6—%

FILE NAME: m0280.c

1 extern int h(char, char *, double);
2

3 int

4 h(char a, register char *b, double c)
5 {

6 char *d;

7

8 d= &a;

9 h(*d,b,c);

10 {

11 register int ij;

12

13 i= *d;

14 return 1i;

15 }

16 }

*rxxxkx STACK FRAME INFORMATION ****%x%x

FILE NAME: m0280.c
Function (File m0280.c , Line 4): h
[1]

Parameter Allocation

a Oxfffffff7 saved from ROL

b REG ERS saved from ERL [2]

c 0x00000008
Level 1 (File m0280.c , Line 5) Automatic/Register Variable Allocation

d Oxfffffff2

[3]

Level 2 (File m0280.c , Line 10) Automatic/Register Variable Allocation

i REG R4

Parameter Area Size 0x00000008 Byte(
Linkage Area Size 0x00000008 Byte(
Local Variable Size 0x00000006 Byte(
Temporary Size : 0x00000000 Byte(
Register Save Area Size : 0x00000008 Byte(

: (

Total Frame Size 0x0000001e Byte

Figure 8.3 Symbol Allocation Information (cpu=2600a)

Rev. 1.00 Aug. 17,2009 Page 191 of 1156

RENESAS

REJ10J2039-0100

Section 8 File Specifications

Description

[1] File name in which the function is defined, line number, and function name

[2] Parameter allocation

the

X saved from Y: A parameter passed with Y is copied to X at the entry of
function.
REG ERx: If a parameter is allocated to a register, REG is
indicated.
Oxffffffxx,0x000000xx: If a parameter is allocated to a stack, the offset from the

address by the frame pointer (ER6) is indicated.

[3] Local variable allocation information

This indicates where the local variables declared in a compound statement are stored. If they
are allocated to stacks, the offset from the address indicated by ER6 is shown. If they are
allocated to registers, REG is displayed.

[4] Allocation information on the stack frame used in a function

Note:

Parameter Area Size: The total size of the bath area for parameters allocated to the
stack and the area for return value address.
Linkage Area Size: ~ The total size of the linkage area (return PC area and
frame pointer save area, frame pointer save area may not exist)
For the interrupt function the size of saving area for CCR and
EXR is added, where EXR is only for H8SX, H8S/2600 or
H8S/2000.
Local Variable Size: The total size of both the local variable area in the function
and the parameter save area which is reserved when a
parameter passed in a register is allocated to the stack.

Temporary Size: The size of the temporary area used by the compiler in the
function.

Register Save Area Size: The size of the amount of memory required to save the
register contents used by the function.

Total Frame Size: The total size of stack frames allocated in the function.

The following message is output instead of parameter allocation information and local
variable allocation information when the option optimize=1 is specified or when the CPU
is H8SX.

Optimize Option Specified : No Allocation Information Available

Figure 8.4 shows an example of stack allocation corresponding to the symbol allocation
information shown in figure 8.3.

Rev. 1.00 Aug. 17,2009 Page 192 of 1156
REJ10J2039-0100 RENESAS

Section 8 File Specifications

T

Lower address
-14
Local
ERO a d variable
area Loc_al
ER1 b 10 variable
! Parameter size
d a area (for register area*3
! 8 parameter)
+ Copy
' ER5
! Register save
ER4 i 1 -4 area *4
ERS b < ER4
) Total
Frame pointer —» ¢ stack
ERG6 (FP) frame
ERG6 (previous FP) size*s
4 Linkage area*2
Return PC
8
Parameter
c area (for stack
parameter)*1
16
Upper address
Notes: *1: Parameter Area Stack

*2; Linkage Area

*3: Local Variable Area
*4: Register Save Area
*5: Total Frame Size

Figure 8.4 Stack Allocation Example (cpu=2600a)

Rev. 1.00 Aug. 17,2009 Page 193 of 1156
XRENESAS REJ10J2039-0100

Section 8 File Specifications

8.2.5 Object Information

Figures 8.5 and 8.6 show object listing examples when the source program listing is output to the
object information and when not output, respectively.

FILE NAME: m0251.c

SCT OFFSET CODE LABEL INSTRUCTION OPERAND COMMENT
11 21 131 [4] i
P ; section
1: extern int sum(int);
2: [5]
3: int
4: sum(int x)
00000000 _sum: ; function: sum
5: {
6: int i;
7: int j;
8:
9: j=0;
10:
11: for(i=0; i<=x; i++){
00000000 1988 SUB.W EO,EO
00000002 4000 BRA L8:8
00000004 L7:
00000004 0B58 INC.W #1,E0
00000006 L8:
00000006 1D08 CMP._W RO,EO
00000008 4F00 BLE L7:8
12: Jj+=1;
13: }
14:
15: return;
16: }
0000000A 5470 RTS

Figure 8.5 Object Information When Source Program Listing Is Output (show=source,
object, cpu=2600a)

Description

(1) Section name (P, C, D, B) of each section

(2) The offset indicates the offset address relative to the beginning of each section
(3) Contents of the offset address of each section

(4) Assembly code corresponding to machine code

(5) Line number and contents of source program

Rev. 1.00 Aug. 17,2009 Page 194 of 1156
REJ10J2039-0100 RENESAS

Section 8 File Specifications

Note: When the show=expansion option is specified, the object listing is always output in the
format shown in figure 8.6.

*kkkkkkhkkhkkhkkhkkhkk*k m]EC‘I’ LI STING************

FI LE NAME: nD251.c

SCT OFFSET CODE C LABEL | NSTRUCTI ON_OPERAND COMVENT
[1 [2] [3] [4]
P ; section
;*** File nD251. ¢ , Line 4 . bl ock
00000000 _sum ; function: sum
;*** File nmD251.c , Line 5 ; bl ock
;*** File nmD251.c , Line 9 ; expression statenent
00000000 1911 SUB. W R1, RL
;*** File nD251.c , Line 10 ; expression statenent
00000002 1988 SUB. W EO, EO
;*** File nmD251.c , Line 10 for
00000004 4004 BRA L8: 8
00000006 L7:
;*** File nD251. ¢ , Line 10 . bl ock
;*** File nD251.c , Line 11 ; expression statenent
00000006 0981 ADD. W EO, R1L
;*** File nmD251.c , Line 10 ; expression statenent
00000008 0B58 I NC. W #1, EO
0000000A L8:
0000000A 1D08 CWP. W RO, EO
0000000C 4FF8 BLE L7:8
c*** File nD251. ¢ , Line 13 ; return
0000000E 0D10 MOV. W R1, RO
;*** File nD251. ¢ , Line 14 . bl ock
00000010 5470 RTS
Figure 8.6 Object Information When Source Program Listing Is Not Output
(show=nosource, object, cpu=2600a)
Description

(1) Section name (P, C, D, B) of each section

(2) The offset indicates the offset address relative to the beginning of each section

(3) Contents of the offset address of each section

(4) Assembly code corresponding to machine code

Rev. 1.00 Aug. 17,2009 Page 195 of 1156

RENESAS

REJ10J2039-0100

Section 8 File Specifications

8.2.6 Statistics Information

Figure 8.7 shows an example of statistics information.

*xxxxxx SECTI ON SI ZE | NFORMATI ON ******

PROGRAM SECTI ON(P) : 0x00000012 Byt e(s)
CONSTANT SECTI ON(C) : 0x00000000 Byt e(s)

DATA SECTI ON(D) : 0x00000000 Byt e(s)

BSS SECTI ON(B) : 0x00000000 Byt e(s)
TOTAL PROGRAM SECTI ON: 0x00000012 Byt e(s) [1]
TOTAL CONSTANT SECTI ON: 0x00000000 Byt e(s)

TOTAL DATA SECTI ON: 0x00000000 Byt e(s)

TOTAL BSS SECTI ON: 0x00000000 Byt e(s)

TOTAL PROGRAM S| ZE: 0x00000012 Byt e(s)

** ASSEMBLER/ LI NKAGE EDI TOR LIM TS | NFORMATI ON **

NUMBER OF EXTERNAL REFERENCE SYMBCLS: 0
NUMBER OF EXTERNAL DEFI NI TI ON SYMBOLS: 1 [2]
NUMBER OF | NTERNAL/ EXTERNAL SYMBOLS: 3

*¥xx%x% COVPI LE CONDI TI ON | NFORVATI ON ****

COMVAND LI NE: -sh=allocation -opt=0 test.c [3]
cpu : 2600a [4]

Figure 8.7 Statistics Information
Description

(1) Size of each section and total size of sections

(2) Number of external reference symbols, number of external definition symbols, and total
number of internal and external labels in object program

(3) Contents of command line specification
(4) CPU/operating mode

Note: Statistics information is not output if an error-level error or fatal-level error has occurred
or when option noobject is specified. In addition, SECTION SIZE INFORMATION is
not output when option code=asmcode is specified.

Rev. 1.00 Aug. 17,2009 Page 196 of 1156
REJ10J2039-0100 RENESAS

Section 8 File Specifications

8.3 Assembler Listings

8.3.1 Structure of Assembler Listings
Table 8.4 shows the structure and contents of assembler listings.

Table 8.4 Structure and Contents of Assembler Listings

Option Specification

List Structure Contents Method Default
Source listing Shows information relating source Output

information to source program

Cross reference Shows information relating cross_reference Output

listing information to source program symbols

Section listing Shows information relating section Output

information to source program section

Note: All of the options listed are valid when the list option is specified.

8.3.2 Source Listing

Source listing information is shown. Figures 8.8 shows an example of source listing.

Rev. 1.00 Aug. 17,2009 Page 197 of 1156
RENESAS REJ10J2039-0100

Section 8 File Specifications

0 o Ul WN

Gl BB R BB PR PR WWWWWWWWwWwwWwWNNDNDNDDNDNDNDNDNDNRERFRRFE PP P2 P2
O WO JoO U WNE OWOWTOU EWNDE OWOL-JOU B WNRE OWOoWwTOo U W o w

(1)

00000000
00000000
00000000
00000006
00000008
0000000E

00000014
00000016
0000001A
0000001A
0000001C
0000001E

00000022
00000022
00000024
00000024
00000026
00000028
00000028
0000002A

0000002C
0000002C

00000032
00000034
00000038

0000003E
0000003E
0000003E

00001000
00001000
00001000
00001004

00000000
00000000
00000000
00000000
00000000
00000500
00000000

(2)

1
2
3
4
7A0700000000 5
F800 6
6AAB800000000 7
7A0200001000 8
9
F901
5800000A
6828 10
0B02 11
5E000000 12
13
8901
A908
4FF2
0180 14
40D4 15
16
17
6A2900000000 18
19
1C98
58F00006
6AA800000000 20
21
5470 22
23
24
25
03020405 26
01080607 27
28
29
30
00000001 31
32
33
00000500 34
35
36
37
(3) (4

*****TOTAL ERRORS 0
kTOTAL WARNINGS O

START
S
S
S
S
S
S
S
S
S
CHANGE
S
S
S
S
DATA
ANS
STACK
) (5)

.CPU 2600A:32

.SECTION AAA,CODE,ALIGN=2

MOV.L #STACK:32,SP
MOV.B #0:8,R0OL
MOV.B ROL,@ANS:32
MOV.L #DATA:32,ER2
.FOR.B (R1L=#1,#8,+#1)
MOV #1,RI1L
BRA _SF00002
_SF00000: .EQU $
MOV.B @ER2,ROL
ADDS.L #1,ER2
JSR @CHANGE:24
.ENDF
_SF00001: .EQU s
ADD #1,RI1L
_SF00002: .EQU $
CMP #8,R1L
BLE _SF00000
_SF00003: .EQU $
SLEEP
BRA START

MOV.B @ANS:32,R1L
.IF.B (R1L<LT>ROL)
CMP R1L,ROL
BLE _$I00000
MOV.B ROL, @ANS:32
.ENDI
_$I00000: .EQU S
_$I00001: .EQU $
RTS

.SECTION BBB,DATA,LOCATE=H'00001000

.DATA.B H'03,H'02,H'04,H'05
.DATA.B H'01,H'08,H'06,H'07

.SECTION CCC,DATA,ALIGN=2
.RES.B 1
.SECTION DDD, STACK,ALIGN=2

.RES.B H'500

.END START

Figure 8.8 Source Program Listing

Rev. 1.00 Aug. 17,2009 Page 198 of 1156
REJ10J2039-0100

RENESAS

Section 8 File Specifications

Description

(1) Line numbers in list
(2) Value of the location counter

Displays absolute address for absolute address section and displays relative address for relative
address section.

(3) Object code
(4) Source line numbers

The line number of source statement in the source program. No line number is displayed for
source statements expanded by the assembler.

(5) Expansion type
Source statement of preprocessor function. The following expansion types are available.
I: File inclusion

C: Satisfied conditional assembly, performed iterated expansion, or satisfied conditional
iterated expansion

M: Macro expansion
S: Structure assembly expansion

(6) Source statements

8.3.3 Cross Reference Listing

The cross reference listing is shown. Figure 8.9 shows an example of cross reference listing.

**% CROSS REFERENCE LIST

NAME SECTION ATTR VALUE SEQUENCE
AAA AAA SCT 00000000 3%
ANS Cccc 00000000 7 27 31
43%
BBB BBB SCT 00001000 37%*
ccce ccc SCT 00000000 42%
CHANGE AAA 0000002C 15 26%*
DATA BBB 00001000 8 38%*
DDD DDD SCT 00000000 46%*
STACK DDD 00000500 5 48%*
START AAA 00000000 4* 24 50
_$F00000 AAA EQU 0000001A 12* 21
_$F00001 AAA EQU 00000022 17*
_S$F00002 AAA EQU 00000024 11 19*
_S$F00003 AAA EQU 00000028 22%*
_$I00000 AAA EQU 0000003E 30 33*
_$100001 AAA EQU 0000003E 34%*
(1) (2) (3) (4) (5)

Figure 8.9 Cross Reference Listing

Rev. 1.00 Aug. 17,2009 Page 199 of 1156
XRENESAS REJ10J2039-0100

Section 8 File Specifications

Description

(1) Symbol name
(2) Section name
The name of the section that includes the symbol. Up to eight characters are displayed.
(3) Symbol attribute
No display Label definition
EQU Symbol defined with the .EQU assembler directive
ASGN Symbol defined with the .ASSIGN assembler directive
IMPT Import symbol
EXPT Export symbol
SCT Section name
REG Symbol defined with the .REG assembler directive
MDEF Symbol defined two or more times
UDEF Undefined symbol
(4) Symbol value
The hexadecimal value of a symbol in eight digits
(5) List line numbers of symbol definition or reference

The list line numbers of the source statements where the symbol is defined or referenced. The
line number marked with an asterisk (*) is the line where the symbol is defined.

Rev. 1.00 Aug. 17,2009 Page 200 of 1156
REJ10J2039-0100 RENESAS

Section 8 File Specifications

8.34 Section Information Listing

The section information listing is shown. Figure 8.10 shows an example of section information
listing.

*** SECTION DATA LIST

SECTION ATTRIBUTE SIZE START
AAA REL-CODE 0000040
BBB ABS-DATA 0000008 001000
cce REL-DATA 0000001
DDD REL-STACK 0000500

(1) (2) (3) (4)

Figure 8.10 Section Information Listing Output Example
Description

(1) Section name
(2) Section type and attribute
The section type and attribute are shown below:
— Section type
ABS Absolute address section
REL Relative address section
— Section attribute
CODE Code section
DATA Data section
STACK Stack section
DUMMY Dummy section
(3) Section size
The section size is displayed in hexadecimal.
(4) Section start address

The start address of absolute address sections. This will not be displayed in the relative address
sections.

Rev. 1.00 Aug. 17,2009 Page 201 of 1156
XRENESAS REJ10J2039-0100

Section 8 File Specifications

84 Linkage Listings

This section covers the contents and format of the linkage listing output by the optimizing linkage
editor.

8.4.1 Structure of Linkage Listing
Table 8.5 shows the structure and contents of the linkage listing.

Table 8.5 Structure and Contents of Linkage Listing

Information Creating Default When show
List Contents Suboption Option Omitted*'
Option information Displays option strings — Output

specified by a command line
or subcommand

Error information Displays error messages — Output
Linkage map information Displays a section name, start — Output
and end addresses, size, and
type
Symbol information Displays static definition show= Not output

symbol name, address, size, symbol
and type in order based on the
address.

When the show=reference show= Not output
option is specified, displays a reference

symbol reference count and

optimization information in

addition to the above

information.
Symbol deletion Displays symbols deleted by show= Not output
optimization information optimization symbol
Variable access Displays symbol reference show= Not output
optimization symbol counts in 8-bit/16-bit absolute reference
information addressing mode.
Function access Displays symbol reference show= Not output
optimization symbol counts. reference
information
Cross-reference Displays symbol reference show = Not output
information information xreference

Note: 1. The show option is valid only when the list option is specified.

Rev. 1.00 Aug. 17,2009 Page 202 of 1156
REJ10J2039-0100 RENESAS

Section 8 File Specifications

8.4.2 Option Information

Option information displays option strings specified by a command line or a subcommand file.
The option information is output as shown in figure 8.11 when optlnk -sub=test.sub -list -show is
specified.

(Contents of test.sub)

INPUT test.obj

*x%x Options ***

-sub=test.sub
INPUT test.obj (2) (1)

-list
-show

Figure 8.11 Option Information Output Example (Linkage Listing)
Description

(1) Option strings specified by a command line or a subcommand in the specified order

(2) Subcommand in the test.sub subcommand file

8.4.3 Error Information

Error information outputs an error message as shown in figure 8.12.

*** Error information ***

** 1,2310 (E) Undefined external symbol "strcmp" referred to in "test.obj" (1)

Figure 8.12 Error Information Output Example (Linkage Listing)
Description

(1) Error message

Rev. 1.00 Aug. 17,2009 Page 203 of 1156
RENESAS REJ10J2039-0100

Section 8 File Specifications

8.4.4 Linkage Map Information

Linkage map information outputs the start and end addresses, size, and type of each section in
order of addresses in the format shown in figure 8.13.

*** Mapping List ***

SECTION START _END SIZE ALTGN
(1) (2) (3) (4) (5)
P
00000000 000004d6 4d6 2
C
000004d6 00000533 5d 2
D
00000534 0000053c 8 2
B
0000053c 00004112 3bdé 2

Figure 8.13 Linkage Map Information Output Example
(Linkage Listing)

Description

(1) Section name
(2) Start address
(3) End address
(4) Section size

(5) Section boundary alignment

8.4.5 Symbol Information

When the show=symbol option is specified, symbol information lists addresses of externally
defined symbols or static internally defined symbols, sizes, and types in order of address. When
the show=reference option is specified, symbol information lists symbol reference counts and
optimization information in addition to the information listed when the show=symbol option is
specified. Figure 8.14 shows an example of symbol information.

Rev. 1.00 Aug. 17,2009 Page 204 of 1156
REJ10J2039-0100 RENESAS

Section 8 File Specifications

***% gymbol List ***

SECTION= (1)
FILE=(2) START END SIZE
(3) (4) (5)
SYMBOL ADDR SIZE INFO COUNTS QPT
(6) (7) (8) (9) (10) (11)
SECTION=P
FILE=test.obj
00000000 00000428 428
_main
00000000 2 func ,g 0
_malloc
00000000 32 func ,1 0
FILE=mvn3
00000428 00000490 68
SMVN#3
00000428 0 none ,g 0
Figure 8.14 Symbol Information Output Example (Linkage Listing)
Description
(1) Section name
(2) File name
(3) Start address of a section included in the file in (2) above
(4) End address of a section included in the file in (2) above
(5) Section size of a section included in the file in (2) above
(6) Symbol name
(7) Symbol address
(8) Symbol size

©)

Symbol type as shown below:
Data type: func Function name
data Variable name
entry Entry function name
none Undefined (label, assembler symbol)
Declaration type: g External definition

1 Internal definition

(10) Symbol reference count only when the show=reference option is specified. * is displayed

when the show=reference option is not specified.

(11) Optimization information as shown below:

ch Symbol modified by optimization

Rev. 1.00 Aug. 17,2009 Page 205 of 1156
XRENESAS REJ10J2039-0100

Section 8 File Specifications

cr Symbol created by optimization
mv Symbol moved by optimization
8.4.6 Symbol Deletion Optimization Information

Symbol deletion optimization information lists the size and type of symbols deleted by symbol
deletion optimization (optimize=symbol_delete) as shown in figure 8.15.

*** Delete Symbols ***

SYMBOL SIZE INFO
(1) (2) (3)
_Version
4 data ,g

Figure 8.15 Symbol Deletion Information Output Example (Linkage Listing)
Description

(1) Deleted symbol name
(2) Deleted symbol size
(3) Deleted symbol type as shown below
Data type: func Function name
data Variable name
Declaration type: g External definition

1 Internal definition

8.4.7 Variable Access Optimization Symbol Information

When the show=reference option is specified, variable access optimization symbol information
lists the size, reference count, and optimization information of the symbol to be optimized on
variable access optimization (optimize=variable_access).

Information of symbols that can be accessed in 8-bit or 16-bit absolute addressing mode is listed
in the area "Variable Accessible with Abs8". Information of symbols that can be accessed in 16-
bit absolute addressing mode is listed in the area "Variable Accessible with Abs16".

Figure 8.16 shows an example of variable access optimization symbol information.

Rev. 1.00 Aug. 17,2009 Page 206 of 1156
REJ10J2039-0100 RENESAS

Section 8 File Specifications

*** Variable Accessible with Abs8 ***

SYMBOL SIZE COUNTS OPTIMIZE
(1) (2) (3) (4)
_CharlGlob
1 2 done
*** Variable Accessible with Absl6e ***
SYMBOL SIZE COUNTS OPTIMIZE
(1) (2) (3) (4)
_IntGlob
2 2

Figure 8.16 Output Example of Variable Access Optimization Symbol Information

(Linkage Listing)
Description

(1) Symbol name

(2) Symbol size

(3) Symbol reference count
(4) Optimization information.

If optimization has been performed, "done" is displayed.

Rev. 1.00 Aug. 17,2009 Page 207 of 1156

RENESAS

REJ10J2039-0100

Section 8 File Specifications

8.4.8 Function Access Optimization Symbol Information

When the show=reference option is specified, function access optimization symbol information
lists the reference count and optimization information of the symbol to be optimized on function
access optimization (optimize=function_call).

Figure 8.17 shows an example of function access optimization symbol information.

***% Function Call ***

SYMBOL COUNTS OPTIMIZE
(1) (2) (3)
_malloc
5 done
_ProcO
4

Figure 8.17 Output Example of Function Access Optimization Symbol Information
(Linkage Listing)

Description

(1) Symbol name
(2) Symbol reference count
(3) Optimization information.

If optimization is performed, "done" is displayed.

Rev. 1.00 Aug. 17,2009 Page 208 of 1156
REJ10J2039-0100 RENESAS

Section 8 File Specifications

8.4.9 Cross-Reference Information

The symbol reference information (cross-reference information) can be output. A cross-reference
information output example is shown in figure 8.18.

*** Cross Reference List ***

No Unit Name Global.Symbol Location External Information
(1) (2) (3) (4) (5)
0001 a
SECTION=P
_func
00000100
_funcl
00000116
_main
0000012c
-9
00000136
SECTION=B

00000190 0001(00000140:P)
0002(00000178:P)
0003 (0000018c:P)

0002 b
SECTION=P
_func01
00000154 0001(00000148:P)
_func02
00000166 0001(00000150:P)
0003 ¢
SECTION=P
_func03

00000184

Figure 8.18 Cross-Reference Information Output Example (Linkage Listing)
Description:

(1) Unit number, which is an identification number in object units

(2) Object name, which specifies the input order at linkage

(3) Symbol name output in ascending order for every section

(4) Symbol allocation address, which is a relative value from the beginning of the section when
form=rel is specified

(5) Address from which an external symbol is referenced
Output format: <Unit number> (<address or offset in section>:<section name>)

Rev. 1.00 Aug. 17,2009 Page 209 of 1156
XRENESAS REJ10J2039-0100

Section 8 File Specifications

8.5 Library Listings

This section covers the contents and format of the library listing output by the optimization

linkage editor.

8.5.1 Structure of Library Listing

Table 8.6 shows the structure and contents of the library listing.

Table 8.6

List Structure

Contents

Structure and Contents of Library Listing

Suboption

Default When show
Option Omitted*'

Option information

Displays option strings —

specified by a command line
or subcommand

Output

Error information

Displays error messages —

Output

Library information

Displays library information —

Output

Information of module,
section, and symbol
within library

When the show=symbol
option is specified, displays a

Displays module within the
library

show=
symbol

list of symbol names in a

module.

When the show=section
option is specified, displays a

show=
section

list of section names and
symbol names in a module in
addition to the above

information.

Output

Not output

Not output

Note: 1.

The show option is valid only when the list option is specified.

Rev. 1.00 Aug. 17,2009 Page 210 of 1156

REJ10J2039-0100

RENESAS

Section 8 File Specifications

8.5.2 Option Information

Option information displays option strings specified by a command line or a subcommand file.
Figure 8.19 shows an example of option information when optlnk -sub=test.sub -list -show is
specified.

(Contents of test.sub)

form library
in adhry .obj
output test.lib

x Options ***

-sub=test.sub
form library

in adhry.obj [(2) [(1)
output test.lib

-list

-show

Figure 8.19 Option Information Output Example (Library Listing)
Description

(1) Option strings specified by a command line or a subcommand in the specified order

(2) Subcommand in the test.sub subcommand file

Rev. 1.00 Aug. 17,2009 Page 211 of 1156
XRENESAS REJ10J2039-0100

Section 8 File Specifications

8.5.3 Error Information

Error information outputs an error message as shown in figure 8.20.

*** Error information ***

** 1,1200 (W) Backed up file "main.lib" into "main.lbk" (1)

Figure 8.20 Error Information Output Example (Library Listing)
Description

(1) Error message

8.5.4 Library Information

Library information outputs the library type in the format shown in figure 8.21.

*** Tibrary Information ***

LIBRARY NAME=test.lib (1)
CPU=H8S (2)
ENDIAN=Big (3)
ATTRIBUTE=system (4)
NUMBER OF MODULE=1 (5)

Figure 8.21 Library Information Qutput Example (Library Listing)
Description

(1) Library name

(2) CPU name

(3) Endian type

(4) Library file attribute as either system library or user library
(5) Number of modules within the library

Rev. 1.00 Aug. 17,2009 Page 212 of 1156
REJ10J2039-0100 RENESAS

Section 8 File Specifications

8.5.5 Module, Section, and Symbol Information within Library
This information lists modules within the library.

When the show=symbol option is specified, symbol names in a module within the library are
listed. When the show=section option is specified, section names and symbol names in a module
within the library are additionally listed.

Figure 8.22 shows an output example of module, section, and symbol information within a library.

*** Library List ***

MODULE LAST UPDATE
(1) (2)
SECTION

(3)
SYMBOL
(4)
adhry
29-Feb-2000 12:34:56
P
_main
_ProcO
_Procl
C
D
Version
B
_IntGlob
_CharGlob

Figure 8.22 Output Example of Module, Section, and Symbol Information within Library
(Library Listing)

Description

(1) Module name
(2) Module definition date

If the module is updated, the latest module update date is displayed.
(3) Section name within a module

(4) Symbol within a section

Rev. 1.00 Aug. 17,2009 Page 213 of 1156
XRENESAS REJ10J2039-0100

Section 8 File Specifications

Rev. 1.00 Aug. 17,2009 Page 214 of 1156
REJ10J2039-0100 RENESAS

Section 9 Programming

Section 9 Programming

9.1 Program Structure

9.1.1 Sections

Each of the regions for execution instructions and data of the object programs output by the
C/C++ compiler or assembler comprises a section. A section is the smallest unit for data
placement in memory. Sections have the following properties.

e Section attributes

code Stores execution instructions
data Stores data
stack Stack area

e Format type
Relative-address format: A section that can be relocated by the optimizing linkage editor.

Absolute-address format: A section of which the address has been determined; it cannot be
relocated by the optimizing linkage editor.

e Initial values

Specifies whether there are initial values at the start of program execution. Data which has
initial values and data which does not have initial values cannot be included in the same
section. If there is one initial value, the remaining area without initial values is initialized to
ZEro.

e Write operations
Specifies whether write operations are or are not possible during program execution.
e Boundary alignment

Corrections to addresses assigned to sections. The optimizing linkage editor corrects addresses
such that they are multiples of the boundary alignment.

9.1.2 C/C++ Program Sections

The correspondence between standard library memory areas and sections for C/C++ programs is
described in table 9.1.

Rev. 1.00 Aug. 17,2009 Page 215 of 1156
RENESAS REJ10J2039-0100

Section 9 Programming

Table 9.1 Summary of Memory Area Types and Their Properties

Section Initial Values
. :ormat Write Allgr:- 5 -
ame Name Attribute ' YP® Operations men escription
Program area p* code Relative Yes 2 Stores machine code
No bytes
Constant area c* data Relative Yes 2 Stores const-type data
No bytes
Initialized data area D*' data Relative Yes 2 Stores data with initial values
Yes bytes
Uninitialized data B*' data Relative No 2 Stores data without initial
area Yes bytes values
Constant area (8- $ABS8C*' data Relative Yes 1 byte Stores const-type 8-bit data
bit address space) No specified by the abs8 option,
or by _ _abs8, #pragma abs8
Initialized data area $ABS8D*' data Relative Yes 1 byte Stores 8-bit data with initial
(8-bit address Yes values specified by the abs8
space) option, or by _ _abs8,
#pragma abs8
Uninitialized data $ABS8B*' data Relative No 1 byte Stores 8-bit data without initial
area (8-bit address Yes values specified by the abs8
space) option, or by _ _abs8,
#pragma abs8
Constant area (16- $ABS16C*' data Relative Yes 2 Stores const-type data
bit address space) No bytes specified by the abs16 option,
or by _ _abs8, #pragma abs8
Initialized data area $ABS16D*' data Relative Yes 2 Stores data with initial values
(16-bit address Yes bytes specified by the abs16 option,
space) or by _ _abs16, #pragma
abs16
Uninitialized data $ABS16B*' data Relative No 2 Stores data without initial
area (16-bit Yes bytes values specified by the abs16
address space) option, or by _ _abs16,
#pragma abs16
Rev. 1.00 Aug. 17,2009 Page 216 of 1156
REJ10J2039-0100 RENESAS

Section 9 Programming

Table 9.1 Summary of Memory Area Types and Their Properties (cont)

Section [Initial Values
. :ormat Write Allgrt1- o -
ame Name Attribute ' YP® Operations men escription
Function address $INDIRECT*' data Relative Yes 2 Stores function addresses
area (memory No bytes specified by the
indirect space) indirect=normal option, or by
_ _indirect, #pragma indirect
Function address $EXINDIRECT data Relative Yes 2 Stores function addresses
area (extended *' No bytes specified by the
memory indirect indirect=extended option, or
space) by _ _indirect_ex
Function address $VECTxx*’ data Absolute Yes 2 Stores function addresses
.are'a (memory % vector No bytes spelcm'ed with vect=x>.< of.
indirect space) number _ _indirect, #pragma indirect,
_ _indirect_ex, _ _interrupt,
#pragma interrupt,
_ _entry, or #pragma entry
1-byte data area yy$1*® data Relative — 1 byte Handles 1-byte data when
yy:C*',D*',B*', the align=4 option is
$ABS16C*', specified, and is created in
$ABS16D*', each section
$ABS16B™
4-byte data area yy $4* data Relative — 4 Handles 4-byte data when
yy:C*',D*',B*, bytes the align=4 option is
$ABS16C*', specified, and is created in
$ABS16D*', each section
$ABS16B*'

Rev. 1.00 Aug. 17,2009 Page 217 of 1156
RENESAS REJ10J2039-0100

Section 9 Programming

Table 9.1 Summary of Memory Area Types and Their Properties (cont)

Section Initial Values
y :ormat Write AllgrtI- 5 -
ame Name Attribute ' YP® Operations men escription

Address area for C$DSEC*® data Relative Yes 2 Stores ROM addresses, final

initialized data No bytes addresses in ROM, and

section RAM addresses for
initialized data area sections

Address area for C$BSEC* data Relative Yes 2 Stores addresses and final

uninitialized data No bytes addresses for uninitialized

section data area sections

C++ initial C$INIT*® data Relative Yes 2 Stores addresses of

processing/ No bytes constructors and destructors

postprocessing called for global class

data area objects

C++ virtual C$vTBL*® data Relative Yes 2 Stores data for virtual

function table No bytes function calls when there is a

area virtual function in a class
declaration

Stack area S stack Relative ~ No 2 Area necessary for program

Yes bytes execution (see section 9.2.1

(2), Dynamic Area
Allocation)

Heap area — — Relative No — Area used by library

Yes functions malloc, realloc,

calloc, new (see section
9.2.1 (2), Dynamic Area
Allocation)

Absolute $ADDRESS data Absolute Yes/No — Stores variables specified by

address variable $yy<address> Yes/No* #pragma address

area yy:C,D,B

Notes: 1. Section names can be switched in the compiler option section, extension #pragma
section, #pragma abs8 section, #pragma abs16 section, or #pragma indirect section.

2. The data section name before data subdivision is to be displayed in place of yy.
e.g. C -> C$1,C%4.

3. When the compiler option section=C=zz is specified, the prefix “C” becomes “zz”.

4. The initial value and write operation depend on the attributes of sections C, D, and B.

Rev. 1.00 Aug. 17,2009 Page 218 of 1156

REJ10J2039-0100

RENESAS

Section 9 Programming

Example 1: A program example is used to demonstrate the correspondence between a C program

and the compiler-generated sections.
Section name

int a=1; Program area (main() {...}))
char b;
const int c=0; Constant area (c) c

void main () {

Initialized data area (a) D

Uninitialized data area (b) B

Areas generated by the

C program compiler and stored data

Example 2: A program example is used to demonstrate the correspondence between a C++
program and the compiler-generated sections.

Section name

class A{ Program area (f() {...}) P
int m;
public: Constant area (c) C
A(int p);
A(); Initialized data area (d) D
i Uninitialized data areas (a,b)) B
A a(l);
int b; Initial processing/postprocessing data | C$INIT
extern const char c='a’; areas (&A::A, &A::~A)
int d=1;
_ Areas generated by the
void £0{...} compiler and stored data

C++ program

Rev. 1.00 Aug. 17,2009 Page 219 of 1156
RENESAS REJ10J2039-0100

Section 9 Programming

9.1.3 Assembly Program Sections

In assembly programs, .SECTION directives are used to begin sections and declare attributes and
formats. The format for declaration of a .SECTION directive is given below. For details, refer to
section 11.3, Assembler Directives.

.SECTION <section names[,<section attributes[,<format type>]]

<format types: In the case of a relative address section, align = <alignment boundary>
In the case of an absolute address section, locate = <address value>

Rev. 1.00 Aug. 17,2009 Page 220 of 1156
REJ10J2039-0100 RENESAS

Section 9 Programming

Example: An example of an assembly program section declaration appears below.

.CPU 2600A

.OUTPUT DBG
SIZE : .EQU 8

.SECTION A,CODE,ALIGN=2 ... (1)
START:

MOV.L #CONST:32,ERO

MOV.L #DATA:32,ER1

MOV.L #SIZE:32,ER2

LOOP:
CMP.L #0:32,ER2
BEQ EXIT
MOV.B @ERO,R3L
MOV.B R3L, @ER1
ADD.L #1:32,ERO
ADD.L #1:32,ER1
SUB.L #1:32,ER2
BRA LOOP
EXIT:
SLEEP
BRA START
.SECTION B,DATA,LOCATE=H'00001000 ... (2)
CONST

.DATA.B H'01,H'02,H'03,H'04
.DATA.B H'05,H'06,H'07,H'08

.SECTION C,STACK,ALIGN=2 ... (3)
DATA

.RES.B SIZE

.END START

(1) Declares a code section with section name A, alignment boundary 2, and relative address
format.

(2) Declares a data section with section name B, allocated address H'1000, and absolute address
format.

(3) Declares a stack section with section name C, alignment boundary 2, and relative address
format.

Rev. 1.00 Aug. 17,2009 Page 221 of 1156
RENESAS REJ10J2039-0100

Section 9 Programming

9.1.4 Linking Sections

The optimizing linkage editor links the same sections within input object programs, and
allocates addresses specified using the start option.

(1) The same section names in different files are allocated continuously in the order of file input.

"filel.obj" "file2.o0bj" "file3.obj"
Section A Section D Section C
Section B Section A Section B
Section C

v

Options specified at linkage

input filel.obj file2.obj file3.obj

start A,B/1000, C,D/8000

v

0x1000
file1. section A
file2. section A
file1. section B
0x8000

file3. section B

file1. section C

file3. section C

file2. section D

Rev. 1.00 Aug. 17,2009 Page 222 of 1156
REJ10J2039-0100 RENESAS

Section 9 Programming

(2) Sections with the same name but different boundary alignments are linked after alignment.
Section alignment uses the larger of the section alignments.

"filel.obj"

"file2.obj"

Section A

(align=2,size=0x6E)

Section A

(align=4,size=0x100)

’

Options specified at linkage

input filel.obj file2.obj

start A/1000

0x1000

’

file1. section A

0x1070

Alignment = 4
Size = 0x170

file2. section A

Rev. 1.00 Aug. 17,2009 Page 223 of 1156

RENESAS REJ10J2039-0100

Section 9 Programming

(3) When sections with the same name include both absolute-address and relative-address formats,
relative-address objects are linked following absolute-address objects. Even when relocatable
file (form=relocate) output is specified, the section in question becomes an absolute-address
section.

"filel.obj" "file2.obj"
Section A Section A
(align=4,size=0x100) (locate=1000,size=0x6E)

v

Options specified at linkage

input filel.obj file2.obj

’

file2. section A
0x1070 Absolute-address section
Size = 0x170

0x1000

file1. section A

Rev. 1.00 Aug. 17,2009 Page 224 of 1156
REJ10J2039-0100 RENESAS

Section 9 Programming

(4) Rules for the order of linking objects within the same section name are as follows.

a.
b.

Order specified by the input option or in the order of input files on the command line
Order specified for the user library by the library option and order of input of modules
within the library

Order specified for the system library by the library option and order of input of modules
within the library

Order specified for libraries by environment variables (HLNK_LIBRARY to
HLNK_LIBRARY?3) and order of input of modules within the library
"filel.obj" "usrl.lib "syslibl.1lib
Section A Module 1 (Section A) Module 5 (Section A)
Module 2 (Section A) Module 6 (Section A)
"file2.o0bj" "usr2.1lib" "syslib2.1lib"
Section A Module 3 (Section A) Module 7 (Section A)
Module 4 (Section A) Module 8 (Section A)
Options specified at linkage Environment variables
input filel.obj HLNK LIBRARYl=syslib2.1lib
file2.0bj HLNK LIBRARY2=usr2.lib
library syslibl.lib

v

file1. section A

0x1000

file2. section A

Module1. section A

Module2. section A

Module5. section A

Module6. section A

Module7. section A

Module8. section A

Module3. section A

Module4. section A

Rev. 1.00 Aug. 17,2009 Page 225 of 1156
RENESAS REJ10J2039-0100

Section 9 Programming

9.2 Creation of Initial Setting Programs

Here methods for embedding programs into systems employing the H8SX, AES, H8S/2600,
H8S/2000, H8/300H and H8/300 are explained.

To embed a program in a system, the following preparations are necessary.

e Memory allocation
Each section, the stack area, and the heap area must be allocated to system ROM and RAM.

o Settings for the program execution environment
Processing to set the program execution environment includes register initialization, memory
initialization, and program startup.

In addition, when using I/O and other C/C++ library functions, the library must be initialized
during preparation of the execution environment. In particular, when using I/O (stdio.h, ios,
streambuf, istream, ostream) and memory allocation (stdlib.h, new), low-level I/O routines and
memory allocation routines must be created.

When using C library functions for program termination (the exit, atexit, abort functions), these
functions must be created separately according to the user system.

In section 9.2.1, the method used to determine addresses for program memory is explained, and
actual examples are used to describe the method for specifying options in the optimizing linkage
editor for determining addresses.

In section 9.2.2, execution environment settings are explained, and an actual example of a program
to set the execution environment is described.

Library function initialization processing, creation of low-level routines, and examples of creation
of functions for termination processing are also explained.

9.2.1 Memory Allocation

In order to embed an object program into a system, the size of the memory areas to be used by
the program must be determined, and these memory areas must be allocated to appropriate
memory addresses.

Memory areas used by a program include areas which are statically allocated, such as for
execution instructions corresponding to functions in the program and data declared using external
data definitions, and areas which are dynamically allocated, such as the stack area. Below,
methods for allocation of each type of area are explained.

Rev. 1.00 Aug. 17,2009 Page 226 of 1156
REJ10J2039-0100 RENESAS

Section 9 Programming

(1) Static memory area allocation

(a) Contents of static memory area

Sections other than the stack area and heap area are allocated statically.

Each of the sections in a C/C++ program (program area, constant area, initialized data area,
uninitialized data area, function address area, initialized data section address area,
uninitialized data section address area, C++ initial processing/postprocessing data area,
and C++ virtual function table area) is allocated statically.

(b)Calculation of size

The size of static memory is the sum of the sizes of the object programs generated by the
compiler and assembler and the sizes of the library functions used by the C/C++ program.
After linking an object program, the sizes of each section, including libraries, are output to
the linkage map information of the linkage list, and so the size of static memory can be
determined. Figure 9.1 shows an example of linkage map information in the linkage list.

*** Mapping List ***

SECTION START _END SIZE ALIGN
(1) (2) (3) (4) (5)
P
00000000 000004d6 4d6 2
C
000004d6 00000533 5d 2
D
00000534 0000053c 8 2
B
0000053c 00004112 3bd6 2

Figure 9.1 Example of Linkage Map Information in Linkage List

Section sizes of compiling and assembly units are output to the statistics information of the
compile list and section information of the assembly list. An example of compile list
statistics information is shown in figure 9.2, and an example of assembly list section
information appears in figure 9.3.

FAkkkkx SECTION SIZE INFORMATION * %%k %%

PROGRAM SECTION (P

DATA
BSS

TOTAL
TOTAL
TOTAL

) : 0x00000080 Byte (s)
CONSTANT SECTION (C): 0x00000004 Byte(s)
SECTION (D) : 0x00000004 Byte(s)
SECTION (B): 0x00000004 Byte (s)
PROGRAM SECTION: 0x00000080 Byte(s)
CONSTANT SECTION: 0x00000004 Byte(s)
DATA SECTION: 0x00000004 Byte(s)
BSS SECTION: 0x00000004 Byte(s)

TOTAL

TOTAL

PROGRAM SIZE: 0x0000008C Byte(s)

Figure 9.2 Example of Compile List Statistics Information

Rev. 1.00 Aug. 17,2009 Page 227 of 1156
XRENESAS REJ10J2039-0100

Section 9 Programming

**% SECTION DATA LIST

SECTION ATTRIBUTE SIZE START
P REL-CODE 000000604
D REL-DATA 000000008
¢ REL-DATA 00000005D
B REL-DATA 000003BD6

Figure 9.3 Example of Assembly List Section Information

When not using a standard library, the total of file-unit section sizes is the size of static
memory.

When using a standard library, memory area sizes used by library functions must be
added to the memory size for each section. Among the standard libraries provided by
the compiler are, in addition to C library functions stipulated by the C language
specifications and C++ class libraries for embedded use, routines to perform arithmetic
calculations (runtime routines) used for program execution. Hence even if use of library
functions is not specified in the source program, a standard library may be needed.

The runtime routines used by a program can be determined from the symbol allocation
information in the compile list output by the compiler. A specific example is presented
below.

C program
long a,b;

main ()

{

a *= Db;

}
C compiler output symbol allocation information

FAhkkxkxkx STACK FRAME INFORMATION ***% %%
FILE NAME: main.c

Function (File main.c , Line 2) :main

Parameter Area Size : 0x00000000 Byte(s)
Linkage Area Size : 0x00000000 Byte(s)
Local Variable Size : 0x00000000 Byte(s)
Temporary Size : 0x00000000 Byte(s)
Register Save Area Size : 0x00000000 Byte(s)
Total Frame Size : 0x00000000 Byte(s)

Rev. 1.00 Aug. 17,2009 Page 228 of 1156
REJ10J2039-0100 RENESAS

Section 9 Programming

Used Runtime Library Name
SMULLS3 : Runtime routine

(¢) ROM, RAM allocation
When writing a program to ROM, whether sections are allocated to RAM or to ROM is
determined by whether there are initial values and whether write operations are enabled.

When writing the sections of a C/C++ program to ROM, sections are allocated to ROM or
to RAM as follows.

e Program area (section P) ROM
e Constant areas (sections C, SABS8C, $ABS16C) ROM
e Uninitialized data areas (sections B, SABS8B, $ABS16B) RAM
e Initialized data areas (sections D, $ABS8D, $ABS16D) ROM, RAM
(see (d) below)
e Function address area (section $SINDIRECT, $SEXINDIRECT) ROM
e Initialized data section address area (section C$DSEC) ROM
e Uninitialized data section address area (section C$BSEC) ROM
e Initial processing data area*' (section C$INIT) ROM
e Virtual function table area*’ (section C$VTBL) ROM

Notes: 1. Generated by the compiler when a C++ program has a global class object.

2. Generated by the compiler when a C++ program contains virtual function declarations.

(d) Allocation of initialized data areas

Sections which have initial values and can be altered on program execution, such as
initialized data areas, are placed in ROM at link time and copied to RAM at the start of
program execution. Hence the rom option of the optimizing linkage editor must be used to
reserve the duplicate memory area both in ROM and in RAM. For an example of this, refer
to "(e) Example of memory allocation and address specification at link time" below. Initial
settings for sections to be copied from ROM to RAM are explained in section 9.2.2 (2),
Initial settings (PowerON_Reset).

(e)Example of memory allocation and address specification at link time
When creating an absolute load module, addresses are specified per allocated area for each
section using an optimizing linkage editor option or a subcommand. Below, examples of
static memory allocation and of address specification at link time are explained.
Figure 9.4 shows an example of allocation of a static memory area in H8S/2600 advanced
mode.

Rev. 1.00 Aug. 17,2009 Page 229 of 1156
XRENESAS REJ10J2039-0100

Section 9 Programming

0x000000
Interrupt vector
0x000400
Program area (P)
Constant area (C) Internal ROM
Initialized data area (D)
0x020000
Initialized data area (R)
RAM
Uninitialized data area (B)
OXFFECO00
Dynamic area Internal RAM
OXFFFBFF

P, C, D, B: Default section names generated by the compiler.

R: Section name specified by ROM support function of the linkage editor.

Figure 9.4 Example of Static Memory Allocation

When allocating memory as shown in figure 9.4, the following subcommands are specified at link
time.

ROMAD=R |
STARTAP,C,D/400,R,B/20000 ... [2]

Explanation [1] Space for section R of size equal to that of section D is secured in the output
load module. When symbols allocated to section D are referenced, relocation is
performed so that their addresses are in section R. Section D and section R are
initialized data sections on ROM and to RAM respectively.

Explanation [2] Sections P, C and D are allocated to contiguous areas of memory in internal
ROM starting from address 0x400. Sections R and B are allocated to contiguous
memory areas starting from address 0x20000 in RAM.

(2) Dynamic memory area allocation
(a) Contents of dynamic memory
The following two types of dynamic memory areas are used in C/C++ programs:

e Stack area

Rev. 1.00 Aug. 17,2009 Page 230 of 1156
REJ10J2039-0100 RENESAS

Section 9 Programming

e Heap area (for memory allocation of library functions and other uses)
(b) Calculation of stack area size

The maximum stack area size used by C/C++ programs and standard libraries can be
calculated by specifying the stack option of the optimizing linkage editor to output a stack
information file, and using the stack usage analysis tool. For details of use of the stack
usage analysis tool, refer to section 6, Operating Stack Analysis Tool.

The stack analysis tool can calculate the stack usage, if label is specified by .STACK
directive. But it cannot calculate the stack area used by an assembly program, which was
assembled by the assembler unable to output to a stack information file. Instead, the stack
usage of an assembly program should be computed by the method outlined below for
calculating the stack usage of a C/C++ program, and the result should be added to the stack
usage calculated by the stack usage analysis tool.

Method for Calculating Stack Usage by C/C++ Program: Stack area is allocated for use
by a C/C++ program each time a function is called, and is released when the function
returns. In order to calculate the size of the stack area used, first the amount of stack space
used by each function is computed, and then the calling relations of functions are used to
calculate the actual stack space use.

The stack area used by each function can be found from the symbol allocation information
(total frame size) of the compile list.

*x*kxxx STACK FRAME INFORMATION ****%%*
FILE NAME: test.c
Function (File test.c , Line 2) :main
Optimize Option Specified : No Allocation Information Available
Paramater Area Size : 0x00000008 Byte(s)
Linkage Area Size : 0x00000004 Byte(s)
Local Variable Size : 0x00000002 Byte(s)
Temporary Size : 0x00000000 Byte(s)
Register Save Area Size : 0x00000004 Byte(s)
Total Frame Size : 0x00000012 Byte(s)

The stack area used by each function can be found from the symbol allocation information
(total frame size) of the compile list.

The stack area used by the function is the total frame size of 0x12, that is, 18 bytes.

An example of function calling relationships and stack use by each function appears in
figure 9.5. Here, the size of the stack used when function g is called via function f is
calculated in table 9.2.

Rev. 1.00 Aug. 17,2009 Page 231 of 1156
RENESAS REJ10J2039-0100

Section 9 Programming

main ()

Function Name Stack Size (Bytes)

main 18

0 f

32
\ g 24
g()

Figure 9.5 Example of Function Calling Relationships and Stack Area Used

Table 9.2 Example of Calculation of Stack Area Used

Calling Path Stack Area Used Remarks
main (18) - f (32) > g(24) 74 Stack space used (maximum)
main (18) - g(24) 42

In this way, the stack area used is calculated for the function at the deepest calling level,
and stack area for this maximum value (in this case, 74 bytes) is allocated.

Note on stack consumption calculation

The fundamental to calculate the amount of stack consumption differs between Ver. 4.0 or
earlier or Ver. 6.0 except for H8SX and H8SX of Ver. 6.0. In this note, Ver. 4.0 or earlier

and Ver 6.0 except for H8SX is called the group A, and H8SX of Ver. 6.0 and H8S or

H8SX of Ver. 6.01 is called the group B. Take care if a function compiled by the group A

calls a function compiled by the group B, and vice versa.

The behavior of the SP, the stack pointer, differs between the group A and B. In the group

A, a parameter passed via the stack is stored after decrementing the SP using the push

instruction or the pre-decrement addressing mode (@-SP) as shown at [1] of the following
example. After the return from the function call, the stack area for the parameter is released

through incrementing the SP by the parameter size as shown at [2] of the following
example. In group A, the size of the parameter area in the stack differs depending on a

function, and that size is counted into the Parameter Area Size of the callee’s stack frame

size as shown at [3] of the following example.

Rev. 1.00 Aug. 17,2009 Page 232 of 1156
REJ10J2039-0100 RENESAS

Section 9 Programming

On the other hand, in the group B, the compiler calculates the maximum amount of the
stack area used in the function beforehand, and that amount of stack area is reserved at the
function prolog as shown at [4] of the following example. The SP is unchagened until the
function epilog, and the SP is restored to the original value before the function itself is
called, as shown at [6] of the following example. In this case, a parameter is stored at an
address with O or positive offset from the SP without changing the SP, as shown at [5] of
the following example. In group B, the size including the maximum amount of parameter
usage of all the function calls is counted into the Temporary Size of the caller’s stack frame
size as shown at [7] of the following example

As shown at CASE 1 and CASE 4 below, if the groups of the caller and the callee are the
same, the total size of stack consumption for the function g to call the function f is exactly
12 bytes through summing up the Total Frame Size of g and f. As in CASE 2 below, if a
function of the group A calls that of the group B, the total size of stack consumption for the
function g to call the function f is mistakenly 8 bytes through summing up the Total Frame
Size of g and f. This underestimate of the stack consumption came from the fact that the
size for the parameter area in the stack is not summed up. As in CASE 3 below, if a
function of the group B calls that of the group A, the total size of stack consumption for the
function g to call the function f is mistakenly 16 bytes through summing up the Total
Frame Size of g and f. This overestimate of the stack consumption came from the fact that
the size for the parameter area in the stack is summed up twice.

In order to avoid such underestimate or overestimate, do not mix the group A and B, or
correct the estimate of stack consumption finding out the point where a function of the
group A calls that of the group B or the point where a function of the group B calls that of
the group A.

The amount of stack consumption:

CASE 1: the function g of the group A calls the function f of the group B: 8 +4 =12
CASE 2: the function g of the group A calls the function f of the group A: 4 +4 = 8
CASE 3: the function g of the group B calls the function f of the group B: 8 + 8 = 16
CASE 4: the function g of the group B calls the function f of the group A: 8 +4 =12

Rev. 1.00 Aug. 17,2009 Page 233 of 1156
XRENESAS REJ10J2039-0100

Section 9 Programming

Example:
Source program

int f (struct S);

void g(void) ;

struct S{long p;} st;

int x;

int f(struct S s){
return 0;

}

void g(void)

{
}

Function f:

Parameter Area Size
Linkage Area Size

Local Variable Size
Temporary Size

Register Save Area Size
Total Frame Size

x=f (st) ;

Function g:

Parameter Area Size
Linkage Area Size

Local Variable Size
Temporary Size

Register Save Area Size
Total Frame Size

(c) Calculation of heap area size

g:

MOV.L @ st:32,ER0O
i [1]

PUSH.L ERO
BSR _f:8
ADDS.L #4,8

The group A

£:

SUB.W RO,RO
RTS

7

P i

MOV.W RO,@ x:32

RTS

0x00000004
0x00000004
0x00000000
0x00000000
0x00000000
0x00000008

0x00000000
0x00000004
0x00000000
0x00000000
0x00000000
0x00000004

(2]

[3]

The group B

f:

SUB.W RO,RO
RTS
g:
ADD.W
MOV.L
MOV.L
BSR _f:8
MOV.W RO,@ x:32
ADDS.L #4,SP

RTS

#-4:16,R7 ; [4]
@ st:32,ER0
ERO, @SP ; [5]

i [6]

0x00000000
0x00000004
0x00000000
0x00000000
0x00000000
0x00000004

0x00000000
0x00000004
0x00000000
0x00000004
0x00000000
0x00000008

The size of the area of heap memory used is the sum of the areas allocated by memory
management library functions (calloc, malloc, realloc, and new) in the C/C++ program.
However, each time a memory management library function is called, either four bytes
(with cpu=H8SXN, cpu=H8SXM, cpu=H8SXA and ptr16 option, cpu=H8SXX and ptr16
option, cpu=2600n, cpu=2000n, cpu=300hn, or cpu=300 specified) or eight bytes (with
cpu=H8SXX without ptr16 option, cpu=H8SXA without ptr16 option, cpu=2600a,
cpu=2000a, or cpu=300ha specified) are used for management purposes; the actual area
used must be calculated including the sizes of these management areas added.

The compiler manages the heap area in units of a memory size specified by the user
(_sbrk_size). The method for specifying _sbrk_size is described in section 9.2.2 (5), C/C++
library function initial settings (_INITLIB). The heap area to be reserved (HEAPSIZE)
should be calculated as follows.

Rev. 1.00 Aug. 17,2009 Page 234 of 1156

REJ10J2039-0100

RENESAS

Section 9 Programming

HEAPSIZE = _sbrk_size x n (n>1)
(size of area allocated by memory management library functions) + management area
size < HEAPSIZE
I/O library functions use memory management library functions for internal processing.
The size of memory allocated during I/O operations is:
With cpu=H8SXN, H8SXM, H8SXA (with ptr16 option), H8SXX (with ptr option), 2600n,
2000n, 300hn, 300 specified, 514 bytes x (maximum number of files open simultaneously)
With cpu=H8SXA (without ptr16 option), H8SXX (without ptr16 option), 2600a, 2000a,
300ha specified, 516 bytes x (maximum number of files open simultaneously)

Caution

Memory areas released using the free function or delete operator (C++) in the memory
management library functions are reused by memory management library functions to secure
memory; but if allocation is repeated, it is possible that requests for large memory areas cannot be
satisfied, even when there is sufficient free memory available, due to the fact that free memory is
broken up into smaller fragments. In order to avoid such occurrences, large memory areas should
be secured immediately after the start of program execution whenever possible. In addition, the
sizes of data areas which are freed and reused should be made uniform as much as possible.

(d) Dynamic memory area allocation

Dynamic areas are allocated in RAM.

The location for allocation of stack memory is determined by setting the uppermost address
of the stack section to the SP (stack pointer) in the reset routine on program startup.

By using _ _entry (or #pragma entry) and #pragma stacksize, the C/C++ compiler
automatically creates the stack area (S section) and outputs the SP initial setting code in the
reset program.

The location for heap memory is determined by the initial settings for low-level interface
routines (sbrk).

Details of each of these appear in section 9.2.2 (2), Initial settings (PowerON_Reset), and
section 9.2.2 (7), Low-level interface routines, respectively.

Rev. 1.00 Aug. 17,2009 Page 235 of 1156
RENESAS REJ10J2039-0100

Section 9 Programming

9.2.2 Execution Environment Settings

Here processing to prepare the environment for program execution is explained. However, the
environment for program execution will differ among user systems, and so a program to set the
execution environment must be created according to the specifications of the user system.

Figure 9.6 shows an example of the structure of a program.

Power-on
reset

h.

e 1 e 1
I I
| DTBL, BTBL | | PowerON_Reset | | VEC_TBL |
. i | __ i
_INITSCT _CALL_INIT _INITLIB User _CALL_END | |_CLOSEALL
st program o
Y
Standard
' library
____ @ Tables always necessary
:] : Routines always necessary
v
l:l : Routines necessary when Low-level Termina_tion
using libraries interface processing
function

: Supplied by the compiler

Note: Necessary when there is a global class object declaration in the C++ program.

Figure 9.6 Example of Program Structure
The contents of each of the routines are as follows.

e Vector table (VEC_TBL)

Sets the vector table such that the register initial settings program (PowerON_Reset) is started
up at power-on reset.

o Initial settings (PowerON_Reset)
After initial register values are set, calls the initial setting routines in sequence.
e Section initialization tables (DTBL, BTBL)

Uses the section address operator to set the leading and ending addresses for the section used
in the section initialization routine.

Rev. 1.00 Aug. 17,2009 Page 236 of 1156
REJ10J2039-0100 RENESAS

Section 9 Programming

e Section initialization (_LINITSCT)"

Initializes to zero any static variable areas (uninitialized data areas) for which no initial values
are set. Also copies initial values of initialized data areas from ROM to RAM.
e Global class object initialization processing (_CALL_INIT)"”
Calls the constructors for globally declared class objects.
e Global class object postprocessing (_ CALL_END) "
After execution of the main function, calls the destructors for global class objects.
e (C/C++ library function initial settings (_INITLIB)
When using C/C++ library functions, performs initial settings for those functions requiring it.
e (Close files (_CLOSEALL)
Closes all open files.
e Low-level interface routines

Routines providing an interface between the user system and library functions which are
necessary when standard I/O (stdio.h, ios, streambuf, istream, ostream) and memory
management libraries (stdlib.h, new) are used.

e Termination processing routine
Processing for terminating the program.

Notes *1:Provided as a standard library. Include <_h_c_lib.h> to use _INITSCT, _CALL_INIT
or _CALL_END

*2:Required processing when there is a declaration of a global class object in a C++
program.

*3: When using the C library functions exit, atexit, or abort to terminate a program, these
functions must be created as appropriate to the user system.

When using the C library macro assert, the abort function must always be created.

Rev. 1.00 Aug. 17,2009 Page 237 of 1156
XRENESAS REJ10J2039-0100

Section 9 Programming

Below the method for processing according to the above description is explained.

(1) Vector table settings (VEC_TBL)

In order to have the initial settings function PowerON_Reset called when the system is reset at
power-on, the address for the PowerON_Reset function must be set at address 0 of the vector
table.

When using interrupt processing and indirect function calls in the user system, the interrupt
vectors and address table must be set appropriately.

The vector table is automatically generated by the compiler when the vect parameter is
specified using the _ _entry (or #pragma entry), _ _interrupt (or #pragma interrupt), or

_ _indirect (or #pragma indirect) extended functions of the C/C++ compiler. A code example
is shown below.

_entry(vect=0) void PowerON Reset (void) //PowerON_Reset function address set at address 0

| _interrupt (vect=3) void INT NMI (void) //INT_NMI function address set at vector number 3

_indirect (vect=4) char f // f function address set at vector number 4

Rev. 1.00 Aug. 17,2009 Page 238 of 1156
REJ10J2039-0100 RENESAS

Section 9 Programming

(2) Initial settings (PowerON_Reset)
The initial settings functions set the initial values of the stack pointer (SP) and of the condition
code register (CCR) and other registers, and calls the section initialization routine (_INITSCT)
before calling the main function. When a global class object exists in a C++ program, the
_CALL_INIT and _CALL_END functions, which call initialization/termination processing
functions in sequence, are called before and after the main function call.
The compiler automatically generates code to set SP when _ _entry (or #pragma entry) is used.
The initial setting for the condition code register is set using an embedded function
(set_imask_ccr etc.).
_INITSCT and the _CALL_INIT and _CALL_END functions are provided as standard library
functions. To use this function, include <_h_c_lib.h>.
When using a C/C++ library function, _INITLIB, which initializes library settings, and
_CLOSEALL, which performs processing to close files, shall be called.

A code example is shown below.

Rev. 1.00 Aug. 17,2009 Page 239 of 1156
XRENESAS REJ10J2039-0100

Section 9 Programming

#include <machine.hs> // Include <machine.h>
#include < h ¢ lib.h> // Include <_h_c_lib.h>
#pragma stacksize 0x200 // Set the size of section S (the stack)

extern void PowerON_Reset (void) ;
extern void main(void) ;

#ifdef _ _cplusplus
extern "C" {
#endif

extern void _INITLIB (void) ;
extern void _CLOSEALL (void) ;

#ifdef _ _cplusplus

}

#endif

__entry(vect=0) void PowerON Reset (void)

{ /1 Set SP to the uppermost address of section S
set_vbr (0x0) ; /I Make the initial setting of VBR for H8SX if necessary
set_imask ccr(1l); // Mask interrupt

_INITSCT() ; // Call section initialization routine
#ifdef _ cplusplus

_CALL_INIT(); // Called when there is a global class object of C++
#endif

_INITLIB() ; /[Call library initial setting function

set_imask ccr(0); // Release interrupt mask

main() ;

_CLOSEALL() ; // Call function to close files
#ifdef _ cplusplus

_CALL_END() ; /1 Called when there is a global class object of C++
#endif

sleep() ;

Rev. 1.00 Aug. 17,2009 Page 240 of 1156
REJ10J2039-0100 RENESAS

Section 9 Programming

(3) Tables for section initialization (DTBL, BTBL)
The section initialization routine (_INITSCT) initializes any uninitialized data sections to zero,
and copies initialization data in for initialized data sections in ROM to RAM. Here the starting
and ending addresses of sections which is read by the _INITSCT function are set in the table
for section initialization using the section address operator.
Section names in the section initialization table are declared, using C$BSEC for uninitialized
data areas, and C$DSEC for initialized data areas.

A code example is shown below.

#i fdef __ABS16__ // Section name is CSDSEC.
#pragma abslé section $DSEC
#else
#pragma section $DSEC
#endi f
#if _ STDC_VERSION_ _ == 199901L
extern const struct
#else
static const struct{
#endif
void * rom_s; /I Start address member of the initialization data section in ROM
void * rom_e; /I End address member of the initialization data section in ROM
void * ram s; // Start address member of initialization data section in RAM
#if _ STDC_VERSION__ == 199901L
} DTBL[]= {
#else
}JDTBLI[]= {
#endif
{_ _sectop (“D”), _ _secend (“D”), _ _sectop (“R")},
{_ _sectop (“$ABS8D”), _ _secend (“$ABS8D”), _ _sectop (“$ABS8R")},
{_ _sectop (“$ABS16D”), _ _secend (“$ABS16D”), _ _sectop (“$ABS16R")}
i
#ifdef _ _ABS16_ _ /I Section name is C$BSEC.
#pragma abslé section $BSEC
#else
#pragma section $BSEC
#endif
#if _ STDC_VERSION__ == 199901L
extern const struct {
#else
static const struct {
#endif
void * b_s; /I Start address member of uninitialized data section
void * b_e; /I End address member of uninitialized data section
#if _ STDC_VERSION__ == 199901L
}_BTBL[]= {
#else
}JBTBL[]= {
#endif
_ _sectop (“B”), _ _secend (“B”)},
{_ _sectop (“$ABS8B”), _ _secend (“$ABS8B”)},
{_ _sectop (“$ABS16B”), _ _secend (“$ABS16B")}

#i}fdef _ _ABS16_ _
#pragnmae abs16 section
#el se

#pragma section
#endi f

Note: Be sure to compile the above program as a C language program, i.e., either make the file

[TPR1]

extension “c” or specify the lang=c option. If the program is compiled as a C++ program
(i.e., either the file extension is “cpp”, “cc” or “cp”, or the lang=cpp option is specified),
the table for section initialization will be deleted as an unused static data by the compiler

and the program will be wrong.

Rev. 1.00 Aug. 17,2009 Page 241 of 1156
XRENESAS REJ10J2039-0100

Section 9 Programming

The section initialization routine (_INITSCT), provided as the standard library, operates similarly
to the program shown below.

static const struct DSEC{ // Initialization table struct for D defined in previous example
void * rom_s; /I Start address member of the initialization data section in ROM
void * rom e; // End address member of the initialization data section in ROM
void * ram_s; // Start address member of initialization data section in RAM

}i

static const struct BSEC{ // Initialization table struct for B defined in previous example
void * b_s; // Start address member of uninitialized data section
void * b_e; // End address member of uninitialized data section

}i

static void clearblock(void *b_top, void *b_end) ;
static void copyblock (void *d_top, void *d_end, void *r_top);

#ifdef _ _cplusplus

extern “c” // Linked to C

#endif

void _INITSCT (void) /I Section initialization routine

{
const struct BSEC *btbl; // Initialization table structure for section B
const struct DSEC *dtbl; // Initialization table structure for section D

// Initializes the uninitialized data section
for(btbl = _sectop (“C$BSEC”);
btbl <(struct BSEC *) secend (“C$BSEC”); btbl++)

clearblock(btbl->b s, btbl->b e);
// Initializes the initialized data section
/I Copies the initialized data from ROM to RAM
for(dtbl = _sectop (“C$DSEC”) ;
dtbl <(struct DSEC *) secend (“C$SDSEC”); dtbl++)
copyblock (dtbl->rom s, dtbl->rom e, dtbl->ram s);

}
static void clearblock(void *b_top, void *b_end)
{ // Initializes the uninitialized data section by 0
char *p;
for(p=b_top; p<(char *)b_end; p++)
*p = 05
}
static void copyblock(void *d_top, void *d_end, void *r top)
{ /I Copies the initialized data from ROM to RAM
char *p, *q;
for(p=r_top, g=d_top; g<(char *)d_end; p++, g++)
*pP o= *q;
}

Rev. 1.00 Aug. 17,2009 Page 242 of 1156
REJ10J2039-0100 RENESAS

Section 9 Programming

(4) C++ global class object initial settings (_CALL_INIT)
The _CALL_INIT function calls a constructor of the class object that has been globally
declared in C++. Although this function is provided in the library header file of <_h_c_lib,h>.
An example is shown below to show the behaivor.

extern “C” void _CALL INIT (void) ;

typedef void (**FPP) (void) ; // Function-pointer type

extern “C” void _CALL_INIT(void)

{ /1 Global class object initialization routine
FPP top = (FPP)_ _sectop("CS$SINIT");
FPP end = (FPP)_ _secend("CS$SINIT");

while (top < end)
(*top++) () ; // Calls a constructor

(5) C/C++ library function initial settings (_INITLIB)

Here, the method for setting initial values for C/C++ library functions is explained.

In order to set only those values which are necessary for the functions that are actually used,

please refer to the following guidelines.

— When using the stdio.h, ios, streambuf, istream, or ostream functions or the assert macro,
the standard I/O initial setting (_INIT_IOLIB) is necessary.

— When an initial setting is required in the created low-level interface routine, the initial
setting (_INIT_LOWLEVEL) in accordance with the specifications of the low-level
interface routine is necessary.

— When using the rand function or the strtok function, initial settings other than those for
standard I/O (_INIT_OTHERLIB) are necessary.

An example of a program to perform initial library settings is shown below. FILE-type data is
shown in figure 9.7.

Rev. 1.00 Aug. 17,2009 Page 243 of 1156
RENESAS REJ10J2039-0100

Section 9 Programming

#include <stdio.h>

#include <stdlib.h>

#define IOSTREAM 3

const size t sbrk size = 520; /I Specify minimum size to be reserved for heap area

// If omitted: _sbrk_size=1032 in advanced without ptr16 option, or maximum without ptr16 option

Vi _sbrk_size=1028 in normal, middle, advanced with ptr16 option, maximum with ptr16 option, or 300
const int nfiles = IOSTREAM; // Specify number of I/O files (20 if omitted)

struct _iobuf _iob[IOSTREAM] ;

unsigned char sml_buf [TOSTREAM] ;

extern char *_slptr;

#ifdef _ cplusplus
extern "C" {
#endif

void _INITLIB (void)

/I Set initial values for low-level interface routines
// Set initial values for I/O library

// Set initial values for rand function, strtok function

_INIT LOWLEVEL();
_INIT IOLIB();
" INIT OTHERLIB();

1
void INIT LOWLEVEL (void)

//Set necessary initial values for low-level library

}
void INIT IOLIB(void)
FILE *fp;
for(fp = _iob; fp < _iob + _nfiles; fp++) //Setinitial values for FILE-type data

fp->_ bufptr =
fp-> bufcnt = 0;
fp->_buflen = 0;

fp->_bufbase = NULL;
fp->_ioflagl = 0;
fp-> ioflag2 = 0;

fp->_iofd = 0;

if (freopen("stdin™", "r", stdin)== NULL)
stdin-> ioflagl = Oxff;

stdin-> ioflagl |= _IOUNBUF;

if (freopen ("stdout™", "w", stdout)== NULL)
stdout->_ioflagl = oxff;

stdout-> ioflagl |= _IOUNBUF;

// Open standard 1/O file

// Forbid file access if open fails
// Set without data buffering**

// Open standard 1/O file

// Forbid file access if open fails
/I Set without data buffering*’

if (freopen("stderr™", "w", stderr)== NULL) // Open standard error file
stderr->_ ioflagl = Oxff; // Forbid file access if open fails
stderr-> ioflagl |= _IOUNBUF; // Set without data buffering**

void INIT OTHERLIB (void)

srand (1) ;
_slptr=NULL;

#ifdef _

#endif

_cplusplus

// Set initial value if using rand function
// Set initial value if using strtok function

Rev. 1.00 Aug. 17,2009 Page 244 of 1156

REJ10J2039-0100

RENESAS

Section 9 Programming

Notes: 1. Specify the filename for the standard I/O file. This name is used in the low-level
interface routine "open".

2. In the case of a console or other dialog-based device, a flag is set to prevent the use of
buffering.

// File-type data declaration in C language

struct_iobuf

unsigned char _bufptr; // Pointer to buffer
long _bufent; // Buffer counter
unsinged char _bufbase; // Buffer base pointer
long _buflen; // Buffer length
char _ioflagl; //'1/0 flag

char _ioflag2; /110 flag

char _iofd; /1 1/0O flag

}iob[_nfiles];

Figure 9.7 FILE-Type Data

(6) Closing files (_ CLOSEALL)
Normally, output to files is held in a buffer area in memory, and only when the buffer becomes
full is the data actually written to the external recording device. Hence if a file is not closed
properly, it is possible that data output to a file may not actually be written to the external
recording device.
In the case of a program intended for embedded use, normally the program is not terminated.
However, if the main function is terminated due to a program error or for some other reason,
any open files must all be closed.
This processing closes all the files that are open at the time of termination of the main function.

An example of a program to close all the open files is shown below.

#i ncl ude <stdio. h>
#i fdef _ _cplusplus
extern "C'
#endi f
void _CLOSEALL(voi d)
{
int i;
for(i=0; i < _nfiles; i++)
/I Check to see whether the file is open or not
if(_iob[i]. ioflagl & (_IOREAD | IOMRITE | _IORW))
fclose(&iob[i]); // Close the file
}

Rev. 1.00 Aug. 17,2009 Page 245 of 1156
RENESAS REJ10J2039-0100

Section 9 Programming

(7) Low-level interface routines
When using standard I/O or memory management library functions in a C/C++ program, low-
level interface routines must be created. Table 9.3 lists the low-level interface routines used by
C library functions.

Table 9.3 List of Low-Level Interface Routines

Name Description

open Opens file

close Closes file

read Reads from files

write Writes to files

Iseek Sets the read/write position in a file
sbrk Secures area in memory
error_addr* Obtains errno address

wait_sem* Waits and acquires semaphore
signal_sem* Releases semaphore

Note: Necessary when using a reentrant library.

Initialization necessary for low-level interface routines must be performed on program startup.
This initialization should be performed using the _INIT_LOWERLEVEL function described in
section 9.2.2 (5), C/C++ library function initial settings (_INITLIB).

Below, after explaining the basic approach to low-level I/O, the specifications for each
interface routine are described.

Caution

The function names open, close, read, write, Iseek, and sbrk are reserved words for low-level
interface routine. They should not be used in user programs.

(a) Approach to I/O

In the standard I/O library, files are managed by means of FILE-type data; but in low-level

interface routines, positive integers are assigned to actual files in a one-to-one

correspondence for management. These integers are called file numbers.

In the open routine, a file number is provided for an input filename. The open routine must

set the following information such that this number can be used for file input and output.

o The device type of the file (console, printer, disk file, etc.) (In the cases of special
devices such as consoles or printers, special filenames must be set by the system and
identified in the open routine.)

e When using file buffering, information such as the buffer position and size

Rev. 1.00 Aug. 17,2009 Page 246 of 1156
REJ10J2039-0100 RENESAS

Section 9 Programming

o In the case of a disk file, the byte offset from the start of the file to the position for
reading or writing

Based on the information set using the open routine, all subsequent I/O (read and write
routines) and read/write positioning (Iseek routine) is performed.
When output buffering is being used, the close routine should be executed to kick out the
contents of the buffer to the actual file, so that the data area set by the open routine can be
reused.

(b) Specifications of low-level interface routines
In this section, specifications for creation of low-level interface routines are described. For
each routine, the interface for calling the routine, its operation, and any important
information for using the routine are described.
The interface for the routines is indicated using the following format. Low-level interface
routines should always be given a prototype declaration. When declared in a C++ program,
extern “C” should be added.

(Routine name) Concise explanations

Description (A summary of the routine operations is given)

Return value Normal: (The meaning of the return value on normal termination is
explained)

Error: (The return value when an error occurs is given)

Parameters (Name) (Meaning)
(The name of the parameter (The meaning of the value
appearing in the interface) passed as an parameter)
int open(char *name, int mode, int flg) Opens file
Description Prepares for operations on the file corresponding to the filename of the first

parameter. In the open routine, the file instance (console, printer, disk file,
etc.) must be determined in order to enable reading or writing at a later time.
The file instance must be accessed using the file number returned by the open
routine each time reading or writing is to be performed.

The second parameter, mode, specifies processing to be performed when the
file is opened. The meaning of each bit of this parameter is as follows.

Rev. 1.00 Aug. 17,2009 Page 247 of 1156
XRENESAS REJ10J2039-0100

Section 9 Programming

15 5 4 3 2 1 0

mode| Yy B

— 0_RDONLY
L 0_WRONLY
0_RDWR
0_CREAT
0_TRUNC
0_APPEND

Table 9.4 Explanation of Bits in Parameter '"mode'' of the File Open Routine

mode Bit Description

O_RDONLY (bit 0) When this bit is 1, the file is opened in read-only mode

O_WRONLY (bit 1) When this bit is 1, the file is opened in write-only mode

O_RDWR (bit 2) When this bit is 1, the file is opened for both reading and
writing

O_CREAT (bit 3) When this bitis 1 and if a file with the filename given does not
exist, it is created

O_TRUNC (bit 4) When this bit is 1 and if a file with the given filename exists,
the file contents are deleted, and the file size is set to 0

O_APPEND (bit 5) Sets the position within the file for the next read/write
operation

When 0: Set to read/write from file beginning

When 1: Set to read/write from file end

When there is a contradiction between the file processing specified by mode and the
properties of the actual file, error processing should be performed. When the file is
opened normally, the file number (a positive integer) is returned to subsequently read,
write, Iseek, and close routines. The correspondence between file numbers and the
actual files must be managed by low-level interface routines. If the open operation fails,
-1 is returned.

Return value Normal: The file number for the successfully opened file
Error: -1

Parameters name: Filename of the file
mode: Specifies the type of processing when the file is opened
flg: Specifies processing when the file is opened (always 0777)

Rev. 1.00 Aug. 17,2009 Page 248 of 1156
REJ10J2039-0100 RENESAS

Section 9 Programming

int close(int fileno)

Description

Closes file

The file number obtained using the open routine is passed as an parameter.
The file management information area set using the open routine should be
released to enable reuse. Also, when output file buffering is performed in
low-level interface routines, the buffer contents should be kicked out to the
actual file.

When the file is closed successfully, 0 is returned; if the close operation fails,
1 is returned.

Return value Normal: 0
Error: -1
Parameters fileno: File number of the file to be closed
int read(int fileno, char *buf, unsigned int count) Reads data
Description Data is read from the file specified by the first parameter (fileno) to the area

Return value

Parameters

in memory specified by the second parameter (buf). The number of bytes of
data to be read is specified by the third parameter (count).

When the end of the file is reached, only a number of bytes equal to or fewer
than count bytes can be read.

The position for file reading/writing advances by the number of bytes read.

When reading is performed successfully, the actual number of bytes read is
returned; if the read operation fails, -1 is returned.

Normal: Actual number of bytes read

Error: -1

fileno File number of the file to be read

buf Memory area in which to store read data
count Number of bytes to read

Rev. 1.00 Aug. 17,2009 Page 249 of 1156
XRENESAS REJ10J2039-0100

Section 9 Programming

int write(int fileno, char *buf, unsigned int count) Writes data

Description Writes data to the file indicated by the first parameter (fileno) from the
memory area indicated by the second parameter (buf). The number of bytes
to be written is indicated by the third parameter (count).

If the device (disk etc.) of the file to be written is full, only a number of bytes
smaller than the count bytes can be written. It is recommended that, if the
number of bytes actually written is zero a certain number of times in
succession, the disk is judged to be full and an error (-1) is returned.

The position for file reading/writing advances by the number of bytes
written. If writing is successful, the actual number of bytes written should be
returned; if the write operation fails, -1 should be returned.

Return value Normal: Actual number of bytes written
Error: -1
Parameters fileno File number of the file to which data is to be written
buf Memory area containing data for writing
count Number of bytes to write
long Iseek(int fileno, long offset, int base) Set position in a file
Description Sets the position within the file, in byte units, for reading from and writing to

the file. The position within a new file should be calculated and set using the
following methods, depending on the third parameter (base).

(1) When base is 0: Set the position at offset bytes from the file beginning
(2) When base is 1: Set the position at the current position plus offset bytes
(3) When base is 2: Set the position at the file size plus offset bytes

When the file is a console, printer, or another interactive device, when the new offset is
negative, or when in cases (1) and (2) the file size is exceeded, an error occurs. When the
file position is located correctly, the new position for reading/writing is returned as an
offset from the file beginning; when the operation is not successful, -1 is returned.

Return value Normal: The new position for file reading/writing, as an offset in bytes
from the file beginning
Error: -1

Rev. 1.00 Aug. 17,2009 Page 250 of 1156
REJ10J2039-0100 RENESAS

Section 9 Programming

Parameters fileno File number of the target file

offset Position for reading/writing, as an offset (in bytes)

base Starting-point of the offset
char *sbrk(size_t size) Allocates memory areas
Description The size of the memory area to be allocated is passed as a parameter.

When calling the sbrk routine continuously, memory areas should be
allocated in succession starting from lower addresses. If the memory area for
allocation is insufficient, an error should occur. When allocation is
successful, the address of the beginning of the allocated memory area is
returned; if unsuccessful, (char *) -1 is returned.

Return value Normal: Start address of allocated memory
Error: (char *) -1
Parameters size Size of area to be allocated
int *errno_addr(void) Acquires errno address
Description Returns the address of the error number of the current task.

Return value

This routine is necessary when using a standard library, which was created
by the standard library configuration tool with the reent option specified.

Address of the error number of the current task

int wait_sem (int semnum) Allocates semaphore

Description

Return value

Waits and acquires the semaphore specified by semnum.

When semaphore has been allocated normally, 1 is returned. Otherwise, 0 is
returned. This routine is necessary to use a standard library which was
created by the standard library configuration tool with the reent option
specified.

Normal: 1
Error: 0

Rev. 1.00 Aug. 17,2009 Page 251 of 1156
XRENESAS REJ10J2039-0100

Section 9 Programming

Parameter semnum Semaphore ID
int signal_sem (int semnum) Releases semaphore
Description Releases the semaphore specified by semnum.

When semaphore has been released normally, 1 is returned. Otherwise, 0 is
returned. This routine is necessary to use a standard library which was
created by the standard library configuration tool with the reent option

specified.
Return value Normal: 1
Error: 0
Parameter semnum Semaphore ID

Rev. 1.00 Aug. 17,2009 Page 252 of 1156
REJ10J2039-0100 RENESAS

Section 9 Programming

(c) Example of creation of a low-level interface routine

/***/

/* */
/* FILE :lowsrc.c */
/* DATE : Tue, Mar 04, 2003 */
/* DESCRI PTION : Program of 1/0O Stream */
/* CPU TYPE : */

/* */

/***/

#i ncl ude <string. h>
#i ncl ude <stdio. h>

#i ncl ude <stddef. h>
#i nclude "l owsrc. h"

/* file nunber */

#define STDIN O /* Standard input (console) */
#def i ne STDOUT 1 /* Standard output (console) */
#def i ne STDERR 2 /* Standard error output (console) */
#define FLMN O /* Mnimumfile nunber */

#def i ne _MOPENR Ox1

#defi ne _MOPENW 0x2

#defi ne _MOPENA 0x4

#define _MIRUNC 0x8

#defi ne _MCREAT 0x10

#define _MBIN 0x20

#defi ne _MEXCL 0x40

#define _MALBUF 0x40

#define _MALFIL 0x80

#define _MEOF 0x100

#define _MERR 0x200

#define _M.BF 0x400

#define _M\BF 0x800

#defi ne _MREAD 0x1000

#define _MARI TE 0x2000

#define _MBYTE 0x4000

#defi ne _MN DE 0x8000

/* File Flags */

#define O RDONLY 0x0001 /* Read only */
#define O WRONLY 0x0002 /* Wite only */
#define O RDWR 0x0004 /* Both read and Wite */
#define O CREAT 0x0008 /* Afile is created if it is not existed */

#define O TRUNC 0x0010 /* The file size is changed to O if it is existed. */
#defi ne O _APPEND 0x0020 /* The position is set for next reading/witing */
/* 0: Top of the file 1: End of file */

/* Special character code */

Rev. 1.00 Aug. 17,2009 Page 253 of 1156
XRENESAS REJ10J2039-0100

Section 9 Programming

#def i ne CR 0x0d /* Carriage return */
#define LF Ox0Oa /* Line feed */

const int _nfiles = IOSTREAM /* The nunber of files for input/output files */
char fl nod[| CSTREAM ; /* The location for the node of opened file. */

unsi gned char sm _buf[| OSTREAM ;

#defi ne FPATH STDI N "C\\stdin"
#def i ne FPATH_STDOUT "C:\\stdout"
#defi ne FPATH_STDERR "C\\stderr"

/* H8 Nornmal node ,SH and RX */

#if defined(2000N__) “ defined(__2600N__) || defined(__300HN__) ||
defined(_SH)Y || defined RX)

/* Qutput one character to standard output */
extern void charput(char);
/* Input one character from standard input */
extern char charget(void);

/* Qutput one character to the file */
extern char fcharput(char, unsigned char);
/* Input one character fromthe file */

extern char fcharget(char*, unsigned char);

/* Open the file */

extern char fileopen(char*, unsigned char, unsigned char*);
/* Close the file */

extern char filecl ose(unsigned char);

/* Mve the file offset */

extern char fpseek(unsigned char, |ong, unsigned char);

/* Get the file offset */

extern char fptell (unsigned char, |ong*);

/* H8 Advanced node */

#elif defined 2000A) f edg 2600A) f| nedg) |
defi nedE _ HBSXN™ g |]_def e |]_def e
defined(—_H8SXX_

/* Qutput one character to standard output */
extern void charput(char);
/* Input one character from standard input */
extern char charget(void);

/* Qutput one character to the file */
extern char fcharput(char, unsigned char);
/* Input one character fromthe file */

extern char fcharget(char*, unsigned char);

/* Open the file */

/* Specified as the nunber of register which stored paramter is 3 */
extern char __regparanB fil eopen(char*, unsigned char, unsigned char*);
/* Close the file */

extern char filecl ose(unsigned char);

/* Mve the file offset */

Rev. 1.00 Aug. 17,2009 Page 254 of 1156
REJ10J2039-0100 RENESAS

Section 9 Programming

extern char fpseek(unsigned char, |ong, unsigned char);
/* Get the file offset */
extern char fptell (unsigned char, |ong*);

/* HB300 and HB8300L */

#elif defined(__300__) || defined(__300L__)
/* Qutput one character to standard output */
extern void charput(char);

/* Input one character from standard input */
extern char charget(void);

/* Qutput one character to the file */
extern char fcharput(char, unsigned char);
/* Input one character fromthe file */

extern char fcharget(char*, unsigned char);

/* Open the file */

/* Specified as the nunber of register which stored paranmter is 3 */
extern char __regparanB fil eopen(char*, unsigned char, unsigned char*);
/* Cose the file */

extern char filecl ose(unsigned char);

/* Mve the file offset */

/* Mve the file offset */

extern char __regparanB8 fpseek(unsigned char, |ong, unsigned char);
/* Get the file offset */

extern char fptell (unsigned char, |ong*);

#endi f

#i ncl ude <stdi o. h>
FILE *_Files[I| OSTREAM; // structure for FILE

char *env_list[] ={ /1 Array for environnment variabl es(**environ)
" ENV1=t enp01",
" ENV2=t enp02",
" ENV9=end",
"\ O /1 Terminal for environnent variables
b

char **environ = env_list;

/**/

/* _INT_IOLIB */
/* Initialize Clibrary Functions, if necessary. */
/* Define USES_SIM O on Assenbler Option. */

/**/

void _INIT_IOLIB(void)

{
/* Afile for standard input/output is opened or created. Each FILE */
/* structure nenbers are initialized by the library. Each _Buf menber */
/* init is re-set the end of buffer pointer. */
/* Standard Input File */

Rev. 1.00 Aug. 17,2009 Page 255 of 1156
XRENESAS REJ10J2039-0100

Section 9 Programming

if(freopen(FPATH STDIN, "r", stdin) == NULL)

stdin->_Mde = Oxffff; /* Not allow the access if it fails to open
stdin->_Mde | = _MOPENR; /* Read only attribute
stdin->_Mde | = _M\BF; /* Non-buffering for data

stdin-> Bend = stdin-> Buf + 1; /* Re-set pointer to the end of buffer

/* Standard Qutput File
if(freopen(FPATH STDOUT, "w', stdout) == NULL)
stdout->_Mdde = Oxffff; /* Not allow the access if it fails to open
stdout->_Mdde | = _M\BF; /* Non-buffering for data
stdout-> Bend = stdout-> Buf + 1;/* Re-set pointer to the end of buffer

/* Standard Error File
if(freopen(FPATH STDERR, "w', stderr) == NULL)
stderr->_Mdde = Oxffff; /* Not allow the access if it fails to open
stderr->_Mde |= _M\BF; /* Non-buffering for data
stderr-> Bend = stderr-> Buf + 1;/* Re-set pointer to the end of buffer

}

*/
*/
*/

*/

*/

*/

*/

*/

*/
*/

/**/

/* _CLOSEALL

*/

/**/

void _CLOSEALL(void)

{
int i;
for(i=0; i < _nfiles; i++)
{
/* Checks if the file is opened or not
if(_Files[i]->_Mdde & (_MOPENR | _MOPENW | _MOPENA))
fclose(_Files[i]); /* Closes the file
}
}
/**/
/* open: file open */
/* Return val ue: Fi |l e nunber (Pass) */
/* -1 (Failure) */
/**/
int open(char *nane, /* File name */
int node, /* Open node */
int flg) /* Open flag */
{
if(stremp(name, FPATH STDIN) == 0) /* Standard Input file? */
{

if((nmde & ORDONLY) == 0) return -1;
fl nod[STDIN] = node;

*/

*/

Rev. 1.00 Aug. 17,2009 Page 256 of 1156
REJ10J2039-0100 RENESAS

Section 9 Programming

return STDI N,
}
else if(strcnp(name, FPATH STDOUT) == 0)/* Standard Qutput file? */
{

if((mde & OWRONLY) == 0) return -1;

f | nod[STDOUT] = node;

return STDOUT;
}
el se if(strcnp(name, FPATH STDERR) == 0) /* Standard Error file? */
{

if((nde & OWRONLY) == 0) return -1;

f | nod[STDERR] = node;

return STDERR

}
else return -1, /*Qthers */
}
int close(int fileno)
{
return 1,
}
/**/
/* wite:Data wite */
/* Return val ue: Nunber of wite characters (Pass) */
/* -1 (Failure) */
/**/
int wite(int fileno, /* File nunber */
char *buf, /* The address of destination buffer */
int count) /* The nunber of chacter to wite */
{
unsi gned i nt i; /* A variable for counter */
char (o /* An output character */
/* Checking the node of file , output each character */
/* Checking the attribute for Wite-Only, Read-Only or Read-Wite */
if(flmd[fileno] & VWRONLY || flrod[fil eno] &0 RDVR)
{
if(fileno == STDIN) return -1; /* Standard | nput */

else if((fileno == STDQUT) || (fileno == STDERR))
/* Standard Error/out put */

{
for(i =count; i >0; --i)
{
c = *buf ++
charput(c);
}
return count; /*Return the nunber of witten characters */
}

Rev. 1.00 Aug. 17,2009 Page 257 of 1156
XRENESAS REJ10J2039-0100

Section 9 Programming

el se return -1; /* Incorrect file nunber */

}

el se return -1; /* An error */

int read(int fileno, char *buf, unsigned int count)

{

unsigned int i;

/* Checking the file node with the file nunber, each character is input and
stored the buffer */

i f((flmod[fileno]& MOPENR) || (flmod[fileno] &O RDVR)){

for(i = count; i > Ou; i--){
*buf = charget();
i f(*buf==CR){ /* Replace the new |ine character */
*pbuf = LF;
}
buf ++;
}
return count;
}
el se {
return -1;
}
}
long | seek(short fileno, short offset, short base)
{
return -1L;
}
/**/
/* sbrk: Data write */
/* Return value: Start address of the assigned area (Pass) x/
/* -1 (Failure) */

/*** */

extern char sbrk(size t size) /* Assigned area size */
{
char *p ;
if (brk+size>heap area.heap+HEAPSIZE) /* Empty area size */
return (char *)-1 ;
p=brk ; /* Area assignment */
brk += size ; /* End address update */
return p ;

Rev. 1.00 Aug. 17,2009 Page 258 of 1156
REJ10J2039-0100 RENESAS

Section 9 Programming

; H8S, H8/300 Series Simulator/Debugger Interface Routine

-Input/output one character-

; H8SX, H8S/2600, H8S/2000, H8/300H normal mode

; (cpu=H8SXN, 2600n, 2000n, 300hn)

7

SIM I0:

.CPU 2600N ; or H8SXN, 2000N, 300HN
.EXPORT _charput

.EXPORT _charget

.EQU H'OOFE ; Defines TRAP_ADDRESS
.SECTION P, CODE, ALIGN=2

; _charput: One character output

C program interface: charput (char)

MOV.B ROL,@IO_BUF ; Specifies
MOV .W #H'0102,R0 ; Specifies
MOV.W #LWORD IO_BUF,R1

MOV.W R1, @PARM ; Specifies
MOV .W #LWORD PARM, R1 ; Specifies
JSR @SIM IO

RTS

parameter in buffer
parameter and function code

I/0 buffer address
parameter block address

Rev. 1.00 Aug. 17,2009 Page 259 of 1156

RENESAS

REJ10J2039-0100

Section 9 Programming

; _charget: One character input
C program interface:char charget (void)

_charget:
MOV .W #H'0101,R0 ; Specifies parameter and function code
MOV .W #LWORD IO BUF,R1
MOV.W R1, @PARM ; Specifies I/O buffer address
MOV .W #LWORD PARM,R1 ; Specifies parameter block address
JSR @SIM_IO
MOV.B @IO_BUF,ROL
RTS

.SECTION B,DATA,ALIGN=2
PARM: .RES.W 1 ; Parameter block area
IO_BUF: .RES.B 1 ; I/0 buffer area

. END

Rev. 1.00 Aug. 17,2009 Page 260 of 1156
REJ10J2039-0100 RENESAS

Section 9 Programming

; H8S, H8/300 Series Simulator/Debugger Interface Routine
-Input/output one character-

7

; H8SX, H8S/2600, H8S/2000, and H8/300H in advanced mode (20|24-bit address) |

; (cpu-HB8SXA:20|24, 2600a:20|24, 2000a:20|24, 300ha)

7

SIM I0:

.CPU 2600A

.EXPORT _charput
.EXPORT _charget

.EQU H'OlFE
.SECTION P, CODE, ALIGN=

; _charput: One character output

_charput:

2

7

7

or H8SXA,

2000A, 300HA

Defines TRAP_ADDRESS

C program interface: charput (char)

MOV.B ROL,@IO_BUF
MOV . W #H'0112,R0
MOV. L #I0_BUF, ER1
MOV.L ER1, @PARM
MOV. L #PARM, ER1
JSR @SIM IO

RTS

Specifies
Specifies

Specifies
Specifies

parameter in buffer
parameter and function code

I/0 buffer address
parameter block address

RENESAS

Rev. 1.00 Aug. 17,2009 Page 261 of 1156
REJ10J2039-0100

Section 9 Programming

; _charget: One character input
; C program interface:

_charget:
MOV.W #H'0111,RO
MOV.L #I0 BUF,ER1
MOV.L ER1, @PARM
MOV.L #PARM, ER1
JSR @SIM_IO
MOV.B @IO_BUF,ROL
RTS

.SECTION B, DATA, ALIGN=2
PARM: .RES.L 1
IO BUF: .RES.B

.END

char charget (void)

Specifies parameter and function code

Specifies I/0 buffer address
Specifies parameter block address

Parameter block area
I/0 buffer area

Rev. 1.00 Aug. 17,2009 Page 262 of 1156
REJ10J2039-0100

RENESAS

Section 9 Programming

; H8S, H8/300 Series Simulator/Debugger Interface Routine

; H8SX Middle mode,
; (cpu=H8SXM,

7

SIM IO:

.CPU
.EXPORT
.EXPORT
.EQU

.SECTION

cpu=H8SXA ptrle,

Input/Output one character

H8SX Advanced/Maximum mode (16-bit data address)

H8SXM
_charput
_charget
H'O1lFE

P, CODE,

cpu=H8SXX ptrlé)

; Specify TRAP_ ADDRESS

ALIGN=2

; _charput: One character output

_charput:

C program interface:

MOV .
MOV .
MOV .
MOV .
MOV .
JSR
RTS

= == =W

charput (char)

ROL, @I0_BUF ; Set parameter to buffer
#H'0102,R0 ; Set parameter and function code
#LWORD IO BUF,R1

R1, @PARM ; Set I/O0 buffer address

#LWORD PARM,R1 ; Set parameter block address

@SIM_IO

RENESAS

Rev. 1.00 Aug. 17,2009 Page 263 of 1156
REJ10J2039-0100

Section 9 Programming

; _charget: One character input
; C program interface: char charget (void)

_charget:
MOV .W #H'0101,R0 ; Set parameter and function code
MOV .W #LWORD IO BUF,R1
MOV .W R1, @PARM ; Set I/0 buffer address
MOV.W #LWORD PARM,R1 ; Set parameter block address
JSR @SIM IO
MOV.B @IO_BUF,ROL
RTS
; Definition of I/O buffer
.SECTION B,DATA,ALIGN=2
PARM: .RES.W 1 ; Parameter block area
IO_BUF: .RES.B 1 ; I/0 buffer area
.END

Rev. 1.00 Aug. 17,2009 Page 264 of 1156
REJ10J2039-0100 RENESAS

Section 9 Programming

; H8S, H8/300 Series Simulator/Debugger Interface Routine

; Input/Output one character

; H8SX Maximum mode, H8SX,H8S/2600,H8S/2000 Advanced mode (28|32-bit address) |
; (cpu=H8SXX, H8SXA:28|32, 2600a:28|32, 2000a:28|32) |

.CPU H8SXX
.EXPORT _charput
.EXPORT _charget
SIM IO: .EQU H'O1lFE ; Specify TRAP_ ADDRESS
.SECTION P, CODE, ALIGN=2

; _charput: One character output
; C program interface: charput (char)

_charput:
MOV .B ROL, @I0_BUF ; Set parameter to buffer
MOV.W #H'0122,R0 ; Set parameter and function code
MOV.L IO _BUF,ER1
MOV.L ER1, @PARM ; Set I/O0 buffer address
MOV.L #PARM, ER1 ; Set parameter block address
JSR @SIM_ IO
RTS

Rev. 1.00 Aug. 17,2009 Page 265 of 1156
XRENESAS REJ10J2039-0100

Section 9 Programming

; _charget: One character input
; C program interface: char charget (void)

_charget:
MOV .W #H'0121,R0 ; Set parameter and function code
MOV.L IO BUF,ER1
MOV.L ER1, @PARM ; Set I/0 buffer address
MOV.L #PARM, ER1 ; Set parameter block address
JSR @SIM IO
MOV.B @IO_BUF,ROL
RTS
; Definition of I/O buffer
.SECTION B,DATA,ALIGN=2
PARM: .RES.L 1 ; Parameter block area
IO_BUF: .RES.B ; I/0 buffer area
.END

Rev. 1.00 Aug. 17,2009 Page 266 of 1156
REJ10J2039-0100 RENESAS

Section 9 Programming

SIM I0:

H8/300 Series Simulator/Debugger Interface Routine

.CPU
.EXPORT
.EXPORT

.EQU

.SECTION

-Input/output one character-

H8/300 (cpu=300) |

300

_charput
_charget
H'OOFE ; Defines TRAP_ADDRESS

P, CODE, ALIGN=2

; _charput: One character output

C program interface:

charput (char) |

_charput:
MOV .B ROL, @IO_BUF ; Specifies parameter in buffer
MOV .W #H'0102,R0 ; Specifies parameter and function code
MOV.W #I0 BUF,R1
MOV.W R1, @PARM ; Specifies I/O buffer address
MOV.W #PARM, R1 ; Specifies parameter block address
JSR @SIM IO
RTS
Rev. 1.00 Aug. 17,2009 Page 267 of 1156
RENESAS REJ10J2039-0100

Section 9 Programming

; _charget: One character input
C program interface: char charget (void)

_charget:
MOV .W #H'0101,R0 ; Specifies parameter and function code
MOV .W #IO_BUF, R1
MOV.W R1, @PARM ; Specifies I/O buffer address
MOV . W #PARM, R1 ; Specifies parameter block address
JSR @SIM_IO
MOV.B @IO_BUF,ROL
RTS

.SECTION B,DATA,ALIGN=2
PARM: .RES.W 1 ; Parameter block area
IO_BUF: .RES.B 1 ; I/0 buffer area

. END

Rev. 1.00 Aug. 17,2009 Page 268 of 1156
REJ10J2039-0100 RENESAS

Section 9 Programming

(d) Example of low-level interface routines for reentrant library

An example of a low-level interface routine for reentrant library is shown below. This
routine is necessary when using a standard library, which was created by the standard
library generator with the reent option specified.

When an error is returned from the wait_sem function or signal_sem function, set errno as
follows to return from the library function.

Function errno Description

wait_sem EMALRESM Failed to allocate semaphore resources for malloc
ETOKRESM Failed to allocate semaphore resources for strtok
EIOBRESM Failed to allocate semaphore resources for iob

signal_sem EMALFRSM Failed to release semaphore resources for malloc
ETOKFRSM Failed to release semaphore resources for strtok
EIOBFRSM Failed to release semaphore resources for iob

When an interrupt with a priority level higher than the current level is generated after
semaphores have been allocated, dead locks will occur if semaphores are allocated again.
Therefore, be careful for processes that share resources because they might be nested by
interrupts.

Rev. 1.00 Aug. 17,2009 Page 269 of 1156
RENESAS REJ10J2039-0100

Section 9 Programming

#define
#define
#define
#define
#define
#define
#define

#define

MALLOC_SEM
STRTOK_SEM
FILE TBL SEM
SEMSIZE

TRUE

FALSE

OK

NG

/* Semaphore No. for malloc */
/* Semaphore No. for strtok */

/* Semaphore No. for _iob */

extern int *errno_addr (void) ;

extern int wait_sem(int) ;

extern int signal sem(int) ;

int sem errno;

int force fail signal sem

FALSE;

static int semaphore [SEMSIZE] ;

/***/

/*
/*

/***/

int *errno_addr (void)

{

errno_addr:Acquisition of errno address

Return address: errno address

/* Return the errno address of the current task */

return (&sem errno) ;

Rev. 1.00 Aug. 17,2009 Page 270 of 1156
REJ10J2039-0100

RENESAS

Section 9 Programming

/***/

/* wait_sem: Acquires the specified number of semaphores */
/* Return value: OK(=1) (Normal) */
/* NG (=0) (Error) */

/***/

int wait sem(int semnum) /* Semaphore ID */

{

if ((0 <= semnum) && (semnum < SEMSIZE)) {
if (semaphore [semnum] == FALSE) {
semaphore [semnum] = TRUE;

return (OK) ;

}

return (NG) ;

/***/

/* signal_sem: Releases the specified number of semaphores */
/* Return value: OK(=1) (Normal) */
/* NG (=0) (Error) */

/***/
int signal_ sem(int semnum) /* Semaphore ID */
{
if (1force fail signal sem) {
if ((0 <= semnum) && (semnum < SEMSIZE)) {
if (semaphore[semnum] == TRUE) {
semaphore [semnum] = FALSE;

return (OK) ;

}

}

return (NG) ;

Rev. 1.00 Aug. 17,2009 Page 271 of 1156
XRENESAS REJ10J2039-0100

Section 9 Programming

(8) Termination processing routines

(a) Example of creation of a routine for termination processing registration and execution
(atexit)
The method for creation of the library function atexit to register termination processing is
described.

The atexit function registers, in a table for termination processing, a function address
passed as an parameter. If the number of functions registered exceeds the limit (in this case,
the number that can be registered is assumed to be 32), or if an attempt is made to register
the same function twice, NULL is returned. Otherwise, a value other than NULL (in this
case, the address of the registered function) is returned.

A program example is shown below.

#include <stdlib.h>
typedef void *atexit t ;

int _atexit_count=0 ;

atexit t (* atexit buf[32]) (void) ;

#ifdef cplusplus

extern "C"

#endif
atexit t atexit (atexit t (*f) (void))
{
int i;
for(i=0; i< _atexit count ; i++) /I Check whether the function has
if (_atexit buf[i]==f) /I already been registered
return NULL ;
if (_atexit_count==32) /I Check whether the limit for
return NULL ; // registered functions is exceeded
else {
_ atexit buf [atexit count++]=£f;// Register the function address
return f;
}
}

Rev. 1.00 Aug. 17,2009 Page 272 of 1156
REJ10J2039-0100 RENESAS

Section 9 Programming

(b) Example of creation of a routine for program termination (exit)

The method for creation of an exit library function for program termination is described.
Program termination processing will differ among user systems; refer to the program
example below when creating a termination procedure according to the specifications of
the user system.

The exit function performs termination processing for a program according to the
termination code for the program passed as a parameter, and returns to the environment in
which the program was started. Here the termination code is set to an external variable, and
execution returned to the environment saved by the setjmp function immediately before the
main function was called. In order to return to the environment prior to program execution,
the following callmain function should be created, and instead of calling the function main
from the PowerON_Reset initial setting function, the callmain function should be called.

A program example is shown below.

Rev. 1.00 Aug. 17,2009 Page 273 of 1156
XRENESAS REJ10J2039-0100

Section 9 Programming

#include <setjmp.h>
#include <stddef.h>

typedef void * atexit t ;
extern int _atexit count ;

extern atexit t (*_atexit buf
#ifdef _ _cplusplus

extern "C"

#endif
void _CLOSEALL (void) ;

int main(void) ;
extern jmp_buf _init_env ;
int _exit_code ;

#ifdef _ _cplusplus

extern "C"

#endif
void exit (int code)

int i;
_exit code=code ;

[32]) (void)

7

// Set the return code in _exit_code

for(i=_atexit count-1; i>=0; i--) //Executein sequence the functions registered by
(*_atexit_buf [i]) (); /1 the atexit function
_CLOSEALL() ; /I Close all open functions
longjmp (_init_env, 1) ; // Return to the environment saved by setjmp
#ifdef _ _cplusplus
extern "C"
#endif
void callmain (void)
{
// Save the current environment using setjmp,
// call the main function
if (!setjmp(_init _env))
_exit_code=main() ; // On returning from the exit function,
// terminate processing
}
Rev. 1.00 Aug. 17,2009 Page 274 of 1156
REJ10J2039-0100 RENESAS

Section 9 Programming

(c) Example of creation of an abnormal termination (abort) routine
On abnormal termination, execute the abnormal terminaton procedure according to the user
system.

When using the C++ program, the abort function is called in the following cases:
e When correct exception processing was not performed
e When a pure virtual function is called
e When dynamic_cast failed
e When typeid failed
e When information could not be obtained when the class array was deleted
e When contradiction occurred when destructor call information for class object was
called
Below is an example of a program which outputs a message to the standard output device, then
closes all files and begins an endless loop to wait for reset.

#include <stdio.h>

#ifdef _ _cplusplus
extern "C"

#endif
void _CLOSEALL (void) ;

#ifdef _ _cplusplus

extern "C"

#endif

void abort (void)
printf (“program aborted !!\n”); //Output message
_CLOSEALL () ; //Close all files
while (1) ; //Begin endless loop

Rev. 1.00 Aug. 17,2009 Page 275 of 1156
RENESAS REJ10J2039-0100

Section 9 Programming

9.3 Linking C/C++ Programs and Assembly Programs

Through its support for #pragma statements, keywords and other extended features as well as
functions, this compiler provides all functions necessary for programs of embedded use equipment
via the C and C++ languages.

However, in cases where there are strict demands on performance, such as when hardware
timing is required or when the size of memory is limited, it may be necessary to write code in
assembly language integrated into the C/C++ program.

Keep the following in mind when joining C/C++ programs and assembly programs.

e Method for mutual referencing of external names

o Interface for function calling

9.3.1 Method for Mutual Referencing of External Names

External names which have been declared in a C/C++ program can be referenced and updated in
both directions between the C/C++ program and an assembly program. The compiler treats the
following items as external names.

o Global variables which are not static storage classes (C/C++ programs)
e Variable names declared as extern storage classes (C/C++ programs)
e Function names not specified as static memory classes (C programs)

e Non-member, non-inline function names not specified as static memory classes (C++
programs)

e Non-inline member function names (C++ programs)

o Static data member names (C++ programs)

Rev. 1.00 Aug. 17,2009 Page 276 of 1156
REJ10J2039-0100 RENESAS

Section 9 Programming

(1) Method for referencing assembly program external names in C/C++ programs

In assembly programs, the .EXPORT directive is used to declare external symbol names
(preceded by an underscore (_)).

In C/C++ programs, symbol names (not preceded by an underscore) are declared using the
extern keyword.

Assembly program (defines the name) C/C++ program (references the name)
.EXPORT _a, b extern int a,b;
.SECTION D,DATA,ALIGN=2 £()
_a: .DATA.W 1 {
_b: .DATA.W 1 a+=b;
.END }

(2) Method for referencing C/C++ program external names (variables and C functions) from

assembly programs
A C/C++ program can define external variable names (without an underscore (_)).

In an assembly program, the .IMPORT directive is used to reference an external name
(preceded by an underscore).

C/C++ program (defines the name) Assembly program (references the name)
char a, b; OMPORT _a, b
. SECTI ON P, CODE, ALI G\=2
MOV. B @a, R5L
MOV. B R5L, @b
RTS
. END

(3) Method for referencing C++ program external names (functions) from assembly programs

By declaring functions to be referenced from an assembly program using the extern "C"
keyword, the function can be referenced using the same rules as in (2) above. However,
functions declared using extern "C" cannot be overloaded.

C++ program (defines the name) Assembly program (references the name)
extern "C' I MPORT f
_ _ . SECTI ON P, CODE, ALI G\=2
int f(int a) :
{ JSR @f
END
}

Rev. 1.00 Aug. 17,2009 Page 277 of 1156
RENESAS REJ10J2039-0100

Section 9 Programming

9.3.2 Function Calling Interface

When calling functions in both directions between a C/C++ program and an assembly program,
four collections of rules, explained below, must be followed on the assembly program side.

e Rules concerning the stack pointer
e Rules concerning allocation and release of stack frames
e Rules concerning registers

e Rules concerning settings and referencing parameters and return values

(1) Rules concerning the stack pointer
No valid data must be stored in the stack area below (in the direction toward address 0) the
address indicated by the stack pointer. The data may become corrupted by interrupt processing.
(2) Rules concerning allocation and release of stack frames

At the time of a function call (after execution of a JSR or BSR instruction), the stack pointer
points to a return PC area. The calling function allocates area above this area and sets data.
When the function returns, the return PC area is released by the called function. This is
normally performed using the RTS instruction. Areas at addresses above this (return value
addresses and parameter areas) are released by the calling function.

Immediately afer returning

Immediately after functin call from a function 0
0
I I 1
T ~ T T f Lower address
SP —i» Lower address
Return PC
—
Return value SP Return value
address address
Parameter area Parameter area
* Upper address
Upper address

Figure 9.8 Rule for Allocation and Release of Stack Frames

Rev. 1.00 Aug. 17,2009 Page 278 of 1156
REJ10J2039-0100 RENESAS

Section 9 Programming

(3) Rules concerning registers

There are registers which guarantee a value to remain the same before and after a function call,
and registers which do not. Rules for guaranteeing register values for different CPU types

appear in table 9.5.

Table 9.5 Rules for Guaranteeing Register Values Before and After Function Calls

CPU Type and Registers

Number of H8SX,

Registers H8S/2600,

for Storing H8S/2000, Important Information When
Type Parameters H8/300H H8/300 Programming
Registers which 2 ERO, ER1 RO, R1 If there is a valid value in a
do not 3 EROto ER2 RO to R2 register when a functiop is
guarantee called, the calling function saves
values the value; the called function

(caller-save)

can use the register without
saving its contents

Registers which 2

ER2to ER6 R2to R6 The contents of the registers

do guarantee
values
(callee-save)

ER3 to ER6 R3 to R6 used within the function are
saved, and are restored on
return

Note: The number of registers used to store parameters can be set using the regparam option or

_ _regparam?2

CR——

regparam3.

Rev. 1.00 Aug. 17,2009 Page 279 of 1156
RENESAS REJ10J2039-0100

Section 9 Programming

Below are specific examples of rules for guaranteeing register values, in the case of the

H8S/2600 advanced mode.

(a) Calling an assembly program subroutine from a C/C++ program

Assembly program (called function)

C/C++ program (calling function)

#ifdef _ cplusplus
extern “C”
#endif
void sub (void) ;
void f (void)
{

sub () ;

}

.EXPORT _sub

-SECTION P, CODE, ALIGN=2 Contents of registers to be used within
_sub: STM.L (ER4-ER6) , ©-SP By the function are saved by the callee

SUB-L - #10,8F } Function body (ERO, ER1 can be used

ADD.L #10,5p without saving)

LDM.L @SP+, (ER4-ER6) JF Saved register contents restored

RTS

.END

(b) Calling a C program subroutine from an assembly program

C program (called function)

voi d sub(void)

{
}

Assembly program (calling function)

.IMPORT _sub
. SECTI ON P, CODE, ALI G\=2

MOV. L ERL, @4, SP)

MOV. L ERO, ER6 }
JSR @sub

s +
. END

If there are valid values in registers
ERO, ER1, they are saved by the
caller to unused registers or to the
stack

Function name referenced with _
prepended

Rev. 1.00 Aug. 17,2009 Page 280 of 1156
REJ10J2039-0100 RENESAS

Section 9 Programming

(c) Calling a C++ program subroutine from an assembly program

C++ program (called function)

extern "C'

voi d sub(void)

{
}

Assembly program (calling function)

.IMPORT _sub
- SECTI ON P, CODE, ALl GN=2 If there are valid values in registers ERO,

OV, L ERL, @4, SP) ERI1, they are saved by the caller to unused

NOV. L ERD. ER6 resisters or to the stack
JSR @sub

RTS

. END

Note: Functions declared using extern "C" cannot be overloaded.
(4) Rules concerning settings and referencing parameters and return values
Below the method for setting and referencing parameters and return values is explained. Rules
for parameters and return values differ depending on whether, in the function declaration, the
type of each parameter and of the return value has been declared explicitly or not. In order to
make explicit declarations of the types of parameters and the return value, a function prototype
declaration is used.
In the following explanation, first general rules for parameters and return values are described;
then, assignment of parameters and the location for setting the return value are discussed.
(a) General rules for parameters and return values
e Passing parameters
The values of parameters must always be copied to the area allocated to parameters
before calling the function. The calling function does not reference the area allocated to
parameters after return, and so the called function can change the parameter values with
no direct effect on processing by the calling function.
e Rules for type conversion:
When passing parameters or returning a value, in some cases automatic type
conversions are performed. Below the rules for these type conversions are explained.
Type conversion of return values:

Return values are converted into the type returned by the function.

Rev. 1.00 Aug. 17,2009 Page 281 of 1156
RENESAS REJ10J2039-0100

Section 9 Programming

Example:

1)

)

Type conversion of parameters for which a type is declared:

Parameters for which a type has been declared using a prototype declaration

are converted to the declared type.

Type conversion of parameters for which no type is declared:

Type conversions of parameters for which no type has been declared using a

prototype declaration are performed according to the following rules.
Parameters with the char and unsigned char types are converted to the int type.
Parameters with the float type are converted to the double type.

All types other than the above are not converted.

long TO);
long TO
{ float Xx;
return x;
} The return value is converted to long.

void p(int,...);

O
{ char c;
pP(1.0, c);
} T—» c is converted to int because no type is declared
for the parameter.
— 1.0is converted to int because int type is declared

for the parameter.

Rev. 1.00 Aug. 17,2009 Page 282 of 1156

REJ10J2039-0100

RENESAS

Section 9 Programming

When parameter types are not declared using a prototype declaration, if the same type is not
specified by both the calling and the called function so as to ensure that the correct parameters are

passed, correct operation is not guaranteed.

f(x) f(float x)
float x; {
{
1
1
main()
main() {
{ float x;
float x; (x);
f(x);]
1
Example of a case in which correct Example of a case in which correct
operation is not guaranteed operation is guaranteed

In the example of a case in which correct operation is not guaranteed, the parameter x is
converted to the double type by the function main because function f has no parameter
prototype declaration. On the other hand, the parameter is declared as the float type by the
function f. Hence the parameter cannot be passed correctly. Either the parameter type
should be declared using a prototype declaration, or else the parameter declaration for
function f should be changed to the double type.

In the example of correct type specification, the parameter type is declared using a
prototype declaration.

(b) Area for allocation of parameters

Parameters are allocated to an area on the stack in some cases, and to registers in others.
Areas for allocation of parameters by object type are shown in table 9.6, and general rules
for areas for allocation of parameters are indicated in figure 9.9.

The “this” pointer of nonstatic function members in C++ programs is allocated to RO or
ERO.

Rev. 1.00 Aug. 17,2009 Page 283 of 1156
XRENESAS REJ10J2039-0100

Section 9 Programming

Stack Stack
Return 1 Lower address Return 1 Lower address
PC PC
Return value Return value
address
R address | | ERO poJpy LR g RO
o ER1 S R1
3 3
: (LLTTTETTTTATTTTFT T eme - & (LTI o
) e
o Register for storing parameters % Register for storing
@
o o parameters
For H8/300

For H8SX,H8S/2600,H8S/2000,and H8/300H

Register for storing parameters when the number of registers
for storing parameter is 3

I:I Parameter area

Figure 9.9 Memory Area for Allocation of Parameters

Rev. 1.00 Aug. 17,2009 Page 284 of 1156

REJ10J2039-0100 RENESAS

Section 9 Programming

Table 9.6 General Rules for Memory for Allocation of Parameters

Number of Rules for Allocation
Registers

for Parameters for Allocation to Registers Parameters for
Parameter Parameter Parameter Types for Ié\tllac::iatlon to the
CPU Type Storage Storage Storage
Registers
H8SX 2 ERO, ER1 char, unsigned char, [1] Parameter type
H8S/2600 3 ERO, ER1, ER2 §hort, u.nsigngd short, is other than a
int, unsigned int, long, type allocable to
H8S5/2000 unsigned long, float, registers
H8/300H structkjres (4 bytes or [2] Function is
less)*, pointers, declared by a
references, pointers to prototype
data members declaration as a
H8/300 2 RO, R1 char, unsigned char, function with a
RO. R1. R2 short, unsigned short, variable number
Y int, unsigned int, long*®, of parameters**
unsigned long*®, float*’, [3] Parameters
structures (2 bytes or which cannot be
less)**, structures (4 allocated to
*3x4
bytes or less)™™, registers because
pointers, references, of the large
pointers to data number of
members parameters
Notes: 1. The number of registers for parameter storage can be specified using the regparam

2.

3.

option or _ _regparam2 and _ _regparam3.

When a function is declared using a prototype declaration as having a variable number
of parameters, parameters in the ... part, and the parameter immediately preceding the
... part, are allocated on the stack.

Example: int f2(int, int, ...);
f2(x,y,z); 2 vy, z are allocated to the stack
When the longreg option is specified.

4 When the structreg option is specified.

(c) Parameter allocation

Allocation of registers for parameter storage

Allocation of registers for parameter storage is performed in the order of parameter
declaration in the source program, starting from the LSB side of the lowest-numbered
register. An example of allocation of registers for parameter storage appears in

figure 9.10.

Rev. 1.00 Aug. 17,2009 Page 285 of 1156
RENESAS REJ10J2039-0100

Section 9 Programming

f(char a,int b)
{

} EO ROH ROL

b Space a
T™MSB LSBT

Figure 9.10 Example of Allocation of Registers for Parameter Storage (H8S/2600)

o Allocation to parameter area on the stack
Parameters are allocated to areas on the stack for parameters in the order specified in
the source program, starting from lowest addresses.

Caution

When specifying parameters that are structures, unions or classes, 2-byte boundary alignment is
used regardless of the normal byte alignment for that type, and an area with an even number of
bytes is used. This is because in the H8SX, AE5, H8S, H8/300H and H8/300 series, the stack
pointer changes in 2-byte units.

In section 9.3.3, Examples of Parameter Assignment, specific examples of parameter
allocation for different CPU/operating modes are described.
(d) Location for setting return values
Depending on the type of the value returned by a function, the return value may be set in
either a register or in memory. The relation between the return value type and the location
for storage is described in table 9.7. When setting a function return value in memory, the
return value is set in the area indicated by the return value address. The caller function
secures an area for the return value, the area for parameters, and the area to set the address
of the return value, calls the function (cf. figure 9.11).

If the return value of a function is of type void, no return value is set.

Rev. 1.00 Aug. 17,2009 Page 286 of 1156
REJ10J2039-0100 RENESAS

Section 9 Programming

Table 9.7 Return Value Types and Location in Memory

Location for Setting Return Value

H8SX, AE5, H8S/2600, H8/300
Return Value Type H8S/2000, H8/300H
char, unsigned char Register (ROL) Register (ROL)
short, unsigned short, int, Register (RO) Register (RO)
unsigned int
Ponter to function Register Register (RO)
Normal mode: (RO0)
The other mode: (ERO)
Pointer to data, reference, Register Register (RO)

pointer to a data member

Normal/Middle mode: (RO)

Advanced/Maximum mode
with ptr16 option or
_ _ptr16 keyword: (R0)*®

Advanced/Maximum mode
without ptr16 option and
_ _ptr16 keyword: (ERO)

long, unsigned long, float

Register (ERO)

Area for setting return values
(memory)

Register (RO, R1)*'

Structures of 2 bytes or less

Area for setting return values
(memory)

Register (R0)*

Area for setting return values
(memory)

Register (R0)*

Structures of 3 or 4 bytes

Area for setting return values
(memory)

Register (ER0)*

Area for setting return values
(memory)

Register (RO, R1)*"™*

double, long double, long
long, unsigned long long,
structure, union, class, pointer
to a function member

Area for setting return values
(memory)

Area for setting return values
(memory)

Notes: 1.

When the longreg option is specified.

2. When the structreg option is specified.
3. The ptr16 option and the _ _ptr16 keyword are valid only with the H8SX and H8S CPU

Rev. 1.00 Aug. 17,2009 Page 287 of 1156

RENESAS

REJ10J2039-0100

Section 9 Programming

Return value
address area

Parameter
area

Return value setting
area

(allocated by the
caller side)

Figure 9.11 Area for Setting Return Values in Memory

Rev. 1.00 Aug. 17,2009 Page 288 of 1156
REJ10J2039-0100

RENESAS

Section 9 Programming

9.3.3 Examples of Parameter Assignment

(1) For the H8SX, H8S/2600, H8S/2000, H8/300H (cpu=H8SXN, cpu=H8SXM, cpu=H8SXA,
cpu=H8SXX, cpu=2600a, cpu=2600n, cpu=2000a, cpu=2000n, cpu=300ha, cpu=300hn)
Example 1: Parameters of types for passing to registers are assigned, in the order of
declaration, to registers ERO and ER1 !

[1] int f(char,char,char);

£(1,2,3); RO&
[2] int f(int,int,int);
RO | 1 |
£(1,2,3); EO | 2 |
RL | 3 |
[3] int f(long,long) ; ERO | 1
ER1 | 2 |

£(1,2);

[4] int f(char,int, int, char);

£(1,2,3,4); |

Note: When there are three registers for storing parameters, the registers are ER0O, ER1, and ER2.

Rev. 1.00 Aug. 17,2009 Page 289 of 1156
XRENESAS REJ10J2039-0100

Section 9 Programming

Example 2: Parameters which cannot be assigned to registers are assigned to the stack. When
an parameter of type char is assigned to the parameter area on the stack, the lower bytes are

invalid.

(Case in which there are two registers for parameter storage)

int f(int,long,char); RO

f(1,2,3);

ER1 | 2

Parameter area
(stack)

3

Unused byte * Lower address
2 bytes

* Upper address

Example 3: Parameters of types which cannot be assigned to registers are assigned to the stack.

struct s{long x,y;)a;
g Xy ROL

int f (char,struct s,char);
ROH

£(1,a,3);

Parameter area

(Stack)
| 3 |

a. X

a.y

* Lower address
8 bytes

* Upper address

Rev. 1.00 Aug. 17,2009 Page 290 of 1156

REJ10J2039-0100 RENESAS

Section 9 Programming

Example 4: When a function is declared as having a variable number of parameters using a
prototype declaration, a parameter without a corresponding type and the immediately
preceding parameter are assigned to the stack in the order of declaration.

Parameter area (stack)
[1] int f(long,...); Lower address
1 4 bytes
£(1,2,3);
2 2 bytes
3 }2 bytes
* Upper address
[2] int f(double, int,...);
Parameter area (stack)
) * Lower address
£(1.0,2,3);
1.0 >8 bytes
2 }2 bytes
3 }2 bytes
* Upper address
Rev. 1.00 Aug. 17,2009 Page 291 of 1156
RENESAS REJ10J2039-0100

Section 9 Programming

Example 5: When there is no prototype declaration in a C program, char is expanded to the int
type, and float is expanded to the double type for passing.

int £(); Parameter area
(Stack)
char a; \
* Lower address
float b; RO a |
f(a,b); b >8 bytes

+ Upper address

Example 6: The pointer-to-data type and the reference type of C++ are assigned to 2-byte
areas in normal or middle mode and in advanced or maximum mode with ptr16 option or

_ _ptrl6 keyword, and to 4-byte areas in advanced or maximum mode without ptr16 option
and _ _ptr16 keyword. Note that ptr16 option and _ _ptr16 keyword is effective only with
H8SX and HSS.

Normal mode
Middle mode
Advanced mode with ptrl6 option
Maximum mode with ptrl6 option

int a, b;
int *f(int *, int &; RO[ea |
e
f(&a, b); Advanced mode without ptr16 option
Maximum mode without ptr16 option
ERO| &a |
ER1| &b |
int g(int _ ptrl6 *); Advanced mode with _ _ptrl6 keyword

Maximum mode with __ ptrl6 keyword

o[&]

g(&a);

Rev. 1.00 Aug. 17,2009 Page 292 of 1156
REJ10J2039-0100 RENESAS

Section 9 Programming

Example 7: The return value of pointer-to-data type are assigned to 2-byte areas in normal or
middle mode and in advanced or maximum mode with ptr16 option or _ _ptrl6 keyword, and
to 4-byte areas in advanced or maximum mode without ptr16 option and _ _ptr16 keyword.
Note that ptr16 option and _ _ptr16 keyword is effective only with H8SX and HS8S.

Normal mode

Middle mode

Advanced mode with ptrl6 option
Maximum mode with ptrl6 option

int *f(void);

p=1f(); Advanced mode without ptr16 option
Maximum mode without ptrl6 option
ERO f
int _ _ptrl6 *g(void);
int _ ptrlé *q; Advanced mode with _ _ptr16 keyword
Maximum mode with _ _ ptrl6 keyword

S

qg =9():

Rev. 1.00 Aug. 17,2009 Page 293 of 1156
XRENESAS REJ10J2039-0100

Section 9 Programming

Example 8: When the type returned by a function exceeds 4 bytes, or when it is a structure
(when structreg is not specified, or when the structure exceeds 4 bytes), the return value
address is set immediately before the parameter area. Also, when a structure size is an odd
number of bytes, one unused byte of memory area results.

Normal mode

Middle mode

Advanced mode with ptrl6 option

Maximum mode with ptr16 option
(stack)

struct s{char x,y,z;}a,b;

Return value * Lower address
float f(struct s); 2 bytes

address

f(a); a x

a.
y Parameter area
a. z (4 bytes)

Unused area + Upper address

Return value
setting area
(4 bytes)

Advanced mode without ptr16 option
Maximum mode without ptr16 option

(stack)
* Lower address
Return value 4 bytes
address
a. X
a.
Parameter area
(4 bytes)
Unused area + Upper address
S

Return value
setting area
(4 bytes)

Rev. 1.00 Aug. 17,2009 Page 294 of 1156
REJ10J2039-0100 RENESAS

Section 9 Programming

(2) For the H8/300 (cpu=300)

Example 1: Parameters of types for passing to registers are assigned, in the order of
declaration, to registers RO and R1 !

[1] int f(char,char);

£(1,2); ROH

2 int f(char,int,ch ;
[2] in (char, int, char) ROL

£(1,2,3);

Note: When there are three registers for storing parameters, the registers are RO, R1, and R2.

Example 2: Parameters which cannot be assigned to registers are assigned to the stack. (Case
in which there are two registers for parameter storage)

int f(char,int,int,char); ROL - Parameter area
: - (stack)
£(1,2,3,4);
: R1 | 2 | 3 } 2 bytes
ROH

Example 3: Parameters of types which cannot be assigned to registers are assigned to the stack.

Parameter area

int f(char, long, char) ; ROL (stack)

II

£(1,2,3); ROH

2 4 bytes

Rev. 1.00 Aug. 17,2009 Page 295 of 1156
XRENESAS REJ10J2039-0100

Section 9 Programming

Example 4: When the longreg option is specified, four-byte data is assigned to registers RO
and R1.

int f (long, Short);

Parameter area

fa,2); ROy Upperzbyes | (Stac

R1 Lower 2 bytes | 2 |}2 bytes

Example 5: When the structreg option is specified, structures of 2 bytes or less are assigned
to registers.

struct A{
char a,b;

}str; ROL
int f(struct A); ROH

f(str)

Example 6: When a function is declared as having a variable number of parameters using a
prototype declaration, an parameter without a corresponding type and the immediately
preceding parameter are assigned to the stack in the order of declaration.

Parameter area

[1] int f(int,...); (Stack)
. Lower address
: 1 }2 bytes
£(1,2);
2 }2 bytes

* Upper address

Parameter area

[2] int f(long,int,...); (Stack)
. Lower address
£(1,2,3); 1 4 bytes
2 2 bytes
3 2 bytes

* Upper address

Rev. 1.00 Aug. 17,2009 Page 296 of 1156
REJ10J2039-0100 RENESAS

Section 9 Programming

Example 7: When an parameter of type char is assigned to the parameter area on the stack, the
lower bytes are invalid.

int f(char,...); Parameter area
: (Stack)
£(1); Invalid byte }2 bytes Lower address
= Upper address

Example 8: When there is no prototype declaration in a C program, char is expanded to the int
type, and float is expanded to the double type for passing.

int £(); Parameter area
char a; (Stack)

) Lower address
float b; ROL a1

f(a,b); b >8 bytes

* Upper address

Rev. 1.00 Aug. 17,2009 Page 297 of 1156
XRENESAS REJ10J2039-0100

Section 9 Programming

Example 9: When the type returned by a function exceeds 2 bytes, the return value address is

set immediately before the parameter area. Also, when a structure size is an odd number of
bytes, one unused byte of memory area results.

struct s{char x,vy,z;}a,b;
float f(struct s);

f(a); Stack

Return value
address
a. X
a.y
a.z
Unused area

2 bytes * Lower address

Parameter
area (4 bytes)

* Upper address

Area for
setting return
values (4 bytes)

Example 10: When the longreg option is specified, if the type returned by a function exceeds
2 bytes, the return value is assigned to registers RO and R1.

struct s{char x,y,z;}a,b;

Stack * Lower address
long c; a X
long f(struct s); RO | Upper 16 bits of ¢ | a:y
- ~ Parameter area (4 bytes)
c=f(a); R1 | Lower 16 bits of | Unused area

* Upper address

Example 11: When the structreg and longreg options are specified, if the type returned by a
function is a structure of 4 bytes or less, the return value is assigned to registers RO and R1.

struct s{char x,y,z;}a,b;

ROL -b.x
struct s f(void);
b=f();

Rev. 1.00 Aug. 17,2009 Page 298 of 1156
REJ10J2039-0100

RENESAS

Section 9 Programming

9.34

Using the Registers and Stack Area

(1) For the H8SX advanced mode and maximum mode (cpu=H8SXA, cpu=H8SXX)

-

Q

@

c

E

5— ERO

S ERL

% ER2

g ER3

S ER4
ER5
ER6

ER7(SP)

——

«eale abelols Jajaweled

Local variables
and temporary
area

Area for

saving parameters|

Area for
saving register
contents

Return PC

* Lower address

\

Vv

}4 bytes

Ret

rn value address

}4 bytes

ERO to ER6: For storage of variables

and temporary data

(intermediate calculatlon results)

Note

Parameter area

Stack area

awely Xoels

7/

*Upper address

*When there are three registers for parameter storage, ER2 is also
included in parameter storage area.

Figure 9.12 Using Registers and Stack Area (cpu=H8SXA+, cpu=H8SXX*")

Note:

1. Without the ptr16 option.

(2) For the H8SX middle mode, advanced mode with ptr16, maximum mode with ptr16
(cpu=H8SXM, cpu=H8SXA with ptr16, CPU=H8SXX with ptr16)

——

-

)

@

g

B

5 ERO

S ER1

2 ER2

g ER3

3 ER4
ER5
ER6

ER7(SP)

Local variables
and temporary
area

* Lower address

\

saving parameters|

Areafor
saving register
contents

Return PC

Vv

}4 bytes

el
=]
QO
3
o
e Area for
@
=]
QD
«Q
[v]
QD
2
S
* Ret

rn value address

}2 bytes

ERO to ER6: For storage of variables

and temporary data

(intermediate calculatlon results)

Note

Parameter area

auwrel) Xoels

7/

Stack area

*Upper address

*When there are three registers for parameter storage, ER2 is also
included in parameter storage area.

Figure 9.13 Using Registers and Stack Area (cpu=H8SXM, cpu=H8SXA*, cpu=H8SXX*)

Note: 2. With the ptr16 option.

Rev. 1.00 Aug. 17,2009 Page 299 of 1156

RENESAS

REJ10J2039-0100

Section 9 Programming

(3) For the H8SX normal mode (cpu=H8SXN)

* Lower address

el -

T o Local variables \

] g and temporary

o} 2 area

£ @ -

= = Area for saving parameters

—ERO o

< 3 Area for

S ERr1 S i i @
= S saving register Iy
2 ER2 < contents \Q
g ERs) Return address |}2 bytes| 5
& Erd 8 Ret lue add }2bytes| 3
S Ers * eturn value address y @

ER6
ER7(SP) | Unfixed § Parameter area
ERO to ER6: For storage of variables /
(and teméqorary tljat? . its)
intermediate Calculation results
Stack area * Upper address

Note

*When there are three registers for parameter storage, ER2 is also included in
parameter storage area.

Figure 9.14 Using Registers and Stack Area (cpu=H8SXN)

Rev. 1.00 Aug. 17,2009 Page 300 of 1156
REJ10J2039-0100 RENESAS

Section 9 Programming

(4) For the H8S/2600, H8S/2000 and H8/300H advanced mode (cpu=2600a, cpu=2000a,

cpu=300ha)
- * Lower address
Y Local variables \
5 and temporary
EE' 3 area
3) Area for saving parameters
E 2 Areafor
5 —ERO 8 savm%trgeglster E'U:)
& ERL - . g
% ERr2 2 Previous FP value|f 4 bytes (2,
o L
= ER3 2 Return PC 4bytes | 3
Q
o ER4 Return value address | 4 bytes
ER5
ERG6(FP)
ER7(SP) Parameter area
7/
ERO to ER5: For storage of variables
and temporary data * Upper address
Note (intermediate calculation results) Stack area

*When there are three registers for parameter storage, ER2 is also included
in parameter storage area.

Figure 9.15 Using Registers and Stack Area wthout Optimization (cpu=2600a, cpu=2000a,
cpu=300ha)

——

-

)

@

g

5

5— ERO

S ER1

g ER2

5 FERe

S ER4
ER5
ER6

ER7(SP)

Local variables
and temporary
area

Area for

saving parameters

Area for
saving register
contents

Return PC

«eale abelols Ja1owelred

Ret

rn value address

ERO to ER6: For storage of variables

and temporary data

(intermediate calculation results)

Note

Parameter area

Stack area

4 bytes
4 bytes

* Lower address

\

vV

awrel) yoels

7/

*Upper address

*When there are three registers for parameter storage, ER2 is also
included in parameter storage area.

Figure 9.16 Using Registers and Stack Area with Optimization (cpu=2600a, cpu=2000a,
cpu=300ha)

Rev. 1.00 Aug. 17,2009 Page 301 of 1156

RENESAS

REJ10J2039-0100

Section 9 Programming

(5) For the H8S/2600, H8S/2000, and H8/300H normal mode (cpu=2600n, cpu=2000n,
cpu=300hn)

f Lower address

Local variables \
5 and temporary
J g area
% @ Area for saving parameter
g g Areafor
S a saving register o)
5 TERO 5 contents g
S Ei; 2 Previous FP value| p 2 bytes ¢ X
& Ers 5 Return PC 2bytes | &
S ER4 % Return value address| » 2 bytes ®
o ERS
ERG6(FP) | Unfixed *
ER7(SP) | Unfixed ! Parameter area
7/
ERO to ER5: For storage of variables
and temporary data Stack area Upper address
(intermediate calculatlon results)
Note

*When there are three registers for parameter storage, ER2 is also included
in parameter storage area.

Figure 9.17 Using Registers and Stack Area without Optimization (cpu=2600n, cpu=2000n,
cpu=300hn)

Local variables * \

o Lower address
by 2
] g and temporary
o} 2 area
§ s Area for saving parameters
—ER0 a
s S Areafor »
2 ERL 3 saving register &
2 ER2 < contents \Q
£ ER3 » Return PC bobytes| 5
o ER4 o 3
S Ers > Return value addresg }2 bytes| @
ER6
ER7(SP) | Unfixed ! Parameter area
ERO to ER6: For storage of variables /
(and teméoorary tlj tI its)
intermediate Calculation results
Stack area *
Upper address

Note
*When there are three registers for parameter storage, ER2 is also included in
parameter storage area.

Figure 9.18 Using Registers and Stack Area with Optimization (cpu=2600n, cpu=2000n,
cpu=300hn)

Rev. 1.00 Aug. 17,2009 Page 302 of 1156
REJ10J2039-0100 RENESAS

Section 9 Programming

(6) H8/300 (cpu=300)

}

o - Lower address
o Local variables \
n % and temporary
) 3 area
) @ -
g I Area for saving parameters
E] 51 Area for
5 o saving register (]
%{ RO 8 contents 8
2 g; % Previous FP value }2 bytes ¢ ;
2§ R3 ‘”*l Return PC }2 bytes %
*2 @D
§‘5‘ Return value address| }2 bytes
R6(FP)
R7(SP) Parameter area
RO to R5: For storage of variables ’
and temporary dat + Upper address

¢ orary data
(intermediate Calculation results)
Notes

Stack area

*1: When there are three registers for parameter storage, R2 is also included in

parameter storage area.

*2: When longreg is specified, R1 is included in return value storage area.

Figure 9.19 Using Registers and Stack Area without Optimization (cpu=HS8/300)

3 3
= B

@ 3

= o

3 o

<

RO 28

QC_){Rl S
o ool
@ R2 3
© R3 o
& R4 @
@)
2% R5 *1
R6
R7(SP)

RO to R6: For storage of variables
and temporary data
(intermediate Calculation results)

Notes

Area for saving parameters|

Return value address

Local variables
and temporary
area

Area for
saving register
contents

Return PC

Parameter area

Stack area

Lower address
3\

f

awel) 3oels

2 bytes
2 bytes

7/

* Upper address

*1: When there are three registers for parameter storage, R2 is also included

in parameter storage area.

*2: When longreg is specified, R1 is included in return value storage area.

Figure 9.20 Using Registers and Stack Area with Optimization (cpu=H8/300)

Rev. 1.00 Aug. 17,2009 Page 303 of 1156

RENESAS

REJ10J2039-0100

Section 9 Programming

94 Important Information on Program Creation

In this section, important information on writing program code for the compiler, and matters to
bear in mind during development of a program from compiling through debugging, are described.

9.4.1 Important Information on Program Coding

(1) Functions taking float type parameters

Functions which declare a float type parameter should always be given a prototype declaration,
or else the float type should be changed to the double type in the parameter declaration. If a
function which takes a float type parameter but does not have a prototype declaration is called,
correct operation is not guaranteed.

Example: void f(float); ------ [1]
void g(
{
float a;
1.‘(a):
}
void f(float x)
{
}

The function f takes a float type parameter. Here a prototype declaration like that in [1] should
always be used.

(2) Expressions for which order of evaluation is not specified by the C/C++ language
If an expression is used for which the order of evaluation is not stipulated by the C/C++
language, and the result of the expression changes depending on the order of evaluation, then
correct operation is not guaranteed.

Example:

afi]=a[++i]; The value of i on the left-hand side changes depending on whether
the assignment expression on the right is evaluated first or last.

sub(++i, i); The value of i of the second parameter changes depending on

whether the first parameter of the function is evaluated first or last.

Rev. 1.00 Aug. 17,2009 Page 304 of 1156
REJ10J2039-0100 RENESAS

Section 9 Programming

(3) Code which may be deleted through optimization
When the same variable is referenced continuously, or an expression whose result is not used
is written, such code may be deleted as redundant by the compiler as part of optimization. In
order to ensure constant access, the volatile keyword should be used in the declaration.

Example:

[1] b=a; /* The expression on the first line may be deleted as redundant code */
b=a;

[2] while(l)a; /* The reference of the variable a and loop statement may be */

/* deleted as redundant */

(4) Overflow operations and division by zero
No error message is output even if there is an overflow operation or division by zero. However,
in an operation on a single constant or a pair of constants, if there is an overflow or division by
Zero, an error message is output at compile time. In H8SX, however, the compiler might not
detect division by zero.

Example:
voi d mai n(voi d)
{
int ia;
int ib;
float fa;
float fb;
i b=32767;
f b=3. 4e+38f;
/* Compiler error message is output in response to overflow or */
/* division by zero for an operation on a constant or pair of constants */
i a=99999999999; /* (W) Detects overflow of constant */
f a=3. 5e+40f /* (W) Detects overflow of floating-point operation */
i a=1/0; /* (E) Detects division by zero excluding H8SX and H8S */
fa=1. 0/0. 0; /* (W) Detects floating-point division by zero */
/* excluding H8SX and H8S
/* No error message is output in response to an overflow at runtime */
i b=i b+32767; /* Overflow in operation result ignored */
f b=f b+3. 4e+38f; /* Overflow in floating-point operation result ignored */
}

Rev. 1.00 Aug. 17,2009 Page 305 of 1156
RENESAS REJ10J2039-0100

Section 9 Programming

Caution

When the cpuexpand option is specified, no overflow or underflow errors are output.

(5) On the precision of mathematical library functions

The error in the acos(x) and asin(x) functions is great when x=1; care should be taken when
using these functions. The error range is as follows.

Absolute error at double precision in acos(1.0-g) 27 (e =27%)
At single precision 27 (g =2")
Absolute error at double precision in asin(1.0-g) 2™ (e =27)

At single precision 2 (g =2")

(6) Writing to const type variables
Keep the following in mind. If a variable declared as const is converted to a type that is not
const via type conversion, or if types are not consistent among files compiled separately, then
the compiler cannot check for writing to a const type variable.
Examples:
[1] const char *p; /* The first parameter of the library function strcatis */
: /* a pointer to a char type, and so the area indicated ~ */
strcat(p,"abc”); /* by the parameter may be overwritten. */

[2] File 1
const int i;
File 2
extern int i; /* The variable i is not declared as const type in File 2. */

: /* No error is detected against update of i. */
i =10;

(7) Note on bit manipulation instructions

This compiler generates the bit manipulation instructions BSET, BCLR, BNOT, BST, and
BIST. These instructions read data in byte units, and after bit manipulation write data in byte
units again. On the other hand, if a write-only register is read, the CPU retrieves an undefined
value, regardless of the register contents. Hence in bit manipulation instructions for a write-
only register, bits other than the bit to be manipulated may change. The following is an
example of bit manipulation for a write-only register.

Rev. 1.00 Aug. 17,2009 Page 306 of 1156
REJ10J2039-0100 RENESAS

Section 9 Programming

Example:
Contents of the include file (300x.h)

struct S_p4ddr{
unsigned char p7:1;

unsigned char p0:1;
union SS{

unsigned char Schar;
struct S p4ddr Sstr;

Contents of the C source program

#include "300x.h"
unsigned char DDR;

// Prepare backup data for write-only
/I register

void sub(void)

DDR &=~PO;
P4DDR.Schar=DDR;

#define P4DDR (* (union SS *)O0Oxffffch)

#define PO 0x1

9.4.2 Important Information on Compiling a C Program with the C++ Compiler

(1) Function prototype declarations

Before using a function, a prototype declaration is necessary. At this time the types of

parameters should also be declared.

extern void funcl() ;
void g{()
{
funcl(1); // error in C++

}

extern void funcl (int) ;
void g{()
{

funcl(1l); // OK

}

(2) Linkage of const objects

Whereas in C programs const objects are linked externally, in C++ programs they are linked
internally. In addition, const objects require initial values.

const int cvaluel;

// error in C++
const int cvalue2=1;

// local in C++

const int cvaluel=0;
// initial value required

extern int const cvslue2=1;
// has external linkage like C

(3) Substitution from void*

In C++ programs, if explicit casting is not used, substitution into pointers to other objects
(excluding pointers to functions and to members) is not possible.

void func(void *ptrv,int *ptri) void func(void *ptrv,int *ptri)
{ {
ptri = ptrv; // error in C++ ptri = (int *)ptrv; // OK
! !
Rev. 1.00 Aug. 17,2009 Page 307 of 1156
RENESAS REJ10J2039-0100

Section 9 Programming

9.4.3 Important Information on Program Development

Important information for program development, from program creation through debugging, is
described below.

(1) Information concerning selection of the CPU/operating mode

(a) The same CPU/operating mode should be specified at compile time and assembly time.
The CPU/operating mode specified using the cpu option at compile time and assembly
time must always be the same. If object programs created for different CPU/operating
modes are linked, operation of the object program at runtime is not guaranteed.

(b) The same CPU type as the CPU/operating mode specified at compile time should be
specified at assembly time.
When assembling an assembly program generated by the C compiler, the cpu option
should be used to specify the same CPU type specified by the CPU/operating mode at
compile time.

(c) The same CPU type as the CPU/operating mode specified at compile time should be
specified when creating standard libraries.

When creating standard libraries using the standard library configuration tool, the cpu
option should be used to specify the same CPU type specified by the CPU/operating mode
at compile time.

(2) Important information on options

The options relating to function interface listed below should always be the same at compile
time and when building libraries. If object programs created using different options are linked,
operation of the object program at runtime is not guaranteed.

— cpu
— exception/noexception
— rtti = on/off

— regparam

— longreg/nolongreg

— structreg/nostructreg
— stack

— double=float

— byteenum

— pack

— bit_order = left/right
— indirect = normal/extended *'

(It is possible to specify the indirect option to certain files of the whole source files, but a
mixture of normal and extended is not allowed.)

Rev. 1.00 Aug. 17,2009 Page 308 of 1156
REJ10J2039-0100 RENESAS

Section 9 Programming

— ptrl6
— sbr ¥
— c89stdio*’
— ¢99stdio **

Notes: 1. indirect = extended is only available for the H8§SX.

2. Only available for the H8SX.
3. Only available for lang=c99
4. Only available for lang=cpp

94.4 Important Information on Compiling a C89 Program with the C99 Compiler

(1) Variables assignment order

Variables assignment order is definition order, if lang=C99 is specified. Variable assignment

order may be different from lang=c.

Example:

exter
int a

int b

n int c¢;// a variable declaration
= 0;// a variable definition

= 0;// a variable definition

int ¢ = 0; // a variable definition

ang=c decl aration order
SECTI ON B, DATA, ALl GN\=2

_C:

.RES. W 1
_b:

.RES. W 1
_a:

.RES. W 1

;1ang=c99 definition order
. SECTI ON B, DATA, ALl G\=2
a:
.RES. W 1
_b:
. RES. W 1
_C:
. RES. W 1

RENESAS

Rev. 1.00 Aug. 17,2009 Page 309 of 1156
REJ10J2039-0100

Section 9 Programming

(2) Loop and Selection statements
C99 specification interprets implicitly block in Loop and Selection statements.
C89Example is interpreted as C99Example in C99 Compiler.

//C89Example //C99Example
enum {a0,al}; enum {a0,al};
int func(){ int func () {

int i = 0; int i = 0;
for(i = 0; for(i = 0;
sizeof (enum{a4,a3,a2,al,a0}) < 10, sizeof (enum{a4,a3,a2,al,a0d}) < 10,
i<=al; 1i++) i<=al; i++){ //Implicitly block

} //Implicitly block

return a0;//a0=4 return a0;//a0=4
1 1

(3) Accuracy of C standard library
Same C standard library’s results are different between C89 ‘s and C99’s.
Example:
printf("[% 18g]\n", 123456781234567800. 0);
C89’' s result: 123456781234567810
C99's result: 123456781234567792

Rev. 1.00 Aug. 17,2009 Page 310 of 1156
REJ10J2039-0100 RENESAS

Section 10 C/C++ Language Specifications

Section 10 C/C++ Language Specifications

10.1 Language Specifications

10.1.1 Compiler Specifications

The following shows compiler specifications for the implementation-defined items which are not
prescribed by language specifications.

(1) Environment

Table 10.1 Environment Specifications

No. ltem Compiler Specifications
1 Purpose of actual argument for the "main” Not stipulated

function
2 Structure of interactive 1/0 devices Not stipulated

(2) Identifiers

Table 10.2 Identifier Specifications

No. Item Compiler Specifications

1 Number of valid letters in non externally-linked Up to 8189 letters in both external and
identifiers (internal names) internal names

2 Number of valid letters in externally-linked Up to 8191 letters in both external and
identifiers (external names) internal names

3 Distinction of uppercase and lowercase letters Uppercase and lowercase letters are

in externally-linked identifiers (external names) distinguished

Rev. 1.00 Aug. 17,2009 Page 311 of 1156
RENESAS REJ10J2039-0100

Section 10 C/C++ Language Specifications

(3) Characters

Table 10.3 Character Specifications

No. Item

Compiler Specifications

1 Elements of source character sets and
execution environment character sets

Source program character sets and
execution environment character sets are
both ASCII character sets. However,
string literals and character constants can
be written in shift JIS or EUC Japanese
character code, or Latin1 code.

2 Shift states used in coding multi-byte Shift states are not supported.
characters
3 Number of bits in characters in character sets 8 bits

in program execution

4 Relationship between source program
character sets in character constants and
string literals and characters in execution
environment character sets

Corresponds to same ASCII characters.

5 Values of integer character constants that
include characters or extended notations which
are not stipulated in language specifications

Characters and extended notations which
are not stipulated in the language
specifications are not supported.

6 Values of character constants that include two
or more characters, and wide character
constants that include two or more multi-byte

The first two characters of character
constants are valid. Wide character
constants are not supported. Note that a

characters warning error message is output if you
specify more than one character.
7 Specifications of locale used for converting locale is not supported.

multi-byte characters to wide characters

8 char type value

Same value range as signed char type.

Rev. 1.00 Aug. 17,2009 Page 312 of 1156

REJ10J2039-0100 RENESAS

Section 10 C/C++ Language Specifications

(4) Integers

Table 10.4 Integer Specifications

No. ltem Compiler Specifications

1 Representation and values of integers See table 10.5.

2 Values when integers are converted to shorter The value after conversion consists of the
signed integer types or unsigned integers are lower-order four bytes (if the post-
converted to signed integer types of the same conversion type is long), lower-order two
size (when converted values cannot be bytes (if the post-conversion type is
represented by the target type) int/short), or lower-order byte (if the post-

conversion type is char) of the integer
value.

3 Result of bit-wise operations on signed Signed value.
integers
Remainder sign in integer division Same sign as dividend.

5 Result of right shift of signed integral types Maintains sign bit.

with a negative value

Table 10.5 Range of Integer Types and Values

No. Type Value Range Data Size
1 char -128t0 127 1 byte
2 signed char -128 to 127 1 byte
3 unsigned char 0to 255 1 byte
4 short -32768 to 32767 2 bytes
5 unsigned short 0 to 65535 2 bytes
6 int —-32768 to 32767 2 bytes
7 unsigned int 0 to 65535 2 bytes
8 long —2147483648 to 2147483647 4 bytes
9 unsigned long 0 to 4294967295 4 bytes
10 long long -9223372036854775808 to 8 bytes
9223372036854775807
11 unsigned long long 0 to 18446744073709551615 8 bytes

Rev. 1.00 Aug. 17,2009 Page 313 of 1156

RENESAS

REJ10J2039-0100

Section 10 C/C++ Language Specifications

(5) Floating-point numbers

Table 10.6 Floating-Point Number Specifications

No. ltem Compiler Specifications

1 Representation and values of floating-point There are three types of floating-point
type numbers: float, double, and long double

2 Method of truncation when integers are types. See section 10.1.3, Floating-Point

Number Specifications, for the internal

converted into floating-point numbers that ; X .
representation of floating-point types and

cannot accurately represent the actual value

specifications for their conversion and

3 Methods of truncation or rounding when operation. Table 10.7 shows the limits of
floating-point numbers are converted into floating-point type values that can be
shorter floating-point numbers expressed.

Table 10.7 Limits of Floating-Point Type Values

Limits
No. Item Decimal Notation* Hexadecimal Notation
1 Maximum value of float type 3.4028235677973364e+38f VaTALiii
(3.4028234663852886€e+38f)
2 Minimum positive value of float 7.0064923216240862e—46f 00000001
type (1.4012984643248171e—-45f)
3 Maximum values of double 1.7976931348623158e+308 Tieffffffffffif
type and long double type (1.7976931348623157e+308)
4 Minimum positive values of 4.9406564584124655e-324 0000000000000001
double type and long double (4.9406564584124654e—-324)

type

Note: The limits for decimal notation are the maximum value smaller than infinity and the
minimum value greater than 0. Values in parentheses are theoretical values.

Rev. 1.00 Aug. 17,2009 Page 314 of 1156
REJ10J2039-0100 RENESAS

Section 10 C/C++ Language Specifications

(6) Arrays and Pointers

Table 10.8 Array and Pointer Specifications

No. Item Compiler Specifications
1 Integer type (size_t) required to hold unsigned int type (H8/300)
maximum array size unsigned int type (normal mode,
H8S/2000 advanced mode with ptr16 option,
H8S/2600 advanced mode with ptr16 option,
H8SX middle mode,
H8SX advanced mode with ptr16 option,
H8SX maximum mode with ptr16 option)
unsigned long type
(H8/300H advanced mode,
H8S/2000 advanced mode without ptr16
option,
H8S/2600 advanced mode without ptr16
option,
H8SX advanced mode without ptr16 option,
H8SX maximum mode without ptr16 option)
2 Conversion from pointer type to integer Value of least significant bytes of pointer type
type (pointer type size >= integer type size)
3 Conversion from pointer type to integer Zero extension
type (pointer type size < integer type size)
4 Conversion from integer type to pointer Value of least significant bytes of integer type
type (integer type size >= pointer type size)
5 Conversion from integer type to pointer Zero extension
type (integer type size < pointer type size)
6 Integer type (ptrdiff_t) required to hold int type (H8/300)
difference between pointers to members in int type (normal mode,
the same array H8SX middle mode,

H8S/2000 advanced mode with ptr16 option,
H8S/2600 advanced mode with ptr16 option,
H8SX advanced mode with ptr16 option,
H8SX maximum mode with ptr16 option)
long type
(H8/300H advanced mode,
H8S/2000 advanced mode without ptr16
option,
H8S/2600 advanced mode without ptr16
option,
H8SX advanced mode without ptr16 option,
H8SX maximum mode without ptr16 option)

Rev. 1.00 Aug. 17,2009 Page 315 of 1156
RENESAS REJ10J2039-0100

Section 10 C/C++ Language Specifications

(7) Registers

Table 10.9 Register Specifications

No. Item Compiler Specifications
1 Registers to which register variables *° can be H8/300 Optimization: (R3) ', R4, R5, R6
assigned No optimization: (R3) ", R4, R5
Others Optimization: (ER3) ", ER4, ERS5,
ER6
No optimization: (ER3) ', ER4,
ERS5, ER6™
2 Types of register variables® that can be char, unsigned char,
assigned to registers short, unsigned short,

int, unsigned int,

long®, unsigned long®,

float?, pointer, reference,
pointer to data member,
structure data of 4 bytes or less”

Notes: 1.

If the noregexpansion option is specified, no register variable is assigned to the
register in the parentheses, ().

. If the H8/300-series CPU is selected as the CPU, variables these of types be assigned

to the register.

If the H8/300-series CPU is selected as the CPU, structure data of 2 bytes or less

can be assigned.

Only if the H8SX-series and H8S CPU is selected as the CPU, register variable(s) can
be assigned to ER6 even without optimization.

Allocation of a variable to a register is not affected by the register storage-class
specifier. If the enable_register option is specified, however, variables for which the
register-storage class has been declared will be preferentially assigned to registers.

Rev. 1.00 Aug. 17,2009 Page 316 of 1156
REJ10J2039-0100 RENESAS

Section 10 C/C++ Language Specifications

(8) Class, Structure, Union, and Enumeration Types, and Bit Fields

Table 10.10 Class, Structure, Union, and Enumeration Type, and Bit Field Specifications

No. Item

Compiler Specifications

1 Referencing members in union type accessed

by members of another type

Can be referenced but value cannot be
guaranteed.

2 Boundary alignment of class members

Class consisting of only char type members
are aligned to a 1-byte boundary. Other
class members are aligned to a 2-byte
boundary. For details on assignment, see
section 10.1.2 (2), Compound Type (C),
Class Type (C++).

3 Sign of bit fields of simple int type

signed int type

Order of bit fields within int type size

Assigned from the most significant bit.*" **

Method of assignment when the size of a bit
field assigned after a bit field is assigned
within the int type size exceeds the remaining

size in the int type

Assigned to the next int type area. *'

6 Permissible type specifiers in bit fields char, unsigned char, short,
unsigned short, int, unsigned int, long,
unsigned long type

7 Integer type representing enumeration type int, unsigned char*’, char*® type

Note: 1. For details of assignment of bit fields, see section 10.1.2 (3), Bit Fields.
2. Specifying the bit_order=right option assigns bit fields from the least significant bit.
3. When byteenum option is specified, type is unsigned char or char according to the

value.

(9) Qualifiers

Table 10.11 Qualifier Specifications

No. Item

Compiler Specifications

1 Types of volatile data access

Not stipulated

RENESAS

Rev. 1.00 Aug. 17,2009 Page 317 of 1156
REJ10J2039-0100

Section 10 C/C++ Language Specifications

(10) Declarations

Table 10.12 Declaration Specifications

No. ltem Compiler Specifications

1 Number of types modifying basic types 16 (max.)
(arithmetic types, structure types, union types)

The following shows examples of counting the number of types modifying basic types.

i. inti; Here, i has the int type (basic type) and the number of types modifying the basic type
is 0.

ii. char *f(); Here, f has a function type returning a pointer type to a char type (basic type),
and the number of types modifying the basic type is 2.

(11) Statements
Table 10.13 Statement Specifications

No. ltem Compiler Specifications

1 Number of case labels that can be declared in 2,147,483,646 (max.)
one switch statement

Rev. 1.00 Aug. 17,2009 Page 318 of 1156
REJ10J2039-0100 RENESAS

Section 10 C/C++ Language Specifications

(12) Preprocessor

Table 10.14 Preprocessor Specifications

No. ltem Compiler Specifications

1 Whether the value of a single-character Preprocessor statement character
constant in a constant expression that controls constants are the same as the execution
conditional inclusion matches the value of the environment character set.
same character constant in the execution
character set.

2 Method of locating include files Files enclosed in "<" and ">" are read
from the directory specified in the include
option. If this specification is not made,
files are read from the directory specified
in the environment variable CH38.

3 Support for include files enclosed in double Supported. Include files are read from
quotation marks the current directory. If not found in the
current directory, the file is searched for
as described in 2, above.

4 White-space characters in string literals after A string of white-space characters is
code is expanded when string literals of real ~ expanded as one white-space character.
value parameters in a #define statement are
white-space characters

5 Operation of #pragma statements See section 10.2.1, #pragma Extension
Specifiers and Keywords.
6 _ _DATE_ _and _ _TIME_ _ values A value is specified based on the host

computer's timer at the start of compiling.

Rev. 1.00 Aug. 17,2009 Page 319 of 1156
RENESAS REJ10J2039-0100

Section 10 C/C++ Language Specifications

10.1.2 Internal Data Representation

This section explains the internal representation of data types. The internal data representation is
determined according to the following four items:

1. Size
Shows the memory size necessary to store the data.
2. Boundary alignment

Restricts the addresses to which data is allocated. There are two types of alignment; 1-byte
alignment in which data can be allocated to any address, and 2-byte alignment in which data is
allocated to an even byte address.

3. Datarange
Shows the range of data of scalar type (C) or basic type (C++).
4. Data allocation example

Shows an example of assignment of element data of compound type (C) or class type (C++).
(1) Scalar Type (C), Basic Type (C++)

Table 10.15 shows internal representation of scalar-type data in C and basic type data in C++.

Rev. 1.00 Aug. 17,2009 Page 320 of 1156
REJ10J2039-0100 RENESAS

Section 10 C/C++ Language Specifications

Table 10.15 Internal Representation of Scalar-Type and Basic-Type Data

Size Alighment Data Range
Data Type (bytes) (bytes) Sign Minimum Value Maximum Value
char 1 1 Used -2’ (-128) 2~ 1 (127)
signed char 1 1 Used -27 (-128) 2" -1(127)
unsigned char 1 1 Unused O 2°_ 1 (255)
short 2 2 Used -2 (-32768) 2" _ 1 (32767)
unsigned short 2 2 Unused O 2'° _ 1 (65535)
int 2 2 Used -2 (-32768) 2" _ 1 (32767)
unsigned int 2 2 Unused O 2'° _ 1 (65535)
long 4 2 Used 2" A |
(-2147483648) (2147483647)
unsigned long 4 2 Unused O 2% _1
(4294967295)
enum (the value range is 1 1 Used -27 (-128) 2" -1(127)
-128 to 127 and byteenum
option is specified)
enum (the value range is 01 1 Unused 0 2° — 1 (255)
to 255 and byteenum
option is specified)
enum (other 2 2 Used -2 (-32768) 2'° — 1 (32767)
than above)
bool*' 1 1 Used -27(-128) 2 —1(127)
float 4 2 Used —0 +00
double*?, 8 2 Used —o0 +00
long double
Pointer 2 2 Unused 0 2'° _ 1 (65535)

(H8SX normal mode,
H8SX middle mode,
H8S/2600 normal mode,
H8S/2000 normal mode,
H8/300H normal mode,
and H8/300)

Pointer** (H8/300H 4 2 Unused O 2* _ 1 (16777215)
advanced mode)

Rev. 1.00 Aug. 17,2009 Page 321 of 1156
RENESAS REJ10J2039-0100

Section 10 C/C++ Language Specifications

Table 10.15 Internal Representation of Scalar-Type and Basic-Type Data (cont)

Size Alignment Data Range

Data Type (bytes) (bytes) Sign Minimum Value Maximum Value

Pointer** 4 2 Unused O 2% _ 1

(H8SX advanced mode, (4294967295)
H8SX maximum mode,

H8S/2600 advanced mode,

and H8S/2000 advanced

mode)

Reference*' 2 2 Unused 0 2"° — 1 (65535)
(H8SX normal mode,

H8SX middle mode,

H8S/2600 normal mode,

H8S/2000 normal mode,

H8/300H normal mode,

and H8/300)

Reference*'** 4 2 Unused 0 2* 1 (16777215)
(H8/300H advanced mode)

Reference*'+ 4 2 Unused O 2% 1

(H8SX advanced mode, (4294967295)
H8SX maximum mode,

H8S/2600 advanced mode,

and H8S/2000 advanced

mode)

Pointer to data member*' 2 2 Unused 0 2'° — 1 (65535)
(H8SX normal mode,

H8SX middle mode,

H8S/2600 normal mode,

H8S/2000 normal mode,

H8/300H normal mode,

and H8/300)

Pointer to data 4 2 Unused O 2* _ 1 (16777215)
member:'**
(H8/300H advanced mode)

Pointer to data 4 2 Unused O 2% _1
member:'#* (4294967295)
(H8SX advanced mode,

H8SX maximum mode,

H8S/2600 advanced mode

and H8S/2000 advanced

mode)

Rev. 1.00 Aug. 17,2009 Page 322 of 1156
REJ10J2039-0100 RENESAS

Section 10 C/C++ Language Specifications

Table 10.15 Internal Representation of Scalar-Type and Basic-Type Data (cont)

Size Alignment Data Range

Data Type (bytes) (bytes) Sign Minimum Value Maximum Value

Pointer to function 6 2 N/A N/A N/A
member*'#*

(H8SX normal mode,

H8S/2600 normal mode,

H8S/2000 normal mode,

H8/300H normal mode,

and H8/300)

Pointer to function 8 2 N/A N/A N/A
member*'#
(H8SX middle mode)

Pointer to function 10 2 N/A N/A N/A
member'#°#®

(H8SX advanced mode,

H8SX maximum mode,

H8S/2600 advanced mode,

H8S/2000 advanced mode,

H8/300H advanced mode)

Pointer to virtual function 6 2 N/A N/A N/A
member*'#

(H8SX normal mode,

H8S/2600 normal mode,

H8S/2000 normal mode,

H8/300H normal mode,

and H8/300)

Pointer to virtual function 8 2 N/A N/A N/A
member*'**
(H8SX middle mode)

Pointer to virtual function 10 2 N/A N/A N/A
member'#°#®

(H8SX advanced mode,

H8SX maximum mode,

H8S/2600 advanced mode,

H8S/2000 advanced mode,

and H8/300H advanced

mode)

Notes: 1. These data types are valid only with C++ compilation.
2. The size of double type is 4 bytes if double=float is specified.
3. The lower three bytes indicate address data and the highest byte has an indefinite
value.
4. In the H8SX advanced/maximum mode with ptr16 option or _ _ptr16 keyword, the size
is 2.

Rev. 1.00 Aug. 17,2009 Page 323 of 1156
RENESAS REJ10J2039-0100

Section 10 C/C++ Language Specifications

5. In other H8/300H advanced mode with ptr16 option, the size is 8.

6. Pointers to function and virtual function members are represented by classes in the
following.

class _PMF{

public:
size_t delta; //Object offset value.
short index; //Index in the wvirtual
//function table when
//the target function is a
//virtual function.
union({
int (*_deffun) (); //Address of a function when
//the target function is a
//non-virtual function.
size t vt offset; //Object offset value of the
}i //virtual function table
}i //when the target function

//is a virtual function.

Rev. 1.00 Aug. 17,2009 Page 324 of 1156
REJ10J2039-0100 RENESAS

Section 10 C/C++ Language Specifications

(2) Compound Type (C), Class Type (C++)

This section explains internal representation of array type, structure type, and union type data in C
and class type data in C++.

Table 10.16 shows internal representation of compound type and class type data.

Table 10.16 Internal Representation of Compound Type and Class Type Data

Data Type Alignment (bytes) Size (bytes) Data Allocation Example
Array type Array element alignment Number of array elements char a[10];
x element size Alignment: 1 byte
Size: 10 bytes
Structure Maximum structure Total size of members. struct {
type member alignment Refer to Structure Data char a,b;
Allocation, below. }i
Alignment: 1 byte
Size: 2 bytes
Union type Maximum union member Maximum size of member. union {
alignment Refer to Union Data char a,b;
Allocation, below. }i
Alignment: 1 byte
Size: 1 byte
Classtype 1. Always 2 if a virtual Sum of data members, H8S/2600 advanced mode:

function is included

2. Other than 1 above:
maximum member
alignment

pointer to the virtual function
table, and pointer to the
virtual base class

Refer to Class Data
Allocation, below.

class B:public A {
virtual void £();
};

Alignment: 2-byte
Size: 6 bytes

class A {
char a;
};

Alignment: 1-byte
Size: 1 byte

Rev. 1.00 Aug. 17,2009 Page 325 of 1156

RENESAS

REJ10J2039-0100

Section 10 C/C++ Language Specifications

Structure Data Allocation:

e When structure members are allocated, 1-byte unused area may be generated between structure
members to align them to their own boundaries.
[space

struct { ﬁ—d'bytesﬁ
char a; |:> z.a - z.b
int b;

Yz; 1 byte

e If a structure has 2-byte alignment and the last member ends at an odd-byte address, the
following one byte is included in this structure.

struct { e 4 bytes
int a;
char b: |:> X.a x. b
}x; 1 byte

Rev. 1.00 Aug. 17,2009 Page 326 of 1156
REJ10J2039-0100 RENESAS

Section 10 C/C++ Language Specifications

Union Data Allocation:

e When a union has 2-byte alignment and its maximum member size is odd, the following
one byte is included in this union.

——4 bytes——
w. a
——

union {
int a; [> :
char bl3]; Hf—’%f—’
- w. b[0] w.b[1] w.b[2] 1 bYte

Class Data Allocation:
e For classes having no base class or virtual functions, data members are allocated according to
the allocation rules of structure data.
class A{
char datal;
short data2;

public: 2 bytes

A();

obj.data1

N

int getDatal () {return datal;}
}obi; obj.data2

o If the start member for a class is 1-byte data and if the boundary alignment of the base class is
1, data members are allocated in order not to make a space.
class A{
char datal;
bi
class B:public A{ - N

obj.data1 obj.data2

2 bytes

char data2;

short data3; obj.data3
}obj;

Rev. 1.00 Aug. 17,2009 Page 327 of 1156
XRENESAS REJ10J2039-0100

Section 10 C/C++ Language Specifications

e For a class having a virtual base class, a pointer to the virtual base class is allocated.

2 bytes

an)

class Al obj data2

short datal; Pointer to virtual
}: base class

’ . created by the

class B: virtual protected A{ E:ompiler) y

char data2?;

. obj.data1

}obj;

e For a class having virtual functions, the compiler creates a virtual function table and allocates a
pointer to the virtual function table.

2 bytes

class A{ A
char datai; obj.datat
public: Pointer to virtual
virtual int getDatal(); —t function table
}obj ; (created by the

compiler)

Virtual function table
(created by the compiler)

A::getData1l

Rev. 1.00 Aug. 17,2009 Page 328 of 1156
REJ10J2039-0100 RENESAS

Section 10 C/C++ Language Specifications

An example is shown for class having virtual base class, base class, and virtual functions.

class A{
char datal;

2 bytes
virtual short getDatal();
}: obj.data2
class B:virtual public A{ Pointer to virtual function
. table (created by the
char dat az2; compiler)
char getDataz(); | Pointer to virtual base
short getDatal(); class (created by the
}i compiler)
class Cvirtual protected A{ obj.data3
i nt dat a3; Pointer to virtual base
. class (created by the
b compiler)
class Divirtual public A public B, public (obj.data4
public: .
. obj.data1
i nt dat a4;
short getDatal(); Pointer to virtual function
. table (created by the
} obj ; compiler)

Virtual function table
(created by compiler)

-18

A::getData1

Virtual function table
(created by compiler)

0

B::getData1

RENESAS

Rev. 1.00 Aug. 17,2009 Page 329 of 1156
REJ10J2039-0100

Section 10 C/C++ Language Specifications

e For an empty class, a 1-byte dummy area is assigned.

class A{
void fun() ; [_ 1 byte \
yobj; Dummy area
e For an empty class having an empty class as its base class, the dummy area is 1 byte.
class A{
void fun() ; 1b
yte
. r A
class B: Af Dummy area
void sub() ;
bi
e When the class size is 0, a dummy area for an empty class is allocated. For a base class or
derived class with data members, or for a class with virtual functions, no dummy area is
allocated.
class A{
void fun() ;
}i 1 byte
class B: A{ r N
obj.data1

char datal;
Jobj;

Rev. 1.00 Aug. 17,2009 Page 330 of 1156
REJ10J2039-0100 RENESAS

Section 10 C/C++ Language Specifications

(3) Bit Fields

A bit field is a member allocated with a specified size in a structure, union, or class. This part
explains how bit fields are allocated.

Bit Field Members: Table 10.17 shows the specifications of bit field members.

Table 10.17 Bit Field Member Specifications

ltem Specifications

Type specifier allowed for bit fields char, unsigned char
short, unsigned short,
int, unsigned int
long, unsigned long

How to treat a sign when data is A bit field with no sign (unsigned is specified for type):
extended to the declared type*’ Zero extension*?
A bit field with a sign (unsigned is not specified for type): Sign
extension

Notes: 1. To use a member of a bit field, data in the bit field is extended to the declared type.
2. Zero extension: Zeros are written to the upper bits to extend data.

Sign extension: The most significant bit of a bit field is used as a sign and the sign is
written to all higher-order bits to extend data.

Note: One-bit bit field data with a sign (declared with signed) is interpreted as the sign, and can
only represent O and -1. To represent O and 1, bit field data must be declared with
unsigned.

Rev. 1.00 Aug. 17,2009 Page 331 of 1156
RENESAS REJ10J2039-0100

Section 10 C/C++ Language Specifications

Bit Field Allocation: Bit field members are allocated according to the following five rules:

o Bit field members are placed in an area beginning from the left, that is, the most significant bit.

struct bi{ I:I Space

int a:2;
T int b:3; 15 1413 1110 0
’ |:> |x.a| x. b |
struct bi{
enum E1{o, p, q} a:?2; 15 1413 1110 0
enum E1 b: 3; |:> | ua | u.b |
o

e Consecutive bit field members having type specifiers of the same size are placed in the same
area as much as possible.

struct bil{
i nt a: 2; 15 1413 1110 0
unsi gned short b:3; :> | y. a | v. b |

by

e Bit field members having type specifiers with different sizes are allocated to separate areas.

struct bi{
int a:b5
char b: 4

}z; ’ :>

Rev. 1.00 Aug. 17,2009 Page 332 of 1156
REJ10J2039-0100 RENESAS

Section 10 C/C++ Language Specifications

o If the number of remaining bits in an area is less than the next bit field size, though the type
specifiers indicate the same size, the remaining area is not used and the next bit field is
allocated to the next area.

struct b2{ 7 32 0
char a:5; | v.a | |
char b: 4;
A% '::> 7 43 0
| vb | |

e If a bit field member with a bit field size of 0 is declared, the next member is allocated to the
next area.

struct b2{ 7 32 0
char ;
char
char c:

w, |

LR
g
o

o
wou
~
($)]
E-Y
o

Note: When the H8SX is selected as the CPU, bit field members can be aligned to the lower-bit
side. For details, refer to the description of the bit_order option in section 2.2,
Interpretation of Options, or the description of the #pragma bit_order in section 10.2.1,
#pragma Extension Specifiers and Keywords.

Rev. 1.00 Aug. 17,2009 Page 333 of 1156
XRENESAS REJ10J2039-0100

Section 10 C/C++ Language Specifications

10.1.3 Floating-Point Number Specifications

(1) Internal Representation of Floating-Point Numbers
Floating-point numbers handled by this compiler are internally represented in the standard
IEEE format. This section outlines the internal representation of floating-point numbers in the
IEEE format.

(a) Format for internal representation
float types are represented in the IEEE single-precision (32-bit) format, while double types
and long double types are represented in the IEEE double-precision (64-bit) format.

(b) Structure of internal representation
Figure 10.1 shows the structure of the internal representation of float, double, and long

double types.
float type
31 30 2322 0
| Exponent (8 bits) Mantissa (23 bits)
Sign (1 bit)
double type and long double type
63 62 52 51 0
| Exponent (11 bits) Mantissa (52 bits)
Sign (1 bit)

Figure 10.1 Structure of Internal Representation of Floating-Point Numbers
The internal representation format consists of the following parts:

i. Sign

Shows the sign of the floating-point number. 0 is positive, and 1 is negative.
ii. Exponent

Shows the exponent of the floating-point number to the power of 2.
iii. Mantissa

Shows the data corresponding to the significant digits of the floating-point number.

Rev. 1.00 Aug. 17,2009 Page 334 of 1156
REJ10J2039-0100 RENESAS

Section 10 C/C++ Language Specifications

(c) Types of represented values of floating-point number

In addition to the normal real numbers, floating-point numbers can also represent values
such as infinity. The following describes the types of values represented by floating-point
numbers.

i. Normalized number
When the exponent is not 0 or not all bits are 1. Represents a normal real value.
ii. Denormalized number

When the exponent is 0 and the mantissa is other than 0. Represents a real value having
a small absolute value.

iii. Zero

When the exponent and mantissa are 0. Represents the value 0.0.
iv. Infinity

When all bits of the exponent are 1 and the mantissa is 0. Represents infinity.
v. Not-a-number

When all bits of the exponents are 1 and the mantissa is other than 0. Represents the
result of operation such as "0.0/0.0", "oo/00", or "o0-00", which does not correspond to a
number or infinity.

Table 10.18 shows the types of values represented as floating-point numbers.

Table 10.18 Types of Values Represented as Floating-Point Numbers

Exponent
Mantissa 0 Not 0 or not all bits are 1 All bits are 1
0 0 Normalized number Infinity
Other than 0 Denormalized number Not-a-number

Note: Denormalized numbers are floating-point numbers of small absolute values that are outside
the range that can be represented by normalized numbers. There are fewer valid digits in a
denormalized number than in a normalized number. Therefore, if the result or intermediate
result of a calculation is a denormalized number, the number of valid digits in the result
cannot be guaranteed.

Rev. 1.00 Aug. 17,2009 Page 335 of 1156
RENESAS REJ10J2039-0100

Section 10 C/C++ Language Specifications

(2) float type

The float type is internally represented by a 1-bit sign, an 8-bit exponent, and a 23-bit
mantissa.

I

Normalized numbers

The sign indicates the sign of the value, either O (positive) or 1 (negative). The exponent is
between 1 and 254 (2°-2). The actual exponent is gained by subtracting 127 from this
value. The range is between —126 and 127. The mantissa is between 0 and 2*~1. The
actual mantissa is interpreted as the value of which the 2”'rd bit is 1 and this bit is followed
by the decimal point. Values of normalized numbers are as follows:

(1) % 277" (1+(mantissa) x 27°)

Example:

3130 2322 0
|1|10000000 1100000000000000000000

Sign: —

Exponent: 10000000, — 127 = 1, where , indicates binary
Mantissa: 1.11, = 1.75

Value: -175%x2"' = =35

. Denormalized numbers

The sign indicates the sign of the value, either O (positive) or 1 (negative). The exponent is
0 and the actual exponent is —126. The mantissa is between 1 and 2”1, and the actual
mantissa is interpreted as the value of which the 2*'rd bit is 0 and this bit is followed by the
decimal point. Values of denormalized numbers are as follows:

(=1)™ x 27" x ((mantissa) x 277)

Example:

3130 2322 0
|O|OOOOOOOO 1100000000000000000000

Sign: +

Exponent: —126

Mantissa: 0.11, = 0.75, where , indicates binary
Value: 0.75x 27"

Rev. 1.00 Aug. 17,2009 Page 336 of 1156
REJ10J2039-0100 RENESAS

Section 10 C/C++ Language Specifications

iii. Zero

iv.

Note:

The sign is O (positive) or 1 (negative), indicating +0.0 or —0.0, respectively. The exponent
and mantissa are both 0.

+0.0 and —0.0 are both the value 0.0. See section 10.1.3 (4), Floating-Point Operation
Specifications, for the functional differences deriving from the sign used with zero.
Infinity

The sign is O (positive) or 1 (negative), indicating +oo or —oo, respectively.

The exponent is 255 2°-1).

The mantissa is 0.

Not-a-number

The exponent is 255 (2°-1).

The mantissa is a value other than 0.

There are no stipulations regarding the mantissa values (other than 0) or the sign of not-a-
number.

(3) double type and long double type

The double type and the long double types are internally represented by a 1-bit sign, a 11-bit
exponent, and a 52-bit mantissa.

I

Normalized numbers

The sign indicates the sign of the value, either O (positive) or 1 (negative). The exponent is
between 1 and 2046 (2''-2). The actual exponent is gained by subtracting 1023 from this
value. The range is between —1022 and 1023. The mantissa is between 0 and 2”~1. The
actual mantissa is interpreted as the value of which the 2*nd bit is 1 and this bit is followed
by the decimal point. Values of normalized numbers are as follows:

(_l)sign % zexpnnenl—IOZS « (1+(mantissa) « 2752)

Example:

63 62 52 51 0

|O|01 111111111|]111000

Sign: +

Exponent: 1111111111, -1023 = 0, where , indicates binary
Mantissa: 1.111, = 1.875

Value: 1.875x2° = 1.875

Rev. 1.00 Aug. 17,2009 Page 337 of 1156
XRENESAS REJ10J2039-0100

Section 10 C/C++ Language Specifications

il.

Denormalized numbers

The sign indicates the sign of the value, either O (positive) or 1 (negative). The exponent is
0 and the actual exponent is -1022. The mantissa is between 1 and 21, and the actual
mantissa is interpreted as the value of which the 2”nd bit is 0 and this bit is followed by the
decimal point. Values of denormalized numbers are as follows:

(-1)™ x 27 x ((mantissa) x 2

Example:

63 62 52 51 0

|1|00000000000 111000

iii.

iv.

Note:

Sign: -

Exponent: —1022

Mantissa: 0.111, = 0.875, where , indicates binary
Value: 0.875 x 27

Zero

The sign is O (positive) or 1 (negative), indicating +0.0 or —0.0, respectively. The exponent
and mantissa are both 0.

+0.0 and —0.0 are both the value 0.0. See section 10.1.3 (4), Floating-Point Operation
Specifications, for the functional differences deriving from the sign used with zero.

Infinity

The sign is O (positive) or 1 (negative), indicating 4+ or —oo, respectively. The exponent is
2047 (2"'-1).

The mantissa is 0.

Not-a-number

The exponent is 2047 @2"-1.

The mantissa is a value other than 0.

There are no stipulations regarding the mantissa values (other than 0) or the sign of not-a-
number.

Rev. 1.00 Aug. 17,2009 Page 338 of 1156
REJ10J2039-0100 RENESAS

Section 10 C/C++ Language Specifications

(4) Floating-Point Operation Specifications
This section describes the specifications for arithmetic operations on floating-point numbers in
C/C++, and for conversion between the decimal representation of floating-point numbers and
their internal representation during compilation and in C library processing.

(a) Specifications for arithmetic operations

I

ii.

Rounding of results

When the result of arithmetic operations on floating-point numbers exceeds the number

of valid limit in the mantissa in internal representation, the result is rounded according

to the following rules:

a. The result is rounded toward the closer of the two internal representations of the
approximating floating-point numbers.

b. When the result is exactly between the two approximating floating-point numbers, it
is rounded to the floating-point number of which the last digit of the mantissa is 0.

Processing of overflows, underflows, and illegal operations

The following is performed in the event of an overflow, underflow, or illegal operation.

a. In the case of an overflow, the result is a positive or negative infinity, depending on
the sign of the result.

b. In the case of an underflow, the result is a positive or negative zero, depending on
the sign of the result.

c. In the case of an illegal operation, in which infinity values of the opposite sign have
been added, in which an infinity has been subtracted from another infinity of the
same sign, in which zero has been multiplied by infinity, in which zero is divided by
zero, or in which infinity is divided by infinity, the result is a not-a-number.

d. For the cases above, error numbers are set to variable errno which indicates an

error. For details on error numbers, refer to section 12.3, C Library Error
Messages. Whether an error has occurred can be checked by the errno value.

Note: Operations are performed on constant expressions during compilation. If an
overflow, underflow, or illegal operation occurs, a warning level error message
is output.

Rev. 1.00 Aug. 17,2009 Page 339 of 1156
XRENESAS REJ10J2039-0100

Section 10 C/C++ Language Specifications

iii. Notes on operations on special values

The following are notes on operations on special values (zero, infinity, and not-a-

number).

a.
b.

C.

The sum of a positive zero and a negative zero is a positive zero.
The difference between two zeros of the same sign is a positive zero.

The result of operations that include not-a-number in one or both operands is always
a not-a-number.

In comparative operations, positive zeros and negative zeros are processed as equal.

The result of comparative operations or equivalence operations where either one or
both operands are not-a-number is true for "!=" and false in all ot